e1000_main.c 87 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. #include "e1000.h"
  21. /* Change Log
  22. * 5.3.12 6/7/04
  23. * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com>
  24. * - if_mii support and associated kcompat for older kernels
  25. * - More errlogging support from Jon Mason <jonmason@us.ibm.com>
  26. * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com>
  27. *
  28. * 5.7.1 12/16/04
  29. * - Resurrect 82547EI/GI related fix in e1000_intr to avoid deadlocks. This
  30. * fix was removed as it caused system instability. The suspected cause of
  31. * this is the called to e1000_irq_disable in e1000_intr. Inlined the
  32. * required piece of e1000_irq_disable into e1000_intr - Anton Blanchard
  33. * 5.7.0 12/10/04
  34. * - include fix to the condition that determines when to quit NAPI - Robert Olsson
  35. * - use netif_poll_{disable/enable} to synchronize between NAPI and i/f up/down
  36. * 5.6.5 11/01/04
  37. * - Enabling NETIF_F_SG without checksum offload is illegal -
  38. John Mason <jdmason@us.ibm.com>
  39. * 5.6.3 10/26/04
  40. * - Remove redundant initialization - Jamal Hadi
  41. * - Reset buffer_info->dma in tx resource cleanup logic
  42. * 5.6.2 10/12/04
  43. * - Avoid filling tx_ring completely - shemminger@osdl.org
  44. * - Replace schedule_timeout() with msleep()/msleep_interruptible() -
  45. * nacc@us.ibm.com
  46. * - Sparse cleanup - shemminger@osdl.org
  47. * - Fix tx resource cleanup logic
  48. * - LLTX support - ak@suse.de and hadi@cyberus.ca
  49. */
  50. char e1000_driver_name[] = "e1000";
  51. char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  52. #ifndef CONFIG_E1000_NAPI
  53. #define DRIVERNAPI
  54. #else
  55. #define DRIVERNAPI "-NAPI"
  56. #endif
  57. #define DRV_VERSION "5.7.6-k2"DRIVERNAPI
  58. char e1000_driver_version[] = DRV_VERSION;
  59. char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
  60. /* e1000_pci_tbl - PCI Device ID Table
  61. *
  62. * Last entry must be all 0s
  63. *
  64. * Macro expands to...
  65. * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  66. */
  67. static struct pci_device_id e1000_pci_tbl[] = {
  68. INTEL_E1000_ETHERNET_DEVICE(0x1000),
  69. INTEL_E1000_ETHERNET_DEVICE(0x1001),
  70. INTEL_E1000_ETHERNET_DEVICE(0x1004),
  71. INTEL_E1000_ETHERNET_DEVICE(0x1008),
  72. INTEL_E1000_ETHERNET_DEVICE(0x1009),
  73. INTEL_E1000_ETHERNET_DEVICE(0x100C),
  74. INTEL_E1000_ETHERNET_DEVICE(0x100D),
  75. INTEL_E1000_ETHERNET_DEVICE(0x100E),
  76. INTEL_E1000_ETHERNET_DEVICE(0x100F),
  77. INTEL_E1000_ETHERNET_DEVICE(0x1010),
  78. INTEL_E1000_ETHERNET_DEVICE(0x1011),
  79. INTEL_E1000_ETHERNET_DEVICE(0x1012),
  80. INTEL_E1000_ETHERNET_DEVICE(0x1013),
  81. INTEL_E1000_ETHERNET_DEVICE(0x1014),
  82. INTEL_E1000_ETHERNET_DEVICE(0x1015),
  83. INTEL_E1000_ETHERNET_DEVICE(0x1016),
  84. INTEL_E1000_ETHERNET_DEVICE(0x1017),
  85. INTEL_E1000_ETHERNET_DEVICE(0x1018),
  86. INTEL_E1000_ETHERNET_DEVICE(0x1019),
  87. INTEL_E1000_ETHERNET_DEVICE(0x101D),
  88. INTEL_E1000_ETHERNET_DEVICE(0x101E),
  89. INTEL_E1000_ETHERNET_DEVICE(0x1026),
  90. INTEL_E1000_ETHERNET_DEVICE(0x1027),
  91. INTEL_E1000_ETHERNET_DEVICE(0x1028),
  92. INTEL_E1000_ETHERNET_DEVICE(0x1075),
  93. INTEL_E1000_ETHERNET_DEVICE(0x1076),
  94. INTEL_E1000_ETHERNET_DEVICE(0x1077),
  95. INTEL_E1000_ETHERNET_DEVICE(0x1078),
  96. INTEL_E1000_ETHERNET_DEVICE(0x1079),
  97. INTEL_E1000_ETHERNET_DEVICE(0x107A),
  98. INTEL_E1000_ETHERNET_DEVICE(0x107B),
  99. INTEL_E1000_ETHERNET_DEVICE(0x107C),
  100. INTEL_E1000_ETHERNET_DEVICE(0x108A),
  101. /* required last entry */
  102. {0,}
  103. };
  104. MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  105. int e1000_up(struct e1000_adapter *adapter);
  106. void e1000_down(struct e1000_adapter *adapter);
  107. void e1000_reset(struct e1000_adapter *adapter);
  108. int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
  109. int e1000_setup_tx_resources(struct e1000_adapter *adapter);
  110. int e1000_setup_rx_resources(struct e1000_adapter *adapter);
  111. void e1000_free_tx_resources(struct e1000_adapter *adapter);
  112. void e1000_free_rx_resources(struct e1000_adapter *adapter);
  113. void e1000_update_stats(struct e1000_adapter *adapter);
  114. /* Local Function Prototypes */
  115. static int e1000_init_module(void);
  116. static void e1000_exit_module(void);
  117. static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  118. static void __devexit e1000_remove(struct pci_dev *pdev);
  119. static int e1000_sw_init(struct e1000_adapter *adapter);
  120. static int e1000_open(struct net_device *netdev);
  121. static int e1000_close(struct net_device *netdev);
  122. static void e1000_configure_tx(struct e1000_adapter *adapter);
  123. static void e1000_configure_rx(struct e1000_adapter *adapter);
  124. static void e1000_setup_rctl(struct e1000_adapter *adapter);
  125. static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
  126. static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
  127. static void e1000_set_multi(struct net_device *netdev);
  128. static void e1000_update_phy_info(unsigned long data);
  129. static void e1000_watchdog(unsigned long data);
  130. static void e1000_watchdog_task(struct e1000_adapter *adapter);
  131. static void e1000_82547_tx_fifo_stall(unsigned long data);
  132. static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
  133. static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
  134. static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
  135. static int e1000_set_mac(struct net_device *netdev, void *p);
  136. static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
  137. static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
  138. #ifdef CONFIG_E1000_NAPI
  139. static int e1000_clean(struct net_device *netdev, int *budget);
  140. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  141. int *work_done, int work_to_do);
  142. #else
  143. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
  144. #endif
  145. static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
  146. static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
  147. static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
  148. int cmd);
  149. void e1000_set_ethtool_ops(struct net_device *netdev);
  150. static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
  151. static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
  152. static void e1000_tx_timeout(struct net_device *dev);
  153. static void e1000_tx_timeout_task(struct net_device *dev);
  154. static void e1000_smartspeed(struct e1000_adapter *adapter);
  155. static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
  156. struct sk_buff *skb);
  157. static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
  158. static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
  159. static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
  160. static void e1000_restore_vlan(struct e1000_adapter *adapter);
  161. static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
  162. static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
  163. #ifdef CONFIG_PM
  164. static int e1000_resume(struct pci_dev *pdev);
  165. #endif
  166. #ifdef CONFIG_NET_POLL_CONTROLLER
  167. /* for netdump / net console */
  168. static void e1000_netpoll (struct net_device *netdev);
  169. #endif
  170. struct notifier_block e1000_notifier_reboot = {
  171. .notifier_call = e1000_notify_reboot,
  172. .next = NULL,
  173. .priority = 0
  174. };
  175. /* Exported from other modules */
  176. extern void e1000_check_options(struct e1000_adapter *adapter);
  177. static struct pci_driver e1000_driver = {
  178. .name = e1000_driver_name,
  179. .id_table = e1000_pci_tbl,
  180. .probe = e1000_probe,
  181. .remove = __devexit_p(e1000_remove),
  182. /* Power Managment Hooks */
  183. #ifdef CONFIG_PM
  184. .suspend = e1000_suspend,
  185. .resume = e1000_resume
  186. #endif
  187. };
  188. MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  189. MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
  190. MODULE_LICENSE("GPL");
  191. MODULE_VERSION(DRV_VERSION);
  192. static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
  193. module_param(debug, int, 0);
  194. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  195. /**
  196. * e1000_init_module - Driver Registration Routine
  197. *
  198. * e1000_init_module is the first routine called when the driver is
  199. * loaded. All it does is register with the PCI subsystem.
  200. **/
  201. static int __init
  202. e1000_init_module(void)
  203. {
  204. int ret;
  205. printk(KERN_INFO "%s - version %s\n",
  206. e1000_driver_string, e1000_driver_version);
  207. printk(KERN_INFO "%s\n", e1000_copyright);
  208. ret = pci_module_init(&e1000_driver);
  209. if(ret >= 0) {
  210. register_reboot_notifier(&e1000_notifier_reboot);
  211. }
  212. return ret;
  213. }
  214. module_init(e1000_init_module);
  215. /**
  216. * e1000_exit_module - Driver Exit Cleanup Routine
  217. *
  218. * e1000_exit_module is called just before the driver is removed
  219. * from memory.
  220. **/
  221. static void __exit
  222. e1000_exit_module(void)
  223. {
  224. unregister_reboot_notifier(&e1000_notifier_reboot);
  225. pci_unregister_driver(&e1000_driver);
  226. }
  227. module_exit(e1000_exit_module);
  228. /**
  229. * e1000_irq_disable - Mask off interrupt generation on the NIC
  230. * @adapter: board private structure
  231. **/
  232. static inline void
  233. e1000_irq_disable(struct e1000_adapter *adapter)
  234. {
  235. atomic_inc(&adapter->irq_sem);
  236. E1000_WRITE_REG(&adapter->hw, IMC, ~0);
  237. E1000_WRITE_FLUSH(&adapter->hw);
  238. synchronize_irq(adapter->pdev->irq);
  239. }
  240. /**
  241. * e1000_irq_enable - Enable default interrupt generation settings
  242. * @adapter: board private structure
  243. **/
  244. static inline void
  245. e1000_irq_enable(struct e1000_adapter *adapter)
  246. {
  247. if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
  248. E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
  249. E1000_WRITE_FLUSH(&adapter->hw);
  250. }
  251. }
  252. int
  253. e1000_up(struct e1000_adapter *adapter)
  254. {
  255. struct net_device *netdev = adapter->netdev;
  256. int err;
  257. /* hardware has been reset, we need to reload some things */
  258. /* Reset the PHY if it was previously powered down */
  259. if(adapter->hw.media_type == e1000_media_type_copper) {
  260. uint16_t mii_reg;
  261. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  262. if(mii_reg & MII_CR_POWER_DOWN)
  263. e1000_phy_reset(&adapter->hw);
  264. }
  265. e1000_set_multi(netdev);
  266. e1000_restore_vlan(adapter);
  267. e1000_configure_tx(adapter);
  268. e1000_setup_rctl(adapter);
  269. e1000_configure_rx(adapter);
  270. e1000_alloc_rx_buffers(adapter);
  271. #ifdef CONFIG_PCI_MSI
  272. if(adapter->hw.mac_type > e1000_82547_rev_2) {
  273. adapter->have_msi = TRUE;
  274. if((err = pci_enable_msi(adapter->pdev))) {
  275. DPRINTK(PROBE, ERR,
  276. "Unable to allocate MSI interrupt Error: %d\n", err);
  277. adapter->have_msi = FALSE;
  278. }
  279. }
  280. #endif
  281. if((err = request_irq(adapter->pdev->irq, &e1000_intr,
  282. SA_SHIRQ | SA_SAMPLE_RANDOM,
  283. netdev->name, netdev)))
  284. return err;
  285. mod_timer(&adapter->watchdog_timer, jiffies);
  286. #ifdef CONFIG_E1000_NAPI
  287. netif_poll_enable(netdev);
  288. #endif
  289. e1000_irq_enable(adapter);
  290. return 0;
  291. }
  292. void
  293. e1000_down(struct e1000_adapter *adapter)
  294. {
  295. struct net_device *netdev = adapter->netdev;
  296. e1000_irq_disable(adapter);
  297. free_irq(adapter->pdev->irq, netdev);
  298. #ifdef CONFIG_PCI_MSI
  299. if(adapter->hw.mac_type > e1000_82547_rev_2 &&
  300. adapter->have_msi == TRUE)
  301. pci_disable_msi(adapter->pdev);
  302. #endif
  303. del_timer_sync(&adapter->tx_fifo_stall_timer);
  304. del_timer_sync(&adapter->watchdog_timer);
  305. del_timer_sync(&adapter->phy_info_timer);
  306. #ifdef CONFIG_E1000_NAPI
  307. netif_poll_disable(netdev);
  308. #endif
  309. adapter->link_speed = 0;
  310. adapter->link_duplex = 0;
  311. netif_carrier_off(netdev);
  312. netif_stop_queue(netdev);
  313. e1000_reset(adapter);
  314. e1000_clean_tx_ring(adapter);
  315. e1000_clean_rx_ring(adapter);
  316. /* If WoL is not enabled
  317. * Power down the PHY so no link is implied when interface is down */
  318. if(!adapter->wol && adapter->hw.media_type == e1000_media_type_copper) {
  319. uint16_t mii_reg;
  320. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  321. mii_reg |= MII_CR_POWER_DOWN;
  322. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
  323. mdelay(1);
  324. }
  325. }
  326. void
  327. e1000_reset(struct e1000_adapter *adapter)
  328. {
  329. uint32_t pba;
  330. /* Repartition Pba for greater than 9k mtu
  331. * To take effect CTRL.RST is required.
