cfq-iosched.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private)
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  80. .count = 0, .min_vdisktime = 0, }
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. int ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending metadata requests */
  118. int meta_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class, org_ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. struct cfq_group *orig_cfqg;
  131. /* Number of sectors dispatched from queue in single dispatch round */
  132. unsigned long nr_sectors;
  133. };
  134. /*
  135. * First index in the service_trees.
  136. * IDLE is handled separately, so it has negative index
  137. */
  138. enum wl_prio_t {
  139. BE_WORKLOAD = 0,
  140. RT_WORKLOAD = 1,
  141. IDLE_WORKLOAD = 2,
  142. CFQ_PRIO_NR,
  143. };
  144. /*
  145. * Second index in the service_trees.
  146. */
  147. enum wl_type_t {
  148. ASYNC_WORKLOAD = 0,
  149. SYNC_NOIDLE_WORKLOAD = 1,
  150. SYNC_WORKLOAD = 2
  151. };
  152. /* This is per cgroup per device grouping structure */
  153. struct cfq_group {
  154. /* group service_tree member */
  155. struct rb_node rb_node;
  156. /* group service_tree key */
  157. u64 vdisktime;
  158. unsigned int weight;
  159. /* number of cfqq currently on this group */
  160. int nr_cfqq;
  161. /*
  162. * Per group busy queus average. Useful for workload slice calc. We
  163. * create the array for each prio class but at run time it is used
  164. * only for RT and BE class and slot for IDLE class remains unused.
  165. * This is primarily done to avoid confusion and a gcc warning.
  166. */
  167. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  168. /*
  169. * rr lists of queues with requests. We maintain service trees for
  170. * RT and BE classes. These trees are subdivided in subclasses
  171. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  172. * class there is no subclassification and all the cfq queues go on
  173. * a single tree service_tree_idle.
  174. * Counts are embedded in the cfq_rb_root
  175. */
  176. struct cfq_rb_root service_trees[2][3];
  177. struct cfq_rb_root service_tree_idle;
  178. unsigned long saved_workload_slice;
  179. enum wl_type_t saved_workload;
  180. enum wl_prio_t saved_serving_prio;
  181. struct blkio_group blkg;
  182. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  183. struct hlist_node cfqd_node;
  184. int ref;
  185. #endif
  186. /* number of requests that are on the dispatch list or inside driver */
  187. int dispatched;
  188. };
  189. /*
  190. * Per block device queue structure
  191. */
  192. struct cfq_data {
  193. struct request_queue *queue;
  194. /* Root service tree for cfq_groups */
  195. struct cfq_rb_root grp_service_tree;
  196. struct cfq_group root_group;
  197. /*
  198. * The priority currently being served
  199. */
  200. enum wl_prio_t serving_prio;
  201. enum wl_type_t serving_type;
  202. unsigned long workload_expires;
  203. struct cfq_group *serving_group;
  204. /*
  205. * Each priority tree is sorted by next_request position. These
  206. * trees are used when determining if two or more queues are
  207. * interleaving requests (see cfq_close_cooperator).
  208. */
  209. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  210. unsigned int busy_queues;
  211. int rq_in_driver;
  212. int rq_in_flight[2];
  213. /*
  214. * queue-depth detection
  215. */
  216. int rq_queued;
  217. int hw_tag;
  218. /*
  219. * hw_tag can be
  220. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  221. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  222. * 0 => no NCQ
  223. */
  224. int hw_tag_est_depth;
  225. unsigned int hw_tag_samples;
  226. /*
  227. * idle window management
  228. */
  229. struct timer_list idle_slice_timer;
  230. struct work_struct unplug_work;
  231. struct cfq_queue *active_queue;
  232. struct cfq_io_context *active_cic;
  233. /*
  234. * async queue for each priority case
  235. */
  236. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  237. struct cfq_queue *async_idle_cfqq;
  238. sector_t last_position;
  239. /*
  240. * tunables, see top of file
  241. */
  242. unsigned int cfq_quantum;
  243. unsigned int cfq_fifo_expire[2];
  244. unsigned int cfq_back_penalty;
  245. unsigned int cfq_back_max;
  246. unsigned int cfq_slice[2];
  247. unsigned int cfq_slice_async_rq;
  248. unsigned int cfq_slice_idle;
  249. unsigned int cfq_group_idle;
  250. unsigned int cfq_latency;
  251. unsigned int cfq_group_isolation;
  252. unsigned int cic_index;
  253. struct list_head cic_list;
  254. /*
  255. * Fallback dummy cfqq for extreme OOM conditions
  256. */
  257. struct cfq_queue oom_cfqq;
  258. unsigned long last_delayed_sync;
  259. /* List of cfq groups being managed on this device*/
  260. struct hlist_head cfqg_list;
  261. struct rcu_head rcu;
  262. };
  263. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  264. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  265. enum wl_prio_t prio,
  266. enum wl_type_t type)
  267. {
  268. if (!cfqg)
  269. return NULL;
  270. if (prio == IDLE_WORKLOAD)
  271. return &cfqg->service_tree_idle;
  272. return &cfqg->service_trees[prio][type];
  273. }
  274. enum cfqq_state_flags {
  275. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  276. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  277. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  278. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  279. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  280. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  281. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  282. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  283. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  284. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  285. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  286. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  287. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  288. };
  289. #define CFQ_CFQQ_FNS(name) \
  290. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  291. { \
  292. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  293. } \
  294. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  295. { \
  296. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  297. } \
  298. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  299. { \
  300. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  301. }
  302. CFQ_CFQQ_FNS(on_rr);
  303. CFQ_CFQQ_FNS(wait_request);
  304. CFQ_CFQQ_FNS(must_dispatch);
  305. CFQ_CFQQ_FNS(must_alloc_slice);
  306. CFQ_CFQQ_FNS(fifo_expire);
  307. CFQ_CFQQ_FNS(idle_window);
  308. CFQ_CFQQ_FNS(prio_changed);
  309. CFQ_CFQQ_FNS(slice_new);
  310. CFQ_CFQQ_FNS(sync);
  311. CFQ_CFQQ_FNS(coop);
  312. CFQ_CFQQ_FNS(split_coop);
  313. CFQ_CFQQ_FNS(deep);
  314. CFQ_CFQQ_FNS(wait_busy);
  315. #undef CFQ_CFQQ_FNS
  316. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  317. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  318. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  319. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  320. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  321. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  322. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  323. blkg_path(&(cfqg)->blkg), ##args); \
  324. #else
  325. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  326. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  327. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  328. #endif
  329. #define cfq_log(cfqd, fmt, args...) \
  330. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  331. /* Traverses through cfq group service trees */
  332. #define for_each_cfqg_st(cfqg, i, j, st) \
  333. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  334. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  335. : &cfqg->service_tree_idle; \
  336. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  337. (i == IDLE_WORKLOAD && j == 0); \
  338. j++, st = i < IDLE_WORKLOAD ? \
  339. &cfqg->service_trees[i][j]: NULL) \
  340. static inline bool iops_mode(struct cfq_data *cfqd)
  341. {
  342. /*
  343. * If we are not idling on queues and it is a NCQ drive, parallel
  344. * execution of requests is on and measuring time is not possible
  345. * in most of the cases until and unless we drive shallower queue
  346. * depths and that becomes a performance bottleneck. In such cases
  347. * switch to start providing fairness in terms of number of IOs.
  348. */
  349. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  350. return true;
  351. else
  352. return false;
  353. }
  354. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  355. {
  356. if (cfq_class_idle(cfqq))
  357. return IDLE_WORKLOAD;
  358. if (cfq_class_rt(cfqq))
  359. return RT_WORKLOAD;
  360. return BE_WORKLOAD;
  361. }
  362. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  363. {
  364. if (!cfq_cfqq_sync(cfqq))
  365. return ASYNC_WORKLOAD;
  366. if (!cfq_cfqq_idle_window(cfqq))
  367. return SYNC_NOIDLE_WORKLOAD;
  368. return SYNC_WORKLOAD;
  369. }
  370. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  371. struct cfq_data *cfqd,
  372. struct cfq_group *cfqg)
  373. {
  374. if (wl == IDLE_WORKLOAD)
  375. return cfqg->service_tree_idle.count;
  376. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  377. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  378. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  379. }
  380. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  381. struct cfq_group *cfqg)
  382. {
  383. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  384. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  385. }
  386. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  387. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  388. struct io_context *, gfp_t);
  389. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  390. struct io_context *);
  391. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  392. bool is_sync)
  393. {
  394. return cic->cfqq[is_sync];
  395. }
  396. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  397. struct cfq_queue *cfqq, bool is_sync)
  398. {
  399. cic->cfqq[is_sync] = cfqq;
  400. }
  401. #define CIC_DEAD_KEY 1ul
  402. #define CIC_DEAD_INDEX_SHIFT 1
  403. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  404. {
  405. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  406. }
  407. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  408. {
  409. struct cfq_data *cfqd = cic->key;
  410. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  411. return NULL;
  412. return cfqd;
  413. }
  414. /*
  415. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  416. * set (in which case it could also be direct WRITE).
  417. */
  418. static inline bool cfq_bio_sync(struct bio *bio)
  419. {
  420. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  421. }
  422. /*
  423. * scheduler run of queue, if there are requests pending and no one in the
  424. * driver that will restart queueing
  425. */
  426. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  427. {
  428. if (cfqd->busy_queues) {
  429. cfq_log(cfqd, "schedule dispatch");
  430. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  431. }
  432. }
  433. static int cfq_queue_empty(struct request_queue *q)
  434. {
  435. struct cfq_data *cfqd = q->elevator->elevator_data;
  436. return !cfqd->rq_queued;
  437. }
  438. /*
  439. * Scale schedule slice based on io priority. Use the sync time slice only
  440. * if a queue is marked sync and has sync io queued. A sync queue with async
  441. * io only, should not get full sync slice length.
  442. */
  443. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  444. unsigned short prio)
  445. {
  446. const int base_slice = cfqd->cfq_slice[sync];
  447. WARN_ON(prio >= IOPRIO_BE_NR);
  448. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  449. }
  450. static inline int
  451. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  452. {
  453. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  454. }
  455. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  456. {
  457. u64 d = delta << CFQ_SERVICE_SHIFT;
  458. d = d * BLKIO_WEIGHT_DEFAULT;
  459. do_div(d, cfqg->weight);
  460. return d;
  461. }
  462. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  463. {
  464. s64 delta = (s64)(vdisktime - min_vdisktime);
  465. if (delta > 0)
  466. min_vdisktime = vdisktime;
  467. return min_vdisktime;
  468. }
  469. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  470. {
  471. s64 delta = (s64)(vdisktime - min_vdisktime);
  472. if (delta < 0)
  473. min_vdisktime = vdisktime;
  474. return min_vdisktime;
  475. }
  476. static void update_min_vdisktime(struct cfq_rb_root *st)
  477. {
  478. u64 vdisktime = st->min_vdisktime;
  479. struct cfq_group *cfqg;
  480. if (st->left) {
  481. cfqg = rb_entry_cfqg(st->left);
  482. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  483. }
  484. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  485. }
  486. /*
  487. * get averaged number of queues of RT/BE priority.
  488. * average is updated, with a formula that gives more weight to higher numbers,
  489. * to quickly follows sudden increases and decrease slowly
  490. */
  491. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  492. struct cfq_group *cfqg, bool rt)
  493. {
  494. unsigned min_q, max_q;
  495. unsigned mult = cfq_hist_divisor - 1;
  496. unsigned round = cfq_hist_divisor / 2;
  497. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  498. min_q = min(cfqg->busy_queues_avg[rt], busy);
  499. max_q = max(cfqg->busy_queues_avg[rt], busy);
  500. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  501. cfq_hist_divisor;
  502. return cfqg->busy_queues_avg[rt];
  503. }
  504. static inline unsigned
  505. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  506. {
  507. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  508. return cfq_target_latency * cfqg->weight / st->total_weight;
  509. }
  510. static inline void
  511. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  512. {
  513. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  514. if (cfqd->cfq_latency) {
  515. /*
  516. * interested queues (we consider only the ones with the same
  517. * priority class in the cfq group)
  518. */
  519. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  520. cfq_class_rt(cfqq));
  521. unsigned sync_slice = cfqd->cfq_slice[1];
  522. unsigned expect_latency = sync_slice * iq;
  523. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  524. if (expect_latency > group_slice) {
  525. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  526. /* scale low_slice according to IO priority
  527. * and sync vs async */
  528. unsigned low_slice =
  529. min(slice, base_low_slice * slice / sync_slice);
  530. /* the adapted slice value is scaled to fit all iqs
  531. * into the target latency */
  532. slice = max(slice * group_slice / expect_latency,
  533. low_slice);
  534. }
  535. }
  536. cfqq->slice_start = jiffies;
  537. cfqq->slice_end = jiffies + slice;
  538. cfqq->allocated_slice = slice;
  539. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  540. }
  541. /*
  542. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  543. * isn't valid until the first request from the dispatch is activated
  544. * and the slice time set.
  545. */
  546. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  547. {
  548. if (cfq_cfqq_slice_new(cfqq))
  549. return false;
  550. if (time_before(jiffies, cfqq->slice_end))
  551. return false;
  552. return true;
  553. }
  554. /*
  555. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  556. * We choose the request that is closest to the head right now. Distance
  557. * behind the head is penalized and only allowed to a certain extent.
  558. */
  559. static struct request *
  560. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  561. {
  562. sector_t s1, s2, d1 = 0, d2 = 0;
  563. unsigned long back_max;
  564. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  565. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  566. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  567. if (rq1 == NULL || rq1 == rq2)
  568. return rq2;
  569. if (rq2 == NULL)
  570. return rq1;
  571. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  572. return rq1;
  573. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  574. return rq2;
  575. if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
  576. return rq1;
  577. else if ((rq2->cmd_flags & REQ_META) &&
  578. !(rq1->cmd_flags & REQ_META))
  579. return rq2;
  580. s1 = blk_rq_pos(rq1);
  581. s2 = blk_rq_pos(rq2);
  582. /*
  583. * by definition, 1KiB is 2 sectors
  584. */
  585. back_max = cfqd->cfq_back_max * 2;
  586. /*
  587. * Strict one way elevator _except_ in the case where we allow
  588. * short backward seeks which are biased as twice the cost of a
  589. * similar forward seek.
