i915_gem.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. #include <linux/dma-buf.h>
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable);
  43. static int i915_gem_phys_pwrite(struct drm_device *dev,
  44. struct drm_i915_gem_object *obj,
  45. struct drm_i915_gem_pwrite *args,
  46. struct drm_file *file);
  47. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  48. struct drm_i915_gem_object *obj);
  49. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  50. struct drm_i915_fence_reg *fence,
  51. bool enable);
  52. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  53. struct shrink_control *sc);
  54. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  55. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  56. {
  57. if (obj->tiling_mode)
  58. i915_gem_release_mmap(obj);
  59. /* As we do not have an associated fence register, we will force
  60. * a tiling change if we ever need to acquire one.
  61. */
  62. obj->fence_dirty = false;
  63. obj->fence_reg = I915_FENCE_REG_NONE;
  64. }
  65. /* some bookkeeping */
  66. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  67. size_t size)
  68. {
  69. dev_priv->mm.object_count++;
  70. dev_priv->mm.object_memory += size;
  71. }
  72. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  73. size_t size)
  74. {
  75. dev_priv->mm.object_count--;
  76. dev_priv->mm.object_memory -= size;
  77. }
  78. static int
  79. i915_gem_wait_for_error(struct drm_device *dev)
  80. {
  81. struct drm_i915_private *dev_priv = dev->dev_private;
  82. struct completion *x = &dev_priv->error_completion;
  83. unsigned long flags;
  84. int ret;
  85. if (!atomic_read(&dev_priv->mm.wedged))
  86. return 0;
  87. /*
  88. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  89. * userspace. If it takes that long something really bad is going on and
  90. * we should simply try to bail out and fail as gracefully as possible.
  91. */
  92. ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
  93. if (ret == 0) {
  94. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  95. return -EIO;
  96. } else if (ret < 0) {
  97. return ret;
  98. }
  99. if (atomic_read(&dev_priv->mm.wedged)) {
  100. /* GPU is hung, bump the completion count to account for
  101. * the token we just consumed so that we never hit zero and
  102. * end up waiting upon a subsequent completion event that
  103. * will never happen.
  104. */
  105. spin_lock_irqsave(&x->wait.lock, flags);
  106. x->done++;
  107. spin_unlock_irqrestore(&x->wait.lock, flags);
  108. }
  109. return 0;
  110. }
  111. int i915_mutex_lock_interruptible(struct drm_device *dev)
  112. {
  113. int ret;
  114. ret = i915_gem_wait_for_error(dev);
  115. if (ret)
  116. return ret;
  117. ret = mutex_lock_interruptible(&dev->struct_mutex);
  118. if (ret)
  119. return ret;
  120. WARN_ON(i915_verify_lists(dev));
  121. return 0;
  122. }
  123. static inline bool
  124. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  125. {
  126. return !obj->active;
  127. }
  128. int
  129. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  130. struct drm_file *file)
  131. {
  132. struct drm_i915_gem_init *args = data;
  133. if (drm_core_check_feature(dev, DRIVER_MODESET))
  134. return -ENODEV;
  135. if (args->gtt_start >= args->gtt_end ||
  136. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  137. return -EINVAL;
  138. /* GEM with user mode setting was never supported on ilk and later. */
  139. if (INTEL_INFO(dev)->gen >= 5)
  140. return -ENODEV;
  141. mutex_lock(&dev->struct_mutex);
  142. i915_gem_init_global_gtt(dev, args->gtt_start,
  143. args->gtt_end, args->gtt_end);
  144. mutex_unlock(&dev->struct_mutex);
  145. return 0;
  146. }
  147. int
  148. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  149. struct drm_file *file)
  150. {
  151. struct drm_i915_private *dev_priv = dev->dev_private;
  152. struct drm_i915_gem_get_aperture *args = data;
  153. struct drm_i915_gem_object *obj;
  154. size_t pinned;
  155. pinned = 0;
  156. mutex_lock(&dev->struct_mutex);
  157. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
  158. if (obj->pin_count)
  159. pinned += obj->gtt_space->size;
  160. mutex_unlock(&dev->struct_mutex);
  161. args->aper_size = dev_priv->mm.gtt_total;
  162. args->aper_available_size = args->aper_size - pinned;
  163. return 0;
  164. }
  165. static int
  166. i915_gem_create(struct drm_file *file,
  167. struct drm_device *dev,
  168. uint64_t size,
  169. uint32_t *handle_p)
  170. {
  171. struct drm_i915_gem_object *obj;
  172. int ret;
  173. u32 handle;
  174. size = roundup(size, PAGE_SIZE);
  175. if (size == 0)
  176. return -EINVAL;
  177. /* Allocate the new object */
  178. obj = i915_gem_alloc_object(dev, size);
  179. if (obj == NULL)
  180. return -ENOMEM;
  181. ret = drm_gem_handle_create(file, &obj->base, &handle);
  182. if (ret) {
  183. drm_gem_object_release(&obj->base);
  184. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  185. kfree(obj);
  186. return ret;
  187. }
  188. /* drop reference from allocate - handle holds it now */
  189. drm_gem_object_unreference(&obj->base);
  190. trace_i915_gem_object_create(obj);
  191. *handle_p = handle;
  192. return 0;
  193. }
  194. int
  195. i915_gem_dumb_create(struct drm_file *file,
  196. struct drm_device *dev,
  197. struct drm_mode_create_dumb *args)
  198. {
  199. /* have to work out size/pitch and return them */
  200. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  201. args->size = args->pitch * args->height;
  202. return i915_gem_create(file, dev,
  203. args->size, &args->handle);
  204. }
  205. int i915_gem_dumb_destroy(struct drm_file *file,
  206. struct drm_device *dev,
  207. uint32_t handle)
  208. {
  209. return drm_gem_handle_delete(file, handle);
  210. }
  211. /**
  212. * Creates a new mm object and returns a handle to it.
  213. */
  214. int
  215. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  216. struct drm_file *file)
  217. {
  218. struct drm_i915_gem_create *args = data;
  219. return i915_gem_create(file, dev,
  220. args->size, &args->handle);
  221. }
  222. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  223. {
  224. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  225. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  226. obj->tiling_mode != I915_TILING_NONE;
  227. }
  228. static inline int
  229. __copy_to_user_swizzled(char __user *cpu_vaddr,
  230. const char *gpu_vaddr, int gpu_offset,
  231. int length)
  232. {
  233. int ret, cpu_offset = 0;
  234. while (length > 0) {
  235. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  236. int this_length = min(cacheline_end - gpu_offset, length);
  237. int swizzled_gpu_offset = gpu_offset ^ 64;
  238. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  239. gpu_vaddr + swizzled_gpu_offset,
  240. this_length);
  241. if (ret)
  242. return ret + length;
  243. cpu_offset += this_length;
  244. gpu_offset += this_length;
  245. length -= this_length;
  246. }
  247. return 0;
  248. }
  249. static inline int
  250. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  251. const char __user *cpu_vaddr,
  252. int length)
  253. {
  254. int ret, cpu_offset = 0;
  255. while (length > 0) {
  256. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  257. int this_length = min(cacheline_end - gpu_offset, length);
  258. int swizzled_gpu_offset = gpu_offset ^ 64;
  259. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  260. cpu_vaddr + cpu_offset,
  261. this_length);
  262. if (ret)
  263. return ret + length;
  264. cpu_offset += this_length;
  265. gpu_offset += this_length;
  266. length -= this_length;
  267. }
  268. return 0;
  269. }
  270. /* Per-page copy function for the shmem pread fastpath.
