af_key.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/config.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/xfrm.h>
  29. #include <net/sock.h>
  30. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  31. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  32. /* List of all pfkey sockets. */
  33. static HLIST_HEAD(pfkey_table);
  34. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  35. static DEFINE_RWLOCK(pfkey_table_lock);
  36. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  37. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  38. struct pfkey_sock {
  39. /* struct sock must be the first member of struct pfkey_sock */
  40. struct sock sk;
  41. int registered;
  42. int promisc;
  43. };
  44. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  45. {
  46. return (struct pfkey_sock *)sk;
  47. }
  48. static void pfkey_sock_destruct(struct sock *sk)
  49. {
  50. skb_queue_purge(&sk->sk_receive_queue);
  51. if (!sock_flag(sk, SOCK_DEAD)) {
  52. printk("Attempt to release alive pfkey socket: %p\n", sk);
  53. return;
  54. }
  55. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  56. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  57. atomic_dec(&pfkey_socks_nr);
  58. }
  59. static void pfkey_table_grab(void)
  60. {
  61. write_lock_bh(&pfkey_table_lock);
  62. if (atomic_read(&pfkey_table_users)) {
  63. DECLARE_WAITQUEUE(wait, current);
  64. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  65. for(;;) {
  66. set_current_state(TASK_UNINTERRUPTIBLE);
  67. if (atomic_read(&pfkey_table_users) == 0)
  68. break;
  69. write_unlock_bh(&pfkey_table_lock);
  70. schedule();
  71. write_lock_bh(&pfkey_table_lock);
  72. }
  73. __set_current_state(TASK_RUNNING);
  74. remove_wait_queue(&pfkey_table_wait, &wait);
  75. }
  76. }
  77. static __inline__ void pfkey_table_ungrab(void)
  78. {
  79. write_unlock_bh(&pfkey_table_lock);
  80. wake_up(&pfkey_table_wait);
  81. }
  82. static __inline__ void pfkey_lock_table(void)
  83. {
  84. /* read_lock() synchronizes us to pfkey_table_grab */
  85. read_lock(&pfkey_table_lock);
  86. atomic_inc(&pfkey_table_users);
  87. read_unlock(&pfkey_table_lock);
  88. }
  89. static __inline__ void pfkey_unlock_table(void)
  90. {
  91. if (atomic_dec_and_test(&pfkey_table_users))
  92. wake_up(&pfkey_table_wait);
  93. }
  94. static struct proto_ops pfkey_ops;
  95. static void pfkey_insert(struct sock *sk)
  96. {
  97. pfkey_table_grab();
  98. sk_add_node(sk, &pfkey_table);
  99. pfkey_table_ungrab();
  100. }
  101. static void pfkey_remove(struct sock *sk)
  102. {
  103. pfkey_table_grab();
  104. sk_del_node_init(sk);
  105. pfkey_table_ungrab();
  106. }
  107. static struct proto key_proto = {
  108. .name = "KEY",
  109. .owner = THIS_MODULE,
  110. .obj_size = sizeof(struct pfkey_sock),
  111. };
  112. static int pfkey_create(struct socket *sock, int protocol)
  113. {
  114. struct sock *sk;
  115. int err;
  116. if (!capable(CAP_NET_ADMIN))
  117. return -EPERM;
  118. if (sock->type != SOCK_RAW)
  119. return -ESOCKTNOSUPPORT;
  120. if (protocol != PF_KEY_V2)
  121. return -EPROTONOSUPPORT;
  122. err = -ENOMEM;
  123. sk = sk_alloc(PF_KEY, GFP_KERNEL, &key_proto, 1);
  124. if (sk == NULL)
  125. goto out;
  126. sock->ops = &pfkey_ops;
  127. sock_init_data(sock, sk);
  128. sk->sk_family = PF_KEY;
  129. sk->sk_destruct = pfkey_sock_destruct;
  130. atomic_inc(&pfkey_socks_nr);
  131. pfkey_insert(sk);
  132. return 0;
  133. out:
  134. return err;
  135. }
  136. static int pfkey_release(struct socket *sock)
  137. {
  138. struct sock *sk = sock->sk;
  139. if (!sk)
  140. return 0;
  141. pfkey_remove(sk);
  142. sock_orphan(sk);
  143. sock->sk = NULL;
  144. skb_queue_purge(&sk->sk_write_queue);
  145. sock_put(sk);
  146. return 0;
  147. }
  148. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  149. int allocation, struct sock *sk)
  150. {
  151. int err = -ENOBUFS;
  152. sock_hold(sk);
  153. if (*skb2 == NULL) {
  154. if (atomic_read(&skb->users) != 1) {
  155. *skb2 = skb_clone(skb, allocation);
  156. } else {
  157. *skb2 = skb;
  158. atomic_inc(&skb->users);
  159. }
  160. }
  161. if (*skb2 != NULL) {
  162. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  163. skb_orphan(*skb2);
  164. skb_set_owner_r(*skb2, sk);
  165. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  166. sk->sk_data_ready(sk, (*skb2)->len);
  167. *skb2 = NULL;
  168. err = 0;
  169. }
  170. }
  171. sock_put(sk);
  172. return err;
  173. }
  174. /* Send SKB to all pfkey sockets matching selected criteria. */
  175. #define BROADCAST_ALL 0
  176. #define BROADCAST_ONE 1
  177. #define BROADCAST_REGISTERED 2
  178. #define BROADCAST_PROMISC_ONLY 4
  179. static int pfkey_broadcast(struct sk_buff *skb, int allocation,
  180. int broadcast_flags, struct sock *one_sk)
  181. {
  182. struct sock *sk;
  183. struct hlist_node *node;
  184. struct sk_buff *skb2 = NULL;
  185. int err = -ESRCH;
  186. /* XXX Do we need something like netlink_overrun? I think
  187. * XXX PF_KEY socket apps will not mind current behavior.
  188. */
  189. if (!skb)
  190. return -ENOMEM;
  191. pfkey_lock_table();
  192. sk_for_each(sk, node, &pfkey_table) {
  193. struct pfkey_sock *pfk = pfkey_sk(sk);
  194. int err2;
  195. /* Yes, it means that if you are meant to receive this
  196. * pfkey message you receive it twice as promiscuous
  197. * socket.
  198. */
  199. if (pfk->promisc)
  200. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  201. /* the exact target will be processed later */
  202. if (sk == one_sk)
  203. continue;
  204. if (broadcast_flags != BROADCAST_ALL) {
  205. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  206. continue;
  207. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  208. !pfk->registered)
  209. continue;
  210. if (broadcast_flags & BROADCAST_ONE)
  211. continue;
  212. }
  213. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  214. /* Error is cleare after succecful sending to at least one
  215. * registered KM */
  216. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  217. err = err2;
  218. }
  219. pfkey_unlock_table();
  220. if (one_sk != NULL)
  221. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  222. if (skb2)
  223. kfree_skb(skb2);
  224. kfree_skb(skb);
  225. return err;
  226. }
  227. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  228. {
  229. *new = *orig;
  230. }
  231. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  232. {
  233. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  234. struct sadb_msg *hdr;
  235. if (!skb)
  236. return -ENOBUFS;
  237. /* Woe be to the platform trying to support PFKEY yet
  238. * having normal errnos outside the 1-255 range, inclusive.
  239. */
  240. err = -err;
  241. if (err == ERESTARTSYS ||
  242. err == ERESTARTNOHAND ||
  243. err == ERESTARTNOINTR)
  244. err = EINTR;
  245. if (err >= 512)
  246. err = EINVAL;
  247. if (err <= 0 || err >= 256)
  248. BUG();
  249. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  250. pfkey_hdr_dup(hdr, orig);
  251. hdr->sadb_msg_errno = (uint8_t) err;
  252. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  253. sizeof(uint64_t));
  254. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  255. return 0;
  256. }
  257. static u8 sadb_ext_min_len[] = {
  258. [SADB_EXT_RESERVED] = (u8) 0,
  259. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  260. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  261. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  262. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  263. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  264. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  265. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  266. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  267. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  268. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  269. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  270. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  271. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  272. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  273. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  274. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  275. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  276. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  277. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  278. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  279. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  280. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  281. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  282. };
  283. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  284. static int verify_address_len(void *p)
  285. {
  286. struct sadb_address *sp = p;
  287. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  288. struct sockaddr_in *sin;
  289. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  290. struct sockaddr_in6 *sin6;
  291. #endif
  292. int len;
  293. switch (addr->sa_family) {
  294. case AF_INET:
  295. len = sizeof(*sp) + sizeof(*sin) + (sizeof(uint64_t) - 1);
  296. len /= sizeof(uint64_t);
  297. if (sp->sadb_address_len != len ||
  298. sp->sadb_address_prefixlen > 32)
  299. return -EINVAL;
  300. break;
  301. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  302. case AF_INET6:
  303. len = sizeof(*sp) + sizeof(*sin6) + (sizeof(uint64_t) - 1);
  304. len /= sizeof(uint64_t);
  305. if (sp->sadb_address_len != len ||
  306. sp->sadb_address_prefixlen > 128)
  307. return -EINVAL;
  308. break;
  309. #endif
  310. default:
  311. /* It is user using kernel to keep track of security
  312. * associations for another protocol, such as
  313. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  314. * lengths.
  315. *
  316. * XXX Actually, association/policy database is not yet
  317. * XXX able to cope with arbitrary sockaddr families.
