i915_gem.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  40. bool write);
  41. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  42. uint64_t offset,
  43. uint64_t size);
  44. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  45. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  46. unsigned alignment,
  47. bool map_and_fenceable);
  48. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  49. struct drm_i915_fence_reg *reg);
  50. static int i915_gem_phys_pwrite(struct drm_device *dev,
  51. struct drm_i915_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file);
  54. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  55. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  56. int nr_to_scan,
  57. gfp_t gfp_mask);
  58. /* some bookkeeping */
  59. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  60. size_t size)
  61. {
  62. dev_priv->mm.object_count++;
  63. dev_priv->mm.object_memory += size;
  64. }
  65. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count--;
  69. dev_priv->mm.object_memory -= size;
  70. }
  71. static int
  72. i915_gem_wait_for_error(struct drm_device *dev)
  73. {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. struct completion *x = &dev_priv->error_completion;
  76. unsigned long flags;
  77. int ret;
  78. if (!atomic_read(&dev_priv->mm.wedged))
  79. return 0;
  80. ret = wait_for_completion_interruptible(x);
  81. if (ret)
  82. return ret;
  83. if (atomic_read(&dev_priv->mm.wedged)) {
  84. /* GPU is hung, bump the completion count to account for
  85. * the token we just consumed so that we never hit zero and
  86. * end up waiting upon a subsequent completion event that
  87. * will never happen.
  88. */
  89. spin_lock_irqsave(&x->wait.lock, flags);
  90. x->done++;
  91. spin_unlock_irqrestore(&x->wait.lock, flags);
  92. }
  93. return 0;
  94. }
  95. int i915_mutex_lock_interruptible(struct drm_device *dev)
  96. {
  97. int ret;
  98. ret = i915_gem_wait_for_error(dev);
  99. if (ret)
  100. return ret;
  101. ret = mutex_lock_interruptible(&dev->struct_mutex);
  102. if (ret)
  103. return ret;
  104. WARN_ON(i915_verify_lists(dev));
  105. return 0;
  106. }
  107. static inline bool
  108. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  109. {
  110. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  111. }
  112. void i915_gem_do_init(struct drm_device *dev,
  113. unsigned long start,
  114. unsigned long mappable_end,
  115. unsigned long end)
  116. {
  117. drm_i915_private_t *dev_priv = dev->dev_private;
  118. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  119. dev_priv->mm.gtt_start = start;
  120. dev_priv->mm.gtt_mappable_end = mappable_end;
  121. dev_priv->mm.gtt_end = end;
  122. dev_priv->mm.gtt_total = end - start;
  123. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  124. /* Take over this portion of the GTT */
  125. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  126. }
  127. int
  128. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  129. struct drm_file *file)
  130. {
  131. struct drm_i915_gem_init *args = data;
  132. if (args->gtt_start >= args->gtt_end ||
  133. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  134. return -EINVAL;
  135. mutex_lock(&dev->struct_mutex);
  136. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  137. mutex_unlock(&dev->struct_mutex);
  138. return 0;
  139. }
  140. int
  141. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  142. struct drm_file *file)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. struct drm_i915_gem_get_aperture *args = data;
  146. struct drm_i915_gem_object *obj;
  147. size_t pinned;
  148. if (!(dev->driver->driver_features & DRIVER_GEM))
  149. return -ENODEV;
  150. pinned = 0;
  151. mutex_lock(&dev->struct_mutex);
  152. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  153. pinned += obj->gtt_space->size;
  154. mutex_unlock(&dev->struct_mutex);
  155. args->aper_size = dev_priv->mm.gtt_total;
  156. args->aper_available_size = args->aper_size -pinned;
  157. return 0;
  158. }
  159. static int
  160. i915_gem_create(struct drm_file *file,
  161. struct drm_device *dev,
  162. uint64_t size,
  163. uint32_t *handle_p)
  164. {
  165. struct drm_i915_gem_object *obj;
  166. int ret;
  167. u32 handle;
  168. size = roundup(size, PAGE_SIZE);
  169. /* Allocate the new object */
  170. obj = i915_gem_alloc_object(dev, size);
  171. if (obj == NULL)
  172. return -ENOMEM;
  173. ret = drm_gem_handle_create(file, &obj->base, &handle);
  174. if (ret) {
  175. drm_gem_object_release(&obj->base);
  176. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  177. kfree(obj);
  178. return ret;
  179. }
  180. /* drop reference from allocate - handle holds it now */
  181. drm_gem_object_unreference(&obj->base);
  182. trace_i915_gem_object_create(obj);
  183. *handle_p = handle;
  184. return 0;
  185. }
  186. int
  187. i915_gem_dumb_create(struct drm_file *file,
  188. struct drm_device *dev,
  189. struct drm_mode_create_dumb *args)
  190. {
  191. /* have to work out size/pitch and return them */
  192. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  193. args->size = args->pitch * args->height;
  194. return i915_gem_create(file, dev,
  195. args->size, &args->handle);
  196. }
  197. int i915_gem_dumb_destroy(struct drm_file *file,
  198. struct drm_device *dev,
  199. uint32_t handle)
  200. {
  201. return drm_gem_handle_delete(file, handle);
  202. }
  203. /**
  204. * Creates a new mm object and returns a handle to it.
  205. */
  206. int
  207. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  208. struct drm_file *file)
  209. {
  210. struct drm_i915_gem_create *args = data;
  211. return i915_gem_create(file, dev,
  212. args->size, &args->handle);
  213. }
  214. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  215. {
  216. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  217. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  218. obj->tiling_mode != I915_TILING_NONE;
  219. }
  220. static inline void
  221. slow_shmem_copy(struct page *dst_page,
  222. int dst_offset,
  223. struct page *src_page,
  224. int src_offset,
  225. int length)
  226. {
  227. char *dst_vaddr, *src_vaddr;
  228. dst_vaddr = kmap(dst_page);
  229. src_vaddr = kmap(src_page);
  230. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  231. kunmap(src_page);
  232. kunmap(dst_page);
  233. }
  234. static inline void
  235. slow_shmem_bit17_copy(struct page *gpu_page,
  236. int gpu_offset,
  237. struct page *cpu_page,
  238. int cpu_offset,
  239. int length,
  240. int is_read)
  241. {
  242. char *gpu_vaddr, *cpu_vaddr;
  243. /* Use the unswizzled path if this page isn't affected. */
  244. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  245. if (is_read)
  246. return slow_shmem_copy(cpu_page, cpu_offset,
  247. gpu_page, gpu_offset, length);
  248. else
  249. return slow_shmem_copy(gpu_page, gpu_offset,
  250. cpu_page, cpu_offset, length);
  251. }
  252. gpu_vaddr = kmap(gpu_page);
  253. cpu_vaddr = kmap(cpu_page);
  254. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  255. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  256. */
  257. while (length > 0) {
  258. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  259. int this_length = min(cacheline_end - gpu_offset, length);
  260. int swizzled_gpu_offset = gpu_offset ^ 64;
  261. if (is_read) {
  262. memcpy(cpu_vaddr + cpu_offset,
  263. gpu_vaddr + swizzled_gpu_offset,
  264. this_length);
  265. } else {
  266. memcpy(gpu_vaddr + swizzled_gpu_offset,
  267. cpu_vaddr + cpu_offset,
  268. this_length);
  269. }
  270. cpu_offset += this_length;
  271. gpu_offset += this_length;
  272. length -= this_length;
  273. }
  274. kunmap(cpu_page);
  275. kunmap(gpu_page);
  276. }
  277. /**
  278. * This is the fast shmem pread path, which attempts to copy_from_user directly
  279. * from the backing pages of the object to the user's address space. On a
  280. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  281. */
  282. static int
  283. i915_gem_shmem_pread_fast(struct drm_device *dev,
  284. struct drm_i915_gem_object *obj,
  285. struct drm_i915_gem_pread *args,
  286. struct drm_file *file)
  287. {
  288. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  289. ssize_t remain;
  290. loff_t offset;
  291. char __user *user_data;
  292. int page_offset, page_length;
  293. user_data = (char __user *) (uintptr_t) args->data_ptr;
  294. remain = args->size;
  295. offset = args->offset;
  296. while (remain > 0) {
  297. struct page *page;
  298. char *vaddr;
  299. int ret;
  300. /* Operation in this page
  301. *
  302. * page_offset = offset within page
  303. * page_length = bytes to copy for this page
  304. */
  305. page_offset = offset & (PAGE_SIZE-1);
  306. page_length = remain;
  307. if ((page_offset + remain) > PAGE_SIZE)
  308. page_length = PAGE_SIZE - page_offset;
  309. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  310. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  311. if (IS_ERR(page))
  312. return PTR_ERR(page);
  313. vaddr = kmap_atomic(page);
  314. ret = __copy_to_user_inatomic(user_data,
  315. vaddr + page_offset,
  316. page_length);
  317. kunmap_atomic(vaddr);
  318. mark_page_accessed(page);
  319. page_cache_release(page);
  320. if (ret)
  321. return -EFAULT;
  322. remain -= page_length;
  323. user_data += page_length;
  324. offset += page_length;
  325. }
  326. return 0;
  327. }
  328. /**
  329. * This is the fallback shmem pread path, which allocates temporary storage
  330. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  331. * can copy out of the object's backing pages while holding the struct mutex
  332. * and not take page faults.
  333. */
  334. static int
  335. i915_gem_shmem_pread_slow(struct drm_device *dev,
  336. struct drm_i915_gem_object *obj,
  337. struct drm_i915_gem_pread *args,
  338. struct drm_file *file)
  339. {
  340. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  341. struct mm_struct *mm = current->mm;
  342. struct page **user_pages;
  343. ssize_t remain;
  344. loff_t offset, pinned_pages, i;
  345. loff_t first_data_page, last_data_page, num_pages;
  346. int shmem_page_offset;
  347. int data_page_index, data_page_offset;
  348. int page_length;
  349. int ret;
  350. uint64_t data_ptr = args->data_ptr;
  351. int do_bit17_swizzling;
  352. remain = args->size;
  353. /* Pin the user pages containing the data. We can't fault while
  354. * holding the struct mutex, yet we want to hold it while
  355. * dereferencing the user data.
  356. */
  357. first_data_page = data_ptr / PAGE_SIZE;
  358. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  359. num_pages = last_data_page - first_data_page + 1;
  360. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  361. if (user_pages == NULL)
  362. return -ENOMEM;
  363. mutex_unlock(&dev->struct_mutex);
  364. down_read(&mm->mmap_sem);
  365. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  366. num_pages, 1, 0, user_pages, NULL);
  367. up_read(&mm->mmap_sem);
  368. mutex_lock(&dev->struct_mutex);
  369. if (pinned_pages < num_pages) {
  370. ret = -EFAULT;
  371. goto out;
  372. }
  373. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  374. args->offset,
  375. args->size);
  376. if (ret)
  377. goto out;
  378. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  379. offset = args->offset;
  380. while (remain > 0) {
  381. struct page *page;
  382. /* Operation in this page
  383. *
  384. * shmem_page_offset = offset within page in shmem file
  385. * data_page_index = page number in get_user_pages return
  386. * data_page_offset = offset with data_page_index page.
  387. * page_length = bytes to copy for this page
  388. */
  389. shmem_page_offset = offset & ~PAGE_MASK;
  390. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  391. data_page_offset = data_ptr & ~PAGE_MASK;
  392. page_length = remain;
  393. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  394. page_length = PAGE_SIZE - shmem_page_offset;
  395. if ((data_page_offset + page_length) > PAGE_SIZE)
  396. page_length = PAGE_SIZE - data_page_offset;
  397. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  398. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  399. if (IS_ERR(page))
  400. return PTR_ERR(page);
  401. if (do_bit17_swizzling) {
  402. slow_shmem_bit17_copy(page,
  403. shmem_page_offset,
  404. user_pages[data_page_index],
  405. data_page_offset,
  406. page_length,
  407. 1);
  408. } else {
  409. slow_shmem_copy(user_pages[data_page_index],
  410. data_page_offset,
  411. page,
  412. shmem_page_offset,
  413. page_length);
  414. }
  415. mark_page_accessed(page);
  416. page_cache_release(page);
  417. remain -= page_length;
  418. data_ptr += page_length;
  419. offset += page_length;
  420. }
  421. out:
  422. for (i = 0; i < pinned_pages; i++) {
  423. SetPageDirty(user_pages[i]);
  424. mark_page_accessed(user_pages[i]);
  425. page_cache_release(user_pages[i]);
  426. }
  427. drm_free_large(user_pages);
  428. return ret;
  429. }
  430. /**
  431. * Reads data from the object referenced by handle.
  432. *
  433. * On error, the contents of *data are undefined.
  434. */
  435. int
  436. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  437. struct drm_file *file)
  438. {
  439. struct drm_i915_gem_pread *args = data;
  440. struct drm_i915_gem_object *obj;
  441. int ret = 0;
  442. if (args->size == 0)
  443. return 0;
  444. if (!access_ok(VERIFY_WRITE,
  445. (char __user *)(uintptr_t)args->data_ptr,
  446. args->size))
  447. return -EFAULT;
  448. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  449. args->size);
  450. if (ret)
  451. return -EFAULT;
  452. ret = i915_mutex_lock_interruptible(dev);
  453. if (ret)
  454. return ret;
  455. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  456. if (&obj->base == NULL) {
  457. ret = -ENOENT;
  458. goto unlock;
  459. }
  460. /* Bounds check source. */
  461. if (args->offset > obj->base.size ||
  462. args->size > obj->base.size - args->offset) {
  463. ret = -EINVAL;
  464. goto out;
  465. }
  466. trace_i915_gem_object_pread(obj, args->offset, args->size);
  467. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  468. args->offset,
  469. args->size);
  470. if (ret)
  471. goto out;
  472. ret = -EFAULT;
  473. if (!i915_gem_object_needs_bit17_swizzle(obj))
  474. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  475. if (ret == -EFAULT)
  476. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  477. out:
  478. drm_gem_object_unreference(&obj->base);
  479. unlock:
  480. mutex_unlock(&dev->struct_mutex);
  481. return ret;
  482. }
  483. /* This is the fast write path which cannot handle
  484. * page faults in the source data
  485. */
  486. static inline int
  487. fast_user_write(struct io_mapping *mapping,
  488. loff_t page_base, int page_offset,
  489. char __user *user_data,
  490. int length)
  491. {
  492. char *vaddr_atomic;
  493. unsigned long unwritten;
  494. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  495. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  496. user_data, length);
  497. io_mapping_unmap_atomic(vaddr_atomic);
  498. return unwritten;
  499. }
  500. /* Here's the write path which can sleep for
  501. * page faults
  502. */
  503. static inline void
  504. slow_kernel_write(struct io_mapping *mapping,
  505. loff_t gtt_base, int gtt_offset,
  506. struct page *user_page, int user_offset,
  507. int length)
  508. {
  509. char __iomem *dst_vaddr;
  510. char *src_vaddr;
  511. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  512. src_vaddr = kmap(user_page);
  513. memcpy_toio(dst_vaddr + gtt_offset,
  514. src_vaddr + user_offset,
  515. length);
  516. kunmap(user_page);
  517. io_mapping_unmap(dst_vaddr);
  518. }
  519. /**
  520. * This is the fast pwrite path, where we copy the data directly from the
  521. * user into the GTT, uncached.