  271. * Flushes invalid cachelines before reading the target if
  272. * needs_clflush is set. */
  273. static int
  274. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  275. char __user *user_data,
  276. bool page_do_bit17_swizzling, bool needs_clflush)
  277. {
  278. char *vaddr;
  279. int ret;
  280. if (unlikely(page_do_bit17_swizzling))
  281. return -EINVAL;
  282. vaddr = kmap_atomic(page);
  283. if (needs_clflush)
  284. drm_clflush_virt_range(vaddr + shmem_page_offset,
  285. page_length);
  286. ret = __copy_to_user_inatomic(user_data,
  287. vaddr + shmem_page_offset,
  288. page_length);
  289. kunmap_atomic(vaddr);
  290. return ret;
  291. }
  292. static void
  293. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  294. bool swizzled)
  295. {
  296. if (unlikely(swizzled)) {
  297. unsigned long start = (unsigned long) addr;
  298. unsigned long end = (unsigned long) addr + length;
  299. /* For swizzling simply ensure that we always flush both
  300. * channels. Lame, but simple and it works. Swizzled
  301. * pwrite/pread is far from a hotpath - current userspace
  302. * doesn't use it at all. */
  303. start = round_down(start, 128);
  304. end = round_up(end, 128);
  305. drm_clflush_virt_range((void *)start, end - start);
  306. } else {
  307. drm_clflush_virt_range(addr, length);
  308. }
  309. }
  310. /* Only difference to the fast-path function is that this can handle bit17
  311. * and uses non-atomic copy and kmap functions. */
  312. static int
  313. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  314. char __user *user_data,
  315. bool page_do_bit17_swizzling, bool needs_clflush)
  316. {
  317. char *vaddr;
  318. int ret;
  319. vaddr = kmap(page);
  320. if (needs_clflush)
  321. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  322. page_length,
  323. page_do_bit17_swizzling);
  324. if (page_do_bit17_swizzling)
  325. ret = __copy_to_user_swizzled(user_data,
  326. vaddr, shmem_page_offset,
  327. page_length);
  328. else
  329. ret = __copy_to_user(user_data,
  330. vaddr + shmem_page_offset,
  331. page_length);
  332. kunmap(page);
  333. return ret;
  334. }
  335. static int
  336. i915_gem_shmem_pread(struct drm_device *dev,
  337. struct drm_i915_gem_object *obj,
  338. struct drm_i915_gem_pread *args,
  339. struct drm_file *file)
  340. {
  341. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  342. char __user *user_data;
  343. ssize_t remain;
  344. loff_t offset;
  345. int shmem_page_offset, page_length, ret = 0;
  346. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  347. int hit_slowpath = 0;
  348. int prefaulted = 0;
  349. int needs_clflush = 0;
  350. int release_page;
  351. user_data = (char __user *) (uintptr_t) args->data_ptr;
  352. remain = args->size;
  353. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  354. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  355. /* If we're not in the cpu read domain, set ourself into the gtt
  356. * read domain and manually flush cachelines (if required). This
  357. * optimizes for the case when the gpu will dirty the data
  358. * anyway again before the next pread happens. */
  359. if (obj->cache_level == I915_CACHE_NONE)
  360. needs_clflush = 1;
  361. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  362. if (ret)
  363. return ret;
  364. }
  365. offset = args->offset;
  366. while (remain > 0) {
  367. struct page *page;
  368. /* Operation in this page
  369. *
  370. * shmem_page_offset = offset within page in shmem file
  371. * page_length = bytes to copy for this page
  372. */
  373. shmem_page_offset = offset_in_page(offset);
  374. page_length = remain;
  375. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  376. page_length = PAGE_SIZE - shmem_page_offset;
  377. if (obj->pages) {
  378. page = obj->pages[offset >> PAGE_SHIFT];
  379. release_page = 0;
  380. } else {
  381. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  382. if (IS_ERR(page)) {
  383. ret = PTR_ERR(page);
  384. goto out;
  385. }
  386. release_page = 1;
  387. }
  388. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  389. (page_to_phys(page) & (1 << 17)) != 0;
  390. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  391. user_data, page_do_bit17_swizzling,
  392. needs_clflush);
  393. if (ret == 0)
  394. goto next_page;
  395. hit_slowpath = 1;
  396. page_cache_get(page);
  397. mutex_unlock(&dev->struct_mutex);
  398. if (!prefaulted) {
  399. ret = fault_in_multipages_writeable(user_data, remain);
  400. /* Userspace is tricking us, but we've already clobbered
  401. * its pages with the prefault and promised to write the
  402. * data up to the first fault. Hence ignore any errors
  403. * and just continue. */
  404. (void)ret;
  405. prefaulted = 1;
  406. }
  407. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  408. user_data, page_do_bit17_swizzling,
  409. needs_clflush);
  410. mutex_lock(&dev->struct_mutex);
  411. page_cache_release(page);
  412. next_page:
  413. mark_page_accessed(page);
  414. if (release_page)
  415. page_cache_release(page);
  416. if (ret) {
  417. ret = -EFAULT;
  418. goto out;
  419. }
  420. remain -= page_length;
  421. user_data += page_length;
  422. offset += page_length;
  423. }
  424. out:
  425. if (hit_slowpath) {
  426. /* Fixup: Kill any reinstated backing storage pages */
  427. if (obj->madv == __I915_MADV_PURGED)
  428. i915_gem_object_truncate(obj);
  429. }
  430. return ret;
  431. }
  432. /**
  433. * Reads data from the object referenced by handle.
  434. *
  435. * On error, the contents of *data are undefined.
