t3_hw.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549
  1. /*
  2. * Copyright (c) 2003-2007 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include "common.h"
  33. #include "regs.h"
  34. #include "sge_defs.h"
  35. #include "firmware_exports.h"
  36. /**
  37. * t3_wait_op_done_val - wait until an operation is completed
  38. * @adapter: the adapter performing the operation
  39. * @reg: the register to check for completion
  40. * @mask: a single-bit field within @reg that indicates completion
  41. * @polarity: the value of the field when the operation is completed
  42. * @attempts: number of check iterations
  43. * @delay: delay in usecs between iterations
  44. * @valp: where to store the value of the register at completion time
  45. *
  46. * Wait until an operation is completed by checking a bit in a register
  47. * up to @attempts times. If @valp is not NULL the value of the register
  48. * at the time it indicated completion is stored there. Returns 0 if the
  49. * operation completes and -EAGAIN otherwise.
  50. */
  51. int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  52. int polarity, int attempts, int delay, u32 *valp)
  53. {
  54. while (1) {
  55. u32 val = t3_read_reg(adapter, reg);
  56. if (!!(val & mask) == polarity) {
  57. if (valp)
  58. *valp = val;
  59. return 0;
  60. }
  61. if (--attempts == 0)
  62. return -EAGAIN;
  63. if (delay)
  64. udelay(delay);
  65. }
  66. }
  67. /**
  68. * t3_write_regs - write a bunch of registers
  69. * @adapter: the adapter to program
  70. * @p: an array of register address/register value pairs
  71. * @n: the number of address/value pairs
  72. * @offset: register address offset
  73. *
  74. * Takes an array of register address/register value pairs and writes each
  75. * value to the corresponding register. Register addresses are adjusted
  76. * by the supplied offset.
  77. */
  78. void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
  79. int n, unsigned int offset)
  80. {
  81. while (n--) {
  82. t3_write_reg(adapter, p->reg_addr + offset, p->val);
  83. p++;
  84. }
  85. }
  86. /**
  87. * t3_set_reg_field - set a register field to a value
  88. * @adapter: the adapter to program
  89. * @addr: the register address
  90. * @mask: specifies the portion of the register to modify
  91. * @val: the new value for the register field
  92. *
  93. * Sets a register field specified by the supplied mask to the
  94. * given value.
  95. */
  96. void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  97. u32 val)
  98. {
  99. u32 v = t3_read_reg(adapter, addr) & ~mask;
  100. t3_write_reg(adapter, addr, v | val);
  101. t3_read_reg(adapter, addr); /* flush */
  102. }
  103. /**
  104. * t3_read_indirect - read indirectly addressed registers
  105. * @adap: the adapter
  106. * @addr_reg: register holding the indirect address
  107. * @data_reg: register holding the value of the indirect register
  108. * @vals: where the read register values are stored
  109. * @start_idx: index of first indirect register to read
  110. * @nregs: how many indirect registers to read
  111. *
  112. * Reads registers that are accessed indirectly through an address/data
  113. * register pair.
  114. */
  115. static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
  116. unsigned int data_reg, u32 *vals,
  117. unsigned int nregs, unsigned int start_idx)
  118. {
  119. while (nregs--) {
  120. t3_write_reg(adap, addr_reg, start_idx);
  121. *vals++ = t3_read_reg(adap, data_reg);
  122. start_idx++;
  123. }
  124. }
  125. /**
  126. * t3_mc7_bd_read - read from MC7 through backdoor accesses
  127. * @mc7: identifies MC7 to read from
  128. * @start: index of first 64-bit word to read
  129. * @n: number of 64-bit words to read
  130. * @buf: where to store the read result
  131. *
  132. * Read n 64-bit words from MC7 starting at word start, using backdoor
  133. * accesses.
  134. */
  135. int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
  136. u64 *buf)
  137. {
  138. static const int shift[] = { 0, 0, 16, 24 };
  139. static const int step[] = { 0, 32, 16, 8 };
  140. unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
  141. struct adapter *adap = mc7->adapter;
  142. if (start >= size64 || start + n > size64)
  143. return -EINVAL;
  144. start *= (8 << mc7->width);
  145. while (n--) {
  146. int i;
  147. u64 val64 = 0;
  148. for (i = (1 << mc7->width) - 1; i >= 0; --i) {
  149. int attempts = 10;
  150. u32 val;
  151. t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
  152. t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
  153. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
  154. while ((val & F_BUSY) && attempts--)
  155. val = t3_read_reg(adap,
  156. mc7->offset + A_MC7_BD_OP);
  157. if (val & F_BUSY)
  158. return -EIO;
  159. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
  160. if (mc7->width == 0) {
  161. val64 = t3_read_reg(adap,
  162. mc7->offset +
  163. A_MC7_BD_DATA0);
  164. val64 |= (u64) val << 32;
  165. } else {
  166. if (mc7->width > 1)
  167. val >>= shift[mc7->width];
  168. val64 |= (u64) val << (step[mc7->width] * i);
  169. }
  170. start += 8;
  171. }
  172. *buf++ = val64;
  173. }
  174. return 0;
  175. }
  176. /*
  177. * Initialize MI1.
  178. */
  179. static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
  180. {
  181. u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
  182. u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) |
  183. V_CLKDIV(clkdiv);
  184. if (!(ai->caps & SUPPORTED_10000baseT_Full))
  185. val |= V_ST(1);
  186. t3_write_reg(adap, A_MI1_CFG, val);
  187. }
  188. #define MDIO_ATTEMPTS 10
  189. /*
  190. * MI1 read/write operations for direct-addressed PHYs.
  191. */
  192. static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  193. int reg_addr, unsigned int *valp)
  194. {
  195. int ret;
  196. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  197. if (mmd_addr)
  198. return -EINVAL;
  199. mutex_lock(&adapter->mdio_lock);
  200. t3_write_reg(adapter, A_MI1_ADDR, addr);
  201. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
  202. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  203. if (!ret)
  204. *valp = t3_read_reg(adapter, A_MI1_DATA);
  205. mutex_unlock(&adapter->mdio_lock);
  206. return ret;
  207. }
  208. static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  209. int reg_addr, unsigned int val)
  210. {
  211. int ret;
  212. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  213. if (mmd_addr)
  214. return -EINVAL;
  215. mutex_lock(&adapter->mdio_lock);
  216. t3_write_reg(adapter, A_MI1_ADDR, addr);
  217. t3_write_reg(adapter, A_MI1_DATA, val);
  218. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  219. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  220. mutex_unlock(&adapter->mdio_lock);
  221. return ret;
  222. }
  223. static const struct mdio_ops mi1_mdio_ops = {
  224. mi1_read,
  225. mi1_write
  226. };
  227. /*
  228. * MI1 read/write operations for indirect-addressed PHYs.
  229. */
  230. static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  231. int reg_addr, unsigned int *valp)
  232. {
  233. int ret;
  234. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  235. mutex_lock(&adapter->mdio_lock);
  236. t3_write_reg(adapter, A_MI1_ADDR, addr);
  237. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  238. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  239. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  240. if (!ret) {
  241. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
  242. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  243. MDIO_ATTEMPTS, 20);
  244. if (!ret)
  245. *valp = t3_read_reg(adapter, A_MI1_DATA);
  246. }
  247. mutex_unlock(&adapter->mdio_lock);
  248. return ret;
  249. }
  250. static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  251. int reg_addr, unsigned int val)
  252. {
  253. int ret;
  254. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  255. mutex_lock(&adapter->mdio_lock);
  256. t3_write_reg(adapter, A_MI1_ADDR, addr);
  257. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  258. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  259. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  260. if (!ret) {
  261. t3_write_reg(adapter, A_MI1_DATA, val);
  262. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  263. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  264. MDIO_ATTEMPTS, 20);
  265. }
  266. mutex_unlock(&adapter->mdio_lock);
  267. return ret;
  268. }
  269. static const struct mdio_ops mi1_mdio_ext_ops = {
  270. mi1_ext_read,
  271. mi1_ext_write
  272. };
  273. /**
  274. * t3_mdio_change_bits - modify the value of a PHY register
  275. * @phy: the PHY to operate on
  276. * @mmd: the device address
  277. * @reg: the register address
  278. * @clear: what part of the register value to mask off
  279. * @set: what part of the register value to set
  280. *
  281. * Changes the value of a PHY register by applying a mask to its current
  282. * value and ORing the result with a new value.
  283. */
  284. int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
  285. unsigned int set)
  286. {
  287. int ret;
  288. unsigned int val;
  289. ret = mdio_read(phy, mmd, reg, &val);
  290. if (!ret) {
  291. val &= ~clear;
  292. ret = mdio_write(phy, mmd, reg, val | set);
  293. }
  294. return ret;
  295. }
  296. /**
  297. * t3_phy_reset - reset a PHY block
  298. * @phy: the PHY to operate on
  299. * @mmd: the device address of the PHY block to reset
  300. * @wait: how long to wait for the reset to complete in 1ms increments
  301. *
  302. * Resets a PHY block and optionally waits for the reset to complete.
  303. * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
  304. * for 10G PHYs.
  305. */
  306. int t3_phy_reset(struct cphy *phy, int mmd, int wait)
  307. {
  308. int err;
  309. unsigned int ctl;
  310. err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
  311. if (err || !wait)
  312. return err;
  313. do {
  314. err = mdio_read(phy, mmd, MII_BMCR, &ctl);
  315. if (err)
  316. return err;
  317. ctl &= BMCR_RESET;
  318. if (ctl)
  319. msleep(1);
  320. } while (ctl && --wait);
  321. return ctl ? -1 : 0;
  322. }
  323. /**
  324. * t3_phy_advertise - set the PHY advertisement registers for autoneg
  325. * @phy: the PHY to operate on
  326. * @advert: bitmap of capabilities the PHY should advertise
  327. *
  328. * Sets a 10/100/1000 PHY's advertisement registers to advertise the
  329. * requested capabilities.
  330. */
  331. int t3_phy_advertise(struct cphy *phy, unsigned int advert)
  332. {
  333. int err;
  334. unsigned int val = 0;
  335. err = mdio_read(phy, 0, MII_CTRL1000, &val);
  336. if (err)
  337. return err;
  338. val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  339. if (advert & ADVERTISED_1000baseT_Half)
  340. val |= ADVERTISE_1000HALF;
  341. if (advert & ADVERTISED_1000baseT_Full)
  342. val |= ADVERTISE_1000FULL;
  343. err = mdio_write(phy, 0, MII_CTRL1000, val);
  344. if (err)
  345. return err;
  346. val = 1;
  347. if (advert & ADVERTISED_10baseT_Half)
  348. val |= ADVERTISE_10HALF;
  349. if (advert & ADVERTISED_10baseT_Full)
  350. val |= ADVERTISE_10FULL;
  351. if (advert & ADVERTISED_100baseT_Half)
  352. val |= ADVERTISE_100HALF;
  353. if (advert & ADVERTISED_100baseT_Full)
  354. val |= ADVERTISE_100FULL;
  355. if (advert & ADVERTISED_Pause)
  356. val |= ADVERTISE_PAUSE_CAP;
  357. if (advert & ADVERTISED_Asym_Pause)
  358. val |= ADVERTISE_PAUSE_ASYM;
  359. return mdio_write(phy, 0, MII_ADVERTISE, val);
  360. }
  361. /**
  362. * t3_set_phy_speed_duplex - force PHY speed and duplex
  363. * @phy: the PHY to operate on
  364. * @speed: requested PHY speed
  365. * @duplex: requested PHY duplex
  366. *
  367. * Force a 10/100/1000 PHY's speed and duplex. This also disables
  368. * auto-negotiation except for GigE, where auto-negotiation is mandatory.
  369. */
  370. int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
  371. {
  372. int err;
  373. unsigned int ctl;
  374. err = mdio_read(phy, 0, MII_BMCR, &ctl);
  375. if (err)
  376. return err;
  377. if (speed >= 0) {
  378. ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
  379. if (speed == SPEED_100)
  380. ctl |= BMCR_SPEED100;
  381. else if (speed == SPEED_1000)
  382. ctl |= BMCR_SPEED1000;
  383. }
  384. if (duplex >= 0) {
  385. ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
  386. if (duplex == DUPLEX_FULL)
  387. ctl |= BMCR_FULLDPLX;
  388. }
  389. if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
  390. ctl |= BMCR_ANENABLE;
  391. return mdio_write(phy, 0, MII_BMCR, ctl);
  392. }
  393. static const struct adapter_info t3_adap_info[] = {
  394. {2, 0, 0, 0,
  395. F_GPIO2_OEN | F_GPIO4_OEN |
  396. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
  397. 0,
  398. &mi1_mdio_ops, "Chelsio PE9000"},
  399. {2, 0, 0, 0,
  400. F_GPIO2_OEN | F_GPIO4_OEN |
  401. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
  402. 0,
  403. &mi1_mdio_ops, "Chelsio T302"},
  404. {1, 0, 0, 0,
  405. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
  406. F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  407. 0, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  408. &mi1_mdio_ext_ops, "Chelsio T310"},
  409. {2, 0, 0, 0,
  410. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
  411. F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
  412. F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
  413. SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  414. &mi1_mdio_ext_ops, "Chelsio T320"},
  415. };
  416. /*
  417. * Return the adapter_info structure with a given index. Out-of-range indices
  418. * return NULL.