  522. */
  523. static int
  524. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  525. struct drm_i915_gem_object *obj,
  526. struct drm_i915_gem_pwrite *args,
  527. struct drm_file *file)
  528. {
  529. drm_i915_private_t *dev_priv = dev->dev_private;
  530. ssize_t remain;
  531. loff_t offset, page_base;
  532. char __user *user_data;
  533. int page_offset, page_length;
  534. user_data = (char __user *) (uintptr_t) args->data_ptr;
  535. remain = args->size;
  536. offset = obj->gtt_offset + args->offset;
  537. while (remain > 0) {
  538. /* Operation in this page
  539. *
  540. * page_base = page offset within aperture
  541. * page_offset = offset within page
  542. * page_length = bytes to copy for this page
  543. */
  544. page_base = (offset & ~(PAGE_SIZE-1));
  545. page_offset = offset & (PAGE_SIZE-1);
  546. page_length = remain;
  547. if ((page_offset + remain) > PAGE_SIZE)
  548. page_length = PAGE_SIZE - page_offset;
  549. /* If we get a fault while copying data, then (presumably) our
  550. * source page isn't available. Return the error and we'll
  551. * retry in the slow path.
  552. */
  553. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  554. page_offset, user_data, page_length))
  555. return -EFAULT;
  556. remain -= page_length;
  557. user_data += page_length;
  558. offset += page_length;
  559. }
  560. return 0;
  561. }
  562. /**
  563. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  564. * the memory and maps it using kmap_atomic for copying.
  565. *
  566. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  567. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  568. */
  569. static int
  570. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  571. struct drm_i915_gem_object *obj,
  572. struct drm_i915_gem_pwrite *args,
  573. struct drm_file *file)
  574. {
  575. drm_i915_private_t *dev_priv = dev->dev_private;
  576. ssize_t remain;
  577. loff_t gtt_page_base, offset;
  578. loff_t first_data_page, last_data_page, num_pages;
  579. loff_t pinned_pages, i;
  580. struct page **user_pages;
  581. struct mm_struct *mm = current->mm;
  582. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  583. int ret;
  584. uint64_t data_ptr = args->data_ptr;
  585. remain = args->size;
  586. /* Pin the user pages containing the data. We can't fault while
  587. * holding the struct mutex, and all of the pwrite implementations
  588. * want to hold it while dereferencing the user data.
  589. */
  590. first_data_page = data_ptr / PAGE_SIZE;
  591. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  592. num_pages = last_data_page - first_data_page + 1;
  593. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  594. if (user_pages == NULL)
  595. return -ENOMEM;
  596. mutex_unlock(&dev->struct_mutex);
  597. down_read(&mm->mmap_sem);
  598. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  599. num_pages, 0, 0, user_pages, NULL);
  600. up_read(&mm->mmap_sem);
  601. mutex_lock(&dev->struct_mutex);
  602. if (pinned_pages < num_pages) {
  603. ret = -EFAULT;
  604. goto out_unpin_pages;
  605. }
  606. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  607. if (ret)
  608. goto out_unpin_pages;
  609. ret = i915_gem_object_put_fence(obj);
  610. if (ret)
  611. goto out_unpin_pages;
  612. offset = obj->gtt_offset + args->offset;
  613. while (remain > 0) {
  614. /* Operation in this page
  615. *
  616. * gtt_page_base = page offset within aperture
  617. * gtt_page_offset = offset within page in aperture
  618. * data_page_index = page number in get_user_pages return
  619. * data_page_offset = offset with data_page_index page.
  620. * page_length = bytes to copy for this page
  621. */
  622. gtt_page_base = offset & PAGE_MASK;
  623. gtt_page_offset = offset & ~PAGE_MASK;
  624. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  625. data_page_offset = data_ptr & ~PAGE_MASK;
  626. page_length = remain;
  627. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  628. page_length = PAGE_SIZE - gtt_page_offset;
  629. if ((data_page_offset + page_length) > PAGE_SIZE)
  630. page_length = PAGE_SIZE - data_page_offset;
  631. slow_kernel_write(dev_priv->mm.gtt_mapping,
  632. gtt_page_base, gtt_page_offset,
  633. user_pages[data_page_index],
  634. data_page_offset,
  635. page_length);
  636. remain -= page_length;
  637. offset += page_length;
  638. data_ptr += page_length;
  639. }
  640. out_unpin_pages:
  641. for (i = 0; i < pinned_pages; i++)
  642. page_cache_release(user_pages[i]);
  643. drm_free_large(user_pages);
  644. return ret;
  645. }
  646. /**
  647. * This is the fast shmem pwrite path, which attempts to directly
  648. * copy_from_user into the kmapped pages backing the object.
  649. */
  650. static int
  651. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  652. struct drm_i915_gem_object *obj,
  653. struct drm_i915_gem_pwrite *args,
  654. struct drm_file *file)
  655. {
  656. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  657. ssize_t remain;
  658. loff_t offset;
  659. char __user *user_data;
  660. int page_offset, page_length;
  661. user_data = (char __user *) (uintptr_t) args->data_ptr;
  662. remain = args->size;
  663. offset = args->offset;
  664. obj->dirty = 1;
  665. while (remain > 0) {
  666. struct page *page;
  667. char *vaddr;
  668. int ret;
  669. /* Operation in this page
  670. *
  671. * page_offset = offset within page
  672. * page_length = bytes to copy for this page
  673. */
  674. page_offset = offset & (PAGE_SIZE-1);
  675. page_length = remain;
  676. if ((page_offset + remain) > PAGE_SIZE)
  677. page_length = PAGE_SIZE - page_offset;
  678. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  679. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  680. if (IS_ERR(page))
  681. return PTR_ERR(page);
  682. vaddr = kmap_atomic(page, KM_USER0);
  683. ret = __copy_from_user_inatomic(vaddr + page_offset,
  684. user_data,
  685. page_length);
  686. kunmap_atomic(vaddr, KM_USER0);
  687. set_page_dirty(page);
  688. mark_page_accessed(page);
  689. page_cache_release(page);
  690. /* If we get a fault while copying data, then (presumably) our
  691. * source page isn't available. Return the error and we'll
  692. * retry in the slow path.
  693. */
  694. if (ret)
  695. return -EFAULT;
  696. remain -= page_length;
  697. user_data += page_length;
  698. offset += page_length;
  699. }
  700. return 0;
  701. }
  702. /**
  703. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  704. * the memory and maps it using kmap_atomic for copying.
  705. *
  706. * This avoids taking mmap_sem for faulting on the user's address while the
  707. * struct_mutex is held.
  708. */
  709. static int
  710. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  711. struct drm_i915_gem_object *obj,
  712. struct drm_i915_gem_pwrite *args,
  713. struct drm_file *file)
  714. {
  715. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  716. struct mm_struct *mm = current->mm;
  717. struct page **user_pages;
  718. ssize_t remain;
  719. loff_t offset, pinned_pages, i;
  720. loff_t first_data_page, last_data_page, num_pages;
  721. int shmem_page_offset;
  722. int data_page_index, data_page_offset;
  723. int page_length;
  724. int ret;
  725. uint64_t data_ptr = args->data_ptr;
  726. int do_bit17_swizzling;
  727. remain = args->size;
  728. /* Pin the user pages containing the data. We can't fault while
  729. * holding the struct mutex, and all of the pwrite implementations
  730. * want to hold it while dereferencing the user data.
  731. */
  732. first_data_page = data_ptr / PAGE_SIZE;
  733. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  734. num_pages = last_data_page - first_data_page + 1;
  735. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  736. if (user_pages == NULL)
  737. return -ENOMEM;
  738. mutex_unlock(&dev->struct_mutex);
  739. down_read(&mm->mmap_sem);
  740. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  741. num_pages, 0, 0, user_pages, NULL);
  742. up_read(&mm->mmap_sem);
  743. mutex_lock(&dev->struct_mutex);
  744. if (pinned_pages < num_pages) {
  745. ret = -EFAULT;
  746. goto out;
  747. }
  748. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  749. if (ret)
  750. goto out;
  751. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  752. offset = args->offset;
  753. obj->dirty = 1;
  754. while (remain > 0) {
  755. struct page *page;
  756. /* Operation in this page
  757. *
  758. * shmem_page_offset = offset within page in shmem file
  759. * data_page_index = page number in get_user_pages return
  760. * data_page_offset = offset with data_page_index page.
  761. * page_length = bytes to copy for this page
  762. */
  763. shmem_page_offset = offset & ~PAGE_MASK;
  764. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  765. data_page_offset = data_ptr & ~PAGE_MASK;
  766. page_length = remain;
  767. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  768. page_length = PAGE_SIZE - shmem_page_offset;
  769. if ((data_page_offset + page_length) > PAGE_SIZE)
  770. page_length = PAGE_SIZE - data_page_offset;
  771. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  772. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  773. if (IS_ERR(page)) {
  774. ret = PTR_ERR(page);
  775. goto out;
  776. }
  777. if (do_bit17_swizzling) {
  778. slow_shmem_bit17_copy(page,
  779. shmem_page_offset,
  780. user_pages[data_page_index],
  781. data_page_offset,
  782. page_length,
  783. 0);
  784. } else {
  785. slow_shmem_copy(page,
  786. shmem_page_offset,
  787. user_pages[data_page_index],
  788. data_page_offset,
  789. page_length);
  790. }
  791. set_page_dirty(page);
  792. mark_page_accessed(page);
  793. page_cache_release(page);
  794. remain -= page_length;
  795. data_ptr += page_length;
  796. offset += page_length;
  797. }
  798. out:
  799. for (i = 0; i < pinned_pages; i++)
  800. page_cache_release(user_pages[i]);
  801. drm_free_large(user_pages);
  802. return ret;
  803. }
  804. /**
  805. * Writes data to the object referenced by handle.
  806. *
  807. * On error, the contents of the buffer that were to be modified are undefined.
  808. */
  809. int
  810. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  811. struct drm_file *file)
  812. {
  813. struct drm_i915_gem_pwrite *args = data;
  814. struct drm_i915_gem_object *obj;
  815. int ret;
  816. if (args->size == 0)
  817. return 0;
  818. if (!access_ok(VERIFY_READ,
  819. (char __user *)(uintptr_t)args->data_ptr,
  820. args->size))
  821. return -EFAULT;
  822. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  823. args->size);
  824. if (ret)
  825. return -EFAULT;
  826. ret = i915_mutex_lock_interruptible(dev);
  827. if (ret)
  828. return ret;
  829. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  830. if (&obj->base == NULL) {
  831. ret = -ENOENT;
  832. goto unlock;
  833. }
  834. /* Bounds check destination. */
  835. if (args->offset > obj->base.size ||
  836. args->size > obj->base.size - args->offset) {
  837. ret = -EINVAL;
  838. goto out;
  839. }
  840. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  841. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  842. * it would end up going through the fenced access, and we'll get
  843. * different detiling behavior between reading and writing.
  844. * pread/pwrite currently are reading and writing from the CPU
  845. * perspective, requiring manual detiling by the client.
  846. */
  847. if (obj->phys_obj)
  848. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  849. else if (obj->gtt_space &&
  850. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  851. ret = i915_gem_object_pin(obj, 0, true);
  852. if (ret)
  853. goto out;
  854. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  855. if (ret)
  856. goto out_unpin;
  857. ret = i915_gem_object_put_fence(obj);
  858. if (ret)
  859. goto out_unpin;
  860. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  861. if (ret == -EFAULT)
  862. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  863. out_unpin:
  864. i915_gem_object_unpin(obj);
  865. } else {
  866. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  867. if (ret)
  868. goto out;
  869. ret = -EFAULT;
  870. if (!i915_gem_object_needs_bit17_swizzle(obj))
  871. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  872. if (ret == -EFAULT)
  873. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  874. }
  875. out:
  876. drm_gem_object_unreference(&obj->base);
  877. unlock:
  878. mutex_unlock(&dev->struct_mutex);
  879. return ret;
  880. }
  881. /**
  882. * Called when user space prepares to use an object with the CPU, either
  883. * through the mmap ioctl's mapping or a GTT mapping.
  884. */
  885. int
  886. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  887. struct drm_file *file)
  888. {
  889. struct drm_i915_gem_set_domain *args = data;
  890. struct drm_i915_gem_object *obj;
  891. uint32_t read_domains = args->read_domains;
  892. uint32_t write_domain = args->write_domain;
  893. int ret;
  894. if (!(dev->driver->driver_features & DRIVER_GEM))
  895. return -ENODEV;
  896. /* Only handle setting domains to types used by the CPU. */
  897. if (write_domain & I915_GEM_GPU_DOMAINS)
  898. return -EINVAL;
  899. if (read_domains & I915_GEM_GPU_DOMAINS)
  900. return -EINVAL;
  901. /* Having something in the write domain implies it's in the read
  902. * domain, and only that read domain. Enforce that in the request.
  903. */
  904. if (write_domain != 0 && read_domains != write_domain)
  905. return -EINVAL;
  906. ret = i915_mutex_lock_interruptible(dev);
  907. if (ret)
  908. return ret;
  909. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  910. if (&obj->base == NULL) {
  911. ret = -ENOENT;
  912. goto unlock;
  913. }
  914. if (read_domains & I915_GEM_DOMAIN_GTT) {
  915. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  916. /* Silently promote "you're not bound, there was nothing to do"
  917. * to success, since the client was just asking us to
  918. * make sure everything was done.
