kvm_main.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/pgtable.h>
  46. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  47. #include "coalesced_mmio.h"
  48. #endif
  49. MODULE_AUTHOR("Qumranet");
  50. MODULE_LICENSE("GPL");
  51. DEFINE_SPINLOCK(kvm_lock);
  52. LIST_HEAD(vm_list);
  53. static cpumask_t cpus_hardware_enabled;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. struct dentry *kvm_debugfs_dir;
  58. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  59. unsigned long arg);
  60. bool kvm_rebooting;
  61. static inline int valid_vcpu(int n)
  62. {
  63. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  64. }
  65. inline int is_mmio_pfn(pfn_t pfn)
  66. {
  67. if (pfn_valid(pfn))
  68. return PageReserved(pfn_to_page(pfn));
  69. return true;
  70. }
  71. /*
  72. * Switches to specified vcpu, until a matching vcpu_put()
  73. */
  74. void vcpu_load(struct kvm_vcpu *vcpu)
  75. {
  76. int cpu;
  77. mutex_lock(&vcpu->mutex);
  78. cpu = get_cpu();
  79. preempt_notifier_register(&vcpu->preempt_notifier);
  80. kvm_arch_vcpu_load(vcpu, cpu);
  81. put_cpu();
  82. }
  83. void vcpu_put(struct kvm_vcpu *vcpu)
  84. {
  85. preempt_disable();
  86. kvm_arch_vcpu_put(vcpu);
  87. preempt_notifier_unregister(&vcpu->preempt_notifier);
  88. preempt_enable();
  89. mutex_unlock(&vcpu->mutex);
  90. }
  91. static void ack_flush(void *_completed)
  92. {
  93. }
  94. void kvm_flush_remote_tlbs(struct kvm *kvm)
  95. {
  96. int i, cpu, me;
  97. cpumask_t cpus;
  98. struct kvm_vcpu *vcpu;
  99. me = get_cpu();
  100. cpus_clear(cpus);
  101. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  102. vcpu = kvm->vcpus[i];
  103. if (!vcpu)
  104. continue;
  105. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  106. continue;
  107. cpu = vcpu->cpu;
  108. if (cpu != -1 && cpu != me)
  109. cpu_set(cpu, cpus);
  110. }
  111. if (cpus_empty(cpus))
  112. goto out;
  113. ++kvm->stat.remote_tlb_flush;
  114. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  115. out:
  116. put_cpu();
  117. }
  118. void kvm_reload_remote_mmus(struct kvm *kvm)
  119. {
  120. int i, cpu, me;
  121. cpumask_t cpus;
  122. struct kvm_vcpu *vcpu;
  123. me = get_cpu();
  124. cpus_clear(cpus);
  125. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  126. vcpu = kvm->vcpus[i];
  127. if (!vcpu)
  128. continue;
  129. if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  130. continue;
  131. cpu = vcpu->cpu;
  132. if (cpu != -1 && cpu != me)
  133. cpu_set(cpu, cpus);
  134. }
  135. if (cpus_empty(cpus))
  136. goto out;
  137. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  138. out:
  139. put_cpu();
  140. }
  141. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  142. {
  143. struct page *page;
  144. int r;
  145. mutex_init(&vcpu->mutex);
  146. vcpu->cpu = -1;
  147. vcpu->kvm = kvm;
  148. vcpu->vcpu_id = id;
  149. init_waitqueue_head(&vcpu->wq);
  150. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  151. if (!page) {
  152. r = -ENOMEM;
  153. goto fail;
  154. }
  155. vcpu->run = page_address(page);
  156. r = kvm_arch_vcpu_init(vcpu);
  157. if (r < 0)
  158. goto fail_free_run;
  159. return 0;
  160. fail_free_run:
  161. free_page((unsigned long)vcpu->run);
  162. fail:
  163. return r;
  164. }
  165. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  166. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  167. {
  168. kvm_arch_vcpu_uninit(vcpu);
  169. free_page((unsigned long)vcpu->run);
  170. }
  171. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  172. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  173. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  174. {
  175. return container_of(mn, struct kvm, mmu_notifier);
  176. }
  177. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  178. struct mm_struct *mm,
  179. unsigned long address)
  180. {
  181. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  182. int need_tlb_flush;
  183. /*
  184. * When ->invalidate_page runs, the linux pte has been zapped
  185. * already but the page is still allocated until
  186. * ->invalidate_page returns. So if we increase the sequence
  187. * here the kvm page fault will notice if the spte can't be
  188. * established because the page is going to be freed. If
  189. * instead the kvm page fault establishes the spte before
  190. * ->invalidate_page runs, kvm_unmap_hva will release it
  191. * before returning.
  192. *
  193. * The sequence increase only need to be seen at spin_unlock
  194. * time, and not at spin_lock time.
  195. *
  196. * Increasing the sequence after the spin_unlock would be
  197. * unsafe because the kvm page fault could then establish the
  198. * pte after kvm_unmap_hva returned, without noticing the page
  199. * is going to be freed.
  200. */
  201. spin_lock(&kvm->mmu_lock);
  202. kvm->mmu_notifier_seq++;
  203. need_tlb_flush = kvm_unmap_hva(kvm, address);
  204. spin_unlock(&kvm->mmu_lock);
  205. /* we've to flush the tlb before the pages can be freed */
  206. if (need_tlb_flush)
  207. kvm_flush_remote_tlbs(kvm);
  208. }
  209. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  210. struct mm_struct *mm,
  211. unsigned long start,
  212. unsigned long end)
  213. {
  214. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  215. int need_tlb_flush = 0;
  216. spin_lock(&kvm->mmu_lock);
  217. /*
  218. * The count increase must become visible at unlock time as no
  219. * spte can be established without taking the mmu_lock and
  220. * count is also read inside the mmu_lock critical section.
  221. */
  222. kvm->mmu_notifier_count++;
  223. for (; start < end; start += PAGE_SIZE)
  224. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  225. spin_unlock(&kvm->mmu_lock);
  226. /* we've to flush the tlb before the pages can be freed */
  227. if (need_tlb_flush)
  228. kvm_flush_remote_tlbs(kvm);
  229. }
  230. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  231. struct mm_struct *mm,
  232. unsigned long start,
  233. unsigned long end)
  234. {
  235. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  236. spin_lock(&kvm->mmu_lock);
  237. /*
  238. * This sequence increase will notify the kvm page fault that
  239. * the page that is going to be mapped in the spte could have
  240. * been freed.