  332. */
  333. if(adapter->hw.mac_type < e1000_82547) {
  334. if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
  335. pba = E1000_PBA_40K;
  336. else
  337. pba = E1000_PBA_48K;
  338. } else {
  339. if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
  340. pba = E1000_PBA_22K;
  341. else
  342. pba = E1000_PBA_30K;
  343. adapter->tx_fifo_head = 0;
  344. adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
  345. adapter->tx_fifo_size =
  346. (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
  347. atomic_set(&adapter->tx_fifo_stall, 0);
  348. }
  349. E1000_WRITE_REG(&adapter->hw, PBA, pba);
  350. /* flow control settings */
  351. adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
  352. E1000_FC_HIGH_DIFF;
  353. adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
  354. E1000_FC_LOW_DIFF;
  355. adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
  356. adapter->hw.fc_send_xon = 1;
  357. adapter->hw.fc = adapter->hw.original_fc;
  358. e1000_reset_hw(&adapter->hw);
  359. if(adapter->hw.mac_type >= e1000_82544)
  360. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  361. if(e1000_init_hw(&adapter->hw))
  362. DPRINTK(PROBE, ERR, "Hardware Error\n");
  363. /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
  364. E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
  365. e1000_reset_adaptive(&adapter->hw);
  366. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  367. }
  368. /**
  369. * e1000_probe - Device Initialization Routine
  370. * @pdev: PCI device information struct
  371. * @ent: entry in e1000_pci_tbl
  372. *
  373. * Returns 0 on success, negative on failure
  374. *
  375. * e1000_probe initializes an adapter identified by a pci_dev structure.
  376. * The OS initialization, configuring of the adapter private structure,
  377. * and a hardware reset occur.
  378. **/
  379. static int __devinit
  380. e1000_probe(struct pci_dev *pdev,
  381. const struct pci_device_id *ent)
  382. {
  383. struct net_device *netdev;
  384. struct e1000_adapter *adapter;
  385. static int cards_found = 0;
  386. unsigned long mmio_start;
  387. int mmio_len;
  388. int pci_using_dac;
  389. int i;
  390. int err;
  391. uint16_t eeprom_data;
  392. uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
  393. if((err = pci_enable_device(pdev)))
  394. return err;
  395. if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  396. pci_using_dac = 1;
  397. } else {
  398. if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  399. E1000_ERR("No usable DMA configuration, aborting\n");
  400. return err;
  401. }
  402. pci_using_dac = 0;
  403. }
  404. if((err = pci_request_regions(pdev, e1000_driver_name)))
  405. return err;
  406. pci_set_master(pdev);
  407. netdev = alloc_etherdev(sizeof(struct e1000_adapter));
  408. if(!netdev) {
  409. err = -ENOMEM;
  410. goto err_alloc_etherdev;
  411. }
  412. SET_MODULE_OWNER(netdev);
  413. SET_NETDEV_DEV(netdev, &pdev->dev);
  414. pci_set_drvdata(pdev, netdev);
  415. adapter = netdev->priv;
  416. adapter->netdev = netdev;
  417. adapter->pdev = pdev;
  418. adapter->hw.back = adapter;
  419. adapter->msg_enable = (1 << debug) - 1;
  420. mmio_start = pci_resource_start(pdev, BAR_0);
  421. mmio_len = pci_resource_len(pdev, BAR_0);
  422. adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
  423. if(!adapter->hw.hw_addr) {
  424. err = -EIO;
  425. goto err_ioremap;
  426. }
  427. for(i = BAR_1; i <= BAR_5; i++) {
  428. if(pci_resource_len(pdev, i) == 0)
  429. continue;
  430. if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
  431. adapter->hw.io_base = pci_resource_start(pdev, i);
  432. break;
  433. }
  434. }
  435. netdev->open = &e1000_open;
  436. netdev->stop = &e1000_close;
  437. netdev->hard_start_xmit = &e1000_xmit_frame;
  438. netdev->get_stats = &e1000_get_stats;
  439. netdev->set_multicast_list = &e1000_set_multi;
  440. netdev->set_mac_address = &e1000_set_mac;
  441. netdev->change_mtu = &e1000_change_mtu;
  442. netdev->do_ioctl = &e1000_ioctl;
  443. e1000_set_ethtool_ops(netdev);
  444. netdev->tx_timeout = &e1000_tx_timeout;
  445. netdev->watchdog_timeo = 5 * HZ;
  446. #ifdef CONFIG_E1000_NAPI
  447. netdev->poll = &e1000_clean;
  448. netdev->weight = 64;
  449. #endif
  450. netdev->vlan_rx_register = e1000_vlan_rx_register;
  451. netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
  452. netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
  453. #ifdef CONFIG_NET_POLL_CONTROLLER
  454. netdev->poll_controller = e1000_netpoll;
  455. #endif
  456. strcpy(netdev->name, pci_name(pdev));
  457. netdev->mem_start = mmio_start;
  458. netdev->mem_end = mmio_start + mmio_len;
  459. netdev->base_addr = adapter->hw.io_base;
  460. adapter->bd_number = cards_found;
  461. /* setup the private structure */
  462. if((err = e1000_sw_init(adapter)))
  463. goto err_sw_init;
  464. if(adapter->hw.mac_type >= e1000_82543) {
  465. netdev->features = NETIF_F_SG |
  466. NETIF_F_HW_CSUM |
  467. NETIF_F_HW_VLAN_TX |
  468. NETIF_F_HW_VLAN_RX |
  469. NETIF_F_HW_VLAN_FILTER;
  470. }
  471. #ifdef NETIF_F_TSO
  472. if((adapter->hw.mac_type >= e1000_82544) &&
  473. (adapter->hw.mac_type != e1000_82547))
  474. netdev->features |= NETIF_F_TSO;
  475. #endif
  476. if(pci_using_dac)
  477. netdev->features |= NETIF_F_HIGHDMA;
  478. /* hard_start_xmit is safe against parallel locking */
  479. netdev->features |= NETIF_F_LLTX;
  480. /* before reading the EEPROM, reset the controller to
  481. * put the device in a known good starting state */
  482. e1000_reset_hw(&adapter->hw);
  483. /* make sure the EEPROM is good */
  484. if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
  485. DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
  486. err = -EIO;
  487. goto err_eeprom;
  488. }
  489. /* copy the MAC address out of the EEPROM */
  490. if (e1000_read_mac_addr(&adapter->hw))
  491. DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
  492. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  493. if(!is_valid_ether_addr(netdev->dev_addr)) {
  494. DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
  495. err = -EIO;
  496. goto err_eeprom;
  497. }
  498. e1000_read_part_num(&adapter->hw, &(adapter->part_num));
  499. e1000_get_bus_info(&adapter->hw);
  500. init_timer(&adapter->tx_fifo_stall_timer);
  501. adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
  502. adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
  503. init_timer(&adapter->watchdog_timer);
  504. adapter->watchdog_timer.function = &e1000_watchdog;
  505. adapter->watchdog_timer.data = (unsigned long) adapter;
  506. INIT_WORK(&adapter->watchdog_task,
  507. (void (*)(void *))e1000_watchdog_task, adapter);
  508. init_timer(&adapter->phy_info_timer);
  509. adapter->phy_info_timer.function = &e1000_update_phy_info;
  510. adapter->phy_info_timer.data = (unsigned long) adapter;
  511. INIT_WORK(&adapter->tx_timeout_task,
  512. (void (*)(void *))e1000_tx_timeout_task, netdev);
  513. /* we're going to reset, so assume we have no link for now */
  514. netif_carrier_off(netdev);
  515. netif_stop_queue(netdev);
  516. e1000_check_options(adapter);
  517. /* Initial Wake on LAN setting
  518. * If APM wake is enabled in the EEPROM,
  519. * enable the ACPI Magic Packet filter
  520. */
  521. switch(adapter->hw.mac_type) {
  522. case e1000_82542_rev2_0:
  523. case e1000_82542_rev2_1:
  524. case e1000_82543:
  525. break;
  526. case e1000_82544:
  527. e1000_read_eeprom(&adapter->hw,
  528. EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
  529. eeprom_apme_mask = E1000_EEPROM_82544_APM;
  530. break;
  531. case e1000_82546:
  532. case e1000_82546_rev_3:
  533. if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
  534. && (adapter->hw.media_type == e1000_media_type_copper)) {
  535. e1000_read_eeprom(&adapter->hw,
  536. EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
  537. break;
  538. }
  539. /* Fall Through */
  540. default:
  541. e1000_read_eeprom(&adapter->hw,
  542. EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
  543. break;
  544. }
  545. if(eeprom_data & eeprom_apme_mask)
  546. adapter->wol |= E1000_WUFC_MAG;
  547. /* reset the hardware with the new settings */
  548. e1000_reset(adapter);
  549. strcpy(netdev->name, "eth%d");
  550. if((err = register_netdev(netdev)))
  551. goto err_register;
  552. DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
  553. cards_found++;
  554. return 0;
  555. err_register:
  556. err_sw_init:
  557. err_eeprom:
  558. iounmap(adapter->hw.hw_addr);
  559. err_ioremap:
  560. free_netdev(netdev);
  561. err_alloc_etherdev:
  562. pci_release_regions(pdev);
  563. return err;
  564. }
  565. /**
  566. * e1000_remove - Device Removal Routine
  567. * @pdev: PCI device information struct
  568. *
  569. * e1000_remove is called by the PCI subsystem to alert the driver
  570. * that it should release a PCI device. The could be caused by a
  571. * Hot-Plug event, or because the driver is going to be removed from
  572. * memory.
  573. **/
  574. static void __devexit
  575. e1000_remove(struct pci_dev *pdev)
  576. {
  577. struct net_device *netdev = pci_get_drvdata(pdev);
  578. struct e1000_adapter *adapter = netdev->priv;
  579. uint32_t manc;
  580. flush_scheduled_work();
  581. if(adapter->hw.mac_type >= e1000_82540 &&
  582. adapter->hw.media_type == e1000_media_type_copper) {
  583. manc = E1000_READ_REG(&adapter->hw, MANC);
  584. if(manc & E1000_MANC_SMBUS_EN) {
  585. manc |= E1000_MANC_ARP_EN;
  586. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  587. }
  588. }
  589. unregister_netdev(netdev);
  590. e1000_phy_hw_reset(&adapter->hw);
  591. iounmap(adapter->hw.hw_addr);
  592. pci_release_regions(pdev);
  593. free_netdev(netdev);
  594. pci_disable_device(pdev);
  595. }
  596. /**
  597. * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
  598. * @adapter: board private structure to initialize
  599. *
  600. * e1000_sw_init initializes the Adapter private data structure.
  601. * Fields are initialized based on PCI device information and
  602. * OS network device settings (MTU size).
  603. **/
  604. static int __devinit
  605. e1000_sw_init(struct e1000_adapter *adapter)
  606. {
  607. struct e1000_hw *hw = &adapter->hw;
  608. struct net_device *netdev = adapter->netdev;
  609. struct pci_dev *pdev = adapter->pdev;
  610. /* PCI config space info */
  611. hw->vendor_id = pdev->vendor;
  612. hw->device_id = pdev->device;
  613. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  614. hw->subsystem_id = pdev->subsystem_device;
  615. pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
  616. pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
  617. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  618. hw->max_frame_size = netdev->mtu +
  619. ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  620. hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
  621. /* identify the MAC */
  622. if(e1000_set_mac_type(hw)) {
  623. DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
  624. return -EIO;
  625. }
  626. /* initialize eeprom parameters */
  627. e1000_init_eeprom_params(hw);
  628. switch(hw->mac_type) {
  629. default:
  630. break;
  631. case e1000_82541:
  632. case e1000_82547:
  633. case e1000_82541_rev_2:
  634. case e1000_82547_rev_2:
  635. hw->phy_init_script = 1;
  636. break;
  637. }
  638. e1000_set_media_type(hw);
  639. hw->wait_autoneg_complete = FALSE;
  640. hw->tbi_compatibility_en = TRUE;
  641. hw->adaptive_ifs = TRUE;
  642. /* Copper options */
  643. if(hw->media_type == e1000_media_type_copper) {
  644. hw->mdix = AUTO_ALL_MODES;
  645. hw->disable_polarity_correction = FALSE;
  646. hw->master_slave = E1000_MASTER_SLAVE;
  647. }
  648. atomic_set(&adapter->irq_sem, 1);
  649. spin_lock_init(&adapter->stats_lock);
  650. spin_lock_init(&adapter->tx_lock);
  651. return 0;
  652. }
  653. /**
  654. * e1000_open - Called when a network interface is made active
  655. * @netdev: network interface device structure
  656. *
  657. * Returns 0 on success, negative value on failure
  658. *
  659. * The open entry point is called when a network interface is made
  660. * active by the system (IFF_UP). At this point all resources needed
  661. * for transmit and receive operations are allocated, the interrupt
  662. * handler is registered with the OS, the watchdog timer is started,
  663. * and the stack is notified that the interface is ready.