  419. */
  420. const struct adapter_info *t3_get_adapter_info(unsigned int id)
  421. {
  422. return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
  423. }
  424. #define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \
  425. SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII)
  426. #define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI)
  427. static const struct port_type_info port_types[] = {
  428. {NULL},
  429. {t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
  430. "10GBASE-XR"},
  431. {t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
  432. "10/100/1000BASE-T"},
  433. {NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
  434. "10/100/1000BASE-T"},
  435. {t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  436. {NULL, CAPS_10G, "10GBASE-KX4"},
  437. {t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  438. {t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
  439. "10GBASE-SR"},
  440. {NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  441. };
  442. #undef CAPS_1G
  443. #undef CAPS_10G
  444. #define VPD_ENTRY(name, len) \
  445. u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
  446. /*
  447. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  448. * VPD-R sections.
  449. */
  450. struct t3_vpd {
  451. u8 id_tag;
  452. u8 id_len[2];
  453. u8 id_data[16];
  454. u8 vpdr_tag;
  455. u8 vpdr_len[2];
  456. VPD_ENTRY(pn, 16); /* part number */
  457. VPD_ENTRY(ec, 16); /* EC level */
  458. VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
  459. VPD_ENTRY(na, 12); /* MAC address base */
  460. VPD_ENTRY(cclk, 6); /* core clock */
  461. VPD_ENTRY(mclk, 6); /* mem clock */
  462. VPD_ENTRY(uclk, 6); /* uP clk */
  463. VPD_ENTRY(mdc, 6); /* MDIO clk */
  464. VPD_ENTRY(mt, 2); /* mem timing */
  465. VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
  466. VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
  467. VPD_ENTRY(port0, 2); /* PHY0 complex */
  468. VPD_ENTRY(port1, 2); /* PHY1 complex */
  469. VPD_ENTRY(port2, 2); /* PHY2 complex */
  470. VPD_ENTRY(port3, 2); /* PHY3 complex */
  471. VPD_ENTRY(rv, 1); /* csum */
  472. u32 pad; /* for multiple-of-4 sizing and alignment */
  473. };
  474. #define EEPROM_MAX_POLL 4
  475. #define EEPROM_STAT_ADDR 0x4000
  476. #define VPD_BASE 0xc00
  477. /**
  478. * t3_seeprom_read - read a VPD EEPROM location
  479. * @adapter: adapter to read
  480. * @addr: EEPROM address
  481. * @data: where to store the read data
  482. *
  483. * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
  484. * VPD ROM capability. A zero is written to the flag bit when the
  485. * addres is written to the control register. The hardware device will
  486. * set the flag to 1 when 4 bytes have been read into the data register.
  487. */
  488. int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
  489. {
  490. u16 val;
  491. int attempts = EEPROM_MAX_POLL;
  492. unsigned int base = adapter->params.pci.vpd_cap_addr;
  493. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  494. return -EINVAL;
  495. pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
  496. do {
  497. udelay(10);
  498. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  499. } while (!(val & PCI_VPD_ADDR_F) && --attempts);
  500. if (!(val & PCI_VPD_ADDR_F)) {
  501. CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
  502. return -EIO;
  503. }
  504. pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data);
  505. *data = le32_to_cpu(*data);
  506. return 0;
  507. }
  508. /**
  509. * t3_seeprom_write - write a VPD EEPROM location
  510. * @adapter: adapter to write
  511. * @addr: EEPROM address
  512. * @data: value to write
  513. *
  514. * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
  515. * VPD ROM capability.
  516. */
  517. int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
  518. {
  519. u16 val;
  520. int attempts = EEPROM_MAX_POLL;
  521. unsigned int base = adapter->params.pci.vpd_cap_addr;
  522. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  523. return -EINVAL;
  524. pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
  525. cpu_to_le32(data));
  526. pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
  527. addr | PCI_VPD_ADDR_F);
  528. do {
  529. msleep(1);
  530. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  531. } while ((val & PCI_VPD_ADDR_F) && --attempts);
  532. if (val & PCI_VPD_ADDR_F) {
  533. CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
  534. return -EIO;
  535. }
  536. return 0;
  537. }
  538. /**
  539. * t3_seeprom_wp - enable/disable EEPROM write protection
  540. * @adapter: the adapter
  541. * @enable: 1 to enable write protection, 0 to disable it
  542. *
  543. * Enables or disables write protection on the serial EEPROM.
  544. */
  545. int t3_seeprom_wp(struct adapter *adapter, int enable)
  546. {
  547. return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
  548. }
  549. /*
  550. * Convert a character holding a hex digit to a number.
  551. */
  552. static unsigned int hex2int(unsigned char c)
  553. {
  554. return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
  555. }
  556. /**
  557. * get_vpd_params - read VPD parameters from VPD EEPROM
  558. * @adapter: adapter to read
  559. * @p: where to store the parameters
  560. *
  561. * Reads card parameters stored in VPD EEPROM.
  562. */
  563. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  564. {
  565. int i, addr, ret;
  566. struct t3_vpd vpd;
  567. /*
  568. * Card information is normally at VPD_BASE but some early cards had
  569. * it at 0.
  570. */
  571. ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd);
  572. if (ret)
  573. return ret;
  574. addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
  575. for (i = 0; i < sizeof(vpd); i += 4) {
  576. ret = t3_seeprom_read(adapter, addr + i,
  577. (u32 *)((u8 *)&vpd + i));
  578. if (ret)
  579. return ret;
  580. }
  581. p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
  582. p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
  583. p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
  584. p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
  585. p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
  586. memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
  587. /* Old eeproms didn't have port information */
  588. if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
  589. p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
  590. p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
  591. } else {
  592. p->port_type[0] = hex2int(vpd.port0_data[0]);
  593. p->port_type[1] = hex2int(vpd.port1_data[0]);
  594. p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
  595. p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
  596. }
  597. for (i = 0; i < 6; i++)
  598. p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
  599. hex2int(vpd.na_data[2 * i + 1]);
  600. return 0;
  601. }
  602. /* serial flash and firmware constants */
  603. enum {
  604. SF_ATTEMPTS = 5, /* max retries for SF1 operations */
  605. SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
  606. SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
  607. /* flash command opcodes */
  608. SF_PROG_PAGE = 2, /* program page */
  609. SF_WR_DISABLE = 4, /* disable writes */
  610. SF_RD_STATUS = 5, /* read status register */
  611. SF_WR_ENABLE = 6, /* enable writes */
  612. SF_RD_DATA_FAST = 0xb, /* read flash */
  613. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  614. FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
  615. FW_VERS_ADDR = 0x77ffc, /* flash address holding FW version */
  616. FW_MIN_SIZE = 8 /* at least version and csum */
  617. };
  618. /**
  619. * sf1_read - read data from the serial flash
  620. * @adapter: the adapter
  621. * @byte_cnt: number of bytes to read
  622. * @cont: whether another operation will be chained
  623. * @valp: where to store the read data
  624. *
  625. * Reads up to 4 bytes of data from the serial flash. The location of
  626. * the read needs to be specified prior to calling this by issuing the
  627. * appropriate commands to the serial flash.
  628. */
  629. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  630. u32 *valp)
  631. {
  632. int ret;
  633. if (!byte_cnt || byte_cnt > 4)
  634. return -EINVAL;
  635. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  636. return -EBUSY;
  637. t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
  638. ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  639. if (!ret)
  640. *valp = t3_read_reg(adapter, A_SF_DATA);
  641. return ret;
  642. }
  643. /**
  644. * sf1_write - write data to the serial flash
  645. * @adapter: the adapter
  646. * @byte_cnt: number of bytes to write
  647. * @cont: whether another operation will be chained
  648. * @val: value to write
  649. *
  650. * Writes up to 4 bytes of data to the serial flash. The location of
  651. * the write needs to be specified prior to calling this by issuing the
  652. * appropriate commands to the serial flash.
  653. */
  654. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  655. u32 val)
  656. {
  657. if (!byte_cnt || byte_cnt > 4)
  658. return -EINVAL;
  659. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  660. return -EBUSY;
  661. t3_write_reg(adapter, A_SF_DATA, val);
  662. t3_write_reg(adapter, A_SF_OP,
  663. V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
  664. return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  665. }
  666. /**
  667. * flash_wait_op - wait for a flash operation to complete
  668. * @adapter: the adapter
  669. * @attempts: max number of polls of the status register
  670. * @delay: delay between polls in ms
  671. *
  672. * Wait for a flash operation to complete by polling the status register.
  673. */
  674. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  675. {
  676. int ret;
  677. u32 status;
  678. while (1) {
  679. if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
  680. (ret = sf1_read(adapter, 1, 0, &status)) != 0)
  681. return ret;
  682. if (!(status & 1))
  683. return 0;
  684. if (--attempts == 0)
  685. return -EAGAIN;
  686. if (delay)
  687. msleep(delay);
  688. }
  689. }
  690. /**
  691. * t3_read_flash - read words from serial flash
  692. * @adapter: the adapter
  693. * @addr: the start address for the read
  694. * @nwords: how many 32-bit words to read
  695. * @data: where to store the read data
  696. * @byte_oriented: whether to store data as bytes or as words
  697. *
  698. * Read the specified number of 32-bit words from the serial flash.
  699. * If @byte_oriented is set the read data is stored as a byte array
  700. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  701. * natural endianess.
  702. */
  703. int t3_read_flash(struct adapter *adapter, unsigned int addr,
  704. unsigned int nwords, u32 *data, int byte_oriented)
  705. {
  706. int ret;
  707. if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
  708. return -EINVAL;
  709. addr = swab32(addr) | SF_RD_DATA_FAST;
  710. if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
  711. (ret = sf1_read(adapter, 1, 1, data)) != 0)
  712. return ret;
  713. for (; nwords; nwords--, data++) {
  714. ret = sf1_read(adapter, 4, nwords > 1, data);
  715. if (ret)
  716. return ret;
  717. if (byte_oriented)
  718. *data = htonl(*data);
  719. }
  720. return 0;
  721. }
  722. /**
  723. * t3_write_flash - write up to a page of data to the serial flash
  724. * @adapter: the adapter
  725. * @addr: the start address to write
  726. * @n: length of data to write
  727. * @data: the data to write
  728. *
  729. * Writes up to a page of data (256 bytes) to the serial flash starting
  730. * at the given address.
  731. */
  732. static int t3_write_flash(struct adapter *adapter, unsigned int addr,
  733. unsigned int n, const u8 *data)
  734. {
  735. int ret;
  736. u32 buf[64];
  737. unsigned int i, c, left, val, offset = addr & 0xff;
  738. if (addr + n > SF_SIZE || offset + n > 256)
  739. return -EINVAL;
  740. val = swab32(addr) | SF_PROG_PAGE;
  741. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  742. (ret = sf1_write(adapter, 4, 1, val)) != 0)
  743. return ret;
  744. for (left = n; left; left -= c) {
  745. c = min(left, 4U);
  746. for (val = 0, i = 0; i < c; ++i)
  747. val = (val << 8) + *data++;
  748. ret = sf1_write(adapter, c, c != left, val);
  749. if (ret)
  750. return ret;
  751. }
  752. if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
  753. return ret;
  754. /* Read the page to verify the write succeeded */
  755. ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  756. if (ret)
  757. return ret;
  758. if (memcmp(data - n, (u8 *) buf + offset, n))
  759. return -EIO;
  760. return 0;
  761. }
  762. /**
  763. * t3_get_tp_version - read the tp sram version
  764. * @adapter: the adapter
  765. * @vers: where to place the version
  766. *
  767. * Reads the protocol sram version from sram.
  768. */
  769. int t3_get_tp_version(struct adapter *adapter, u32 *vers)
  770. {
  771. int ret;
  772. /* Get version loaded in SRAM */
  773. t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
  774. ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
  775. 1, 1, 5, 1);
  776. if (ret)
  777. return ret;
  778. *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
  779. return 0;
  780. }
  781. /**
  782. * t3_check_tpsram_version - read the tp sram version
  783. * @adapter: the adapter
  784. * @must_load: set to 1 if loading a new microcode image is required
  785. *
  786. * Reads the protocol sram version from flash.
  787. */
  788. int t3_check_tpsram_version(struct adapter *adapter, int *must_load)
  789. {
  790. int ret;
  791. u32 vers;
  792. unsigned int major, minor;
  793. if (adapter->params.rev == T3_REV_A)
  794. return 0;
  795. *must_load = 1;
  796. ret = t3_get_tp_version(adapter, &vers);
  797. if (ret)
  798. return ret;
  799. major = G_TP_VERSION_MAJOR(vers);
  800. minor = G_TP_VERSION_MINOR(vers);
  801. if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
  802. return 0;
  803. if (major != TP_VERSION_MAJOR)
  804. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  805. "driver needs version %d.%d\n", major, minor,
  806. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  807. else {
  808. *must_load = 0;
  809. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  810. "driver compiled for version %d.%d\n", major, minor,
  811. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  812. }
  813. return -EINVAL;
  814. }
  815. /**
  816. * t3_check_tpsram - check if provided protocol SRAM
  817. * is compatible with this driver
  818. * @adapter: the adapter
  819. * @tp_sram: the firmware image to write
  820. * @size: image size
  821. *
  822. * Checks if an adapter's tp sram is compatible with the driver.
  823. * Returns 0 if the versions are compatible, a negative error otherwise.