  318. * XXX When it can, remove this -EINVAL. -DaveM
  319. */
  320. return -EINVAL;
  321. break;
  322. };
  323. return 0;
  324. }
  325. static int present_and_same_family(struct sadb_address *src,
  326. struct sadb_address *dst)
  327. {
  328. struct sockaddr *s_addr, *d_addr;
  329. if (!src || !dst)
  330. return 0;
  331. s_addr = (struct sockaddr *)(src + 1);
  332. d_addr = (struct sockaddr *)(dst + 1);
  333. if (s_addr->sa_family != d_addr->sa_family)
  334. return 0;
  335. if (s_addr->sa_family != AF_INET
  336. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  337. && s_addr->sa_family != AF_INET6
  338. #endif
  339. )
  340. return 0;
  341. return 1;
  342. }
  343. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  344. {
  345. char *p = (char *) hdr;
  346. int len = skb->len;
  347. len -= sizeof(*hdr);
  348. p += sizeof(*hdr);
  349. while (len > 0) {
  350. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  351. uint16_t ext_type;
  352. int ext_len;
  353. ext_len = ehdr->sadb_ext_len;
  354. ext_len *= sizeof(uint64_t);
  355. ext_type = ehdr->sadb_ext_type;
  356. if (ext_len < sizeof(uint64_t) ||
  357. ext_len > len ||
  358. ext_type == SADB_EXT_RESERVED)
  359. return -EINVAL;
  360. if (ext_type <= SADB_EXT_MAX) {
  361. int min = (int) sadb_ext_min_len[ext_type];
  362. if (ext_len < min)
  363. return -EINVAL;
  364. if (ext_hdrs[ext_type-1] != NULL)
  365. return -EINVAL;
  366. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  367. ext_type == SADB_EXT_ADDRESS_DST ||
  368. ext_type == SADB_EXT_ADDRESS_PROXY ||
  369. ext_type == SADB_X_EXT_NAT_T_OA) {
  370. if (verify_address_len(p))
  371. return -EINVAL;
  372. }
  373. ext_hdrs[ext_type-1] = p;
  374. }
  375. p += ext_len;
  376. len -= ext_len;
  377. }
  378. return 0;
  379. }
  380. static uint16_t
  381. pfkey_satype2proto(uint8_t satype)
  382. {
  383. switch (satype) {
  384. case SADB_SATYPE_UNSPEC:
  385. return IPSEC_PROTO_ANY;
  386. case SADB_SATYPE_AH:
  387. return IPPROTO_AH;
  388. case SADB_SATYPE_ESP:
  389. return IPPROTO_ESP;
  390. case SADB_X_SATYPE_IPCOMP:
  391. return IPPROTO_COMP;
  392. break;
  393. default:
  394. return 0;
  395. }
  396. /* NOTREACHED */
  397. }
  398. static uint8_t
  399. pfkey_proto2satype(uint16_t proto)
  400. {
  401. switch (proto) {
  402. case IPPROTO_AH:
  403. return SADB_SATYPE_AH;
  404. case IPPROTO_ESP:
  405. return SADB_SATYPE_ESP;
  406. case IPPROTO_COMP:
  407. return SADB_X_SATYPE_IPCOMP;
  408. break;
  409. default:
  410. return 0;
  411. }
  412. /* NOTREACHED */
  413. }
  414. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  415. * say specifically 'just raw sockets' as we encode them as 255.
  416. */
  417. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  418. {
  419. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  420. }
  421. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  422. {
  423. return (proto ? proto : IPSEC_PROTO_ANY);
  424. }
  425. static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
  426. xfrm_address_t *xaddr)
  427. {
  428. switch (((struct sockaddr*)(addr + 1))->sa_family) {
  429. case AF_INET:
  430. xaddr->a4 =
  431. ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
  432. return AF_INET;
  433. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  434. case AF_INET6:
  435. memcpy(xaddr->a6,
  436. &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
  437. sizeof(struct in6_addr));
  438. return AF_INET6;
  439. #endif
  440. default:
  441. return 0;
  442. }
  443. /* NOTREACHED */
  444. }
  445. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  446. {
  447. struct sadb_sa *sa;
  448. struct sadb_address *addr;
  449. uint16_t proto;
  450. unsigned short family;
  451. xfrm_address_t *xaddr;
  452. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  453. if (sa == NULL)
  454. return NULL;
  455. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  456. if (proto == 0)
  457. return NULL;
  458. /* sadb_address_len should be checked by caller */
  459. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  460. if (addr == NULL)
  461. return NULL;
  462. family = ((struct sockaddr *)(addr + 1))->sa_family;
  463. switch (family) {
  464. case AF_INET:
  465. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  466. break;
  467. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  468. case AF_INET6:
  469. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  470. break;
  471. #endif
  472. default:
  473. xaddr = NULL;
  474. }
  475. if (!xaddr)
  476. return NULL;
  477. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  478. }
  479. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  480. static int
  481. pfkey_sockaddr_size(sa_family_t family)
  482. {
  483. switch (family) {
  484. case AF_INET:
  485. return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
  486. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  487. case AF_INET6:
  488. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
  489. #endif
  490. default:
  491. return 0;
  492. }
  493. /* NOTREACHED */
  494. }
  495. static struct sk_buff * pfkey_xfrm_state2msg(struct xfrm_state *x, int add_keys, int hsc)
  496. {
  497. struct sk_buff *skb;
  498. struct sadb_msg *hdr;
  499. struct sadb_sa *sa;
  500. struct sadb_lifetime *lifetime;
  501. struct sadb_address *addr;
  502. struct sadb_key *key;
  503. struct sadb_x_sa2 *sa2;
  504. struct sockaddr_in *sin;
  505. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  506. struct sockaddr_in6 *sin6;
  507. #endif
  508. int size;
  509. int auth_key_size = 0;
  510. int encrypt_key_size = 0;
  511. int sockaddr_size;
  512. struct xfrm_encap_tmpl *natt = NULL;
  513. /* address family check */
  514. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  515. if (!sockaddr_size)
  516. return ERR_PTR(-EINVAL);
  517. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  518. key(AE), (identity(SD),) (sensitivity)> */
  519. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  520. sizeof(struct sadb_lifetime) +
  521. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  522. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  523. sizeof(struct sadb_address)*2 +
  524. sockaddr_size*2 +
  525. sizeof(struct sadb_x_sa2);
  526. /* identity & sensitivity */
  527. if ((x->props.family == AF_INET &&
  528. x->sel.saddr.a4 != x->props.saddr.a4)
  529. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  530. || (x->props.family == AF_INET6 &&
  531. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  532. #endif
  533. )
  534. size += sizeof(struct sadb_address) + sockaddr_size;
  535. if (add_keys) {
  536. if (x->aalg && x->aalg->alg_key_len) {
  537. auth_key_size =
  538. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  539. size += sizeof(struct sadb_key) + auth_key_size;
  540. }
  541. if (x->ealg && x->ealg->alg_key_len) {
  542. encrypt_key_size =
  543. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  544. size += sizeof(struct sadb_key) + encrypt_key_size;
  545. }
  546. }
  547. if (x->encap)
  548. natt = x->encap;
  549. if (natt && natt->encap_type) {
  550. size += sizeof(struct sadb_x_nat_t_type);
  551. size += sizeof(struct sadb_x_nat_t_port);
  552. size += sizeof(struct sadb_x_nat_t_port);
  553. }
  554. skb = alloc_skb(size + 16, GFP_ATOMIC);
  555. if (skb == NULL)
  556. return ERR_PTR(-ENOBUFS);
  557. /* call should fill header later */
  558. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  559. memset(hdr, 0, size); /* XXX do we need this ? */
  560. hdr->sadb_msg_len = size / sizeof(uint64_t);
  561. /* sa */
  562. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  563. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  564. sa->sadb_sa_exttype = SADB_EXT_SA;
  565. sa->sadb_sa_spi = x->id.spi;
  566. sa->sadb_sa_replay = x->props.replay_window;
  567. sa->sadb_sa_state = SADB_SASTATE_DYING;
  568. if (x->km.state == XFRM_STATE_VALID && !x->km.dying)
  569. sa->sadb_sa_state = SADB_SASTATE_MATURE;
  570. else if (x->km.state == XFRM_STATE_ACQ)
  571. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  572. else if (x->km.state == XFRM_STATE_EXPIRED)
  573. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  574. sa->sadb_sa_auth = 0;
  575. if (x->aalg) {
  576. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  577. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  578. }
  579. sa->sadb_sa_encrypt = 0;
  580. BUG_ON(x->ealg && x->calg);
  581. if (x->ealg) {
  582. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  583. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  584. }
  585. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  586. if (x->calg) {
  587. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  588. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  589. }
  590. sa->sadb_sa_flags = 0;
  591. if (x->props.flags & XFRM_STATE_NOECN)
  592. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  593. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  594. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  595. /* hard time */
  596. if (hsc & 2) {
  597. lifetime = (struct sadb_lifetime *) skb_put(skb,
  598. sizeof(struct sadb_lifetime));
  599. lifetime->sadb_lifetime_len =
  600. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  601. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  602. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  603. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  604. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  605. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  606. }
  607. /* soft time */
  608. if (hsc & 1) {
  609. lifetime = (struct sadb_lifetime *) skb_put(skb,
  610. sizeof(struct sadb_lifetime));
  611. lifetime->sadb_lifetime_len =
  612. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  613. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  614. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  615. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  616. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  617. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  618. }
  619. /* current time */
  620. lifetime = (struct sadb_lifetime *) skb_put(skb,
  621. sizeof(struct sadb_lifetime));
  622. lifetime->sadb_lifetime_len =
  623. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  624. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  625. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  626. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  627. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  628. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  629. /* src address */
  630. addr = (struct sadb_address*) skb_put(skb,
  631. sizeof(struct sadb_address)+sockaddr_size);
  632. addr->sadb_address_len =
  633. (sizeof(struct sadb_address)+sockaddr_size)/
  634. sizeof(uint64_t);
  635. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  636. /* "if the ports are non-zero, then the sadb_address_proto field,
  637. normally zero, MUST be filled in with the transport
  638. protocol's number." - RFC2367 */
  639. addr->sadb_address_proto = 0;
  640. addr->sadb_address_reserved = 0;
  641. if (x->props.family == AF_INET) {
  642. addr->sadb_address_prefixlen = 32;
  643. sin = (struct sockaddr_in *) (addr + 1);
  644. sin->sin_family = AF_INET;
  645. sin->sin_addr.s_addr = x->props.saddr.a4;
  646. sin->sin_port = 0;
  647. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  648. }
  649. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  650. else if (x->props.family == AF_INET6) {
  651. addr->sadb_address_prefixlen = 128;
  652. sin6 = (struct sockaddr_in6 *) (addr + 1);
  653. sin6->sin6_family = AF_INET6;
  654. sin6->sin6_port = 0;
  655. sin6->sin6_flowinfo = 0;
  656. memcpy(&sin6->sin6_addr, x->props.saddr.a6,
  657. sizeof(struct in6_addr));
  658. sin6->sin6_scope_id = 0;
  659. }
  660. #endif
  661. else
  662. BUG();
  663. /* dst address */
  664. addr = (struct sadb_address*) skb_put(skb,
  665. sizeof(struct sadb_address)+sockaddr_size);
  666. addr->sadb_address_len =
  667. (sizeof(struct sadb_address)+sockaddr_size)/
  668. sizeof(uint64_t);
  669. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  670. addr->sadb_address_proto = 0;
  671. addr->sadb_address_prefixlen = 32; /* XXX */
  672. addr->sadb_address_reserved = 0;
  673. if (x->props.family == AF_INET) {
  674. sin = (struct sockaddr_in *) (addr + 1);
  675. sin->sin_family = AF_INET;
  676. sin->sin_addr.s_addr = x->id.daddr.a4;
  677. sin->sin_port = 0;
  678. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  679. if (x->sel.saddr.a4 != x->props.saddr.a4) {
  680. addr = (struct sadb_address*) skb_put(skb,
  681. sizeof(struct sadb_address)+sockaddr_size);
  682. addr->sadb_address_len =
  683. (sizeof(struct sadb_address)+sockaddr_size)/
  684. sizeof(uint64_t);
  685. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  686. addr->sadb_address_proto =
  687. pfkey_proto_from_xfrm(x->sel.proto);
  688. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  689. addr->sadb_address_reserved = 0;
  690. sin = (struct sockaddr_in *) (addr + 1);
  691. sin->sin_family = AF_INET;
  692. sin->sin_addr.s_addr = x->sel.saddr.a4;
  693. sin->sin_port = x->sel.sport;
  694. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  695. }
  696. }
  697. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  698. else if (x->props.family == AF_INET6) {
  699. addr->sadb_address_prefixlen = 128;
  700. sin6 = (struct sockaddr_in6 *) (addr + 1);
  701. sin6->sin6_family = AF_INET6;
  702. sin6->sin6_port = 0;
  703. sin6->sin6_flowinfo = 0;
  704. memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
  705. sin6->sin6_scope_id = 0;
  706. if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