  241. */
  242. kvm->mmu_notifier_seq++;
  243. /*
  244. * The above sequence increase must be visible before the
  245. * below count decrease but both values are read by the kvm
  246. * page fault under mmu_lock spinlock so we don't need to add
  247. * a smb_wmb() here in between the two.
  248. */
  249. kvm->mmu_notifier_count--;
  250. spin_unlock(&kvm->mmu_lock);
  251. BUG_ON(kvm->mmu_notifier_count < 0);
  252. }
  253. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  254. struct mm_struct *mm,
  255. unsigned long address)
  256. {
  257. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  258. int young;
  259. spin_lock(&kvm->mmu_lock);
  260. young = kvm_age_hva(kvm, address);
  261. spin_unlock(&kvm->mmu_lock);
  262. if (young)
  263. kvm_flush_remote_tlbs(kvm);
  264. return young;
  265. }
  266. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  267. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  268. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  269. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  270. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  271. };
  272. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  273. static struct kvm *kvm_create_vm(void)
  274. {
  275. struct kvm *kvm = kvm_arch_create_vm();
  276. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  277. struct page *page;
  278. #endif
  279. if (IS_ERR(kvm))
  280. goto out;
  281. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  282. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  283. if (!page) {
  284. kfree(kvm);
  285. return ERR_PTR(-ENOMEM);
  286. }
  287. kvm->coalesced_mmio_ring =
  288. (struct kvm_coalesced_mmio_ring *)page_address(page);
  289. #endif
  290. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  291. {
  292. int err;
  293. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  294. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  295. if (err) {
  296. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  297. put_page(page);
  298. #endif
  299. kfree(kvm);
  300. return ERR_PTR(err);
  301. }
  302. }
  303. #endif
  304. kvm->mm = current->mm;
  305. atomic_inc(&kvm->mm->mm_count);
  306. spin_lock_init(&kvm->mmu_lock);
  307. kvm_io_bus_init(&kvm->pio_bus);
  308. mutex_init(&kvm->lock);
  309. kvm_io_bus_init(&kvm->mmio_bus);
  310. init_rwsem(&kvm->slots_lock);
  311. atomic_set(&kvm->users_count, 1);
  312. spin_lock(&kvm_lock);
  313. list_add(&kvm->vm_list, &vm_list);
  314. spin_unlock(&kvm_lock);
  315. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  316. kvm_coalesced_mmio_init(kvm);
  317. #endif
  318. out:
  319. return kvm;
  320. }
  321. /*
  322. * Free any memory in @free but not in @dont.
  323. */
  324. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  325. struct kvm_memory_slot *dont)
  326. {
  327. if (!dont || free->rmap != dont->rmap)
  328. vfree(free->rmap);
  329. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  330. vfree(free->dirty_bitmap);
  331. if (!dont || free->lpage_info != dont->lpage_info)
  332. vfree(free->lpage_info);
  333. free->npages = 0;
  334. free->dirty_bitmap = NULL;
  335. free->rmap = NULL;
  336. free->lpage_info = NULL;
  337. }
  338. void kvm_free_physmem(struct kvm *kvm)
  339. {
  340. int i;
  341. for (i = 0; i < kvm->nmemslots; ++i)
  342. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  343. }
  344. static void kvm_destroy_vm(struct kvm *kvm)
  345. {
  346. struct mm_struct *mm = kvm->mm;
  347. spin_lock(&kvm_lock);
  348. list_del(&kvm->vm_list);
  349. spin_unlock(&kvm_lock);
  350. kvm_io_bus_destroy(&kvm->pio_bus);
  351. kvm_io_bus_destroy(&kvm->mmio_bus);
  352. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  353. if (kvm->coalesced_mmio_ring != NULL)
  354. free_page((unsigned long)kvm->coalesced_mmio_ring);
  355. #endif
  356. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  357. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  358. #endif
  359. kvm_arch_destroy_vm(kvm);
  360. mmdrop(mm);
  361. }
  362. void kvm_get_kvm(struct kvm *kvm)
  363. {
  364. atomic_inc(&kvm->users_count);
  365. }
  366. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  367. void kvm_put_kvm(struct kvm *kvm)
  368. {
  369. if (atomic_dec_and_test(&kvm->users_count))
  370. kvm_destroy_vm(kvm);
  371. }
  372. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  373. static int kvm_vm_release(struct inode *inode, struct file *filp)
  374. {
  375. struct kvm *kvm = filp->private_data;
  376. kvm_put_kvm(kvm);
  377. return 0;
  378. }
  379. /*
  380. * Allocate some memory and give it an address in the guest physical address
  381. * space.
  382. *
  383. * Discontiguous memory is allowed, mostly for framebuffers.
  384. *
  385. * Must be called holding mmap_sem for write.
  386. */
  387. int __kvm_set_memory_region(struct kvm *kvm,
  388. struct kvm_userspace_memory_region *mem,
  389. int user_alloc)
  390. {
  391. int r;
  392. gfn_t base_gfn;
  393. unsigned long npages;
  394. unsigned long i;
  395. struct kvm_memory_slot *memslot;
  396. struct kvm_memory_slot old, new;
  397. r = -EINVAL;
  398. /* General sanity checks */
  399. if (mem->memory_size & (PAGE_SIZE - 1))
  400. goto out;
  401. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  402. goto out;
  403. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  404. goto out;
  405. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  406. goto out;
  407. memslot = &kvm->memslots[mem->slot];
  408. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  409. npages = mem->memory_size >> PAGE_SHIFT;
  410. if (!npages)
  411. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  412. new = old = *memslot;
  413. new.base_gfn = base_gfn;
  414. new.npages = npages;
  415. new.flags = mem->flags;
  416. /* Disallow changing a memory slot's size. */
  417. r = -EINVAL;
  418. if (npages && old.npages && npages != old.npages)
  419. goto out_free;
  420. /* Check for overlaps */
  421. r = -EEXIST;
  422. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  423. struct kvm_memory_slot *s = &kvm->memslots[i];
  424. if (s == memslot)
  425. continue;
  426. if (!((base_gfn + npages <= s->base_gfn) ||
  427. (base_gfn >= s->base_gfn + s->npages)))
  428. goto out_free;
  429. }
  430. /* Free page dirty bitmap if unneeded */
  431. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  432. new.dirty_bitmap = NULL;
  433. r = -ENOMEM;
  434. /* Allocate if a slot is being created */
  435. #ifndef CONFIG_S390
  436. if (npages && !new.rmap) {
  437. new.rmap = vmalloc(npages * sizeof(struct page *));
  438. if (!new.rmap)
  439. goto out_free;
  440. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  441. new.user_alloc = user_alloc;
  442. /*
  443. * hva_to_rmmap() serialzies with the mmu_lock and to be
  444. * safe it has to ignore memslots with !user_alloc &&
  445. * !userspace_addr.