  590. */
  591. if (s1 >= last)
  592. d1 = s1 - last;
  593. else if (s1 + back_max >= last)
  594. d1 = (last - s1) * cfqd->cfq_back_penalty;
  595. else
  596. wrap |= CFQ_RQ1_WRAP;
  597. if (s2 >= last)
  598. d2 = s2 - last;
  599. else if (s2 + back_max >= last)
  600. d2 = (last - s2) * cfqd->cfq_back_penalty;
  601. else
  602. wrap |= CFQ_RQ2_WRAP;
  603. /* Found required data */
  604. /*
  605. * By doing switch() on the bit mask "wrap" we avoid having to
  606. * check two variables for all permutations: --> faster!
  607. */
  608. switch (wrap) {
  609. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  610. if (d1 < d2)
  611. return rq1;
  612. else if (d2 < d1)
  613. return rq2;
  614. else {
  615. if (s1 >= s2)
  616. return rq1;
  617. else
  618. return rq2;
  619. }
  620. case CFQ_RQ2_WRAP:
  621. return rq1;
  622. case CFQ_RQ1_WRAP:
  623. return rq2;
  624. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  625. default:
  626. /*
  627. * Since both rqs are wrapped,
  628. * start with the one that's further behind head
  629. * (--> only *one* back seek required),
  630. * since back seek takes more time than forward.
  631. */
  632. if (s1 <= s2)
  633. return rq1;
  634. else
  635. return rq2;
  636. }
  637. }
  638. /*
  639. * The below is leftmost cache rbtree addon
  640. */
  641. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  642. {
  643. /* Service tree is empty */
  644. if (!root->count)
  645. return NULL;
  646. if (!root->left)
  647. root->left = rb_first(&root->rb);
  648. if (root->left)
  649. return rb_entry(root->left, struct cfq_queue, rb_node);
  650. return NULL;
  651. }
  652. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  653. {
  654. if (!root->left)
  655. root->left = rb_first(&root->rb);
  656. if (root->left)
  657. return rb_entry_cfqg(root->left);
  658. return NULL;
  659. }
  660. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  661. {
  662. rb_erase(n, root);
  663. RB_CLEAR_NODE(n);
  664. }
  665. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  666. {
  667. if (root->left == n)
  668. root->left = NULL;
  669. rb_erase_init(n, &root->rb);
  670. --root->count;
  671. }
  672. /*
  673. * would be nice to take fifo expire time into account as well
  674. */
  675. static struct request *
  676. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  677. struct request *last)
  678. {
  679. struct rb_node *rbnext = rb_next(&last->rb_node);
  680. struct rb_node *rbprev = rb_prev(&last->rb_node);
  681. struct request *next = NULL, *prev = NULL;
  682. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  683. if (rbprev)
  684. prev = rb_entry_rq(rbprev);
  685. if (rbnext)
  686. next = rb_entry_rq(rbnext);
  687. else {
  688. rbnext = rb_first(&cfqq->sort_list);
  689. if (rbnext && rbnext != &last->rb_node)
  690. next = rb_entry_rq(rbnext);
  691. }
  692. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  693. }
  694. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  695. struct cfq_queue *cfqq)
  696. {
  697. /*
  698. * just an approximation, should be ok.
  699. */
  700. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  701. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  702. }
  703. static inline s64
  704. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  705. {
  706. return cfqg->vdisktime - st->min_vdisktime;
  707. }
  708. static void
  709. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  710. {
  711. struct rb_node **node = &st->rb.rb_node;
  712. struct rb_node *parent = NULL;
  713. struct cfq_group *__cfqg;
  714. s64 key = cfqg_key(st, cfqg);
  715. int left = 1;
  716. while (*node != NULL) {
  717. parent = *node;
  718. __cfqg = rb_entry_cfqg(parent);
  719. if (key < cfqg_key(st, __cfqg))
  720. node = &parent->rb_left;
  721. else {
  722. node = &parent->rb_right;
  723. left = 0;
  724. }
  725. }
  726. if (left)
  727. st->left = &cfqg->rb_node;
  728. rb_link_node(&cfqg->rb_node, parent, node);
  729. rb_insert_color(&cfqg->rb_node, &st->rb);
  730. }
  731. static void
  732. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  733. {
  734. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  735. struct cfq_group *__cfqg;
  736. struct rb_node *n;
  737. cfqg->nr_cfqq++;
  738. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  739. return;
  740. /*
  741. * Currently put the group at the end. Later implement something
  742. * so that groups get lesser vtime based on their weights, so that
  743. * if group does not loose all if it was not continously backlogged.
  744. */
  745. n = rb_last(&st->rb);
  746. if (n) {
  747. __cfqg = rb_entry_cfqg(n);
  748. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  749. } else
  750. cfqg->vdisktime = st->min_vdisktime;
  751. __cfq_group_service_tree_add(st, cfqg);
  752. st->total_weight += cfqg->weight;
  753. }
  754. static void
  755. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  756. {
  757. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  758. BUG_ON(cfqg->nr_cfqq < 1);
  759. cfqg->nr_cfqq--;
  760. /* If there are other cfq queues under this group, don't delete it */
  761. if (cfqg->nr_cfqq)
  762. return;
  763. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  764. st->total_weight -= cfqg->weight;
  765. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  766. cfq_rb_erase(&cfqg->rb_node, st);
  767. cfqg->saved_workload_slice = 0;
  768. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  769. }
  770. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  771. {
  772. unsigned int slice_used;
  773. /*
  774. * Queue got expired before even a single request completed or
  775. * got expired immediately after first request completion.
  776. */
  777. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  778. /*
  779. * Also charge the seek time incurred to the group, otherwise
  780. * if there are mutiple queues in the group, each can dispatch
  781. * a single request on seeky media and cause lots of seek time
  782. * and group will never know it.
  783. */
  784. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  785. 1);
  786. } else {
  787. slice_used = jiffies - cfqq->slice_start;
  788. if (slice_used > cfqq->allocated_slice)
  789. slice_used = cfqq->allocated_slice;
  790. }
  791. return slice_used;
  792. }
  793. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  794. struct cfq_queue *cfqq)
  795. {
  796. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  797. unsigned int used_sl, charge;
  798. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  799. - cfqg->service_tree_idle.count;
  800. BUG_ON(nr_sync < 0);
  801. used_sl = charge = cfq_cfqq_slice_usage(cfqq);
  802. if (iops_mode(cfqd))
  803. charge = cfqq->slice_dispatch;
  804. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  805. charge = cfqq->allocated_slice;
  806. /* Can't update vdisktime while group is on service tree */
  807. cfq_rb_erase(&cfqg->rb_node, st);
  808. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  809. __cfq_group_service_tree_add(st, cfqg);
  810. /* This group is being expired. Save the context */
  811. if (time_after(cfqd->workload_expires, jiffies)) {
  812. cfqg->saved_workload_slice = cfqd->workload_expires
  813. - jiffies;
  814. cfqg->saved_workload = cfqd->serving_type;
  815. cfqg->saved_serving_prio = cfqd->serving_prio;
  816. } else
  817. cfqg->saved_workload_slice = 0;
  818. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  819. st->min_vdisktime);
  820. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
  821. " sect=%u", used_sl, cfqq->slice_dispatch, charge,
  822. iops_mode(cfqd), cfqq->nr_sectors);
  823. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
  824. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  825. }
  826. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  827. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  828. {
  829. if (blkg)
  830. return container_of(blkg, struct cfq_group, blkg);
  831. return NULL;
  832. }
  833. void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  834. unsigned int weight)
  835. {
  836. cfqg_of_blkg(blkg)->weight = weight;
  837. }
  838. static struct cfq_group *
  839. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  840. {
  841. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  842. struct cfq_group *cfqg = NULL;
  843. void *key = cfqd;
  844. int i, j;
  845. struct cfq_rb_root *st;
  846. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  847. unsigned int major, minor;
  848. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  849. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  850. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  851. cfqg->blkg.dev = MKDEV(major, minor);
  852. goto done;
  853. }
  854. if (cfqg || !create)
  855. goto done;
  856. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  857. if (!cfqg)
  858. goto done;
  859. for_each_cfqg_st(cfqg, i, j, st)
  860. *st = CFQ_RB_ROOT;
  861. RB_CLEAR_NODE(&cfqg->rb_node);
  862. /*
  863. * Take the initial reference that will be released on destroy
  864. * This can be thought of a joint reference by cgroup and
  865. * elevator which will be dropped by either elevator exit
  866. * or cgroup deletion path depending on who is exiting first.
  867. */
  868. cfqg->ref = 1;
  869. /*
  870. * Add group onto cgroup list. It might happen that bdi->dev is
  871. * not initialized yet. Initialize this new group without major
  872. * and minor info and this info will be filled in once a new thread
  873. * comes for IO. See code above.
  874. */
  875. if (bdi->dev) {
  876. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  877. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  878. MKDEV(major, minor));
  879. } else
  880. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  881. 0);
  882. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  883. /* Add group on cfqd list */
  884. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  885. done:
  886. return cfqg;
  887. }
  888. /*
  889. * Search for the cfq group current task belongs to. If create = 1, then also
  890. * create the cfq group if it does not exist. request_queue lock must be held.
  891. */
  892. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  893. {
  894. struct cgroup *cgroup;
  895. struct cfq_group *cfqg = NULL;
  896. rcu_read_lock();
  897. cgroup = task_cgroup(current, blkio_subsys_id);
  898. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  899. if (!cfqg && create)
  900. cfqg = &cfqd->root_group;
  901. rcu_read_unlock();
  902. return cfqg;
  903. }
  904. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  905. {
  906. cfqg->ref++;
  907. return cfqg;
  908. }
  909. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  910. {
  911. /* Currently, all async queues are mapped to root group */
  912. if (!cfq_cfqq_sync(cfqq))
  913. cfqg = &cfqq->cfqd->root_group;
  914. cfqq->cfqg = cfqg;
  915. /* cfqq reference on cfqg */
  916. cfqq->cfqg->ref++;
  917. }
  918. static void cfq_put_cfqg(struct cfq_group *cfqg)
  919. {
  920. struct cfq_rb_root *st;
  921. int i, j;
  922. BUG_ON(cfqg->ref <= 0);
  923. cfqg->ref--;
  924. if (cfqg->ref)
  925. return;
  926. for_each_cfqg_st(cfqg, i, j, st)
  927. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  928. kfree(cfqg);
  929. }
  930. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  931. {
  932. /* Something wrong if we are trying to remove same group twice */
  933. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  934. hlist_del_init(&cfqg->cfqd_node);
  935. /*
  936. * Put the reference taken at the time of creation so that when all
  937. * queues are gone, group can be destroyed.
  938. */
  939. cfq_put_cfqg(cfqg);
  940. }
  941. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  942. {
  943. struct hlist_node *pos, *n;
  944. struct cfq_group *cfqg;
  945. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  946. /*
  947. * If cgroup removal path got to blk_group first and removed
  948. * it from cgroup list, then it will take care of destroying
  949. * cfqg also.
  950. */
  951. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  952. cfq_destroy_cfqg(cfqd, cfqg);
  953. }
  954. }
  955. /*
  956. * Blk cgroup controller notification saying that blkio_group object is being
  957. * delinked as associated cgroup object is going away. That also means that
  958. * no new IO will come in this group. So get rid of this group as soon as
  959. * any pending IO in the group is finished.
  960. *
  961. * This function is called under rcu_read_lock(). key is the rcu protected
  962. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  963. * read lock.
  964. *
  965. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  966. * it should not be NULL as even if elevator was exiting, cgroup deltion
  967. * path got to it first.
  968. */
  969. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  970. {
  971. unsigned long flags;
  972. struct cfq_data *cfqd = key;
  973. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  974. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  975. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  976. }
  977. #else /* GROUP_IOSCHED */
  978. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  979. {
  980. return &cfqd->root_group;
  981. }
  982. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  983. {
  984. return cfqg;
  985. }
  986. static inline void
  987. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  988. cfqq->cfqg = cfqg;
  989. }
  990. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  991. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  992. #endif /* GROUP_IOSCHED */
  993. /*
  994. * The cfqd->service_trees holds all pending cfq_queue's that have
  995. * requests waiting to be processed. It is sorted in the order that
  996. * we will service the queues.
  997. */
  998. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  999. bool add_front)
  1000. {
  1001. struct rb_node **p, *parent;
  1002. struct cfq_queue *__cfqq;
  1003. unsigned long rb_key;
  1004. struct cfq_rb_root *service_tree;
  1005. int left;
  1006. int new_cfqq = 1;
  1007. int group_changed = 0;
  1008. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  1009. if (!cfqd->cfq_group_isolation
  1010. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  1011. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  1012. /* Move this cfq to root group */
  1013. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  1014. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1015. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1016. cfqq->orig_cfqg = cfqq->cfqg;
  1017. cfqq->cfqg = &cfqd->root_group;
  1018. cfqd->root_group.ref++;
  1019. group_changed = 1;
  1020. } else if (!cfqd->cfq_group_isolation
  1021. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  1022. /* cfqq is sequential now needs to go to its original group */
  1023. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  1024. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1025. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1026. cfq_put_cfqg(cfqq->cfqg);
  1027. cfqq->cfqg = cfqq->orig_cfqg;
  1028. cfqq->orig_cfqg = NULL;
  1029. group_changed = 1;
  1030. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  1031. }
  1032. #endif
  1033. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1034. cfqq_type(cfqq));
  1035. if (cfq_class_idle(cfqq)) {
  1036. rb_key = CFQ_IDLE_DELAY;
  1037. parent = rb_last(&service_tree->rb);
  1038. if (parent && parent != &cfqq->rb_node) {
  1039. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1040. rb_key += __cfqq->rb_key;
  1041. } else
  1042. rb_key += jiffies;
  1043. } else if (!add_front) {
  1044. /*
  1045. * Get our rb key offset. Subtract any residual slice
  1046. * value carried from last service. A negative resid
  1047. * count indicates slice overrun, and this should position
  1048. * the next service time further away in the tree.
