evlist.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116
  1. /*
  2. * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
  3. *
  4. * Parts came from builtin-{top,stat,record}.c, see those files for further
  5. * copyright notes.
  6. *
  7. * Released under the GPL v2. (and only v2, not any later version)
  8. */
  9. #include "util.h"
  10. #include <lk/debugfs.h>
  11. #include <poll.h>
  12. #include "cpumap.h"
  13. #include "thread_map.h"
  14. #include "target.h"
  15. #include "evlist.h"
  16. #include "evsel.h"
  17. #include "debug.h"
  18. #include <unistd.h>
  19. #include "parse-events.h"
  20. #include "parse-options.h"
  21. #include <sys/mman.h>
  22. #include <linux/bitops.h>
  23. #include <linux/hash.h>
  24. #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
  25. #define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
  26. void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
  27. struct thread_map *threads)
  28. {
  29. int i;
  30. for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
  31. INIT_HLIST_HEAD(&evlist->heads[i]);
  32. INIT_LIST_HEAD(&evlist->entries);
  33. perf_evlist__set_maps(evlist, cpus, threads);
  34. evlist->workload.pid = -1;
  35. }
  36. struct perf_evlist *perf_evlist__new(void)
  37. {
  38. struct perf_evlist *evlist = zalloc(sizeof(*evlist));
  39. if (evlist != NULL)
  40. perf_evlist__init(evlist, NULL, NULL);
  41. return evlist;
  42. }
  43. /**
  44. * perf_evlist__set_id_pos - set the positions of event ids.
  45. * @evlist: selected event list
  46. *
  47. * Events with compatible sample types all have the same id_pos
  48. * and is_pos. For convenience, put a copy on evlist.
  49. */
  50. void perf_evlist__set_id_pos(struct perf_evlist *evlist)
  51. {
  52. struct perf_evsel *first = perf_evlist__first(evlist);
  53. evlist->id_pos = first->id_pos;
  54. evlist->is_pos = first->is_pos;
  55. }
  56. static void perf_evlist__update_id_pos(struct perf_evlist *evlist)
  57. {
  58. struct perf_evsel *evsel;
  59. list_for_each_entry(evsel, &evlist->entries, node)
  60. perf_evsel__calc_id_pos(evsel);
  61. perf_evlist__set_id_pos(evlist);
  62. }
  63. static void perf_evlist__purge(struct perf_evlist *evlist)
  64. {
  65. struct perf_evsel *pos, *n;
  66. list_for_each_entry_safe(pos, n, &evlist->entries, node) {
  67. list_del_init(&pos->node);
  68. perf_evsel__delete(pos);
  69. }
  70. evlist->nr_entries = 0;
  71. }
  72. void perf_evlist__exit(struct perf_evlist *evlist)
  73. {
  74. free(evlist->mmap);
  75. free(evlist->pollfd);
  76. evlist->mmap = NULL;
  77. evlist->pollfd = NULL;
  78. }
  79. void perf_evlist__delete(struct perf_evlist *evlist)
  80. {
  81. perf_evlist__purge(evlist);
  82. perf_evlist__exit(evlist);
  83. free(evlist);
  84. }
  85. void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
  86. {
  87. list_add_tail(&entry->node, &evlist->entries);
  88. if (!evlist->nr_entries++)
  89. perf_evlist__set_id_pos(evlist);
  90. }
  91. void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
  92. struct list_head *list,
  93. int nr_entries)
  94. {
  95. bool set_id_pos = !evlist->nr_entries;
  96. list_splice_tail(list, &evlist->entries);
  97. evlist->nr_entries += nr_entries;
  98. if (set_id_pos)
  99. perf_evlist__set_id_pos(evlist);
  100. }
  101. void __perf_evlist__set_leader(struct list_head *list)
  102. {
  103. struct perf_evsel *evsel, *leader;
  104. leader = list_entry(list->next, struct perf_evsel, node);