  824. */
  825. int t3_check_tpsram(struct adapter *adapter, u8 *tp_sram, unsigned int size)
  826. {
  827. u32 csum;
  828. unsigned int i;
  829. const u32 *p = (const u32 *)tp_sram;
  830. /* Verify checksum */
  831. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  832. csum += ntohl(p[i]);
  833. if (csum != 0xffffffff) {
  834. CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
  835. csum);
  836. return -EINVAL;
  837. }
  838. return 0;
  839. }
  840. enum fw_version_type {
  841. FW_VERSION_N3,
  842. FW_VERSION_T3
  843. };
  844. /**
  845. * t3_get_fw_version - read the firmware version
  846. * @adapter: the adapter
  847. * @vers: where to place the version
  848. *
  849. * Reads the FW version from flash.
  850. */
  851. int t3_get_fw_version(struct adapter *adapter, u32 *vers)
  852. {
  853. return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
  854. }
  855. /**
  856. * t3_check_fw_version - check if the FW is compatible with this driver
  857. * @adapter: the adapter
  858. * @must_load: set to 1 if loading a new FW image is required
  859. * Checks if an adapter's FW is compatible with the driver. Returns 0
  860. * if the versions are compatible, a negative error otherwise.
  861. */
  862. int t3_check_fw_version(struct adapter *adapter, int *must_load)
  863. {
  864. int ret;
  865. u32 vers;
  866. unsigned int type, major, minor;
  867. *must_load = 1;
  868. ret = t3_get_fw_version(adapter, &vers);
  869. if (ret)
  870. return ret;
  871. type = G_FW_VERSION_TYPE(vers);
  872. major = G_FW_VERSION_MAJOR(vers);
  873. minor = G_FW_VERSION_MINOR(vers);
  874. if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
  875. minor == FW_VERSION_MINOR)
  876. return 0;
  877. if (major != FW_VERSION_MAJOR)
  878. CH_ERR(adapter, "found wrong FW version(%u.%u), "
  879. "driver needs version %u.%u\n", major, minor,
  880. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  881. else if (minor < FW_VERSION_MINOR) {
  882. *must_load = 0;
  883. CH_WARN(adapter, "found old FW minor version(%u.%u), "
  884. "driver compiled for version %u.%u\n", major, minor,
  885. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  886. } else {
  887. CH_WARN(adapter, "found newer FW version(%u.%u), "
  888. "driver compiled for version %u.%u\n", major, minor,
  889. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  890. return 0;
  891. }
  892. return -EINVAL;
  893. }
  894. /**
  895. * t3_flash_erase_sectors - erase a range of flash sectors
  896. * @adapter: the adapter
  897. * @start: the first sector to erase
  898. * @end: the last sector to erase
  899. *
  900. * Erases the sectors in the given range.
  901. */
  902. static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
  903. {
  904. while (start <= end) {
  905. int ret;
  906. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  907. (ret = sf1_write(adapter, 4, 0,
  908. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  909. (ret = flash_wait_op(adapter, 5, 500)) != 0)
  910. return ret;
  911. start++;
  912. }
  913. return 0;
  914. }
  915. /*
  916. * t3_load_fw - download firmware
  917. * @adapter: the adapter
  918. * @fw_data: the firmware image to write
  919. * @size: image size
  920. *
  921. * Write the supplied firmware image to the card's serial flash.
  922. * The FW image has the following sections: @size - 8 bytes of code and
  923. * data, followed by 4 bytes of FW version, followed by the 32-bit
  924. * 1's complement checksum of the whole image.
  925. */
  926. int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
  927. {
  928. u32 csum;
  929. unsigned int i;
  930. const u32 *p = (const u32 *)fw_data;
  931. int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
  932. if ((size & 3) || size < FW_MIN_SIZE)
  933. return -EINVAL;
  934. if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
  935. return -EFBIG;
  936. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  937. csum += ntohl(p[i]);
  938. if (csum != 0xffffffff) {
  939. CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
  940. csum);
  941. return -EINVAL;
  942. }
  943. ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
  944. if (ret)
  945. goto out;
  946. size -= 8; /* trim off version and checksum */
  947. for (addr = FW_FLASH_BOOT_ADDR; size;) {
  948. unsigned int chunk_size = min(size, 256U);
  949. ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
  950. if (ret)
  951. goto out;
  952. addr += chunk_size;
  953. fw_data += chunk_size;
  954. size -= chunk_size;
  955. }
  956. ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
  957. out:
  958. if (ret)
  959. CH_ERR(adapter, "firmware download failed, error %d\n", ret);
  960. return ret;
  961. }
  962. #define CIM_CTL_BASE 0x2000
  963. /**
  964. * t3_cim_ctl_blk_read - read a block from CIM control region
  965. *
  966. * @adap: the adapter
  967. * @addr: the start address within the CIM control region
  968. * @n: number of words to read
  969. * @valp: where to store the result
  970. *
  971. * Reads a block of 4-byte words from the CIM control region.
  972. */
  973. int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
  974. unsigned int n, unsigned int *valp)
  975. {
  976. int ret = 0;
  977. if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
  978. return -EBUSY;
  979. for ( ; !ret && n--; addr += 4) {
  980. t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
  981. ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
  982. 0, 5, 2);
  983. if (!ret)
  984. *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
  985. }
  986. return ret;
  987. }
  988. /**
  989. * t3_link_changed - handle interface link changes
  990. * @adapter: the adapter
  991. * @port_id: the port index that changed link state
  992. *
  993. * Called when a port's link settings change to propagate the new values
  994. * to the associated PHY and MAC. After performing the common tasks it
  995. * invokes an OS-specific handler.
  996. */
  997. void t3_link_changed(struct adapter *adapter, int port_id)
  998. {
  999. int link_ok, speed, duplex, fc;
  1000. struct port_info *pi = adap2pinfo(adapter, port_id);
  1001. struct cphy *phy = &pi->phy;
  1002. struct cmac *mac = &pi->mac;
  1003. struct link_config *lc = &pi->link_config;
  1004. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1005. if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
  1006. uses_xaui(adapter)) {
  1007. if (link_ok)
  1008. t3b_pcs_reset(mac);
  1009. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1010. link_ok ? F_TXACTENABLE | F_RXEN : 0);
  1011. }
  1012. lc->link_ok = link_ok;
  1013. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1014. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1015. if (lc->requested_fc & PAUSE_AUTONEG)
  1016. fc &= lc->requested_fc;
  1017. else
  1018. fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1019. if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
  1020. /* Set MAC speed, duplex, and flow control to match PHY. */
  1021. t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
  1022. lc->fc = fc;
  1023. }
  1024. t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
  1025. }
  1026. /**
  1027. * t3_link_start - apply link configuration to MAC/PHY
  1028. * @phy: the PHY to setup
  1029. * @mac: the MAC to setup
  1030. * @lc: the requested link configuration
  1031. *
  1032. * Set up a port's MAC and PHY according to a desired link configuration.
  1033. * - If the PHY can auto-negotiate first decide what to advertise, then
  1034. * enable/disable auto-negotiation as desired, and reset.
  1035. * - If the PHY does not auto-negotiate just reset it.
  1036. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1037. * otherwise do it later based on the outcome of auto-negotiation.
  1038. */
  1039. int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
  1040. {
  1041. unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1042. lc->link_ok = 0;
  1043. if (lc->supported & SUPPORTED_Autoneg) {
  1044. lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
  1045. if (fc) {
  1046. lc->advertising |= ADVERTISED_Asym_Pause;
  1047. if (fc & PAUSE_RX)
  1048. lc->advertising |= ADVERTISED_Pause;
  1049. }
  1050. phy->ops->advertise(phy, lc->advertising);
  1051. if (lc->autoneg == AUTONEG_DISABLE) {
  1052. lc->speed = lc->requested_speed;
  1053. lc->duplex = lc->requested_duplex;
  1054. lc->fc = (unsigned char)fc;
  1055. t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
  1056. fc);
  1057. /* Also disables autoneg */
  1058. phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
  1059. phy->ops->reset(phy, 0);
  1060. } else
  1061. phy->ops->autoneg_enable(phy);
  1062. } else {
  1063. t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
  1064. lc->fc = (unsigned char)fc;
  1065. phy->ops->reset(phy, 0);
  1066. }
  1067. return 0;
  1068. }
  1069. /**
  1070. * t3_set_vlan_accel - control HW VLAN extraction
  1071. * @adapter: the adapter
  1072. * @ports: bitmap of adapter ports to operate on
  1073. * @on: enable (1) or disable (0) HW VLAN extraction
  1074. *
  1075. * Enables or disables HW extraction of VLAN tags for the given port.
  1076. */
  1077. void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
  1078. {
  1079. t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
  1080. ports << S_VLANEXTRACTIONENABLE,
  1081. on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
  1082. }
  1083. struct intr_info {
  1084. unsigned int mask; /* bits to check in interrupt status */
  1085. const char *msg; /* message to print or NULL */
  1086. short stat_idx; /* stat counter to increment or -1 */
  1087. unsigned short fatal:1; /* whether the condition reported is fatal */
  1088. };
  1089. /**
  1090. * t3_handle_intr_status - table driven interrupt handler
  1091. * @adapter: the adapter that generated the interrupt
  1092. * @reg: the interrupt status register to process
  1093. * @mask: a mask to apply to the interrupt status
  1094. * @acts: table of interrupt actions
  1095. * @stats: statistics counters tracking interrupt occurences
  1096. *
  1097. * A table driven interrupt handler that applies a set of masks to an
  1098. * interrupt status word and performs the corresponding actions if the
  1099. * interrupts described by the mask have occured. The actions include
  1100. * optionally printing a warning or alert message, and optionally
  1101. * incrementing a stat counter. The table is terminated by an entry
  1102. * specifying mask 0. Returns the number of fatal interrupt conditions.
  1103. */
  1104. static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1105. unsigned int mask,
  1106. const struct intr_info *acts,
  1107. unsigned long *stats)
  1108. {
  1109. int fatal = 0;
  1110. unsigned int status = t3_read_reg(adapter, reg) & mask;
  1111. for (; acts->mask; ++acts) {
  1112. if (!(status & acts->mask))
  1113. continue;
  1114. if (acts->fatal) {
  1115. fatal++;
  1116. CH_ALERT(adapter, "%s (0x%x)\n",
  1117. acts->msg, status & acts->mask);
  1118. } else if (acts->msg)
  1119. CH_WARN(adapter, "%s (0x%x)\n",
  1120. acts->msg, status & acts->mask);
  1121. if (acts->stat_idx >= 0)
  1122. stats[acts->stat_idx]++;
  1123. }
  1124. if (status) /* clear processed interrupts */
  1125. t3_write_reg(adapter, reg, status);
  1126. return fatal;
  1127. }
  1128. #define SGE_INTR_MASK (F_RSPQDISABLED)
  1129. #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
  1130. F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
  1131. F_NFASRCHFAIL)
  1132. #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
  1133. #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1134. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
  1135. F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
  1136. #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
  1137. F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
  1138. F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
  1139. F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
  1140. V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
  1141. V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
  1142. #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
  1143. F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
  1144. /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
  1145. V_BISTERR(M_BISTERR) | F_PEXERR)
  1146. #define ULPRX_INTR_MASK F_PARERR
  1147. #define ULPTX_INTR_MASK 0
  1148. #define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \
  1149. F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
  1150. F_ZERO_SWITCH_ERROR)
  1151. #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
  1152. F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
  1153. F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
  1154. F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT)
  1155. #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
  1156. V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
  1157. V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
  1158. #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
  1159. V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
  1160. V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
  1161. #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
  1162. V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
  1163. V_RXTPPARERRENB(M_RXTPPARERRENB) | \
  1164. V_MCAPARERRENB(M_MCAPARERRENB))
  1165. #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
  1166. F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
  1167. F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
  1168. F_MPS0 | F_CPL_SWITCH)
  1169. /*
  1170. * Interrupt handler for the PCIX1 module.
  1171. */
  1172. static void pci_intr_handler(struct adapter *adapter)
  1173. {
  1174. static const struct intr_info pcix1_intr_info[] = {
  1175. {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
  1176. {F_SIGTARABT, "PCI signaled target abort", -1, 1},
  1177. {F_RCVTARABT, "PCI received target abort", -1, 1},
  1178. {F_RCVMSTABT, "PCI received master abort", -1, 1},
  1179. {F_SIGSYSERR, "PCI signaled system error", -1, 1},
  1180. {F_DETPARERR, "PCI detected parity error", -1, 1},
  1181. {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
  1182. {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
  1183. {F_RCVSPLCMPERR, "PCI received split completion error", -1,
  1184. 1},
  1185. {F_DETCORECCERR, "PCI correctable ECC error",
  1186. STAT_PCI_CORR_ECC, 0},
  1187. {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
  1188. {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1189. {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
  1190. 1},
  1191. {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
  1192. 1},
  1193. {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
  1194. 1},
  1195. {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
  1196. "error", -1, 1},
  1197. {0}
  1198. };
  1199. if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
  1200. pcix1_intr_info, adapter->irq_stats))
  1201. t3_fatal_err(adapter);
  1202. }
  1203. /*
  1204. * Interrupt handler for the PCIE module.