  919. */
  920. if (ret == -EINVAL)
  921. ret = 0;
  922. } else {
  923. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  924. }
  925. drm_gem_object_unreference(&obj->base);
  926. unlock:
  927. mutex_unlock(&dev->struct_mutex);
  928. return ret;
  929. }
  930. /**
  931. * Called when user space has done writes to this buffer
  932. */
  933. int
  934. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  935. struct drm_file *file)
  936. {
  937. struct drm_i915_gem_sw_finish *args = data;
  938. struct drm_i915_gem_object *obj;
  939. int ret = 0;
  940. if (!(dev->driver->driver_features & DRIVER_GEM))
  941. return -ENODEV;
  942. ret = i915_mutex_lock_interruptible(dev);
  943. if (ret)
  944. return ret;
  945. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  946. if (&obj->base == NULL) {
  947. ret = -ENOENT;
  948. goto unlock;
  949. }
  950. /* Pinned buffers may be scanout, so flush the cache */
  951. if (obj->pin_count)
  952. i915_gem_object_flush_cpu_write_domain(obj);
  953. drm_gem_object_unreference(&obj->base);
  954. unlock:
  955. mutex_unlock(&dev->struct_mutex);
  956. return ret;
  957. }
  958. /**
  959. * Maps the contents of an object, returning the address it is mapped
  960. * into.
  961. *
  962. * While the mapping holds a reference on the contents of the object, it doesn't
  963. * imply a ref on the object itself.
  964. */
  965. int
  966. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  967. struct drm_file *file)
  968. {
  969. struct drm_i915_private *dev_priv = dev->dev_private;
  970. struct drm_i915_gem_mmap *args = data;
  971. struct drm_gem_object *obj;
  972. unsigned long addr;
  973. if (!(dev->driver->driver_features & DRIVER_GEM))
  974. return -ENODEV;
  975. obj = drm_gem_object_lookup(dev, file, args->handle);
  976. if (obj == NULL)
  977. return -ENOENT;
  978. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  979. drm_gem_object_unreference_unlocked(obj);
  980. return -E2BIG;
  981. }
  982. down_write(&current->mm->mmap_sem);
  983. addr = do_mmap(obj->filp, 0, args->size,
  984. PROT_READ | PROT_WRITE, MAP_SHARED,
  985. args->offset);
  986. up_write(&current->mm->mmap_sem);
  987. drm_gem_object_unreference_unlocked(obj);
  988. if (IS_ERR((void *)addr))
  989. return addr;
  990. args->addr_ptr = (uint64_t) addr;
  991. return 0;
  992. }
  993. /**
  994. * i915_gem_fault - fault a page into the GTT
  995. * vma: VMA in question
  996. * vmf: fault info
  997. *
  998. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  999. * from userspace. The fault handler takes care of binding the object to
  1000. * the GTT (if needed), allocating and programming a fence register (again,
  1001. * only if needed based on whether the old reg is still valid or the object
  1002. * is tiled) and inserting a new PTE into the faulting process.
  1003. *
  1004. * Note that the faulting process may involve evicting existing objects
  1005. * from the GTT and/or fence registers to make room. So performance may
  1006. * suffer if the GTT working set is large or there are few fence registers
  1007. * left.
  1008. */
  1009. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1010. {
  1011. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1012. struct drm_device *dev = obj->base.dev;
  1013. drm_i915_private_t *dev_priv = dev->dev_private;
  1014. pgoff_t page_offset;
  1015. unsigned long pfn;
  1016. int ret = 0;
  1017. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1018. /* We don't use vmf->pgoff since that has the fake offset */
  1019. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1020. PAGE_SHIFT;
  1021. ret = i915_mutex_lock_interruptible(dev);
  1022. if (ret)
  1023. goto out;
  1024. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1025. /* Now bind it into the GTT if needed */
  1026. if (!obj->map_and_fenceable) {
  1027. ret = i915_gem_object_unbind(obj);
  1028. if (ret)
  1029. goto unlock;
  1030. }
  1031. if (!obj->gtt_space) {
  1032. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1033. if (ret)
  1034. goto unlock;
  1035. }
  1036. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1037. if (ret)
  1038. goto unlock;
  1039. if (obj->tiling_mode == I915_TILING_NONE)
  1040. ret = i915_gem_object_put_fence(obj);
  1041. else
  1042. ret = i915_gem_object_get_fence(obj, NULL);
  1043. if (ret)
  1044. goto unlock;
  1045. if (i915_gem_object_is_inactive(obj))
  1046. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1047. obj->fault_mappable = true;
  1048. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1049. page_offset;
  1050. /* Finally, remap it using the new GTT offset */
  1051. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1052. unlock:
  1053. mutex_unlock(&dev->struct_mutex);
  1054. out:
  1055. switch (ret) {
  1056. case -EIO:
  1057. case -EAGAIN:
  1058. /* Give the error handler a chance to run and move the
  1059. * objects off the GPU active list. Next time we service the
  1060. * fault, we should be able to transition the page into the
  1061. * GTT without touching the GPU (and so avoid further
  1062. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1063. * with coherency, just lost writes.
  1064. */
  1065. set_need_resched();
  1066. case 0:
  1067. case -ERESTARTSYS:
  1068. case -EINTR:
  1069. return VM_FAULT_NOPAGE;
  1070. case -ENOMEM:
  1071. return VM_FAULT_OOM;
  1072. default:
  1073. return VM_FAULT_SIGBUS;
  1074. }
  1075. }
  1076. /**
  1077. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1078. * @obj: obj in question
  1079. *
  1080. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1081. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1082. * up the object based on the offset and sets up the various memory mapping
  1083. * structures.
  1084. *
  1085. * This routine allocates and attaches a fake offset for @obj.
  1086. */
  1087. static int
  1088. i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
  1089. {
  1090. struct drm_device *dev = obj->base.dev;
  1091. struct drm_gem_mm *mm = dev->mm_private;
  1092. struct drm_map_list *list;
  1093. struct drm_local_map *map;
  1094. int ret = 0;
  1095. /* Set the object up for mmap'ing */
  1096. list = &obj->base.map_list;
  1097. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1098. if (!list->map)
  1099. return -ENOMEM;
  1100. map = list->map;
  1101. map->type = _DRM_GEM;
  1102. map->size = obj->base.size;
  1103. map->handle = obj;
  1104. /* Get a DRM GEM mmap offset allocated... */
  1105. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1106. obj->base.size / PAGE_SIZE,
  1107. 0, 0);
  1108. if (!list->file_offset_node) {
  1109. DRM_ERROR("failed to allocate offset for bo %d\n",
  1110. obj->base.name);
  1111. ret = -ENOSPC;
  1112. goto out_free_list;
  1113. }
  1114. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1115. obj->base.size / PAGE_SIZE,
  1116. 0);
  1117. if (!list->file_offset_node) {
  1118. ret = -ENOMEM;
  1119. goto out_free_list;
  1120. }
  1121. list->hash.key = list->file_offset_node->start;
  1122. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1123. if (ret) {
  1124. DRM_ERROR("failed to add to map hash\n");
  1125. goto out_free_mm;
  1126. }
  1127. return 0;
  1128. out_free_mm:
  1129. drm_mm_put_block(list->file_offset_node);
  1130. out_free_list:
  1131. kfree(list->map);
  1132. list->map = NULL;
  1133. return ret;
  1134. }
  1135. /**
  1136. * i915_gem_release_mmap - remove physical page mappings
  1137. * @obj: obj in question
  1138. *
  1139. * Preserve the reservation of the mmapping with the DRM core code, but
  1140. * relinquish ownership of the pages back to the system.
  1141. *
  1142. * It is vital that we remove the page mapping if we have mapped a tiled
  1143. * object through the GTT and then lose the fence register due to
  1144. * resource pressure. Similarly if the object has been moved out of the
  1145. * aperture, than pages mapped into userspace must be revoked. Removing the
  1146. * mapping will then trigger a page fault on the next user access, allowing
  1147. * fixup by i915_gem_fault().
  1148. */
  1149. void
  1150. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1151. {
  1152. if (!obj->fault_mappable)
  1153. return;
  1154. unmap_mapping_range(obj->base.dev->dev_mapping,
  1155. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1156. obj->base.size, 1);
  1157. obj->fault_mappable = false;
  1158. }
  1159. static void
  1160. i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
  1161. {
  1162. struct drm_device *dev = obj->base.dev;
  1163. struct drm_gem_mm *mm = dev->mm_private;
  1164. struct drm_map_list *list = &obj->base.map_list;
  1165. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1166. drm_mm_put_block(list->file_offset_node);
  1167. kfree(list->map);
  1168. list->map = NULL;
  1169. }
  1170. static uint32_t
  1171. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
  1172. {
  1173. struct drm_device *dev = obj->base.dev;
  1174. uint32_t size;
  1175. if (INTEL_INFO(dev)->gen >= 4 ||
  1176. obj->tiling_mode == I915_TILING_NONE)
  1177. return obj->base.size;
  1178. /* Previous chips need a power-of-two fence region when tiling */
  1179. if (INTEL_INFO(dev)->gen == 3)
  1180. size = 1024*1024;
  1181. else
  1182. size = 512*1024;
  1183. while (size < obj->base.size)
  1184. size <<= 1;
  1185. return size;
  1186. }
  1187. /**
  1188. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1189. * @obj: object to check
  1190. *
  1191. * Return the required GTT alignment for an object, taking into account
  1192. * potential fence register mapping.
  1193. */
  1194. static uint32_t
  1195. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
  1196. {
  1197. struct drm_device *dev = obj->base.dev;
  1198. /*
  1199. * Minimum alignment is 4k (GTT page size), but might be greater
  1200. * if a fence register is needed for the object.
  1201. */
  1202. if (INTEL_INFO(dev)->gen >= 4 ||
  1203. obj->tiling_mode == I915_TILING_NONE)
  1204. return 4096;
  1205. /*
  1206. * Previous chips need to be aligned to the size of the smallest
  1207. * fence register that can contain the object.
  1208. */
  1209. return i915_gem_get_gtt_size(obj);
  1210. }
  1211. /**
  1212. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1213. * unfenced object
  1214. * @obj: object to check
  1215. *
  1216. * Return the required GTT alignment for an object, only taking into account
  1217. * unfenced tiled surface requirements.
  1218. */
  1219. uint32_t
  1220. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
  1221. {
  1222. struct drm_device *dev = obj->base.dev;
  1223. int tile_height;
  1224. /*
  1225. * Minimum alignment is 4k (GTT page size) for sane hw.
  1226. */
  1227. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1228. obj->tiling_mode == I915_TILING_NONE)
  1229. return 4096;
  1230. /*
  1231. * Older chips need unfenced tiled buffers to be aligned to the left
  1232. * edge of an even tile row (where tile rows are counted as if the bo is
  1233. * placed in a fenced gtt region).
  1234. */
  1235. if (IS_GEN2(dev) ||
  1236. (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
  1237. tile_height = 32;
  1238. else
  1239. tile_height = 8;
  1240. return tile_height * obj->stride * 2;
  1241. }
  1242. int
  1243. i915_gem_mmap_gtt(struct drm_file *file,
  1244. struct drm_device *dev,
  1245. uint32_t handle,
  1246. uint64_t *offset)
  1247. {
  1248. struct drm_i915_private *dev_priv = dev->dev_private;
  1249. struct drm_i915_gem_object *obj;
  1250. int ret;
  1251. if (!(dev->driver->driver_features & DRIVER_GEM))
  1252. return -ENODEV;
  1253. ret = i915_mutex_lock_interruptible(dev);
  1254. if (ret)
  1255. return ret;
  1256. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1257. if (&obj->base == NULL) {
  1258. ret = -ENOENT;
  1259. goto unlock;
  1260. }
  1261. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1262. ret = -E2BIG;
  1263. goto unlock;
  1264. }
  1265. if (obj->madv != I915_MADV_WILLNEED) {
  1266. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1267. ret = -EINVAL;
  1268. goto out;
  1269. }
  1270. if (!obj->base.map_list.map) {
  1271. ret = i915_gem_create_mmap_offset(obj);
  1272. if (ret)
  1273. goto out;
  1274. }
  1275. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1276. out:
  1277. drm_gem_object_unreference(&obj->base);
  1278. unlock:
  1279. mutex_unlock(&dev->struct_mutex);
  1280. return ret;
  1281. }
  1282. /**
  1283. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1284. * @dev: DRM device
  1285. * @data: GTT mapping ioctl data
  1286. * @file: GEM object info
  1287. *
  1288. * Simply returns the fake offset to userspace so it can mmap it.
  1289. * The mmap call will end up in drm_gem_mmap(), which will set things
  1290. * up so we can get faults in the handler above.
  1291. *
  1292. * The fault handler will take care of binding the object into the GTT
  1293. * (since it may have been evicted to make room for something), allocating
  1294. * a fence register, and mapping the appropriate aperture address into
  1295. * userspace.
  1296. */
  1297. int
  1298. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1299. struct drm_file *file)
  1300. {
  1301. struct drm_i915_gem_mmap_gtt *args = data;
  1302. if (!(dev->driver->driver_features & DRIVER_GEM))
  1303. return -ENODEV;
  1304. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1305. }
  1306. static int
  1307. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1308. gfp_t gfpmask)
  1309. {
  1310. int page_count, i;
  1311. struct address_space *mapping;
  1312. struct inode *inode;
  1313. struct page *page;
  1314. /* Get the list of pages out of our struct file. They'll be pinned
  1315. * at this point until we release them.