  446. */
  447. if (user_alloc)
  448. new.userspace_addr = mem->userspace_addr;
  449. else
  450. new.userspace_addr = 0;
  451. }
  452. if (npages && !new.lpage_info) {
  453. int largepages = npages / KVM_PAGES_PER_HPAGE;
  454. if (npages % KVM_PAGES_PER_HPAGE)
  455. largepages++;
  456. if (base_gfn % KVM_PAGES_PER_HPAGE)
  457. largepages++;
  458. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  459. if (!new.lpage_info)
  460. goto out_free;
  461. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  462. if (base_gfn % KVM_PAGES_PER_HPAGE)
  463. new.lpage_info[0].write_count = 1;
  464. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  465. new.lpage_info[largepages-1].write_count = 1;
  466. }
  467. /* Allocate page dirty bitmap if needed */
  468. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  469. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  470. new.dirty_bitmap = vmalloc(dirty_bytes);
  471. if (!new.dirty_bitmap)
  472. goto out_free;
  473. memset(new.dirty_bitmap, 0, dirty_bytes);
  474. }
  475. #endif /* not defined CONFIG_S390 */
  476. if (!npages)
  477. kvm_arch_flush_shadow(kvm);
  478. spin_lock(&kvm->mmu_lock);
  479. if (mem->slot >= kvm->nmemslots)
  480. kvm->nmemslots = mem->slot + 1;
  481. *memslot = new;
  482. spin_unlock(&kvm->mmu_lock);
  483. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  484. if (r) {
  485. spin_lock(&kvm->mmu_lock);
  486. *memslot = old;
  487. spin_unlock(&kvm->mmu_lock);
  488. goto out_free;
  489. }
  490. kvm_free_physmem_slot(&old, &new);
  491. /* map the pages in iommu page table */
  492. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  493. if (r)
  494. goto out;
  495. return 0;
  496. out_free:
  497. kvm_free_physmem_slot(&new, &old);
  498. out:
  499. return r;
  500. }
  501. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  502. int kvm_set_memory_region(struct kvm *kvm,
  503. struct kvm_userspace_memory_region *mem,
  504. int user_alloc)
  505. {
  506. int r;
  507. down_write(&kvm->slots_lock);
  508. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  509. up_write(&kvm->slots_lock);
  510. return r;
  511. }
  512. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  513. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  514. struct
  515. kvm_userspace_memory_region *mem,
  516. int user_alloc)
  517. {
  518. if (mem->slot >= KVM_MEMORY_SLOTS)
  519. return -EINVAL;
  520. return kvm_set_memory_region(kvm, mem, user_alloc);
  521. }
  522. int kvm_get_dirty_log(struct kvm *kvm,
  523. struct kvm_dirty_log *log, int *is_dirty)
  524. {
  525. struct kvm_memory_slot *memslot;
  526. int r, i;
  527. int n;
  528. unsigned long any = 0;
  529. r = -EINVAL;
  530. if (log->slot >= KVM_MEMORY_SLOTS)
  531. goto out;
  532. memslot = &kvm->memslots[log->slot];
  533. r = -ENOENT;
  534. if (!memslot->dirty_bitmap)
  535. goto out;
  536. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  537. for (i = 0; !any && i < n/sizeof(long); ++i)
  538. any = memslot->dirty_bitmap[i];
  539. r = -EFAULT;
  540. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  541. goto out;
  542. if (any)
  543. *is_dirty = 1;
  544. r = 0;
  545. out:
  546. return r;
  547. }
  548. int is_error_page(struct page *page)
  549. {
  550. return page == bad_page;
  551. }
  552. EXPORT_SYMBOL_GPL(is_error_page);
  553. int is_error_pfn(pfn_t pfn)
  554. {
  555. return pfn == bad_pfn;
  556. }
  557. EXPORT_SYMBOL_GPL(is_error_pfn);
  558. static inline unsigned long bad_hva(void)
  559. {
  560. return PAGE_OFFSET;
  561. }
  562. int kvm_is_error_hva(unsigned long addr)
  563. {
  564. return addr == bad_hva();
  565. }
  566. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  567. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  568. {
  569. int i;
  570. for (i = 0; i < kvm->nmemslots; ++i) {
  571. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  572. if (gfn >= memslot->base_gfn
  573. && gfn < memslot->base_gfn + memslot->npages)
  574. return memslot;
  575. }
  576. return NULL;
  577. }
  578. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  579. {
  580. gfn = unalias_gfn(kvm, gfn);
  581. return __gfn_to_memslot(kvm, gfn);
  582. }
  583. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  584. {
  585. int i;
  586. gfn = unalias_gfn(kvm, gfn);
  587. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  588. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  589. if (gfn >= memslot->base_gfn
  590. && gfn < memslot->base_gfn + memslot->npages)
  591. return 1;
  592. }
  593. return 0;
  594. }
  595. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  596. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  597. {
  598. struct kvm_memory_slot *slot;
  599. gfn = unalias_gfn(kvm, gfn);
  600. slot = __gfn_to_memslot(kvm, gfn);
  601. if (!slot)
  602. return bad_hva();
  603. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  604. }
  605. EXPORT_SYMBOL_GPL(gfn_to_hva);
  606. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  607. {
  608. struct page *page[1];
  609. unsigned long addr;
  610. int npages;
  611. pfn_t pfn;
  612. might_sleep();
  613. addr = gfn_to_hva(kvm, gfn);
  614. if (kvm_is_error_hva(addr)) {
  615. get_page(bad_page);
  616. return page_to_pfn(bad_page);
  617. }
  618. npages = get_user_pages_fast(addr, 1, 1, page);
  619. if (unlikely(npages != 1)) {
  620. struct vm_area_struct *vma;
  621. down_read(&current->mm->mmap_sem);
  622. vma = find_vma(current->mm, addr);
  623. if (vma == NULL || addr < vma->vm_start ||