  436. */
  437. int
  438. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  439. struct drm_file *file)
  440. {
  441. struct drm_i915_gem_pread *args = data;
  442. struct drm_i915_gem_object *obj;
  443. int ret = 0;
  444. if (args->size == 0)
  445. return 0;
  446. if (!access_ok(VERIFY_WRITE,
  447. (char __user *)(uintptr_t)args->data_ptr,
  448. args->size))
  449. return -EFAULT;
  450. ret = i915_mutex_lock_interruptible(dev);
  451. if (ret)
  452. return ret;
  453. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  454. if (&obj->base == NULL) {
  455. ret = -ENOENT;
  456. goto unlock;
  457. }
  458. /* Bounds check source. */
  459. if (args->offset > obj->base.size ||
  460. args->size > obj->base.size - args->offset) {
  461. ret = -EINVAL;
  462. goto out;
  463. }
  464. /* prime objects have no backing filp to GEM pread/pwrite
  465. * pages from.
  466. */
  467. if (!obj->base.filp) {
  468. ret = -EINVAL;
  469. goto out;
  470. }
  471. trace_i915_gem_object_pread(obj, args->offset, args->size);
  472. ret = i915_gem_shmem_pread(dev, obj, args, file);
  473. out:
  474. drm_gem_object_unreference(&obj->base);
  475. unlock:
  476. mutex_unlock(&dev->struct_mutex);
  477. return ret;
  478. }
  479. /* This is the fast write path which cannot handle
  480. * page faults in the source data
  481. */
  482. static inline int
  483. fast_user_write(struct io_mapping *mapping,
  484. loff_t page_base, int page_offset,
  485. char __user *user_data,
  486. int length)
  487. {
  488. void __iomem *vaddr_atomic;
  489. void *vaddr;
  490. unsigned long unwritten;
  491. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  492. /* We can use the cpu mem copy function because this is X86. */
  493. vaddr = (void __force*)vaddr_atomic + page_offset;
  494. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  495. user_data, length);
  496. io_mapping_unmap_atomic(vaddr_atomic);
  497. return unwritten;
  498. }
  499. /**
  500. * This is the fast pwrite path, where we copy the data directly from the
  501. * user into the GTT, uncached.
  502. */
  503. static int
  504. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  505. struct drm_i915_gem_object *obj,
  506. struct drm_i915_gem_pwrite *args,
  507. struct drm_file *file)
  508. {
  509. drm_i915_private_t *dev_priv = dev->dev_private;
  510. ssize_t remain;
  511. loff_t offset, page_base;
  512. char __user *user_data;
  513. int page_offset, page_length, ret;
  514. ret = i915_gem_object_pin(obj, 0, true);
  515. if (ret)
  516. goto out;
  517. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  518. if (ret)
  519. goto out_unpin;
  520. ret = i915_gem_object_put_fence(obj);
  521. if (ret)
  522. goto out_unpin;
  523. user_data = (char __user *) (uintptr_t) args->data_ptr;
  524. remain = args->size;
  525. offset = obj->gtt_offset + args->offset;
  526. while (remain > 0) {
  527. /* Operation in this page
  528. *
  529. * page_base = page offset within aperture
  530. * page_offset = offset within page
  531. * page_length = bytes to copy for this page
  532. */
  533. page_base = offset & PAGE_MASK;
  534. page_offset = offset_in_page(offset);
  535. page_length = remain;
  536. if ((page_offset + remain) > PAGE_SIZE)
  537. page_length = PAGE_SIZE - page_offset;
  538. /* If we get a fault while copying data, then (presumably) our
  539. * source page isn't available. Return the error and we'll
  540. * retry in the slow path.
  541. */
  542. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  543. page_offset, user_data, page_length)) {
  544. ret = -EFAULT;
  545. goto out_unpin;
  546. }
  547. remain -= page_length;
  548. user_data += page_length;
  549. offset += page_length;
  550. }
  551. out_unpin:
  552. i915_gem_object_unpin(obj);
  553. out:
  554. return ret;
  555. }
  556. /* Per-page copy function for the shmem pwrite fastpath.
  557. * Flushes invalid cachelines before writing to the target if
  558. * needs_clflush_before is set and flushes out any written cachelines after
  559. * writing if needs_clflush is set. */
  560. static int
  561. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  562. char __user *user_data,
  563. bool page_do_bit17_swizzling,
  564. bool needs_clflush_before,
  565. bool needs_clflush_after)
  566. {
  567. char *vaddr;
  568. int ret;
  569. if (unlikely(page_do_bit17_swizzling))
  570. return -EINVAL;
  571. vaddr = kmap_atomic(page);
  572. if (needs_clflush_before)
  573. drm_clflush_virt_range(vaddr + shmem_page_offset,
  574. page_length);
  575. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  576. user_data,
  577. page_length);
  578. if (needs_clflush_after)
  579. drm_clflush_virt_range(vaddr + shmem_page_offset,
  580. page_length);
  581. kunmap_atomic(vaddr);
  582. return ret;
  583. }
  584. /* Only difference to the fast-path function is that this can handle bit17
  585. * and uses non-atomic copy and kmap functions. */
  586. static int
  587. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  588. char __user *user_data,
  589. bool page_do_bit17_swizzling,
  590. bool needs_clflush_before,
  591. bool needs_clflush_after)
  592. {
  593. char *vaddr;
  594. int ret;
  595. vaddr = kmap(page);
  596. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  597. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  598. page_length,
  599. page_do_bit17_swizzling);
  600. if (page_do_bit17_swizzling)
  601. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  602. user_data,
  603. page_length);
  604. else
  605. ret = __copy_from_user(vaddr + shmem_page_offset,
  606. user_data,
  607. page_length);
  608. if (needs_clflush_after)
  609. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  610. page_length,
  611. page_do_bit17_swizzling);
  612. kunmap(page);
  613. return ret;
  614. }
  615. static int
  616. i915_gem_shmem_pwrite(struct drm_device *dev,
  617. struct drm_i915_gem_object *obj,
  618. struct drm_i915_gem_pwrite *args,
  619. struct drm_file *file)
  620. {
  621. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  622. ssize_t remain;
  623. loff_t offset;
  624. char __user *user_data;
  625. int shmem_page_offset, page_length, ret = 0;
  626. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  627. int hit_slowpath = 0;
  628. int needs_clflush_after = 0;
  629. int needs_clflush_before = 0;
  630. int release_page;
  631. user_data = (char __user *) (uintptr_t) args->data_ptr;
  632. remain = args->size;
  633. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  634. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  635. /* If we're not in the cpu write domain, set ourself into the gtt
  636. * write domain and manually flush cachelines (if required). This
  637. * optimizes for the case when the gpu will use the data
  638. * right away and we therefore have to clflush anyway. */