  1316. */
  1317. page_count = obj->base.size / PAGE_SIZE;
  1318. BUG_ON(obj->pages != NULL);
  1319. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1320. if (obj->pages == NULL)
  1321. return -ENOMEM;
  1322. inode = obj->base.filp->f_path.dentry->d_inode;
  1323. mapping = inode->i_mapping;
  1324. for (i = 0; i < page_count; i++) {
  1325. page = read_cache_page_gfp(mapping, i,
  1326. GFP_HIGHUSER |
  1327. __GFP_COLD |
  1328. __GFP_RECLAIMABLE |
  1329. gfpmask);
  1330. if (IS_ERR(page))
  1331. goto err_pages;
  1332. obj->pages[i] = page;
  1333. }
  1334. if (obj->tiling_mode != I915_TILING_NONE)
  1335. i915_gem_object_do_bit_17_swizzle(obj);
  1336. return 0;
  1337. err_pages:
  1338. while (i--)
  1339. page_cache_release(obj->pages[i]);
  1340. drm_free_large(obj->pages);
  1341. obj->pages = NULL;
  1342. return PTR_ERR(page);
  1343. }
  1344. static void
  1345. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1346. {
  1347. int page_count = obj->base.size / PAGE_SIZE;
  1348. int i;
  1349. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1350. if (obj->tiling_mode != I915_TILING_NONE)
  1351. i915_gem_object_save_bit_17_swizzle(obj);
  1352. if (obj->madv == I915_MADV_DONTNEED)
  1353. obj->dirty = 0;
  1354. for (i = 0; i < page_count; i++) {
  1355. if (obj->dirty)
  1356. set_page_dirty(obj->pages[i]);
  1357. if (obj->madv == I915_MADV_WILLNEED)
  1358. mark_page_accessed(obj->pages[i]);
  1359. page_cache_release(obj->pages[i]);
  1360. }
  1361. obj->dirty = 0;
  1362. drm_free_large(obj->pages);
  1363. obj->pages = NULL;
  1364. }
  1365. void
  1366. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1367. struct intel_ring_buffer *ring,
  1368. u32 seqno)
  1369. {
  1370. struct drm_device *dev = obj->base.dev;
  1371. struct drm_i915_private *dev_priv = dev->dev_private;
  1372. BUG_ON(ring == NULL);
  1373. obj->ring = ring;
  1374. /* Add a reference if we're newly entering the active list. */
  1375. if (!obj->active) {
  1376. drm_gem_object_reference(&obj->base);
  1377. obj->active = 1;
  1378. }
  1379. /* Move from whatever list we were on to the tail of execution. */
  1380. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1381. list_move_tail(&obj->ring_list, &ring->active_list);
  1382. obj->last_rendering_seqno = seqno;
  1383. if (obj->fenced_gpu_access) {
  1384. struct drm_i915_fence_reg *reg;
  1385. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1386. obj->last_fenced_seqno = seqno;
  1387. obj->last_fenced_ring = ring;
  1388. reg = &dev_priv->fence_regs[obj->fence_reg];
  1389. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1390. }
  1391. }
  1392. static void
  1393. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1394. {
  1395. list_del_init(&obj->ring_list);
  1396. obj->last_rendering_seqno = 0;
  1397. }
  1398. static void
  1399. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1400. {
  1401. struct drm_device *dev = obj->base.dev;
  1402. drm_i915_private_t *dev_priv = dev->dev_private;
  1403. BUG_ON(!obj->active);
  1404. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1405. i915_gem_object_move_off_active(obj);
  1406. }
  1407. static void
  1408. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1409. {
  1410. struct drm_device *dev = obj->base.dev;
  1411. struct drm_i915_private *dev_priv = dev->dev_private;
  1412. if (obj->pin_count != 0)
  1413. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1414. else
  1415. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1416. BUG_ON(!list_empty(&obj->gpu_write_list));
  1417. BUG_ON(!obj->active);
  1418. obj->ring = NULL;
  1419. i915_gem_object_move_off_active(obj);
  1420. obj->fenced_gpu_access = false;
  1421. obj->active = 0;
  1422. obj->pending_gpu_write = false;
  1423. drm_gem_object_unreference(&obj->base);
  1424. WARN_ON(i915_verify_lists(dev));
  1425. }
  1426. /* Immediately discard the backing storage */
  1427. static void
  1428. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1429. {
  1430. struct inode *inode;
  1431. /* Our goal here is to return as much of the memory as
  1432. * is possible back to the system as we are called from OOM.
  1433. * To do this we must instruct the shmfs to drop all of its
  1434. * backing pages, *now*. Here we mirror the actions taken
  1435. * when by shmem_delete_inode() to release the backing store.
  1436. */
  1437. inode = obj->base.filp->f_path.dentry->d_inode;
  1438. truncate_inode_pages(inode->i_mapping, 0);
  1439. if (inode->i_op->truncate_range)
  1440. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1441. obj->madv = __I915_MADV_PURGED;
  1442. }
  1443. static inline int
  1444. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1445. {
  1446. return obj->madv == I915_MADV_DONTNEED;
  1447. }
  1448. static void
  1449. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1450. uint32_t flush_domains)
  1451. {
  1452. struct drm_i915_gem_object *obj, *next;
  1453. list_for_each_entry_safe(obj, next,
  1454. &ring->gpu_write_list,
  1455. gpu_write_list) {
  1456. if (obj->base.write_domain & flush_domains) {
  1457. uint32_t old_write_domain = obj->base.write_domain;
  1458. obj->base.write_domain = 0;
  1459. list_del_init(&obj->gpu_write_list);
  1460. i915_gem_object_move_to_active(obj, ring,
  1461. i915_gem_next_request_seqno(ring));
  1462. trace_i915_gem_object_change_domain(obj,
  1463. obj->base.read_domains,
  1464. old_write_domain);
  1465. }
  1466. }
  1467. }
  1468. int
  1469. i915_add_request(struct intel_ring_buffer *ring,
  1470. struct drm_file *file,
  1471. struct drm_i915_gem_request *request)
  1472. {
  1473. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1474. uint32_t seqno;
  1475. int was_empty;
  1476. int ret;
  1477. BUG_ON(request == NULL);
  1478. ret = ring->add_request(ring, &seqno);
  1479. if (ret)
  1480. return ret;
  1481. trace_i915_gem_request_add(ring, seqno);
  1482. request->seqno = seqno;
  1483. request->ring = ring;
  1484. request->emitted_jiffies = jiffies;
  1485. was_empty = list_empty(&ring->request_list);
  1486. list_add_tail(&request->list, &ring->request_list);
  1487. if (file) {
  1488. struct drm_i915_file_private *file_priv = file->driver_priv;
  1489. spin_lock(&file_priv->mm.lock);
  1490. request->file_priv = file_priv;
  1491. list_add_tail(&request->client_list,
  1492. &file_priv->mm.request_list);
  1493. spin_unlock(&file_priv->mm.lock);
  1494. }
  1495. ring->outstanding_lazy_request = false;
  1496. if (!dev_priv->mm.suspended) {
  1497. mod_timer(&dev_priv->hangcheck_timer,
  1498. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1499. if (was_empty)
  1500. queue_delayed_work(dev_priv->wq,
  1501. &dev_priv->mm.retire_work, HZ);
  1502. }
  1503. return 0;
  1504. }
  1505. static inline void
  1506. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1507. {
  1508. struct drm_i915_file_private *file_priv = request->file_priv;
  1509. if (!file_priv)
  1510. return;
  1511. spin_lock(&file_priv->mm.lock);
  1512. if (request->file_priv) {
  1513. list_del(&request->client_list);
  1514. request->file_priv = NULL;
  1515. }
  1516. spin_unlock(&file_priv->mm.lock);
  1517. }
  1518. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1519. struct intel_ring_buffer *ring)
  1520. {
  1521. while (!list_empty(&ring->request_list)) {
  1522. struct drm_i915_gem_request *request;
  1523. request = list_first_entry(&ring->request_list,
  1524. struct drm_i915_gem_request,
  1525. list);
  1526. list_del(&request->list);
  1527. i915_gem_request_remove_from_client(request);
  1528. kfree(request);
  1529. }
  1530. while (!list_empty(&ring->active_list)) {
  1531. struct drm_i915_gem_object *obj;
  1532. obj = list_first_entry(&ring->active_list,
  1533. struct drm_i915_gem_object,
  1534. ring_list);
  1535. obj->base.write_domain = 0;
  1536. list_del_init(&obj->gpu_write_list);
  1537. i915_gem_object_move_to_inactive(obj);
  1538. }
  1539. }
  1540. static void i915_gem_reset_fences(struct drm_device *dev)
  1541. {
  1542. struct drm_i915_private *dev_priv = dev->dev_private;
  1543. int i;
  1544. for (i = 0; i < 16; i++) {
  1545. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1546. struct drm_i915_gem_object *obj = reg->obj;
  1547. if (!obj)
  1548. continue;
  1549. if (obj->tiling_mode)
  1550. i915_gem_release_mmap(obj);
  1551. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1552. reg->obj->fenced_gpu_access = false;
  1553. reg->obj->last_fenced_seqno = 0;
  1554. reg->obj->last_fenced_ring = NULL;
  1555. i915_gem_clear_fence_reg(dev, reg);
  1556. }
  1557. }
  1558. void i915_gem_reset(struct drm_device *dev)
  1559. {
  1560. struct drm_i915_private *dev_priv = dev->dev_private;
  1561. struct drm_i915_gem_object *obj;
  1562. int i;
  1563. for (i = 0; i < I915_NUM_RINGS; i++)
  1564. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1565. /* Remove anything from the flushing lists. The GPU cache is likely
  1566. * to be lost on reset along with the data, so simply move the
  1567. * lost bo to the inactive list.
  1568. */
  1569. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1570. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1571. struct drm_i915_gem_object,
  1572. mm_list);
  1573. obj->base.write_domain = 0;
  1574. list_del_init(&obj->gpu_write_list);
  1575. i915_gem_object_move_to_inactive(obj);
  1576. }
  1577. /* Move everything out of the GPU domains to ensure we do any
  1578. * necessary invalidation upon reuse.
  1579. */
  1580. list_for_each_entry(obj,
  1581. &dev_priv->mm.inactive_list,
  1582. mm_list)
  1583. {
  1584. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1585. }
  1586. /* The fence registers are invalidated so clear them out */
  1587. i915_gem_reset_fences(dev);
  1588. }
  1589. /**
  1590. * This function clears the request list as sequence numbers are passed.
  1591. */
  1592. static void
  1593. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1594. {
  1595. uint32_t seqno;
  1596. int i;
  1597. if (list_empty(&ring->request_list))
  1598. return;
  1599. WARN_ON(i915_verify_lists(ring->dev));
  1600. seqno = ring->get_seqno(ring);
  1601. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1602. if (seqno >= ring->sync_seqno[i])
  1603. ring->sync_seqno[i] = 0;
  1604. while (!list_empty(&ring->request_list)) {
  1605. struct drm_i915_gem_request *request;
  1606. request = list_first_entry(&ring->request_list,
  1607. struct drm_i915_gem_request,
  1608. list);
  1609. if (!i915_seqno_passed(seqno, request->seqno))
  1610. break;
  1611. trace_i915_gem_request_retire(ring, request->seqno);
  1612. list_del(&request->list);
  1613. i915_gem_request_remove_from_client(request);
  1614. kfree(request);
  1615. }
  1616. /* Move any buffers on the active list that are no longer referenced
  1617. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1618. */
  1619. while (!list_empty(&ring->active_list)) {
  1620. struct drm_i915_gem_object *obj;
  1621. obj= list_first_entry(&ring->active_list,
  1622. struct drm_i915_gem_object,
  1623. ring_list);
  1624. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1625. break;
  1626. if (obj->base.write_domain != 0)
  1627. i915_gem_object_move_to_flushing(obj);
  1628. else
  1629. i915_gem_object_move_to_inactive(obj);
  1630. }
  1631. if (unlikely(ring->trace_irq_seqno &&
  1632. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1633. ring->irq_put(ring);
  1634. ring->trace_irq_seqno = 0;
  1635. }
  1636. WARN_ON(i915_verify_lists(ring->dev));
  1637. }
  1638. void
  1639. i915_gem_retire_requests(struct drm_device *dev)
  1640. {
  1641. drm_i915_private_t *dev_priv = dev->dev_private;
  1642. int i;
  1643. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1644. struct drm_i915_gem_object *obj, *next;
  1645. /* We must be careful that during unbind() we do not
  1646. * accidentally infinitely recurse into retire requests.
  1647. * Currently:
  1648. * retire -> free -> unbind -> wait -> retire_ring
  1649. */
  1650. list_for_each_entry_safe(obj, next,
  1651. &dev_priv->mm.deferred_free_list,
  1652. mm_list)
  1653. i915_gem_free_object_tail(obj);
  1654. }
  1655. for (i = 0; i < I915_NUM_RINGS; i++)
  1656. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1657. }
  1658. static void
  1659. i915_gem_retire_work_handler(struct work_struct *work)
  1660. {
  1661. drm_i915_private_t *dev_priv;
  1662. struct drm_device *dev;
  1663. bool idle;
  1664. int i;
  1665. dev_priv = container_of(work, drm_i915_private_t,
  1666. mm.retire_work.work);
  1667. dev = dev_priv->dev;
  1668. /* Come back later if the device is busy... */
  1669. if (!mutex_trylock(&dev->struct_mutex)) {
  1670. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1671. return;
  1672. }
  1673. i915_gem_retire_requests(dev);
  1674. /* Send a periodic flush down the ring so we don't hold onto GEM
  1675. * objects indefinitely.
  1676. */
  1677. idle = true;
  1678. for (i = 0; i < I915_NUM_RINGS; i++) {
  1679. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1680. if (!list_empty(&ring->gpu_write_list)) {
  1681. struct drm_i915_gem_request *request;
  1682. int ret;
  1683. ret = i915_gem_flush_ring(ring,
  1684. 0, I915_GEM_GPU_DOMAINS);
  1685. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1686. if (ret || request == NULL ||
  1687. i915_add_request(ring, NULL, request))
  1688. kfree(request);
  1689. }
  1690. idle &= list_empty(&ring->request_list);
  1691. }
  1692. if (!dev_priv->mm.suspended && !idle)
  1693. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1694. mutex_unlock(&dev->struct_mutex);
  1695. }
  1696. /**
  1697. * Waits for a sequence number to be signaled, and cleans up the
  1698. * request and object lists appropriately for that event.
  1699. */
  1700. int
  1701. i915_wait_request(struct intel_ring_buffer *ring,
  1702. uint32_t seqno)
  1703. {
  1704. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1705. u32 ier;
  1706. int ret = 0;
  1707. BUG_ON(seqno == 0);
  1708. if (atomic_read(&dev_priv->mm.wedged)) {
  1709. struct completion *x = &dev_priv->error_completion;
  1710. bool recovery_complete;
  1711. unsigned long flags;
  1712. /* Give the error handler a chance to run. */
  1713. spin_lock_irqsave(&x->wait.lock, flags);
  1714. recovery_complete = x->done > 0;
  1715. spin_unlock_irqrestore(&x->wait.lock, flags);
  1716. return recovery_complete ? -EIO : -EAGAIN;
  1717. }
  1718. if (seqno == ring->outstanding_lazy_request) {
  1719. struct drm_i915_gem_request *request;
  1720. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1721. if (request == NULL)
  1722. return -ENOMEM;
  1723. ret = i915_add_request(ring, NULL, request);
  1724. if (ret) {
  1725. kfree(request);
  1726. return ret;
  1727. }
  1728. seqno = request->seqno;
  1729. }
  1730. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1731. if (HAS_PCH_SPLIT(ring->dev))
  1732. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1733. else
  1734. ier = I915_READ(IER);
  1735. if (!ier) {
  1736. DRM_ERROR("something (likely vbetool) disabled "
  1737. "interrupts, re-enabling\n");
  1738. i915_driver_irq_preinstall(ring->dev);
  1739. i915_driver_irq_postinstall(ring->dev);
  1740. }
  1741. trace_i915_gem_request_wait_begin(ring, seqno);
  1742. ring->waiting_seqno = seqno;
  1743. if (ring->irq_get(ring)) {
  1744. if (dev_priv->mm.interruptible)
  1745. ret = wait_event_interruptible(ring->irq_queue,
  1746. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1747. || atomic_read(&dev_priv->mm.wedged));
  1748. else
  1749. wait_event(ring->irq_queue,
  1750. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1751. || atomic_read(&dev_priv->mm.wedged));
  1752. ring->irq_put(ring);
  1753. } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
  1754. seqno) ||
  1755. atomic_read(&dev_priv->mm.wedged), 3000))
  1756. ret = -EBUSY;
  1757. ring->waiting_seqno = 0;
  1758. trace_i915_gem_request_wait_end(ring, seqno);
  1759. }
  1760. if (atomic_read(&dev_priv->mm.wedged))
  1761. ret = -EAGAIN;
  1762. if (ret && ret != -ERESTARTSYS)
  1763. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1764. __func__, ret, seqno, ring->get_seqno(ring),
  1765. dev_priv->next_seqno);
  1766. /* Directly dispatch request retiring. While we have the work queue
  1767. * to handle this, the waiter on a request often wants an associated
  1768. * buffer to have made it to the inactive list, and we would need
  1769. * a separate wait queue to handle that.