  707. sizeof(struct in6_addr))) {
  708. addr = (struct sadb_address *) skb_put(skb,
  709. sizeof(struct sadb_address)+sockaddr_size);
  710. addr->sadb_address_len =
  711. (sizeof(struct sadb_address)+sockaddr_size)/
  712. sizeof(uint64_t);
  713. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  714. addr->sadb_address_proto =
  715. pfkey_proto_from_xfrm(x->sel.proto);
  716. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  717. addr->sadb_address_reserved = 0;
  718. sin6 = (struct sockaddr_in6 *) (addr + 1);
  719. sin6->sin6_family = AF_INET6;
  720. sin6->sin6_port = x->sel.sport;
  721. sin6->sin6_flowinfo = 0;
  722. memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
  723. sizeof(struct in6_addr));
  724. sin6->sin6_scope_id = 0;
  725. }
  726. }
  727. #endif
  728. else
  729. BUG();
  730. /* auth key */
  731. if (add_keys && auth_key_size) {
  732. key = (struct sadb_key *) skb_put(skb,
  733. sizeof(struct sadb_key)+auth_key_size);
  734. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  735. sizeof(uint64_t);
  736. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  737. key->sadb_key_bits = x->aalg->alg_key_len;
  738. key->sadb_key_reserved = 0;
  739. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  740. }
  741. /* encrypt key */
  742. if (add_keys && encrypt_key_size) {
  743. key = (struct sadb_key *) skb_put(skb,
  744. sizeof(struct sadb_key)+encrypt_key_size);
  745. key->sadb_key_len = (sizeof(struct sadb_key) +
  746. encrypt_key_size) / sizeof(uint64_t);
  747. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  748. key->sadb_key_bits = x->ealg->alg_key_len;
  749. key->sadb_key_reserved = 0;
  750. memcpy(key + 1, x->ealg->alg_key,
  751. (x->ealg->alg_key_len+7)/8);
  752. }
  753. /* sa */
  754. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  755. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  756. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  757. sa2->sadb_x_sa2_mode = x->props.mode + 1;
  758. sa2->sadb_x_sa2_reserved1 = 0;
  759. sa2->sadb_x_sa2_reserved2 = 0;
  760. sa2->sadb_x_sa2_sequence = 0;
  761. sa2->sadb_x_sa2_reqid = x->props.reqid;
  762. if (natt && natt->encap_type) {
  763. struct sadb_x_nat_t_type *n_type;
  764. struct sadb_x_nat_t_port *n_port;
  765. /* type */
  766. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  767. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  768. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  769. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  770. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  771. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  772. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  773. /* source port */
  774. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  775. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  776. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  777. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  778. n_port->sadb_x_nat_t_port_reserved = 0;
  779. /* dest port */
  780. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  781. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  782. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  783. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  784. n_port->sadb_x_nat_t_port_reserved = 0;
  785. }
  786. return skb;
  787. }
  788. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  789. void **ext_hdrs)
  790. {
  791. struct xfrm_state *x;
  792. struct sadb_lifetime *lifetime;
  793. struct sadb_sa *sa;
  794. struct sadb_key *key;
  795. uint16_t proto;
  796. int err;
  797. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  798. if (!sa ||
  799. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  800. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  801. return ERR_PTR(-EINVAL);
  802. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  803. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  804. return ERR_PTR(-EINVAL);
  805. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  806. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  807. return ERR_PTR(-EINVAL);
  808. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  809. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  810. return ERR_PTR(-EINVAL);
  811. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  812. if (proto == 0)
  813. return ERR_PTR(-EINVAL);
  814. /* default error is no buffer space */
  815. err = -ENOBUFS;
  816. /* RFC2367:
  817. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  818. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  819. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  820. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  821. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  822. not true.
  823. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  824. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  825. */
  826. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  827. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  828. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  829. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  830. return ERR_PTR(-EINVAL);
  831. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  832. if (key != NULL &&
  833. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  834. ((key->sadb_key_bits+7) / 8 == 0 ||
  835. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  836. return ERR_PTR(-EINVAL);
  837. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  838. if (key != NULL &&
  839. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  840. ((key->sadb_key_bits+7) / 8 == 0 ||
  841. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  842. return ERR_PTR(-EINVAL);
  843. x = xfrm_state_alloc();
  844. if (x == NULL)
  845. return ERR_PTR(-ENOBUFS);
  846. x->id.proto = proto;
  847. x->id.spi = sa->sadb_sa_spi;
  848. x->props.replay_window = sa->sadb_sa_replay;
  849. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  850. x->props.flags |= XFRM_STATE_NOECN;
  851. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  852. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  853. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  854. if (lifetime != NULL) {
  855. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  856. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  857. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  858. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  859. }
  860. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  861. if (lifetime != NULL) {
  862. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  863. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  864. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  865. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  866. }
  867. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  868. if (sa->sadb_sa_auth) {
  869. int keysize = 0;
  870. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  871. if (!a) {
  872. err = -ENOSYS;
  873. goto out;
  874. }
  875. if (key)
  876. keysize = (key->sadb_key_bits + 7) / 8;
  877. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  878. if (!x->aalg)
  879. goto out;
  880. strcpy(x->aalg->alg_name, a->name);
  881. x->aalg->alg_key_len = 0;
  882. if (key) {
  883. x->aalg->alg_key_len = key->sadb_key_bits;
  884. memcpy(x->aalg->alg_key, key+1, keysize);
  885. }
  886. x->props.aalgo = sa->sadb_sa_auth;
  887. /* x->algo.flags = sa->sadb_sa_flags; */
  888. }
  889. if (sa->sadb_sa_encrypt) {
  890. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  891. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  892. if (!a) {
  893. err = -ENOSYS;
  894. goto out;
  895. }
  896. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  897. if (!x->calg)
  898. goto out;
  899. strcpy(x->calg->alg_name, a->name);
  900. x->props.calgo = sa->sadb_sa_encrypt;
  901. } else {
  902. int keysize = 0;
  903. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  904. if (!a) {
  905. err = -ENOSYS;
  906. goto out;
  907. }
  908. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  909. if (key)
  910. keysize = (key->sadb_key_bits + 7) / 8;
  911. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  912. if (!x->ealg)
  913. goto out;
  914. strcpy(x->ealg->alg_name, a->name);
  915. x->ealg->alg_key_len = 0;
  916. if (key) {
  917. x->ealg->alg_key_len = key->sadb_key_bits;
  918. memcpy(x->ealg->alg_key, key+1, keysize);
  919. }
  920. x->props.ealgo = sa->sadb_sa_encrypt;
  921. }
  922. }
  923. /* x->algo.flags = sa->sadb_sa_flags; */
  924. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  925. &x->props.saddr);
  926. if (!x->props.family) {
  927. err = -EAFNOSUPPORT;
  928. goto out;
  929. }
  930. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  931. &x->id.daddr);
  932. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  933. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  934. x->props.mode = sa2->sadb_x_sa2_mode;
  935. if (x->props.mode)
  936. x->props.mode--;
  937. x->props.reqid = sa2->sadb_x_sa2_reqid;
  938. }
  939. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  940. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  941. /* Nobody uses this, but we try. */
  942. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  943. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  944. }
  945. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  946. struct sadb_x_nat_t_type* n_type;
  947. struct xfrm_encap_tmpl *natt;
  948. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  949. if (!x->encap)
  950. goto out;
  951. natt = x->encap;
  952. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  953. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  954. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  955. struct sadb_x_nat_t_port* n_port =
  956. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  957. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  958. }
  959. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  960. struct sadb_x_nat_t_port* n_port =
  961. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  962. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  963. }
  964. }
  965. x->type = xfrm_get_type(proto, x->props.family);
  966. if (x->type == NULL) {
  967. err = -ENOPROTOOPT;
  968. goto out;
  969. }
  970. if (x->type->init_state(x, NULL)) {
  971. err = -EINVAL;
  972. goto out;
  973. }
  974. x->km.seq = hdr->sadb_msg_seq;
  975. x->km.state = XFRM_STATE_VALID;
  976. return x;
  977. out:
  978. x->km.state = XFRM_STATE_DEAD;
  979. xfrm_state_put(x);
  980. return ERR_PTR(err);
  981. }
  982. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  983. {
  984. return -EOPNOTSUPP;
  985. }
  986. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  987. {
  988. struct sk_buff *resp_skb;
  989. struct sadb_x_sa2 *sa2;
  990. struct sadb_address *saddr, *daddr;
  991. struct sadb_msg *out_hdr;
  992. struct xfrm_state *x = NULL;
  993. u8 mode;
  994. u32 reqid;
  995. u8 proto;
  996. unsigned short family;
  997. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  998. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  999. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1000. return -EINVAL;
  1001. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1002. if (proto == 0)
  1003. return -EINVAL;
  1004. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1005. mode = sa2->sadb_x_sa2_mode - 1;
  1006. reqid = sa2->sadb_x_sa2_reqid;
  1007. } else {
  1008. mode = 0;
  1009. reqid = 0;
  1010. }
  1011. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1012. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1013. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1014. switch (family) {
  1015. case AF_INET:
  1016. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1017. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1018. break;
  1019. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1020. case AF_INET6:
  1021. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1022. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1023. break;
  1024. #endif
  1025. }
  1026. if (hdr->sadb_msg_seq) {
  1027. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1028. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1029. xfrm_state_put(x);
  1030. x = NULL;
  1031. }
  1032. }
  1033. if (!x)
  1034. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1035. if (x == NULL)
  1036. return -ENOENT;
  1037. resp_skb = ERR_PTR(-ENOENT);
  1038. spin_lock_bh(&x->lock);
  1039. if (x->km.state != XFRM_STATE_DEAD) {
  1040. struct sadb_spirange *range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1041. u32 min_spi, max_spi;
  1042. if (range != NULL) {
  1043. min_spi = range->sadb_spirange_min;
  1044. max_spi = range->sadb_spirange_max;
  1045. } else {
  1046. min_spi = 0x100;
  1047. max_spi = 0x0fffffff;
  1048. }
  1049. xfrm_alloc_spi(x, htonl(min_spi), htonl(max_spi));
  1050. if (x->id.spi)
  1051. resp_skb = pfkey_xfrm_state2msg(x, 0, 3);
  1052. }
  1053. spin_unlock_bh(&x->lock);
  1054. if (IS_ERR(resp_skb)) {
  1055. xfrm_state_put(x);
  1056. return PTR_ERR(resp_skb);
  1057. }
  1058. out_hdr = (struct sadb_msg *) resp_skb->data;
  1059. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1060. out_hdr->sadb_msg_type = SADB_GETSPI;
  1061. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1062. out_hdr->sadb_msg_errno = 0;
  1063. out_hdr->sadb_msg_reserved = 0;
  1064. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1065. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1066. xfrm_state_put(x);
  1067. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1068. return 0;
  1069. }
  1070. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1071. {
  1072. struct xfrm_state *x;