  105. evsel = list_entry(list->prev, struct perf_evsel, node);
  106. leader->nr_members = evsel->idx - leader->idx + 1;
  107. list_for_each_entry(evsel, list, node) {
  108. evsel->leader = leader;
  109. }
  110. }
  111. void perf_evlist__set_leader(struct perf_evlist *evlist)
  112. {
  113. if (evlist->nr_entries) {
  114. evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0;
  115. __perf_evlist__set_leader(&evlist->entries);
  116. }
  117. }
  118. int perf_evlist__add_default(struct perf_evlist *evlist)
  119. {
  120. struct perf_event_attr attr = {
  121. .type = PERF_TYPE_HARDWARE,
  122. .config = PERF_COUNT_HW_CPU_CYCLES,
  123. };
  124. struct perf_evsel *evsel;
  125. event_attr_init(&attr);
  126. evsel = perf_evsel__new(&attr, 0);
  127. if (evsel == NULL)
  128. goto error;
  129. /* use strdup() because free(evsel) assumes name is allocated */
  130. evsel->name = strdup("cycles");
  131. if (!evsel->name)
  132. goto error_free;
  133. perf_evlist__add(evlist, evsel);
  134. return 0;
  135. error_free:
  136. perf_evsel__delete(evsel);
  137. error:
  138. return -ENOMEM;
  139. }
  140. static int perf_evlist__add_attrs(struct perf_evlist *evlist,
  141. struct perf_event_attr *attrs, size_t nr_attrs)
  142. {
  143. struct perf_evsel *evsel, *n;
  144. LIST_HEAD(head);
  145. size_t i;
  146. for (i = 0; i < nr_attrs; i++) {
  147. evsel = perf_evsel__new(attrs + i, evlist->nr_entries + i);
  148. if (evsel == NULL)
  149. goto out_delete_partial_list;
  150. list_add_tail(&evsel->node, &head);
  151. }
  152. perf_evlist__splice_list_tail(evlist, &head, nr_attrs);
  153. return 0;
  154. out_delete_partial_list:
  155. list_for_each_entry_safe(evsel, n, &head, node)
  156. perf_evsel__delete(evsel);
  157. return -1;
  158. }
  159. int __perf_evlist__add_default_attrs(struct perf_evlist *evlist,
  160. struct perf_event_attr *attrs, size_t nr_attrs)
  161. {
  162. size_t i;
  163. for (i = 0; i < nr_attrs; i++)
  164. event_attr_init(attrs + i);
  165. return perf_evlist__add_attrs(evlist, attrs, nr_attrs);
  166. }
  167. struct perf_evsel *
  168. perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
  169. {
  170. struct perf_evsel *evsel;
  171. list_for_each_entry(evsel, &evlist->entries, node) {
  172. if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
  173. (int)evsel->attr.config == id)
  174. return evsel;
  175. }
  176. return NULL;
  177. }
  178. struct perf_evsel *
  179. perf_evlist__find_tracepoint_by_name(struct perf_evlist *evlist,
  180. const char *name)
  181. {
  182. struct perf_evsel *evsel;
  183. list_for_each_entry(evsel, &evlist->entries, node) {
  184. if ((evsel->attr.type == PERF_TYPE_TRACEPOINT) &&
  185. (strcmp(evsel->name, name) == 0))
  186. return evsel;
  187. }
  188. return NULL;
  189. }
  190. int perf_evlist__add_newtp(struct perf_evlist *evlist,
  191. const char *sys, const char *name, void *handler)
  192. {
  193. struct perf_evsel *evsel;
  194. evsel = perf_evsel__newtp(sys, name, evlist->nr_entries);
  195. if (evsel == NULL)
  196. return -1;
  197. evsel->handler.func = handler;
  198. perf_evlist__add(evlist, evsel);
  199. return 0;
  200. }
  201. void perf_evlist__disable(struct perf_evlist *evlist)
  202. {
  203. int cpu, thread;
  204. struct perf_evsel *pos;
  205. int nr_cpus = cpu_map__nr(evlist->cpus);
  206. int nr_threads = thread_map__nr(evlist->threads);
  207. for (cpu = 0; cpu < nr_cpus; cpu++) {
  208. list_for_each_entry(pos, &evlist->entries, node) {