  1049. */
  1050. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1051. rb_key -= cfqq->slice_resid;
  1052. cfqq->slice_resid = 0;
  1053. } else {
  1054. rb_key = -HZ;
  1055. __cfqq = cfq_rb_first(service_tree);
  1056. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1057. }
  1058. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1059. new_cfqq = 0;
  1060. /*
  1061. * same position, nothing more to do
  1062. */
  1063. if (rb_key == cfqq->rb_key &&
  1064. cfqq->service_tree == service_tree)
  1065. return;
  1066. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1067. cfqq->service_tree = NULL;
  1068. }
  1069. left = 1;
  1070. parent = NULL;
  1071. cfqq->service_tree = service_tree;
  1072. p = &service_tree->rb.rb_node;
  1073. while (*p) {
  1074. struct rb_node **n;
  1075. parent = *p;
  1076. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1077. /*
  1078. * sort by key, that represents service time.
  1079. */
  1080. if (time_before(rb_key, __cfqq->rb_key))
  1081. n = &(*p)->rb_left;
  1082. else {
  1083. n = &(*p)->rb_right;
  1084. left = 0;
  1085. }
  1086. p = n;
  1087. }
  1088. if (left)
  1089. service_tree->left = &cfqq->rb_node;
  1090. cfqq->rb_key = rb_key;
  1091. rb_link_node(&cfqq->rb_node, parent, p);
  1092. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1093. service_tree->count++;
  1094. if ((add_front || !new_cfqq) && !group_changed)
  1095. return;
  1096. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1097. }
  1098. static struct cfq_queue *
  1099. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1100. sector_t sector, struct rb_node **ret_parent,
  1101. struct rb_node ***rb_link)
  1102. {
  1103. struct rb_node **p, *parent;
  1104. struct cfq_queue *cfqq = NULL;
  1105. parent = NULL;
  1106. p = &root->rb_node;
  1107. while (*p) {
  1108. struct rb_node **n;
  1109. parent = *p;
  1110. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1111. /*
  1112. * Sort strictly based on sector. Smallest to the left,
  1113. * largest to the right.
  1114. */
  1115. if (sector > blk_rq_pos(cfqq->next_rq))
  1116. n = &(*p)->rb_right;
  1117. else if (sector < blk_rq_pos(cfqq->next_rq))
  1118. n = &(*p)->rb_left;
  1119. else
  1120. break;
  1121. p = n;
  1122. cfqq = NULL;
  1123. }
  1124. *ret_parent = parent;
  1125. if (rb_link)
  1126. *rb_link = p;
  1127. return cfqq;
  1128. }
  1129. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1130. {
  1131. struct rb_node **p, *parent;
  1132. struct cfq_queue *__cfqq;
  1133. if (cfqq->p_root) {
  1134. rb_erase(&cfqq->p_node, cfqq->p_root);
  1135. cfqq->p_root = NULL;
  1136. }
  1137. if (cfq_class_idle(cfqq))
  1138. return;
  1139. if (!cfqq->next_rq)
  1140. return;
  1141. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1142. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1143. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1144. if (!__cfqq) {
  1145. rb_link_node(&cfqq->p_node, parent, p);
  1146. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1147. } else
  1148. cfqq->p_root = NULL;
  1149. }
  1150. /*
  1151. * Update cfqq's position in the service tree.
  1152. */
  1153. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1154. {
  1155. /*
  1156. * Resorting requires the cfqq to be on the RR list already.
  1157. */
  1158. if (cfq_cfqq_on_rr(cfqq)) {
  1159. cfq_service_tree_add(cfqd, cfqq, 0);
  1160. cfq_prio_tree_add(cfqd, cfqq);
  1161. }
  1162. }
  1163. /*
  1164. * add to busy list of queues for service, trying to be fair in ordering
  1165. * the pending list according to last request service
  1166. */
  1167. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1168. {
  1169. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1170. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1171. cfq_mark_cfqq_on_rr(cfqq);
  1172. cfqd->busy_queues++;
  1173. cfq_resort_rr_list(cfqd, cfqq);
  1174. }
  1175. /*
  1176. * Called when the cfqq no longer has requests pending, remove it from
  1177. * the service tree.
  1178. */
  1179. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1180. {
  1181. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1182. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1183. cfq_clear_cfqq_on_rr(cfqq);
  1184. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1185. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1186. cfqq->service_tree = NULL;
  1187. }
  1188. if (cfqq->p_root) {
  1189. rb_erase(&cfqq->p_node, cfqq->p_root);
  1190. cfqq->p_root = NULL;
  1191. }
  1192. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1193. BUG_ON(!cfqd->busy_queues);
  1194. cfqd->busy_queues--;
  1195. }
  1196. /*
  1197. * rb tree support functions
  1198. */
  1199. static void cfq_del_rq_rb(struct request *rq)
  1200. {
  1201. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1202. const int sync = rq_is_sync(rq);
  1203. BUG_ON(!cfqq->queued[sync]);
  1204. cfqq->queued[sync]--;
  1205. elv_rb_del(&cfqq->sort_list, rq);
  1206. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1207. /*
  1208. * Queue will be deleted from service tree when we actually
  1209. * expire it later. Right now just remove it from prio tree
  1210. * as it is empty.
  1211. */
  1212. if (cfqq->p_root) {
  1213. rb_erase(&cfqq->p_node, cfqq->p_root);
  1214. cfqq->p_root = NULL;
  1215. }
  1216. }
  1217. }
  1218. static void cfq_add_rq_rb(struct request *rq)
  1219. {
  1220. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1221. struct cfq_data *cfqd = cfqq->cfqd;
  1222. struct request *__alias, *prev;
  1223. cfqq->queued[rq_is_sync(rq)]++;
  1224. /*
  1225. * looks a little odd, but the first insert might return an alias.
  1226. * if that happens, put the alias on the dispatch list
  1227. */
  1228. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1229. cfq_dispatch_insert(cfqd->queue, __alias);
  1230. if (!cfq_cfqq_on_rr(cfqq))
  1231. cfq_add_cfqq_rr(cfqd, cfqq);
  1232. /*
  1233. * check if this request is a better next-serve candidate
  1234. */
  1235. prev = cfqq->next_rq;
  1236. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1237. /*
  1238. * adjust priority tree position, if ->next_rq changes
  1239. */
  1240. if (prev != cfqq->next_rq)
  1241. cfq_prio_tree_add(cfqd, cfqq);
  1242. BUG_ON(!cfqq->next_rq);
  1243. }
  1244. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1245. {
  1246. elv_rb_del(&cfqq->sort_list, rq);
  1247. cfqq->queued[rq_is_sync(rq)]--;
  1248. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1249. rq_data_dir(rq), rq_is_sync(rq));
  1250. cfq_add_rq_rb(rq);
  1251. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1252. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1253. rq_is_sync(rq));
  1254. }
  1255. static struct request *
  1256. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1257. {
  1258. struct task_struct *tsk = current;
  1259. struct cfq_io_context *cic;
  1260. struct cfq_queue *cfqq;
  1261. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1262. if (!cic)
  1263. return NULL;
  1264. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1265. if (cfqq) {
  1266. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1267. return elv_rb_find(&cfqq->sort_list, sector);
  1268. }
  1269. return NULL;
  1270. }
  1271. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1272. {
  1273. struct cfq_data *cfqd = q->elevator->elevator_data;
  1274. cfqd->rq_in_driver++;
  1275. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1276. cfqd->rq_in_driver);
  1277. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1278. }
  1279. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1280. {
  1281. struct cfq_data *cfqd = q->elevator->elevator_data;
  1282. WARN_ON(!cfqd->rq_in_driver);
  1283. cfqd->rq_in_driver--;
  1284. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1285. cfqd->rq_in_driver);
  1286. }
  1287. static void cfq_remove_request(struct request *rq)
  1288. {
  1289. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1290. if (cfqq->next_rq == rq)
  1291. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1292. list_del_init(&rq->queuelist);
  1293. cfq_del_rq_rb(rq);
  1294. cfqq->cfqd->rq_queued--;
  1295. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1296. rq_data_dir(rq), rq_is_sync(rq));
  1297. if (rq->cmd_flags & REQ_META) {
  1298. WARN_ON(!cfqq->meta_pending);
  1299. cfqq->meta_pending--;
  1300. }
  1301. }
  1302. static int cfq_merge(struct request_queue *q, struct request **req,
  1303. struct bio *bio)
  1304. {
  1305. struct cfq_data *cfqd = q->elevator->elevator_data;
  1306. struct request *__rq;
  1307. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1308. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1309. *req = __rq;
  1310. return ELEVATOR_FRONT_MERGE;
  1311. }
  1312. return ELEVATOR_NO_MERGE;
  1313. }
  1314. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1315. int type)
  1316. {
  1317. if (type == ELEVATOR_FRONT_MERGE) {
  1318. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1319. cfq_reposition_rq_rb(cfqq, req);
  1320. }
  1321. }
  1322. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1323. struct bio *bio)
  1324. {
  1325. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1326. bio_data_dir(bio), cfq_bio_sync(bio));
  1327. }
  1328. static void
  1329. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1330. struct request *next)
  1331. {
  1332. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1333. /*
  1334. * reposition in fifo if next is older than rq
  1335. */
  1336. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1337. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1338. list_move(&rq->queuelist, &next->queuelist);
  1339. rq_set_fifo_time(rq, rq_fifo_time(next));
  1340. }
  1341. if (cfqq->next_rq == next)
  1342. cfqq->next_rq = rq;
  1343. cfq_remove_request(next);
  1344. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1345. rq_data_dir(next), rq_is_sync(next));
  1346. }
  1347. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1348. struct bio *bio)
  1349. {
  1350. struct cfq_data *cfqd = q->elevator->elevator_data;
  1351. struct cfq_io_context *cic;
  1352. struct cfq_queue *cfqq;
  1353. /*
  1354. * Disallow merge of a sync bio into an async request.
  1355. */
  1356. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1357. return false;
  1358. /*
  1359. * Lookup the cfqq that this bio will be queued with. Allow
  1360. * merge only if rq is queued there.
  1361. */
  1362. cic = cfq_cic_lookup(cfqd, current->io_context);
  1363. if (!cic)
  1364. return false;
  1365. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1366. return cfqq == RQ_CFQQ(rq);
  1367. }
  1368. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1369. {
  1370. del_timer(&cfqd->idle_slice_timer);
  1371. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1372. }
  1373. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1374. struct cfq_queue *cfqq)
  1375. {
  1376. if (cfqq) {
  1377. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1378. cfqd->serving_prio, cfqd->serving_type);
  1379. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1380. cfqq->slice_start = 0;
  1381. cfqq->dispatch_start = jiffies;
  1382. cfqq->allocated_slice = 0;
  1383. cfqq->slice_end = 0;
  1384. cfqq->slice_dispatch = 0;
  1385. cfqq->nr_sectors = 0;
  1386. cfq_clear_cfqq_wait_request(cfqq);
  1387. cfq_clear_cfqq_must_dispatch(cfqq);
  1388. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1389. cfq_clear_cfqq_fifo_expire(cfqq);
  1390. cfq_mark_cfqq_slice_new(cfqq);
  1391. cfq_del_timer(cfqd, cfqq);
  1392. }
  1393. cfqd->active_queue = cfqq;
  1394. }
  1395. /*
  1396. * current cfqq expired its slice (or was too idle), select new one
  1397. */
  1398. static void
  1399. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1400. bool timed_out)
  1401. {
  1402. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1403. if (cfq_cfqq_wait_request(cfqq))
  1404. cfq_del_timer(cfqd, cfqq);
  1405. cfq_clear_cfqq_wait_request(cfqq);
  1406. cfq_clear_cfqq_wait_busy(cfqq);
  1407. /*
  1408. * If this cfqq is shared between multiple processes, check to
  1409. * make sure that those processes are still issuing I/Os within
  1410. * the mean seek distance. If not, it may be time to break the
  1411. * queues apart again.
  1412. */
  1413. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1414. cfq_mark_cfqq_split_coop(cfqq);
  1415. /*
  1416. * store what was left of this slice, if the queue idled/timed out
  1417. */
  1418. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1419. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1420. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1421. }
  1422. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1423. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1424. cfq_del_cfqq_rr(cfqd, cfqq);
  1425. cfq_resort_rr_list(cfqd, cfqq);
  1426. if (cfqq == cfqd->active_queue)
  1427. cfqd->active_queue = NULL;
  1428. if (cfqd->active_cic) {
  1429. put_io_context(cfqd->active_cic->ioc);
  1430. cfqd->active_cic = NULL;
  1431. }
  1432. }
  1433. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1434. {
  1435. struct cfq_queue *cfqq = cfqd->active_queue;
  1436. if (cfqq)
  1437. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1438. }
  1439. /*
  1440. * Get next queue for service. Unless we have a queue preemption,
  1441. * we'll simply select the first cfqq in the service tree.