  624. !(vma->vm_flags & VM_PFNMAP)) {
  625. up_read(&current->mm->mmap_sem);
  626. get_page(bad_page);
  627. return page_to_pfn(bad_page);
  628. }
  629. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  630. up_read(&current->mm->mmap_sem);
  631. BUG_ON(!is_mmio_pfn(pfn));
  632. } else
  633. pfn = page_to_pfn(page[0]);
  634. return pfn;
  635. }
  636. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  637. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  638. {
  639. pfn_t pfn;
  640. pfn = gfn_to_pfn(kvm, gfn);
  641. if (!is_mmio_pfn(pfn))
  642. return pfn_to_page(pfn);
  643. WARN_ON(is_mmio_pfn(pfn));
  644. get_page(bad_page);
  645. return bad_page;
  646. }
  647. EXPORT_SYMBOL_GPL(gfn_to_page);
  648. void kvm_release_page_clean(struct page *page)
  649. {
  650. kvm_release_pfn_clean(page_to_pfn(page));
  651. }
  652. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  653. void kvm_release_pfn_clean(pfn_t pfn)
  654. {
  655. if (!is_mmio_pfn(pfn))
  656. put_page(pfn_to_page(pfn));
  657. }
  658. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  659. void kvm_release_page_dirty(struct page *page)
  660. {
  661. kvm_release_pfn_dirty(page_to_pfn(page));
  662. }
  663. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  664. void kvm_release_pfn_dirty(pfn_t pfn)
  665. {
  666. kvm_set_pfn_dirty(pfn);
  667. kvm_release_pfn_clean(pfn);
  668. }
  669. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  670. void kvm_set_page_dirty(struct page *page)
  671. {
  672. kvm_set_pfn_dirty(page_to_pfn(page));
  673. }
  674. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  675. void kvm_set_pfn_dirty(pfn_t pfn)
  676. {
  677. if (!is_mmio_pfn(pfn)) {
  678. struct page *page = pfn_to_page(pfn);
  679. if (!PageReserved(page))
  680. SetPageDirty(page);
  681. }
  682. }
  683. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  684. void kvm_set_pfn_accessed(pfn_t pfn)
  685. {
  686. if (!is_mmio_pfn(pfn))
  687. mark_page_accessed(pfn_to_page(pfn));
  688. }
  689. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  690. void kvm_get_pfn(pfn_t pfn)
  691. {
  692. if (!is_mmio_pfn(pfn))
  693. get_page(pfn_to_page(pfn));
  694. }
  695. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  696. static int next_segment(unsigned long len, int offset)
  697. {
  698. if (len > PAGE_SIZE - offset)
  699. return PAGE_SIZE - offset;
  700. else
  701. return len;
  702. }
  703. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  704. int len)
  705. {
  706. int r;
  707. unsigned long addr;
  708. addr = gfn_to_hva(kvm, gfn);
  709. if (kvm_is_error_hva(addr))
  710. return -EFAULT;
  711. r = copy_from_user(data, (void __user *)addr + offset, len);
  712. if (r)
  713. return -EFAULT;
  714. return 0;
  715. }
  716. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  717. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  718. {
  719. gfn_t gfn = gpa >> PAGE_SHIFT;
  720. int seg;
  721. int offset = offset_in_page(gpa);
  722. int ret;
  723. while ((seg = next_segment(len, offset)) != 0) {
  724. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  725. if (ret < 0)
  726. return ret;
  727. offset = 0;
  728. len -= seg;
  729. data += seg;
  730. ++gfn;
  731. }
  732. return 0;
  733. }
  734. EXPORT_SYMBOL_GPL(kvm_read_guest);
  735. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  736. unsigned long len)
  737. {
  738. int r;
  739. unsigned long addr;
  740. gfn_t gfn = gpa >> PAGE_SHIFT;
  741. int offset = offset_in_page(gpa);
  742. addr = gfn_to_hva(kvm, gfn);
  743. if (kvm_is_error_hva(addr))
  744. return -EFAULT;
  745. pagefault_disable();
  746. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  747. pagefault_enable();
  748. if (r)
  749. return -EFAULT;
  750. return 0;
  751. }
  752. EXPORT_SYMBOL(kvm_read_guest_atomic);
  753. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  754. int offset, int len)
  755. {
  756. int r;
  757. unsigned long addr;
  758. addr = gfn_to_hva(kvm, gfn);
  759. if (kvm_is_error_hva(addr))
  760. return -EFAULT;
  761. r = copy_to_user((void __user *)addr + offset, data, len);
  762. if (r)
  763. return -EFAULT;
  764. mark_page_dirty(kvm, gfn);
  765. return 0;
  766. }
  767. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  768. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  769. unsigned long len)
  770. {
  771. gfn_t gfn = gpa >> PAGE_SHIFT;
  772. int seg;
  773. int offset = offset_in_page(gpa);
  774. int ret;
  775. while ((seg = next_segment(len, offset)) != 0) {
  776. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  777. if (ret < 0)
  778. return ret;
  779. offset = 0;
  780. len -= seg;
  781. data += seg;
  782. ++gfn;
  783. }
  784. return 0;
  785. }
  786. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  787. {
  788. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  789. }
  790. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  791. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  792. {
  793. gfn_t gfn = gpa >> PAGE_SHIFT;
  794. int seg;
  795. int offset = offset_in_page(gpa);
  796. int ret;
  797. while ((seg = next_segment(len, offset)) != 0) {
  798. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  799. if (ret < 0)
  800. return ret;
  801. offset = 0;
  802. len -= seg;
  803. ++gfn;
  804. }
  805. return 0;
  806. }
  807. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  808. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  809. {
  810. struct kvm_memory_slot *memslot;