  664. **/
  665. static int
  666. e1000_open(struct net_device *netdev)
  667. {
  668. struct e1000_adapter *adapter = netdev->priv;
  669. int err;
  670. /* allocate transmit descriptors */
  671. if((err = e1000_setup_tx_resources(adapter)))
  672. goto err_setup_tx;
  673. /* allocate receive descriptors */
  674. if((err = e1000_setup_rx_resources(adapter)))
  675. goto err_setup_rx;
  676. if((err = e1000_up(adapter)))
  677. goto err_up;
  678. return E1000_SUCCESS;
  679. err_up:
  680. e1000_free_rx_resources(adapter);
  681. err_setup_rx:
  682. e1000_free_tx_resources(adapter);
  683. err_setup_tx:
  684. e1000_reset(adapter);
  685. return err;
  686. }
  687. /**
  688. * e1000_close - Disables a network interface
  689. * @netdev: network interface device structure
  690. *
  691. * Returns 0, this is not allowed to fail
  692. *
  693. * The close entry point is called when an interface is de-activated
  694. * by the OS. The hardware is still under the drivers control, but
  695. * needs to be disabled. A global MAC reset is issued to stop the
  696. * hardware, and all transmit and receive resources are freed.
  697. **/
  698. static int
  699. e1000_close(struct net_device *netdev)
  700. {
  701. struct e1000_adapter *adapter = netdev->priv;
  702. e1000_down(adapter);
  703. e1000_free_tx_resources(adapter);
  704. e1000_free_rx_resources(adapter);
  705. return 0;
  706. }
  707. /**
  708. * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
  709. * @adapter: address of board private structure
  710. * @begin: address of beginning of memory
  711. * @end: address of end of memory
  712. **/
  713. static inline boolean_t
  714. e1000_check_64k_bound(struct e1000_adapter *adapter,
  715. void *start, unsigned long len)
  716. {
  717. unsigned long begin = (unsigned long) start;
  718. unsigned long end = begin + len;
  719. /* first rev 82545 and 82546 need to not allow any memory
  720. * write location to cross a 64k boundary due to errata 23 */
  721. if (adapter->hw.mac_type == e1000_82545 ||
  722. adapter->hw.mac_type == e1000_82546 ) {
  723. /* check buffer doesn't cross 64kB */
  724. return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
  725. }
  726. return TRUE;
  727. }
  728. /**
  729. * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
  730. * @adapter: board private structure
  731. *
  732. * Return 0 on success, negative on failure
  733. **/
  734. int
  735. e1000_setup_tx_resources(struct e1000_adapter *adapter)
  736. {
  737. struct e1000_desc_ring *txdr = &adapter->tx_ring;
  738. struct pci_dev *pdev = adapter->pdev;
  739. int size;
  740. size = sizeof(struct e1000_buffer) * txdr->count;
  741. txdr->buffer_info = vmalloc(size);
  742. if(!txdr->buffer_info) {
  743. DPRINTK(PROBE, ERR,
  744. "Unable to Allocate Memory for the Transmit descriptor ring\n");
  745. return -ENOMEM;
  746. }
  747. memset(txdr->buffer_info, 0, size);
  748. /* round up to nearest 4K */
  749. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  750. E1000_ROUNDUP(txdr->size, 4096);
  751. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  752. if(!txdr->desc) {
  753. setup_tx_desc_die:
  754. DPRINTK(PROBE, ERR,
  755. "Unable to Allocate Memory for the Transmit descriptor ring\n");
  756. vfree(txdr->buffer_info);
  757. return -ENOMEM;
  758. }
  759. /* fix for errata 23, cant cross 64kB boundary */
  760. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  761. void *olddesc = txdr->desc;
  762. dma_addr_t olddma = txdr->dma;
  763. DPRINTK(TX_ERR,ERR,"txdr align check failed: %u bytes at %p\n",
  764. txdr->size, txdr->desc);
  765. /* try again, without freeing the previous */
  766. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  767. /* failed allocation, critial failure */
  768. if(!txdr->desc) {
  769. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  770. goto setup_tx_desc_die;
  771. }
  772. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  773. /* give up */
  774. pci_free_consistent(pdev, txdr->size,
  775. txdr->desc, txdr->dma);
  776. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  777. DPRINTK(PROBE, ERR,
  778. "Unable to Allocate aligned Memory for the Transmit"
  779. " descriptor ring\n");
  780. vfree(txdr->buffer_info);
  781. return -ENOMEM;
  782. } else {
  783. /* free old, move on with the new one since its okay */
  784. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  785. }
  786. }
  787. memset(txdr->desc, 0, txdr->size);
  788. txdr->next_to_use = 0;
  789. txdr->next_to_clean = 0;
  790. return 0;
  791. }
  792. /**
  793. * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
  794. * @adapter: board private structure
  795. *
  796. * Configure the Tx unit of the MAC after a reset.
  797. **/
  798. static void
  799. e1000_configure_tx(struct e1000_adapter *adapter)
  800. {
  801. uint64_t tdba = adapter->tx_ring.dma;
  802. uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
  803. uint32_t tctl, tipg;
  804. E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
  805. E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
  806. E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
  807. /* Setup the HW Tx Head and Tail descriptor pointers */
  808. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  809. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  810. /* Set the default values for the Tx Inter Packet Gap timer */
  811. switch (adapter->hw.mac_type) {
  812. case e1000_82542_rev2_0:
  813. case e1000_82542_rev2_1:
  814. tipg = DEFAULT_82542_TIPG_IPGT;
  815. tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
  816. tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
  817. break;
  818. default:
  819. if(adapter->hw.media_type == e1000_media_type_fiber ||
  820. adapter->hw.media_type == e1000_media_type_internal_serdes)
  821. tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
  822. else
  823. tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
  824. tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
  825. tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
  826. }
  827. E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
  828. /* Set the Tx Interrupt Delay register */
  829. E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
  830. if(adapter->hw.mac_type >= e1000_82540)
  831. E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
  832. /* Program the Transmit Control Register */
  833. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  834. tctl &= ~E1000_TCTL_CT;
  835. tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
  836. (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
  837. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  838. e1000_config_collision_dist(&adapter->hw);
  839. /* Setup Transmit Descriptor Settings for eop descriptor */
  840. adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
  841. E1000_TXD_CMD_IFCS;
  842. if(adapter->hw.mac_type < e1000_82543)
  843. adapter->txd_cmd |= E1000_TXD_CMD_RPS;
  844. else
  845. adapter->txd_cmd |= E1000_TXD_CMD_RS;
  846. /* Cache if we're 82544 running in PCI-X because we'll
  847. * need this to apply a workaround later in the send path. */
  848. if(adapter->hw.mac_type == e1000_82544 &&
  849. adapter->hw.bus_type == e1000_bus_type_pcix)
  850. adapter->pcix_82544 = 1;
  851. }
  852. /**
  853. * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
  854. * @adapter: board private structure
  855. *
  856. * Returns 0 on success, negative on failure
  857. **/
  858. int
  859. e1000_setup_rx_resources(struct e1000_adapter *adapter)
  860. {
  861. struct e1000_desc_ring *rxdr = &adapter->rx_ring;
  862. struct pci_dev *pdev = adapter->pdev;
  863. int size;
  864. size = sizeof(struct e1000_buffer) * rxdr->count;
  865. rxdr->buffer_info = vmalloc(size);
  866. if(!rxdr->buffer_info) {
  867. DPRINTK(PROBE, ERR,
  868. "Unable to Allocate Memory for the Recieve descriptor ring\n");
  869. return -ENOMEM;
  870. }
  871. memset(rxdr->buffer_info, 0, size);
  872. /* Round up to nearest 4K */
  873. rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
  874. E1000_ROUNDUP(rxdr->size, 4096);
  875. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  876. if(!rxdr->desc) {
  877. setup_rx_desc_die:
  878. DPRINTK(PROBE, ERR,
  879. "Unble to Allocate Memory for the Recieve descriptor ring\n");
  880. vfree(rxdr->buffer_info);
  881. return -ENOMEM;
  882. }
  883. /* fix for errata 23, cant cross 64kB boundary */
  884. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  885. void *olddesc = rxdr->desc;
  886. dma_addr_t olddma = rxdr->dma;
  887. DPRINTK(RX_ERR,ERR,
  888. "rxdr align check failed: %u bytes at %p\n",
  889. rxdr->size, rxdr->desc);
  890. /* try again, without freeing the previous */
  891. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  892. /* failed allocation, critial failure */
  893. if(!rxdr->desc) {
  894. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  895. goto setup_rx_desc_die;
  896. }
  897. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  898. /* give up */
  899. pci_free_consistent(pdev, rxdr->size,
  900. rxdr->desc, rxdr->dma);
  901. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  902. DPRINTK(PROBE, ERR,
  903. "Unable to Allocate aligned Memory for the"
  904. " Receive descriptor ring\n");
  905. vfree(rxdr->buffer_info);
  906. return -ENOMEM;
  907. } else {
  908. /* free old, move on with the new one since its okay */
  909. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  910. }
  911. }
  912. memset(rxdr->desc, 0, rxdr->size);
  913. rxdr->next_to_clean = 0;
  914. rxdr->next_to_use = 0;
  915. return 0;
  916. }
  917. /**
  918. * e1000_setup_rctl - configure the receive control register
  919. * @adapter: Board private structure
  920. **/
  921. static void
  922. e1000_setup_rctl(struct e1000_adapter *adapter)
  923. {
  924. uint32_t rctl;
  925. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  926. rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
  927. rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
  928. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  929. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  930. if(adapter->hw.tbi_compatibility_on == 1)
  931. rctl |= E1000_RCTL_SBP;
  932. else
  933. rctl &= ~E1000_RCTL_SBP;
  934. /* Setup buffer sizes */
  935. rctl &= ~(E1000_RCTL_SZ_4096);
  936. rctl |= (E1000_RCTL_BSEX | E1000_RCTL_LPE);
  937. switch (adapter->rx_buffer_len) {
  938. case E1000_RXBUFFER_2048:
  939. default:
  940. rctl |= E1000_RCTL_SZ_2048;
  941. rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
  942. break;
  943. case E1000_RXBUFFER_4096:
  944. rctl |= E1000_RCTL_SZ_4096;
  945. break;
  946. case E1000_RXBUFFER_8192:
  947. rctl |= E1000_RCTL_SZ_8192;
  948. break;
  949. case E1000_RXBUFFER_16384:
  950. rctl |= E1000_RCTL_SZ_16384;
  951. break;
  952. }
  953. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  954. }
  955. /**
  956. * e1000_configure_rx - Configure 8254x Receive Unit after Reset
  957. * @adapter: board private structure
  958. *
  959. * Configure the Rx unit of the MAC after a reset.