  1442. */
  1443. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1444. {
  1445. struct cfq_rb_root *service_tree =
  1446. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1447. cfqd->serving_type);
  1448. if (!cfqd->rq_queued)
  1449. return NULL;
  1450. /* There is nothing to dispatch */
  1451. if (!service_tree)
  1452. return NULL;
  1453. if (RB_EMPTY_ROOT(&service_tree->rb))
  1454. return NULL;
  1455. return cfq_rb_first(service_tree);
  1456. }
  1457. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1458. {
  1459. struct cfq_group *cfqg;
  1460. struct cfq_queue *cfqq;
  1461. int i, j;
  1462. struct cfq_rb_root *st;
  1463. if (!cfqd->rq_queued)
  1464. return NULL;
  1465. cfqg = cfq_get_next_cfqg(cfqd);
  1466. if (!cfqg)
  1467. return NULL;
  1468. for_each_cfqg_st(cfqg, i, j, st)
  1469. if ((cfqq = cfq_rb_first(st)) != NULL)
  1470. return cfqq;
  1471. return NULL;
  1472. }
  1473. /*
  1474. * Get and set a new active queue for service.
  1475. */
  1476. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1477. struct cfq_queue *cfqq)
  1478. {
  1479. if (!cfqq)
  1480. cfqq = cfq_get_next_queue(cfqd);
  1481. __cfq_set_active_queue(cfqd, cfqq);
  1482. return cfqq;
  1483. }
  1484. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1485. struct request *rq)
  1486. {
  1487. if (blk_rq_pos(rq) >= cfqd->last_position)
  1488. return blk_rq_pos(rq) - cfqd->last_position;
  1489. else
  1490. return cfqd->last_position - blk_rq_pos(rq);
  1491. }
  1492. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1493. struct request *rq)
  1494. {
  1495. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1496. }
  1497. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1498. struct cfq_queue *cur_cfqq)
  1499. {
  1500. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1501. struct rb_node *parent, *node;
  1502. struct cfq_queue *__cfqq;
  1503. sector_t sector = cfqd->last_position;
  1504. if (RB_EMPTY_ROOT(root))
  1505. return NULL;
  1506. /*
  1507. * First, if we find a request starting at the end of the last
  1508. * request, choose it.
  1509. */
  1510. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1511. if (__cfqq)
  1512. return __cfqq;
  1513. /*
  1514. * If the exact sector wasn't found, the parent of the NULL leaf
  1515. * will contain the closest sector.
  1516. */
  1517. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1518. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1519. return __cfqq;
  1520. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1521. node = rb_next(&__cfqq->p_node);
  1522. else
  1523. node = rb_prev(&__cfqq->p_node);
  1524. if (!node)
  1525. return NULL;
  1526. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1527. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1528. return __cfqq;
  1529. return NULL;
  1530. }
  1531. /*
  1532. * cfqd - obvious
  1533. * cur_cfqq - passed in so that we don't decide that the current queue is
  1534. * closely cooperating with itself.
  1535. *
  1536. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1537. * one request, and that cfqd->last_position reflects a position on the disk
  1538. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1539. * assumption.
  1540. */
  1541. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1542. struct cfq_queue *cur_cfqq)
  1543. {
  1544. struct cfq_queue *cfqq;
  1545. if (cfq_class_idle(cur_cfqq))
  1546. return NULL;
  1547. if (!cfq_cfqq_sync(cur_cfqq))
  1548. return NULL;
  1549. if (CFQQ_SEEKY(cur_cfqq))
  1550. return NULL;
  1551. /*
  1552. * Don't search priority tree if it's the only queue in the group.
  1553. */
  1554. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1555. return NULL;
  1556. /*
  1557. * We should notice if some of the queues are cooperating, eg
  1558. * working closely on the same area of the disk. In that case,
  1559. * we can group them together and don't waste time idling.
  1560. */
  1561. cfqq = cfqq_close(cfqd, cur_cfqq);
  1562. if (!cfqq)
  1563. return NULL;
  1564. /* If new queue belongs to different cfq_group, don't choose it */
  1565. if (cur_cfqq->cfqg != cfqq->cfqg)
  1566. return NULL;
  1567. /*
  1568. * It only makes sense to merge sync queues.
  1569. */
  1570. if (!cfq_cfqq_sync(cfqq))
  1571. return NULL;
  1572. if (CFQQ_SEEKY(cfqq))
  1573. return NULL;
  1574. /*
  1575. * Do not merge queues of different priority classes
  1576. */
  1577. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1578. return NULL;
  1579. return cfqq;
  1580. }
  1581. /*
  1582. * Determine whether we should enforce idle window for this queue.
  1583. */
  1584. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1585. {
  1586. enum wl_prio_t prio = cfqq_prio(cfqq);
  1587. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1588. BUG_ON(!service_tree);
  1589. BUG_ON(!service_tree->count);
  1590. if (!cfqd->cfq_slice_idle)
  1591. return false;
  1592. /* We never do for idle class queues. */
  1593. if (prio == IDLE_WORKLOAD)
  1594. return false;
  1595. /* We do for queues that were marked with idle window flag. */
  1596. if (cfq_cfqq_idle_window(cfqq) &&
  1597. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1598. return true;
  1599. /*
  1600. * Otherwise, we do only if they are the last ones
  1601. * in their service tree.
  1602. */
  1603. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1604. return true;
  1605. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1606. service_tree->count);
  1607. return false;
  1608. }
  1609. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1610. {
  1611. struct cfq_queue *cfqq = cfqd->active_queue;
  1612. struct cfq_io_context *cic;
  1613. unsigned long sl, group_idle = 0;
  1614. /*
  1615. * SSD device without seek penalty, disable idling. But only do so
  1616. * for devices that support queuing, otherwise we still have a problem
  1617. * with sync vs async workloads.
  1618. */
  1619. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1620. return;
  1621. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1622. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1623. /*
  1624. * idle is disabled, either manually or by past process history
  1625. */
  1626. if (!cfq_should_idle(cfqd, cfqq)) {
  1627. /* no queue idling. Check for group idling */
  1628. if (cfqd->cfq_group_idle)
  1629. group_idle = cfqd->cfq_group_idle;
  1630. else
  1631. return;
  1632. }
  1633. /*
  1634. * still active requests from this queue, don't idle
  1635. */
  1636. if (cfqq->dispatched)
  1637. return;
  1638. /*
  1639. * task has exited, don't wait
  1640. */
  1641. cic = cfqd->active_cic;
  1642. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1643. return;
  1644. /*
  1645. * If our average think time is larger than the remaining time
  1646. * slice, then don't idle. This avoids overrunning the allotted
  1647. * time slice.
  1648. */
  1649. if (sample_valid(cic->ttime_samples) &&
  1650. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1651. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1652. cic->ttime_mean);
  1653. return;
  1654. }
  1655. /* There are other queues in the group, don't do group idle */
  1656. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1657. return;
  1658. cfq_mark_cfqq_wait_request(cfqq);
  1659. if (group_idle)
  1660. sl = cfqd->cfq_group_idle;
  1661. else
  1662. sl = cfqd->cfq_slice_idle;
  1663. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1664. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1665. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1666. group_idle ? 1 : 0);
  1667. }
  1668. /*
  1669. * Move request from internal lists to the request queue dispatch list.
  1670. */
  1671. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1672. {
  1673. struct cfq_data *cfqd = q->elevator->elevator_data;
  1674. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1675. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1676. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1677. cfq_remove_request(rq);
  1678. cfqq->dispatched++;
  1679. (RQ_CFQG(rq))->dispatched++;
  1680. elv_dispatch_sort(q, rq);
  1681. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1682. cfqq->nr_sectors += blk_rq_sectors(rq);
  1683. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1684. rq_data_dir(rq), rq_is_sync(rq));
  1685. }
  1686. /*
  1687. * return expired entry, or NULL to just start from scratch in rbtree
  1688. */
  1689. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1690. {
  1691. struct request *rq = NULL;
  1692. if (cfq_cfqq_fifo_expire(cfqq))
  1693. return NULL;
  1694. cfq_mark_cfqq_fifo_expire(cfqq);
  1695. if (list_empty(&cfqq->fifo))
  1696. return NULL;
  1697. rq = rq_entry_fifo(cfqq->fifo.next);
  1698. if (time_before(jiffies, rq_fifo_time(rq)))
  1699. rq = NULL;
  1700. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1701. return rq;
  1702. }
  1703. static inline int
  1704. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1705. {
  1706. const int base_rq = cfqd->cfq_slice_async_rq;
  1707. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1708. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1709. }
  1710. /*
  1711. * Must be called with the queue_lock held.
  1712. */
  1713. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1714. {
  1715. int process_refs, io_refs;
  1716. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1717. process_refs = cfqq->ref - io_refs;
  1718. BUG_ON(process_refs < 0);
  1719. return process_refs;
  1720. }
  1721. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1722. {
  1723. int process_refs, new_process_refs;
  1724. struct cfq_queue *__cfqq;
  1725. /*
  1726. * If there are no process references on the new_cfqq, then it is
  1727. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1728. * chain may have dropped their last reference (not just their
  1729. * last process reference).
  1730. */
  1731. if (!cfqq_process_refs(new_cfqq))
  1732. return;
  1733. /* Avoid a circular list and skip interim queue merges */
  1734. while ((__cfqq = new_cfqq->new_cfqq)) {
  1735. if (__cfqq == cfqq)
  1736. return;
  1737. new_cfqq = __cfqq;
  1738. }
  1739. process_refs = cfqq_process_refs(cfqq);
  1740. new_process_refs = cfqq_process_refs(new_cfqq);
  1741. /*
  1742. * If the process for the cfqq has gone away, there is no
  1743. * sense in merging the queues.
  1744. */
  1745. if (process_refs == 0 || new_process_refs == 0)
  1746. return;
  1747. /*
  1748. * Merge in the direction of the lesser amount of work.
  1749. */
  1750. if (new_process_refs >= process_refs) {
  1751. cfqq->new_cfqq = new_cfqq;
  1752. new_cfqq->ref += process_refs;
  1753. } else {
  1754. new_cfqq->new_cfqq = cfqq;
  1755. cfqq->ref += new_process_refs;
  1756. }
  1757. }
  1758. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1759. struct cfq_group *cfqg, enum wl_prio_t prio)
  1760. {
  1761. struct cfq_queue *queue;
  1762. int i;
  1763. bool key_valid = false;
  1764. unsigned long lowest_key = 0;
  1765. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1766. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1767. /* select the one with lowest rb_key */
  1768. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1769. if (queue &&
  1770. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1771. lowest_key = queue->rb_key;
  1772. cur_best = i;
  1773. key_valid = true;
  1774. }
  1775. }
  1776. return cur_best;
  1777. }
  1778. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1779. {
  1780. unsigned slice;
  1781. unsigned count;
  1782. struct cfq_rb_root *st;
  1783. unsigned group_slice;
  1784. enum wl_prio_t original_prio = cfqd->serving_prio;
  1785. /* Choose next priority. RT > BE > IDLE */
  1786. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1787. cfqd->serving_prio = RT_WORKLOAD;
  1788. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1789. cfqd->serving_prio = BE_WORKLOAD;
  1790. else {
  1791. cfqd->serving_prio = IDLE_WORKLOAD;
  1792. cfqd->workload_expires = jiffies + 1;
  1793. return;
  1794. }
  1795. if (original_prio != cfqd->serving_prio)
  1796. goto new_workload;
  1797. /*
  1798. * For RT and BE, we have to choose also the type
  1799. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1800. * expiration time
  1801. */
  1802. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1803. count = st->count;
  1804. /*
  1805. * check workload expiration, and that we still have other queues ready
  1806. */
  1807. if (count && !time_after(jiffies, cfqd->workload_expires))
  1808. return;
  1809. new_workload:
  1810. /* otherwise select new workload type */
  1811. cfqd->serving_type =
  1812. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1813. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1814. count = st->count;
  1815. /*
  1816. * the workload slice is computed as a fraction of target latency
  1817. * proportional to the number of queues in that workload, over
  1818. * all the queues in the same priority class
  1819. */
  1820. group_slice = cfq_group_slice(cfqd, cfqg);
  1821. slice = group_slice * count /
  1822. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1823. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1824. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1825. unsigned int tmp;
  1826. /*
  1827. * Async queues are currently system wide. Just taking
  1828. * proportion of queues with-in same group will lead to higher
  1829. * async ratio system wide as generally root group is going
  1830. * to have higher weight. A more accurate thing would be to
  1831. * calculate system wide asnc/sync ratio.
  1832. */
  1833. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1834. tmp = tmp/cfqd->busy_queues;
  1835. slice = min_t(unsigned, slice, tmp);
  1836. /* async workload slice is scaled down according to
  1837. * the sync/async slice ratio. */
  1838. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1839. } else
  1840. /* sync workload slice is at least 2 * cfq_slice_idle */
  1841. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1842. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1843. cfq_log(cfqd, "workload slice:%d", slice);
  1844. cfqd->workload_expires = jiffies + slice;
  1845. }
  1846. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1847. {
  1848. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1849. struct cfq_group *cfqg;
  1850. if (RB_EMPTY_ROOT(&st->rb))
  1851. return NULL;
  1852. cfqg = cfq_rb_first_group(st);
  1853. update_min_vdisktime(st);
  1854. return cfqg;
  1855. }
  1856. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1857. {
  1858. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1859. cfqd->serving_group = cfqg;
  1860. /* Restore the workload type data */
  1861. if (cfqg->saved_workload_slice) {
  1862. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1863. cfqd->serving_type = cfqg->saved_workload;
  1864. cfqd->serving_prio = cfqg->saved_serving_prio;
  1865. } else
  1866. cfqd->workload_expires = jiffies - 1;
  1867. choose_service_tree(cfqd, cfqg);
  1868. }
  1869. /*
  1870. * Select a queue for service. If we have a current active queue,
  1871. * check whether to continue servicing it, or retrieve and set a new one.
  1872. */
  1873. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1874. {
  1875. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1876. cfqq = cfqd->active_queue;
  1877. if (!cfqq)
  1878. goto new_queue;
  1879. if (!cfqd->rq_queued)
  1880. return NULL;
  1881. /*
  1882. * We were waiting for group to get backlogged. Expire the queue
  1883. */
  1884. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1885. goto expire;
  1886. /*
  1887. * The active queue has run out of time, expire it and select new.