  1770. */
  1771. if (ret == 0)
  1772. i915_gem_retire_requests_ring(ring);
  1773. return ret;
  1774. }
  1775. /**
  1776. * Ensures that all rendering to the object has completed and the object is
  1777. * safe to unbind from the GTT or access from the CPU.
  1778. */
  1779. int
  1780. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1781. {
  1782. int ret;
  1783. /* This function only exists to support waiting for existing rendering,
  1784. * not for emitting required flushes.
  1785. */
  1786. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1787. /* If there is rendering queued on the buffer being evicted, wait for
  1788. * it.
  1789. */
  1790. if (obj->active) {
  1791. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
  1792. if (ret)
  1793. return ret;
  1794. }
  1795. return 0;
  1796. }
  1797. /**
  1798. * Unbinds an object from the GTT aperture.
  1799. */
  1800. int
  1801. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1802. {
  1803. int ret = 0;
  1804. if (obj->gtt_space == NULL)
  1805. return 0;
  1806. if (obj->pin_count != 0) {
  1807. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1808. return -EINVAL;
  1809. }
  1810. /* blow away mappings if mapped through GTT */
  1811. i915_gem_release_mmap(obj);
  1812. /* Move the object to the CPU domain to ensure that
  1813. * any possible CPU writes while it's not in the GTT
  1814. * are flushed when we go to remap it. This will
  1815. * also ensure that all pending GPU writes are finished
  1816. * before we unbind.
  1817. */
  1818. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1819. if (ret == -ERESTARTSYS)
  1820. return ret;
  1821. /* Continue on if we fail due to EIO, the GPU is hung so we
  1822. * should be safe and we need to cleanup or else we might
  1823. * cause memory corruption through use-after-free.
  1824. */
  1825. if (ret) {
  1826. i915_gem_clflush_object(obj);
  1827. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1828. }
  1829. /* release the fence reg _after_ flushing */
  1830. ret = i915_gem_object_put_fence(obj);
  1831. if (ret == -ERESTARTSYS)
  1832. return ret;
  1833. trace_i915_gem_object_unbind(obj);
  1834. i915_gem_gtt_unbind_object(obj);
  1835. i915_gem_object_put_pages_gtt(obj);
  1836. list_del_init(&obj->gtt_list);
  1837. list_del_init(&obj->mm_list);
  1838. /* Avoid an unnecessary call to unbind on rebind. */
  1839. obj->map_and_fenceable = true;
  1840. drm_mm_put_block(obj->gtt_space);
  1841. obj->gtt_space = NULL;
  1842. obj->gtt_offset = 0;
  1843. if (i915_gem_object_is_purgeable(obj))
  1844. i915_gem_object_truncate(obj);
  1845. return ret;
  1846. }
  1847. int
  1848. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1849. uint32_t invalidate_domains,
  1850. uint32_t flush_domains)
  1851. {
  1852. int ret;
  1853. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1854. return 0;
  1855. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1856. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1857. if (ret)
  1858. return ret;
  1859. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1860. i915_gem_process_flushing_list(ring, flush_domains);
  1861. return 0;
  1862. }
  1863. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1864. {
  1865. int ret;
  1866. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1867. return 0;
  1868. if (!list_empty(&ring->gpu_write_list)) {
  1869. ret = i915_gem_flush_ring(ring,
  1870. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1871. if (ret)
  1872. return ret;
  1873. }
  1874. return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
  1875. }
  1876. int
  1877. i915_gpu_idle(struct drm_device *dev)
  1878. {
  1879. drm_i915_private_t *dev_priv = dev->dev_private;
  1880. bool lists_empty;
  1881. int ret, i;
  1882. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1883. list_empty(&dev_priv->mm.active_list));
  1884. if (lists_empty)
  1885. return 0;
  1886. /* Flush everything onto the inactive list. */
  1887. for (i = 0; i < I915_NUM_RINGS; i++) {
  1888. ret = i915_ring_idle(&dev_priv->ring[i]);
  1889. if (ret)
  1890. return ret;
  1891. }
  1892. return 0;
  1893. }
  1894. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1895. struct intel_ring_buffer *pipelined)
  1896. {
  1897. struct drm_device *dev = obj->base.dev;
  1898. drm_i915_private_t *dev_priv = dev->dev_private;
  1899. u32 size = obj->gtt_space->size;
  1900. int regnum = obj->fence_reg;
  1901. uint64_t val;
  1902. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1903. 0xfffff000) << 32;
  1904. val |= obj->gtt_offset & 0xfffff000;
  1905. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1906. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1907. if (obj->tiling_mode == I915_TILING_Y)
  1908. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1909. val |= I965_FENCE_REG_VALID;
  1910. if (pipelined) {
  1911. int ret = intel_ring_begin(pipelined, 6);
  1912. if (ret)
  1913. return ret;
  1914. intel_ring_emit(pipelined, MI_NOOP);
  1915. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1916. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1917. intel_ring_emit(pipelined, (u32)val);
  1918. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1919. intel_ring_emit(pipelined, (u32)(val >> 32));
  1920. intel_ring_advance(pipelined);
  1921. } else
  1922. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1923. return 0;
  1924. }
  1925. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1926. struct intel_ring_buffer *pipelined)
  1927. {
  1928. struct drm_device *dev = obj->base.dev;
  1929. drm_i915_private_t *dev_priv = dev->dev_private;
  1930. u32 size = obj->gtt_space->size;
  1931. int regnum = obj->fence_reg;
  1932. uint64_t val;
  1933. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1934. 0xfffff000) << 32;
  1935. val |= obj->gtt_offset & 0xfffff000;
  1936. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1937. if (obj->tiling_mode == I915_TILING_Y)
  1938. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1939. val |= I965_FENCE_REG_VALID;
  1940. if (pipelined) {
  1941. int ret = intel_ring_begin(pipelined, 6);
  1942. if (ret)
  1943. return ret;
  1944. intel_ring_emit(pipelined, MI_NOOP);
  1945. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1946. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1947. intel_ring_emit(pipelined, (u32)val);
  1948. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1949. intel_ring_emit(pipelined, (u32)(val >> 32));
  1950. intel_ring_advance(pipelined);
  1951. } else
  1952. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1953. return 0;
  1954. }
  1955. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1956. struct intel_ring_buffer *pipelined)
  1957. {
  1958. struct drm_device *dev = obj->base.dev;
  1959. drm_i915_private_t *dev_priv = dev->dev_private;
  1960. u32 size = obj->gtt_space->size;
  1961. u32 fence_reg, val, pitch_val;
  1962. int tile_width;
  1963. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1964. (size & -size) != size ||
  1965. (obj->gtt_offset & (size - 1)),
  1966. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1967. obj->gtt_offset, obj->map_and_fenceable, size))
  1968. return -EINVAL;
  1969. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1970. tile_width = 128;
  1971. else
  1972. tile_width = 512;
  1973. /* Note: pitch better be a power of two tile widths */
  1974. pitch_val = obj->stride / tile_width;
  1975. pitch_val = ffs(pitch_val) - 1;
  1976. val = obj->gtt_offset;
  1977. if (obj->tiling_mode == I915_TILING_Y)
  1978. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1979. val |= I915_FENCE_SIZE_BITS(size);
  1980. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1981. val |= I830_FENCE_REG_VALID;
  1982. fence_reg = obj->fence_reg;
  1983. if (fence_reg < 8)
  1984. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1985. else
  1986. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1987. if (pipelined) {
  1988. int ret = intel_ring_begin(pipelined, 4);
  1989. if (ret)
  1990. return ret;
  1991. intel_ring_emit(pipelined, MI_NOOP);
  1992. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1993. intel_ring_emit(pipelined, fence_reg);
  1994. intel_ring_emit(pipelined, val);
  1995. intel_ring_advance(pipelined);
  1996. } else
  1997. I915_WRITE(fence_reg, val);
  1998. return 0;
  1999. }
  2000. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  2001. struct intel_ring_buffer *pipelined)
  2002. {
  2003. struct drm_device *dev = obj->base.dev;
  2004. drm_i915_private_t *dev_priv = dev->dev_private;
  2005. u32 size = obj->gtt_space->size;
  2006. int regnum = obj->fence_reg;
  2007. uint32_t val;
  2008. uint32_t pitch_val;
  2009. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2010. (size & -size) != size ||
  2011. (obj->gtt_offset & (size - 1)),
  2012. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2013. obj->gtt_offset, size))
  2014. return -EINVAL;
  2015. pitch_val = obj->stride / 128;
  2016. pitch_val = ffs(pitch_val) - 1;
  2017. val = obj->gtt_offset;
  2018. if (obj->tiling_mode == I915_TILING_Y)
  2019. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2020. val |= I830_FENCE_SIZE_BITS(size);
  2021. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2022. val |= I830_FENCE_REG_VALID;
  2023. if (pipelined) {
  2024. int ret = intel_ring_begin(pipelined, 4);
  2025. if (ret)
  2026. return ret;
  2027. intel_ring_emit(pipelined, MI_NOOP);
  2028. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  2029. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  2030. intel_ring_emit(pipelined, val);
  2031. intel_ring_advance(pipelined);
  2032. } else
  2033. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  2034. return 0;
  2035. }
  2036. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  2037. {
  2038. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  2039. }
  2040. static int
  2041. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  2042. struct intel_ring_buffer *pipelined)
  2043. {
  2044. int ret;
  2045. if (obj->fenced_gpu_access) {
  2046. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2047. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  2048. 0, obj->base.write_domain);
  2049. if (ret)
  2050. return ret;
  2051. }
  2052. obj->fenced_gpu_access = false;
  2053. }
  2054. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  2055. if (!ring_passed_seqno(obj->last_fenced_ring,
  2056. obj->last_fenced_seqno)) {
  2057. ret = i915_wait_request(obj->last_fenced_ring,
  2058. obj->last_fenced_seqno);
  2059. if (ret)
  2060. return ret;
  2061. }
  2062. obj->last_fenced_seqno = 0;
  2063. obj->last_fenced_ring = NULL;
  2064. }
  2065. /* Ensure that all CPU reads are completed before installing a fence
  2066. * and all writes before removing the fence.
  2067. */
  2068. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2069. mb();
  2070. return 0;
  2071. }
  2072. int
  2073. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2074. {
  2075. int ret;
  2076. if (obj->tiling_mode)
  2077. i915_gem_release_mmap(obj);
  2078. ret = i915_gem_object_flush_fence(obj, NULL);
  2079. if (ret)
  2080. return ret;
  2081. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2082. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2083. i915_gem_clear_fence_reg(obj->base.dev,
  2084. &dev_priv->fence_regs[obj->fence_reg]);
  2085. obj->fence_reg = I915_FENCE_REG_NONE;
  2086. }
  2087. return 0;
  2088. }
  2089. static struct drm_i915_fence_reg *
  2090. i915_find_fence_reg(struct drm_device *dev,
  2091. struct intel_ring_buffer *pipelined)
  2092. {
  2093. struct drm_i915_private *dev_priv = dev->dev_private;
  2094. struct drm_i915_fence_reg *reg, *first, *avail;
  2095. int i;
  2096. /* First try to find a free reg */
  2097. avail = NULL;
  2098. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2099. reg = &dev_priv->fence_regs[i];
  2100. if (!reg->obj)
  2101. return reg;
  2102. if (!reg->obj->pin_count)
  2103. avail = reg;
  2104. }
  2105. if (avail == NULL)
  2106. return NULL;
  2107. /* None available, try to steal one or wait for a user to finish */
  2108. avail = first = NULL;
  2109. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2110. if (reg->obj->pin_count)
  2111. continue;
  2112. if (first == NULL)
  2113. first = reg;
  2114. if (!pipelined ||
  2115. !reg->obj->last_fenced_ring ||
  2116. reg->obj->last_fenced_ring == pipelined) {
  2117. avail = reg;
  2118. break;
  2119. }
  2120. }
  2121. if (avail == NULL)
  2122. avail = first;
  2123. return avail;
  2124. }
  2125. /**
  2126. * i915_gem_object_get_fence - set up a fence reg for an object
  2127. * @obj: object to map through a fence reg
  2128. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2129. * @interruptible: must we wait uninterruptibly for the register to retire?
  2130. *
  2131. * When mapping objects through the GTT, userspace wants to be able to write
  2132. * to them without having to worry about swizzling if the object is tiled.
  2133. *
  2134. * This function walks the fence regs looking for a free one for @obj,
  2135. * stealing one if it can't find any.
  2136. *
  2137. * It then sets up the reg based on the object's properties: address, pitch
  2138. * and tiling format.