  639. if (obj->cache_level == I915_CACHE_NONE)
  640. needs_clflush_after = 1;
  641. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  642. if (ret)
  643. return ret;
  644. }
  645. /* Same trick applies for invalidate partially written cachelines before
  646. * writing. */
  647. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  648. && obj->cache_level == I915_CACHE_NONE)
  649. needs_clflush_before = 1;
  650. offset = args->offset;
  651. obj->dirty = 1;
  652. while (remain > 0) {
  653. struct page *page;
  654. int partial_cacheline_write;
  655. /* Operation in this page
  656. *
  657. * shmem_page_offset = offset within page in shmem file
  658. * page_length = bytes to copy for this page
  659. */
  660. shmem_page_offset = offset_in_page(offset);
  661. page_length = remain;
  662. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  663. page_length = PAGE_SIZE - shmem_page_offset;
  664. /* If we don't overwrite a cacheline completely we need to be
  665. * careful to have up-to-date data by first clflushing. Don't
  666. * overcomplicate things and flush the entire patch. */
  667. partial_cacheline_write = needs_clflush_before &&
  668. ((shmem_page_offset | page_length)
  669. & (boot_cpu_data.x86_clflush_size - 1));
  670. if (obj->pages) {
  671. page = obj->pages[offset >> PAGE_SHIFT];
  672. release_page = 0;
  673. } else {
  674. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  675. if (IS_ERR(page)) {
  676. ret = PTR_ERR(page);
  677. goto out;
  678. }
  679. release_page = 1;
  680. }
  681. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  682. (page_to_phys(page) & (1 << 17)) != 0;
  683. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  684. user_data, page_do_bit17_swizzling,
  685. partial_cacheline_write,
  686. needs_clflush_after);
  687. if (ret == 0)
  688. goto next_page;
  689. hit_slowpath = 1;
  690. page_cache_get(page);
  691. mutex_unlock(&dev->struct_mutex);
  692. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  693. user_data, page_do_bit17_swizzling,
  694. partial_cacheline_write,
  695. needs_clflush_after);
  696. mutex_lock(&dev->struct_mutex);
  697. page_cache_release(page);
  698. next_page:
  699. set_page_dirty(page);
  700. mark_page_accessed(page);
  701. if (release_page)
  702. page_cache_release(page);
  703. if (ret) {
  704. ret = -EFAULT;
  705. goto out;
  706. }
  707. remain -= page_length;
  708. user_data += page_length;
  709. offset += page_length;
  710. }
  711. out:
  712. if (hit_slowpath) {
  713. /* Fixup: Kill any reinstated backing storage pages */
  714. if (obj->madv == __I915_MADV_PURGED)
  715. i915_gem_object_truncate(obj);
  716. /* and flush dirty cachelines in case the object isn't in the cpu write
  717. * domain anymore. */
  718. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  719. i915_gem_clflush_object(obj);
  720. intel_gtt_chipset_flush();
  721. }
  722. }
  723. if (needs_clflush_after)
  724. intel_gtt_chipset_flush();
  725. return ret;
  726. }
  727. /**
  728. * Writes data to the object referenced by handle.
  729. *
  730. * On error, the contents of the buffer that were to be modified are undefined.
  731. */
  732. int
  733. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  734. struct drm_file *file)
  735. {
  736. struct drm_i915_gem_pwrite *args = data;
  737. struct drm_i915_gem_object *obj;
  738. int ret;
  739. if (args->size == 0)
  740. return 0;
  741. if (!access_ok(VERIFY_READ,
  742. (char __user *)(uintptr_t)args->data_ptr,
  743. args->size))
  744. return -EFAULT;
  745. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  746. args->size);
  747. if (ret)
  748. return -EFAULT;
  749. ret = i915_mutex_lock_interruptible(dev);
  750. if (ret)
  751. return ret;
  752. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  753. if (&obj->base == NULL) {
  754. ret = -ENOENT;
  755. goto unlock;
  756. }
  757. /* Bounds check destination. */
  758. if (args->offset > obj->base.size ||
  759. args->size > obj->base.size - args->offset) {
  760. ret = -EINVAL;
  761. goto out;
  762. }
  763. /* prime objects have no backing filp to GEM pread/pwrite
  764. * pages from.
  765. */
  766. if (!obj->base.filp) {
  767. ret = -EINVAL;
  768. goto out;
  769. }
  770. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  771. ret = -EFAULT;
  772. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  773. * it would end up going through the fenced access, and we'll get
  774. * different detiling behavior between reading and writing.
  775. * pread/pwrite currently are reading and writing from the CPU
  776. * perspective, requiring manual detiling by the client.
  777. */
  778. if (obj->phys_obj) {
  779. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  780. goto out;
  781. }
  782. if (obj->gtt_space &&
  783. obj->cache_level == I915_CACHE_NONE &&
  784. obj->tiling_mode == I915_TILING_NONE &&
  785. obj->map_and_fenceable &&
  786. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  787. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  788. /* Note that the gtt paths might fail with non-page-backed user
  789. * pointers (e.g. gtt mappings when moving data between
  790. * textures). Fallback to the shmem path in that case. */
  791. }
  792. if (ret == -EFAULT)
  793. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  794. out:
  795. drm_gem_object_unreference(&obj->base);
  796. unlock:
  797. mutex_unlock(&dev->struct_mutex);
  798. return ret;
  799. }
  800. /**
  801. * Called when user space prepares to use an object with the CPU, either
  802. * through the mmap ioctl's mapping or a GTT mapping.
  803. */
  804. int
  805. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  806. struct drm_file *file)
  807. {
  808. struct drm_i915_gem_set_domain *args = data;
  809. struct drm_i915_gem_object *obj;
  810. uint32_t read_domains = args->read_domains;
  811. uint32_t write_domain = args->write_domain;
  812. int ret;
  813. /* Only handle setting domains to types used by the CPU. */
  814. if (write_domain & I915_GEM_GPU_DOMAINS)
  815. return -EINVAL;
  816. if (read_domains & I915_GEM_GPU_DOMAINS)
  817. return -EINVAL;
  818. /* Having something in the write domain implies it's in the read
  819. * domain, and only that read domain. Enforce that in the request.
  820. */
  821. if (write_domain != 0 && read_domains != write_domain)
  822. return -EINVAL;
  823. ret = i915_mutex_lock_interruptible(dev);
  824. if (ret)
  825. return ret;
  826. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  827. if (&obj->base == NULL) {
  828. ret = -ENOENT;
  829. goto unlock;
  830. }
  831. if (read_domains & I915_GEM_DOMAIN_GTT) {
  832. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  833. /* Silently promote "you're not bound, there was nothing to do"
  834. * to success, since the client was just asking us to
  835. * make sure everything was done.