  1888. */
  1889. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1890. /*
  1891. * If slice had not expired at the completion of last request
  1892. * we might not have turned on wait_busy flag. Don't expire
  1893. * the queue yet. Allow the group to get backlogged.
  1894. *
  1895. * The very fact that we have used the slice, that means we
  1896. * have been idling all along on this queue and it should be
  1897. * ok to wait for this request to complete.
  1898. */
  1899. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1900. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1901. cfqq = NULL;
  1902. goto keep_queue;
  1903. } else
  1904. goto check_group_idle;
  1905. }
  1906. /*
  1907. * The active queue has requests and isn't expired, allow it to
  1908. * dispatch.
  1909. */
  1910. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1911. goto keep_queue;
  1912. /*
  1913. * If another queue has a request waiting within our mean seek
  1914. * distance, let it run. The expire code will check for close
  1915. * cooperators and put the close queue at the front of the service
  1916. * tree. If possible, merge the expiring queue with the new cfqq.
  1917. */
  1918. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1919. if (new_cfqq) {
  1920. if (!cfqq->new_cfqq)
  1921. cfq_setup_merge(cfqq, new_cfqq);
  1922. goto expire;
  1923. }
  1924. /*
  1925. * No requests pending. If the active queue still has requests in
  1926. * flight or is idling for a new request, allow either of these
  1927. * conditions to happen (or time out) before selecting a new queue.
  1928. */
  1929. if (timer_pending(&cfqd->idle_slice_timer)) {
  1930. cfqq = NULL;
  1931. goto keep_queue;
  1932. }
  1933. /*
  1934. * This is a deep seek queue, but the device is much faster than
  1935. * the queue can deliver, don't idle
  1936. **/
  1937. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  1938. (cfq_cfqq_slice_new(cfqq) ||
  1939. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  1940. cfq_clear_cfqq_deep(cfqq);
  1941. cfq_clear_cfqq_idle_window(cfqq);
  1942. }
  1943. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1944. cfqq = NULL;
  1945. goto keep_queue;
  1946. }
  1947. /*
  1948. * If group idle is enabled and there are requests dispatched from
  1949. * this group, wait for requests to complete.
  1950. */
  1951. check_group_idle:
  1952. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  1953. && cfqq->cfqg->dispatched) {
  1954. cfqq = NULL;
  1955. goto keep_queue;
  1956. }
  1957. expire:
  1958. cfq_slice_expired(cfqd, 0);
  1959. new_queue:
  1960. /*
  1961. * Current queue expired. Check if we have to switch to a new
  1962. * service tree
  1963. */
  1964. if (!new_cfqq)
  1965. cfq_choose_cfqg(cfqd);
  1966. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1967. keep_queue:
  1968. return cfqq;
  1969. }
  1970. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1971. {
  1972. int dispatched = 0;
  1973. while (cfqq->next_rq) {
  1974. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1975. dispatched++;
  1976. }
  1977. BUG_ON(!list_empty(&cfqq->fifo));
  1978. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1979. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1980. return dispatched;
  1981. }
  1982. /*
  1983. * Drain our current requests. Used for barriers and when switching
  1984. * io schedulers on-the-fly.
  1985. */
  1986. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1987. {
  1988. struct cfq_queue *cfqq;
  1989. int dispatched = 0;
  1990. /* Expire the timeslice of the current active queue first */
  1991. cfq_slice_expired(cfqd, 0);
  1992. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1993. __cfq_set_active_queue(cfqd, cfqq);
  1994. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1995. }
  1996. BUG_ON(cfqd->busy_queues);
  1997. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1998. return dispatched;
  1999. }
  2000. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2001. struct cfq_queue *cfqq)
  2002. {
  2003. /* the queue hasn't finished any request, can't estimate */
  2004. if (cfq_cfqq_slice_new(cfqq))
  2005. return true;
  2006. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2007. cfqq->slice_end))
  2008. return true;
  2009. return false;
  2010. }
  2011. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2012. {
  2013. unsigned int max_dispatch;
  2014. /*
  2015. * Drain async requests before we start sync IO
  2016. */
  2017. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2018. return false;
  2019. /*
  2020. * If this is an async queue and we have sync IO in flight, let it wait
  2021. */
  2022. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2023. return false;
  2024. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2025. if (cfq_class_idle(cfqq))
  2026. max_dispatch = 1;
  2027. /*
  2028. * Does this cfqq already have too much IO in flight?
  2029. */
  2030. if (cfqq->dispatched >= max_dispatch) {
  2031. /*
  2032. * idle queue must always only have a single IO in flight
  2033. */
  2034. if (cfq_class_idle(cfqq))
  2035. return false;
  2036. /*
  2037. * We have other queues, don't allow more IO from this one
  2038. */
  2039. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
  2040. return false;
  2041. /*
  2042. * Sole queue user, no limit
  2043. */
  2044. if (cfqd->busy_queues == 1)
  2045. max_dispatch = -1;
  2046. else
  2047. /*
  2048. * Normally we start throttling cfqq when cfq_quantum/2
  2049. * requests have been dispatched. But we can drive
  2050. * deeper queue depths at the beginning of slice
  2051. * subjected to upper limit of cfq_quantum.
  2052. * */
  2053. max_dispatch = cfqd->cfq_quantum;
  2054. }
  2055. /*
  2056. * Async queues must wait a bit before being allowed dispatch.
  2057. * We also ramp up the dispatch depth gradually for async IO,
  2058. * based on the last sync IO we serviced
  2059. */
  2060. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2061. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2062. unsigned int depth;
  2063. depth = last_sync / cfqd->cfq_slice[1];
  2064. if (!depth && !cfqq->dispatched)
  2065. depth = 1;
  2066. if (depth < max_dispatch)
  2067. max_dispatch = depth;
  2068. }
  2069. /*
  2070. * If we're below the current max, allow a dispatch
  2071. */
  2072. return cfqq->dispatched < max_dispatch;
  2073. }
  2074. /*
  2075. * Dispatch a request from cfqq, moving them to the request queue
  2076. * dispatch list.
  2077. */
  2078. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2079. {
  2080. struct request *rq;
  2081. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2082. if (!cfq_may_dispatch(cfqd, cfqq))
  2083. return false;
  2084. /*
  2085. * follow expired path, else get first next available
  2086. */
  2087. rq = cfq_check_fifo(cfqq);
  2088. if (!rq)
  2089. rq = cfqq->next_rq;
  2090. /*
  2091. * insert request into driver dispatch list
  2092. */
  2093. cfq_dispatch_insert(cfqd->queue, rq);
  2094. if (!cfqd->active_cic) {
  2095. struct cfq_io_context *cic = RQ_CIC(rq);
  2096. atomic_long_inc(&cic->ioc->refcount);
  2097. cfqd->active_cic = cic;
  2098. }
  2099. return true;
  2100. }
  2101. /*
  2102. * Find the cfqq that we need to service and move a request from that to the
  2103. * dispatch list
  2104. */
  2105. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2106. {
  2107. struct cfq_data *cfqd = q->elevator->elevator_data;
  2108. struct cfq_queue *cfqq;
  2109. if (!cfqd->busy_queues)
  2110. return 0;
  2111. if (unlikely(force))
  2112. return cfq_forced_dispatch(cfqd);
  2113. cfqq = cfq_select_queue(cfqd);
  2114. if (!cfqq)
  2115. return 0;
  2116. /*
  2117. * Dispatch a request from this cfqq, if it is allowed
  2118. */
  2119. if (!cfq_dispatch_request(cfqd, cfqq))
  2120. return 0;
  2121. cfqq->slice_dispatch++;
  2122. cfq_clear_cfqq_must_dispatch(cfqq);
  2123. /*
  2124. * expire an async queue immediately if it has used up its slice. idle
  2125. * queue always expire after 1 dispatch round.
  2126. */
  2127. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2128. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2129. cfq_class_idle(cfqq))) {
  2130. cfqq->slice_end = jiffies + 1;
  2131. cfq_slice_expired(cfqd, 0);
  2132. }
  2133. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2134. return 1;
  2135. }
  2136. /*
  2137. * task holds one reference to the queue, dropped when task exits. each rq
  2138. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2139. *
  2140. * Each cfq queue took a reference on the parent group. Drop it now.
  2141. * queue lock must be held here.
  2142. */
  2143. static void cfq_put_queue(struct cfq_queue *cfqq)
  2144. {
  2145. struct cfq_data *cfqd = cfqq->cfqd;
  2146. struct cfq_group *cfqg, *orig_cfqg;
  2147. BUG_ON(cfqq->ref <= 0);
  2148. cfqq->ref--;
  2149. if (cfqq->ref)
  2150. return;
  2151. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2152. BUG_ON(rb_first(&cfqq->sort_list));
  2153. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2154. cfqg = cfqq->cfqg;
  2155. orig_cfqg = cfqq->orig_cfqg;
  2156. if (unlikely(cfqd->active_queue == cfqq)) {
  2157. __cfq_slice_expired(cfqd, cfqq, 0);
  2158. cfq_schedule_dispatch(cfqd);
  2159. }
  2160. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2161. kmem_cache_free(cfq_pool, cfqq);
  2162. cfq_put_cfqg(cfqg);
  2163. if (orig_cfqg)
  2164. cfq_put_cfqg(orig_cfqg);
  2165. }
  2166. /*
  2167. * Must always be called with the rcu_read_lock() held
  2168. */
  2169. static void
  2170. __call_for_each_cic(struct io_context *ioc,
  2171. void (*func)(struct io_context *, struct cfq_io_context *))
  2172. {
  2173. struct cfq_io_context *cic;
  2174. struct hlist_node *n;
  2175. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2176. func(ioc, cic);
  2177. }
  2178. /*
  2179. * Call func for each cic attached to this ioc.
  2180. */
  2181. static void
  2182. call_for_each_cic(struct io_context *ioc,
  2183. void (*func)(struct io_context *, struct cfq_io_context *))
  2184. {
  2185. rcu_read_lock();
  2186. __call_for_each_cic(ioc, func);
  2187. rcu_read_unlock();
  2188. }
  2189. static void cfq_cic_free_rcu(struct rcu_head *head)
  2190. {
  2191. struct cfq_io_context *cic;
  2192. cic = container_of(head, struct cfq_io_context, rcu_head);
  2193. kmem_cache_free(cfq_ioc_pool, cic);
  2194. elv_ioc_count_dec(cfq_ioc_count);
  2195. if (ioc_gone) {
  2196. /*
  2197. * CFQ scheduler is exiting, grab exit lock and check
  2198. * the pending io context count. If it hits zero,
  2199. * complete ioc_gone and set it back to NULL
  2200. */
  2201. spin_lock(&ioc_gone_lock);
  2202. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2203. complete(ioc_gone);
  2204. ioc_gone = NULL;
  2205. }
  2206. spin_unlock(&ioc_gone_lock);
  2207. }
  2208. }
  2209. static void cfq_cic_free(struct cfq_io_context *cic)
  2210. {
  2211. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2212. }
  2213. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2214. {
  2215. unsigned long flags;
  2216. unsigned long dead_key = (unsigned long) cic->key;
  2217. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2218. spin_lock_irqsave(&ioc->lock, flags);
  2219. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2220. hlist_del_rcu(&cic->cic_list);
  2221. spin_unlock_irqrestore(&ioc->lock, flags);
  2222. cfq_cic_free(cic);
  2223. }
  2224. /*
  2225. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2226. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2227. * and ->trim() which is called with the task lock held
  2228. */
  2229. static void cfq_free_io_context(struct io_context *ioc)
  2230. {
  2231. /*
  2232. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2233. * so no more cic's are allowed to be linked into this ioc. So it
  2234. * should be ok to iterate over the known list, we will see all cic's
  2235. * since no new ones are added.
  2236. */
  2237. __call_for_each_cic(ioc, cic_free_func);
  2238. }
  2239. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2240. {
  2241. struct cfq_queue *__cfqq, *next;
  2242. /*
  2243. * If this queue was scheduled to merge with another queue, be
  2244. * sure to drop the reference taken on that queue (and others in
  2245. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2246. */
  2247. __cfqq = cfqq->new_cfqq;
  2248. while (__cfqq) {
  2249. if (__cfqq == cfqq) {
  2250. WARN(1, "cfqq->new_cfqq loop detected\n");
  2251. break;
  2252. }
  2253. next = __cfqq->new_cfqq;
  2254. cfq_put_queue(__cfqq);
  2255. __cfqq = next;
  2256. }
  2257. }
  2258. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2259. {
  2260. if (unlikely(cfqq == cfqd->active_queue)) {
  2261. __cfq_slice_expired(cfqd, cfqq, 0);
  2262. cfq_schedule_dispatch(cfqd);
  2263. }
  2264. cfq_put_cooperator(cfqq);
  2265. cfq_put_queue(cfqq);
  2266. }
  2267. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2268. struct cfq_io_context *cic)
  2269. {
  2270. struct io_context *ioc = cic->ioc;
  2271. list_del_init(&cic->queue_list);
  2272. /*
  2273. * Make sure dead mark is seen for dead queues
  2274. */
  2275. smp_wmb();
  2276. cic->key = cfqd_dead_key(cfqd);
  2277. if (ioc->ioc_data == cic)
  2278. rcu_assign_pointer(ioc->ioc_data, NULL);
  2279. if (cic->cfqq[BLK_RW_ASYNC]) {
  2280. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2281. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2282. }
  2283. if (cic->cfqq[BLK_RW_SYNC]) {
  2284. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2285. cic->cfqq[BLK_RW_SYNC] = NULL;
  2286. }
  2287. }
  2288. static void cfq_exit_single_io_context(struct io_context *ioc,
  2289. struct cfq_io_context *cic)
  2290. {
  2291. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2292. if (cfqd) {
  2293. struct request_queue *q = cfqd->queue;
  2294. unsigned long flags;
  2295. spin_lock_irqsave(q->queue_lock, flags);
  2296. /*
  2297. * Ensure we get a fresh copy of the ->key to prevent
  2298. * race between exiting task and queue
  2299. */
  2300. smp_read_barrier_depends();
  2301. if (cic->key == cfqd)
  2302. __cfq_exit_single_io_context(cfqd, cic);
  2303. spin_unlock_irqrestore(q->queue_lock, flags);
  2304. }
  2305. }
  2306. /*
  2307. * The process that ioc belongs to has exited, we need to clean up
  2308. * and put the internal structures we have that belongs to that process.