  811. gfn = unalias_gfn(kvm, gfn);
  812. memslot = __gfn_to_memslot(kvm, gfn);
  813. if (memslot && memslot->dirty_bitmap) {
  814. unsigned long rel_gfn = gfn - memslot->base_gfn;
  815. /* avoid RMW */
  816. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  817. set_bit(rel_gfn, memslot->dirty_bitmap);
  818. }
  819. }
  820. /*
  821. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  822. */
  823. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  824. {
  825. DEFINE_WAIT(wait);
  826. for (;;) {
  827. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  828. if (kvm_cpu_has_interrupt(vcpu) ||
  829. kvm_cpu_has_pending_timer(vcpu) ||
  830. kvm_arch_vcpu_runnable(vcpu)) {
  831. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  832. break;
  833. }
  834. if (signal_pending(current))
  835. break;
  836. vcpu_put(vcpu);
  837. schedule();
  838. vcpu_load(vcpu);
  839. }
  840. finish_wait(&vcpu->wq, &wait);
  841. }
  842. void kvm_resched(struct kvm_vcpu *vcpu)
  843. {
  844. if (!need_resched())
  845. return;
  846. cond_resched();
  847. }
  848. EXPORT_SYMBOL_GPL(kvm_resched);
  849. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  850. {
  851. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  852. struct page *page;
  853. if (vmf->pgoff == 0)
  854. page = virt_to_page(vcpu->run);
  855. #ifdef CONFIG_X86
  856. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  857. page = virt_to_page(vcpu->arch.pio_data);
  858. #endif
  859. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  860. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  861. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  862. #endif
  863. else
  864. return VM_FAULT_SIGBUS;
  865. get_page(page);
  866. vmf->page = page;
  867. return 0;
  868. }
  869. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  870. .fault = kvm_vcpu_fault,
  871. };
  872. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  873. {
  874. vma->vm_ops = &kvm_vcpu_vm_ops;
  875. return 0;
  876. }
  877. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  878. {
  879. struct kvm_vcpu *vcpu = filp->private_data;
  880. kvm_put_kvm(vcpu->kvm);
  881. return 0;
  882. }
  883. static const struct file_operations kvm_vcpu_fops = {
  884. .release = kvm_vcpu_release,
  885. .unlocked_ioctl = kvm_vcpu_ioctl,
  886. .compat_ioctl = kvm_vcpu_ioctl,
  887. .mmap = kvm_vcpu_mmap,
  888. };
  889. /*
  890. * Allocates an inode for the vcpu.
  891. */
  892. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  893. {
  894. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  895. if (fd < 0)
  896. kvm_put_kvm(vcpu->kvm);
  897. return fd;
  898. }
  899. /*
  900. * Creates some virtual cpus. Good luck creating more than one.
  901. */
  902. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  903. {
  904. int r;
  905. struct kvm_vcpu *vcpu;
  906. if (!valid_vcpu(n))
  907. return -EINVAL;
  908. vcpu = kvm_arch_vcpu_create(kvm, n);
  909. if (IS_ERR(vcpu))
  910. return PTR_ERR(vcpu);
  911. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  912. r = kvm_arch_vcpu_setup(vcpu);
  913. if (r)
  914. return r;
  915. mutex_lock(&kvm->lock);
  916. if (kvm->vcpus[n]) {
  917. r = -EEXIST;
  918. goto vcpu_destroy;
  919. }
  920. kvm->vcpus[n] = vcpu;
  921. mutex_unlock(&kvm->lock);
  922. /* Now it's all set up, let userspace reach it */
  923. kvm_get_kvm(kvm);
  924. r = create_vcpu_fd(vcpu);
  925. if (r < 0)
  926. goto unlink;
  927. return r;
  928. unlink:
  929. mutex_lock(&kvm->lock);
  930. kvm->vcpus[n] = NULL;
  931. vcpu_destroy:
  932. mutex_unlock(&kvm->lock);
  933. kvm_arch_vcpu_destroy(vcpu);
  934. return r;
  935. }
  936. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  937. {
  938. if (sigset) {
  939. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  940. vcpu->sigset_active = 1;
  941. vcpu->sigset = *sigset;
  942. } else
  943. vcpu->sigset_active = 0;
  944. return 0;
  945. }
  946. static long kvm_vcpu_ioctl(struct file *filp,
  947. unsigned int ioctl, unsigned long arg)
  948. {
  949. struct kvm_vcpu *vcpu = filp->private_data;
  950. void __user *argp = (void __user *)arg;
  951. int r;
  952. struct kvm_fpu *fpu = NULL;
  953. struct kvm_sregs *kvm_sregs = NULL;
  954. if (vcpu->kvm->mm != current->mm)
  955. return -EIO;
  956. switch (ioctl) {
  957. case KVM_RUN:
  958. r = -EINVAL;
  959. if (arg)
  960. goto out;
  961. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  962. break;
  963. case KVM_GET_REGS: {
  964. struct kvm_regs *kvm_regs;
  965. r = -ENOMEM;
  966. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  967. if (!kvm_regs)
  968. goto out;
  969. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  970. if (r)
  971. goto out_free1;
  972. r = -EFAULT;
  973. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  974. goto out_free1;
  975. r = 0;
  976. out_free1:
  977. kfree(kvm_regs);
  978. break;
  979. }
  980. case KVM_SET_REGS: {
  981. struct kvm_regs *kvm_regs;
  982. r = -ENOMEM;
  983. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  984. if (!kvm_regs)
  985. goto out;
  986. r = -EFAULT;
  987. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  988. goto out_free2;
  989. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  990. if (r)
  991. goto out_free2;
  992. r = 0;
  993. out_free2:
  994. kfree(kvm_regs);
  995. break;
  996. }
  997. case KVM_GET_SREGS: {
  998. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  999. r = -ENOMEM;
  1000. if (!kvm_sregs)
  1001. goto out;