  2139. */
  2140. int
  2141. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2142. struct intel_ring_buffer *pipelined)
  2143. {
  2144. struct drm_device *dev = obj->base.dev;
  2145. struct drm_i915_private *dev_priv = dev->dev_private;
  2146. struct drm_i915_fence_reg *reg;
  2147. int ret;
  2148. /* XXX disable pipelining. There are bugs. Shocking. */
  2149. pipelined = NULL;
  2150. /* Just update our place in the LRU if our fence is getting reused. */
  2151. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2152. reg = &dev_priv->fence_regs[obj->fence_reg];
  2153. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2154. if (obj->tiling_changed) {
  2155. ret = i915_gem_object_flush_fence(obj, pipelined);
  2156. if (ret)
  2157. return ret;
  2158. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2159. pipelined = NULL;
  2160. if (pipelined) {
  2161. reg->setup_seqno =
  2162. i915_gem_next_request_seqno(pipelined);
  2163. obj->last_fenced_seqno = reg->setup_seqno;
  2164. obj->last_fenced_ring = pipelined;
  2165. }
  2166. goto update;
  2167. }
  2168. if (!pipelined) {
  2169. if (reg->setup_seqno) {
  2170. if (!ring_passed_seqno(obj->last_fenced_ring,
  2171. reg->setup_seqno)) {
  2172. ret = i915_wait_request(obj->last_fenced_ring,
  2173. reg->setup_seqno);
  2174. if (ret)
  2175. return ret;
  2176. }
  2177. reg->setup_seqno = 0;
  2178. }
  2179. } else if (obj->last_fenced_ring &&
  2180. obj->last_fenced_ring != pipelined) {
  2181. ret = i915_gem_object_flush_fence(obj, pipelined);
  2182. if (ret)
  2183. return ret;
  2184. }
  2185. return 0;
  2186. }
  2187. reg = i915_find_fence_reg(dev, pipelined);
  2188. if (reg == NULL)
  2189. return -ENOSPC;
  2190. ret = i915_gem_object_flush_fence(obj, pipelined);
  2191. if (ret)
  2192. return ret;
  2193. if (reg->obj) {
  2194. struct drm_i915_gem_object *old = reg->obj;
  2195. drm_gem_object_reference(&old->base);
  2196. if (old->tiling_mode)
  2197. i915_gem_release_mmap(old);
  2198. ret = i915_gem_object_flush_fence(old, pipelined);
  2199. if (ret) {
  2200. drm_gem_object_unreference(&old->base);
  2201. return ret;
  2202. }
  2203. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2204. pipelined = NULL;
  2205. old->fence_reg = I915_FENCE_REG_NONE;
  2206. old->last_fenced_ring = pipelined;
  2207. old->last_fenced_seqno =
  2208. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2209. drm_gem_object_unreference(&old->base);
  2210. } else if (obj->last_fenced_seqno == 0)
  2211. pipelined = NULL;
  2212. reg->obj = obj;
  2213. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2214. obj->fence_reg = reg - dev_priv->fence_regs;
  2215. obj->last_fenced_ring = pipelined;
  2216. reg->setup_seqno =
  2217. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2218. obj->last_fenced_seqno = reg->setup_seqno;
  2219. update:
  2220. obj->tiling_changed = false;
  2221. switch (INTEL_INFO(dev)->gen) {
  2222. case 6:
  2223. ret = sandybridge_write_fence_reg(obj, pipelined);
  2224. break;
  2225. case 5:
  2226. case 4:
  2227. ret = i965_write_fence_reg(obj, pipelined);
  2228. break;
  2229. case 3:
  2230. ret = i915_write_fence_reg(obj, pipelined);
  2231. break;
  2232. case 2:
  2233. ret = i830_write_fence_reg(obj, pipelined);
  2234. break;
  2235. }
  2236. return ret;
  2237. }
  2238. /**
  2239. * i915_gem_clear_fence_reg - clear out fence register info
  2240. * @obj: object to clear
  2241. *
  2242. * Zeroes out the fence register itself and clears out the associated
  2243. * data structures in dev_priv and obj.
  2244. */
  2245. static void
  2246. i915_gem_clear_fence_reg(struct drm_device *dev,
  2247. struct drm_i915_fence_reg *reg)
  2248. {
  2249. drm_i915_private_t *dev_priv = dev->dev_private;
  2250. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2251. switch (INTEL_INFO(dev)->gen) {
  2252. case 6:
  2253. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2254. break;
  2255. case 5:
  2256. case 4:
  2257. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2258. break;
  2259. case 3:
  2260. if (fence_reg >= 8)
  2261. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2262. else
  2263. case 2:
  2264. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2265. I915_WRITE(fence_reg, 0);
  2266. break;
  2267. }
  2268. list_del_init(&reg->lru_list);
  2269. reg->obj = NULL;
  2270. reg->setup_seqno = 0;
  2271. }
  2272. /**
  2273. * Finds free space in the GTT aperture and binds the object there.
  2274. */
  2275. static int
  2276. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2277. unsigned alignment,
  2278. bool map_and_fenceable)
  2279. {
  2280. struct drm_device *dev = obj->base.dev;
  2281. drm_i915_private_t *dev_priv = dev->dev_private;
  2282. struct drm_mm_node *free_space;
  2283. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2284. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2285. bool mappable, fenceable;
  2286. int ret;
  2287. if (obj->madv != I915_MADV_WILLNEED) {
  2288. DRM_ERROR("Attempting to bind a purgeable object\n");
  2289. return -EINVAL;
  2290. }
  2291. fence_size = i915_gem_get_gtt_size(obj);
  2292. fence_alignment = i915_gem_get_gtt_alignment(obj);
  2293. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
  2294. if (alignment == 0)
  2295. alignment = map_and_fenceable ? fence_alignment :
  2296. unfenced_alignment;
  2297. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2298. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2299. return -EINVAL;
  2300. }
  2301. size = map_and_fenceable ? fence_size : obj->base.size;
  2302. /* If the object is bigger than the entire aperture, reject it early
  2303. * before evicting everything in a vain attempt to find space.
  2304. */
  2305. if (obj->base.size >
  2306. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2307. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2308. return -E2BIG;
  2309. }
  2310. search_free:
  2311. if (map_and_fenceable)
  2312. free_space =
  2313. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2314. size, alignment, 0,
  2315. dev_priv->mm.gtt_mappable_end,
  2316. 0);
  2317. else
  2318. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2319. size, alignment, 0);
  2320. if (free_space != NULL) {
  2321. if (map_and_fenceable)
  2322. obj->gtt_space =
  2323. drm_mm_get_block_range_generic(free_space,
  2324. size, alignment, 0,
  2325. dev_priv->mm.gtt_mappable_end,
  2326. 0);
  2327. else
  2328. obj->gtt_space =
  2329. drm_mm_get_block(free_space, size, alignment);
  2330. }
  2331. if (obj->gtt_space == NULL) {
  2332. /* If the gtt is empty and we're still having trouble
  2333. * fitting our object in, we're out of memory.
  2334. */
  2335. ret = i915_gem_evict_something(dev, size, alignment,
  2336. map_and_fenceable);
  2337. if (ret)
  2338. return ret;
  2339. goto search_free;
  2340. }
  2341. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2342. if (ret) {
  2343. drm_mm_put_block(obj->gtt_space);
  2344. obj->gtt_space = NULL;
  2345. if (ret == -ENOMEM) {
  2346. /* first try to reclaim some memory by clearing the GTT */
  2347. ret = i915_gem_evict_everything(dev, false);
  2348. if (ret) {
  2349. /* now try to shrink everyone else */
  2350. if (gfpmask) {
  2351. gfpmask = 0;
  2352. goto search_free;
  2353. }
  2354. return -ENOMEM;
  2355. }
  2356. goto search_free;
  2357. }
  2358. return ret;
  2359. }
  2360. ret = i915_gem_gtt_bind_object(obj);
  2361. if (ret) {
  2362. i915_gem_object_put_pages_gtt(obj);
  2363. drm_mm_put_block(obj->gtt_space);
  2364. obj->gtt_space = NULL;
  2365. if (i915_gem_evict_everything(dev, false))
  2366. return ret;
  2367. goto search_free;
  2368. }
  2369. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2370. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2371. /* Assert that the object is not currently in any GPU domain. As it
  2372. * wasn't in the GTT, there shouldn't be any way it could have been in
  2373. * a GPU cache
  2374. */
  2375. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2376. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2377. obj->gtt_offset = obj->gtt_space->start;
  2378. fenceable =
  2379. obj->gtt_space->size == fence_size &&
  2380. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2381. mappable =
  2382. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2383. obj->map_and_fenceable = mappable && fenceable;
  2384. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2385. return 0;
  2386. }
  2387. void
  2388. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2389. {
  2390. /* If we don't have a page list set up, then we're not pinned
  2391. * to GPU, and we can ignore the cache flush because it'll happen
  2392. * again at bind time.
  2393. */
  2394. if (obj->pages == NULL)
  2395. return;
  2396. trace_i915_gem_object_clflush(obj);
  2397. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2398. }
  2399. /** Flushes any GPU write domain for the object if it's dirty. */
  2400. static int
  2401. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2402. {
  2403. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2404. return 0;
  2405. /* Queue the GPU write cache flushing we need. */
  2406. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2407. }
  2408. /** Flushes the GTT write domain for the object if it's dirty. */
  2409. static void
  2410. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2411. {
  2412. uint32_t old_write_domain;
  2413. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2414. return;
  2415. /* No actual flushing is required for the GTT write domain. Writes
  2416. * to it immediately go to main memory as far as we know, so there's
  2417. * no chipset flush. It also doesn't land in render cache.
  2418. *
  2419. * However, we do have to enforce the order so that all writes through
  2420. * the GTT land before any writes to the device, such as updates to
  2421. * the GATT itself.
  2422. */
  2423. wmb();
  2424. i915_gem_release_mmap(obj);
  2425. old_write_domain = obj->base.write_domain;
  2426. obj->base.write_domain = 0;
  2427. trace_i915_gem_object_change_domain(obj,
  2428. obj->base.read_domains,
  2429. old_write_domain);
  2430. }
  2431. /** Flushes the CPU write domain for the object if it's dirty. */
  2432. static void
  2433. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2434. {
  2435. uint32_t old_write_domain;
  2436. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2437. return;
  2438. i915_gem_clflush_object(obj);
  2439. intel_gtt_chipset_flush();
  2440. old_write_domain = obj->base.write_domain;
  2441. obj->base.write_domain = 0;
  2442. trace_i915_gem_object_change_domain(obj,
  2443. obj->base.read_domains,
  2444. old_write_domain);
  2445. }
  2446. /**
  2447. * Moves a single object to the GTT read, and possibly write domain.
  2448. *
  2449. * This function returns when the move is complete, including waiting on
  2450. * flushes to occur.
  2451. */
  2452. int
  2453. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2454. {
  2455. uint32_t old_write_domain, old_read_domains;
  2456. int ret;
  2457. /* Not valid to be called on unbound objects. */
  2458. if (obj->gtt_space == NULL)
  2459. return -EINVAL;
  2460. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2461. return 0;
  2462. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2463. if (ret)
  2464. return ret;
  2465. if (obj->pending_gpu_write || write) {
  2466. ret = i915_gem_object_wait_rendering(obj);
  2467. if (ret)
  2468. return ret;
  2469. }
  2470. i915_gem_object_flush_cpu_write_domain(obj);
  2471. old_write_domain = obj->base.write_domain;
  2472. old_read_domains = obj->base.read_domains;
  2473. /* It should now be out of any other write domains, and we can update
  2474. * the domain values for our changes.
  2475. */
  2476. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2477. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2478. if (write) {
  2479. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2480. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2481. obj->dirty = 1;
  2482. }
  2483. trace_i915_gem_object_change_domain(obj,
  2484. old_read_domains,
  2485. old_write_domain);
  2486. return 0;
  2487. }
  2488. /*
  2489. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2490. * wait, as in modesetting process we're not supposed to be interrupted.
  2491. */
  2492. int
  2493. i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
  2494. struct intel_ring_buffer *pipelined)
  2495. {
  2496. uint32_t old_read_domains;
  2497. int ret;
  2498. /* Not valid to be called on unbound objects. */
  2499. if (obj->gtt_space == NULL)
  2500. return -EINVAL;
  2501. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2502. if (ret)
  2503. return ret;
  2504. /* Currently, we are always called from an non-interruptible context. */
  2505. if (pipelined != obj->ring) {
  2506. ret = i915_gem_object_wait_rendering(obj);
  2507. if (ret)
  2508. return ret;
  2509. }
  2510. i915_gem_object_flush_cpu_write_domain(obj);
  2511. old_read_domains = obj->base.read_domains;
  2512. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2513. trace_i915_gem_object_change_domain(obj,
  2514. old_read_domains,
  2515. obj->base.write_domain);
  2516. return 0;
  2517. }
  2518. int
  2519. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
  2520. {
  2521. int ret;
  2522. if (!obj->active)
  2523. return 0;
  2524. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2525. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2526. if (ret)
  2527. return ret;
  2528. }
  2529. return i915_gem_object_wait_rendering(obj);
  2530. }
  2531. /**
  2532. * Moves a single object to the CPU read, and possibly write domain.
  2533. *
  2534. * This function returns when the move is complete, including waiting on
  2535. * flushes to occur.
  2536. */
  2537. static int
  2538. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2539. {
  2540. uint32_t old_write_domain, old_read_domains;
  2541. int ret;
  2542. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2543. return 0;
  2544. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2545. if (ret)
  2546. return ret;
  2547. ret = i915_gem_object_wait_rendering(obj);
  2548. if (ret)
  2549. return ret;
  2550. i915_gem_object_flush_gtt_write_domain(obj);
  2551. /* If we have a partially-valid cache of the object in the CPU,
  2552. * finish invalidating it and free the per-page flags.
  2553. */
  2554. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2555. old_write_domain = obj->base.write_domain;
  2556. old_read_domains = obj->base.read_domains;
  2557. /* Flush the CPU cache if it's still invalid. */
  2558. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2559. i915_gem_clflush_object(obj);
  2560. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2561. }
  2562. /* It should now be out of any other write domains, and we can update
  2563. * the domain values for our changes.
  2564. */
  2565. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2566. /* If we're writing through the CPU, then the GPU read domains will
  2567. * need to be invalidated at next use.
  2568. */
  2569. if (write) {
  2570. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2571. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2572. }
  2573. trace_i915_gem_object_change_domain(obj,
  2574. old_read_domains,
  2575. old_write_domain);
  2576. return 0;
  2577. }
  2578. /**
  2579. * Moves the object from a partially CPU read to a full one.
  2580. *
  2581. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2582. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2583. */
  2584. static void
  2585. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2586. {
  2587. if (!obj->page_cpu_valid)
  2588. return;
  2589. /* If we're partially in the CPU read domain, finish moving it in.
  2590. */
  2591. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2592. int i;
  2593. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2594. if (obj->page_cpu_valid[i])
  2595. continue;
  2596. drm_clflush_pages(obj->pages + i, 1);
  2597. }
  2598. }
  2599. /* Free the page_cpu_valid mappings which are now stale, whether
  2600. * or not we've got I915_GEM_DOMAIN_CPU.
  2601. */
  2602. kfree(obj->page_cpu_valid);
  2603. obj->page_cpu_valid = NULL;
  2604. }
  2605. /**
  2606. * Set the CPU read domain on a range of the object.