  2309. */
  2310. static void cfq_exit_io_context(struct io_context *ioc)
  2311. {
  2312. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2313. }
  2314. static struct cfq_io_context *
  2315. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2316. {
  2317. struct cfq_io_context *cic;
  2318. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2319. cfqd->queue->node);
  2320. if (cic) {
  2321. cic->last_end_request = jiffies;
  2322. INIT_LIST_HEAD(&cic->queue_list);
  2323. INIT_HLIST_NODE(&cic->cic_list);
  2324. cic->dtor = cfq_free_io_context;
  2325. cic->exit = cfq_exit_io_context;
  2326. elv_ioc_count_inc(cfq_ioc_count);
  2327. }
  2328. return cic;
  2329. }
  2330. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2331. {
  2332. struct task_struct *tsk = current;
  2333. int ioprio_class;
  2334. if (!cfq_cfqq_prio_changed(cfqq))
  2335. return;
  2336. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2337. switch (ioprio_class) {
  2338. default:
  2339. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2340. case IOPRIO_CLASS_NONE:
  2341. /*
  2342. * no prio set, inherit CPU scheduling settings
  2343. */
  2344. cfqq->ioprio = task_nice_ioprio(tsk);
  2345. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2346. break;
  2347. case IOPRIO_CLASS_RT:
  2348. cfqq->ioprio = task_ioprio(ioc);
  2349. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2350. break;
  2351. case IOPRIO_CLASS_BE:
  2352. cfqq->ioprio = task_ioprio(ioc);
  2353. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2354. break;
  2355. case IOPRIO_CLASS_IDLE:
  2356. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2357. cfqq->ioprio = 7;
  2358. cfq_clear_cfqq_idle_window(cfqq);
  2359. break;
  2360. }
  2361. /*
  2362. * keep track of original prio settings in case we have to temporarily
  2363. * elevate the priority of this queue
  2364. */
  2365. cfqq->org_ioprio = cfqq->ioprio;
  2366. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2367. cfq_clear_cfqq_prio_changed(cfqq);
  2368. }
  2369. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2370. {
  2371. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2372. struct cfq_queue *cfqq;
  2373. unsigned long flags;
  2374. if (unlikely(!cfqd))
  2375. return;
  2376. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2377. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2378. if (cfqq) {
  2379. struct cfq_queue *new_cfqq;
  2380. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2381. GFP_ATOMIC);
  2382. if (new_cfqq) {
  2383. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2384. cfq_put_queue(cfqq);
  2385. }
  2386. }
  2387. cfqq = cic->cfqq[BLK_RW_SYNC];
  2388. if (cfqq)
  2389. cfq_mark_cfqq_prio_changed(cfqq);
  2390. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2391. }
  2392. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2393. {
  2394. call_for_each_cic(ioc, changed_ioprio);
  2395. ioc->ioprio_changed = 0;
  2396. }
  2397. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2398. pid_t pid, bool is_sync)
  2399. {
  2400. RB_CLEAR_NODE(&cfqq->rb_node);
  2401. RB_CLEAR_NODE(&cfqq->p_node);
  2402. INIT_LIST_HEAD(&cfqq->fifo);
  2403. cfqq->ref = 0;
  2404. cfqq->cfqd = cfqd;
  2405. cfq_mark_cfqq_prio_changed(cfqq);
  2406. if (is_sync) {
  2407. if (!cfq_class_idle(cfqq))
  2408. cfq_mark_cfqq_idle_window(cfqq);
  2409. cfq_mark_cfqq_sync(cfqq);
  2410. }
  2411. cfqq->pid = pid;
  2412. }
  2413. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2414. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2415. {
  2416. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2417. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2418. unsigned long flags;
  2419. struct request_queue *q;
  2420. if (unlikely(!cfqd))
  2421. return;
  2422. q = cfqd->queue;
  2423. spin_lock_irqsave(q->queue_lock, flags);
  2424. if (sync_cfqq) {
  2425. /*
  2426. * Drop reference to sync queue. A new sync queue will be
  2427. * assigned in new group upon arrival of a fresh request.
  2428. */
  2429. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2430. cic_set_cfqq(cic, NULL, 1);
  2431. cfq_put_queue(sync_cfqq);
  2432. }
  2433. spin_unlock_irqrestore(q->queue_lock, flags);
  2434. }
  2435. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2436. {
  2437. call_for_each_cic(ioc, changed_cgroup);
  2438. ioc->cgroup_changed = 0;
  2439. }
  2440. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2441. static struct cfq_queue *
  2442. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2443. struct io_context *ioc, gfp_t gfp_mask)
  2444. {
  2445. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2446. struct cfq_io_context *cic;
  2447. struct cfq_group *cfqg;
  2448. retry:
  2449. cfqg = cfq_get_cfqg(cfqd, 1);
  2450. cic = cfq_cic_lookup(cfqd, ioc);
  2451. /* cic always exists here */
  2452. cfqq = cic_to_cfqq(cic, is_sync);
  2453. /*
  2454. * Always try a new alloc if we fell back to the OOM cfqq
  2455. * originally, since it should just be a temporary situation.
  2456. */
  2457. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2458. cfqq = NULL;
  2459. if (new_cfqq) {
  2460. cfqq = new_cfqq;
  2461. new_cfqq = NULL;
  2462. } else if (gfp_mask & __GFP_WAIT) {
  2463. spin_unlock_irq(cfqd->queue->queue_lock);
  2464. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2465. gfp_mask | __GFP_ZERO,
  2466. cfqd->queue->node);
  2467. spin_lock_irq(cfqd->queue->queue_lock);
  2468. if (new_cfqq)
  2469. goto retry;
  2470. } else {
  2471. cfqq = kmem_cache_alloc_node(cfq_pool,
  2472. gfp_mask | __GFP_ZERO,
  2473. cfqd->queue->node);
  2474. }
  2475. if (cfqq) {
  2476. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2477. cfq_init_prio_data(cfqq, ioc);
  2478. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2479. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2480. } else
  2481. cfqq = &cfqd->oom_cfqq;
  2482. }
  2483. if (new_cfqq)
  2484. kmem_cache_free(cfq_pool, new_cfqq);
  2485. return cfqq;
  2486. }
  2487. static struct cfq_queue **
  2488. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2489. {
  2490. switch (ioprio_class) {
  2491. case IOPRIO_CLASS_RT:
  2492. return &cfqd->async_cfqq[0][ioprio];
  2493. case IOPRIO_CLASS_BE:
  2494. return &cfqd->async_cfqq[1][ioprio];
  2495. case IOPRIO_CLASS_IDLE:
  2496. return &cfqd->async_idle_cfqq;
  2497. default:
  2498. BUG();
  2499. }
  2500. }
  2501. static struct cfq_queue *
  2502. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2503. gfp_t gfp_mask)
  2504. {
  2505. const int ioprio = task_ioprio(ioc);
  2506. const int ioprio_class = task_ioprio_class(ioc);
  2507. struct cfq_queue **async_cfqq = NULL;
  2508. struct cfq_queue *cfqq = NULL;
  2509. if (!is_sync) {
  2510. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2511. cfqq = *async_cfqq;
  2512. }
  2513. if (!cfqq)
  2514. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2515. /*
  2516. * pin the queue now that it's allocated, scheduler exit will prune it
  2517. */
  2518. if (!is_sync && !(*async_cfqq)) {
  2519. cfqq->ref++;
  2520. *async_cfqq = cfqq;
  2521. }
  2522. cfqq->ref++;
  2523. return cfqq;
  2524. }
  2525. /*
  2526. * We drop cfq io contexts lazily, so we may find a dead one.
  2527. */
  2528. static void
  2529. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2530. struct cfq_io_context *cic)
  2531. {
  2532. unsigned long flags;
  2533. WARN_ON(!list_empty(&cic->queue_list));
  2534. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2535. spin_lock_irqsave(&ioc->lock, flags);
  2536. BUG_ON(ioc->ioc_data == cic);
  2537. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2538. hlist_del_rcu(&cic->cic_list);
  2539. spin_unlock_irqrestore(&ioc->lock, flags);
  2540. cfq_cic_free(cic);
  2541. }
  2542. static struct cfq_io_context *
  2543. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2544. {
  2545. struct cfq_io_context *cic;
  2546. unsigned long flags;
  2547. if (unlikely(!ioc))
  2548. return NULL;
  2549. rcu_read_lock();
  2550. /*
  2551. * we maintain a last-hit cache, to avoid browsing over the tree
  2552. */
  2553. cic = rcu_dereference(ioc->ioc_data);
  2554. if (cic && cic->key == cfqd) {
  2555. rcu_read_unlock();
  2556. return cic;
  2557. }
  2558. do {
  2559. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2560. rcu_read_unlock();
  2561. if (!cic)
  2562. break;
  2563. if (unlikely(cic->key != cfqd)) {
  2564. cfq_drop_dead_cic(cfqd, ioc, cic);
  2565. rcu_read_lock();
  2566. continue;
  2567. }
  2568. spin_lock_irqsave(&ioc->lock, flags);
  2569. rcu_assign_pointer(ioc->ioc_data, cic);
  2570. spin_unlock_irqrestore(&ioc->lock, flags);
  2571. break;
  2572. } while (1);
  2573. return cic;
  2574. }
  2575. /*
  2576. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2577. * the process specific cfq io context when entered from the block layer.
  2578. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2579. */
  2580. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2581. struct cfq_io_context *cic, gfp_t gfp_mask)
  2582. {
  2583. unsigned long flags;
  2584. int ret;
  2585. ret = radix_tree_preload(gfp_mask);
  2586. if (!ret) {
  2587. cic->ioc = ioc;
  2588. cic->key = cfqd;
  2589. spin_lock_irqsave(&ioc->lock, flags);
  2590. ret = radix_tree_insert(&ioc->radix_root,
  2591. cfqd->cic_index, cic);
  2592. if (!ret)
  2593. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2594. spin_unlock_irqrestore(&ioc->lock, flags);
  2595. radix_tree_preload_end();
  2596. if (!ret) {
  2597. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2598. list_add(&cic->queue_list, &cfqd->cic_list);
  2599. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2600. }
  2601. }
  2602. if (ret)
  2603. printk(KERN_ERR "cfq: cic link failed!\n");
  2604. return ret;
  2605. }
  2606. /*
  2607. * Setup general io context and cfq io context. There can be several cfq
  2608. * io contexts per general io context, if this process is doing io to more
  2609. * than one device managed by cfq.
  2610. */
  2611. static struct cfq_io_context *
  2612. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2613. {
  2614. struct io_context *ioc = NULL;
  2615. struct cfq_io_context *cic;
  2616. might_sleep_if(gfp_mask & __GFP_WAIT);
  2617. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2618. if (!ioc)
  2619. return NULL;
  2620. cic = cfq_cic_lookup(cfqd, ioc);
  2621. if (cic)
  2622. goto out;
  2623. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2624. if (cic == NULL)
  2625. goto err;
  2626. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2627. goto err_free;
  2628. out:
  2629. smp_read_barrier_depends();
  2630. if (unlikely(ioc->ioprio_changed))
  2631. cfq_ioc_set_ioprio(ioc);
  2632. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2633. if (unlikely(ioc->cgroup_changed))
  2634. cfq_ioc_set_cgroup(ioc);
  2635. #endif
  2636. return cic;
  2637. err_free:
  2638. cfq_cic_free(cic);
  2639. err:
  2640. put_io_context(ioc);
  2641. return NULL;
  2642. }
  2643. static void
  2644. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2645. {
  2646. unsigned long elapsed = jiffies - cic->last_end_request;
  2647. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2648. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2649. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2650. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2651. }
  2652. static void
  2653. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2654. struct request *rq)
  2655. {
  2656. sector_t sdist = 0;
  2657. sector_t n_sec = blk_rq_sectors(rq);
  2658. if (cfqq->last_request_pos) {
  2659. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2660. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2661. else
  2662. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2663. }
  2664. cfqq->seek_history <<= 1;
  2665. if (blk_queue_nonrot(cfqd->queue))
  2666. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2667. else
  2668. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2669. }
  2670. /*
  2671. * Disable idle window if the process thinks too long or seeks so much that
  2672. * it doesn't matter
  2673. */
  2674. static void
  2675. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2676. struct cfq_io_context *cic)
  2677. {
  2678. int old_idle, enable_idle;
  2679. /*
  2680. * Don't idle for async or idle io prio class
  2681. */
  2682. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2683. return;
  2684. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2685. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2686. cfq_mark_cfqq_deep(cfqq);
  2687. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2688. enable_idle = 0;
  2689. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2690. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2691. enable_idle = 0;
  2692. else if (sample_valid(cic->ttime_samples)) {
  2693. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2694. enable_idle = 0;
  2695. else
  2696. enable_idle = 1;
  2697. }
  2698. if (old_idle != enable_idle) {
  2699. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2700. if (enable_idle)
  2701. cfq_mark_cfqq_idle_window(cfqq);
  2702. else
  2703. cfq_clear_cfqq_idle_window(cfqq);
  2704. }
  2705. }
  2706. /*
  2707. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2708. * no or if we aren't sure, a 1 will cause a preempt.