  1002. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1003. if (r)
  1004. goto out;
  1005. r = -EFAULT;
  1006. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1007. goto out;
  1008. r = 0;
  1009. break;
  1010. }
  1011. case KVM_SET_SREGS: {
  1012. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1013. r = -ENOMEM;
  1014. if (!kvm_sregs)
  1015. goto out;
  1016. r = -EFAULT;
  1017. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1018. goto out;
  1019. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1020. if (r)
  1021. goto out;
  1022. r = 0;
  1023. break;
  1024. }
  1025. case KVM_GET_MP_STATE: {
  1026. struct kvm_mp_state mp_state;
  1027. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1028. if (r)
  1029. goto out;
  1030. r = -EFAULT;
  1031. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1032. goto out;
  1033. r = 0;
  1034. break;
  1035. }
  1036. case KVM_SET_MP_STATE: {
  1037. struct kvm_mp_state mp_state;
  1038. r = -EFAULT;
  1039. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1040. goto out;
  1041. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1042. if (r)
  1043. goto out;
  1044. r = 0;
  1045. break;
  1046. }
  1047. case KVM_TRANSLATE: {
  1048. struct kvm_translation tr;
  1049. r = -EFAULT;
  1050. if (copy_from_user(&tr, argp, sizeof tr))
  1051. goto out;
  1052. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1053. if (r)
  1054. goto out;
  1055. r = -EFAULT;
  1056. if (copy_to_user(argp, &tr, sizeof tr))
  1057. goto out;
  1058. r = 0;
  1059. break;
  1060. }
  1061. case KVM_DEBUG_GUEST: {
  1062. struct kvm_debug_guest dbg;
  1063. r = -EFAULT;
  1064. if (copy_from_user(&dbg, argp, sizeof dbg))
  1065. goto out;
  1066. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  1067. if (r)
  1068. goto out;
  1069. r = 0;
  1070. break;
  1071. }
  1072. case KVM_SET_SIGNAL_MASK: {
  1073. struct kvm_signal_mask __user *sigmask_arg = argp;
  1074. struct kvm_signal_mask kvm_sigmask;
  1075. sigset_t sigset, *p;
  1076. p = NULL;
  1077. if (argp) {
  1078. r = -EFAULT;
  1079. if (copy_from_user(&kvm_sigmask, argp,
  1080. sizeof kvm_sigmask))
  1081. goto out;
  1082. r = -EINVAL;
  1083. if (kvm_sigmask.len != sizeof sigset)
  1084. goto out;
  1085. r = -EFAULT;
  1086. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1087. sizeof sigset))
  1088. goto out;
  1089. p = &sigset;
  1090. }
  1091. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1092. break;
  1093. }
  1094. case KVM_GET_FPU: {
  1095. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1096. r = -ENOMEM;
  1097. if (!fpu)
  1098. goto out;
  1099. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1100. if (r)
  1101. goto out;
  1102. r = -EFAULT;
  1103. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1104. goto out;
  1105. r = 0;
  1106. break;
  1107. }
  1108. case KVM_SET_FPU: {
  1109. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1110. r = -ENOMEM;
  1111. if (!fpu)
  1112. goto out;
  1113. r = -EFAULT;
  1114. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1115. goto out;
  1116. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1117. if (r)
  1118. goto out;
  1119. r = 0;
  1120. break;
  1121. }
  1122. default:
  1123. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1124. }
  1125. out:
  1126. kfree(fpu);
  1127. kfree(kvm_sregs);
  1128. return r;
  1129. }
  1130. static long kvm_vm_ioctl(struct file *filp,
  1131. unsigned int ioctl, unsigned long arg)
  1132. {
  1133. struct kvm *kvm = filp->private_data;
  1134. void __user *argp = (void __user *)arg;
  1135. int r;
  1136. if (kvm->mm != current->mm)
  1137. return -EIO;
  1138. switch (ioctl) {
  1139. case KVM_CREATE_VCPU:
  1140. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1141. if (r < 0)
  1142. goto out;
  1143. break;
  1144. case KVM_SET_USER_MEMORY_REGION: {
  1145. struct kvm_userspace_memory_region kvm_userspace_mem;
  1146. r = -EFAULT;
  1147. if (copy_from_user(&kvm_userspace_mem, argp,
  1148. sizeof kvm_userspace_mem))
  1149. goto out;
  1150. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1151. if (r)
  1152. goto out;
  1153. break;
  1154. }
  1155. case KVM_GET_DIRTY_LOG: {
  1156. struct kvm_dirty_log log;
  1157. r = -EFAULT;
  1158. if (copy_from_user(&log, argp, sizeof log))
  1159. goto out;
  1160. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1161. if (r)
  1162. goto out;
  1163. break;
  1164. }
  1165. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1166. case KVM_REGISTER_COALESCED_MMIO: {
  1167. struct kvm_coalesced_mmio_zone zone;
  1168. r = -EFAULT;
  1169. if (copy_from_user(&zone, argp, sizeof zone))
  1170. goto out;
  1171. r = -ENXIO;
  1172. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1173. if (r)
  1174. goto out;
  1175. r = 0;
  1176. break;
  1177. }
  1178. case KVM_UNREGISTER_COALESCED_MMIO: {
  1179. struct kvm_coalesced_mmio_zone zone;
  1180. r = -EFAULT;
  1181. if (copy_from_user(&zone, argp, sizeof zone))
  1182. goto out;
  1183. r = -ENXIO;
  1184. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1185. if (r)
  1186. goto out;
  1187. r = 0;
  1188. break;
  1189. }
  1190. #endif
  1191. default:
  1192. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1193. }
  1194. out:
  1195. return r;
  1196. }
  1197. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1198. {
  1199. struct page *page[1];
  1200. unsigned long addr;
  1201. int npages;
  1202. gfn_t gfn = vmf->pgoff;
  1203. struct kvm *kvm = vma->vm_file->private_data;
  1204. addr = gfn_to_hva(kvm, gfn);