  960. **/
  961. static void
  962. e1000_configure_rx(struct e1000_adapter *adapter)
  963. {
  964. uint64_t rdba = adapter->rx_ring.dma;
  965. uint32_t rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
  966. uint32_t rctl;
  967. uint32_t rxcsum;
  968. /* disable receives while setting up the descriptors */
  969. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  970. E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
  971. /* set the Receive Delay Timer Register */
  972. E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
  973. if(adapter->hw.mac_type >= e1000_82540) {
  974. E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
  975. if(adapter->itr > 1)
  976. E1000_WRITE_REG(&adapter->hw, ITR,
  977. 1000000000 / (adapter->itr * 256));
  978. }
  979. /* Setup the Base and Length of the Rx Descriptor Ring */
  980. E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
  981. E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
  982. E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
  983. /* Setup the HW Rx Head and Tail Descriptor Pointers */
  984. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  985. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  986. /* Enable 82543 Receive Checksum Offload for TCP and UDP */
  987. if((adapter->hw.mac_type >= e1000_82543) &&
  988. (adapter->rx_csum == TRUE)) {
  989. rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
  990. rxcsum |= E1000_RXCSUM_TUOFL;
  991. E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
  992. }
  993. /* Enable Receives */
  994. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  995. }
  996. /**
  997. * e1000_free_tx_resources - Free Tx Resources
  998. * @adapter: board private structure
  999. *
  1000. * Free all transmit software resources
  1001. **/
  1002. void
  1003. e1000_free_tx_resources(struct e1000_adapter *adapter)
  1004. {
  1005. struct pci_dev *pdev = adapter->pdev;
  1006. e1000_clean_tx_ring(adapter);
  1007. vfree(adapter->tx_ring.buffer_info);
  1008. adapter->tx_ring.buffer_info = NULL;
  1009. pci_free_consistent(pdev, adapter->tx_ring.size,
  1010. adapter->tx_ring.desc, adapter->tx_ring.dma);
  1011. adapter->tx_ring.desc = NULL;
  1012. }
  1013. static inline void
  1014. e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
  1015. struct e1000_buffer *buffer_info)
  1016. {
  1017. struct pci_dev *pdev = adapter->pdev;
  1018. if(buffer_info->dma) {
  1019. pci_unmap_page(pdev,
  1020. buffer_info->dma,
  1021. buffer_info->length,
  1022. PCI_DMA_TODEVICE);
  1023. buffer_info->dma = 0;
  1024. }
  1025. if(buffer_info->skb) {
  1026. dev_kfree_skb_any(buffer_info->skb);
  1027. buffer_info->skb = NULL;
  1028. }
  1029. }
  1030. /**
  1031. * e1000_clean_tx_ring - Free Tx Buffers
  1032. * @adapter: board private structure
  1033. **/
  1034. static void
  1035. e1000_clean_tx_ring(struct e1000_adapter *adapter)
  1036. {
  1037. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1038. struct e1000_buffer *buffer_info;
  1039. unsigned long size;
  1040. unsigned int i;
  1041. /* Free all the Tx ring sk_buffs */
  1042. if (likely(adapter->previous_buffer_info.skb != NULL)) {
  1043. e1000_unmap_and_free_tx_resource(adapter,
  1044. &adapter->previous_buffer_info);
  1045. }
  1046. for(i = 0; i < tx_ring->count; i++) {
  1047. buffer_info = &tx_ring->buffer_info[i];
  1048. e1000_unmap_and_free_tx_resource(adapter, buffer_info);
  1049. }
  1050. size = sizeof(struct e1000_buffer) * tx_ring->count;
  1051. memset(tx_ring->buffer_info, 0, size);
  1052. /* Zero out the descriptor ring */
  1053. memset(tx_ring->desc, 0, tx_ring->size);
  1054. tx_ring->next_to_use = 0;
  1055. tx_ring->next_to_clean = 0;
  1056. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  1057. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  1058. }
  1059. /**
  1060. * e1000_free_rx_resources - Free Rx Resources
  1061. * @adapter: board private structure
  1062. *
  1063. * Free all receive software resources
  1064. **/
  1065. void
  1066. e1000_free_rx_resources(struct e1000_adapter *adapter)
  1067. {
  1068. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  1069. struct pci_dev *pdev = adapter->pdev;
  1070. e1000_clean_rx_ring(adapter);
  1071. vfree(rx_ring->buffer_info);
  1072. rx_ring->buffer_info = NULL;
  1073. pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
  1074. rx_ring->desc = NULL;
  1075. }
  1076. /**
  1077. * e1000_clean_rx_ring - Free Rx Buffers
  1078. * @adapter: board private structure
  1079. **/
  1080. static void
  1081. e1000_clean_rx_ring(struct e1000_adapter *adapter)
  1082. {
  1083. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  1084. struct e1000_buffer *buffer_info;
  1085. struct pci_dev *pdev = adapter->pdev;
  1086. unsigned long size;
  1087. unsigned int i;
  1088. /* Free all the Rx ring sk_buffs */
  1089. for(i = 0; i < rx_ring->count; i++) {
  1090. buffer_info = &rx_ring->buffer_info[i];
  1091. if(buffer_info->skb) {
  1092. pci_unmap_single(pdev,
  1093. buffer_info->dma,
  1094. buffer_info->length,
  1095. PCI_DMA_FROMDEVICE);
  1096. dev_kfree_skb(buffer_info->skb);
  1097. buffer_info->skb = NULL;
  1098. }
  1099. }
  1100. size = sizeof(struct e1000_buffer) * rx_ring->count;
  1101. memset(rx_ring->buffer_info, 0, size);
  1102. /* Zero out the descriptor ring */
  1103. memset(rx_ring->desc, 0, rx_ring->size);
  1104. rx_ring->next_to_clean = 0;
  1105. rx_ring->next_to_use = 0;
  1106. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  1107. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  1108. }
  1109. /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
  1110. * and memory write and invalidate disabled for certain operations
  1111. */
  1112. static void
  1113. e1000_enter_82542_rst(struct e1000_adapter *adapter)
  1114. {
  1115. struct net_device *netdev = adapter->netdev;
  1116. uint32_t rctl;
  1117. e1000_pci_clear_mwi(&adapter->hw);
  1118. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1119. rctl |= E1000_RCTL_RST;
  1120. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1121. E1000_WRITE_FLUSH(&adapter->hw);
  1122. mdelay(5);
  1123. if(netif_running(netdev))
  1124. e1000_clean_rx_ring(adapter);
  1125. }
  1126. static void
  1127. e1000_leave_82542_rst(struct e1000_adapter *adapter)
  1128. {
  1129. struct net_device *netdev = adapter->netdev;
  1130. uint32_t rctl;
  1131. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1132. rctl &= ~E1000_RCTL_RST;
  1133. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1134. E1000_WRITE_FLUSH(&adapter->hw);
  1135. mdelay(5);
  1136. if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
  1137. e1000_pci_set_mwi(&adapter->hw);
  1138. if(netif_running(netdev)) {
  1139. e1000_configure_rx(adapter);
  1140. e1000_alloc_rx_buffers(adapter);
  1141. }
  1142. }
  1143. /**
  1144. * e1000_set_mac - Change the Ethernet Address of the NIC
  1145. * @netdev: network interface device structure
  1146. * @p: pointer to an address structure
  1147. *
  1148. * Returns 0 on success, negative on failure
  1149. **/
  1150. static int
  1151. e1000_set_mac(struct net_device *netdev, void *p)
  1152. {
  1153. struct e1000_adapter *adapter = netdev->priv;
  1154. struct sockaddr *addr = p;
  1155. if(!is_valid_ether_addr(addr->sa_data))
  1156. return -EADDRNOTAVAIL;
  1157. /* 82542 2.0 needs to be in reset to write receive address registers */
  1158. if(adapter->hw.mac_type == e1000_82542_rev2_0)
  1159. e1000_enter_82542_rst(adapter);
  1160. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  1161. memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
  1162. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  1163. if(adapter->hw.mac_type == e1000_82542_rev2_0)
  1164. e1000_leave_82542_rst(adapter);
  1165. return 0;
  1166. }
  1167. /**
  1168. * e1000_set_multi - Multicast and Promiscuous mode set
  1169. * @netdev: network interface device structure
  1170. *
  1171. * The set_multi entry point is called whenever the multicast address
  1172. * list or the network interface flags are updated. This routine is
  1173. * responsible for configuring the hardware for proper multicast,
  1174. * promiscuous mode, and all-multi behavior.
  1175. **/
  1176. static void
  1177. e1000_set_multi(struct net_device *netdev)
  1178. {
  1179. struct e1000_adapter *adapter = netdev->priv;
  1180. struct e1000_hw *hw = &adapter->hw;
  1181. struct dev_mc_list *mc_ptr;
  1182. uint32_t rctl;
  1183. uint32_t hash_value;
  1184. int i;
  1185. unsigned long flags;
  1186. /* Check for Promiscuous and All Multicast modes */
  1187. spin_lock_irqsave(&adapter->tx_lock, flags);
  1188. rctl = E1000_READ_REG(hw, RCTL);
  1189. if(netdev->flags & IFF_PROMISC) {
  1190. rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
  1191. } else if(netdev->flags & IFF_ALLMULTI) {
  1192. rctl |= E1000_RCTL_MPE;
  1193. rctl &= ~E1000_RCTL_UPE;
  1194. } else {
  1195. rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
  1196. }
  1197. E1000_WRITE_REG(hw, RCTL, rctl);
  1198. /* 82542 2.0 needs to be in reset to write receive address registers */
  1199. if(hw->mac_type == e1000_82542_rev2_0)
  1200. e1000_enter_82542_rst(adapter);
  1201. /* load the first 14 multicast address into the exact filters 1-14
  1202. * RAR 0 is used for the station MAC adddress
  1203. * if there are not 14 addresses, go ahead and clear the filters
  1204. */
  1205. mc_ptr = netdev->mc_list;
  1206. for(i = 1; i < E1000_RAR_ENTRIES; i++) {
  1207. if(mc_ptr) {
  1208. e1000_rar_set(hw, mc_ptr->dmi_addr, i);
  1209. mc_ptr = mc_ptr->next;
  1210. } else {
  1211. E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
  1212. E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
  1213. }
  1214. }
  1215. /* clear the old settings from the multicast hash table */
  1216. for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
  1217. E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
  1218. /* load any remaining addresses into the hash table */
  1219. for(; mc_ptr; mc_ptr = mc_ptr->next) {
  1220. hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
  1221. e1000_mta_set(hw, hash_value);
  1222. }
  1223. if(hw->mac_type == e1000_82542_rev2_0)
  1224. e1000_leave_82542_rst(adapter);
  1225. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1226. }
  1227. /* Need to wait a few seconds after link up to get diagnostic information from
  1228. * the phy */
  1229. static void
  1230. e1000_update_phy_info(unsigned long data)
  1231. {
  1232. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1233. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  1234. }
  1235. /**
  1236. * e1000_82547_tx_fifo_stall - Timer Call-back
  1237. * @data: pointer to adapter cast into an unsigned long
  1238. **/
  1239. static void
  1240. e1000_82547_tx_fifo_stall(unsigned long data)
  1241. {
  1242. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1243. struct net_device *netdev = adapter->netdev;
  1244. uint32_t tctl;
  1245. if(atomic_read(&adapter->tx_fifo_stall)) {
  1246. if((E1000_READ_REG(&adapter->hw, TDT) ==
  1247. E1000_READ_REG(&adapter->hw, TDH)) &&
  1248. (E1000_READ_REG(&adapter->hw, TDFT) ==
  1249. E1000_READ_REG(&adapter->hw, TDFH)) &&
  1250. (E1000_READ_REG(&adapter->hw, TDFTS) ==
  1251. E1000_READ_REG(&adapter->hw, TDFHS))) {
  1252. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  1253. E1000_WRITE_REG(&adapter->hw, TCTL,
  1254. tctl & ~E1000_TCTL_EN);
  1255. E1000_WRITE_REG(&adapter->hw, TDFT,
  1256. adapter->tx_head_addr);
  1257. E1000_WRITE_REG(&adapter->hw, TDFH,
  1258. adapter->tx_head_addr);
  1259. E1000_WRITE_REG(&adapter->hw, TDFTS,
  1260. adapter->tx_head_addr);
  1261. E1000_WRITE_REG(&adapter->hw, TDFHS,
  1262. adapter->tx_head_addr);
  1263. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  1264. E1000_WRITE_FLUSH(&adapter->hw);
  1265. adapter->tx_fifo_head = 0;
  1266. atomic_set(&adapter->tx_fifo_stall, 0);
  1267. netif_wake_queue(netdev);
  1268. } else {
  1269. mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
  1270. }
  1271. }
  1272. }
  1273. /**
  1274. * e1000_watchdog - Timer Call-back
  1275. * @data: pointer to adapter cast into an unsigned long
  1276. **/
  1277. static void
  1278. e1000_watchdog(unsigned long data)
  1279. {
  1280. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1281. /* Do the rest outside of interrupt context */
  1282. schedule_work(&adapter->watchdog_task);
  1283. }
  1284. static void
  1285. e1000_watchdog_task(struct e1000_adapter *adapter)
  1286. {
  1287. struct net_device *netdev = adapter->netdev;
  1288. struct e1000_desc_ring *txdr = &adapter->tx_ring;
  1289. uint32_t link;
  1290. e1000_check_for_link(&adapter->hw);
  1291. if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
  1292. !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
  1293. link = !adapter->hw.serdes_link_down;
  1294. else
  1295. link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
  1296. if(link) {
  1297. if(!netif_carrier_ok(netdev)) {
  1298. e1000_get_speed_and_duplex(&adapter->hw,
  1299. &adapter->link_speed,
  1300. &adapter->link_duplex);
  1301. DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
  1302. adapter->link_speed,
  1303. adapter->link_duplex == FULL_DUPLEX ?
  1304. "Full Duplex" : "Half Duplex");
  1305. netif_carrier_on(netdev);
  1306. netif_wake_queue(netdev);
  1307. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1308. adapter->smartspeed = 0;
  1309. }
  1310. } else {
  1311. if(netif_carrier_ok(netdev)) {
  1312. adapter->link_speed = 0;
  1313. adapter->link_duplex = 0;
  1314. DPRINTK(LINK, INFO, "NIC Link is Down\n");
  1315. netif_carrier_off(netdev);
  1316. netif_stop_queue(netdev);
  1317. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1318. }
  1319. e1000_smartspeed(adapter);
  1320. }
  1321. e1000_update_stats(adapter);
  1322. adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
  1323. adapter->tpt_old = adapter->stats.tpt;
  1324. adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
  1325. adapter->colc_old = adapter->stats.colc;
  1326. adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
  1327. adapter->gorcl_old = adapter->stats.gorcl;
  1328. adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
  1329. adapter->gotcl_old = adapter->stats.gotcl;
  1330. e1000_update_adaptive(&adapter->hw);
  1331. if(!netif_carrier_ok(netdev)) {
  1332. if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
  1333. /* We've lost link, so the controller stops DMA,
  1334. * but we've got queued Tx work that's never going
  1335. * to get done, so reset controller to flush Tx.