  2709. */
  2710. static bool
  2711. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2712. struct request *rq)
  2713. {
  2714. struct cfq_queue *cfqq;
  2715. cfqq = cfqd->active_queue;
  2716. if (!cfqq)
  2717. return false;
  2718. if (cfq_class_idle(new_cfqq))
  2719. return false;
  2720. if (cfq_class_idle(cfqq))
  2721. return true;
  2722. /*
  2723. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2724. */
  2725. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2726. return false;
  2727. /*
  2728. * if the new request is sync, but the currently running queue is
  2729. * not, let the sync request have priority.
  2730. */
  2731. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2732. return true;
  2733. if (new_cfqq->cfqg != cfqq->cfqg)
  2734. return false;
  2735. if (cfq_slice_used(cfqq))
  2736. return true;
  2737. /* Allow preemption only if we are idling on sync-noidle tree */
  2738. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2739. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2740. new_cfqq->service_tree->count == 2 &&
  2741. RB_EMPTY_ROOT(&cfqq->sort_list))
  2742. return true;
  2743. /*
  2744. * So both queues are sync. Let the new request get disk time if
  2745. * it's a metadata request and the current queue is doing regular IO.
  2746. */
  2747. if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
  2748. return true;
  2749. /*
  2750. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2751. */
  2752. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2753. return true;
  2754. /* An idle queue should not be idle now for some reason */
  2755. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2756. return true;
  2757. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2758. return false;
  2759. /*
  2760. * if this request is as-good as one we would expect from the
  2761. * current cfqq, let it preempt
  2762. */
  2763. if (cfq_rq_close(cfqd, cfqq, rq))
  2764. return true;
  2765. return false;
  2766. }
  2767. /*
  2768. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2769. * let it have half of its nominal slice.
  2770. */
  2771. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2772. {
  2773. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2774. cfq_slice_expired(cfqd, 1);
  2775. /*
  2776. * Put the new queue at the front of the of the current list,
  2777. * so we know that it will be selected next.
  2778. */
  2779. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2780. cfq_service_tree_add(cfqd, cfqq, 1);
  2781. cfqq->slice_end = 0;
  2782. cfq_mark_cfqq_slice_new(cfqq);
  2783. }
  2784. /*
  2785. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2786. * something we should do about it
  2787. */
  2788. static void
  2789. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2790. struct request *rq)
  2791. {
  2792. struct cfq_io_context *cic = RQ_CIC(rq);
  2793. cfqd->rq_queued++;
  2794. if (rq->cmd_flags & REQ_META)
  2795. cfqq->meta_pending++;
  2796. cfq_update_io_thinktime(cfqd, cic);
  2797. cfq_update_io_seektime(cfqd, cfqq, rq);
  2798. cfq_update_idle_window(cfqd, cfqq, cic);
  2799. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2800. if (cfqq == cfqd->active_queue) {
  2801. /*
  2802. * Remember that we saw a request from this process, but
  2803. * don't start queuing just yet. Otherwise we risk seeing lots
  2804. * of tiny requests, because we disrupt the normal plugging
  2805. * and merging. If the request is already larger than a single
  2806. * page, let it rip immediately. For that case we assume that
  2807. * merging is already done. Ditto for a busy system that
  2808. * has other work pending, don't risk delaying until the
  2809. * idle timer unplug to continue working.
  2810. */
  2811. if (cfq_cfqq_wait_request(cfqq)) {
  2812. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2813. cfqd->busy_queues > 1) {
  2814. cfq_del_timer(cfqd, cfqq);
  2815. cfq_clear_cfqq_wait_request(cfqq);
  2816. __blk_run_queue(cfqd->queue);
  2817. } else {
  2818. cfq_blkiocg_update_idle_time_stats(
  2819. &cfqq->cfqg->blkg);
  2820. cfq_mark_cfqq_must_dispatch(cfqq);
  2821. }
  2822. }
  2823. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2824. /*
  2825. * not the active queue - expire current slice if it is
  2826. * idle and has expired it's mean thinktime or this new queue
  2827. * has some old slice time left and is of higher priority or
  2828. * this new queue is RT and the current one is BE
  2829. */
  2830. cfq_preempt_queue(cfqd, cfqq);
  2831. __blk_run_queue(cfqd->queue);
  2832. }
  2833. }
  2834. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2835. {
  2836. struct cfq_data *cfqd = q->elevator->elevator_data;
  2837. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2838. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2839. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2840. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2841. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2842. cfq_add_rq_rb(rq);
  2843. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2844. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2845. rq_is_sync(rq));
  2846. cfq_rq_enqueued(cfqd, cfqq, rq);
  2847. }
  2848. /*
  2849. * Update hw_tag based on peak queue depth over 50 samples under
  2850. * sufficient load.
  2851. */
  2852. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2853. {
  2854. struct cfq_queue *cfqq = cfqd->active_queue;
  2855. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2856. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2857. if (cfqd->hw_tag == 1)
  2858. return;
  2859. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2860. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2861. return;
  2862. /*
  2863. * If active queue hasn't enough requests and can idle, cfq might not
  2864. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2865. * case
  2866. */
  2867. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2868. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2869. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2870. return;
  2871. if (cfqd->hw_tag_samples++ < 50)
  2872. return;
  2873. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2874. cfqd->hw_tag = 1;
  2875. else
  2876. cfqd->hw_tag = 0;
  2877. }
  2878. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2879. {
  2880. struct cfq_io_context *cic = cfqd->active_cic;
  2881. /* If there are other queues in the group, don't wait */
  2882. if (cfqq->cfqg->nr_cfqq > 1)
  2883. return false;
  2884. if (cfq_slice_used(cfqq))
  2885. return true;
  2886. /* if slice left is less than think time, wait busy */
  2887. if (cic && sample_valid(cic->ttime_samples)
  2888. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2889. return true;
  2890. /*
  2891. * If think times is less than a jiffy than ttime_mean=0 and above
  2892. * will not be true. It might happen that slice has not expired yet
  2893. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2894. * case where think time is less than a jiffy, mark the queue wait
  2895. * busy if only 1 jiffy is left in the slice.
  2896. */
  2897. if (cfqq->slice_end - jiffies == 1)
  2898. return true;
  2899. return false;
  2900. }
  2901. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2902. {
  2903. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2904. struct cfq_data *cfqd = cfqq->cfqd;
  2905. const int sync = rq_is_sync(rq);
  2906. unsigned long now;
  2907. now = jiffies;
  2908. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2909. !!(rq->cmd_flags & REQ_NOIDLE));
  2910. cfq_update_hw_tag(cfqd);
  2911. WARN_ON(!cfqd->rq_in_driver);
  2912. WARN_ON(!cfqq->dispatched);
  2913. cfqd->rq_in_driver--;
  2914. cfqq->dispatched--;
  2915. (RQ_CFQG(rq))->dispatched--;
  2916. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2917. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2918. rq_data_dir(rq), rq_is_sync(rq));
  2919. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2920. if (sync) {
  2921. RQ_CIC(rq)->last_end_request = now;
  2922. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2923. cfqd->last_delayed_sync = now;
  2924. }
  2925. /*
  2926. * If this is the active queue, check if it needs to be expired,
  2927. * or if we want to idle in case it has no pending requests.
  2928. */
  2929. if (cfqd->active_queue == cfqq) {
  2930. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2931. if (cfq_cfqq_slice_new(cfqq)) {
  2932. cfq_set_prio_slice(cfqd, cfqq);
  2933. cfq_clear_cfqq_slice_new(cfqq);
  2934. }
  2935. /*
  2936. * Should we wait for next request to come in before we expire
  2937. * the queue.
  2938. */
  2939. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2940. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2941. if (!cfqd->cfq_slice_idle)
  2942. extend_sl = cfqd->cfq_group_idle;
  2943. cfqq->slice_end = jiffies + extend_sl;
  2944. cfq_mark_cfqq_wait_busy(cfqq);
  2945. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2946. }
  2947. /*
  2948. * Idling is not enabled on:
  2949. * - expired queues
  2950. * - idle-priority queues
  2951. * - async queues
  2952. * - queues with still some requests queued
  2953. * - when there is a close cooperator
  2954. */
  2955. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2956. cfq_slice_expired(cfqd, 1);
  2957. else if (sync && cfqq_empty &&
  2958. !cfq_close_cooperator(cfqd, cfqq)) {
  2959. cfq_arm_slice_timer(cfqd);
  2960. }
  2961. }
  2962. if (!cfqd->rq_in_driver)
  2963. cfq_schedule_dispatch(cfqd);
  2964. }
  2965. /*
  2966. * we temporarily boost lower priority queues if they are holding fs exclusive
  2967. * resources. they are boosted to normal prio (CLASS_BE/4)
  2968. */
  2969. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2970. {
  2971. if (has_fs_excl()) {
  2972. /*
  2973. * boost idle prio on transactions that would lock out other
  2974. * users of the filesystem
  2975. */
  2976. if (cfq_class_idle(cfqq))
  2977. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2978. if (cfqq->ioprio > IOPRIO_NORM)
  2979. cfqq->ioprio = IOPRIO_NORM;
  2980. } else {
  2981. /*
  2982. * unboost the queue (if needed)
  2983. */
  2984. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2985. cfqq->ioprio = cfqq->org_ioprio;
  2986. }
  2987. }
  2988. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2989. {
  2990. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2991. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2992. return ELV_MQUEUE_MUST;
  2993. }
  2994. return ELV_MQUEUE_MAY;
  2995. }
  2996. static int cfq_may_queue(struct request_queue *q, int rw)
  2997. {
  2998. struct cfq_data *cfqd = q->elevator->elevator_data;
  2999. struct task_struct *tsk = current;
  3000. struct cfq_io_context *cic;
  3001. struct cfq_queue *cfqq;
  3002. /*
  3003. * don't force setup of a queue from here, as a call to may_queue
  3004. * does not necessarily imply that a request actually will be queued.
  3005. * so just lookup a possibly existing queue, or return 'may queue'
  3006. * if that fails
  3007. */
  3008. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3009. if (!cic)
  3010. return ELV_MQUEUE_MAY;
  3011. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3012. if (cfqq) {
  3013. cfq_init_prio_data(cfqq, cic->ioc);
  3014. cfq_prio_boost(cfqq);
  3015. return __cfq_may_queue(cfqq);
  3016. }
  3017. return ELV_MQUEUE_MAY;
  3018. }
  3019. /*
  3020. * queue lock held here
  3021. */
  3022. static void cfq_put_request(struct request *rq)
  3023. {
  3024. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3025. if (cfqq) {
  3026. const int rw = rq_data_dir(rq);
  3027. BUG_ON(!cfqq->allocated[rw]);
  3028. cfqq->allocated[rw]--;
  3029. put_io_context(RQ_CIC(rq)->ioc);
  3030. rq->elevator_private = NULL;
  3031. rq->elevator_private2 = NULL;
  3032. /* Put down rq reference on cfqg */
  3033. cfq_put_cfqg(RQ_CFQG(rq));
  3034. rq->elevator_private3 = NULL;
  3035. cfq_put_queue(cfqq);
  3036. }
  3037. }
  3038. static struct cfq_queue *
  3039. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3040. struct cfq_queue *cfqq)
  3041. {
  3042. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3043. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3044. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3045. cfq_put_queue(cfqq);
  3046. return cic_to_cfqq(cic, 1);
  3047. }
  3048. /*
  3049. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3050. * was the last process referring to said cfqq.
  3051. */
  3052. static struct cfq_queue *
  3053. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3054. {
  3055. if (cfqq_process_refs(cfqq) == 1) {
  3056. cfqq->pid = current->pid;
  3057. cfq_clear_cfqq_coop(cfqq);
  3058. cfq_clear_cfqq_split_coop(cfqq);
  3059. return cfqq;
  3060. }
  3061. cic_set_cfqq(cic, NULL, 1);
  3062. cfq_put_cooperator(cfqq);
  3063. cfq_put_queue(cfqq);
  3064. return NULL;
  3065. }
  3066. /*
  3067. * Allocate cfq data structures associated with this request.
  3068. */
  3069. static int
  3070. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3071. {
  3072. struct cfq_data *cfqd = q->elevator->elevator_data;
  3073. struct cfq_io_context *cic;
  3074. const int rw = rq_data_dir(rq);
  3075. const bool is_sync = rq_is_sync(rq);
  3076. struct cfq_queue *cfqq;
  3077. unsigned long flags;
  3078. might_sleep_if(gfp_mask & __GFP_WAIT);
  3079. cic = cfq_get_io_context(cfqd, gfp_mask);
  3080. spin_lock_irqsave(q->queue_lock, flags);
  3081. if (!cic)
  3082. goto queue_fail;
  3083. new_queue:
  3084. cfqq = cic_to_cfqq(cic, is_sync);
  3085. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3086. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3087. cic_set_cfqq(cic, cfqq, is_sync);
  3088. } else {
  3089. /*
  3090. * If the queue was seeky for too long, break it apart.
  3091. */
  3092. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3093. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3094. cfqq = split_cfqq(cic, cfqq);
  3095. if (!cfqq)
  3096. goto new_queue;
  3097. }
  3098. /*
  3099. * Check to see if this queue is scheduled to merge with
  3100. * another, closely cooperating queue. The merging of
  3101. * queues happens here as it must be done in process context.
  3102. * The reference on new_cfqq was taken in merge_cfqqs.