  1205. if (kvm_is_error_hva(addr))
  1206. return VM_FAULT_SIGBUS;
  1207. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1208. NULL);
  1209. if (unlikely(npages != 1))
  1210. return VM_FAULT_SIGBUS;
  1211. vmf->page = page[0];
  1212. return 0;
  1213. }
  1214. static struct vm_operations_struct kvm_vm_vm_ops = {
  1215. .fault = kvm_vm_fault,
  1216. };
  1217. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1218. {
  1219. vma->vm_ops = &kvm_vm_vm_ops;
  1220. return 0;
  1221. }
  1222. static const struct file_operations kvm_vm_fops = {
  1223. .release = kvm_vm_release,
  1224. .unlocked_ioctl = kvm_vm_ioctl,
  1225. .compat_ioctl = kvm_vm_ioctl,
  1226. .mmap = kvm_vm_mmap,
  1227. };
  1228. static int kvm_dev_ioctl_create_vm(void)
  1229. {
  1230. int fd;
  1231. struct kvm *kvm;
  1232. kvm = kvm_create_vm();
  1233. if (IS_ERR(kvm))
  1234. return PTR_ERR(kvm);
  1235. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1236. if (fd < 0)
  1237. kvm_put_kvm(kvm);
  1238. return fd;
  1239. }
  1240. static long kvm_dev_ioctl(struct file *filp,
  1241. unsigned int ioctl, unsigned long arg)
  1242. {
  1243. long r = -EINVAL;
  1244. switch (ioctl) {
  1245. case KVM_GET_API_VERSION:
  1246. r = -EINVAL;
  1247. if (arg)
  1248. goto out;
  1249. r = KVM_API_VERSION;
  1250. break;
  1251. case KVM_CREATE_VM:
  1252. r = -EINVAL;
  1253. if (arg)
  1254. goto out;
  1255. r = kvm_dev_ioctl_create_vm();
  1256. break;
  1257. case KVM_CHECK_EXTENSION:
  1258. r = kvm_dev_ioctl_check_extension(arg);
  1259. break;
  1260. case KVM_GET_VCPU_MMAP_SIZE:
  1261. r = -EINVAL;
  1262. if (arg)
  1263. goto out;
  1264. r = PAGE_SIZE; /* struct kvm_run */
  1265. #ifdef CONFIG_X86
  1266. r += PAGE_SIZE; /* pio data page */
  1267. #endif
  1268. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1269. r += PAGE_SIZE; /* coalesced mmio ring page */
  1270. #endif
  1271. break;
  1272. case KVM_TRACE_ENABLE:
  1273. case KVM_TRACE_PAUSE:
  1274. case KVM_TRACE_DISABLE:
  1275. r = kvm_trace_ioctl(ioctl, arg);
  1276. break;
  1277. default:
  1278. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1279. }
  1280. out:
  1281. return r;
  1282. }
  1283. static struct file_operations kvm_chardev_ops = {
  1284. .unlocked_ioctl = kvm_dev_ioctl,
  1285. .compat_ioctl = kvm_dev_ioctl,
  1286. };
  1287. static struct miscdevice kvm_dev = {
  1288. KVM_MINOR,
  1289. "kvm",
  1290. &kvm_chardev_ops,
  1291. };
  1292. static void hardware_enable(void *junk)
  1293. {
  1294. int cpu = raw_smp_processor_id();
  1295. if (cpu_isset(cpu, cpus_hardware_enabled))
  1296. return;
  1297. cpu_set(cpu, cpus_hardware_enabled);
  1298. kvm_arch_hardware_enable(NULL);
  1299. }
  1300. static void hardware_disable(void *junk)
  1301. {
  1302. int cpu = raw_smp_processor_id();
  1303. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1304. return;
  1305. cpu_clear(cpu, cpus_hardware_enabled);
  1306. kvm_arch_hardware_disable(NULL);
  1307. }
  1308. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1309. void *v)
  1310. {
  1311. int cpu = (long)v;
  1312. val &= ~CPU_TASKS_FROZEN;
  1313. switch (val) {
  1314. case CPU_DYING:
  1315. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1316. cpu);
  1317. hardware_disable(NULL);
  1318. break;
  1319. case CPU_UP_CANCELED:
  1320. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1321. cpu);
  1322. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1323. break;
  1324. case CPU_ONLINE:
  1325. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1326. cpu);
  1327. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1328. break;
  1329. }
  1330. return NOTIFY_OK;
  1331. }
  1332. asmlinkage void kvm_handle_fault_on_reboot(void)
  1333. {
  1334. if (kvm_rebooting)
  1335. /* spin while reset goes on */
  1336. while (true)
  1337. ;
  1338. /* Fault while not rebooting. We want the trace. */
  1339. BUG();
  1340. }
  1341. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1342. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1343. void *v)
  1344. {
  1345. if (val == SYS_RESTART) {
  1346. /*
  1347. * Some (well, at least mine) BIOSes hang on reboot if
  1348. * in vmx root mode.
  1349. */
  1350. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1351. kvm_rebooting = true;
  1352. on_each_cpu(hardware_disable, NULL, 1);
  1353. }
  1354. return NOTIFY_OK;
  1355. }
  1356. static struct notifier_block kvm_reboot_notifier = {
  1357. .notifier_call = kvm_reboot,
  1358. .priority = 0,
  1359. };
  1360. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1361. {
  1362. memset(bus, 0, sizeof(*bus));
  1363. }
  1364. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1365. {
  1366. int i;
  1367. for (i = 0; i < bus->dev_count; i++) {
  1368. struct kvm_io_device *pos = bus->devs[i];
  1369. kvm_iodevice_destructor(pos);
  1370. }
  1371. }
  1372. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  1373. gpa_t addr, int len, int is_write)
  1374. {
  1375. int i;
  1376. for (i = 0; i < bus->dev_count; i++) {
  1377. struct kvm_io_device *pos = bus->devs[i];
  1378. if (pos->in_range(pos, addr, len, is_write))
  1379. return pos;
  1380. }
  1381. return NULL;
  1382. }
  1383. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1384. {
  1385. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1386. bus->devs[bus->dev_count++] = dev;
  1387. }
  1388. static struct notifier_block kvm_cpu_notifier = {
  1389. .notifier_call = kvm_cpu_hotplug,
  1390. .priority = 20, /* must be > scheduler priority */
  1391. };