  1073. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1074. return -EOPNOTSUPP;
  1075. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1076. return 0;
  1077. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1078. if (x == NULL)
  1079. return 0;
  1080. spin_lock_bh(&x->lock);
  1081. if (x->km.state == XFRM_STATE_ACQ) {
  1082. x->km.state = XFRM_STATE_ERROR;
  1083. wake_up(&km_waitq);
  1084. }
  1085. spin_unlock_bh(&x->lock);
  1086. xfrm_state_put(x);
  1087. return 0;
  1088. }
  1089. static inline int event2poltype(int event)
  1090. {
  1091. switch (event) {
  1092. case XFRM_SAP_DELETED:
  1093. return SADB_X_SPDDELETE;
  1094. case XFRM_SAP_ADDED:
  1095. return SADB_X_SPDADD;
  1096. case XFRM_SAP_UPDATED:
  1097. return SADB_X_SPDUPDATE;
  1098. case XFRM_SAP_EXPIRED:
  1099. // return SADB_X_SPDEXPIRE;
  1100. default:
  1101. printk("pfkey: Unknown policy event %d\n", event);
  1102. break;
  1103. }
  1104. return 0;
  1105. }
  1106. static inline int event2keytype(int event)
  1107. {
  1108. switch (event) {
  1109. case XFRM_SAP_DELETED:
  1110. return SADB_DELETE;
  1111. case XFRM_SAP_ADDED:
  1112. return SADB_ADD;
  1113. case XFRM_SAP_UPDATED:
  1114. return SADB_UPDATE;
  1115. case XFRM_SAP_EXPIRED:
  1116. return SADB_EXPIRE;
  1117. default:
  1118. printk("pfkey: Unknown SA event %d\n", event);
  1119. break;
  1120. }
  1121. return 0;
  1122. }
  1123. /* ADD/UPD/DEL */
  1124. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1125. {
  1126. struct sk_buff *skb;
  1127. struct sadb_msg *hdr;
  1128. int hsc = 3;
  1129. if (c->event == XFRM_SAP_DELETED)
  1130. hsc = 0;
  1131. if (c->event == XFRM_SAP_EXPIRED) {
  1132. if (c->data)
  1133. hsc = 2;
  1134. else
  1135. hsc = 1;
  1136. }
  1137. skb = pfkey_xfrm_state2msg(x, 0, hsc);
  1138. if (IS_ERR(skb))
  1139. return PTR_ERR(skb);
  1140. hdr = (struct sadb_msg *) skb->data;
  1141. hdr->sadb_msg_version = PF_KEY_V2;
  1142. hdr->sadb_msg_type = event2keytype(c->event);
  1143. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1144. hdr->sadb_msg_errno = 0;
  1145. hdr->sadb_msg_reserved = 0;
  1146. hdr->sadb_msg_seq = c->seq;
  1147. hdr->sadb_msg_pid = c->pid;
  1148. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1149. return 0;
  1150. }
  1151. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1152. {
  1153. struct xfrm_state *x;
  1154. int err;
  1155. struct km_event c;
  1156. xfrm_probe_algs();
  1157. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1158. if (IS_ERR(x))
  1159. return PTR_ERR(x);
  1160. xfrm_state_hold(x);
  1161. if (hdr->sadb_msg_type == SADB_ADD)
  1162. err = xfrm_state_add(x);
  1163. else
  1164. err = xfrm_state_update(x);
  1165. if (err < 0) {
  1166. x->km.state = XFRM_STATE_DEAD;
  1167. xfrm_state_put(x);
  1168. return err;
  1169. }
  1170. if (hdr->sadb_msg_type == SADB_ADD)
  1171. c.event = XFRM_SAP_ADDED;
  1172. else
  1173. c.event = XFRM_SAP_UPDATED;
  1174. c.seq = hdr->sadb_msg_seq;
  1175. c.pid = hdr->sadb_msg_pid;
  1176. km_state_notify(x, &c);
  1177. xfrm_state_put(x);
  1178. return err;
  1179. }
  1180. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1181. {
  1182. struct xfrm_state *x;
  1183. struct km_event c;
  1184. int err;
  1185. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1186. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1187. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1188. return -EINVAL;
  1189. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1190. if (x == NULL)
  1191. return -ESRCH;
  1192. if (xfrm_state_kern(x)) {
  1193. xfrm_state_put(x);
  1194. return -EPERM;
  1195. }
  1196. err = xfrm_state_delete(x);
  1197. if (err < 0) {
  1198. xfrm_state_put(x);
  1199. return err;
  1200. }
  1201. c.seq = hdr->sadb_msg_seq;
  1202. c.pid = hdr->sadb_msg_pid;
  1203. c.event = XFRM_SAP_DELETED;
  1204. km_state_notify(x, &c);
  1205. xfrm_state_put(x);
  1206. return err;
  1207. }
  1208. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1209. {
  1210. __u8 proto;
  1211. struct sk_buff *out_skb;
  1212. struct sadb_msg *out_hdr;
  1213. struct xfrm_state *x;
  1214. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1215. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1216. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1217. return -EINVAL;
  1218. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1219. if (x == NULL)
  1220. return -ESRCH;
  1221. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1222. proto = x->id.proto;
  1223. xfrm_state_put(x);
  1224. if (IS_ERR(out_skb))
  1225. return PTR_ERR(out_skb);
  1226. out_hdr = (struct sadb_msg *) out_skb->data;
  1227. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1228. out_hdr->sadb_msg_type = SADB_DUMP;
  1229. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1230. out_hdr->sadb_msg_errno = 0;
  1231. out_hdr->sadb_msg_reserved = 0;
  1232. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1233. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1234. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1235. return 0;
  1236. }
  1237. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig, int allocation)
  1238. {
  1239. struct sk_buff *skb;
  1240. struct sadb_msg *hdr;
  1241. int len, auth_len, enc_len, i;
  1242. auth_len = xfrm_count_auth_supported();
  1243. if (auth_len) {
  1244. auth_len *= sizeof(struct sadb_alg);
  1245. auth_len += sizeof(struct sadb_supported);
  1246. }
  1247. enc_len = xfrm_count_enc_supported();
  1248. if (enc_len) {
  1249. enc_len *= sizeof(struct sadb_alg);
  1250. enc_len += sizeof(struct sadb_supported);
  1251. }
  1252. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1253. skb = alloc_skb(len + 16, allocation);
  1254. if (!skb)
  1255. goto out_put_algs;
  1256. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1257. pfkey_hdr_dup(hdr, orig);
  1258. hdr->sadb_msg_errno = 0;
  1259. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1260. if (auth_len) {
  1261. struct sadb_supported *sp;
  1262. struct sadb_alg *ap;
  1263. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1264. ap = (struct sadb_alg *) (sp + 1);
  1265. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1266. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1267. for (i = 0; ; i++) {
  1268. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1269. if (!aalg)
  1270. break;
  1271. if (aalg->available)
  1272. *ap++ = aalg->desc;
  1273. }
  1274. }
  1275. if (enc_len) {
  1276. struct sadb_supported *sp;
  1277. struct sadb_alg *ap;
  1278. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1279. ap = (struct sadb_alg *) (sp + 1);
  1280. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1281. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1282. for (i = 0; ; i++) {
  1283. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1284. if (!ealg)
  1285. break;
  1286. if (ealg->available)
  1287. *ap++ = ealg->desc;
  1288. }
  1289. }
  1290. out_put_algs:
  1291. return skb;
  1292. }
  1293. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1294. {
  1295. struct pfkey_sock *pfk = pfkey_sk(sk);
  1296. struct sk_buff *supp_skb;
  1297. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1298. return -EINVAL;
  1299. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1300. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1301. return -EEXIST;
  1302. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1303. }
  1304. xfrm_probe_algs();
  1305. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1306. if (!supp_skb) {
  1307. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1308. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1309. return -ENOBUFS;
  1310. }
  1311. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1312. return 0;
  1313. }
  1314. static int key_notify_sa_flush(struct km_event *c)
  1315. {
  1316. struct sk_buff *skb;
  1317. struct sadb_msg *hdr;
  1318. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1319. if (!skb)
  1320. return -ENOBUFS;
  1321. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1322. hdr->sadb_msg_satype = pfkey_proto2satype(c->data);
  1323. hdr->sadb_msg_seq = c->seq;
  1324. hdr->sadb_msg_pid = c->pid;
  1325. hdr->sadb_msg_version = PF_KEY_V2;
  1326. hdr->sadb_msg_errno = (uint8_t) 0;
  1327. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1328. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1329. return 0;
  1330. }
  1331. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1332. {
  1333. unsigned proto;
  1334. struct km_event c;
  1335. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1336. if (proto == 0)
  1337. return -EINVAL;
  1338. xfrm_state_flush(proto);
  1339. c.data = proto;
  1340. c.seq = hdr->sadb_msg_seq;
  1341. c.pid = hdr->sadb_msg_pid;
  1342. c.event = XFRM_SAP_FLUSHED;
  1343. km_state_notify(NULL, &c);
  1344. return 0;
  1345. }
  1346. struct pfkey_dump_data
  1347. {
  1348. struct sk_buff *skb;
  1349. struct sadb_msg *hdr;
  1350. struct sock *sk;
  1351. };
  1352. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1353. {
  1354. struct pfkey_dump_data *data = ptr;
  1355. struct sk_buff *out_skb;
  1356. struct sadb_msg *out_hdr;
  1357. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1358. if (IS_ERR(out_skb))
  1359. return PTR_ERR(out_skb);
  1360. out_hdr = (struct sadb_msg *) out_skb->data;
  1361. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  1362. out_hdr->sadb_msg_type = SADB_DUMP;
  1363. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1364. out_hdr->sadb_msg_errno = 0;
  1365. out_hdr->sadb_msg_reserved = 0;
  1366. out_hdr->sadb_msg_seq = count;
  1367. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  1368. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  1369. return 0;
  1370. }
  1371. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1372. {
  1373. u8 proto;
  1374. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  1375. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1376. if (proto == 0)
  1377. return -EINVAL;
  1378. return xfrm_state_walk(proto, dump_sa, &data);
  1379. }
  1380. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1381. {
  1382. struct pfkey_sock *pfk = pfkey_sk(sk);
  1383. int satype = hdr->sadb_msg_satype;
  1384. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1385. /* XXX we mangle packet... */
  1386. hdr->sadb_msg_errno = 0;
  1387. if (satype != 0 && satype != 1)
  1388. return -EINVAL;
  1389. pfk->promisc = satype;
  1390. }
  1391. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1392. return 0;
  1393. }
  1394. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1395. {
  1396. int i;
  1397. u32 reqid = *(u32*)ptr;
  1398. for (i=0; i<xp->xfrm_nr; i++) {
  1399. if (xp->xfrm_vec[i].reqid == reqid)
  1400. return -EEXIST;
  1401. }
  1402. return 0;
  1403. }
  1404. static u32 gen_reqid(void)
  1405. {
  1406. u32 start;
  1407. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1408. start = reqid;
  1409. do {
  1410. ++reqid;
  1411. if (reqid == 0)
  1412. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1413. if (xfrm_policy_walk(check_reqid, (void*)&reqid) != -EEXIST)
  1414. return reqid;
  1415. } while (reqid != start);
  1416. return 0;
  1417. }
  1418. static int
  1419. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1420. {
  1421. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1422. struct sockaddr_in *sin;
  1423. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1424. struct sockaddr_in6 *sin6;
  1425. #endif
  1426. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1427. return -ELOOP;
  1428. if (rq->sadb_x_ipsecrequest_mode == 0)
  1429. return -EINVAL;
  1430. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1431. t->mode = rq->sadb_x_ipsecrequest_mode-1;
  1432. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1433. t->optional = 1;
  1434. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1435. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1436. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1437. t->reqid = 0;
  1438. if (!t->reqid && !(t->reqid = gen_reqid()))
  1439. return -ENOBUFS;
  1440. }
  1441. /* addresses present only in tunnel mode */
  1442. if (t->mode) {
  1443. switch (xp->family) {
  1444. case AF_INET:
  1445. sin = (void*)(rq+1);
  1446. if (sin->sin_family != AF_INET)
  1447. return -EINVAL;
  1448. t->saddr.a4 = sin->sin_addr.s_addr;
  1449. sin++;
  1450. if (sin->sin_family != AF_INET)
  1451. return -EINVAL;
  1452. t->id.daddr.a4 = sin->sin_addr.s_addr;
  1453. break;
  1454. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1455. case AF_INET6:
  1456. sin6 = (void *)(rq+1);
  1457. if (sin6->sin6_family != AF_INET6)
  1458. return -EINVAL;
  1459. memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1460. sin6++;
  1461. if (sin6->sin6_family != AF_INET6)
  1462. return -EINVAL;
  1463. memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1464. break;
  1465. #endif
  1466. default:
  1467. return -EINVAL;
  1468. }
  1469. }
  1470. /* No way to set this via kame pfkey */
  1471. t->aalgos = t->ealgos = t->calgos = ~0;
  1472. xp->xfrm_nr++;
  1473. return 0;
  1474. }
  1475. static int
  1476. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1477. {
  1478. int err;
  1479. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1480. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1481. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1482. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1483. return err;
  1484. len -= rq->sadb_x_ipsecrequest_len;
  1485. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1486. }
  1487. return 0;
  1488. }
  1489. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1490. {
  1491. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1492. int socklen = (xp->family == AF_INET ?