  2607. *
  2608. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2609. * not entirely valid. The page_cpu_valid member of the object flags which
  2610. * pages have been flushed, and will be respected by
  2611. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2612. * of the whole object.
  2613. *
  2614. * This function returns when the move is complete, including waiting on
  2615. * flushes to occur.
  2616. */
  2617. static int
  2618. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2619. uint64_t offset, uint64_t size)
  2620. {
  2621. uint32_t old_read_domains;
  2622. int i, ret;
  2623. if (offset == 0 && size == obj->base.size)
  2624. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2625. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2626. if (ret)
  2627. return ret;
  2628. ret = i915_gem_object_wait_rendering(obj);
  2629. if (ret)
  2630. return ret;
  2631. i915_gem_object_flush_gtt_write_domain(obj);
  2632. /* If we're already fully in the CPU read domain, we're done. */
  2633. if (obj->page_cpu_valid == NULL &&
  2634. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2635. return 0;
  2636. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2637. * newly adding I915_GEM_DOMAIN_CPU
  2638. */
  2639. if (obj->page_cpu_valid == NULL) {
  2640. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2641. GFP_KERNEL);
  2642. if (obj->page_cpu_valid == NULL)
  2643. return -ENOMEM;
  2644. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2645. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2646. /* Flush the cache on any pages that are still invalid from the CPU's
  2647. * perspective.
  2648. */
  2649. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2650. i++) {
  2651. if (obj->page_cpu_valid[i])
  2652. continue;
  2653. drm_clflush_pages(obj->pages + i, 1);
  2654. obj->page_cpu_valid[i] = 1;
  2655. }
  2656. /* It should now be out of any other write domains, and we can update
  2657. * the domain values for our changes.
  2658. */
  2659. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2660. old_read_domains = obj->base.read_domains;
  2661. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2662. trace_i915_gem_object_change_domain(obj,
  2663. old_read_domains,
  2664. obj->base.write_domain);
  2665. return 0;
  2666. }
  2667. /* Throttle our rendering by waiting until the ring has completed our requests
  2668. * emitted over 20 msec ago.
  2669. *
  2670. * Note that if we were to use the current jiffies each time around the loop,
  2671. * we wouldn't escape the function with any frames outstanding if the time to
  2672. * render a frame was over 20ms.
  2673. *
  2674. * This should get us reasonable parallelism between CPU and GPU but also
  2675. * relatively low latency when blocking on a particular request to finish.
  2676. */
  2677. static int
  2678. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2679. {
  2680. struct drm_i915_private *dev_priv = dev->dev_private;
  2681. struct drm_i915_file_private *file_priv = file->driver_priv;
  2682. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2683. struct drm_i915_gem_request *request;
  2684. struct intel_ring_buffer *ring = NULL;
  2685. u32 seqno = 0;
  2686. int ret;
  2687. if (atomic_read(&dev_priv->mm.wedged))
  2688. return -EIO;
  2689. spin_lock(&file_priv->mm.lock);
  2690. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2691. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2692. break;
  2693. ring = request->ring;
  2694. seqno = request->seqno;
  2695. }
  2696. spin_unlock(&file_priv->mm.lock);
  2697. if (seqno == 0)
  2698. return 0;
  2699. ret = 0;
  2700. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2701. /* And wait for the seqno passing without holding any locks and
  2702. * causing extra latency for others. This is safe as the irq
  2703. * generation is designed to be run atomically and so is
  2704. * lockless.
  2705. */
  2706. if (ring->irq_get(ring)) {
  2707. ret = wait_event_interruptible(ring->irq_queue,
  2708. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2709. || atomic_read(&dev_priv->mm.wedged));
  2710. ring->irq_put(ring);
  2711. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2712. ret = -EIO;
  2713. }
  2714. }
  2715. if (ret == 0)
  2716. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2717. return ret;
  2718. }
  2719. int
  2720. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2721. uint32_t alignment,
  2722. bool map_and_fenceable)
  2723. {
  2724. struct drm_device *dev = obj->base.dev;
  2725. struct drm_i915_private *dev_priv = dev->dev_private;
  2726. int ret;
  2727. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2728. WARN_ON(i915_verify_lists(dev));
  2729. if (obj->gtt_space != NULL) {
  2730. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2731. (map_and_fenceable && !obj->map_and_fenceable)) {
  2732. WARN(obj->pin_count,
  2733. "bo is already pinned with incorrect alignment:"
  2734. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2735. " obj->map_and_fenceable=%d\n",
  2736. obj->gtt_offset, alignment,
  2737. map_and_fenceable,
  2738. obj->map_and_fenceable);
  2739. ret = i915_gem_object_unbind(obj);
  2740. if (ret)
  2741. return ret;
  2742. }
  2743. }
  2744. if (obj->gtt_space == NULL) {
  2745. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2746. map_and_fenceable);
  2747. if (ret)
  2748. return ret;
  2749. }
  2750. if (obj->pin_count++ == 0) {
  2751. if (!obj->active)
  2752. list_move_tail(&obj->mm_list,
  2753. &dev_priv->mm.pinned_list);
  2754. }
  2755. obj->pin_mappable |= map_and_fenceable;
  2756. WARN_ON(i915_verify_lists(dev));
  2757. return 0;
  2758. }
  2759. void
  2760. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2761. {
  2762. struct drm_device *dev = obj->base.dev;
  2763. drm_i915_private_t *dev_priv = dev->dev_private;
  2764. WARN_ON(i915_verify_lists(dev));
  2765. BUG_ON(obj->pin_count == 0);
  2766. BUG_ON(obj->gtt_space == NULL);
  2767. if (--obj->pin_count == 0) {
  2768. if (!obj->active)
  2769. list_move_tail(&obj->mm_list,
  2770. &dev_priv->mm.inactive_list);
  2771. obj->pin_mappable = false;
  2772. }
  2773. WARN_ON(i915_verify_lists(dev));
  2774. }
  2775. int
  2776. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2777. struct drm_file *file)
  2778. {
  2779. struct drm_i915_gem_pin *args = data;
  2780. struct drm_i915_gem_object *obj;
  2781. int ret;
  2782. ret = i915_mutex_lock_interruptible(dev);
  2783. if (ret)
  2784. return ret;
  2785. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2786. if (&obj->base == NULL) {
  2787. ret = -ENOENT;
  2788. goto unlock;
  2789. }
  2790. if (obj->madv != I915_MADV_WILLNEED) {
  2791. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2792. ret = -EINVAL;
  2793. goto out;
  2794. }
  2795. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2796. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2797. args->handle);
  2798. ret = -EINVAL;
  2799. goto out;
  2800. }
  2801. obj->user_pin_count++;
  2802. obj->pin_filp = file;
  2803. if (obj->user_pin_count == 1) {
  2804. ret = i915_gem_object_pin(obj, args->alignment, true);
  2805. if (ret)
  2806. goto out;
  2807. }
  2808. /* XXX - flush the CPU caches for pinned objects
  2809. * as the X server doesn't manage domains yet
  2810. */
  2811. i915_gem_object_flush_cpu_write_domain(obj);
  2812. args->offset = obj->gtt_offset;
  2813. out:
  2814. drm_gem_object_unreference(&obj->base);
  2815. unlock:
  2816. mutex_unlock(&dev->struct_mutex);
  2817. return ret;
  2818. }
  2819. int
  2820. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2821. struct drm_file *file)
  2822. {
  2823. struct drm_i915_gem_pin *args = data;
  2824. struct drm_i915_gem_object *obj;
  2825. int ret;
  2826. ret = i915_mutex_lock_interruptible(dev);
  2827. if (ret)
  2828. return ret;
  2829. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2830. if (&obj->base == NULL) {
  2831. ret = -ENOENT;
  2832. goto unlock;
  2833. }
  2834. if (obj->pin_filp != file) {
  2835. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2836. args->handle);
  2837. ret = -EINVAL;
  2838. goto out;
  2839. }
  2840. obj->user_pin_count--;
  2841. if (obj->user_pin_count == 0) {
  2842. obj->pin_filp = NULL;
  2843. i915_gem_object_unpin(obj);
  2844. }
  2845. out:
  2846. drm_gem_object_unreference(&obj->base);
  2847. unlock:
  2848. mutex_unlock(&dev->struct_mutex);
  2849. return ret;
  2850. }
  2851. int
  2852. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2853. struct drm_file *file)
  2854. {
  2855. struct drm_i915_gem_busy *args = data;
  2856. struct drm_i915_gem_object *obj;
  2857. int ret;
  2858. ret = i915_mutex_lock_interruptible(dev);
  2859. if (ret)
  2860. return ret;
  2861. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2862. if (&obj->base == NULL) {
  2863. ret = -ENOENT;
  2864. goto unlock;
  2865. }
  2866. /* Count all active objects as busy, even if they are currently not used
  2867. * by the gpu. Users of this interface expect objects to eventually
  2868. * become non-busy without any further actions, therefore emit any
  2869. * necessary flushes here.
  2870. */
  2871. args->busy = obj->active;
  2872. if (args->busy) {
  2873. /* Unconditionally flush objects, even when the gpu still uses this
  2874. * object. Userspace calling this function indicates that it wants to
  2875. * use this buffer rather sooner than later, so issuing the required
  2876. * flush earlier is beneficial.
  2877. */
  2878. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2879. ret = i915_gem_flush_ring(obj->ring,
  2880. 0, obj->base.write_domain);
  2881. } else if (obj->ring->outstanding_lazy_request ==
  2882. obj->last_rendering_seqno) {
  2883. struct drm_i915_gem_request *request;
  2884. /* This ring is not being cleared by active usage,
  2885. * so emit a request to do so.
  2886. */
  2887. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2888. if (request)
  2889. ret = i915_add_request(obj->ring, NULL,request);
  2890. else
  2891. ret = -ENOMEM;
  2892. }
  2893. /* Update the active list for the hardware's current position.
  2894. * Otherwise this only updates on a delayed timer or when irqs
  2895. * are actually unmasked, and our working set ends up being
  2896. * larger than required.
  2897. */
  2898. i915_gem_retire_requests_ring(obj->ring);
  2899. args->busy = obj->active;
  2900. }
  2901. drm_gem_object_unreference(&obj->base);
  2902. unlock:
  2903. mutex_unlock(&dev->struct_mutex);
  2904. return ret;
  2905. }
  2906. int
  2907. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2908. struct drm_file *file_priv)
  2909. {
  2910. return i915_gem_ring_throttle(dev, file_priv);
  2911. }
  2912. int
  2913. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2914. struct drm_file *file_priv)
  2915. {
  2916. struct drm_i915_gem_madvise *args = data;
  2917. struct drm_i915_gem_object *obj;
  2918. int ret;
  2919. switch (args->madv) {
  2920. case I915_MADV_DONTNEED:
  2921. case I915_MADV_WILLNEED:
  2922. break;
  2923. default:
  2924. return -EINVAL;
  2925. }
  2926. ret = i915_mutex_lock_interruptible(dev);
  2927. if (ret)
  2928. return ret;
  2929. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2930. if (&obj->base == NULL) {
  2931. ret = -ENOENT;
  2932. goto unlock;
  2933. }
  2934. if (obj->pin_count) {
  2935. ret = -EINVAL;
  2936. goto out;
  2937. }
  2938. if (obj->madv != __I915_MADV_PURGED)
  2939. obj->madv = args->madv;
  2940. /* if the object is no longer bound, discard its backing storage */
  2941. if (i915_gem_object_is_purgeable(obj) &&
  2942. obj->gtt_space == NULL)
  2943. i915_gem_object_truncate(obj);
  2944. args->retained = obj->madv != __I915_MADV_PURGED;
  2945. out:
  2946. drm_gem_object_unreference(&obj->base);
  2947. unlock:
  2948. mutex_unlock(&dev->struct_mutex);
  2949. return ret;
  2950. }
  2951. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2952. size_t size)
  2953. {
  2954. struct drm_i915_private *dev_priv = dev->dev_private;
  2955. struct drm_i915_gem_object *obj;
  2956. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2957. if (obj == NULL)
  2958. return NULL;
  2959. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2960. kfree(obj);
  2961. return NULL;
  2962. }
  2963. i915_gem_info_add_obj(dev_priv, size);
  2964. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2965. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2966. obj->agp_type = AGP_USER_MEMORY;
  2967. obj->base.driver_private = NULL;
  2968. obj->fence_reg = I915_FENCE_REG_NONE;
  2969. INIT_LIST_HEAD(&obj->mm_list);
  2970. INIT_LIST_HEAD(&obj->gtt_list);
  2971. INIT_LIST_HEAD(&obj->ring_list);
  2972. INIT_LIST_HEAD(&obj->exec_list);
  2973. INIT_LIST_HEAD(&obj->gpu_write_list);
  2974. obj->madv = I915_MADV_WILLNEED;
  2975. /* Avoid an unnecessary call to unbind on the first bind. */
  2976. obj->map_and_fenceable = true;
  2977. return obj;
  2978. }
  2979. int i915_gem_init_object(struct drm_gem_object *obj)
  2980. {
  2981. BUG();
  2982. return 0;
  2983. }
  2984. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2985. {
  2986. struct drm_device *dev = obj->base.dev;
  2987. drm_i915_private_t *dev_priv = dev->dev_private;
  2988. int ret;
  2989. ret = i915_gem_object_unbind(obj);
  2990. if (ret == -ERESTARTSYS) {
  2991. list_move(&obj->mm_list,
  2992. &dev_priv->mm.deferred_free_list);
  2993. return;
  2994. }
  2995. trace_i915_gem_object_destroy(obj);
  2996. if (obj->base.map_list.map)
  2997. i915_gem_free_mmap_offset(obj);
  2998. drm_gem_object_release(&obj->base);
  2999. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3000. kfree(obj->page_cpu_valid);
  3001. kfree(obj->bit_17);
  3002. kfree(obj);
  3003. }
  3004. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3005. {
  3006. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3007. struct drm_device *dev = obj->base.dev;
  3008. while (obj->pin_count > 0)
  3009. i915_gem_object_unpin(obj);
  3010. if (obj->phys_obj)
  3011. i915_gem_detach_phys_object(dev, obj);
  3012. i915_gem_free_object_tail(obj);
  3013. }
  3014. int
  3015. i915_gem_idle(struct drm_device *dev)
  3016. {
  3017. drm_i915_private_t *dev_priv = dev->dev_private;
  3018. int ret;
  3019. mutex_lock(&dev->struct_mutex);
  3020. if (dev_priv->mm.suspended) {
  3021. mutex_unlock(&dev->struct_mutex);
  3022. return 0;
  3023. }
  3024. ret = i915_gpu_idle(dev);
  3025. if (ret) {
  3026. mutex_unlock(&dev->struct_mutex);
  3027. return ret;
  3028. }
  3029. /* Under UMS, be paranoid and evict. */
  3030. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3031. ret = i915_gem_evict_inactive(dev, false);
  3032. if (ret) {
  3033. mutex_unlock(&dev->struct_mutex);
  3034. return ret;
  3035. }
  3036. }
  3037. i915_gem_reset_fences(dev);
  3038. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3039. * We need to replace this with a semaphore, or something.