  209. if (!perf_evsel__is_group_leader(pos) || !pos->fd)
  210. continue;
  211. for (thread = 0; thread < nr_threads; thread++)
  212. ioctl(FD(pos, cpu, thread),
  213. PERF_EVENT_IOC_DISABLE, 0);
  214. }
  215. }
  216. }
  217. void perf_evlist__enable(struct perf_evlist *evlist)
  218. {
  219. int cpu, thread;
  220. struct perf_evsel *pos;
  221. int nr_cpus = cpu_map__nr(evlist->cpus);
  222. int nr_threads = thread_map__nr(evlist->threads);
  223. for (cpu = 0; cpu < nr_cpus; cpu++) {
  224. list_for_each_entry(pos, &evlist->entries, node) {
  225. if (!perf_evsel__is_group_leader(pos) || !pos->fd)
  226. continue;
  227. for (thread = 0; thread < nr_threads; thread++)
  228. ioctl(FD(pos, cpu, thread),
  229. PERF_EVENT_IOC_ENABLE, 0);
  230. }
  231. }
  232. }
  233. int perf_evlist__disable_event(struct perf_evlist *evlist,
  234. struct perf_evsel *evsel)
  235. {
  236. int cpu, thread, err;
  237. if (!evsel->fd)
  238. return 0;
  239. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  240. for (thread = 0; thread < evlist->threads->nr; thread++) {
  241. err = ioctl(FD(evsel, cpu, thread),
  242. PERF_EVENT_IOC_DISABLE, 0);
  243. if (err)
  244. return err;
  245. }
  246. }
  247. return 0;
  248. }
  249. int perf_evlist__enable_event(struct perf_evlist *evlist,
  250. struct perf_evsel *evsel)
  251. {
  252. int cpu, thread, err;
  253. if (!evsel->fd)
  254. return -EINVAL;
  255. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  256. for (thread = 0; thread < evlist->threads->nr; thread++) {
  257. err = ioctl(FD(evsel, cpu, thread),
  258. PERF_EVENT_IOC_ENABLE, 0);
  259. if (err)
  260. return err;
  261. }
  262. }
  263. return 0;
  264. }
  265. static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
  266. {
  267. int nr_cpus = cpu_map__nr(evlist->cpus);
  268. int nr_threads = thread_map__nr(evlist->threads);
  269. int nfds = nr_cpus * nr_threads * evlist->nr_entries;
  270. evlist->pollfd = malloc(sizeof(struct pollfd) * nfds);
  271. return evlist->pollfd != NULL ? 0 : -ENOMEM;
  272. }
  273. void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
  274. {
  275. fcntl(fd, F_SETFL, O_NONBLOCK);
  276. evlist->pollfd[evlist->nr_fds].fd = fd;
  277. evlist->pollfd[evlist->nr_fds].events = POLLIN;
  278. evlist->nr_fds++;
  279. }
  280. static void perf_evlist__id_hash(struct perf_evlist *evlist,
  281. struct perf_evsel *evsel,
  282. int cpu, int thread, u64 id)
  283. {
  284. int hash;
  285. struct perf_sample_id *sid = SID(evsel, cpu, thread);
  286. sid->id = id;
  287. sid->evsel = evsel;
  288. hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
  289. hlist_add_head(&sid->node, &evlist->heads[hash]);
  290. }
  291. void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
  292. int cpu, int thread, u64 id)
  293. {
  294. perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
  295. evsel->id[evsel->ids++] = id;
  296. }
  297. static int perf_evlist__id_add_fd(struct perf_evlist *evlist,
  298. struct perf_evsel *evsel,
  299. int cpu, int thread, int fd)
  300. {
  301. u64 read_data[4] = { 0, };
  302. int id_idx = 1; /* The first entry is the counter value */
  303. u64 id;
  304. int ret;
  305. ret = ioctl(fd, PERF_EVENT_IOC_ID, &id);
  306. if (!ret)
  307. goto add;
  308. if (errno != ENOTTY)
  309. return -1;
  310. /* Legacy way to get event id.. All hail to old kernels! */
  311. /*
  312. * This way does not work with group format read, so bail
  313. * out in that case.