  1205. */
  1206. static void pcie_intr_handler(struct adapter *adapter)
  1207. {
  1208. static const struct intr_info pcie_intr_info[] = {
  1209. {F_PEXERR, "PCI PEX error", -1, 1},
  1210. {F_UNXSPLCPLERRR,
  1211. "PCI unexpected split completion DMA read error", -1, 1},
  1212. {F_UNXSPLCPLERRC,
  1213. "PCI unexpected split completion DMA command error", -1, 1},
  1214. {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1215. {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
  1216. {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
  1217. {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
  1218. {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
  1219. "PCI MSI-X table/PBA parity error", -1, 1},
  1220. {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
  1221. {0}
  1222. };
  1223. if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
  1224. CH_ALERT(adapter, "PEX error code 0x%x\n",
  1225. t3_read_reg(adapter, A_PCIE_PEX_ERR));
  1226. if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
  1227. pcie_intr_info, adapter->irq_stats))
  1228. t3_fatal_err(adapter);
  1229. }
  1230. /*
  1231. * TP interrupt handler.
  1232. */
  1233. static void tp_intr_handler(struct adapter *adapter)
  1234. {
  1235. static const struct intr_info tp_intr_info[] = {
  1236. {0xffffff, "TP parity error", -1, 1},
  1237. {0x1000000, "TP out of Rx pages", -1, 1},
  1238. {0x2000000, "TP out of Tx pages", -1, 1},
  1239. {0}
  1240. };
  1241. if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
  1242. tp_intr_info, NULL))
  1243. t3_fatal_err(adapter);
  1244. }
  1245. /*
  1246. * CIM interrupt handler.
  1247. */
  1248. static void cim_intr_handler(struct adapter *adapter)
  1249. {
  1250. static const struct intr_info cim_intr_info[] = {
  1251. {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
  1252. {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
  1253. {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
  1254. {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
  1255. {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
  1256. {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
  1257. {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
  1258. {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
  1259. {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
  1260. {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
  1261. {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
  1262. {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
  1263. {0}
  1264. };
  1265. if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
  1266. cim_intr_info, NULL))
  1267. t3_fatal_err(adapter);
  1268. }
  1269. /*
  1270. * ULP RX interrupt handler.
  1271. */
  1272. static void ulprx_intr_handler(struct adapter *adapter)
  1273. {
  1274. static const struct intr_info ulprx_intr_info[] = {
  1275. {F_PARERR, "ULP RX parity error", -1, 1},
  1276. {0}
  1277. };
  1278. if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
  1279. ulprx_intr_info, NULL))
  1280. t3_fatal_err(adapter);
  1281. }
  1282. /*
  1283. * ULP TX interrupt handler.
  1284. */
  1285. static void ulptx_intr_handler(struct adapter *adapter)
  1286. {
  1287. static const struct intr_info ulptx_intr_info[] = {
  1288. {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
  1289. STAT_ULP_CH0_PBL_OOB, 0},
  1290. {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
  1291. STAT_ULP_CH1_PBL_OOB, 0},
  1292. {0}
  1293. };
  1294. if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
  1295. ulptx_intr_info, adapter->irq_stats))
  1296. t3_fatal_err(adapter);
  1297. }
  1298. #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
  1299. F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
  1300. F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
  1301. F_ICSPI1_TX_FRAMING_ERROR)
  1302. #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
  1303. F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
  1304. F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1305. F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
  1306. /*
  1307. * PM TX interrupt handler.
  1308. */
  1309. static void pmtx_intr_handler(struct adapter *adapter)
  1310. {
  1311. static const struct intr_info pmtx_intr_info[] = {
  1312. {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
  1313. {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
  1314. {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
  1315. {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
  1316. "PMTX ispi parity error", -1, 1},
  1317. {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
  1318. "PMTX ospi parity error", -1, 1},
  1319. {0}
  1320. };
  1321. if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
  1322. pmtx_intr_info, NULL))
  1323. t3_fatal_err(adapter);
  1324. }
  1325. #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
  1326. F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
  1327. F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
  1328. F_IESPI1_TX_FRAMING_ERROR)
  1329. #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
  1330. F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
  1331. F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1332. F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
  1333. /*
  1334. * PM RX interrupt handler.
  1335. */
  1336. static void pmrx_intr_handler(struct adapter *adapter)
  1337. {
  1338. static const struct intr_info pmrx_intr_info[] = {
  1339. {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
  1340. {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
  1341. {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
  1342. {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
  1343. "PMRX ispi parity error", -1, 1},
  1344. {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
  1345. "PMRX ospi parity error", -1, 1},
  1346. {0}
  1347. };
  1348. if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
  1349. pmrx_intr_info, NULL))
  1350. t3_fatal_err(adapter);
  1351. }
  1352. /*
  1353. * CPL switch interrupt handler.
  1354. */
  1355. static void cplsw_intr_handler(struct adapter *adapter)
  1356. {
  1357. static const struct intr_info cplsw_intr_info[] = {
  1358. /* { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, */
  1359. {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
  1360. {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
  1361. {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
  1362. {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
  1363. {0}
  1364. };
  1365. if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
  1366. cplsw_intr_info, NULL))
  1367. t3_fatal_err(adapter);
  1368. }
  1369. /*
  1370. * MPS interrupt handler.
  1371. */
  1372. static void mps_intr_handler(struct adapter *adapter)
  1373. {
  1374. static const struct intr_info mps_intr_info[] = {
  1375. {0x1ff, "MPS parity error", -1, 1},
  1376. {0}
  1377. };
  1378. if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
  1379. mps_intr_info, NULL))
  1380. t3_fatal_err(adapter);
  1381. }
  1382. #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
  1383. /*
  1384. * MC7 interrupt handler.
  1385. */
  1386. static void mc7_intr_handler(struct mc7 *mc7)
  1387. {
  1388. struct adapter *adapter = mc7->adapter;
  1389. u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
  1390. if (cause & F_CE) {
  1391. mc7->stats.corr_err++;
  1392. CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
  1393. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1394. t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
  1395. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
  1396. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
  1397. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
  1398. }
  1399. if (cause & F_UE) {
  1400. mc7->stats.uncorr_err++;
  1401. CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
  1402. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1403. t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
  1404. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
  1405. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
  1406. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
  1407. }
  1408. if (G_PE(cause)) {
  1409. mc7->stats.parity_err++;
  1410. CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
  1411. mc7->name, G_PE(cause));
  1412. }
  1413. if (cause & F_AE) {
  1414. u32 addr = 0;
  1415. if (adapter->params.rev > 0)
  1416. addr = t3_read_reg(adapter,
  1417. mc7->offset + A_MC7_ERR_ADDR);
  1418. mc7->stats.addr_err++;
  1419. CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
  1420. mc7->name, addr);
  1421. }
  1422. if (cause & MC7_INTR_FATAL)
  1423. t3_fatal_err(adapter);
  1424. t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
  1425. }
  1426. #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1427. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
  1428. /*
  1429. * XGMAC interrupt handler.
  1430. */
  1431. static int mac_intr_handler(struct adapter *adap, unsigned int idx)
  1432. {
  1433. struct cmac *mac = &adap2pinfo(adap, idx)->mac;
  1434. u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
  1435. if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
  1436. mac->stats.tx_fifo_parity_err++;
  1437. CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
  1438. }
  1439. if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
  1440. mac->stats.rx_fifo_parity_err++;
  1441. CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
  1442. }
  1443. if (cause & F_TXFIFO_UNDERRUN)
  1444. mac->stats.tx_fifo_urun++;
  1445. if (cause & F_RXFIFO_OVERFLOW)
  1446. mac->stats.rx_fifo_ovfl++;
  1447. if (cause & V_SERDES_LOS(M_SERDES_LOS))
  1448. mac->stats.serdes_signal_loss++;
  1449. if (cause & F_XAUIPCSCTCERR)
  1450. mac->stats.xaui_pcs_ctc_err++;
  1451. if (cause & F_XAUIPCSALIGNCHANGE)
  1452. mac->stats.xaui_pcs_align_change++;
  1453. t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
  1454. if (cause & XGM_INTR_FATAL)
  1455. t3_fatal_err(adap);
  1456. return cause != 0;
  1457. }
  1458. /*
  1459. * Interrupt handler for PHY events.
  1460. */
  1461. int t3_phy_intr_handler(struct adapter *adapter)
  1462. {
  1463. u32 mask, gpi = adapter_info(adapter)->gpio_intr;
  1464. u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
  1465. for_each_port(adapter, i) {
  1466. struct port_info *p = adap2pinfo(adapter, i);
  1467. mask = gpi - (gpi & (gpi - 1));
  1468. gpi -= mask;
  1469. if (!(p->port_type->caps & SUPPORTED_IRQ))
  1470. continue;
  1471. if (cause & mask) {
  1472. int phy_cause = p->phy.ops->intr_handler(&p->phy);
  1473. if (phy_cause & cphy_cause_link_change)
  1474. t3_link_changed(adapter, i);
  1475. if (phy_cause & cphy_cause_fifo_error)
  1476. p->phy.fifo_errors++;
  1477. }
  1478. }
  1479. t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
  1480. return 0;
  1481. }
  1482. /*
  1483. * T3 slow path (non-data) interrupt handler.
  1484. */
  1485. int t3_slow_intr_handler(struct adapter *adapter)
  1486. {
  1487. u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
  1488. cause &= adapter->slow_intr_mask;
  1489. if (!cause)
  1490. return 0;
  1491. if (cause & F_PCIM0) {
  1492. if (is_pcie(adapter))
  1493. pcie_intr_handler(adapter);
  1494. else
  1495. pci_intr_handler(adapter);
  1496. }
  1497. if (cause & F_SGE3)
  1498. t3_sge_err_intr_handler(adapter);
  1499. if (cause & F_MC7_PMRX)
  1500. mc7_intr_handler(&adapter->pmrx);
  1501. if (cause & F_MC7_PMTX)
  1502. mc7_intr_handler(&adapter->pmtx);
  1503. if (cause & F_MC7_CM)
  1504. mc7_intr_handler(&adapter->cm);
  1505. if (cause & F_CIM)
  1506. cim_intr_handler(adapter);
  1507. if (cause & F_TP1)
  1508. tp_intr_handler(adapter);
  1509. if (cause & F_ULP2_RX)
  1510. ulprx_intr_handler(adapter);
  1511. if (cause & F_ULP2_TX)
  1512. ulptx_intr_handler(adapter);
  1513. if (cause & F_PM1_RX)
  1514. pmrx_intr_handler(adapter);
  1515. if (cause & F_PM1_TX)
  1516. pmtx_intr_handler(adapter);
  1517. if (cause & F_CPL_SWITCH)
  1518. cplsw_intr_handler(adapter);
  1519. if (cause & F_MPS0)
  1520. mps_intr_handler(adapter);
  1521. if (cause & F_MC5A)
  1522. t3_mc5_intr_handler(&adapter->mc5);
  1523. if (cause & F_XGMAC0_0)
  1524. mac_intr_handler(adapter, 0);
  1525. if (cause & F_XGMAC0_1)
  1526. mac_intr_handler(adapter, 1);
  1527. if (cause & F_T3DBG)
  1528. t3_os_ext_intr_handler(adapter);
  1529. /* Clear the interrupts just processed. */
  1530. t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
  1531. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1532. return 1;
  1533. }
  1534. /**
  1535. * t3_intr_enable - enable interrupts
  1536. * @adapter: the adapter whose interrupts should be enabled
  1537. *
  1538. * Enable interrupts by setting the interrupt enable registers of the
  1539. * various HW modules and then enabling the top-level interrupt
  1540. * concentrator.
  1541. */
  1542. void t3_intr_enable(struct adapter *adapter)
  1543. {
  1544. static const struct addr_val_pair intr_en_avp[] = {
  1545. {A_SG_INT_ENABLE, SGE_INTR_MASK},
  1546. {A_MC7_INT_ENABLE, MC7_INTR_MASK},
  1547. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1548. MC7_INTR_MASK},
  1549. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1550. MC7_INTR_MASK},
  1551. {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
  1552. {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
  1553. {A_TP_INT_ENABLE, 0x3bfffff},
  1554. {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
  1555. {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
  1556. {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
  1557. {A_MPS_INT_ENABLE, MPS_INTR_MASK},
  1558. };
  1559. adapter->slow_intr_mask = PL_INTR_MASK;
  1560. t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
  1561. if (adapter->params.rev > 0) {
  1562. t3_write_reg(adapter, A_CPL_INTR_ENABLE,
  1563. CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
  1564. t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
  1565. ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
  1566. F_PBL_BOUND_ERR_CH1);
  1567. } else {
  1568. t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
  1569. t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
  1570. }
  1571. t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW,
  1572. adapter_info(adapter)->gpio_intr);
  1573. t3_write_reg(adapter, A_T3DBG_INT_ENABLE,
  1574. adapter_info(adapter)->gpio_intr);
  1575. if (is_pcie(adapter))
  1576. t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
  1577. else
  1578. t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
  1579. t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
  1580. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1581. }
  1582. /**
  1583. * t3_intr_disable - disable a card's interrupts
  1584. * @adapter: the adapter whose interrupts should be disabled
  1585. *
  1586. * Disable interrupts. We only disable the top-level interrupt
  1587. * concentrator and the SGE data interrupts.
  1588. */
  1589. void t3_intr_disable(struct adapter *adapter)
  1590. {
  1591. t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
  1592. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1593. adapter->slow_intr_mask = 0;
  1594. }
  1595. /**
  1596. * t3_intr_clear - clear all interrupts
  1597. * @adapter: the adapter whose interrupts should be cleared
  1598. *
  1599. * Clears all interrupts.