  1392. static int vm_stat_get(void *_offset, u64 *val)
  1393. {
  1394. unsigned offset = (long)_offset;
  1395. struct kvm *kvm;
  1396. *val = 0;
  1397. spin_lock(&kvm_lock);
  1398. list_for_each_entry(kvm, &vm_list, vm_list)
  1399. *val += *(u32 *)((void *)kvm + offset);
  1400. spin_unlock(&kvm_lock);
  1401. return 0;
  1402. }
  1403. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1404. static int vcpu_stat_get(void *_offset, u64 *val)
  1405. {
  1406. unsigned offset = (long)_offset;
  1407. struct kvm *kvm;
  1408. struct kvm_vcpu *vcpu;
  1409. int i;
  1410. *val = 0;
  1411. spin_lock(&kvm_lock);
  1412. list_for_each_entry(kvm, &vm_list, vm_list)
  1413. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1414. vcpu = kvm->vcpus[i];
  1415. if (vcpu)
  1416. *val += *(u32 *)((void *)vcpu + offset);
  1417. }
  1418. spin_unlock(&kvm_lock);
  1419. return 0;
  1420. }
  1421. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1422. static struct file_operations *stat_fops[] = {
  1423. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1424. [KVM_STAT_VM] = &vm_stat_fops,
  1425. };
  1426. static void kvm_init_debug(void)
  1427. {
  1428. struct kvm_stats_debugfs_item *p;
  1429. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1430. for (p = debugfs_entries; p->name; ++p)
  1431. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1432. (void *)(long)p->offset,
  1433. stat_fops[p->kind]);
  1434. }
  1435. static void kvm_exit_debug(void)
  1436. {
  1437. struct kvm_stats_debugfs_item *p;
  1438. for (p = debugfs_entries; p->name; ++p)
  1439. debugfs_remove(p->dentry);
  1440. debugfs_remove(kvm_debugfs_dir);
  1441. }
  1442. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1443. {
  1444. hardware_disable(NULL);
  1445. return 0;
  1446. }
  1447. static int kvm_resume(struct sys_device *dev)
  1448. {
  1449. hardware_enable(NULL);
  1450. return 0;
  1451. }
  1452. static struct sysdev_class kvm_sysdev_class = {
  1453. .name = "kvm",
  1454. .suspend = kvm_suspend,
  1455. .resume = kvm_resume,
  1456. };
  1457. static struct sys_device kvm_sysdev = {
  1458. .id = 0,
  1459. .cls = &kvm_sysdev_class,
  1460. };
  1461. struct page *bad_page;
  1462. pfn_t bad_pfn;
  1463. static inline
  1464. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1465. {
  1466. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1467. }
  1468. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1469. {
  1470. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1471. kvm_arch_vcpu_load(vcpu, cpu);
  1472. }
  1473. static void kvm_sched_out(struct preempt_notifier *pn,
  1474. struct task_struct *next)
  1475. {
  1476. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1477. kvm_arch_vcpu_put(vcpu);
  1478. }
  1479. int kvm_init(void *opaque, unsigned int vcpu_size,
  1480. struct module *module)
  1481. {
  1482. int r;
  1483. int cpu;
  1484. kvm_init_debug();
  1485. r = kvm_arch_init(opaque);
  1486. if (r)
  1487. goto out_fail;
  1488. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1489. if (bad_page == NULL) {
  1490. r = -ENOMEM;
  1491. goto out;
  1492. }
  1493. bad_pfn = page_to_pfn(bad_page);
  1494. r = kvm_arch_hardware_setup();
  1495. if (r < 0)
  1496. goto out_free_0;
  1497. for_each_online_cpu(cpu) {
  1498. smp_call_function_single(cpu,
  1499. kvm_arch_check_processor_compat,
  1500. &r, 1);
  1501. if (r < 0)
  1502. goto out_free_1;
  1503. }
  1504. on_each_cpu(hardware_enable, NULL, 1);
  1505. r = register_cpu_notifier(&kvm_cpu_notifier);
  1506. if (r)
  1507. goto out_free_2;
  1508. register_reboot_notifier(&kvm_reboot_notifier);
  1509. r = sysdev_class_register(&kvm_sysdev_class);
  1510. if (r)
  1511. goto out_free_3;
  1512. r = sysdev_register(&kvm_sysdev);
  1513. if (r)
  1514. goto out_free_4;
  1515. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1516. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1517. __alignof__(struct kvm_vcpu),
  1518. 0, NULL);
  1519. if (!kvm_vcpu_cache) {
  1520. r = -ENOMEM;
  1521. goto out_free_5;
  1522. }
  1523. kvm_chardev_ops.owner = module;
  1524. r = misc_register(&kvm_dev);
  1525. if (r) {
  1526. printk(KERN_ERR "kvm: misc device register failed\n");
  1527. goto out_free;
  1528. }
  1529. kvm_preempt_ops.sched_in = kvm_sched_in;
  1530. kvm_preempt_ops.sched_out = kvm_sched_out;
  1531. return 0;
  1532. out_free:
  1533. kmem_cache_destroy(kvm_vcpu_cache);
  1534. out_free_5:
  1535. sysdev_unregister(&kvm_sysdev);
  1536. out_free_4:
  1537. sysdev_class_unregister(&kvm_sysdev_class);
  1538. out_free_3:
  1539. unregister_reboot_notifier(&kvm_reboot_notifier);
  1540. unregister_cpu_notifier(&kvm_cpu_notifier);
  1541. out_free_2:
  1542. on_each_cpu(hardware_disable, NULL, 1);
  1543. out_free_1:
  1544. kvm_arch_hardware_unsetup();
  1545. out_free_0:
  1546. __free_page(bad_page);
  1547. out:
  1548. kvm_arch_exit();
  1549. kvm_exit_debug();
  1550. out_fail:
  1551. return r;
  1552. }
  1553. EXPORT_SYMBOL_GPL(kvm_init);
  1554. void kvm_exit(void)
  1555. {
  1556. kvm_trace_cleanup();
  1557. misc_deregister(&kvm_dev);
  1558. kmem_cache_destroy(kvm_vcpu_cache);
  1559. sysdev_unregister(&kvm_sysdev);
  1560. sysdev_class_unregister(&kvm_sysdev_class);
  1561. unregister_reboot_notifier(&kvm_reboot_notifier);
  1562. unregister_cpu_notifier(&kvm_cpu_notifier);
  1563. on_each_cpu(hardware_disable, NULL, 1);
  1564. kvm_arch_hardware_unsetup();
  1565. kvm_arch_exit();
  1566. kvm_exit_debug();
  1567. __free_page(bad_page);
  1568. }
  1569. EXPORT_SYMBOL_GPL(kvm_exit);