  314. */
  315. if (perf_evlist__read_format(evlist) & PERF_FORMAT_GROUP)
  316. return -1;
  317. if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
  318. read(fd, &read_data, sizeof(read_data)) == -1)
  319. return -1;
  320. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  321. ++id_idx;
  322. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  323. ++id_idx;
  324. id = read_data[id_idx];
  325. add:
  326. perf_evlist__id_add(evlist, evsel, cpu, thread, id);
  327. return 0;
  328. }
  329. struct perf_sample_id *perf_evlist__id2sid(struct perf_evlist *evlist, u64 id)
  330. {
  331. struct hlist_head *head;
  332. struct perf_sample_id *sid;
  333. int hash;
  334. hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
  335. head = &evlist->heads[hash];
  336. hlist_for_each_entry(sid, head, node)
  337. if (sid->id == id)
  338. return sid;
  339. return NULL;
  340. }
  341. struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
  342. {
  343. struct perf_sample_id *sid;
  344. if (evlist->nr_entries == 1)
  345. return perf_evlist__first(evlist);
  346. sid = perf_evlist__id2sid(evlist, id);
  347. if (sid)
  348. return sid->evsel;
  349. if (!perf_evlist__sample_id_all(evlist))
  350. return perf_evlist__first(evlist);
  351. return NULL;
  352. }
  353. static int perf_evlist__event2id(struct perf_evlist *evlist,
  354. union perf_event *event, u64 *id)
  355. {
  356. const u64 *array = event->sample.array;
  357. ssize_t n;
  358. n = (event->header.size - sizeof(event->header)) >> 3;
  359. if (event->header.type == PERF_RECORD_SAMPLE) {
  360. if (evlist->id_pos >= n)
  361. return -1;
  362. *id = array[evlist->id_pos];
  363. } else {
  364. if (evlist->is_pos > n)
  365. return -1;
  366. n -= evlist->is_pos;
  367. *id = array[n];
  368. }
  369. return 0;
  370. }
  371. static struct perf_evsel *perf_evlist__event2evsel(struct perf_evlist *evlist,
  372. union perf_event *event)
  373. {
  374. struct perf_evsel *first = perf_evlist__first(evlist);
  375. struct hlist_head *head;
  376. struct perf_sample_id *sid;
  377. int hash;
  378. u64 id;
  379. if (evlist->nr_entries == 1)
  380. return first;
  381. if (!first->attr.sample_id_all &&
  382. event->header.type != PERF_RECORD_SAMPLE)
  383. return first;
  384. if (perf_evlist__event2id(evlist, event, &id))
  385. return NULL;
  386. /* Synthesized events have an id of zero */
  387. if (!id)
  388. return first;
  389. hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
  390. head = &evlist->heads[hash];
  391. hlist_for_each_entry(sid, head, node) {
  392. if (sid->id == id)
  393. return sid->evsel;
  394. }
  395. return NULL;
  396. }
  397. union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
  398. {
  399. struct perf_mmap *md = &evlist->mmap[idx];
  400. unsigned int head = perf_mmap__read_head(md);
  401. unsigned int old = md->prev;
  402. unsigned char *data = md->base + page_size;
  403. union perf_event *event = NULL;
  404. if (evlist->overwrite) {
  405. /*
  406. * If we're further behind than half the buffer, there's a chance
  407. * the writer will bite our tail and mess up the samples under us.
  408. *
  409. * If we somehow ended up ahead of the head, we got messed up.
  410. *
  411. * In either case, truncate and restart at head.
  412. */
  413. int diff = head - old;
  414. if (diff > md->mask / 2 || diff < 0) {
  415. fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
  416. /*
  417. * head points to a known good entry, start there.
  418. */
  419. old = head;
  420. }
  421. }
  422. if (old != head) {
  423. size_t size;
  424. event = (union perf_event *)&data[old & md->mask];
  425. size = event->header.size;
  426. /*
  427. * Event straddles the mmap boundary -- header should always
  428. * be inside due to u64 alignment of output.