  836. */
  837. if (ret == -EINVAL)
  838. ret = 0;
  839. } else {
  840. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  841. }
  842. drm_gem_object_unreference(&obj->base);
  843. unlock:
  844. mutex_unlock(&dev->struct_mutex);
  845. return ret;
  846. }
  847. /**
  848. * Called when user space has done writes to this buffer
  849. */
  850. int
  851. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  852. struct drm_file *file)
  853. {
  854. struct drm_i915_gem_sw_finish *args = data;
  855. struct drm_i915_gem_object *obj;
  856. int ret = 0;
  857. ret = i915_mutex_lock_interruptible(dev);
  858. if (ret)
  859. return ret;
  860. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  861. if (&obj->base == NULL) {
  862. ret = -ENOENT;
  863. goto unlock;
  864. }
  865. /* Pinned buffers may be scanout, so flush the cache */
  866. if (obj->pin_count)
  867. i915_gem_object_flush_cpu_write_domain(obj);
  868. drm_gem_object_unreference(&obj->base);
  869. unlock:
  870. mutex_unlock(&dev->struct_mutex);
  871. return ret;
  872. }
  873. /**
  874. * Maps the contents of an object, returning the address it is mapped
  875. * into.
  876. *
  877. * While the mapping holds a reference on the contents of the object, it doesn't
  878. * imply a ref on the object itself.
  879. */
  880. int
  881. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  882. struct drm_file *file)
  883. {
  884. struct drm_i915_gem_mmap *args = data;
  885. struct drm_gem_object *obj;
  886. unsigned long addr;
  887. obj = drm_gem_object_lookup(dev, file, args->handle);
  888. if (obj == NULL)
  889. return -ENOENT;
  890. /* prime objects have no backing filp to GEM mmap
  891. * pages from.
  892. */
  893. if (!obj->filp) {
  894. drm_gem_object_unreference_unlocked(obj);
  895. return -EINVAL;
  896. }
  897. addr = vm_mmap(obj->filp, 0, args->size,
  898. PROT_READ | PROT_WRITE, MAP_SHARED,
  899. args->offset);
  900. drm_gem_object_unreference_unlocked(obj);
  901. if (IS_ERR((void *)addr))
  902. return addr;
  903. args->addr_ptr = (uint64_t) addr;
  904. return 0;
  905. }
  906. /**
  907. * i915_gem_fault - fault a page into the GTT
  908. * vma: VMA in question
  909. * vmf: fault info
  910. *
  911. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  912. * from userspace. The fault handler takes care of binding the object to
  913. * the GTT (if needed), allocating and programming a fence register (again,
  914. * only if needed based on whether the old reg is still valid or the object
  915. * is tiled) and inserting a new PTE into the faulting process.
  916. *
  917. * Note that the faulting process may involve evicting existing objects
  918. * from the GTT and/or fence registers to make room. So performance may
  919. * suffer if the GTT working set is large or there are few fence registers
  920. * left.
  921. */
  922. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  923. {
  924. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  925. struct drm_device *dev = obj->base.dev;
  926. drm_i915_private_t *dev_priv = dev->dev_private;
  927. pgoff_t page_offset;
  928. unsigned long pfn;
  929. int ret = 0;
  930. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  931. /* We don't use vmf->pgoff since that has the fake offset */
  932. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  933. PAGE_SHIFT;
  934. ret = i915_mutex_lock_interruptible(dev);
  935. if (ret)
  936. goto out;
  937. trace_i915_gem_object_fault(obj, page_offset, true, write);
  938. /* Now bind it into the GTT if needed */
  939. if (!obj->map_and_fenceable) {
  940. ret = i915_gem_object_unbind(obj);
  941. if (ret)
  942. goto unlock;
  943. }
  944. if (!obj->gtt_space) {
  945. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  946. if (ret)
  947. goto unlock;
  948. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  949. if (ret)
  950. goto unlock;
  951. }
  952. if (!obj->has_global_gtt_mapping)
  953. i915_gem_gtt_bind_object(obj, obj->cache_level);
  954. ret = i915_gem_object_get_fence(obj);
  955. if (ret)
  956. goto unlock;
  957. if (i915_gem_object_is_inactive(obj))
  958. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  959. obj->fault_mappable = true;
  960. pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
  961. page_offset;
  962. /* Finally, remap it using the new GTT offset */
  963. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  964. unlock:
  965. mutex_unlock(&dev->struct_mutex);
  966. out:
  967. switch (ret) {
  968. case -EIO:
  969. /* If this -EIO is due to a gpu hang, give the reset code a
  970. * chance to clean up the mess. Otherwise return the proper
  971. * SIGBUS. */
  972. if (!atomic_read(&dev_priv->mm.wedged))
  973. return VM_FAULT_SIGBUS;
  974. case -EAGAIN:
  975. /* Give the error handler a chance to run and move the
  976. * objects off the GPU active list. Next time we service the
  977. * fault, we should be able to transition the page into the
  978. * GTT without touching the GPU (and so avoid further
  979. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  980. * with coherency, just lost writes.
  981. */
  982. set_need_resched();
  983. case 0:
  984. case -ERESTARTSYS:
  985. case -EINTR:
  986. return VM_FAULT_NOPAGE;
  987. case -ENOMEM:
  988. return VM_FAULT_OOM;
  989. default:
  990. return VM_FAULT_SIGBUS;
  991. }
  992. }
  993. /**
  994. * i915_gem_release_mmap - remove physical page mappings
  995. * @obj: obj in question
  996. *
  997. * Preserve the reservation of the mmapping with the DRM core code, but
  998. * relinquish ownership of the pages back to the system.
  999. *
  1000. * It is vital that we remove the page mapping if we have mapped a tiled
  1001. * object through the GTT and then lose the fence register due to
  1002. * resource pressure. Similarly if the object has been moved out of the
  1003. * aperture, than pages mapped into userspace must be revoked. Removing the
  1004. * mapping will then trigger a page fault on the next user access, allowing
  1005. * fixup by i915_gem_fault().
  1006. */
  1007. void
  1008. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1009. {
  1010. if (!obj->fault_mappable)
  1011. return;
  1012. if (obj->base.dev->dev_mapping)
  1013. unmap_mapping_range(obj->base.dev->dev_mapping,
  1014. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1015. obj->base.size, 1);
  1016. obj->fault_mappable = false;
  1017. }
  1018. static uint32_t
  1019. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1020. {
  1021. uint32_t gtt_size;
  1022. if (INTEL_INFO(dev)->gen >= 4 ||
  1023. tiling_mode == I915_TILING_NONE)
  1024. return size;
  1025. /* Previous chips need a power-of-two fence region when tiling */
  1026. if (INTEL_INFO(dev)->gen == 3)
  1027. gtt_size = 1024*1024;
  1028. else
  1029. gtt_size = 512*1024;
  1030. while (gtt_size < size)
  1031. gtt_size <<= 1;
  1032. return gtt_size;
  1033. }
  1034. /**
  1035. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1036. * @obj: object to check
  1037. *
  1038. * Return the required GTT alignment for an object, taking into account
  1039. * potential fence register mapping.
  1040. */
  1041. static uint32_t
  1042. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1043. uint32_t size,
  1044. int tiling_mode)
  1045. {
  1046. /*
  1047. * Minimum alignment is 4k (GTT page size), but might be greater
  1048. * if a fence register is needed for the object.