  1600. */
  1601. void t3_intr_clear(struct adapter *adapter)
  1602. {
  1603. static const unsigned int cause_reg_addr[] = {
  1604. A_SG_INT_CAUSE,
  1605. A_SG_RSPQ_FL_STATUS,
  1606. A_PCIX_INT_CAUSE,
  1607. A_MC7_INT_CAUSE,
  1608. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1609. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1610. A_CIM_HOST_INT_CAUSE,
  1611. A_TP_INT_CAUSE,
  1612. A_MC5_DB_INT_CAUSE,
  1613. A_ULPRX_INT_CAUSE,
  1614. A_ULPTX_INT_CAUSE,
  1615. A_CPL_INTR_CAUSE,
  1616. A_PM1_TX_INT_CAUSE,
  1617. A_PM1_RX_INT_CAUSE,
  1618. A_MPS_INT_CAUSE,
  1619. A_T3DBG_INT_CAUSE,
  1620. };
  1621. unsigned int i;
  1622. /* Clear PHY and MAC interrupts for each port. */
  1623. for_each_port(adapter, i)
  1624. t3_port_intr_clear(adapter, i);
  1625. for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
  1626. t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
  1627. if (is_pcie(adapter))
  1628. t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
  1629. t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
  1630. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1631. }
  1632. /**
  1633. * t3_port_intr_enable - enable port-specific interrupts
  1634. * @adapter: associated adapter
  1635. * @idx: index of port whose interrupts should be enabled
  1636. *
  1637. * Enable port-specific (i.e., MAC and PHY) interrupts for the given
  1638. * adapter port.
  1639. */
  1640. void t3_port_intr_enable(struct adapter *adapter, int idx)
  1641. {
  1642. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1643. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
  1644. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1645. phy->ops->intr_enable(phy);
  1646. }
  1647. /**
  1648. * t3_port_intr_disable - disable port-specific interrupts
  1649. * @adapter: associated adapter
  1650. * @idx: index of port whose interrupts should be disabled
  1651. *
  1652. * Disable port-specific (i.e., MAC and PHY) interrupts for the given
  1653. * adapter port.
  1654. */
  1655. void t3_port_intr_disable(struct adapter *adapter, int idx)
  1656. {
  1657. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1658. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
  1659. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1660. phy->ops->intr_disable(phy);
  1661. }
  1662. /**
  1663. * t3_port_intr_clear - clear port-specific interrupts
  1664. * @adapter: associated adapter
  1665. * @idx: index of port whose interrupts to clear
  1666. *
  1667. * Clear port-specific (i.e., MAC and PHY) interrupts for the given
  1668. * adapter port.
  1669. */
  1670. void t3_port_intr_clear(struct adapter *adapter, int idx)
  1671. {
  1672. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1673. t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
  1674. t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
  1675. phy->ops->intr_clear(phy);
  1676. }
  1677. #define SG_CONTEXT_CMD_ATTEMPTS 100
  1678. /**
  1679. * t3_sge_write_context - write an SGE context
  1680. * @adapter: the adapter
  1681. * @id: the context id
  1682. * @type: the context type
  1683. *
  1684. * Program an SGE context with the values already loaded in the
  1685. * CONTEXT_DATA? registers.
  1686. */
  1687. static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
  1688. unsigned int type)
  1689. {
  1690. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1691. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1692. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
  1693. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1694. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1695. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1696. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1697. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1698. }
  1699. /**
  1700. * t3_sge_init_ecntxt - initialize an SGE egress context
  1701. * @adapter: the adapter to configure
  1702. * @id: the context id
  1703. * @gts_enable: whether to enable GTS for the context
  1704. * @type: the egress context type
  1705. * @respq: associated response queue
  1706. * @base_addr: base address of queue
  1707. * @size: number of queue entries
  1708. * @token: uP token
  1709. * @gen: initial generation value for the context
  1710. * @cidx: consumer pointer
  1711. *
  1712. * Initialize an SGE egress context and make it ready for use. If the
  1713. * platform allows concurrent context operations, the caller is
  1714. * responsible for appropriate locking.
  1715. */
  1716. int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
  1717. enum sge_context_type type, int respq, u64 base_addr,
  1718. unsigned int size, unsigned int token, int gen,
  1719. unsigned int cidx)
  1720. {
  1721. unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
  1722. if (base_addr & 0xfff) /* must be 4K aligned */
  1723. return -EINVAL;
  1724. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1725. return -EBUSY;
  1726. base_addr >>= 12;
  1727. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
  1728. V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
  1729. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
  1730. V_EC_BASE_LO(base_addr & 0xffff));
  1731. base_addr >>= 16;
  1732. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
  1733. base_addr >>= 32;
  1734. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1735. V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
  1736. V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
  1737. F_EC_VALID);
  1738. return t3_sge_write_context(adapter, id, F_EGRESS);
  1739. }
  1740. /**
  1741. * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
  1742. * @adapter: the adapter to configure
  1743. * @id: the context id
  1744. * @gts_enable: whether to enable GTS for the context
  1745. * @base_addr: base address of queue
  1746. * @size: number of queue entries
  1747. * @bsize: size of each buffer for this queue
  1748. * @cong_thres: threshold to signal congestion to upstream producers
  1749. * @gen: initial generation value for the context
  1750. * @cidx: consumer pointer
  1751. *
  1752. * Initialize an SGE free list context and make it ready for use. The
  1753. * caller is responsible for ensuring only one context operation occurs
  1754. * at a time.
  1755. */
  1756. int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
  1757. int gts_enable, u64 base_addr, unsigned int size,
  1758. unsigned int bsize, unsigned int cong_thres, int gen,
  1759. unsigned int cidx)
  1760. {
  1761. if (base_addr & 0xfff) /* must be 4K aligned */
  1762. return -EINVAL;
  1763. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1764. return -EBUSY;
  1765. base_addr >>= 12;
  1766. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
  1767. base_addr >>= 32;
  1768. t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
  1769. V_FL_BASE_HI((u32) base_addr) |
  1770. V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
  1771. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
  1772. V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
  1773. V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
  1774. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1775. V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
  1776. V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
  1777. return t3_sge_write_context(adapter, id, F_FREELIST);
  1778. }
  1779. /**
  1780. * t3_sge_init_rspcntxt - initialize an SGE response queue context
  1781. * @adapter: the adapter to configure
  1782. * @id: the context id
  1783. * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
  1784. * @base_addr: base address of queue
  1785. * @size: number of queue entries
  1786. * @fl_thres: threshold for selecting the normal or jumbo free list
  1787. * @gen: initial generation value for the context
  1788. * @cidx: consumer pointer
  1789. *
  1790. * Initialize an SGE response queue context and make it ready for use.
  1791. * The caller is responsible for ensuring only one context operation
  1792. * occurs at a time.
  1793. */
  1794. int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
  1795. int irq_vec_idx, u64 base_addr, unsigned int size,
  1796. unsigned int fl_thres, int gen, unsigned int cidx)
  1797. {
  1798. unsigned int intr = 0;
  1799. if (base_addr & 0xfff) /* must be 4K aligned */
  1800. return -EINVAL;
  1801. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1802. return -EBUSY;
  1803. base_addr >>= 12;
  1804. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
  1805. V_CQ_INDEX(cidx));
  1806. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1807. base_addr >>= 32;
  1808. if (irq_vec_idx >= 0)
  1809. intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
  1810. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1811. V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
  1812. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
  1813. return t3_sge_write_context(adapter, id, F_RESPONSEQ);
  1814. }
  1815. /**
  1816. * t3_sge_init_cqcntxt - initialize an SGE completion queue context
  1817. * @adapter: the adapter to configure
  1818. * @id: the context id
  1819. * @base_addr: base address of queue
  1820. * @size: number of queue entries
  1821. * @rspq: response queue for async notifications
  1822. * @ovfl_mode: CQ overflow mode
  1823. * @credits: completion queue credits
  1824. * @credit_thres: the credit threshold
  1825. *
  1826. * Initialize an SGE completion queue context and make it ready for use.
  1827. * The caller is responsible for ensuring only one context operation
  1828. * occurs at a time.
  1829. */
  1830. int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
  1831. unsigned int size, int rspq, int ovfl_mode,
  1832. unsigned int credits, unsigned int credit_thres)
  1833. {
  1834. if (base_addr & 0xfff) /* must be 4K aligned */
  1835. return -EINVAL;
  1836. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1837. return -EBUSY;
  1838. base_addr >>= 12;
  1839. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
  1840. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1841. base_addr >>= 32;
  1842. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1843. V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
  1844. V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
  1845. V_CQ_ERR(ovfl_mode));
  1846. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
  1847. V_CQ_CREDIT_THRES(credit_thres));
  1848. return t3_sge_write_context(adapter, id, F_CQ);
  1849. }
  1850. /**
  1851. * t3_sge_enable_ecntxt - enable/disable an SGE egress context
  1852. * @adapter: the adapter
  1853. * @id: the egress context id
  1854. * @enable: enable (1) or disable (0) the context
  1855. *
  1856. * Enable or disable an SGE egress context. The caller is responsible for
  1857. * ensuring only one context operation occurs at a time.
  1858. */
  1859. int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
  1860. {
  1861. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1862. return -EBUSY;
  1863. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1864. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1865. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1866. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
  1867. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
  1868. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1869. V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
  1870. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1871. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1872. }
  1873. /**
  1874. * t3_sge_disable_fl - disable an SGE free-buffer list
  1875. * @adapter: the adapter
  1876. * @id: the free list context id
  1877. *
  1878. * Disable an SGE free-buffer list. The caller is responsible for
  1879. * ensuring only one context operation occurs at a time.
  1880. */
  1881. int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
  1882. {
  1883. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1884. return -EBUSY;
  1885. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1886. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1887. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
  1888. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1889. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
  1890. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1891. V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
  1892. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1893. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1894. }
  1895. /**
  1896. * t3_sge_disable_rspcntxt - disable an SGE response queue
  1897. * @adapter: the adapter
  1898. * @id: the response queue context id
  1899. *
  1900. * Disable an SGE response queue. The caller is responsible for
  1901. * ensuring only one context operation occurs at a time.
  1902. */
  1903. int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
  1904. {
  1905. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1906. return -EBUSY;
  1907. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  1908. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1909. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1910. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1911. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  1912. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1913. V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
  1914. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1915. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1916. }
  1917. /**
  1918. * t3_sge_disable_cqcntxt - disable an SGE completion queue
  1919. * @adapter: the adapter
  1920. * @id: the completion queue context id
  1921. *
  1922. * Disable an SGE completion queue. The caller is responsible for
  1923. * ensuring only one context operation occurs at a time.
  1924. */
  1925. int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
  1926. {
  1927. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1928. return -EBUSY;
  1929. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  1930. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1931. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1932. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1933. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  1934. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1935. V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
  1936. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1937. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1938. }
  1939. /**
  1940. * t3_sge_cqcntxt_op - perform an operation on a completion queue context
  1941. * @adapter: the adapter
  1942. * @id: the context id
  1943. * @op: the operation to perform
  1944. *
  1945. * Perform the selected operation on an SGE completion queue context.
  1946. * The caller is responsible for ensuring only one context operation
  1947. * occurs at a time.
  1948. */
  1949. int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
  1950. unsigned int credits)
  1951. {
  1952. u32 val;
  1953. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1954. return -EBUSY;
  1955. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
  1956. t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
  1957. V_CONTEXT(id) | F_CQ);
  1958. if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1959. 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
  1960. return -EIO;
  1961. if (op >= 2 && op < 7) {
  1962. if (adapter->params.rev > 0)
  1963. return G_CQ_INDEX(val);
  1964. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1965. V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
  1966. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
  1967. F_CONTEXT_CMD_BUSY, 0,
  1968. SG_CONTEXT_CMD_ATTEMPTS, 1))
  1969. return -EIO;
  1970. return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
  1971. }
  1972. return 0;
  1973. }
  1974. /**
  1975. * t3_sge_read_context - read an SGE context
  1976. * @type: the context type
  1977. * @adapter: the adapter
  1978. * @id: the context id
  1979. * @data: holds the retrieved context
  1980. *
  1981. * Read an SGE egress context. The caller is responsible for ensuring
  1982. * only one context operation occurs at a time.
  1983. */
  1984. static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
  1985. unsigned int id, u32 data[4])
  1986. {
  1987. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1988. return -EBUSY;
  1989. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1990. V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
  1991. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
  1992. SG_CONTEXT_CMD_ATTEMPTS, 1))
  1993. return -EIO;
  1994. data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
  1995. data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
  1996. data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
  1997. data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
  1998. return 0;
  1999. }
  2000. /**
  2001. * t3_sge_read_ecntxt - read an SGE egress context
  2002. * @adapter: the adapter
  2003. * @id: the context id
  2004. * @data: holds the retrieved context
  2005. *
  2006. * Read an SGE egress context. The caller is responsible for ensuring
  2007. * only one context operation occurs at a time.
  2008. */
  2009. int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
  2010. {
  2011. if (id >= 65536)
  2012. return -EINVAL;
  2013. return t3_sge_read_context(F_EGRESS, adapter, id, data);
  2014. }
  2015. /**
  2016. * t3_sge_read_cq - read an SGE CQ context
  2017. * @adapter: the adapter
  2018. * @id: the context id
  2019. * @data: holds the retrieved context
  2020. *
  2021. * Read an SGE CQ context. The caller is responsible for ensuring
  2022. * only one context operation occurs at a time.