  429. */
  430. if ((old & md->mask) + size != ((old + size) & md->mask)) {
  431. unsigned int offset = old;
  432. unsigned int len = min(sizeof(*event), size), cpy;
  433. void *dst = &md->event_copy;
  434. do {
  435. cpy = min(md->mask + 1 - (offset & md->mask), len);
  436. memcpy(dst, &data[offset & md->mask], cpy);
  437. offset += cpy;
  438. dst += cpy;
  439. len -= cpy;
  440. } while (len);
  441. event = &md->event_copy;
  442. }
  443. old += size;
  444. }
  445. md->prev = old;
  446. if (!evlist->overwrite)
  447. perf_mmap__write_tail(md, old);
  448. return event;
  449. }
  450. static void __perf_evlist__munmap(struct perf_evlist *evlist, int idx)
  451. {
  452. if (evlist->mmap[idx].base != NULL) {
  453. munmap(evlist->mmap[idx].base, evlist->mmap_len);
  454. evlist->mmap[idx].base = NULL;
  455. }
  456. }
  457. void perf_evlist__munmap(struct perf_evlist *evlist)
  458. {
  459. int i;
  460. for (i = 0; i < evlist->nr_mmaps; i++)
  461. __perf_evlist__munmap(evlist, i);
  462. free(evlist->mmap);
  463. evlist->mmap = NULL;
  464. }
  465. static int perf_evlist__alloc_mmap(struct perf_evlist *evlist)
  466. {
  467. evlist->nr_mmaps = cpu_map__nr(evlist->cpus);
  468. if (cpu_map__empty(evlist->cpus))
  469. evlist->nr_mmaps = thread_map__nr(evlist->threads);
  470. evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
  471. return evlist->mmap != NULL ? 0 : -ENOMEM;
  472. }
  473. static int __perf_evlist__mmap(struct perf_evlist *evlist,
  474. int idx, int prot, int mask, int fd)
  475. {
  476. evlist->mmap[idx].prev = 0;
  477. evlist->mmap[idx].mask = mask;
  478. evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, prot,
  479. MAP_SHARED, fd, 0);
  480. if (evlist->mmap[idx].base == MAP_FAILED) {
  481. evlist->mmap[idx].base = NULL;
  482. return -1;
  483. }
  484. perf_evlist__add_pollfd(evlist, fd);
  485. return 0;
  486. }
  487. static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, int prot, int mask)
  488. {
  489. struct perf_evsel *evsel;
  490. int cpu, thread;
  491. int nr_cpus = cpu_map__nr(evlist->cpus);
  492. int nr_threads = thread_map__nr(evlist->threads);
  493. pr_debug2("perf event ring buffer mmapped per cpu\n");
  494. for (cpu = 0; cpu < nr_cpus; cpu++) {
  495. int output = -1;
  496. for (thread = 0; thread < nr_threads; thread++) {
  497. list_for_each_entry(evsel, &evlist->entries, node) {
  498. int fd = FD(evsel, cpu, thread);
  499. if (output == -1) {
  500. output = fd;
  501. if (__perf_evlist__mmap(evlist, cpu,
  502. prot, mask, output) < 0)
  503. goto out_unmap;
  504. } else {
  505. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  506. goto out_unmap;
  507. }
  508. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  509. perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0)
  510. goto out_unmap;
  511. }
  512. }
  513. }
  514. return 0;
  515. out_unmap:
  516. for (cpu = 0; cpu < nr_cpus; cpu++)
  517. __perf_evlist__munmap(evlist, cpu);
  518. return -1;
  519. }
  520. static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, int prot, int mask)
  521. {
  522. struct perf_evsel *evsel;
  523. int thread;
  524. int nr_threads = thread_map__nr(evlist->threads);
  525. pr_debug2("perf event ring buffer mmapped per thread\n");
  526. for (thread = 0; thread < nr_threads; thread++) {
  527. int output = -1;
  528. list_for_each_entry(evsel, &evlist->entries, node) {
  529. int fd = FD(evsel, 0, thread);
  530. if (output == -1) {
  531. output = fd;
  532. if (__perf_evlist__mmap(evlist, thread,
  533. prot, mask, output) < 0)
  534. goto out_unmap;
  535. } else {
  536. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  537. goto out_unmap;
  538. }
  539. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  540. perf_evlist__id_add_fd(evlist, evsel, 0, thread, fd) < 0)
  541. goto out_unmap;
  542. }
  543. }
  544. return 0;
  545. out_unmap:
  546. for (thread = 0; thread < nr_threads; thread++)
  547. __perf_evlist__munmap(evlist, thread);
  548. return -1;
  549. }
  550. static size_t perf_evlist__mmap_size(unsigned long pages)
  551. {
  552. /* 512 kiB: default amount of unprivileged mlocked memory */
  553. if (pages == UINT_MAX)
  554. pages = (512 * 1024) / page_size;
  555. else if (!is_power_of_2(pages))
  556. return 0;
  557. return (pages + 1) * page_size;
  558. }
  559. int perf_evlist__parse_mmap_pages(const struct option *opt, const char *str,
  560. int unset __maybe_unused)
  561. {
  562. unsigned int pages, val, *mmap_pages = opt->value;
  563. size_t size;
  564. static struct parse_tag tags[] = {
  565. { .tag = 'B', .mult = 1 },
  566. { .tag = 'K', .mult = 1 << 10 },
  567. { .tag = 'M', .mult = 1 << 20 },
  568. { .tag = 'G', .mult = 1 << 30 },
  569. { .tag = 0 },
  570. };
  571. val = parse_tag_value(str, tags);
  572. if (val != (unsigned int) -1) {
  573. /* we got file size value */
  574. pages = PERF_ALIGN(val, page_size) / page_size;
  575. if (!is_power_of_2(pages)) {
  576. pages = next_pow2(pages);
  577. pr_info("rounding mmap pages size to %u (%u pages)\n",
  578. pages * page_size, pages);
  579. }
  580. } else {
  581. /* we got pages count value */
  582. char *eptr;
  583. pages = strtoul(str, &eptr, 10);
  584. if (*eptr != '\0') {
  585. pr_err("failed to parse --mmap_pages/-m value\n");
  586. return -1;
  587. }
  588. }
  589. size = perf_evlist__mmap_size(pages);
  590. if (!size) {
  591. pr_err("--mmap_pages/-m value must be a power of two.");
  592. return -1;
  593. }
  594. *mmap_pages = pages;
  595. return 0;
  596. }
  597. /** perf_evlist__mmap - Create per cpu maps to receive events
  598. *
  599. * @evlist - list of events
  600. * @pages - map length in pages
  601. * @overwrite - overwrite older events?