  1336. * (Do the reset outside of interrupt context). */
  1337. schedule_work(&adapter->tx_timeout_task);
  1338. }
  1339. }
  1340. /* Dynamic mode for Interrupt Throttle Rate (ITR) */
  1341. if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
  1342. /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
  1343. * asymmetrical Tx or Rx gets ITR=8000; everyone
  1344. * else is between 2000-8000. */
  1345. uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
  1346. uint32_t dif = (adapter->gotcl > adapter->gorcl ?
  1347. adapter->gotcl - adapter->gorcl :
  1348. adapter->gorcl - adapter->gotcl) / 10000;
  1349. uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
  1350. E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
  1351. }
  1352. /* Cause software interrupt to ensure rx ring is cleaned */
  1353. E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
  1354. /* Force detection of hung controller every watchdog period*/
  1355. adapter->detect_tx_hung = TRUE;
  1356. /* Reset the timer */
  1357. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  1358. }
  1359. #define E1000_TX_FLAGS_CSUM 0x00000001
  1360. #define E1000_TX_FLAGS_VLAN 0x00000002
  1361. #define E1000_TX_FLAGS_TSO 0x00000004
  1362. #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
  1363. #define E1000_TX_FLAGS_VLAN_SHIFT 16
  1364. static inline int
  1365. e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
  1366. {
  1367. #ifdef NETIF_F_TSO
  1368. struct e1000_context_desc *context_desc;
  1369. unsigned int i;
  1370. uint32_t cmd_length = 0;
  1371. uint16_t ipcse, tucse, mss;
  1372. uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
  1373. int err;
  1374. if(skb_shinfo(skb)->tso_size) {
  1375. if (skb_header_cloned(skb)) {
  1376. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1377. if (err)
  1378. return err;
  1379. }
  1380. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  1381. mss = skb_shinfo(skb)->tso_size;
  1382. skb->nh.iph->tot_len = 0;
  1383. skb->nh.iph->check = 0;
  1384. skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr,
  1385. skb->nh.iph->daddr,
  1386. 0,
  1387. IPPROTO_TCP,
  1388. 0);
  1389. ipcss = skb->nh.raw - skb->data;
  1390. ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
  1391. ipcse = skb->h.raw - skb->data - 1;
  1392. tucss = skb->h.raw - skb->data;
  1393. tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
  1394. tucse = 0;
  1395. cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
  1396. E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP |
  1397. (skb->len - (hdr_len)));
  1398. i = adapter->tx_ring.next_to_use;
  1399. context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
  1400. context_desc->lower_setup.ip_fields.ipcss = ipcss;
  1401. context_desc->lower_setup.ip_fields.ipcso = ipcso;
  1402. context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
  1403. context_desc->upper_setup.tcp_fields.tucss = tucss;
  1404. context_desc->upper_setup.tcp_fields.tucso = tucso;
  1405. context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
  1406. context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
  1407. context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
  1408. context_desc->cmd_and_length = cpu_to_le32(cmd_length);
  1409. if(++i == adapter->tx_ring.count) i = 0;
  1410. adapter->tx_ring.next_to_use = i;
  1411. return 1;
  1412. }
  1413. #endif
  1414. return 0;
  1415. }
  1416. static inline boolean_t
  1417. e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
  1418. {
  1419. struct e1000_context_desc *context_desc;
  1420. unsigned int i;
  1421. uint8_t css;
  1422. if(likely(skb->ip_summed == CHECKSUM_HW)) {
  1423. css = skb->h.raw - skb->data;
  1424. i = adapter->tx_ring.next_to_use;
  1425. context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
  1426. context_desc->upper_setup.tcp_fields.tucss = css;
  1427. context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
  1428. context_desc->upper_setup.tcp_fields.tucse = 0;
  1429. context_desc->tcp_seg_setup.data = 0;
  1430. context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
  1431. if(unlikely(++i == adapter->tx_ring.count)) i = 0;
  1432. adapter->tx_ring.next_to_use = i;
  1433. return TRUE;
  1434. }
  1435. return FALSE;
  1436. }
  1437. #define E1000_MAX_TXD_PWR 12
  1438. #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
  1439. static inline int
  1440. e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
  1441. unsigned int first, unsigned int max_per_txd,
  1442. unsigned int nr_frags, unsigned int mss)
  1443. {
  1444. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1445. struct e1000_buffer *buffer_info;
  1446. unsigned int len = skb->len;
  1447. unsigned int offset = 0, size, count = 0, i;
  1448. unsigned int f;
  1449. len -= skb->data_len;
  1450. i = tx_ring->next_to_use;
  1451. while(len) {
  1452. buffer_info = &tx_ring->buffer_info[i];
  1453. size = min(len, max_per_txd);
  1454. #ifdef NETIF_F_TSO
  1455. /* Workaround for premature desc write-backs
  1456. * in TSO mode. Append 4-byte sentinel desc */
  1457. if(unlikely(mss && !nr_frags && size == len && size > 8))
  1458. size -= 4;
  1459. #endif
  1460. /* Workaround for potential 82544 hang in PCI-X. Avoid
  1461. * terminating buffers within evenly-aligned dwords. */
  1462. if(unlikely(adapter->pcix_82544 &&
  1463. !((unsigned long)(skb->data + offset + size - 1) & 4) &&
  1464. size > 4))
  1465. size -= 4;
  1466. buffer_info->length = size;
  1467. buffer_info->dma =
  1468. pci_map_single(adapter->pdev,
  1469. skb->data + offset,
  1470. size,
  1471. PCI_DMA_TODEVICE);
  1472. buffer_info->time_stamp = jiffies;
  1473. len -= size;
  1474. offset += size;
  1475. count++;
  1476. if(unlikely(++i == tx_ring->count)) i = 0;
  1477. }
  1478. for(f = 0; f < nr_frags; f++) {
  1479. struct skb_frag_struct *frag;
  1480. frag = &skb_shinfo(skb)->frags[f];
  1481. len = frag->size;
  1482. offset = frag->page_offset;
  1483. while(len) {
  1484. buffer_info = &tx_ring->buffer_info[i];
  1485. size = min(len, max_per_txd);
  1486. #ifdef NETIF_F_TSO
  1487. /* Workaround for premature desc write-backs
  1488. * in TSO mode. Append 4-byte sentinel desc */
  1489. if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
  1490. size -= 4;
  1491. #endif
  1492. /* Workaround for potential 82544 hang in PCI-X.
  1493. * Avoid terminating buffers within evenly-aligned
  1494. * dwords. */
  1495. if(unlikely(adapter->pcix_82544 &&
  1496. !((unsigned long)(frag->page+offset+size-1) & 4) &&
  1497. size > 4))
  1498. size -= 4;
  1499. buffer_info->length = size;
  1500. buffer_info->dma =
  1501. pci_map_page(adapter->pdev,
  1502. frag->page,
  1503. offset,
  1504. size,
  1505. PCI_DMA_TODEVICE);
  1506. buffer_info->time_stamp = jiffies;
  1507. len -= size;
  1508. offset += size;
  1509. count++;
  1510. if(unlikely(++i == tx_ring->count)) i = 0;
  1511. }
  1512. }
  1513. i = (i == 0) ? tx_ring->count - 1 : i - 1;
  1514. tx_ring->buffer_info[i].skb = skb;
  1515. tx_ring->buffer_info[first].next_to_watch = i;
  1516. return count;
  1517. }
  1518. static inline void
  1519. e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
  1520. {
  1521. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1522. struct e1000_tx_desc *tx_desc = NULL;
  1523. struct e1000_buffer *buffer_info;
  1524. uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
  1525. unsigned int i;
  1526. if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
  1527. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
  1528. E1000_TXD_CMD_TSE;
  1529. txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
  1530. }
  1531. if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
  1532. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
  1533. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  1534. }
  1535. if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
  1536. txd_lower |= E1000_TXD_CMD_VLE;
  1537. txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
  1538. }
  1539. i = tx_ring->next_to_use;
  1540. while(count--) {
  1541. buffer_info = &tx_ring->buffer_info[i];
  1542. tx_desc = E1000_TX_DESC(*tx_ring, i);
  1543. tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  1544. tx_desc->lower.data =
  1545. cpu_to_le32(txd_lower | buffer_info->length);
  1546. tx_desc->upper.data = cpu_to_le32(txd_upper);
  1547. if(unlikely(++i == tx_ring->count)) i = 0;
  1548. }
  1549. tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
  1550. /* Force memory writes to complete before letting h/w
  1551. * know there are new descriptors to fetch. (Only
  1552. * applicable for weak-ordered memory model archs,
  1553. * such as IA-64). */
  1554. wmb();
  1555. tx_ring->next_to_use = i;
  1556. E1000_WRITE_REG(&adapter->hw, TDT, i);
  1557. }
  1558. /**
  1559. * 82547 workaround to avoid controller hang in half-duplex environment.
  1560. * The workaround is to avoid queuing a large packet that would span
  1561. * the internal Tx FIFO ring boundary by notifying the stack to resend
  1562. * the packet at a later time. This gives the Tx FIFO an opportunity to
  1563. * flush all packets. When that occurs, we reset the Tx FIFO pointers
  1564. * to the beginning of the Tx FIFO.
  1565. **/
  1566. #define E1000_FIFO_HDR 0x10
  1567. #define E1000_82547_PAD_LEN 0x3E0
  1568. static inline int
  1569. e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
  1570. {
  1571. uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
  1572. uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
  1573. E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
  1574. if(adapter->link_duplex != HALF_DUPLEX)
  1575. goto no_fifo_stall_required;
  1576. if(atomic_read(&adapter->tx_fifo_stall))
  1577. return 1;
  1578. if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
  1579. atomic_set(&adapter->tx_fifo_stall, 1);
  1580. return 1;
  1581. }
  1582. no_fifo_stall_required:
  1583. adapter->tx_fifo_head += skb_fifo_len;
  1584. if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
  1585. adapter->tx_fifo_head -= adapter->tx_fifo_size;
  1586. return 0;
  1587. }
  1588. #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
  1589. static int
  1590. e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  1591. {
  1592. struct e1000_adapter *adapter = netdev->priv;
  1593. unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
  1594. unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
  1595. unsigned int tx_flags = 0;
  1596. unsigned int len = skb->len;
  1597. unsigned long flags;
  1598. unsigned int nr_frags = 0;
  1599. unsigned int mss = 0;
  1600. int count = 0;
  1601. int tso;
  1602. unsigned int f;
  1603. len -= skb->data_len;
  1604. if(unlikely(skb->len <= 0)) {
  1605. dev_kfree_skb_any(skb);
  1606. return NETDEV_TX_OK;
  1607. }
  1608. #ifdef NETIF_F_TSO
  1609. mss = skb_shinfo(skb)->tso_size;
  1610. /* The controller does a simple calculation to
  1611. * make sure there is enough room in the FIFO before
  1612. * initiating the DMA for each buffer. The calc is:
  1613. * 4 = ceil(buffer len/mss). To make sure we don't
  1614. * overrun the FIFO, adjust the max buffer len if mss
  1615. * drops. */
  1616. if(mss) {
  1617. max_per_txd = min(mss << 2, max_per_txd);
  1618. max_txd_pwr = fls(max_per_txd) - 1;
  1619. }
  1620. if((mss) || (skb->ip_summed == CHECKSUM_HW))
  1621. count++;
  1622. count++; /* for sentinel desc */
  1623. #else
  1624. if(skb->ip_summed == CHECKSUM_HW)
  1625. count++;
  1626. #endif
  1627. count += TXD_USE_COUNT(len, max_txd_pwr);
  1628. if(adapter->pcix_82544)
  1629. count++;
  1630. nr_frags = skb_shinfo(skb)->nr_frags;
  1631. for(f = 0; f < nr_frags; f++)
  1632. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
  1633. max_txd_pwr);
  1634. if(adapter->pcix_82544)
  1635. count += nr_frags;
  1636. local_irq_save(flags);
  1637. if (!spin_trylock(&adapter->tx_lock)) {
  1638. /* Collision - tell upper layer to requeue */
  1639. local_irq_restore(flags);
  1640. return NETDEV_TX_LOCKED;
  1641. }
  1642. /* need: count + 2 desc gap to keep tail from touching
  1643. * head, otherwise try next time */
  1644. if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
  1645. netif_stop_queue(netdev);
  1646. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1647. return NETDEV_TX_BUSY;
  1648. }
  1649. if(unlikely(adapter->hw.mac_type == e1000_82547)) {
  1650. if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
  1651. netif_stop_queue(netdev);
  1652. mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
  1653. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1654. return NETDEV_TX_BUSY;
  1655. }
  1656. }
  1657. if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
  1658. tx_flags |= E1000_TX_FLAGS_VLAN;
  1659. tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
  1660. }
  1661. first = adapter->tx_ring.next_to_use;
  1662. tso = e1000_tso(adapter, skb);
  1663. if (tso < 0) {
  1664. dev_kfree_skb_any(skb);
  1665. return NETDEV_TX_OK;
  1666. }
  1667. if (likely(tso))
  1668. tx_flags |= E1000_TX_FLAGS_TSO;
  1669. else if(likely(e1000_tx_csum(adapter, skb)))
  1670. tx_flags |= E1000_TX_FLAGS_CSUM;
  1671. e1000_tx_queue(adapter,
  1672. e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
  1673. tx_flags);
  1674. netdev->trans_start = jiffies;
  1675. /* Make sure there is space in the ring for the next send. */
  1676. if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
  1677. netif_stop_queue(netdev);
  1678. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1679. return NETDEV_TX_OK;
  1680. }
  1681. /**
  1682. * e1000_tx_timeout - Respond to a Tx Hang
  1683. * @netdev: network interface device structure
  1684. **/
  1685. static void
  1686. e1000_tx_timeout(struct net_device *netdev)
  1687. {
  1688. struct e1000_adapter *adapter = netdev->priv;
  1689. /* Do the reset outside of interrupt context */
  1690. schedule_work(&adapter->tx_timeout_task);
  1691. }
  1692. static void
  1693. e1000_tx_timeout_task(struct net_device *netdev)
  1694. {
  1695. struct e1000_adapter *adapter = netdev->priv;
  1696. e1000_down(adapter);
  1697. e1000_up(adapter);
  1698. }
  1699. /**
  1700. * e1000_get_stats - Get System Network Statistics
  1701. * @netdev: network interface device structure
  1702. *
  1703. * Returns the address of the device statistics structure.