  2023. */
  2024. int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
  2025. {
  2026. if (id >= 65536)
  2027. return -EINVAL;
  2028. return t3_sge_read_context(F_CQ, adapter, id, data);
  2029. }
  2030. /**
  2031. * t3_sge_read_fl - read an SGE free-list context
  2032. * @adapter: the adapter
  2033. * @id: the context id
  2034. * @data: holds the retrieved context
  2035. *
  2036. * Read an SGE free-list context. The caller is responsible for ensuring
  2037. * only one context operation occurs at a time.
  2038. */
  2039. int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
  2040. {
  2041. if (id >= SGE_QSETS * 2)
  2042. return -EINVAL;
  2043. return t3_sge_read_context(F_FREELIST, adapter, id, data);
  2044. }
  2045. /**
  2046. * t3_sge_read_rspq - read an SGE response queue context
  2047. * @adapter: the adapter
  2048. * @id: the context id
  2049. * @data: holds the retrieved context
  2050. *
  2051. * Read an SGE response queue context. The caller is responsible for
  2052. * ensuring only one context operation occurs at a time.
  2053. */
  2054. int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
  2055. {
  2056. if (id >= SGE_QSETS)
  2057. return -EINVAL;
  2058. return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
  2059. }
  2060. /**
  2061. * t3_config_rss - configure Rx packet steering
  2062. * @adapter: the adapter
  2063. * @rss_config: RSS settings (written to TP_RSS_CONFIG)
  2064. * @cpus: values for the CPU lookup table (0xff terminated)
  2065. * @rspq: values for the response queue lookup table (0xffff terminated)
  2066. *
  2067. * Programs the receive packet steering logic. @cpus and @rspq provide
  2068. * the values for the CPU and response queue lookup tables. If they
  2069. * provide fewer values than the size of the tables the supplied values
  2070. * are used repeatedly until the tables are fully populated.
  2071. */
  2072. void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
  2073. const u8 * cpus, const u16 *rspq)
  2074. {
  2075. int i, j, cpu_idx = 0, q_idx = 0;
  2076. if (cpus)
  2077. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2078. u32 val = i << 16;
  2079. for (j = 0; j < 2; ++j) {
  2080. val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
  2081. if (cpus[cpu_idx] == 0xff)
  2082. cpu_idx = 0;
  2083. }
  2084. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
  2085. }
  2086. if (rspq)
  2087. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2088. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2089. (i << 16) | rspq[q_idx++]);
  2090. if (rspq[q_idx] == 0xffff)
  2091. q_idx = 0;
  2092. }
  2093. t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
  2094. }
  2095. /**
  2096. * t3_read_rss - read the contents of the RSS tables
  2097. * @adapter: the adapter
  2098. * @lkup: holds the contents of the RSS lookup table
  2099. * @map: holds the contents of the RSS map table
  2100. *
  2101. * Reads the contents of the receive packet steering tables.
  2102. */
  2103. int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
  2104. {
  2105. int i;
  2106. u32 val;
  2107. if (lkup)
  2108. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2109. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
  2110. 0xffff0000 | i);
  2111. val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
  2112. if (!(val & 0x80000000))
  2113. return -EAGAIN;
  2114. *lkup++ = val;
  2115. *lkup++ = (val >> 8);
  2116. }
  2117. if (map)
  2118. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2119. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2120. 0xffff0000 | i);
  2121. val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
  2122. if (!(val & 0x80000000))
  2123. return -EAGAIN;
  2124. *map++ = val;
  2125. }
  2126. return 0;
  2127. }
  2128. /**
  2129. * t3_tp_set_offload_mode - put TP in NIC/offload mode
  2130. * @adap: the adapter
  2131. * @enable: 1 to select offload mode, 0 for regular NIC
  2132. *
  2133. * Switches TP to NIC/offload mode.
  2134. */
  2135. void t3_tp_set_offload_mode(struct adapter *adap, int enable)
  2136. {
  2137. if (is_offload(adap) || !enable)
  2138. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
  2139. V_NICMODE(!enable));
  2140. }
  2141. /**
  2142. * pm_num_pages - calculate the number of pages of the payload memory
  2143. * @mem_size: the size of the payload memory
  2144. * @pg_size: the size of each payload memory page
  2145. *
  2146. * Calculate the number of pages, each of the given size, that fit in a
  2147. * memory of the specified size, respecting the HW requirement that the
  2148. * number of pages must be a multiple of 24.
  2149. */
  2150. static inline unsigned int pm_num_pages(unsigned int mem_size,
  2151. unsigned int pg_size)
  2152. {
  2153. unsigned int n = mem_size / pg_size;
  2154. return n - n % 24;
  2155. }
  2156. #define mem_region(adap, start, size, reg) \
  2157. t3_write_reg((adap), A_ ## reg, (start)); \
  2158. start += size
  2159. /*
  2160. * partition_mem - partition memory and configure TP memory settings
  2161. * @adap: the adapter
  2162. * @p: the TP parameters
  2163. *
  2164. * Partitions context and payload memory and configures TP's memory
  2165. * registers.
  2166. */
  2167. static void partition_mem(struct adapter *adap, const struct tp_params *p)
  2168. {
  2169. unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
  2170. unsigned int timers = 0, timers_shift = 22;
  2171. if (adap->params.rev > 0) {
  2172. if (tids <= 16 * 1024) {
  2173. timers = 1;
  2174. timers_shift = 16;
  2175. } else if (tids <= 64 * 1024) {
  2176. timers = 2;
  2177. timers_shift = 18;
  2178. } else if (tids <= 256 * 1024) {
  2179. timers = 3;
  2180. timers_shift = 20;
  2181. }
  2182. }
  2183. t3_write_reg(adap, A_TP_PMM_SIZE,
  2184. p->chan_rx_size | (p->chan_tx_size >> 16));
  2185. t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
  2186. t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
  2187. t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
  2188. t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
  2189. V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
  2190. t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
  2191. t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
  2192. t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
  2193. pstructs = p->rx_num_pgs + p->tx_num_pgs;
  2194. /* Add a bit of headroom and make multiple of 24 */
  2195. pstructs += 48;
  2196. pstructs -= pstructs % 24;
  2197. t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
  2198. m = tids * TCB_SIZE;
  2199. mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
  2200. mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
  2201. t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
  2202. m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
  2203. mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
  2204. mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
  2205. mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
  2206. mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
  2207. m = (m + 4095) & ~0xfff;
  2208. t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
  2209. t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
  2210. tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
  2211. m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
  2212. adap->params.mc5.nfilters - adap->params.mc5.nroutes;
  2213. if (tids < m)
  2214. adap->params.mc5.nservers += m - tids;
  2215. }
  2216. static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
  2217. u32 val)
  2218. {
  2219. t3_write_reg(adap, A_TP_PIO_ADDR, addr);
  2220. t3_write_reg(adap, A_TP_PIO_DATA, val);
  2221. }
  2222. static void tp_config(struct adapter *adap, const struct tp_params *p)
  2223. {
  2224. t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
  2225. F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
  2226. F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
  2227. t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
  2228. F_MTUENABLE | V_WINDOWSCALEMODE(1) |
  2229. V_TIMESTAMPSMODE(0) | V_SACKMODE(1) | V_SACKRX(1));
  2230. t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
  2231. V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
  2232. V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) |
  2233. F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
  2234. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_IPV6ENABLE | F_NICMODE,
  2235. F_IPV6ENABLE | F_NICMODE);
  2236. t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
  2237. t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
  2238. t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
  2239. adap->params.rev > 0 ? F_ENABLEESND :
  2240. F_T3A_ENABLEESND);
  2241. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2242. F_ENABLEEPCMDAFULL,
  2243. F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
  2244. F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
  2245. t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL, 0);
  2246. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
  2247. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
  2248. if (adap->params.rev > 0) {
  2249. tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
  2250. t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
  2251. F_TXPACEAUTO);
  2252. t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
  2253. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
  2254. } else
  2255. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
  2256. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
  2257. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
  2258. t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
  2259. t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
  2260. }
  2261. /* Desired TP timer resolution in usec */
  2262. #define TP_TMR_RES 50
  2263. /* TCP timer values in ms */
  2264. #define TP_DACK_TIMER 50
  2265. #define TP_RTO_MIN 250
  2266. /**
  2267. * tp_set_timers - set TP timing parameters
  2268. * @adap: the adapter to set
  2269. * @core_clk: the core clock frequency in Hz
  2270. *
  2271. * Set TP's timing parameters, such as the various timer resolutions and
  2272. * the TCP timer values.
  2273. */
  2274. static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
  2275. {
  2276. unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
  2277. unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
  2278. unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
  2279. unsigned int tps = core_clk >> tre;
  2280. t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
  2281. V_DELAYEDACKRESOLUTION(dack_re) |
  2282. V_TIMESTAMPRESOLUTION(tstamp_re));
  2283. t3_write_reg(adap, A_TP_DACK_TIMER,
  2284. (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
  2285. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
  2286. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
  2287. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
  2288. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
  2289. t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
  2290. V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
  2291. V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
  2292. V_KEEPALIVEMAX(9));
  2293. #define SECONDS * tps
  2294. t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
  2295. t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
  2296. t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
  2297. t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
  2298. t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
  2299. t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
  2300. t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
  2301. t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
  2302. t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
  2303. #undef SECONDS
  2304. }
  2305. /**
  2306. * t3_tp_set_coalescing_size - set receive coalescing size
  2307. * @adap: the adapter
  2308. * @size: the receive coalescing size
  2309. * @psh: whether a set PSH bit should deliver coalesced data
  2310. *
  2311. * Set the receive coalescing size and PSH bit handling.
  2312. */
  2313. int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
  2314. {
  2315. u32 val;
  2316. if (size > MAX_RX_COALESCING_LEN)
  2317. return -EINVAL;
  2318. val = t3_read_reg(adap, A_TP_PARA_REG3);
  2319. val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
  2320. if (size) {
  2321. val |= F_RXCOALESCEENABLE;
  2322. if (psh)
  2323. val |= F_RXCOALESCEPSHEN;
  2324. size = min(MAX_RX_COALESCING_LEN, size);
  2325. t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
  2326. V_MAXRXDATA(MAX_RX_COALESCING_LEN));
  2327. }
  2328. t3_write_reg(adap, A_TP_PARA_REG3, val);
  2329. return 0;
  2330. }
  2331. /**
  2332. * t3_tp_set_max_rxsize - set the max receive size
  2333. * @adap: the adapter
  2334. * @size: the max receive size
  2335. *
  2336. * Set TP's max receive size. This is the limit that applies when
  2337. * receive coalescing is disabled.
  2338. */
  2339. void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
  2340. {
  2341. t3_write_reg(adap, A_TP_PARA_REG7,
  2342. V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
  2343. }
  2344. static void __devinit init_mtus(unsigned short mtus[])
  2345. {
  2346. /*
  2347. * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
  2348. * it can accomodate max size TCP/IP headers when SACK and timestamps
  2349. * are enabled and still have at least 8 bytes of payload.
  2350. */
  2351. mtus[0] = 88;
  2352. mtus[1] = 88;
  2353. mtus[2] = 256;
  2354. mtus[3] = 512;
  2355. mtus[4] = 576;
  2356. mtus[5] = 1024;
  2357. mtus[6] = 1280;
  2358. mtus[7] = 1492;
  2359. mtus[8] = 1500;
  2360. mtus[9] = 2002;
  2361. mtus[10] = 2048;
  2362. mtus[11] = 4096;
  2363. mtus[12] = 4352;
  2364. mtus[13] = 8192;
  2365. mtus[14] = 9000;
  2366. mtus[15] = 9600;
  2367. }
  2368. /*
  2369. * Initial congestion control parameters.
  2370. */
  2371. static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
  2372. {
  2373. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2374. a[9] = 2;
  2375. a[10] = 3;
  2376. a[11] = 4;
  2377. a[12] = 5;
  2378. a[13] = 6;
  2379. a[14] = 7;
  2380. a[15] = 8;
  2381. a[16] = 9;
  2382. a[17] = 10;
  2383. a[18] = 14;
  2384. a[19] = 17;
  2385. a[20] = 21;
  2386. a[21] = 25;
  2387. a[22] = 30;
  2388. a[23] = 35;
  2389. a[24] = 45;
  2390. a[25] = 60;
  2391. a[26] = 80;
  2392. a[27] = 100;
  2393. a[28] = 200;
  2394. a[29] = 300;
  2395. a[30] = 400;
  2396. a[31] = 500;
  2397. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2398. b[9] = b[10] = 1;
  2399. b[11] = b[12] = 2;
  2400. b[13] = b[14] = b[15] = b[16] = 3;
  2401. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2402. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2403. b[28] = b[29] = 6;
  2404. b[30] = b[31] = 7;
  2405. }
  2406. /* The minimum additive increment value for the congestion control table */
  2407. #define CC_MIN_INCR 2U
  2408. /**
  2409. * t3_load_mtus - write the MTU and congestion control HW tables
  2410. * @adap: the adapter
  2411. * @mtus: the unrestricted values for the MTU table
  2412. * @alphs: the values for the congestion control alpha parameter
  2413. * @beta: the values for the congestion control beta parameter
  2414. * @mtu_cap: the maximum permitted effective MTU
  2415. *
  2416. * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
  2417. * Update the high-speed congestion control table with the supplied alpha,
  2418. * beta, and MTUs.