  602. *
  603. * If overwrite is false the user needs to signal event consuption using:
  604. *
  605. * struct perf_mmap *m = &evlist->mmap[cpu];
  606. * unsigned int head = perf_mmap__read_head(m);
  607. *
  608. * perf_mmap__write_tail(m, head)
  609. *
  610. * Using perf_evlist__read_on_cpu does this automatically.
  611. */
  612. int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
  613. bool overwrite)
  614. {
  615. struct perf_evsel *evsel;
  616. const struct cpu_map *cpus = evlist->cpus;
  617. const struct thread_map *threads = evlist->threads;
  618. int prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), mask;
  619. if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0)
  620. return -ENOMEM;
  621. if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
  622. return -ENOMEM;
  623. evlist->overwrite = overwrite;
  624. evlist->mmap_len = perf_evlist__mmap_size(pages);
  625. pr_debug("mmap size %luB\n", evlist->mmap_len);
  626. mask = evlist->mmap_len - page_size - 1;
  627. list_for_each_entry(evsel, &evlist->entries, node) {
  628. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  629. evsel->sample_id == NULL &&
  630. perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0)
  631. return -ENOMEM;
  632. }
  633. if (cpu_map__empty(cpus))
  634. return perf_evlist__mmap_per_thread(evlist, prot, mask);
  635. return perf_evlist__mmap_per_cpu(evlist, prot, mask);
  636. }
  637. int perf_evlist__create_maps(struct perf_evlist *evlist,
  638. struct perf_target *target)
  639. {
  640. evlist->threads = thread_map__new_str(target->pid, target->tid,
  641. target->uid);
  642. if (evlist->threads == NULL)
  643. return -1;
  644. if (perf_target__has_task(target))
  645. evlist->cpus = cpu_map__dummy_new();
  646. else if (!perf_target__has_cpu(target) && !target->uses_mmap)
  647. evlist->cpus = cpu_map__dummy_new();
  648. else
  649. evlist->cpus = cpu_map__new(target->cpu_list);
  650. if (evlist->cpus == NULL)
  651. goto out_delete_threads;
  652. return 0;
  653. out_delete_threads:
  654. thread_map__delete(evlist->threads);
  655. return -1;
  656. }
  657. void perf_evlist__delete_maps(struct perf_evlist *evlist)
  658. {
  659. cpu_map__delete(evlist->cpus);
  660. thread_map__delete(evlist->threads);
  661. evlist->cpus = NULL;
  662. evlist->threads = NULL;
  663. }
  664. int perf_evlist__apply_filters(struct perf_evlist *evlist)
  665. {
  666. struct perf_evsel *evsel;
  667. int err = 0;
  668. const int ncpus = cpu_map__nr(evlist->cpus),
  669. nthreads = thread_map__nr(evlist->threads);
  670. list_for_each_entry(evsel, &evlist->entries, node) {
  671. if (evsel->filter == NULL)
  672. continue;
  673. err = perf_evsel__set_filter(evsel, ncpus, nthreads, evsel->filter);
  674. if (err)
  675. break;
  676. }
  677. return err;
  678. }
  679. int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter)
  680. {
  681. struct perf_evsel *evsel;
  682. int err = 0;
  683. const int ncpus = cpu_map__nr(evlist->cpus),
  684. nthreads = thread_map__nr(evlist->threads);
  685. list_for_each_entry(evsel, &evlist->entries, node) {
  686. err = perf_evsel__set_filter(evsel, ncpus, nthreads, filter);
  687. if (err)
  688. break;
  689. }
  690. return err;
  691. }
  692. bool perf_evlist__valid_sample_type(struct perf_evlist *evlist)
  693. {
  694. struct perf_evsel *pos;
  695. if (evlist->nr_entries == 1)
  696. return true;