  1049. */
  1050. if (INTEL_INFO(dev)->gen >= 4 ||
  1051. tiling_mode == I915_TILING_NONE)
  1052. return 4096;
  1053. /*
  1054. * Previous chips need to be aligned to the size of the smallest
  1055. * fence register that can contain the object.
  1056. */
  1057. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1058. }
  1059. /**
  1060. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1061. * unfenced object
  1062. * @dev: the device
  1063. * @size: size of the object
  1064. * @tiling_mode: tiling mode of the object
  1065. *
  1066. * Return the required GTT alignment for an object, only taking into account
  1067. * unfenced tiled surface requirements.
  1068. */
  1069. uint32_t
  1070. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1071. uint32_t size,
  1072. int tiling_mode)
  1073. {
  1074. /*
  1075. * Minimum alignment is 4k (GTT page size) for sane hw.
  1076. */
  1077. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1078. tiling_mode == I915_TILING_NONE)
  1079. return 4096;
  1080. /* Previous hardware however needs to be aligned to a power-of-two
  1081. * tile height. The simplest method for determining this is to reuse
  1082. * the power-of-tile object size.
  1083. */
  1084. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1085. }
  1086. int
  1087. i915_gem_mmap_gtt(struct drm_file *file,
  1088. struct drm_device *dev,
  1089. uint32_t handle,
  1090. uint64_t *offset)
  1091. {
  1092. struct drm_i915_private *dev_priv = dev->dev_private;
  1093. struct drm_i915_gem_object *obj;
  1094. int ret;
  1095. ret = i915_mutex_lock_interruptible(dev);
  1096. if (ret)
  1097. return ret;
  1098. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1099. if (&obj->base == NULL) {
  1100. ret = -ENOENT;
  1101. goto unlock;
  1102. }
  1103. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1104. ret = -E2BIG;
  1105. goto out;
  1106. }
  1107. if (obj->madv != I915_MADV_WILLNEED) {
  1108. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1109. ret = -EINVAL;
  1110. goto out;
  1111. }
  1112. if (!obj->base.map_list.map) {
  1113. ret = drm_gem_create_mmap_offset(&obj->base);
  1114. if (ret)
  1115. goto out;
  1116. }
  1117. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1118. out:
  1119. drm_gem_object_unreference(&obj->base);
  1120. unlock:
  1121. mutex_unlock(&dev->struct_mutex);
  1122. return ret;
  1123. }
  1124. /**
  1125. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1126. * @dev: DRM device
  1127. * @data: GTT mapping ioctl data
  1128. * @file: GEM object info
  1129. *
  1130. * Simply returns the fake offset to userspace so it can mmap it.
  1131. * The mmap call will end up in drm_gem_mmap(), which will set things
  1132. * up so we can get faults in the handler above.
  1133. *
  1134. * The fault handler will take care of binding the object into the GTT
  1135. * (since it may have been evicted to make room for something), allocating
  1136. * a fence register, and mapping the appropriate aperture address into
  1137. * userspace.
  1138. */
  1139. int
  1140. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1141. struct drm_file *file)
  1142. {
  1143. struct drm_i915_gem_mmap_gtt *args = data;
  1144. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1145. }
  1146. int
  1147. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1148. gfp_t gfpmask)
  1149. {
  1150. int page_count, i;
  1151. struct address_space *mapping;
  1152. struct inode *inode;
  1153. struct page *page;
  1154. if (obj->pages || obj->sg_table)
  1155. return 0;
  1156. /* Get the list of pages out of our struct file. They'll be pinned
  1157. * at this point until we release them.
  1158. */
  1159. page_count = obj->base.size / PAGE_SIZE;
  1160. BUG_ON(obj->pages != NULL);
  1161. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1162. if (obj->pages == NULL)
  1163. return -ENOMEM;
  1164. inode = obj->base.filp->f_path.dentry->d_inode;
  1165. mapping = inode->i_mapping;
  1166. gfpmask |= mapping_gfp_mask(mapping);
  1167. for (i = 0; i < page_count; i++) {
  1168. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1169. if (IS_ERR(page))
  1170. goto err_pages;
  1171. obj->pages[i] = page;
  1172. }
  1173. if (i915_gem_object_needs_bit17_swizzle(obj))
  1174. i915_gem_object_do_bit_17_swizzle(obj);
  1175. return 0;
  1176. err_pages:
  1177. while (i--)
  1178. page_cache_release(obj->pages[i]);
  1179. drm_free_large(obj->pages);
  1180. obj->pages = NULL;
  1181. return PTR_ERR(page);
  1182. }
  1183. static void
  1184. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1185. {
  1186. int page_count = obj->base.size / PAGE_SIZE;
  1187. int i;
  1188. if (!obj->pages)
  1189. return;
  1190. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1191. if (i915_gem_object_needs_bit17_swizzle(obj))
  1192. i915_gem_object_save_bit_17_swizzle(obj);
  1193. if (obj->madv == I915_MADV_DONTNEED)
  1194. obj->dirty = 0;
  1195. for (i = 0; i < page_count; i++) {
  1196. if (obj->dirty)
  1197. set_page_dirty(obj->pages[i]);
  1198. if (obj->madv == I915_MADV_WILLNEED)
  1199. mark_page_accessed(obj->pages[i]);
  1200. page_cache_release(obj->pages[i]);
  1201. }
  1202. obj->dirty = 0;
  1203. drm_free_large(obj->pages);
  1204. obj->pages = NULL;
  1205. }
  1206. void
  1207. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1208. struct intel_ring_buffer *ring,
  1209. u32 seqno)
  1210. {
  1211. struct drm_device *dev = obj->base.dev;
  1212. struct drm_i915_private *dev_priv = dev->dev_private;
  1213. BUG_ON(ring == NULL);
  1214. obj->ring = ring;
  1215. /* Add a reference if we're newly entering the active list. */
  1216. if (!obj->active) {
  1217. drm_gem_object_reference(&obj->base);
  1218. obj->active = 1;
  1219. }
  1220. /* Move from whatever list we were on to the tail of execution. */
  1221. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1222. list_move_tail(&obj->ring_list, &ring->active_list);
  1223. obj->last_read_seqno = seqno;
  1224. if (obj->fenced_gpu_access) {
  1225. obj->last_fenced_seqno = seqno;
  1226. /* Bump MRU to take account of the delayed flush */
  1227. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1228. struct drm_i915_fence_reg *reg;
  1229. reg = &dev_priv->fence_regs[obj->fence_reg];
  1230. list_move_tail(&reg->lru_list,
  1231. &dev_priv->mm.fence_list);
  1232. }
  1233. }
  1234. }
  1235. static void
  1236. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1237. {
  1238. struct drm_device *dev = obj->base.dev;
  1239. struct drm_i915_private *dev_priv = dev->dev_private;
  1240. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1241. BUG_ON(!obj->active);
  1242. if (obj->pin_count) /* are we a framebuffer? */
  1243. intel_mark_fb_idle(obj);
  1244. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1245. list_del_init(&obj->ring_list);
  1246. obj->ring = NULL;
  1247. obj->last_read_seqno = 0;
  1248. obj->last_write_seqno = 0;
  1249. obj->base.write_domain = 0;
  1250. obj->last_fenced_seqno = 0;
  1251. obj->fenced_gpu_access = false;
  1252. obj->active = 0;
  1253. drm_gem_object_unreference(&obj->base);
  1254. WARN_ON(i915_verify_lists(dev));
  1255. }
  1256. /* Immediately discard the backing storage */
  1257. static void
  1258. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1259. {
  1260. struct inode *inode;
  1261. /* Our goal here is to return as much of the memory as
  1262. * is possible back to the system as we are called from OOM.