  2419. */
  2420. void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
  2421. unsigned short alpha[NCCTRL_WIN],
  2422. unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
  2423. {
  2424. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2425. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2426. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2427. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2428. };
  2429. unsigned int i, w;
  2430. for (i = 0; i < NMTUS; ++i) {
  2431. unsigned int mtu = min(mtus[i], mtu_cap);
  2432. unsigned int log2 = fls(mtu);
  2433. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2434. log2--;
  2435. t3_write_reg(adap, A_TP_MTU_TABLE,
  2436. (i << 24) | (log2 << 16) | mtu);
  2437. for (w = 0; w < NCCTRL_WIN; ++w) {
  2438. unsigned int inc;
  2439. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2440. CC_MIN_INCR);
  2441. t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
  2442. (w << 16) | (beta[w] << 13) | inc);
  2443. }
  2444. }
  2445. }
  2446. /**
  2447. * t3_read_hw_mtus - returns the values in the HW MTU table
  2448. * @adap: the adapter
  2449. * @mtus: where to store the HW MTU values
  2450. *
  2451. * Reads the HW MTU table.
  2452. */
  2453. void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
  2454. {
  2455. int i;
  2456. for (i = 0; i < NMTUS; ++i) {
  2457. unsigned int val;
  2458. t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
  2459. val = t3_read_reg(adap, A_TP_MTU_TABLE);
  2460. mtus[i] = val & 0x3fff;
  2461. }
  2462. }
  2463. /**
  2464. * t3_get_cong_cntl_tab - reads the congestion control table
  2465. * @adap: the adapter
  2466. * @incr: where to store the alpha values
  2467. *
  2468. * Reads the additive increments programmed into the HW congestion
  2469. * control table.
  2470. */
  2471. void t3_get_cong_cntl_tab(struct adapter *adap,
  2472. unsigned short incr[NMTUS][NCCTRL_WIN])
  2473. {
  2474. unsigned int mtu, w;
  2475. for (mtu = 0; mtu < NMTUS; ++mtu)
  2476. for (w = 0; w < NCCTRL_WIN; ++w) {
  2477. t3_write_reg(adap, A_TP_CCTRL_TABLE,
  2478. 0xffff0000 | (mtu << 5) | w);
  2479. incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
  2480. 0x1fff;
  2481. }
  2482. }
  2483. /**
  2484. * t3_tp_get_mib_stats - read TP's MIB counters
  2485. * @adap: the adapter
  2486. * @tps: holds the returned counter values
  2487. *
  2488. * Returns the values of TP's MIB counters.
  2489. */
  2490. void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
  2491. {
  2492. t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
  2493. sizeof(*tps) / sizeof(u32), 0);
  2494. }
  2495. #define ulp_region(adap, name, start, len) \
  2496. t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
  2497. t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
  2498. (start) + (len) - 1); \
  2499. start += len
  2500. #define ulptx_region(adap, name, start, len) \
  2501. t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
  2502. t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
  2503. (start) + (len) - 1)
  2504. static void ulp_config(struct adapter *adap, const struct tp_params *p)
  2505. {
  2506. unsigned int m = p->chan_rx_size;
  2507. ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
  2508. ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
  2509. ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
  2510. ulp_region(adap, STAG, m, p->chan_rx_size / 4);
  2511. ulp_region(adap, RQ, m, p->chan_rx_size / 4);
  2512. ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
  2513. ulp_region(adap, PBL, m, p->chan_rx_size / 4);
  2514. t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
  2515. }
  2516. /**
  2517. * t3_set_proto_sram - set the contents of the protocol sram
  2518. * @adapter: the adapter
  2519. * @data: the protocol image
  2520. *
  2521. * Write the contents of the protocol SRAM.
  2522. */
  2523. int t3_set_proto_sram(struct adapter *adap, u8 *data)
  2524. {
  2525. int i;
  2526. u32 *buf = (u32 *)data;
  2527. for (i = 0; i < PROTO_SRAM_LINES; i++) {
  2528. t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, cpu_to_be32(*buf++));
  2529. t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, cpu_to_be32(*buf++));
  2530. t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, cpu_to_be32(*buf++));
  2531. t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, cpu_to_be32(*buf++));
  2532. t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, cpu_to_be32(*buf++));
  2533. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
  2534. if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
  2535. return -EIO;
  2536. }
  2537. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
  2538. return 0;
  2539. }
  2540. void t3_config_trace_filter(struct adapter *adapter,
  2541. const struct trace_params *tp, int filter_index,
  2542. int invert, int enable)
  2543. {
  2544. u32 addr, key[4], mask[4];
  2545. key[0] = tp->sport | (tp->sip << 16);
  2546. key[1] = (tp->sip >> 16) | (tp->dport << 16);
  2547. key[2] = tp->dip;
  2548. key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
  2549. mask[0] = tp->sport_mask | (tp->sip_mask << 16);
  2550. mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
  2551. mask[2] = tp->dip_mask;
  2552. mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
  2553. if (invert)
  2554. key[3] |= (1 << 29);
  2555. if (enable)
  2556. key[3] |= (1 << 28);
  2557. addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
  2558. tp_wr_indirect(adapter, addr++, key[0]);
  2559. tp_wr_indirect(adapter, addr++, mask[0]);
  2560. tp_wr_indirect(adapter, addr++, key[1]);
  2561. tp_wr_indirect(adapter, addr++, mask[1]);
  2562. tp_wr_indirect(adapter, addr++, key[2]);
  2563. tp_wr_indirect(adapter, addr++, mask[2]);
  2564. tp_wr_indirect(adapter, addr++, key[3]);
  2565. tp_wr_indirect(adapter, addr, mask[3]);
  2566. t3_read_reg(adapter, A_TP_PIO_DATA);
  2567. }
  2568. /**
  2569. * t3_config_sched - configure a HW traffic scheduler
  2570. * @adap: the adapter
  2571. * @kbps: target rate in Kbps
  2572. * @sched: the scheduler index
  2573. *
  2574. * Configure a HW scheduler for the target rate
  2575. */
  2576. int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
  2577. {
  2578. unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
  2579. unsigned int clk = adap->params.vpd.cclk * 1000;
  2580. unsigned int selected_cpt = 0, selected_bpt = 0;
  2581. if (kbps > 0) {
  2582. kbps *= 125; /* -> bytes */
  2583. for (cpt = 1; cpt <= 255; cpt++) {
  2584. tps = clk / cpt;
  2585. bpt = (kbps + tps / 2) / tps;
  2586. if (bpt > 0 && bpt <= 255) {
  2587. v = bpt * tps;
  2588. delta = v >= kbps ? v - kbps : kbps - v;
  2589. if (delta <= mindelta) {
  2590. mindelta = delta;
  2591. selected_cpt = cpt;
  2592. selected_bpt = bpt;
  2593. }
  2594. } else if (selected_cpt)
  2595. break;
  2596. }
  2597. if (!selected_cpt)
  2598. return -EINVAL;
  2599. }
  2600. t3_write_reg(adap, A_TP_TM_PIO_ADDR,
  2601. A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
  2602. v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
  2603. if (sched & 1)
  2604. v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
  2605. else
  2606. v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
  2607. t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
  2608. return 0;
  2609. }
  2610. static int tp_init(struct adapter *adap, const struct tp_params *p)
  2611. {
  2612. int busy = 0;
  2613. tp_config(adap, p);
  2614. t3_set_vlan_accel(adap, 3, 0);
  2615. if (is_offload(adap)) {
  2616. tp_set_timers(adap, adap->params.vpd.cclk * 1000);
  2617. t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
  2618. busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
  2619. 0, 1000, 5);
  2620. if (busy)
  2621. CH_ERR(adap, "TP initialization timed out\n");
  2622. }
  2623. if (!busy)
  2624. t3_write_reg(adap, A_TP_RESET, F_TPRESET);
  2625. return busy;
  2626. }
  2627. int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
  2628. {
  2629. if (port_mask & ~((1 << adap->params.nports) - 1))
  2630. return -EINVAL;
  2631. t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
  2632. port_mask << S_PORT0ACTIVE);
  2633. return 0;
  2634. }
  2635. /*
  2636. * Perform the bits of HW initialization that are dependent on the number
  2637. * of available ports.
  2638. */
  2639. static void init_hw_for_avail_ports(struct adapter *adap, int nports)
  2640. {
  2641. int i;
  2642. if (nports == 1) {
  2643. t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
  2644. t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
  2645. t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN |
  2646. F_PORT0ACTIVE | F_ENFORCEPKT);
  2647. t3_write_reg(adap, A_PM1_TX_CFG, 0xffffffff);
  2648. } else {
  2649. t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
  2650. t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
  2651. t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
  2652. V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
  2653. t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
  2654. F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
  2655. F_ENFORCEPKT);
  2656. t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
  2657. t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
  2658. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
  2659. V_TX_MOD_QUEUE_REQ_MAP(0xaa));
  2660. for (i = 0; i < 16; i++)
  2661. t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
  2662. (i << 16) | 0x1010);
  2663. }
  2664. }
  2665. static int calibrate_xgm(struct adapter *adapter)
  2666. {
  2667. if (uses_xaui(adapter)) {
  2668. unsigned int v, i;
  2669. for (i = 0; i < 5; ++i) {
  2670. t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
  2671. t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2672. msleep(1);
  2673. v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2674. if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
  2675. t3_write_reg(adapter, A_XGM_XAUI_IMP,
  2676. V_XAUIIMP(G_CALIMP(v) >> 2));
  2677. return 0;
  2678. }
  2679. }
  2680. CH_ERR(adapter, "MAC calibration failed\n");
  2681. return -1;
  2682. } else {
  2683. t3_write_reg(adapter, A_XGM_RGMII_IMP,
  2684. V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2685. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2686. F_XGM_IMPSETUPDATE);
  2687. }
  2688. return 0;
  2689. }
  2690. static void calibrate_xgm_t3b(struct adapter *adapter)
  2691. {
  2692. if (!uses_xaui(adapter)) {
  2693. t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
  2694. F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2695. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
  2696. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
  2697. F_XGM_IMPSETUPDATE);
  2698. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2699. 0);
  2700. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
  2701. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
  2702. }
  2703. }
  2704. struct mc7_timing_params {
  2705. unsigned char ActToPreDly;
  2706. unsigned char ActToRdWrDly;
  2707. unsigned char PreCyc;
  2708. unsigned char RefCyc[5];
  2709. unsigned char BkCyc;
  2710. unsigned char WrToRdDly;
  2711. unsigned char RdToWrDly;
  2712. };
  2713. /*
  2714. * Write a value to a register and check that the write completed. These
  2715. * writes normally complete in a cycle or two, so one read should suffice.
  2716. * The very first read exists to flush the posted write to the device.
  2717. */
  2718. static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
  2719. {
  2720. t3_write_reg(adapter, addr, val);
  2721. t3_read_reg(adapter, addr); /* flush */
  2722. if (!(t3_read_reg(adapter, addr) & F_BUSY))
  2723. return 0;
  2724. CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
  2725. return -EIO;
  2726. }
  2727. static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
  2728. {
  2729. static const unsigned int mc7_mode[] = {
  2730. 0x632, 0x642, 0x652, 0x432, 0x442
  2731. };
  2732. static const struct mc7_timing_params mc7_timings[] = {
  2733. {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
  2734. {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
  2735. {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
  2736. {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
  2737. {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
  2738. };
  2739. u32 val;
  2740. unsigned int width, density, slow, attempts;
  2741. struct adapter *adapter = mc7->adapter;
  2742. const struct mc7_timing_params *p = &mc7_timings[mem_type];
  2743. if (!mc7->size)
  2744. return 0;
  2745. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  2746. slow = val & F_SLOW;
  2747. width = G_WIDTH(val);
  2748. density = G_DEN(val);
  2749. t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
  2750. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2751. msleep(1);
  2752. if (!slow) {
  2753. t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
  2754. t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
  2755. msleep(1);
  2756. if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
  2757. (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
  2758. CH_ERR(adapter, "%s MC7 calibration timed out\n",
  2759. mc7->name);
  2760. goto out_fail;
  2761. }
  2762. }
  2763. t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
  2764. V_ACTTOPREDLY(p->ActToPreDly) |
  2765. V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
  2766. V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
  2767. V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
  2768. t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
  2769. val | F_CLKEN | F_TERM150);
  2770. t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2771. if (!slow)
  2772. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
  2773. F_DLLENB);
  2774. udelay(1);
  2775. val = slow ? 3 : 6;
  2776. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2777. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
  2778. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
  2779. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2780. goto out_fail;
  2781. if (!slow) {
  2782. t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
  2783. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
  2784. udelay(5);
  2785. }
  2786. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2787. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2788. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2789. wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
  2790. mc7_mode[mem_type]) ||
  2791. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
  2792. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2793. goto out_fail;
  2794. /* clock value is in KHz */
  2795. mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
  2796. mc7_clock /= 1000000; /* KHz->MHz, ns->us */
  2797. t3_write_reg(adapter, mc7->offset + A_MC7_REF,
  2798. F_PERREFEN | V_PREREFDIV(mc7_clock));
  2799. t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
  2800. t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
  2801. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
  2802. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
  2803. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
  2804. (mc7->size << width) - 1);
  2805. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
  2806. t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
  2807. attempts = 50;
  2808. do {
  2809. msleep(250);
  2810. val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
  2811. } while ((val & F_BUSY) && --attempts);
  2812. if (val & F_BUSY) {
  2813. CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
  2814. goto out_fail;
  2815. }
  2816. /* Enable normal memory accesses. */
  2817. t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
  2818. return 0;
  2819. out_fail:
  2820. return -1;
  2821. }
  2822. static void config_pcie(struct adapter *adap)
  2823. {
  2824. static const u16 ack_lat[4][6] = {
  2825. {237, 416, 559, 1071, 2095, 4143},
  2826. {128, 217, 289, 545, 1057, 2081},
  2827. {73, 118, 154, 282, 538, 1050},
  2828. {67, 107, 86, 150, 278, 534}
  2829. };
  2830. static const u16 rpl_tmr[4][6] = {
  2831. {711, 1248, 1677, 3213, 6285, 12429},
  2832. {384, 651, 867, 1635, 3171, 6243},
  2833. {219, 354, 462, 846, 1614, 3150},
  2834. {201, 321, 258, 450, 834, 1602}
  2835. };
  2836. u16 val;
  2837. unsigned int log2_width, pldsize;
  2838. unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
  2839. pci_read_config_word(adap->pdev,
  2840. adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
  2841. &val);
  2842. pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
  2843. pci_read_config_word(adap->pdev,
  2844. adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
  2845. &val);
  2846. fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
  2847. fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
  2848. G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
  2849. log2_width = fls(adap->params.pci.width) - 1;
  2850. acklat = ack_lat[log2_width][pldsize];
  2851. if (val & 1) /* check LOsEnable */
  2852. acklat += fst_trn_tx * 4;
  2853. rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
  2854. if (adap->params.rev == 0)
  2855. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
  2856. V_T3A_ACKLAT(M_T3A_ACKLAT),
  2857. V_T3A_ACKLAT(acklat));
  2858. else
  2859. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
  2860. V_ACKLAT(acklat));
  2861. t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
  2862. V_REPLAYLMT(rpllmt));
  2863. t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
  2864. t3_set_reg_field(adap, A_PCIE_CFG, F_PCIE_CLIDECEN, F_PCIE_CLIDECEN);
  2865. }
  2866. /*
  2867. * Initialize and configure T3 HW modules. This performs the
  2868. * initialization steps that need to be done once after a card is reset.