  697. if (evlist->id_pos < 0 || evlist->is_pos < 0)
  698. return false;
  699. list_for_each_entry(pos, &evlist->entries, node) {
  700. if (pos->id_pos != evlist->id_pos ||
  701. pos->is_pos != evlist->is_pos)
  702. return false;
  703. }
  704. return true;
  705. }
  706. u64 __perf_evlist__combined_sample_type(struct perf_evlist *evlist)
  707. {
  708. struct perf_evsel *evsel;
  709. if (evlist->combined_sample_type)
  710. return evlist->combined_sample_type;
  711. list_for_each_entry(evsel, &evlist->entries, node)
  712. evlist->combined_sample_type |= evsel->attr.sample_type;
  713. return evlist->combined_sample_type;
  714. }
  715. u64 perf_evlist__combined_sample_type(struct perf_evlist *evlist)
  716. {
  717. evlist->combined_sample_type = 0;
  718. return __perf_evlist__combined_sample_type(evlist);
  719. }
  720. bool perf_evlist__valid_read_format(struct perf_evlist *evlist)
  721. {
  722. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  723. u64 read_format = first->attr.read_format;
  724. u64 sample_type = first->attr.sample_type;
  725. list_for_each_entry_continue(pos, &evlist->entries, node) {
  726. if (read_format != pos->attr.read_format)
  727. return false;
  728. }
  729. /* PERF_SAMPLE_READ imples PERF_FORMAT_ID. */
  730. if ((sample_type & PERF_SAMPLE_READ) &&
  731. !(read_format & PERF_FORMAT_ID)) {
  732. return false;
  733. }
  734. return true;
  735. }
  736. u64 perf_evlist__read_format(struct perf_evlist *evlist)
  737. {
  738. struct perf_evsel *first = perf_evlist__first(evlist);
  739. return first->attr.read_format;
  740. }
  741. u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist)
  742. {
  743. struct perf_evsel *first = perf_evlist__first(evlist);
  744. struct perf_sample *data;
  745. u64 sample_type;
  746. u16 size = 0;
  747. if (!first->attr.sample_id_all)
  748. goto out;
  749. sample_type = first->attr.sample_type;
  750. if (sample_type & PERF_SAMPLE_TID)
  751. size += sizeof(data->tid) * 2;
  752. if (sample_type & PERF_SAMPLE_TIME)
  753. size += sizeof(data->time);
  754. if (sample_type & PERF_SAMPLE_ID)
  755. size += sizeof(data->id);
  756. if (sample_type & PERF_SAMPLE_STREAM_ID)
  757. size += sizeof(data->stream_id);
  758. if (sample_type & PERF_SAMPLE_CPU)
  759. size += sizeof(data->cpu) * 2;
  760. if (sample_type & PERF_SAMPLE_IDENTIFIER)
  761. size += sizeof(data->id);
  762. out:
  763. return size;
  764. }
  765. bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist)
  766. {
  767. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  768. list_for_each_entry_continue(pos, &evlist->entries, node) {
  769. if (first->attr.sample_id_all != pos->attr.sample_id_all)
  770. return false;
  771. }
  772. return true;
  773. }
  774. bool perf_evlist__sample_id_all(struct perf_evlist *evlist)
  775. {
  776. struct perf_evsel *first = perf_evlist__first(evlist);
  777. return first->attr.sample_id_all;
  778. }
  779. void perf_evlist__set_selected(struct perf_evlist *evlist,
  780. struct perf_evsel *evsel)
  781. {
  782. evlist->selected = evsel;
  783. }
  784. void perf_evlist__close(struct perf_evlist *evlist)
  785. {
  786. struct perf_evsel *evsel;
  787. int ncpus = cpu_map__nr(evlist->cpus);
  788. int nthreads = thread_map__nr(evlist->threads);
  789. list_for_each_entry_reverse(evsel, &evlist->entries, node)
  790. perf_evsel__close(evsel, ncpus, nthreads);
  791. }
  792. int perf_evlist__open(struct perf_evlist *evlist)