  1704. * The statistics are actually updated from the timer callback.
  1705. **/
  1706. static struct net_device_stats *
  1707. e1000_get_stats(struct net_device *netdev)
  1708. {
  1709. struct e1000_adapter *adapter = netdev->priv;
  1710. e1000_update_stats(adapter);
  1711. return &adapter->net_stats;
  1712. }
  1713. /**
  1714. * e1000_change_mtu - Change the Maximum Transfer Unit
  1715. * @netdev: network interface device structure
  1716. * @new_mtu: new value for maximum frame size
  1717. *
  1718. * Returns 0 on success, negative on failure
  1719. **/
  1720. static int
  1721. e1000_change_mtu(struct net_device *netdev, int new_mtu)
  1722. {
  1723. struct e1000_adapter *adapter = netdev->priv;
  1724. int old_mtu = adapter->rx_buffer_len;
  1725. int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  1726. if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
  1727. (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  1728. DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
  1729. return -EINVAL;
  1730. }
  1731. if(max_frame <= MAXIMUM_ETHERNET_FRAME_SIZE) {
  1732. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  1733. } else if(adapter->hw.mac_type < e1000_82543) {
  1734. DPRINTK(PROBE, ERR, "Jumbo Frames not supported on 82542\n");
  1735. return -EINVAL;
  1736. } else if(max_frame <= E1000_RXBUFFER_4096) {
  1737. adapter->rx_buffer_len = E1000_RXBUFFER_4096;
  1738. } else if(max_frame <= E1000_RXBUFFER_8192) {
  1739. adapter->rx_buffer_len = E1000_RXBUFFER_8192;
  1740. } else {
  1741. adapter->rx_buffer_len = E1000_RXBUFFER_16384;
  1742. }
  1743. if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) {
  1744. e1000_down(adapter);
  1745. e1000_up(adapter);
  1746. }
  1747. netdev->mtu = new_mtu;
  1748. adapter->hw.max_frame_size = max_frame;
  1749. return 0;
  1750. }
  1751. /**
  1752. * e1000_update_stats - Update the board statistics counters
  1753. * @adapter: board private structure
  1754. **/
  1755. void
  1756. e1000_update_stats(struct e1000_adapter *adapter)
  1757. {
  1758. struct e1000_hw *hw = &adapter->hw;
  1759. unsigned long flags;
  1760. uint16_t phy_tmp;
  1761. #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
  1762. spin_lock_irqsave(&adapter->stats_lock, flags);
  1763. /* these counters are modified from e1000_adjust_tbi_stats,
  1764. * called from the interrupt context, so they must only
  1765. * be written while holding adapter->stats_lock
  1766. */
  1767. adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
  1768. adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
  1769. adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
  1770. adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
  1771. adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
  1772. adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
  1773. adapter->stats.roc += E1000_READ_REG(hw, ROC);
  1774. adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
  1775. adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
  1776. adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
  1777. adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
  1778. adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
  1779. adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
  1780. adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
  1781. adapter->stats.mpc += E1000_READ_REG(hw, MPC);
  1782. adapter->stats.scc += E1000_READ_REG(hw, SCC);
  1783. adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
  1784. adapter->stats.mcc += E1000_READ_REG(hw, MCC);
  1785. adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
  1786. adapter->stats.dc += E1000_READ_REG(hw, DC);
  1787. adapter->stats.sec += E1000_READ_REG(hw, SEC);
  1788. adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
  1789. adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
  1790. adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
  1791. adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
  1792. adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
  1793. adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
  1794. adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
  1795. adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
  1796. adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
  1797. adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
  1798. adapter->stats.ruc += E1000_READ_REG(hw, RUC);
  1799. adapter->stats.rfc += E1000_READ_REG(hw, RFC);
  1800. adapter->stats.rjc += E1000_READ_REG(hw, RJC);
  1801. adapter->stats.torl += E1000_READ_REG(hw, TORL);
  1802. adapter->stats.torh += E1000_READ_REG(hw, TORH);
  1803. adapter->stats.totl += E1000_READ_REG(hw, TOTL);
  1804. adapter->stats.toth += E1000_READ_REG(hw, TOTH);
  1805. adapter->stats.tpr += E1000_READ_REG(hw, TPR);
  1806. adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
  1807. adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
  1808. adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
  1809. adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
  1810. adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
  1811. adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
  1812. adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
  1813. adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
  1814. /* used for adaptive IFS */
  1815. hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
  1816. adapter->stats.tpt += hw->tx_packet_delta;
  1817. hw->collision_delta = E1000_READ_REG(hw, COLC);
  1818. adapter->stats.colc += hw->collision_delta;
  1819. if(hw->mac_type >= e1000_82543) {
  1820. adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
  1821. adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
  1822. adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
  1823. adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
  1824. adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
  1825. adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
  1826. }
  1827. /* Fill out the OS statistics structure */
  1828. adapter->net_stats.rx_packets = adapter->stats.gprc;
  1829. adapter->net_stats.tx_packets = adapter->stats.gptc;
  1830. adapter->net_stats.rx_bytes = adapter->stats.gorcl;
  1831. adapter->net_stats.tx_bytes = adapter->stats.gotcl;
  1832. adapter->net_stats.multicast = adapter->stats.mprc;
  1833. adapter->net_stats.collisions = adapter->stats.colc;
  1834. /* Rx Errors */
  1835. adapter->net_stats.rx_errors = adapter->stats.rxerrc +
  1836. adapter->stats.crcerrs + adapter->stats.algnerrc +
  1837. adapter->stats.rlec + adapter->stats.rnbc +
  1838. adapter->stats.mpc + adapter->stats.cexterr;
  1839. adapter->net_stats.rx_dropped = adapter->stats.rnbc;
  1840. adapter->net_stats.rx_length_errors = adapter->stats.rlec;
  1841. adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
  1842. adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
  1843. adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
  1844. adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
  1845. /* Tx Errors */
  1846. adapter->net_stats.tx_errors = adapter->stats.ecol +
  1847. adapter->stats.latecol;
  1848. adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
  1849. adapter->net_stats.tx_window_errors = adapter->stats.latecol;
  1850. adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
  1851. /* Tx Dropped needs to be maintained elsewhere */
  1852. /* Phy Stats */
  1853. if(hw->media_type == e1000_media_type_copper) {
  1854. if((adapter->link_speed == SPEED_1000) &&
  1855. (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
  1856. phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
  1857. adapter->phy_stats.idle_errors += phy_tmp;
  1858. }
  1859. if((hw->mac_type <= e1000_82546) &&
  1860. (hw->phy_type == e1000_phy_m88) &&
  1861. !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
  1862. adapter->phy_stats.receive_errors += phy_tmp;
  1863. }
  1864. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  1865. }
  1866. /**
  1867. * e1000_intr - Interrupt Handler
  1868. * @irq: interrupt number
  1869. * @data: pointer to a network interface device structure
  1870. * @pt_regs: CPU registers structure
  1871. **/
  1872. static irqreturn_t
  1873. e1000_intr(int irq, void *data, struct pt_regs *regs)
  1874. {
  1875. struct net_device *netdev = data;
  1876. struct e1000_adapter *adapter = netdev->priv;
  1877. struct e1000_hw *hw = &adapter->hw;
  1878. uint32_t icr = E1000_READ_REG(hw, ICR);
  1879. #ifndef CONFIG_E1000_NAPI
  1880. unsigned int i;
  1881. #endif
  1882. if(unlikely(!icr))
  1883. return IRQ_NONE; /* Not our interrupt */
  1884. if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
  1885. hw->get_link_status = 1;
  1886. mod_timer(&adapter->watchdog_timer, jiffies);
  1887. }
  1888. #ifdef CONFIG_E1000_NAPI
  1889. if(likely(netif_rx_schedule_prep(netdev))) {
  1890. /* Disable interrupts and register for poll. The flush
  1891. of the posted write is intentionally left out.
  1892. */
  1893. atomic_inc(&adapter->irq_sem);
  1894. E1000_WRITE_REG(hw, IMC, ~0);
  1895. __netif_rx_schedule(netdev);
  1896. }
  1897. #else
  1898. /* Writing IMC and IMS is needed for 82547.
  1899. Due to Hub Link bus being occupied, an interrupt
  1900. de-assertion message is not able to be sent.
  1901. When an interrupt assertion message is generated later,
  1902. two messages are re-ordered and sent out.
  1903. That causes APIC to think 82547 is in de-assertion
  1904. state, while 82547 is in assertion state, resulting
  1905. in dead lock. Writing IMC forces 82547 into
  1906. de-assertion state.