  1493. sizeof(struct sockaddr_in) :
  1494. sizeof(struct sockaddr_in6));
  1495. return sizeof(struct sadb_msg) +
  1496. (sizeof(struct sadb_lifetime) * 3) +
  1497. (sizeof(struct sadb_address) * 2) +
  1498. (sockaddr_size * 2) +
  1499. sizeof(struct sadb_x_policy) +
  1500. (xp->xfrm_nr * (sizeof(struct sadb_x_ipsecrequest) +
  1501. (socklen * 2)));
  1502. }
  1503. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1504. {
  1505. struct sk_buff *skb;
  1506. int size;
  1507. size = pfkey_xfrm_policy2msg_size(xp);
  1508. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1509. if (skb == NULL)
  1510. return ERR_PTR(-ENOBUFS);
  1511. return skb;
  1512. }
  1513. static void pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1514. {
  1515. struct sadb_msg *hdr;
  1516. struct sadb_address *addr;
  1517. struct sadb_lifetime *lifetime;
  1518. struct sadb_x_policy *pol;
  1519. struct sockaddr_in *sin;
  1520. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1521. struct sockaddr_in6 *sin6;
  1522. #endif
  1523. int i;
  1524. int size;
  1525. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1526. int socklen = (xp->family == AF_INET ?
  1527. sizeof(struct sockaddr_in) :
  1528. sizeof(struct sockaddr_in6));
  1529. size = pfkey_xfrm_policy2msg_size(xp);
  1530. /* call should fill header later */
  1531. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1532. memset(hdr, 0, size); /* XXX do we need this ? */
  1533. /* src address */
  1534. addr = (struct sadb_address*) skb_put(skb,
  1535. sizeof(struct sadb_address)+sockaddr_size);
  1536. addr->sadb_address_len =
  1537. (sizeof(struct sadb_address)+sockaddr_size)/
  1538. sizeof(uint64_t);
  1539. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1540. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1541. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1542. addr->sadb_address_reserved = 0;
  1543. /* src address */
  1544. if (xp->family == AF_INET) {
  1545. sin = (struct sockaddr_in *) (addr + 1);
  1546. sin->sin_family = AF_INET;
  1547. sin->sin_addr.s_addr = xp->selector.saddr.a4;
  1548. sin->sin_port = xp->selector.sport;
  1549. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1550. }
  1551. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1552. else if (xp->family == AF_INET6) {
  1553. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1554. sin6->sin6_family = AF_INET6;
  1555. sin6->sin6_port = xp->selector.sport;
  1556. sin6->sin6_flowinfo = 0;
  1557. memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
  1558. sizeof(struct in6_addr));
  1559. sin6->sin6_scope_id = 0;
  1560. }
  1561. #endif
  1562. else
  1563. BUG();
  1564. /* dst address */
  1565. addr = (struct sadb_address*) skb_put(skb,
  1566. sizeof(struct sadb_address)+sockaddr_size);
  1567. addr->sadb_address_len =
  1568. (sizeof(struct sadb_address)+sockaddr_size)/
  1569. sizeof(uint64_t);
  1570. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1571. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1572. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1573. addr->sadb_address_reserved = 0;
  1574. if (xp->family == AF_INET) {
  1575. sin = (struct sockaddr_in *) (addr + 1);
  1576. sin->sin_family = AF_INET;
  1577. sin->sin_addr.s_addr = xp->selector.daddr.a4;
  1578. sin->sin_port = xp->selector.dport;
  1579. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1580. }
  1581. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1582. else if (xp->family == AF_INET6) {
  1583. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1584. sin6->sin6_family = AF_INET6;
  1585. sin6->sin6_port = xp->selector.dport;
  1586. sin6->sin6_flowinfo = 0;
  1587. memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
  1588. sizeof(struct in6_addr));
  1589. sin6->sin6_scope_id = 0;
  1590. }
  1591. #endif
  1592. else
  1593. BUG();
  1594. /* hard time */
  1595. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1596. sizeof(struct sadb_lifetime));
  1597. lifetime->sadb_lifetime_len =
  1598. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1599. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1600. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1601. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1602. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1603. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1604. /* soft time */
  1605. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1606. sizeof(struct sadb_lifetime));
  1607. lifetime->sadb_lifetime_len =
  1608. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1609. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1610. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1611. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1612. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1613. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1614. /* current time */
  1615. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1616. sizeof(struct sadb_lifetime));
  1617. lifetime->sadb_lifetime_len =
  1618. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1619. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1620. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1621. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1622. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1623. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1624. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1625. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1626. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1627. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1628. if (xp->action == XFRM_POLICY_ALLOW) {
  1629. if (xp->xfrm_nr)
  1630. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1631. else
  1632. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1633. }
  1634. pol->sadb_x_policy_dir = dir+1;
  1635. pol->sadb_x_policy_id = xp->index;
  1636. pol->sadb_x_policy_priority = xp->priority;
  1637. for (i=0; i<xp->xfrm_nr; i++) {
  1638. struct sadb_x_ipsecrequest *rq;
  1639. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1640. int req_size;
  1641. req_size = sizeof(struct sadb_x_ipsecrequest);
  1642. if (t->mode)
  1643. req_size += 2*socklen;
  1644. else
  1645. size -= 2*socklen;
  1646. rq = (void*)skb_put(skb, req_size);
  1647. pol->sadb_x_policy_len += req_size/8;
  1648. memset(rq, 0, sizeof(*rq));
  1649. rq->sadb_x_ipsecrequest_len = req_size;
  1650. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1651. rq->sadb_x_ipsecrequest_mode = t->mode+1;
  1652. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1653. if (t->reqid)
  1654. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1655. if (t->optional)
  1656. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1657. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1658. if (t->mode) {
  1659. switch (xp->family) {
  1660. case AF_INET:
  1661. sin = (void*)(rq+1);
  1662. sin->sin_family = AF_INET;
  1663. sin->sin_addr.s_addr = t->saddr.a4;
  1664. sin->sin_port = 0;
  1665. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1666. sin++;
  1667. sin->sin_family = AF_INET;
  1668. sin->sin_addr.s_addr = t->id.daddr.a4;
  1669. sin->sin_port = 0;
  1670. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1671. break;
  1672. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1673. case AF_INET6:
  1674. sin6 = (void*)(rq+1);
  1675. sin6->sin6_family = AF_INET6;
  1676. sin6->sin6_port = 0;
  1677. sin6->sin6_flowinfo = 0;
  1678. memcpy(&sin6->sin6_addr, t->saddr.a6,
  1679. sizeof(struct in6_addr));
  1680. sin6->sin6_scope_id = 0;
  1681. sin6++;
  1682. sin6->sin6_family = AF_INET6;
  1683. sin6->sin6_port = 0;
  1684. sin6->sin6_flowinfo = 0;
  1685. memcpy(&sin6->sin6_addr, t->id.daddr.a6,
  1686. sizeof(struct in6_addr));
  1687. sin6->sin6_scope_id = 0;
  1688. break;
  1689. #endif
  1690. default:
  1691. break;
  1692. }
  1693. }
  1694. }
  1695. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1696. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1697. }
  1698. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1699. {
  1700. struct sk_buff *out_skb;
  1701. struct sadb_msg *out_hdr;
  1702. int err;
  1703. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1704. if (IS_ERR(out_skb)) {
  1705. err = PTR_ERR(out_skb);
  1706. goto out;
  1707. }
  1708. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1709. out_hdr = (struct sadb_msg *) out_skb->data;
  1710. out_hdr->sadb_msg_version = PF_KEY_V2;
  1711. if (c->data && c->event == XFRM_SAP_DELETED)
  1712. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1713. else
  1714. out_hdr->sadb_msg_type = event2poltype(c->event);
  1715. out_hdr->sadb_msg_errno = 0;
  1716. out_hdr->sadb_msg_seq = c->seq;
  1717. out_hdr->sadb_msg_pid = c->pid;
  1718. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1719. out:
  1720. return 0;
  1721. }
  1722. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1723. {
  1724. int err;
  1725. struct sadb_lifetime *lifetime;
  1726. struct sadb_address *sa;
  1727. struct sadb_x_policy *pol;
  1728. struct xfrm_policy *xp;
  1729. struct km_event c;
  1730. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1731. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1732. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1733. return -EINVAL;
  1734. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1735. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1736. return -EINVAL;
  1737. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1738. return -EINVAL;
  1739. xp = xfrm_policy_alloc(GFP_KERNEL);
  1740. if (xp == NULL)
  1741. return -ENOBUFS;
  1742. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1743. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1744. xp->priority = pol->sadb_x_policy_priority;
  1745. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1746. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1747. if (!xp->family) {
  1748. err = -EINVAL;
  1749. goto out;
  1750. }
  1751. xp->selector.family = xp->family;
  1752. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1753. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1754. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1755. if (xp->selector.sport)
  1756. xp->selector.sport_mask = ~0;
  1757. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1758. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1759. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1760. /* Amusing, we set this twice. KAME apps appear to set same value
  1761. * in both addresses.