  1263. * To do this we must instruct the shmfs to drop all of its
  1264. * backing pages, *now*.
  1265. */
  1266. inode = obj->base.filp->f_path.dentry->d_inode;
  1267. shmem_truncate_range(inode, 0, (loff_t)-1);
  1268. if (obj->base.map_list.map)
  1269. drm_gem_free_mmap_offset(&obj->base);
  1270. obj->madv = __I915_MADV_PURGED;
  1271. }
  1272. static inline int
  1273. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1274. {
  1275. return obj->madv == I915_MADV_DONTNEED;
  1276. }
  1277. static u32
  1278. i915_gem_get_seqno(struct drm_device *dev)
  1279. {
  1280. drm_i915_private_t *dev_priv = dev->dev_private;
  1281. u32 seqno = dev_priv->next_seqno;
  1282. /* reserve 0 for non-seqno */
  1283. if (++dev_priv->next_seqno == 0)
  1284. dev_priv->next_seqno = 1;
  1285. return seqno;
  1286. }
  1287. u32
  1288. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1289. {
  1290. if (ring->outstanding_lazy_request == 0)
  1291. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1292. return ring->outstanding_lazy_request;
  1293. }
  1294. int
  1295. i915_add_request(struct intel_ring_buffer *ring,
  1296. struct drm_file *file,
  1297. struct drm_i915_gem_request *request)
  1298. {
  1299. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1300. uint32_t seqno;
  1301. u32 request_ring_position;
  1302. int was_empty;
  1303. int ret;
  1304. /*
  1305. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1306. * after having emitted the batchbuffer command. Hence we need to fix
  1307. * things up similar to emitting the lazy request. The difference here
  1308. * is that the flush _must_ happen before the next request, no matter
  1309. * what.
  1310. */
  1311. ret = intel_ring_flush_all_caches(ring);
  1312. if (ret)
  1313. return ret;
  1314. if (request == NULL) {
  1315. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1316. if (request == NULL)
  1317. return -ENOMEM;
  1318. }
  1319. seqno = i915_gem_next_request_seqno(ring);
  1320. /* Record the position of the start of the request so that
  1321. * should we detect the updated seqno part-way through the
  1322. * GPU processing the request, we never over-estimate the
  1323. * position of the head.
  1324. */
  1325. request_ring_position = intel_ring_get_tail(ring);
  1326. ret = ring->add_request(ring, &seqno);
  1327. if (ret) {
  1328. kfree(request);
  1329. return ret;
  1330. }
  1331. trace_i915_gem_request_add(ring, seqno);
  1332. request->seqno = seqno;
  1333. request->ring = ring;
  1334. request->tail = request_ring_position;
  1335. request->emitted_jiffies = jiffies;
  1336. was_empty = list_empty(&ring->request_list);
  1337. list_add_tail(&request->list, &ring->request_list);
  1338. request->file_priv = NULL;
  1339. if (file) {
  1340. struct drm_i915_file_private *file_priv = file->driver_priv;
  1341. spin_lock(&file_priv->mm.lock);
  1342. request->file_priv = file_priv;
  1343. list_add_tail(&request->client_list,
  1344. &file_priv->mm.request_list);
  1345. spin_unlock(&file_priv->mm.lock);
  1346. }
  1347. ring->outstanding_lazy_request = 0;
  1348. if (!dev_priv->mm.suspended) {
  1349. if (i915_enable_hangcheck) {
  1350. mod_timer(&dev_priv->hangcheck_timer,
  1351. jiffies +
  1352. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1353. }
  1354. if (was_empty) {
  1355. queue_delayed_work(dev_priv->wq,
  1356. &dev_priv->mm.retire_work, HZ);
  1357. intel_mark_busy(dev_priv->dev);
  1358. }
  1359. }
  1360. return 0;
  1361. }
  1362. static inline void
  1363. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1364. {
  1365. struct drm_i915_file_private *file_priv = request->file_priv;
  1366. if (!file_priv)
  1367. return;
  1368. spin_lock(&file_priv->mm.lock);
  1369. if (request->file_priv) {
  1370. list_del(&request->client_list);
  1371. request->file_priv = NULL;
  1372. }
  1373. spin_unlock(&file_priv->mm.lock);
  1374. }
  1375. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1376. struct intel_ring_buffer *ring)
  1377. {
  1378. while (!list_empty(&ring->request_list)) {
  1379. struct drm_i915_gem_request *request;
  1380. request = list_first_entry(&ring->request_list,
  1381. struct drm_i915_gem_request,
  1382. list);
  1383. list_del(&request->list);
  1384. i915_gem_request_remove_from_client(request);
  1385. kfree(request);
  1386. }
  1387. while (!list_empty(&ring->active_list)) {
  1388. struct drm_i915_gem_object *obj;
  1389. obj = list_first_entry(&ring->active_list,
  1390. struct drm_i915_gem_object,
  1391. ring_list);
  1392. i915_gem_object_move_to_inactive(obj);
  1393. }
  1394. }
  1395. static void i915_gem_reset_fences(struct drm_device *dev)
  1396. {
  1397. struct drm_i915_private *dev_priv = dev->dev_private;
  1398. int i;
  1399. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1400. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1401. i915_gem_write_fence(dev, i, NULL);
  1402. if (reg->obj)
  1403. i915_gem_object_fence_lost(reg->obj);
  1404. reg->pin_count = 0;
  1405. reg->obj = NULL;
  1406. INIT_LIST_HEAD(&reg->lru_list);
  1407. }
  1408. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1409. }
  1410. void i915_gem_reset(struct drm_device *dev)
  1411. {
  1412. struct drm_i915_private *dev_priv = dev->dev_private;
  1413. struct drm_i915_gem_object *obj;
  1414. struct intel_ring_buffer *ring;
  1415. int i;
  1416. for_each_ring(ring, dev_priv, i)
  1417. i915_gem_reset_ring_lists(dev_priv, ring);
  1418. /* Move everything out of the GPU domains to ensure we do any
  1419. * necessary invalidation upon reuse.