  1907. */
  1908. if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
  1909. atomic_inc(&adapter->irq_sem);
  1910. E1000_WRITE_REG(&adapter->hw, IMC, ~0);
  1911. }
  1912. for(i = 0; i < E1000_MAX_INTR; i++)
  1913. if(unlikely(!e1000_clean_rx_irq(adapter) &
  1914. !e1000_clean_tx_irq(adapter)))
  1915. break;
  1916. if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
  1917. e1000_irq_enable(adapter);
  1918. #endif
  1919. return IRQ_HANDLED;
  1920. }
  1921. #ifdef CONFIG_E1000_NAPI
  1922. /**
  1923. * e1000_clean - NAPI Rx polling callback
  1924. * @adapter: board private structure
  1925. **/
  1926. static int
  1927. e1000_clean(struct net_device *netdev, int *budget)
  1928. {
  1929. struct e1000_adapter *adapter = netdev->priv;
  1930. int work_to_do = min(*budget, netdev->quota);
  1931. int tx_cleaned;
  1932. int work_done = 0;
  1933. tx_cleaned = e1000_clean_tx_irq(adapter);
  1934. e1000_clean_rx_irq(adapter, &work_done, work_to_do);
  1935. *budget -= work_done;
  1936. netdev->quota -= work_done;
  1937. /* if no Tx and not enough Rx work done, exit the polling mode */
  1938. if((!tx_cleaned && (work_done < work_to_do)) ||
  1939. !netif_running(netdev)) {
  1940. netif_rx_complete(netdev);
  1941. e1000_irq_enable(adapter);
  1942. return 0;
  1943. }
  1944. return 1;
  1945. }
  1946. #endif
  1947. /**
  1948. * e1000_clean_tx_irq - Reclaim resources after transmit completes
  1949. * @adapter: board private structure
  1950. **/
  1951. static boolean_t
  1952. e1000_clean_tx_irq(struct e1000_adapter *adapter)
  1953. {
  1954. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1955. struct net_device *netdev = adapter->netdev;
  1956. struct e1000_tx_desc *tx_desc, *eop_desc;
  1957. struct e1000_buffer *buffer_info;
  1958. unsigned int i, eop;
  1959. boolean_t cleaned = FALSE;
  1960. i = tx_ring->next_to_clean;
  1961. eop = tx_ring->buffer_info[i].next_to_watch;
  1962. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  1963. while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
  1964. /* Premature writeback of Tx descriptors clear (free buffers
  1965. * and unmap pci_mapping) previous_buffer_info */
  1966. if (likely(adapter->previous_buffer_info.skb != NULL)) {
  1967. e1000_unmap_and_free_tx_resource(adapter,
  1968. &adapter->previous_buffer_info);
  1969. }
  1970. for(cleaned = FALSE; !cleaned; ) {
  1971. tx_desc = E1000_TX_DESC(*tx_ring, i);
  1972. buffer_info = &tx_ring->buffer_info[i];
  1973. cleaned = (i == eop);
  1974. #ifdef NETIF_F_TSO
  1975. if (!(netdev->features & NETIF_F_TSO)) {
  1976. #endif
  1977. e1000_unmap_and_free_tx_resource(adapter,
  1978. buffer_info);
  1979. #ifdef NETIF_F_TSO
  1980. } else {
  1981. if (cleaned) {
  1982. memcpy(&adapter->previous_buffer_info,
  1983. buffer_info,
  1984. sizeof(struct e1000_buffer));
  1985. memset(buffer_info, 0,
  1986. sizeof(struct e1000_buffer));
  1987. } else {
  1988. e1000_unmap_and_free_tx_resource(
  1989. adapter, buffer_info);
  1990. }
  1991. }
  1992. #endif
  1993. tx_desc->buffer_addr = 0;
  1994. tx_desc->lower.data = 0;
  1995. tx_desc->upper.data = 0;
  1996. cleaned = (i == eop);
  1997. if(unlikely(++i == tx_ring->count)) i = 0;
  1998. }
  1999. eop = tx_ring->buffer_info[i].next_to_watch;
  2000. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2001. }
  2002. tx_ring->next_to_clean = i;
  2003. spin_lock(&adapter->tx_lock);
  2004. if(unlikely(cleaned && netif_queue_stopped(netdev) &&
  2005. netif_carrier_ok(netdev)))
  2006. netif_wake_queue(netdev);
  2007. spin_unlock(&adapter->tx_lock);
  2008. if(adapter->detect_tx_hung) {
  2009. /* detect a transmit hang in hardware, this serializes the
  2010. * check with the clearing of time_stamp and movement of i */
  2011. adapter->detect_tx_hung = FALSE;
  2012. if(tx_ring->buffer_info[i].dma &&
  2013. time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ) &&
  2014. !(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF))
  2015. netif_stop_queue(netdev);
  2016. }
  2017. #ifdef NETIF_F_TSO
  2018. if( unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
  2019. time_after(jiffies, adapter->previous_buffer_info.time_stamp + HZ)))
  2020. e1000_unmap_and_free_tx_resource(
  2021. adapter, &adapter->previous_buffer_info);
  2022. #endif
  2023. return cleaned;
  2024. }
  2025. /**
  2026. * e1000_rx_checksum - Receive Checksum Offload for 82543
  2027. * @adapter: board private structure
  2028. * @rx_desc: receive descriptor
  2029. * @sk_buff: socket buffer with received data
  2030. **/
  2031. static inline void
  2032. e1000_rx_checksum(struct e1000_adapter *adapter,
  2033. struct e1000_rx_desc *rx_desc,
  2034. struct sk_buff *skb)
  2035. {
  2036. /* 82543 or newer only */
  2037. if(unlikely((adapter->hw.mac_type < e1000_82543) ||
  2038. /* Ignore Checksum bit is set */
  2039. (rx_desc->status & E1000_RXD_STAT_IXSM) ||
  2040. /* TCP Checksum has not been calculated */
  2041. (!(rx_desc->status & E1000_RXD_STAT_TCPCS)))) {
  2042. skb->ip_summed = CHECKSUM_NONE;
  2043. return;
  2044. }
  2045. /* At this point we know the hardware did the TCP checksum */
  2046. /* now look at the TCP checksum error bit */
  2047. if(rx_desc->errors & E1000_RXD_ERR_TCPE) {
  2048. /* let the stack verify checksum errors */
  2049. skb->ip_summed = CHECKSUM_NONE;
  2050. adapter->hw_csum_err++;
  2051. } else {
  2052. /* TCP checksum is good */
  2053. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2054. adapter->hw_csum_good++;
  2055. }
  2056. }
  2057. /**
  2058. * e1000_clean_rx_irq - Send received data up the network stack
  2059. * @adapter: board private structure
  2060. **/
  2061. static boolean_t
  2062. #ifdef CONFIG_E1000_NAPI
  2063. e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
  2064. int work_to_do)
  2065. #else
  2066. e1000_clean_rx_irq(struct e1000_adapter *adapter)
  2067. #endif
  2068. {
  2069. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  2070. struct net_device *netdev = adapter->netdev;
  2071. struct pci_dev *pdev = adapter->pdev;
  2072. struct e1000_rx_desc *rx_desc;
  2073. struct e1000_buffer *buffer_info;
  2074. struct sk_buff *skb;
  2075. unsigned long flags;
  2076. uint32_t length;
  2077. uint8_t last_byte;
  2078. unsigned int i;
  2079. boolean_t cleaned = FALSE;
  2080. i = rx_ring->next_to_clean;
  2081. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2082. while(rx_desc->status & E1000_RXD_STAT_DD) {
  2083. buffer_info = &rx_ring->buffer_info[i];
  2084. #ifdef CONFIG_E1000_NAPI
  2085. if(*work_done >= work_to_do)
  2086. break;
  2087. (*work_done)++;
  2088. #endif
  2089. cleaned = TRUE;
  2090. pci_unmap_single(pdev,
  2091. buffer_info->dma,
  2092. buffer_info->length,
  2093. PCI_DMA_FROMDEVICE);
  2094. skb = buffer_info->skb;
  2095. length = le16_to_cpu(rx_desc->length);
  2096. if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
  2097. /* All receives must fit into a single buffer */
  2098. E1000_DBG("%s: Receive packet consumed multiple"
  2099. " buffers\n", netdev->name);
  2100. dev_kfree_skb_irq(skb);
  2101. goto next_desc;
  2102. }
  2103. if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
  2104. last_byte = *(skb->data + length - 1);
  2105. if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
  2106. rx_desc->errors, length, last_byte)) {
  2107. spin_lock_irqsave(&adapter->stats_lock, flags);
  2108. e1000_tbi_adjust_stats(&adapter->hw,
  2109. &adapter->stats,
  2110. length, skb->data);
  2111. spin_unlock_irqrestore(&adapter->stats_lock,
  2112. flags);
  2113. length--;
  2114. } else {
  2115. dev_kfree_skb_irq(skb);
  2116. goto next_desc;
  2117. }
  2118. }
  2119. /* Good Receive */
  2120. skb_put(skb, length - ETHERNET_FCS_SIZE);
  2121. /* Receive Checksum Offload */
  2122. e1000_rx_checksum(adapter, rx_desc, skb);
  2123. skb->protocol = eth_type_trans(skb, netdev);
  2124. #ifdef CONFIG_E1000_NAPI
  2125. if(unlikely(adapter->vlgrp &&
  2126. (rx_desc->status & E1000_RXD_STAT_VP))) {
  2127. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  2128. le16_to_cpu(rx_desc->special) &
  2129. E1000_RXD_SPC_VLAN_MASK);
  2130. } else {
  2131. netif_receive_skb(skb);
  2132. }
  2133. #else /* CONFIG_E1000_NAPI */
  2134. if(unlikely(adapter->vlgrp &&
  2135. (rx_desc->status & E1000_RXD_STAT_VP))) {
  2136. vlan_hwaccel_rx(skb, adapter->vlgrp,
  2137. le16_to_cpu(rx_desc->special) &
  2138. E1000_RXD_SPC_VLAN_MASK);
  2139. } else {
  2140. netif_rx(skb);
  2141. }
  2142. #endif /* CONFIG_E1000_NAPI */
  2143. netdev->last_rx = jiffies;
  2144. next_desc:
  2145. rx_desc->status = 0;
  2146. buffer_info->skb = NULL;
  2147. if(unlikely(++i == rx_ring->count)) i = 0;
  2148. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2149. }
  2150. rx_ring->next_to_clean = i;
  2151. e1000_alloc_rx_buffers(adapter);
  2152. return cleaned;
  2153. }
  2154. /**
  2155. * e1000_alloc_rx_buffers - Replace used receive buffers
  2156. * @adapter: address of board private structure
  2157. **/
  2158. static void
  2159. e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
  2160. {
  2161. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  2162. struct net_device *netdev = adapter->netdev;
  2163. struct pci_dev *pdev = adapter->pdev;
  2164. struct e1000_rx_desc *rx_desc;
  2165. struct e1000_buffer *buffer_info;
  2166. struct sk_buff *skb;
  2167. unsigned int i, bufsz;
  2168. i = rx_ring->next_to_use;
  2169. buffer_info = &rx_ring->buffer_info[i];
  2170. while(!buffer_info->skb) {
  2171. bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
  2172. skb = dev_alloc_skb(bufsz);
  2173. if(unlikely(!skb)) {
  2174. /* Better luck next round */
  2175. break;
  2176. }
  2177. /* fix for errata 23, cant cross 64kB boundary */
  2178. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  2179. struct sk_buff *oldskb = skb;
  2180. DPRINTK(RX_ERR,ERR,
  2181. "skb align check failed: %u bytes at %p\n",
  2182. bufsz, skb->data);
  2183. /* try again, without freeing the previous */
  2184. skb = dev_alloc_skb(bufsz);
  2185. if (!skb) {
  2186. dev_kfree_skb(oldskb);
  2187. break;
  2188. }
  2189. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  2190. /* give up */
  2191. dev_kfree_skb(skb);
  2192. dev_kfree_skb(oldskb);
  2193. break; /* while !buffer_info->skb */
  2194. } else {
  2195. /* move on with the new one */
  2196. dev_kfree_skb(oldskb);
  2197. }
  2198. }
  2199. /* Make buffer alignment 2 beyond a 16 byte boundary
  2200. * this will result in a 16 byte aligned IP header after
  2201. * the 14 byte MAC header is removed
  2202. */
  2203. skb_reserve(skb, NET_IP_ALIGN);
  2204. skb->dev = netdev;
  2205. buffer_info->skb = skb;
  2206. buffer_info->length = adapter->rx_buffer_len;
  2207. buffer_info->dma = pci_map_single(pdev,
  2208. skb->data,
  2209. adapter->rx_buffer_len,
  2210. PCI_DMA_FROMDEVICE);
  2211. /* fix for errata 23, cant cross 64kB boundary */
  2212. if(!e1000_check_64k_bound(adapter,
  2213. (void *)(unsigned long)buffer_info->dma,
  2214. adapter->rx_buffer_len)) {
  2215. DPRINTK(RX_ERR,ERR,
  2216. "dma align check failed: %u bytes at %ld\n",
  2217. adapter->rx_buffer_len, (unsigned long)buffer_info->dma);
  2218. dev_kfree_skb(skb);
  2219. buffer_info->skb = NULL;
  2220. pci_unmap_single(pdev,
  2221. buffer_info->dma,
  2222. adapter->rx_buffer_len,
  2223. PCI_DMA_FROMDEVICE);
  2224. break; /* while !buffer_info->skb */
  2225. }
  2226. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2227. rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  2228. if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
  2229. /* Force memory writes to complete before letting h/w
  2230. * know there are new descriptors to fetch. (Only
  2231. * applicable for weak-ordered memory model archs,
  2232. * such as IA-64). */
  2233. wmb();
  2234. E1000_WRITE_REG(&adapter->hw, RDT, i);
  2235. }
  2236. if(unlikely(++i == rx_ring->count)) i = 0;
  2237. buffer_info = &rx_ring->buffer_info[i];
  2238. }
  2239. rx_ring->next_to_use = i;
  2240. }
  2241. /**
  2242. * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
  2243. * @adapter:
  2244. **/
  2245. static void
  2246. e1000_smartspeed(struct e1000_adapter *adapter)
  2247. {
  2248. uint16_t phy_status;
  2249. uint16_t phy_ctrl;
  2250. if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
  2251. !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
  2252. return;
  2253. if(adapter->smartspeed == 0) {
  2254. /* If Master/Slave config fault is asserted twice,
  2255. * we assume back-to-back */
  2256. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  2257. if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  2258. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  2259. if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  2260. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  2261. if(phy_ctrl & CR_1000T_MS_ENABLE) {
  2262. phy_ctrl &= ~CR_1000T_MS_ENABLE;
  2263. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
  2264. phy_ctrl);
  2265. adapter->smartspeed++;
  2266. if(!e1000_phy_setup_autoneg(&adapter->hw) &&