  1762. */
  1763. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1764. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1765. if (xp->selector.dport)
  1766. xp->selector.dport_mask = ~0;
  1767. xp->lft.soft_byte_limit = XFRM_INF;
  1768. xp->lft.hard_byte_limit = XFRM_INF;
  1769. xp->lft.soft_packet_limit = XFRM_INF;
  1770. xp->lft.hard_packet_limit = XFRM_INF;
  1771. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1772. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1773. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1774. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1775. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1776. }
  1777. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1778. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1779. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1780. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1781. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1782. }
  1783. xp->xfrm_nr = 0;
  1784. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1785. (err = parse_ipsecrequests(xp, pol)) < 0)
  1786. goto out;
  1787. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1788. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1789. if (err) {
  1790. kfree(xp);
  1791. return err;
  1792. }
  1793. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1794. c.event = XFRM_SAP_UPDATED;
  1795. else
  1796. c.event = XFRM_SAP_ADDED;
  1797. c.seq = hdr->sadb_msg_seq;
  1798. c.pid = hdr->sadb_msg_pid;
  1799. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1800. xfrm_pol_put(xp);
  1801. return 0;
  1802. out:
  1803. kfree(xp);
  1804. return err;
  1805. }
  1806. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1807. {
  1808. int err;
  1809. struct sadb_address *sa;
  1810. struct sadb_x_policy *pol;
  1811. struct xfrm_policy *xp;
  1812. struct xfrm_selector sel;
  1813. struct km_event c;
  1814. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1815. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1816. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1817. return -EINVAL;
  1818. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1819. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1820. return -EINVAL;
  1821. memset(&sel, 0, sizeof(sel));
  1822. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1823. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1824. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1825. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1826. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1827. if (sel.sport)
  1828. sel.sport_mask = ~0;
  1829. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1830. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1831. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1832. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1833. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1834. if (sel.dport)
  1835. sel.dport_mask = ~0;
  1836. xp = xfrm_policy_bysel(pol->sadb_x_policy_dir-1, &sel, 1);
  1837. if (xp == NULL)
  1838. return -ENOENT;
  1839. err = 0;
  1840. c.seq = hdr->sadb_msg_seq;
  1841. c.pid = hdr->sadb_msg_pid;
  1842. c.event = XFRM_SAP_DELETED;
  1843. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1844. xfrm_pol_put(xp);
  1845. return err;
  1846. }
  1847. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  1848. {
  1849. int err;
  1850. struct sk_buff *out_skb;
  1851. struct sadb_msg *out_hdr;
  1852. err = 0;
  1853. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1854. if (IS_ERR(out_skb)) {
  1855. err = PTR_ERR(out_skb);
  1856. goto out;
  1857. }
  1858. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1859. out_hdr = (struct sadb_msg *) out_skb->data;
  1860. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1861. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  1862. out_hdr->sadb_msg_satype = 0;
  1863. out_hdr->sadb_msg_errno = 0;
  1864. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1865. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1866. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1867. err = 0;
  1868. out:
  1869. return err;
  1870. }
  1871. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1872. {
  1873. int err;
  1874. struct sadb_x_policy *pol;
  1875. struct xfrm_policy *xp;
  1876. struct km_event c;
  1877. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  1878. return -EINVAL;
  1879. xp = xfrm_policy_byid(0, pol->sadb_x_policy_id,
  1880. hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  1881. if (xp == NULL)
  1882. return -ENOENT;
  1883. err = 0;
  1884. c.seq = hdr->sadb_msg_seq;
  1885. c.pid = hdr->sadb_msg_pid;
  1886. if (hdr->sadb_msg_type == SADB_X_SPDDELETE2) {
  1887. c.data = 1; // to signal pfkey of SADB_X_SPDDELETE2
  1888. c.event = XFRM_SAP_DELETED;
  1889. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1890. } else {
  1891. err = key_pol_get_resp(sk, xp, hdr, pol->sadb_x_policy_dir-1);
  1892. }
  1893. xfrm_pol_put(xp);
  1894. return err;
  1895. }
  1896. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1897. {
  1898. struct pfkey_dump_data *data = ptr;
  1899. struct sk_buff *out_skb;
  1900. struct sadb_msg *out_hdr;
  1901. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1902. if (IS_ERR(out_skb))
  1903. return PTR_ERR(out_skb);
  1904. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1905. out_hdr = (struct sadb_msg *) out_skb->data;
  1906. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  1907. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  1908. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  1909. out_hdr->sadb_msg_errno = 0;
  1910. out_hdr->sadb_msg_seq = count;
  1911. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  1912. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  1913. return 0;
  1914. }
  1915. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1916. {
  1917. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  1918. return xfrm_policy_walk(dump_sp, &data);
  1919. }
  1920. static int key_notify_policy_flush(struct km_event *c)
  1921. {
  1922. struct sk_buff *skb_out;
  1923. struct sadb_msg *hdr;
  1924. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1925. if (!skb_out)
  1926. return -ENOBUFS;
  1927. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  1928. hdr->sadb_msg_seq = c->seq;
  1929. hdr->sadb_msg_pid = c->pid;
  1930. hdr->sadb_msg_version = PF_KEY_V2;
  1931. hdr->sadb_msg_errno = (uint8_t) 0;
  1932. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1933. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1934. return 0;
  1935. }
  1936. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1937. {
  1938. struct km_event c;
  1939. xfrm_policy_flush();
  1940. c.event = XFRM_SAP_FLUSHED;
  1941. c.pid = hdr->sadb_msg_pid;
  1942. c.seq = hdr->sadb_msg_seq;
  1943. km_policy_notify(NULL, 0, &c);
  1944. return 0;
  1945. }
  1946. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  1947. struct sadb_msg *hdr, void **ext_hdrs);
  1948. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  1949. [SADB_RESERVED] = pfkey_reserved,
  1950. [SADB_GETSPI] = pfkey_getspi,
  1951. [SADB_UPDATE] = pfkey_add,
  1952. [SADB_ADD] = pfkey_add,
  1953. [SADB_DELETE] = pfkey_delete,
  1954. [SADB_GET] = pfkey_get,
  1955. [SADB_ACQUIRE] = pfkey_acquire,
  1956. [SADB_REGISTER] = pfkey_register,
  1957. [SADB_EXPIRE] = NULL,
  1958. [SADB_FLUSH] = pfkey_flush,
  1959. [SADB_DUMP] = pfkey_dump,
  1960. [SADB_X_PROMISC] = pfkey_promisc,
  1961. [SADB_X_PCHANGE] = NULL,
  1962. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  1963. [SADB_X_SPDADD] = pfkey_spdadd,
  1964. [SADB_X_SPDDELETE] = pfkey_spddelete,
  1965. [SADB_X_SPDGET] = pfkey_spdget,
  1966. [SADB_X_SPDACQUIRE] = NULL,
  1967. [SADB_X_SPDDUMP] = pfkey_spddump,
  1968. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  1969. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  1970. [SADB_X_SPDDELETE2] = pfkey_spdget,
  1971. };
  1972. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  1973. {
  1974. void *ext_hdrs[SADB_EXT_MAX];
  1975. int err;
  1976. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  1977. BROADCAST_PROMISC_ONLY, NULL);
  1978. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  1979. err = parse_exthdrs(skb, hdr, ext_hdrs);
  1980. if (!err) {
  1981. err = -EOPNOTSUPP;
  1982. if (pfkey_funcs[hdr->sadb_msg_type])
  1983. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  1984. }
  1985. return err;
  1986. }
  1987. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  1988. {
  1989. struct sadb_msg *hdr = NULL;
  1990. if (skb->len < sizeof(*hdr)) {
  1991. *errp = -EMSGSIZE;
  1992. } else {
  1993. hdr = (struct sadb_msg *) skb->data;
  1994. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  1995. hdr->sadb_msg_reserved != 0 ||
  1996. (hdr->sadb_msg_type <= SADB_RESERVED ||
  1997. hdr->sadb_msg_type > SADB_MAX)) {
  1998. hdr = NULL;
  1999. *errp = -EINVAL;
  2000. } else if (hdr->sadb_msg_len != (skb->len /
  2001. sizeof(uint64_t)) ||
  2002. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2003. sizeof(uint64_t))) {
  2004. hdr = NULL;
  2005. *errp = -EMSGSIZE;
  2006. } else {
  2007. *errp = 0;
  2008. }
  2009. }
  2010. return hdr;
  2011. }
  2012. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2013. {
  2014. return t->aalgos & (1 << d->desc.sadb_alg_id);
  2015. }
  2016. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2017. {
  2018. return t->ealgos & (1 << d->desc.sadb_alg_id);
  2019. }
  2020. static int count_ah_combs(struct xfrm_tmpl *t)
  2021. {
  2022. int i, sz = 0;
  2023. for (i = 0; ; i++) {
  2024. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2025. if (!aalg)
  2026. break;
  2027. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2028. sz += sizeof(struct sadb_comb);
  2029. }
  2030. return sz + sizeof(struct sadb_prop);
  2031. }
  2032. static int count_esp_combs(struct xfrm_tmpl *t)
  2033. {
  2034. int i, k, sz = 0;
  2035. for (i = 0; ; i++) {
  2036. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2037. if (!ealg)
  2038. break;
  2039. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2040. continue;
  2041. for (k = 1; ; k++) {
  2042. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2043. if (!aalg)
  2044. break;
  2045. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2046. sz += sizeof(struct sadb_comb);
  2047. }
  2048. }
  2049. return sz + sizeof(struct sadb_prop);
  2050. }
  2051. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2052. {