  793. {
  794. struct perf_evsel *evsel;
  795. int err;
  796. perf_evlist__update_id_pos(evlist);
  797. list_for_each_entry(evsel, &evlist->entries, node) {
  798. err = perf_evsel__open(evsel, evlist->cpus, evlist->threads);
  799. if (err < 0)
  800. goto out_err;
  801. }
  802. return 0;
  803. out_err:
  804. perf_evlist__close(evlist);
  805. errno = -err;
  806. return err;
  807. }
  808. int perf_evlist__prepare_workload(struct perf_evlist *evlist,
  809. struct perf_target *target,
  810. const char *argv[], bool pipe_output,
  811. bool want_signal)
  812. {
  813. int child_ready_pipe[2], go_pipe[2];
  814. char bf;
  815. if (pipe(child_ready_pipe) < 0) {
  816. perror("failed to create 'ready' pipe");
  817. return -1;
  818. }
  819. if (pipe(go_pipe) < 0) {
  820. perror("failed to create 'go' pipe");
  821. goto out_close_ready_pipe;
  822. }
  823. evlist->workload.pid = fork();
  824. if (evlist->workload.pid < 0) {
  825. perror("failed to fork");
  826. goto out_close_pipes;
  827. }
  828. if (!evlist->workload.pid) {
  829. if (pipe_output)
  830. dup2(2, 1);
  831. signal(SIGTERM, SIG_DFL);
  832. close(child_ready_pipe[0]);
  833. close(go_pipe[1]);
  834. fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
  835. /*
  836. * Tell the parent we're ready to go
  837. */
  838. close(child_ready_pipe[1]);
  839. /*
  840. * Wait until the parent tells us to go.
  841. */
  842. if (read(go_pipe[0], &bf, 1) == -1)
  843. perror("unable to read pipe");
  844. execvp(argv[0], (char **)argv);
  845. perror(argv[0]);
  846. if (want_signal)
  847. kill(getppid(), SIGUSR1);
  848. exit(-1);
  849. }
  850. if (perf_target__none(target))
  851. evlist->threads->map[0] = evlist->workload.pid;
  852. close(child_ready_pipe[1]);
  853. close(go_pipe[0]);
  854. /*
  855. * wait for child to settle
  856. */
  857. if (read(child_ready_pipe[0], &bf, 1) == -1) {
  858. perror("unable to read pipe");
  859. goto out_close_pipes;
  860. }
  861. fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC);
  862. evlist->workload.cork_fd = go_pipe[1];
  863. close(child_ready_pipe[0]);
  864. return 0;
  865. out_close_pipes:
  866. close(go_pipe[0]);
  867. close(go_pipe[1]);
  868. out_close_ready_pipe:
  869. close(child_ready_pipe[0]);
  870. close(child_ready_pipe[1]);
  871. return -1;
  872. }
  873. int perf_evlist__start_workload(struct perf_evlist *evlist)
  874. {
  875. if (evlist->workload.cork_fd > 0) {
  876. char bf = 0;
  877. int ret;
  878. /*
  879. * Remove the cork, let it rip!
  880. */
  881. ret = write(evlist->workload.cork_fd, &bf, 1);
  882. if (ret < 0)
  883. perror("enable to write to pipe");
  884. close(evlist->workload.cork_fd);
  885. return ret;
  886. }
  887. return 0;
  888. }
  889. int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event,
  890. struct perf_sample *sample)
  891. {
  892. struct perf_evsel *evsel = perf_evlist__event2evsel(evlist, event);
  893. if (!evsel)
  894. return -EFAULT;
  895. return perf_evsel__parse_sample(evsel, event, sample);
  896. }
  897. size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp)
  898. {
  899. struct perf_evsel *evsel;
  900. size_t printed = 0;
  901. list_for_each_entry(evsel, &evlist->entries, node) {
  902. printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "",
  903. perf_evsel__name(evsel));
  904. }
  905. return printed + fprintf(fp, "\n");;
  906. }