  2267. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
  2268. &phy_ctrl)) {
  2269. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  2270. MII_CR_RESTART_AUTO_NEG);
  2271. e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
  2272. phy_ctrl);
  2273. }
  2274. }
  2275. return;
  2276. } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
  2277. /* If still no link, perhaps using 2/3 pair cable */
  2278. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  2279. phy_ctrl |= CR_1000T_MS_ENABLE;
  2280. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
  2281. if(!e1000_phy_setup_autoneg(&adapter->hw) &&
  2282. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
  2283. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  2284. MII_CR_RESTART_AUTO_NEG);
  2285. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
  2286. }
  2287. }
  2288. /* Restart process after E1000_SMARTSPEED_MAX iterations */
  2289. if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
  2290. adapter->smartspeed = 0;
  2291. }
  2292. /**
  2293. * e1000_ioctl -
  2294. * @netdev:
  2295. * @ifreq:
  2296. * @cmd:
  2297. **/
  2298. static int
  2299. e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  2300. {
  2301. switch (cmd) {
  2302. case SIOCGMIIPHY:
  2303. case SIOCGMIIREG:
  2304. case SIOCSMIIREG:
  2305. return e1000_mii_ioctl(netdev, ifr, cmd);
  2306. default:
  2307. return -EOPNOTSUPP;
  2308. }
  2309. }
  2310. /**
  2311. * e1000_mii_ioctl -
  2312. * @netdev:
  2313. * @ifreq:
  2314. * @cmd:
  2315. **/
  2316. static int
  2317. e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  2318. {
  2319. struct e1000_adapter *adapter = netdev->priv;
  2320. struct mii_ioctl_data *data = if_mii(ifr);
  2321. int retval;
  2322. uint16_t mii_reg;
  2323. uint16_t spddplx;
  2324. if(adapter->hw.media_type != e1000_media_type_copper)
  2325. return -EOPNOTSUPP;
  2326. switch (cmd) {
  2327. case SIOCGMIIPHY:
  2328. data->phy_id = adapter->hw.phy_addr;
  2329. break;
  2330. case SIOCGMIIREG:
  2331. if (!capable(CAP_NET_ADMIN))
  2332. return -EPERM;
  2333. if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
  2334. &data->val_out))
  2335. return -EIO;
  2336. break;
  2337. case SIOCSMIIREG:
  2338. if (!capable(CAP_NET_ADMIN))
  2339. return -EPERM;
  2340. if (data->reg_num & ~(0x1F))
  2341. return -EFAULT;
  2342. mii_reg = data->val_in;
  2343. if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
  2344. mii_reg))
  2345. return -EIO;
  2346. if (adapter->hw.phy_type == e1000_phy_m88) {
  2347. switch (data->reg_num) {
  2348. case PHY_CTRL:
  2349. if(mii_reg & MII_CR_POWER_DOWN)
  2350. break;
  2351. if(mii_reg & MII_CR_AUTO_NEG_EN) {
  2352. adapter->hw.autoneg = 1;
  2353. adapter->hw.autoneg_advertised = 0x2F;
  2354. } else {
  2355. if (mii_reg & 0x40)
  2356. spddplx = SPEED_1000;
  2357. else if (mii_reg & 0x2000)
  2358. spddplx = SPEED_100;
  2359. else
  2360. spddplx = SPEED_10;
  2361. spddplx += (mii_reg & 0x100)
  2362. ? FULL_DUPLEX :
  2363. HALF_DUPLEX;
  2364. retval = e1000_set_spd_dplx(adapter,
  2365. spddplx);
  2366. if(retval)
  2367. return retval;
  2368. }
  2369. if(netif_running(adapter->netdev)) {
  2370. e1000_down(adapter);
  2371. e1000_up(adapter);
  2372. } else
  2373. e1000_reset(adapter);
  2374. break;
  2375. case M88E1000_PHY_SPEC_CTRL:
  2376. case M88E1000_EXT_PHY_SPEC_CTRL:
  2377. if (e1000_phy_reset(&adapter->hw))
  2378. return -EIO;
  2379. break;
  2380. }
  2381. } else {
  2382. switch (data->reg_num) {
  2383. case PHY_CTRL:
  2384. if(mii_reg & MII_CR_POWER_DOWN)
  2385. break;
  2386. if(netif_running(adapter->netdev)) {
  2387. e1000_down(adapter);
  2388. e1000_up(adapter);
  2389. } else
  2390. e1000_reset(adapter);
  2391. break;
  2392. }
  2393. }
  2394. break;
  2395. default:
  2396. return -EOPNOTSUPP;
  2397. }
  2398. return E1000_SUCCESS;
  2399. }
  2400. void
  2401. e1000_pci_set_mwi(struct e1000_hw *hw)
  2402. {
  2403. struct e1000_adapter *adapter = hw->back;
  2404. int ret;
  2405. ret = pci_set_mwi(adapter->pdev);
  2406. }
  2407. void
  2408. e1000_pci_clear_mwi(struct e1000_hw *hw)
  2409. {
  2410. struct e1000_adapter *adapter = hw->back;
  2411. pci_clear_mwi(adapter->pdev);
  2412. }
  2413. void
  2414. e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  2415. {
  2416. struct e1000_adapter *adapter = hw->back;
  2417. pci_read_config_word(adapter->pdev, reg, value);
  2418. }
  2419. void
  2420. e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  2421. {
  2422. struct e1000_adapter *adapter = hw->back;
  2423. pci_write_config_word(adapter->pdev, reg, *value);
  2424. }
  2425. uint32_t
  2426. e1000_io_read(struct e1000_hw *hw, unsigned long port)
  2427. {
  2428. return inl(port);
  2429. }
  2430. void
  2431. e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
  2432. {
  2433. outl(value, port);
  2434. }
  2435. static void
  2436. e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
  2437. {
  2438. struct e1000_adapter *adapter = netdev->priv;
  2439. uint32_t ctrl, rctl;
  2440. e1000_irq_disable(adapter);
  2441. adapter->vlgrp = grp;
  2442. if(grp) {
  2443. /* enable VLAN tag insert/strip */
  2444. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  2445. ctrl |= E1000_CTRL_VME;
  2446. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  2447. /* enable VLAN receive filtering */
  2448. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  2449. rctl |= E1000_RCTL_VFE;
  2450. rctl &= ~E1000_RCTL_CFIEN;
  2451. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  2452. } else {
  2453. /* disable VLAN tag insert/strip */
  2454. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  2455. ctrl &= ~E1000_CTRL_VME;
  2456. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  2457. /* disable VLAN filtering */
  2458. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  2459. rctl &= ~E1000_RCTL_VFE;
  2460. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  2461. }
  2462. e1000_irq_enable(adapter);
  2463. }
  2464. static void
  2465. e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
  2466. {
  2467. struct e1000_adapter *adapter = netdev->priv;
  2468. uint32_t vfta, index;
  2469. /* add VID to filter table */
  2470. index = (vid >> 5) & 0x7F;
  2471. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  2472. vfta |= (1 << (vid & 0x1F));
  2473. e1000_write_vfta(&adapter->hw, index, vfta);
  2474. }
  2475. static void
  2476. e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
  2477. {
  2478. struct e1000_adapter *adapter = netdev->priv;
  2479. uint32_t vfta, index;
  2480. e1000_irq_disable(adapter);
  2481. if(adapter->vlgrp)
  2482. adapter->vlgrp->vlan_devices[vid] = NULL;
  2483. e1000_irq_enable(adapter);
  2484. /* remove VID from filter table */
  2485. index = (vid >> 5) & 0x7F;
  2486. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  2487. vfta &= ~(1 << (vid & 0x1F));
  2488. e1000_write_vfta(&adapter->hw, index, vfta);
  2489. }
  2490. static void
  2491. e1000_restore_vlan(struct e1000_adapter *adapter)
  2492. {
  2493. e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
  2494. if(adapter->vlgrp) {
  2495. uint16_t vid;
  2496. for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
  2497. if(!adapter->vlgrp->vlan_devices[vid])
  2498. continue;
  2499. e1000_vlan_rx_add_vid(adapter->netdev, vid);
  2500. }
  2501. }
  2502. }
  2503. int
  2504. e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
  2505. {
  2506. adapter->hw.autoneg = 0;
  2507. switch(spddplx) {
  2508. case SPEED_10 + DUPLEX_HALF:
  2509. adapter->hw.forced_speed_duplex = e1000_10_half;
  2510. break;
  2511. case SPEED_10 + DUPLEX_FULL:
  2512. adapter->hw.forced_speed_duplex = e1000_10_full;
  2513. break;
  2514. case SPEED_100 + DUPLEX_HALF:
  2515. adapter->hw.forced_speed_duplex = e1000_100_half;
  2516. break;
  2517. case SPEED_100 + DUPLEX_FULL:
  2518. adapter->hw.forced_speed_duplex = e1000_100_full;
  2519. break;
  2520. case SPEED_1000 + DUPLEX_FULL:
  2521. adapter->hw.autoneg = 1;
  2522. adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
  2523. break;
  2524. case SPEED_1000 + DUPLEX_HALF: /* not supported */
  2525. default:
  2526. DPRINTK(PROBE, ERR,
  2527. "Unsupported Speed/Duplexity configuration\n");
  2528. return -EINVAL;
  2529. }
  2530. return 0;
  2531. }
  2532. static int
  2533. e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
  2534. {
  2535. struct pci_dev *pdev = NULL;
  2536. switch(event) {
  2537. case SYS_DOWN:
  2538. case SYS_HALT:
  2539. case SYS_POWER_OFF:
  2540. while((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
  2541. if(pci_dev_driver(pdev) == &e1000_driver)
  2542. e1000_suspend(pdev, 3);
  2543. }
  2544. }
  2545. return NOTIFY_DONE;
  2546. }
  2547. static int
  2548. e1000_suspend(struct pci_dev *pdev, uint32_t state)
  2549. {
  2550. struct net_device *netdev = pci_get_drvdata(pdev);
  2551. struct e1000_adapter *adapter = netdev->priv;
  2552. uint32_t ctrl, ctrl_ext, rctl, manc, status;
  2553. uint32_t wufc = adapter->wol;
  2554. netif_device_detach(netdev);
  2555. if(netif_running(netdev))
  2556. e1000_down(adapter);
  2557. status = E1000_READ_REG(&adapter->hw, STATUS);
  2558. if(status & E1000_STATUS_LU)
  2559. wufc &= ~E1000_WUFC_LNKC;
  2560. if(wufc) {
  2561. e1000_setup_rctl(adapter);
  2562. e1000_set_multi(netdev);
  2563. /* turn on all-multi mode if wake on multicast is enabled */
  2564. if(adapter->wol & E1000_WUFC_MC) {
  2565. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  2566. rctl |= E1000_RCTL_MPE;
  2567. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  2568. }
  2569. if(adapter->hw.mac_type >= e1000_82540) {
  2570. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  2571. /* advertise wake from D3Cold */
  2572. #define E1000_CTRL_ADVD3WUC 0x00100000
  2573. /* phy power management enable */
  2574. #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
  2575. ctrl |= E1000_CTRL_ADVD3WUC |
  2576. E1000_CTRL_EN_PHY_PWR_MGMT;
  2577. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  2578. }
  2579. if(adapter->hw.media_type == e1000_media_type_fiber ||
  2580. adapter->hw.media_type == e1000_media_type_internal_serdes) {
  2581. /* keep the laser running in D3 */
  2582. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  2583. ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
  2584. E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
  2585. }
  2586. E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
  2587. E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
  2588. pci_enable_wake(pdev, 3, 1);
  2589. pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
  2590. } else {
  2591. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  2592. E1000_WRITE_REG(&adapter->hw, WUFC, 0);
  2593. pci_enable_wake(pdev, 3, 0);
  2594. pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
  2595. }
  2596. pci_save_state(pdev);
  2597. if(adapter->hw.mac_type >= e1000_82540 &&
  2598. adapter->hw.media_type == e1000_media_type_copper) {
  2599. manc = E1000_READ_REG(&adapter->hw, MANC);
  2600. if(manc & E1000_MANC_SMBUS_EN) {
  2601. manc |= E1000_MANC_ARP_EN;
  2602. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  2603. pci_enable_wake(pdev, 3, 1);
  2604. pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
  2605. }
  2606. }
  2607. pci_disable_device(pdev);
  2608. state = (state > 0) ? 3 : 0;
  2609. pci_set_power_state(pdev, state);
  2610. return 0;
  2611. }
  2612. #ifdef CONFIG_PM
  2613. static int
  2614. e1000_resume(struct pci_dev *pdev)
  2615. {
  2616. struct net_device *netdev = pci_get_drvdata(pdev);
  2617. struct e1000_adapter *adapter = netdev->priv;
  2618. uint32_t manc, ret;
  2619. pci_set_power_state(pdev, 0);
  2620. pci_restore_state(pdev);
  2621. ret = pci_enable_device(pdev);
  2622. if (pdev->is_busmaster)
  2623. pci_set_master(pdev);
  2624. pci_enable_wake(pdev, 3, 0);
  2625. pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
  2626. e1000_reset(adapter);
  2627. E1000_WRITE_REG(&adapter->hw, WUS, ~0);
  2628. if(netif_running(netdev))
  2629. e1000_up(adapter);
  2630. netif_device_attach(netdev);
  2631. if(adapter->hw.mac_type >= e1000_82540 &&
  2632. adapter->hw.media_type == e1000_media_type_copper) {
  2633. manc = E1000_READ_REG(&adapter->hw, MANC);
  2634. manc &= ~(E1000_MANC_ARP_EN);
  2635. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  2636. }
  2637. return 0;
  2638. }
  2639. #endif
  2640. #ifdef CONFIG_NET_POLL_CONTROLLER
  2641. /*
  2642. * Polling 'interrupt' - used by things like netconsole to send skbs
  2643. * without having to re-enable interrupts. It's not called while
  2644. * the interrupt routine is executing.
  2645. */
  2646. static void
  2647. e1000_netpoll (struct net_device *netdev)
  2648. {
  2649. struct e1000_adapter *adapter = netdev->priv;
  2650. disable_irq(adapter->pdev->irq);
  2651. e1000_intr(adapter->pdev->irq, netdev, NULL);
  2652. enable_irq(adapter->pdev->irq);
  2653. }
  2654. #endif
  2655. /* e1000_main.c */