  2053. struct sadb_prop *p;
  2054. int i;
  2055. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2056. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2057. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2058. p->sadb_prop_replay = 32;
  2059. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2060. for (i = 0; ; i++) {
  2061. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2062. if (!aalg)
  2063. break;
  2064. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2065. struct sadb_comb *c;
  2066. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2067. memset(c, 0, sizeof(*c));
  2068. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2069. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2070. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2071. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2072. c->sadb_comb_hard_addtime = 24*60*60;
  2073. c->sadb_comb_soft_addtime = 20*60*60;
  2074. c->sadb_comb_hard_usetime = 8*60*60;
  2075. c->sadb_comb_soft_usetime = 7*60*60;
  2076. }
  2077. }
  2078. }
  2079. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2080. {
  2081. struct sadb_prop *p;
  2082. int i, k;
  2083. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2084. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2085. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2086. p->sadb_prop_replay = 32;
  2087. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2088. for (i=0; ; i++) {
  2089. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2090. if (!ealg)
  2091. break;
  2092. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2093. continue;
  2094. for (k = 1; ; k++) {
  2095. struct sadb_comb *c;
  2096. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2097. if (!aalg)
  2098. break;
  2099. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2100. continue;
  2101. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2102. memset(c, 0, sizeof(*c));
  2103. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2104. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2105. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2106. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2107. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2108. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2109. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2110. c->sadb_comb_hard_addtime = 24*60*60;
  2111. c->sadb_comb_soft_addtime = 20*60*60;
  2112. c->sadb_comb_hard_usetime = 8*60*60;
  2113. c->sadb_comb_soft_usetime = 7*60*60;
  2114. }
  2115. }
  2116. }
  2117. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2118. {
  2119. return 0;
  2120. }
  2121. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2122. {
  2123. struct sk_buff *out_skb;
  2124. struct sadb_msg *out_hdr;
  2125. int hard;
  2126. int hsc;
  2127. hard = c->data;
  2128. if (hard)
  2129. hsc = 2;
  2130. else
  2131. hsc = 1;
  2132. out_skb = pfkey_xfrm_state2msg(x, 0, hsc);
  2133. if (IS_ERR(out_skb))
  2134. return PTR_ERR(out_skb);
  2135. out_hdr = (struct sadb_msg *) out_skb->data;
  2136. out_hdr->sadb_msg_version = PF_KEY_V2;
  2137. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2138. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2139. out_hdr->sadb_msg_errno = 0;
  2140. out_hdr->sadb_msg_reserved = 0;
  2141. out_hdr->sadb_msg_seq = 0;
  2142. out_hdr->sadb_msg_pid = 0;
  2143. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2144. return 0;
  2145. }
  2146. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2147. {
  2148. switch (c->event) {
  2149. case XFRM_SAP_EXPIRED:
  2150. return key_notify_sa_expire(x, c);
  2151. case XFRM_SAP_DELETED:
  2152. case XFRM_SAP_ADDED:
  2153. case XFRM_SAP_UPDATED:
  2154. return key_notify_sa(x, c);
  2155. case XFRM_SAP_FLUSHED:
  2156. return key_notify_sa_flush(c);
  2157. default:
  2158. printk("pfkey: Unknown SA event %d\n", c->event);
  2159. break;
  2160. }
  2161. return 0;
  2162. }
  2163. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2164. {
  2165. switch (c->event) {
  2166. case XFRM_SAP_EXPIRED:
  2167. return key_notify_policy_expire(xp, c);
  2168. case XFRM_SAP_DELETED:
  2169. case XFRM_SAP_ADDED:
  2170. case XFRM_SAP_UPDATED:
  2171. return key_notify_policy(xp, dir, c);
  2172. case XFRM_SAP_FLUSHED:
  2173. return key_notify_policy_flush(c);
  2174. default:
  2175. printk("pfkey: Unknown policy event %d\n", c->event);
  2176. break;
  2177. }
  2178. return 0;
  2179. }
  2180. static u32 get_acqseq(void)
  2181. {
  2182. u32 res;
  2183. static u32 acqseq;
  2184. static DEFINE_SPINLOCK(acqseq_lock);
  2185. spin_lock_bh(&acqseq_lock);
  2186. res = (++acqseq ? : ++acqseq);
  2187. spin_unlock_bh(&acqseq_lock);
  2188. return res;
  2189. }
  2190. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2191. {
  2192. struct sk_buff *skb;
  2193. struct sadb_msg *hdr;
  2194. struct sadb_address *addr;
  2195. struct sadb_x_policy *pol;
  2196. struct sockaddr_in *sin;
  2197. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2198. struct sockaddr_in6 *sin6;
  2199. #endif
  2200. int sockaddr_size;
  2201. int size;
  2202. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2203. if (!sockaddr_size)
  2204. return -EINVAL;
  2205. size = sizeof(struct sadb_msg) +
  2206. (sizeof(struct sadb_address) * 2) +
  2207. (sockaddr_size * 2) +
  2208. sizeof(struct sadb_x_policy);
  2209. if (x->id.proto == IPPROTO_AH)
  2210. size += count_ah_combs(t);
  2211. else if (x->id.proto == IPPROTO_ESP)
  2212. size += count_esp_combs(t);
  2213. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2214. if (skb == NULL)
  2215. return -ENOMEM;
  2216. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2217. hdr->sadb_msg_version = PF_KEY_V2;
  2218. hdr->sadb_msg_type = SADB_ACQUIRE;
  2219. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2220. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2221. hdr->sadb_msg_errno = 0;
  2222. hdr->sadb_msg_reserved = 0;
  2223. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2224. hdr->sadb_msg_pid = 0;
  2225. /* src address */
  2226. addr = (struct sadb_address*) skb_put(skb,
  2227. sizeof(struct sadb_address)+sockaddr_size);
  2228. addr->sadb_address_len =
  2229. (sizeof(struct sadb_address)+sockaddr_size)/
  2230. sizeof(uint64_t);
  2231. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2232. addr->sadb_address_proto = 0;
  2233. addr->sadb_address_reserved = 0;
  2234. if (x->props.family == AF_INET) {
  2235. addr->sadb_address_prefixlen = 32;
  2236. sin = (struct sockaddr_in *) (addr + 1);
  2237. sin->sin_family = AF_INET;
  2238. sin->sin_addr.s_addr = x->props.saddr.a4;
  2239. sin->sin_port = 0;
  2240. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2241. }
  2242. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2243. else if (x->props.family == AF_INET6) {
  2244. addr->sadb_address_prefixlen = 128;
  2245. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2246. sin6->sin6_family = AF_INET6;
  2247. sin6->sin6_port = 0;
  2248. sin6->sin6_flowinfo = 0;
  2249. memcpy(&sin6->sin6_addr,
  2250. x->props.saddr.a6, sizeof(struct in6_addr));
  2251. sin6->sin6_scope_id = 0;
  2252. }
  2253. #endif
  2254. else
  2255. BUG();
  2256. /* dst address */
  2257. addr = (struct sadb_address*) skb_put(skb,
  2258. sizeof(struct sadb_address)+sockaddr_size);
  2259. addr->sadb_address_len =
  2260. (sizeof(struct sadb_address)+sockaddr_size)/
  2261. sizeof(uint64_t);
  2262. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2263. addr->sadb_address_proto = 0;
  2264. addr->sadb_address_reserved = 0;
  2265. if (x->props.family == AF_INET) {
  2266. addr->sadb_address_prefixlen = 32;
  2267. sin = (struct sockaddr_in *) (addr + 1);
  2268. sin->sin_family = AF_INET;
  2269. sin->sin_addr.s_addr = x->id.daddr.a4;
  2270. sin->sin_port = 0;
  2271. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2272. }
  2273. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2274. else if (x->props.family == AF_INET6) {
  2275. addr->sadb_address_prefixlen = 128;
  2276. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2277. sin6->sin6_family = AF_INET6;
  2278. sin6->sin6_port = 0;
  2279. sin6->sin6_flowinfo = 0;
  2280. memcpy(&sin6->sin6_addr,
  2281. x->id.daddr.a6, sizeof(struct in6_addr));
  2282. sin6->sin6_scope_id = 0;
  2283. }
  2284. #endif
  2285. else
  2286. BUG();
  2287. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2288. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2289. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2290. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2291. pol->sadb_x_policy_dir = dir+1;
  2292. pol->sadb_x_policy_id = xp->index;
  2293. /* Set sadb_comb's. */
  2294. if (x->id.proto == IPPROTO_AH)
  2295. dump_ah_combs(skb, t);
  2296. else if (x->id.proto == IPPROTO_ESP)
  2297. dump_esp_combs(skb, t);
  2298. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2299. }
  2300. static struct xfrm_policy *pfkey_compile_policy(u16 family, int opt,
  2301. u8 *data, int len, int *dir)
  2302. {
  2303. struct xfrm_policy *xp;
  2304. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2305. switch (family) {
  2306. case AF_INET:
  2307. if (opt != IP_IPSEC_POLICY) {
  2308. *dir = -EOPNOTSUPP;
  2309. return NULL;
  2310. }
  2311. break;
  2312. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2313. case AF_INET6:
  2314. if (opt != IPV6_IPSEC_POLICY) {
  2315. *dir = -EOPNOTSUPP;
  2316. return NULL;
  2317. }
  2318. break;
  2319. #endif
  2320. default:
  2321. *dir = -EINVAL;
  2322. return NULL;
  2323. }
  2324. *dir = -EINVAL;
  2325. if (len < sizeof(struct sadb_x_policy) ||
  2326. pol->sadb_x_policy_len*8 > len ||
  2327. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2328. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2329. return NULL;
  2330. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2331. if (xp == NULL) {
  2332. *dir = -ENOBUFS;
  2333. return NULL;
  2334. }
  2335. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2336. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2337. xp->lft.soft_byte_limit = XFRM_INF;
  2338. xp->lft.hard_byte_limit = XFRM_INF;
  2339. xp->lft.soft_packet_limit = XFRM_INF;
  2340. xp->lft.hard_packet_limit = XFRM_INF;
  2341. xp->family = family;
  2342. xp->xfrm_nr = 0;
  2343. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2344. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2345. goto out;
  2346. *dir = pol->sadb_x_policy_dir-1;
  2347. return xp;
  2348. out:
  2349. kfree(xp);
  2350. return NULL;