  2869. * MAC and PHY initialization is handled separarely whenever a port is enabled.
  2870. *
  2871. * fw_params are passed to FW and their value is platform dependent. Only the
  2872. * top 8 bits are available for use, the rest must be 0.
  2873. */
  2874. int t3_init_hw(struct adapter *adapter, u32 fw_params)
  2875. {
  2876. int err = -EIO, attempts = 100;
  2877. const struct vpd_params *vpd = &adapter->params.vpd;
  2878. if (adapter->params.rev > 0)
  2879. calibrate_xgm_t3b(adapter);
  2880. else if (calibrate_xgm(adapter))
  2881. goto out_err;
  2882. if (vpd->mclk) {
  2883. partition_mem(adapter, &adapter->params.tp);
  2884. if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
  2885. mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
  2886. mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
  2887. t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
  2888. adapter->params.mc5.nfilters,
  2889. adapter->params.mc5.nroutes))
  2890. goto out_err;
  2891. }
  2892. if (tp_init(adapter, &adapter->params.tp))
  2893. goto out_err;
  2894. t3_tp_set_coalescing_size(adapter,
  2895. min(adapter->params.sge.max_pkt_size,
  2896. MAX_RX_COALESCING_LEN), 1);
  2897. t3_tp_set_max_rxsize(adapter,
  2898. min(adapter->params.sge.max_pkt_size, 16384U));
  2899. ulp_config(adapter, &adapter->params.tp);
  2900. if (is_pcie(adapter))
  2901. config_pcie(adapter);
  2902. else
  2903. t3_set_reg_field(adapter, A_PCIX_CFG, 0, F_CLIDECEN);
  2904. t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
  2905. t3_write_reg(adapter, A_PM1_RX_MODE, 0);
  2906. t3_write_reg(adapter, A_PM1_TX_MODE, 0);
  2907. init_hw_for_avail_ports(adapter, adapter->params.nports);
  2908. t3_sge_init(adapter, &adapter->params.sge);
  2909. t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
  2910. t3_write_reg(adapter, A_CIM_BOOT_CFG,
  2911. V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
  2912. t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
  2913. do { /* wait for uP to initialize */
  2914. msleep(20);
  2915. } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
  2916. if (!attempts) {
  2917. CH_ERR(adapter, "uP initialization timed out\n");
  2918. goto out_err;
  2919. }
  2920. err = 0;
  2921. out_err:
  2922. return err;
  2923. }
  2924. /**
  2925. * get_pci_mode - determine a card's PCI mode
  2926. * @adapter: the adapter
  2927. * @p: where to store the PCI settings
  2928. *
  2929. * Determines a card's PCI mode and associated parameters, such as speed
  2930. * and width.
  2931. */
  2932. static void __devinit get_pci_mode(struct adapter *adapter,
  2933. struct pci_params *p)
  2934. {
  2935. static unsigned short speed_map[] = { 33, 66, 100, 133 };
  2936. u32 pci_mode, pcie_cap;
  2937. pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
  2938. if (pcie_cap) {
  2939. u16 val;
  2940. p->variant = PCI_VARIANT_PCIE;
  2941. p->pcie_cap_addr = pcie_cap;
  2942. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  2943. &val);
  2944. p->width = (val >> 4) & 0x3f;
  2945. return;
  2946. }
  2947. pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
  2948. p->speed = speed_map[G_PCLKRANGE(pci_mode)];
  2949. p->width = (pci_mode & F_64BIT) ? 64 : 32;
  2950. pci_mode = G_PCIXINITPAT(pci_mode);
  2951. if (pci_mode == 0)
  2952. p->variant = PCI_VARIANT_PCI;
  2953. else if (pci_mode < 4)
  2954. p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
  2955. else if (pci_mode < 8)
  2956. p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
  2957. else
  2958. p->variant = PCI_VARIANT_PCIX_266_MODE2;
  2959. }
  2960. /**
  2961. * init_link_config - initialize a link's SW state
  2962. * @lc: structure holding the link state
  2963. * @ai: information about the current card
  2964. *
  2965. * Initializes the SW state maintained for each link, including the link's
  2966. * capabilities and default speed/duplex/flow-control/autonegotiation
  2967. * settings.
  2968. */
  2969. static void __devinit init_link_config(struct link_config *lc,
  2970. unsigned int caps)
  2971. {
  2972. lc->supported = caps;
  2973. lc->requested_speed = lc->speed = SPEED_INVALID;
  2974. lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
  2975. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  2976. if (lc->supported & SUPPORTED_Autoneg) {
  2977. lc->advertising = lc->supported;
  2978. lc->autoneg = AUTONEG_ENABLE;
  2979. lc->requested_fc |= PAUSE_AUTONEG;
  2980. } else {
  2981. lc->advertising = 0;
  2982. lc->autoneg = AUTONEG_DISABLE;
  2983. }
  2984. }
  2985. /**
  2986. * mc7_calc_size - calculate MC7 memory size
  2987. * @cfg: the MC7 configuration
  2988. *
  2989. * Calculates the size of an MC7 memory in bytes from the value of its
  2990. * configuration register.
  2991. */
  2992. static unsigned int __devinit mc7_calc_size(u32 cfg)
  2993. {
  2994. unsigned int width = G_WIDTH(cfg);
  2995. unsigned int banks = !!(cfg & F_BKS) + 1;
  2996. unsigned int org = !!(cfg & F_ORG) + 1;
  2997. unsigned int density = G_DEN(cfg);
  2998. unsigned int MBs = ((256 << density) * banks) / (org << width);
  2999. return MBs << 20;
  3000. }
  3001. static void __devinit mc7_prep(struct adapter *adapter, struct mc7 *mc7,
  3002. unsigned int base_addr, const char *name)
  3003. {
  3004. u32 cfg;
  3005. mc7->adapter = adapter;
  3006. mc7->name = name;
  3007. mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
  3008. cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  3009. mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
  3010. mc7->width = G_WIDTH(cfg);
  3011. }
  3012. void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
  3013. {
  3014. mac->adapter = adapter;
  3015. mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
  3016. mac->nucast = 1;
  3017. if (adapter->params.rev == 0 && uses_xaui(adapter)) {
  3018. t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
  3019. is_10G(adapter) ? 0x2901c04 : 0x2301c04);
  3020. t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
  3021. F_ENRGMII, 0);
  3022. }
  3023. }
  3024. void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
  3025. {
  3026. u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
  3027. mi1_init(adapter, ai);
  3028. t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
  3029. V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
  3030. t3_write_reg(adapter, A_T3DBG_GPIO_EN,
  3031. ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
  3032. t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
  3033. if (adapter->params.rev == 0 || !uses_xaui(adapter))
  3034. val |= F_ENRGMII;
  3035. /* Enable MAC clocks so we can access the registers */
  3036. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3037. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3038. val |= F_CLKDIVRESET_;
  3039. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3040. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3041. t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
  3042. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3043. }
  3044. /*
  3045. * Reset the adapter.
  3046. * Older PCIe cards lose their config space during reset, PCI-X
  3047. * ones don't.
  3048. */
  3049. static int t3_reset_adapter(struct adapter *adapter)
  3050. {
  3051. int i, save_and_restore_pcie =
  3052. adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
  3053. uint16_t devid = 0;
  3054. if (save_and_restore_pcie)
  3055. pci_save_state(adapter->pdev);
  3056. t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
  3057. /*
  3058. * Delay. Give Some time to device to reset fully.
  3059. * XXX The delay time should be modified.
  3060. */
  3061. for (i = 0; i < 10; i++) {
  3062. msleep(50);
  3063. pci_read_config_word(adapter->pdev, 0x00, &devid);
  3064. if (devid == 0x1425)
  3065. break;
  3066. }
  3067. if (devid != 0x1425)
  3068. return -1;
  3069. if (save_and_restore_pcie)
  3070. pci_restore_state(adapter->pdev);
  3071. return 0;
  3072. }
  3073. /*
  3074. * Initialize adapter SW state for the various HW modules, set initial values
  3075. * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
  3076. * interface.
  3077. */
  3078. int __devinit t3_prep_adapter(struct adapter *adapter,
  3079. const struct adapter_info *ai, int reset)
  3080. {
  3081. int ret;
  3082. unsigned int i, j = 0;
  3083. get_pci_mode(adapter, &adapter->params.pci);
  3084. adapter->params.info = ai;
  3085. adapter->params.nports = ai->nports;
  3086. adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
  3087. adapter->params.linkpoll_period = 0;
  3088. adapter->params.stats_update_period = is_10G(adapter) ?
  3089. MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
  3090. adapter->params.pci.vpd_cap_addr =
  3091. pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
  3092. ret = get_vpd_params(adapter, &adapter->params.vpd);
  3093. if (ret < 0)
  3094. return ret;
  3095. if (reset && t3_reset_adapter(adapter))
  3096. return -1;
  3097. t3_sge_prep(adapter, &adapter->params.sge);
  3098. if (adapter->params.vpd.mclk) {
  3099. struct tp_params *p = &adapter->params.tp;
  3100. mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
  3101. mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
  3102. mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
  3103. p->nchan = ai->nports;
  3104. p->pmrx_size = t3_mc7_size(&adapter->pmrx);
  3105. p->pmtx_size = t3_mc7_size(&adapter->pmtx);
  3106. p->cm_size = t3_mc7_size(&adapter->cm);
  3107. p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
  3108. p->chan_tx_size = p->pmtx_size / p->nchan;
  3109. p->rx_pg_size = 64 * 1024;
  3110. p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
  3111. p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
  3112. p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
  3113. p->ntimer_qs = p->cm_size >= (128 << 20) ||
  3114. adapter->params.rev > 0 ? 12 : 6;
  3115. }
  3116. adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
  3117. t3_mc7_size(&adapter->pmtx) &&
  3118. t3_mc7_size(&adapter->cm);
  3119. if (is_offload(adapter)) {
  3120. adapter->params.mc5.nservers = DEFAULT_NSERVERS;
  3121. adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
  3122. DEFAULT_NFILTERS : 0;
  3123. adapter->params.mc5.nroutes = 0;
  3124. t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
  3125. init_mtus(adapter->params.mtus);
  3126. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3127. }
  3128. early_hw_init(adapter, ai);
  3129. for_each_port(adapter, i) {
  3130. u8 hw_addr[6];
  3131. struct port_info *p = adap2pinfo(adapter, i);
  3132. while (!adapter->params.vpd.port_type[j])
  3133. ++j;
  3134. p->port_type = &port_types[adapter->params.vpd.port_type[j]];
  3135. p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
  3136. ai->mdio_ops);
  3137. mac_prep(&p->mac, adapter, j);
  3138. ++j;
  3139. /*
  3140. * The VPD EEPROM stores the base Ethernet address for the
  3141. * card. A port's address is derived from the base by adding
  3142. * the port's index to the base's low octet.
  3143. */
  3144. memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
  3145. hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
  3146. memcpy(adapter->port[i]->dev_addr, hw_addr,
  3147. ETH_ALEN);
  3148. memcpy(adapter->port[i]->perm_addr, hw_addr,
  3149. ETH_ALEN);
  3150. init_link_config(&p->link_config, p->port_type->caps);
  3151. p->phy.ops->power_down(&p->phy, 1);
  3152. if (!(p->port_type->caps & SUPPORTED_IRQ))
  3153. adapter->params.linkpoll_period = 10;
  3154. }
  3155. return 0;
  3156. }
  3157. void t3_led_ready(struct adapter *adapter)
  3158. {
  3159. t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
  3160. F_GPIO0_OUT_VAL);
  3161. }