  3040. * And not confound mm.suspended!
  3041. */
  3042. dev_priv->mm.suspended = 1;
  3043. del_timer_sync(&dev_priv->hangcheck_timer);
  3044. i915_kernel_lost_context(dev);
  3045. i915_gem_cleanup_ringbuffer(dev);
  3046. mutex_unlock(&dev->struct_mutex);
  3047. /* Cancel the retire work handler, which should be idle now. */
  3048. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3049. return 0;
  3050. }
  3051. int
  3052. i915_gem_init_ringbuffer(struct drm_device *dev)
  3053. {
  3054. drm_i915_private_t *dev_priv = dev->dev_private;
  3055. int ret;
  3056. ret = intel_init_render_ring_buffer(dev);
  3057. if (ret)
  3058. return ret;
  3059. if (HAS_BSD(dev)) {
  3060. ret = intel_init_bsd_ring_buffer(dev);
  3061. if (ret)
  3062. goto cleanup_render_ring;
  3063. }
  3064. if (HAS_BLT(dev)) {
  3065. ret = intel_init_blt_ring_buffer(dev);
  3066. if (ret)
  3067. goto cleanup_bsd_ring;
  3068. }
  3069. dev_priv->next_seqno = 1;
  3070. return 0;
  3071. cleanup_bsd_ring:
  3072. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3073. cleanup_render_ring:
  3074. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3075. return ret;
  3076. }
  3077. void
  3078. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3079. {
  3080. drm_i915_private_t *dev_priv = dev->dev_private;
  3081. int i;
  3082. for (i = 0; i < I915_NUM_RINGS; i++)
  3083. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3084. }
  3085. int
  3086. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3087. struct drm_file *file_priv)
  3088. {
  3089. drm_i915_private_t *dev_priv = dev->dev_private;
  3090. int ret, i;
  3091. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3092. return 0;
  3093. if (atomic_read(&dev_priv->mm.wedged)) {
  3094. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3095. atomic_set(&dev_priv->mm.wedged, 0);
  3096. }
  3097. mutex_lock(&dev->struct_mutex);
  3098. dev_priv->mm.suspended = 0;
  3099. ret = i915_gem_init_ringbuffer(dev);
  3100. if (ret != 0) {
  3101. mutex_unlock(&dev->struct_mutex);
  3102. return ret;
  3103. }
  3104. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3105. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3106. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3107. for (i = 0; i < I915_NUM_RINGS; i++) {
  3108. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3109. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3110. }
  3111. mutex_unlock(&dev->struct_mutex);
  3112. ret = drm_irq_install(dev);
  3113. if (ret)
  3114. goto cleanup_ringbuffer;
  3115. return 0;
  3116. cleanup_ringbuffer:
  3117. mutex_lock(&dev->struct_mutex);
  3118. i915_gem_cleanup_ringbuffer(dev);
  3119. dev_priv->mm.suspended = 1;
  3120. mutex_unlock(&dev->struct_mutex);
  3121. return ret;
  3122. }
  3123. int
  3124. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3125. struct drm_file *file_priv)
  3126. {
  3127. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3128. return 0;
  3129. drm_irq_uninstall(dev);
  3130. return i915_gem_idle(dev);
  3131. }
  3132. void
  3133. i915_gem_lastclose(struct drm_device *dev)
  3134. {
  3135. int ret;
  3136. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3137. return;
  3138. ret = i915_gem_idle(dev);
  3139. if (ret)
  3140. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3141. }
  3142. static void
  3143. init_ring_lists(struct intel_ring_buffer *ring)
  3144. {
  3145. INIT_LIST_HEAD(&ring->active_list);
  3146. INIT_LIST_HEAD(&ring->request_list);
  3147. INIT_LIST_HEAD(&ring->gpu_write_list);
  3148. }
  3149. void
  3150. i915_gem_load(struct drm_device *dev)
  3151. {
  3152. int i;
  3153. drm_i915_private_t *dev_priv = dev->dev_private;
  3154. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3155. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3156. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3157. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3158. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3159. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3160. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3161. for (i = 0; i < I915_NUM_RINGS; i++)
  3162. init_ring_lists(&dev_priv->ring[i]);
  3163. for (i = 0; i < 16; i++)
  3164. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3165. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3166. i915_gem_retire_work_handler);
  3167. init_completion(&dev_priv->error_completion);
  3168. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3169. if (IS_GEN3(dev)) {
  3170. u32 tmp = I915_READ(MI_ARB_STATE);
  3171. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3172. /* arb state is a masked write, so set bit + bit in mask */
  3173. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3174. I915_WRITE(MI_ARB_STATE, tmp);
  3175. }
  3176. }
  3177. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3178. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3179. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3180. dev_priv->fence_reg_start = 3;
  3181. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3182. dev_priv->num_fence_regs = 16;
  3183. else
  3184. dev_priv->num_fence_regs = 8;
  3185. /* Initialize fence registers to zero */
  3186. switch (INTEL_INFO(dev)->gen) {
  3187. case 6:
  3188. for (i = 0; i < 16; i++)
  3189. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3190. break;
  3191. case 5:
  3192. case 4:
  3193. for (i = 0; i < 16; i++)
  3194. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3195. break;
  3196. case 3:
  3197. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3198. for (i = 0; i < 8; i++)
  3199. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3200. case 2:
  3201. for (i = 0; i < 8; i++)
  3202. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3203. break;
  3204. }
  3205. i915_gem_detect_bit_6_swizzle(dev);
  3206. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3207. dev_priv->mm.interruptible = true;
  3208. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3209. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3210. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3211. }
  3212. /*
  3213. * Create a physically contiguous memory object for this object
  3214. * e.g. for cursor + overlay regs
  3215. */
  3216. static int i915_gem_init_phys_object(struct drm_device *dev,
  3217. int id, int size, int align)
  3218. {
  3219. drm_i915_private_t *dev_priv = dev->dev_private;
  3220. struct drm_i915_gem_phys_object *phys_obj;
  3221. int ret;
  3222. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3223. return 0;
  3224. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3225. if (!phys_obj)
  3226. return -ENOMEM;
  3227. phys_obj->id = id;
  3228. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3229. if (!phys_obj->handle) {
  3230. ret = -ENOMEM;
  3231. goto kfree_obj;
  3232. }
  3233. #ifdef CONFIG_X86
  3234. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3235. #endif
  3236. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3237. return 0;
  3238. kfree_obj:
  3239. kfree(phys_obj);
  3240. return ret;
  3241. }
  3242. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3243. {
  3244. drm_i915_private_t *dev_priv = dev->dev_private;
  3245. struct drm_i915_gem_phys_object *phys_obj;
  3246. if (!dev_priv->mm.phys_objs[id - 1])
  3247. return;
  3248. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3249. if (phys_obj->cur_obj) {
  3250. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3251. }
  3252. #ifdef CONFIG_X86
  3253. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3254. #endif
  3255. drm_pci_free(dev, phys_obj->handle);
  3256. kfree(phys_obj);
  3257. dev_priv->mm.phys_objs[id - 1] = NULL;
  3258. }
  3259. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3260. {
  3261. int i;
  3262. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3263. i915_gem_free_phys_object(dev, i);
  3264. }
  3265. void i915_gem_detach_phys_object(struct drm_device *dev,
  3266. struct drm_i915_gem_object *obj)
  3267. {
  3268. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3269. char *vaddr;
  3270. int i;
  3271. int page_count;
  3272. if (!obj->phys_obj)
  3273. return;
  3274. vaddr = obj->phys_obj->handle->vaddr;
  3275. page_count = obj->base.size / PAGE_SIZE;
  3276. for (i = 0; i < page_count; i++) {
  3277. struct page *page = read_cache_page_gfp(mapping, i,
  3278. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3279. if (!IS_ERR(page)) {
  3280. char *dst = kmap_atomic(page);
  3281. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3282. kunmap_atomic(dst);
  3283. drm_clflush_pages(&page, 1);
  3284. set_page_dirty(page);
  3285. mark_page_accessed(page);
  3286. page_cache_release(page);
  3287. }
  3288. }
  3289. intel_gtt_chipset_flush();
  3290. obj->phys_obj->cur_obj = NULL;
  3291. obj->phys_obj = NULL;
  3292. }
  3293. int
  3294. i915_gem_attach_phys_object(struct drm_device *dev,
  3295. struct drm_i915_gem_object *obj,
  3296. int id,
  3297. int align)
  3298. {
  3299. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3300. drm_i915_private_t *dev_priv = dev->dev_private;
  3301. int ret = 0;
  3302. int page_count;
  3303. int i;
  3304. if (id > I915_MAX_PHYS_OBJECT)
  3305. return -EINVAL;
  3306. if (obj->phys_obj) {
  3307. if (obj->phys_obj->id == id)
  3308. return 0;
  3309. i915_gem_detach_phys_object(dev, obj);
  3310. }
  3311. /* create a new object */
  3312. if (!dev_priv->mm.phys_objs[id - 1]) {
  3313. ret = i915_gem_init_phys_object(dev, id,
  3314. obj->base.size, align);
  3315. if (ret) {
  3316. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3317. id, obj->base.size);
  3318. return ret;
  3319. }
  3320. }
  3321. /* bind to the object */
  3322. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3323. obj->phys_obj->cur_obj = obj;
  3324. page_count = obj->base.size / PAGE_SIZE;
  3325. for (i = 0; i < page_count; i++) {
  3326. struct page *page;
  3327. char *dst, *src;
  3328. page = read_cache_page_gfp(mapping, i,
  3329. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3330. if (IS_ERR(page))
  3331. return PTR_ERR(page);
  3332. src = kmap_atomic(page);
  3333. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3334. memcpy(dst, src, PAGE_SIZE);
  3335. kunmap_atomic(src);
  3336. mark_page_accessed(page);
  3337. page_cache_release(page);
  3338. }
  3339. return 0;
  3340. }
  3341. static int
  3342. i915_gem_phys_pwrite(struct drm_device *dev,
  3343. struct drm_i915_gem_object *obj,
  3344. struct drm_i915_gem_pwrite *args,
  3345. struct drm_file *file_priv)
  3346. {
  3347. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3348. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3349. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3350. unsigned long unwritten;
  3351. /* The physical object once assigned is fixed for the lifetime
  3352. * of the obj, so we can safely drop the lock and continue
  3353. * to access vaddr.
  3354. */
  3355. mutex_unlock(&dev->struct_mutex);
  3356. unwritten = copy_from_user(vaddr, user_data, args->size);
  3357. mutex_lock(&dev->struct_mutex);
  3358. if (unwritten)
  3359. return -EFAULT;
  3360. }
  3361. intel_gtt_chipset_flush();
  3362. return 0;
  3363. }
  3364. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3365. {
  3366. struct drm_i915_file_private *file_priv = file->driver_priv;
  3367. /* Clean up our request list when the client is going away, so that
  3368. * later retire_requests won't dereference our soon-to-be-gone
  3369. * file_priv.
  3370. */
  3371. spin_lock(&file_priv->mm.lock);
  3372. while (!list_empty(&file_priv->mm.request_list)) {
  3373. struct drm_i915_gem_request *request;
  3374. request = list_first_entry(&file_priv->mm.request_list,
  3375. struct drm_i915_gem_request,
  3376. client_list);
  3377. list_del(&request->client_list);
  3378. request->file_priv = NULL;
  3379. }
  3380. spin_unlock(&file_priv->mm.lock);
  3381. }
  3382. static int
  3383. i915_gpu_is_active(struct drm_device *dev)
  3384. {
  3385. drm_i915_private_t *dev_priv = dev->dev_private;
  3386. int lists_empty;
  3387. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3388. list_empty(&dev_priv->mm.active_list);
  3389. return !lists_empty;
  3390. }
  3391. static int
  3392. i915_gem_inactive_shrink(struct shrinker *shrinker,
  3393. int nr_to_scan,
  3394. gfp_t gfp_mask)
  3395. {
  3396. struct drm_i915_private *dev_priv =
  3397. container_of(shrinker,
  3398. struct drm_i915_private,
  3399. mm.inactive_shrinker);
  3400. struct drm_device *dev = dev_priv->dev;
  3401. struct drm_i915_gem_object *obj, *next;
  3402. int cnt;
  3403. if (!mutex_trylock(&dev->struct_mutex))
  3404. return 0;
  3405. /* "fast-path" to count number of available objects */
  3406. if (nr_to_scan == 0) {
  3407. cnt = 0;
  3408. list_for_each_entry(obj,
  3409. &dev_priv->mm.inactive_list,
  3410. mm_list)
  3411. cnt++;
  3412. mutex_unlock(&dev->struct_mutex);
  3413. return cnt / 100 * sysctl_vfs_cache_pressure;
  3414. }
  3415. rescan:
  3416. /* first scan for clean buffers */
  3417. i915_gem_retire_requests(dev);
  3418. list_for_each_entry_safe(obj, next,
  3419. &dev_priv->mm.inactive_list,
  3420. mm_list) {
  3421. if (i915_gem_object_is_purgeable(obj)) {
  3422. if (i915_gem_object_unbind(obj) == 0 &&
  3423. --nr_to_scan == 0)
  3424. break;
  3425. }
  3426. }
  3427. /* second pass, evict/count anything still on the inactive list */
  3428. cnt = 0;
  3429. list_for_each_entry_safe(obj, next,
  3430. &dev_priv->mm.inactive_list,
  3431. mm_list) {
  3432. if (nr_to_scan &&
  3433. i915_gem_object_unbind(obj) == 0)
  3434. nr_to_scan--;
  3435. else
  3436. cnt++;
  3437. }
  3438. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3439. /*
  3440. * We are desperate for pages, so as a last resort, wait
  3441. * for the GPU to finish and discard whatever we can.
  3442. * This has a dramatic impact to reduce the number of
  3443. * OOM-killer events whilst running the GPU aggressively.
  3444. */
  3445. if (i915_gpu_idle(dev) == 0)
  3446. goto rescan;
  3447. }
  3448. mutex_unlock(&dev->struct_mutex);
  3449. return cnt / 100 * sysctl_vfs_cache_pressure;
  3450. }