  2351. }
  2352. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, u16 sport)
  2353. {
  2354. struct sk_buff *skb;
  2355. struct sadb_msg *hdr;
  2356. struct sadb_sa *sa;
  2357. struct sadb_address *addr;
  2358. struct sadb_x_nat_t_port *n_port;
  2359. struct sockaddr_in *sin;
  2360. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2361. struct sockaddr_in6 *sin6;
  2362. #endif
  2363. int sockaddr_size;
  2364. int size;
  2365. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2366. struct xfrm_encap_tmpl *natt = NULL;
  2367. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2368. if (!sockaddr_size)
  2369. return -EINVAL;
  2370. if (!satype)
  2371. return -EINVAL;
  2372. if (!x->encap)
  2373. return -EINVAL;
  2374. natt = x->encap;
  2375. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2376. *
  2377. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2378. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2379. */
  2380. size = sizeof(struct sadb_msg) +
  2381. sizeof(struct sadb_sa) +
  2382. (sizeof(struct sadb_address) * 2) +
  2383. (sockaddr_size * 2) +
  2384. (sizeof(struct sadb_x_nat_t_port) * 2);
  2385. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2386. if (skb == NULL)
  2387. return -ENOMEM;
  2388. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2389. hdr->sadb_msg_version = PF_KEY_V2;
  2390. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2391. hdr->sadb_msg_satype = satype;
  2392. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2393. hdr->sadb_msg_errno = 0;
  2394. hdr->sadb_msg_reserved = 0;
  2395. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2396. hdr->sadb_msg_pid = 0;
  2397. /* SA */
  2398. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2399. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2400. sa->sadb_sa_exttype = SADB_EXT_SA;
  2401. sa->sadb_sa_spi = x->id.spi;
  2402. sa->sadb_sa_replay = 0;
  2403. sa->sadb_sa_state = 0;
  2404. sa->sadb_sa_auth = 0;
  2405. sa->sadb_sa_encrypt = 0;
  2406. sa->sadb_sa_flags = 0;
  2407. /* ADDRESS_SRC (old addr) */
  2408. addr = (struct sadb_address*)
  2409. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2410. addr->sadb_address_len =
  2411. (sizeof(struct sadb_address)+sockaddr_size)/
  2412. sizeof(uint64_t);
  2413. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2414. addr->sadb_address_proto = 0;
  2415. addr->sadb_address_reserved = 0;
  2416. if (x->props.family == AF_INET) {
  2417. addr->sadb_address_prefixlen = 32;
  2418. sin = (struct sockaddr_in *) (addr + 1);
  2419. sin->sin_family = AF_INET;
  2420. sin->sin_addr.s_addr = x->props.saddr.a4;
  2421. sin->sin_port = 0;
  2422. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2423. }
  2424. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2425. else if (x->props.family == AF_INET6) {
  2426. addr->sadb_address_prefixlen = 128;
  2427. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2428. sin6->sin6_family = AF_INET6;
  2429. sin6->sin6_port = 0;
  2430. sin6->sin6_flowinfo = 0;
  2431. memcpy(&sin6->sin6_addr,
  2432. x->props.saddr.a6, sizeof(struct in6_addr));
  2433. sin6->sin6_scope_id = 0;
  2434. }
  2435. #endif
  2436. else
  2437. BUG();
  2438. /* NAT_T_SPORT (old port) */
  2439. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2440. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2441. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2442. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2443. n_port->sadb_x_nat_t_port_reserved = 0;
  2444. /* ADDRESS_DST (new addr) */
  2445. addr = (struct sadb_address*)
  2446. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2447. addr->sadb_address_len =
  2448. (sizeof(struct sadb_address)+sockaddr_size)/
  2449. sizeof(uint64_t);
  2450. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2451. addr->sadb_address_proto = 0;
  2452. addr->sadb_address_reserved = 0;
  2453. if (x->props.family == AF_INET) {
  2454. addr->sadb_address_prefixlen = 32;
  2455. sin = (struct sockaddr_in *) (addr + 1);
  2456. sin->sin_family = AF_INET;
  2457. sin->sin_addr.s_addr = ipaddr->a4;
  2458. sin->sin_port = 0;
  2459. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2460. }
  2461. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2462. else if (x->props.family == AF_INET6) {
  2463. addr->sadb_address_prefixlen = 128;
  2464. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2465. sin6->sin6_family = AF_INET6;
  2466. sin6->sin6_port = 0;
  2467. sin6->sin6_flowinfo = 0;
  2468. memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
  2469. sin6->sin6_scope_id = 0;
  2470. }
  2471. #endif
  2472. else
  2473. BUG();
  2474. /* NAT_T_DPORT (new port) */
  2475. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2476. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2477. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2478. n_port->sadb_x_nat_t_port_port = sport;
  2479. n_port->sadb_x_nat_t_port_reserved = 0;
  2480. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2481. }
  2482. static int pfkey_sendmsg(struct kiocb *kiocb,
  2483. struct socket *sock, struct msghdr *msg, size_t len)
  2484. {
  2485. struct sock *sk = sock->sk;
  2486. struct sk_buff *skb = NULL;
  2487. struct sadb_msg *hdr = NULL;
  2488. int err;
  2489. err = -EOPNOTSUPP;
  2490. if (msg->msg_flags & MSG_OOB)
  2491. goto out;
  2492. err = -EMSGSIZE;
  2493. if ((unsigned)len > sk->sk_sndbuf - 32)
  2494. goto out;
  2495. err = -ENOBUFS;
  2496. skb = alloc_skb(len, GFP_KERNEL);
  2497. if (skb == NULL)
  2498. goto out;
  2499. err = -EFAULT;
  2500. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  2501. goto out;
  2502. hdr = pfkey_get_base_msg(skb, &err);
  2503. if (!hdr)
  2504. goto out;
  2505. down(&xfrm_cfg_sem);
  2506. err = pfkey_process(sk, skb, hdr);
  2507. up(&xfrm_cfg_sem);
  2508. out:
  2509. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  2510. err = 0;
  2511. if (skb)
  2512. kfree_skb(skb);
  2513. return err ? : len;
  2514. }
  2515. static int pfkey_recvmsg(struct kiocb *kiocb,
  2516. struct socket *sock, struct msghdr *msg, size_t len,
  2517. int flags)
  2518. {
  2519. struct sock *sk = sock->sk;
  2520. struct sk_buff *skb;
  2521. int copied, err;
  2522. err = -EINVAL;
  2523. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  2524. goto out;
  2525. msg->msg_namelen = 0;
  2526. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  2527. if (skb == NULL)
  2528. goto out;
  2529. copied = skb->len;
  2530. if (copied > len) {
  2531. msg->msg_flags |= MSG_TRUNC;
  2532. copied = len;
  2533. }
  2534. skb->h.raw = skb->data;
  2535. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  2536. if (err)
  2537. goto out_free;
  2538. sock_recv_timestamp(msg, sk, skb);
  2539. err = (flags & MSG_TRUNC) ? skb->len : copied;
  2540. out_free:
  2541. skb_free_datagram(sk, skb);
  2542. out:
  2543. return err;
  2544. }
  2545. static struct proto_ops pfkey_ops = {
  2546. .family = PF_KEY,
  2547. .owner = THIS_MODULE,
  2548. /* Operations that make no sense on pfkey sockets. */
  2549. .bind = sock_no_bind,
  2550. .connect = sock_no_connect,
  2551. .socketpair = sock_no_socketpair,
  2552. .accept = sock_no_accept,
  2553. .getname = sock_no_getname,
  2554. .ioctl = sock_no_ioctl,
  2555. .listen = sock_no_listen,
  2556. .shutdown = sock_no_shutdown,
  2557. .setsockopt = sock_no_setsockopt,
  2558. .getsockopt = sock_no_getsockopt,
  2559. .mmap = sock_no_mmap,
  2560. .sendpage = sock_no_sendpage,
  2561. /* Now the operations that really occur. */
  2562. .release = pfkey_release,
  2563. .poll = datagram_poll,
  2564. .sendmsg = pfkey_sendmsg,
  2565. .recvmsg = pfkey_recvmsg,
  2566. };
  2567. static struct net_proto_family pfkey_family_ops = {
  2568. .family = PF_KEY,
  2569. .create = pfkey_create,
  2570. .owner = THIS_MODULE,
  2571. };
  2572. #ifdef CONFIG_PROC_FS
  2573. static int pfkey_read_proc(char *buffer, char **start, off_t offset,
  2574. int length, int *eof, void *data)
  2575. {
  2576. off_t pos = 0;
  2577. off_t begin = 0;
  2578. int len = 0;
  2579. struct sock *s;
  2580. struct hlist_node *node;
  2581. len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n");
  2582. read_lock(&pfkey_table_lock);
  2583. sk_for_each(s, node, &pfkey_table) {
  2584. len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu",
  2585. s,
  2586. atomic_read(&s->sk_refcnt),
  2587. atomic_read(&s->sk_rmem_alloc),
  2588. atomic_read(&s->sk_wmem_alloc),
  2589. sock_i_uid(s),
  2590. sock_i_ino(s)
  2591. );
  2592. buffer[len++] = '\n';
  2593. pos = begin + len;
  2594. if (pos < offset) {
  2595. len = 0;
  2596. begin = pos;
  2597. }
  2598. if(pos > offset + length)
  2599. goto done;
  2600. }
  2601. *eof = 1;
  2602. done:
  2603. read_unlock(&pfkey_table_lock);
  2604. *start = buffer + (offset - begin);
  2605. len -= (offset - begin);
  2606. if (len > length)
  2607. len = length;
  2608. if (len < 0)
  2609. len = 0;
  2610. return len;
  2611. }
  2612. #endif
  2613. static struct xfrm_mgr pfkeyv2_mgr =
  2614. {
  2615. .id = "pfkeyv2",
  2616. .notify = pfkey_send_notify,
  2617. .acquire = pfkey_send_acquire,
  2618. .compile_policy = pfkey_compile_policy,
  2619. .new_mapping = pfkey_send_new_mapping,
  2620. .notify_policy = pfkey_send_policy_notify,
  2621. };
  2622. static void __exit ipsec_pfkey_exit(void)
  2623. {
  2624. xfrm_unregister_km(&pfkeyv2_mgr);
  2625. remove_proc_entry("net/pfkey", NULL);
  2626. sock_unregister(PF_KEY);
  2627. proto_unregister(&key_proto);
  2628. }
  2629. static int __init ipsec_pfkey_init(void)
  2630. {
  2631. int err = proto_register(&key_proto, 0);
  2632. if (err != 0)
  2633. goto out;
  2634. err = sock_register(&pfkey_family_ops);
  2635. if (err != 0)
  2636. goto out_unregister_key_proto;
  2637. #ifdef CONFIG_PROC_FS
  2638. err = -ENOMEM;
  2639. if (create_proc_read_entry("net/pfkey", 0, NULL, pfkey_read_proc, NULL) == NULL)
  2640. goto out_sock_unregister;
  2641. #endif
  2642. err = xfrm_register_km(&pfkeyv2_mgr);
  2643. if (err != 0)
  2644. goto out_remove_proc_entry;
  2645. out:
  2646. return err;
  2647. out_remove_proc_entry:
  2648. #ifdef CONFIG_PROC_FS
  2649. remove_proc_entry("net/pfkey", NULL);
  2650. out_sock_unregister:
  2651. #endif
  2652. sock_unregister(PF_KEY);
  2653. out_unregister_key_proto:
  2654. proto_unregister(&key_proto);
  2655. goto out;
  2656. }
  2657. module_init(ipsec_pfkey_init);
  2658. module_exit(ipsec_pfkey_exit);
  2659. MODULE_LICENSE("GPL");
  2660. MODULE_ALIAS_NETPROTO(PF_KEY);