  3103. */
  3104. if (cfqq->new_cfqq)
  3105. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3106. }
  3107. cfqq->allocated[rw]++;
  3108. cfqq->ref++;
  3109. rq->elevator_private = cic;
  3110. rq->elevator_private2 = cfqq;
  3111. rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
  3112. spin_unlock_irqrestore(q->queue_lock, flags);
  3113. return 0;
  3114. queue_fail:
  3115. if (cic)
  3116. put_io_context(cic->ioc);
  3117. cfq_schedule_dispatch(cfqd);
  3118. spin_unlock_irqrestore(q->queue_lock, flags);
  3119. cfq_log(cfqd, "set_request fail");
  3120. return 1;
  3121. }
  3122. static void cfq_kick_queue(struct work_struct *work)
  3123. {
  3124. struct cfq_data *cfqd =
  3125. container_of(work, struct cfq_data, unplug_work);
  3126. struct request_queue *q = cfqd->queue;
  3127. spin_lock_irq(q->queue_lock);
  3128. __blk_run_queue(cfqd->queue);
  3129. spin_unlock_irq(q->queue_lock);
  3130. }
  3131. /*
  3132. * Timer running if the active_queue is currently idling inside its time slice
  3133. */
  3134. static void cfq_idle_slice_timer(unsigned long data)
  3135. {
  3136. struct cfq_data *cfqd = (struct cfq_data *) data;
  3137. struct cfq_queue *cfqq;
  3138. unsigned long flags;
  3139. int timed_out = 1;
  3140. cfq_log(cfqd, "idle timer fired");
  3141. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3142. cfqq = cfqd->active_queue;
  3143. if (cfqq) {
  3144. timed_out = 0;
  3145. /*
  3146. * We saw a request before the queue expired, let it through
  3147. */
  3148. if (cfq_cfqq_must_dispatch(cfqq))
  3149. goto out_kick;
  3150. /*
  3151. * expired
  3152. */
  3153. if (cfq_slice_used(cfqq))
  3154. goto expire;
  3155. /*
  3156. * only expire and reinvoke request handler, if there are
  3157. * other queues with pending requests
  3158. */
  3159. if (!cfqd->busy_queues)
  3160. goto out_cont;
  3161. /*
  3162. * not expired and it has a request pending, let it dispatch
  3163. */
  3164. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3165. goto out_kick;
  3166. /*
  3167. * Queue depth flag is reset only when the idle didn't succeed
  3168. */
  3169. cfq_clear_cfqq_deep(cfqq);
  3170. }
  3171. expire:
  3172. cfq_slice_expired(cfqd, timed_out);
  3173. out_kick:
  3174. cfq_schedule_dispatch(cfqd);
  3175. out_cont:
  3176. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3177. }
  3178. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3179. {
  3180. del_timer_sync(&cfqd->idle_slice_timer);
  3181. cancel_work_sync(&cfqd->unplug_work);
  3182. }
  3183. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3184. {
  3185. int i;
  3186. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3187. if (cfqd->async_cfqq[0][i])
  3188. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3189. if (cfqd->async_cfqq[1][i])
  3190. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3191. }
  3192. if (cfqd->async_idle_cfqq)
  3193. cfq_put_queue(cfqd->async_idle_cfqq);
  3194. }
  3195. static void cfq_cfqd_free(struct rcu_head *head)
  3196. {
  3197. kfree(container_of(head, struct cfq_data, rcu));
  3198. }
  3199. static void cfq_exit_queue(struct elevator_queue *e)
  3200. {
  3201. struct cfq_data *cfqd = e->elevator_data;
  3202. struct request_queue *q = cfqd->queue;
  3203. cfq_shutdown_timer_wq(cfqd);
  3204. spin_lock_irq(q->queue_lock);
  3205. if (cfqd->active_queue)
  3206. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3207. while (!list_empty(&cfqd->cic_list)) {
  3208. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3209. struct cfq_io_context,
  3210. queue_list);
  3211. __cfq_exit_single_io_context(cfqd, cic);
  3212. }
  3213. cfq_put_async_queues(cfqd);
  3214. cfq_release_cfq_groups(cfqd);
  3215. cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3216. spin_unlock_irq(q->queue_lock);
  3217. cfq_shutdown_timer_wq(cfqd);
  3218. spin_lock(&cic_index_lock);
  3219. ida_remove(&cic_index_ida, cfqd->cic_index);
  3220. spin_unlock(&cic_index_lock);
  3221. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3222. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3223. }
  3224. static int cfq_alloc_cic_index(void)
  3225. {
  3226. int index, error;
  3227. do {
  3228. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3229. return -ENOMEM;
  3230. spin_lock(&cic_index_lock);
  3231. error = ida_get_new(&cic_index_ida, &index);
  3232. spin_unlock(&cic_index_lock);
  3233. if (error && error != -EAGAIN)
  3234. return error;
  3235. } while (error);
  3236. return index;
  3237. }
  3238. static void *cfq_init_queue(struct request_queue *q)
  3239. {
  3240. struct cfq_data *cfqd;
  3241. int i, j;
  3242. struct cfq_group *cfqg;
  3243. struct cfq_rb_root *st;
  3244. i = cfq_alloc_cic_index();
  3245. if (i < 0)
  3246. return NULL;
  3247. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3248. if (!cfqd)
  3249. return NULL;
  3250. /*
  3251. * Don't need take queue_lock in the routine, since we are
  3252. * initializing the ioscheduler, and nobody is using cfqd
  3253. */
  3254. cfqd->cic_index = i;
  3255. /* Init root service tree */
  3256. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3257. /* Init root group */
  3258. cfqg = &cfqd->root_group;
  3259. for_each_cfqg_st(cfqg, i, j, st)
  3260. *st = CFQ_RB_ROOT;
  3261. RB_CLEAR_NODE(&cfqg->rb_node);
  3262. /* Give preference to root group over other groups */
  3263. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3264. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3265. /*
  3266. * Take a reference to root group which we never drop. This is just
  3267. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3268. */
  3269. cfqg->ref = 1;
  3270. rcu_read_lock();
  3271. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3272. (void *)cfqd, 0);
  3273. rcu_read_unlock();
  3274. #endif
  3275. /*
  3276. * Not strictly needed (since RB_ROOT just clears the node and we
  3277. * zeroed cfqd on alloc), but better be safe in case someone decides
  3278. * to add magic to the rb code
  3279. */
  3280. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3281. cfqd->prio_trees[i] = RB_ROOT;
  3282. /*
  3283. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3284. * Grab a permanent reference to it, so that the normal code flow
  3285. * will not attempt to free it.
  3286. */
  3287. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3288. cfqd->oom_cfqq.ref++;
  3289. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3290. INIT_LIST_HEAD(&cfqd->cic_list);
  3291. cfqd->queue = q;
  3292. init_timer(&cfqd->idle_slice_timer);
  3293. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3294. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3295. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3296. cfqd->cfq_quantum = cfq_quantum;
  3297. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3298. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3299. cfqd->cfq_back_max = cfq_back_max;
  3300. cfqd->cfq_back_penalty = cfq_back_penalty;
  3301. cfqd->cfq_slice[0] = cfq_slice_async;
  3302. cfqd->cfq_slice[1] = cfq_slice_sync;
  3303. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3304. cfqd->cfq_slice_idle = cfq_slice_idle;
  3305. cfqd->cfq_group_idle = cfq_group_idle;
  3306. cfqd->cfq_latency = 1;
  3307. cfqd->cfq_group_isolation = 0;
  3308. cfqd->hw_tag = -1;
  3309. /*
  3310. * we optimistically start assuming sync ops weren't delayed in last
  3311. * second, in order to have larger depth for async operations.
  3312. */
  3313. cfqd->last_delayed_sync = jiffies - HZ;
  3314. return cfqd;
  3315. }
  3316. static void cfq_slab_kill(void)
  3317. {
  3318. /*
  3319. * Caller already ensured that pending RCU callbacks are completed,
  3320. * so we should have no busy allocations at this point.
  3321. */
  3322. if (cfq_pool)
  3323. kmem_cache_destroy(cfq_pool);
  3324. if (cfq_ioc_pool)
  3325. kmem_cache_destroy(cfq_ioc_pool);
  3326. }
  3327. static int __init cfq_slab_setup(void)
  3328. {
  3329. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3330. if (!cfq_pool)
  3331. goto fail;
  3332. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3333. if (!cfq_ioc_pool)
  3334. goto fail;
  3335. return 0;
  3336. fail:
  3337. cfq_slab_kill();
  3338. return -ENOMEM;
  3339. }
  3340. /*
  3341. * sysfs parts below -->
  3342. */
  3343. static ssize_t
  3344. cfq_var_show(unsigned int var, char *page)
  3345. {
  3346. return sprintf(page, "%d\n", var);
  3347. }
  3348. static ssize_t
  3349. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3350. {
  3351. char *p = (char *) page;
  3352. *var = simple_strtoul(p, &p, 10);
  3353. return count;
  3354. }
  3355. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3356. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3357. { \
  3358. struct cfq_data *cfqd = e->elevator_data; \
  3359. unsigned int __data = __VAR; \
  3360. if (__CONV) \
  3361. __data = jiffies_to_msecs(__data); \
  3362. return cfq_var_show(__data, (page)); \
  3363. }
  3364. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3365. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3366. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3367. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3368. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3369. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3370. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3371. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3372. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3373. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3374. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3375. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3376. #undef SHOW_FUNCTION
  3377. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3378. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3379. { \
  3380. struct cfq_data *cfqd = e->elevator_data; \
  3381. unsigned int __data; \
  3382. int ret = cfq_var_store(&__data, (page), count); \
  3383. if (__data < (MIN)) \
  3384. __data = (MIN); \
  3385. else if (__data > (MAX)) \
  3386. __data = (MAX); \
  3387. if (__CONV) \
  3388. *(__PTR) = msecs_to_jiffies(__data); \
  3389. else \
  3390. *(__PTR) = __data; \
  3391. return ret; \
  3392. }
  3393. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3394. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3395. UINT_MAX, 1);
  3396. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3397. UINT_MAX, 1);
  3398. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3399. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3400. UINT_MAX, 0);
  3401. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3402. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3403. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3404. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3405. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3406. UINT_MAX, 0);
  3407. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3408. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3409. #undef STORE_FUNCTION
  3410. #define CFQ_ATTR(name) \
  3411. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3412. static struct elv_fs_entry cfq_attrs[] = {
  3413. CFQ_ATTR(quantum),
  3414. CFQ_ATTR(fifo_expire_sync),
  3415. CFQ_ATTR(fifo_expire_async),
  3416. CFQ_ATTR(back_seek_max),
  3417. CFQ_ATTR(back_seek_penalty),
  3418. CFQ_ATTR(slice_sync),
  3419. CFQ_ATTR(slice_async),
  3420. CFQ_ATTR(slice_async_rq),
  3421. CFQ_ATTR(slice_idle),
  3422. CFQ_ATTR(group_idle),
  3423. CFQ_ATTR(low_latency),
  3424. CFQ_ATTR(group_isolation),
  3425. __ATTR_NULL
  3426. };
  3427. static struct elevator_type iosched_cfq = {
  3428. .ops = {
  3429. .elevator_merge_fn = cfq_merge,
  3430. .elevator_merged_fn = cfq_merged_request,
  3431. .elevator_merge_req_fn = cfq_merged_requests,
  3432. .elevator_allow_merge_fn = cfq_allow_merge,
  3433. .elevator_bio_merged_fn = cfq_bio_merged,
  3434. .elevator_dispatch_fn = cfq_dispatch_requests,
  3435. .elevator_add_req_fn = cfq_insert_request,
  3436. .elevator_activate_req_fn = cfq_activate_request,
  3437. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3438. .elevator_queue_empty_fn = cfq_queue_empty,
  3439. .elevator_completed_req_fn = cfq_completed_request,
  3440. .elevator_former_req_fn = elv_rb_former_request,
  3441. .elevator_latter_req_fn = elv_rb_latter_request,
  3442. .elevator_set_req_fn = cfq_set_request,
  3443. .elevator_put_req_fn = cfq_put_request,
  3444. .elevator_may_queue_fn = cfq_may_queue,
  3445. .elevator_init_fn = cfq_init_queue,
  3446. .elevator_exit_fn = cfq_exit_queue,
  3447. .trim = cfq_free_io_context,
  3448. },
  3449. .elevator_attrs = cfq_attrs,
  3450. .elevator_name = "cfq",
  3451. .elevator_owner = THIS_MODULE,
  3452. };
  3453. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3454. static struct blkio_policy_type blkio_policy_cfq = {
  3455. .ops = {
  3456. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3457. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3458. },
  3459. .plid = BLKIO_POLICY_PROP,
  3460. };
  3461. #else
  3462. static struct blkio_policy_type blkio_policy_cfq;
  3463. #endif
  3464. static int __init cfq_init(void)
  3465. {
  3466. /*
  3467. * could be 0 on HZ < 1000 setups
  3468. */
  3469. if (!cfq_slice_async)
  3470. cfq_slice_async = 1;
  3471. if (!cfq_slice_idle)
  3472. cfq_slice_idle = 1;
  3473. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3474. if (!cfq_group_idle)
  3475. cfq_group_idle = 1;
  3476. #else
  3477. cfq_group_idle = 0;
  3478. #endif
  3479. if (cfq_slab_setup())
  3480. return -ENOMEM;
  3481. elv_register(&iosched_cfq);
  3482. blkio_policy_register(&blkio_policy_cfq);
  3483. return 0;
  3484. }
  3485. static void __exit cfq_exit(void)
  3486. {
  3487. DECLARE_COMPLETION_ONSTACK(all_gone);
  3488. blkio_policy_unregister(&blkio_policy_cfq);
  3489. elv_unregister(&iosched_cfq);
  3490. ioc_gone = &all_gone;
  3491. /* ioc_gone's update must be visible before reading ioc_count */
  3492. smp_wmb();
  3493. /*
  3494. * this also protects us from entering cfq_slab_kill() with
  3495. * pending RCU callbacks
  3496. */
  3497. if (elv_ioc_count_read(cfq_ioc_count))
  3498. wait_for_completion(&all_gone);
  3499. ida_destroy(&cic_index_ida);
  3500. cfq_slab_kill();
  3501. }
  3502. module_init(cfq_init);
  3503. module_exit(cfq_exit);
  3504. MODULE_AUTHOR("Jens Axboe");
  3505. MODULE_LICENSE("GPL");
  3506. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");