  1420. */
  1421. list_for_each_entry(obj,
  1422. &dev_priv->mm.inactive_list,
  1423. mm_list)
  1424. {
  1425. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1426. }
  1427. /* The fence registers are invalidated so clear them out */
  1428. i915_gem_reset_fences(dev);
  1429. }
  1430. /**
  1431. * This function clears the request list as sequence numbers are passed.
  1432. */
  1433. void
  1434. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1435. {
  1436. uint32_t seqno;
  1437. int i;
  1438. if (list_empty(&ring->request_list))
  1439. return;
  1440. WARN_ON(i915_verify_lists(ring->dev));
  1441. seqno = ring->get_seqno(ring, true);
  1442. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1443. if (seqno >= ring->sync_seqno[i])
  1444. ring->sync_seqno[i] = 0;
  1445. while (!list_empty(&ring->request_list)) {
  1446. struct drm_i915_gem_request *request;
  1447. request = list_first_entry(&ring->request_list,
  1448. struct drm_i915_gem_request,
  1449. list);
  1450. if (!i915_seqno_passed(seqno, request->seqno))
  1451. break;
  1452. trace_i915_gem_request_retire(ring, request->seqno);
  1453. /* We know the GPU must have read the request to have
  1454. * sent us the seqno + interrupt, so use the position
  1455. * of tail of the request to update the last known position
  1456. * of the GPU head.
  1457. */
  1458. ring->last_retired_head = request->tail;
  1459. list_del(&request->list);
  1460. i915_gem_request_remove_from_client(request);
  1461. kfree(request);
  1462. }
  1463. /* Move any buffers on the active list that are no longer referenced
  1464. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1465. */
  1466. while (!list_empty(&ring->active_list)) {
  1467. struct drm_i915_gem_object *obj;
  1468. obj = list_first_entry(&ring->active_list,
  1469. struct drm_i915_gem_object,
  1470. ring_list);
  1471. if (!i915_seqno_passed(seqno, obj->last_read_seqno))
  1472. break;
  1473. i915_gem_object_move_to_inactive(obj);
  1474. }
  1475. if (unlikely(ring->trace_irq_seqno &&
  1476. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1477. ring->irq_put(ring);
  1478. ring->trace_irq_seqno = 0;
  1479. }
  1480. WARN_ON(i915_verify_lists(ring->dev));
  1481. }
  1482. void
  1483. i915_gem_retire_requests(struct drm_device *dev)
  1484. {
  1485. drm_i915_private_t *dev_priv = dev->dev_private;
  1486. struct intel_ring_buffer *ring;
  1487. int i;
  1488. for_each_ring(ring, dev_priv, i)
  1489. i915_gem_retire_requests_ring(ring);
  1490. }
  1491. static void
  1492. i915_gem_retire_work_handler(struct work_struct *work)
  1493. {
  1494. drm_i915_private_t *dev_priv;
  1495. struct drm_device *dev;
  1496. struct intel_ring_buffer *ring;
  1497. bool idle;
  1498. int i;
  1499. dev_priv = container_of(work, drm_i915_private_t,
  1500. mm.retire_work.work);
  1501. dev = dev_priv->dev;
  1502. /* Come back later if the device is busy... */
  1503. if (!mutex_trylock(&dev->struct_mutex)) {
  1504. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1505. return;
  1506. }
  1507. i915_gem_retire_requests(dev);
  1508. /* Send a periodic flush down the ring so we don't hold onto GEM
  1509. * objects indefinitely.
  1510. */
  1511. idle = true;
  1512. for_each_ring(ring, dev_priv, i) {
  1513. if (ring->gpu_caches_dirty)
  1514. i915_add_request(ring, NULL, NULL);
  1515. idle &= list_empty(&ring->request_list);
  1516. }
  1517. if (!dev_priv->mm.suspended && !idle)
  1518. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1519. if (idle)
  1520. intel_mark_idle(dev);
  1521. mutex_unlock(&dev->struct_mutex);
  1522. }
  1523. int
  1524. i915_gem_check_wedge(struct drm_i915_private *dev_priv,
  1525. bool interruptible)
  1526. {
  1527. if (atomic_read(&dev_priv->mm.wedged)) {
  1528. struct completion *x = &dev_priv->error_completion;
  1529. bool recovery_complete;
  1530. unsigned long flags;
  1531. /* Give the error handler a chance to run. */
  1532. spin_lock_irqsave(&x->wait.lock, flags);
  1533. recovery_complete = x->done > 0;
  1534. spin_unlock_irqrestore(&x->wait.lock, flags);
  1535. /* Non-interruptible callers can't handle -EAGAIN, hence return
  1536. * -EIO unconditionally for these. */
  1537. if (!interruptible)
  1538. return -EIO;
  1539. /* Recovery complete, but still wedged means reset failure. */
  1540. if (recovery_complete)
  1541. return -EIO;
  1542. return -EAGAIN;
  1543. }
  1544. return 0;
  1545. }
  1546. /*
  1547. * Compare seqno against outstanding lazy request. Emit a request if they are
  1548. * equal.
  1549. */
  1550. static int
  1551. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  1552. {
  1553. int ret;
  1554. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  1555. ret = 0;
  1556. if (seqno == ring->outstanding_lazy_request)
  1557. ret = i915_add_request(ring, NULL, NULL);
  1558. return ret;
  1559. }
  1560. /**
  1561. * __wait_seqno - wait until execution of seqno has finished
  1562. * @ring: the ring expected to report seqno
  1563. * @seqno: duh!
  1564. * @interruptible: do an interruptible wait (normally yes)
  1565. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  1566. *
  1567. * Returns 0 if the seqno was found within the alloted time. Else returns the
  1568. * errno with remaining time filled in timeout argument.
  1569. */
  1570. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  1571. bool interruptible, struct timespec *timeout)
  1572. {
  1573. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1574. struct timespec before, now, wait_time={1,0};
  1575. unsigned long timeout_jiffies;
  1576. long end;
  1577. bool wait_forever = true;
  1578. int ret;
  1579. if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
  1580. return 0;
  1581. trace_i915_gem_request_wait_begin(ring, seqno);
  1582. if (timeout != NULL) {
  1583. wait_time = *timeout;
  1584. wait_forever = false;
  1585. }
  1586. timeout_jiffies = timespec_to_jiffies(&wait_time);
  1587. if (WARN_ON(!ring->irq_get(ring)))
  1588. return -ENODEV;
  1589. /* Record current time in case interrupted by signal, or wedged * */
  1590. getrawmonotonic(&before);
  1591. #define EXIT_COND \
  1592. (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
  1593. atomic_read(&dev_priv->mm.wedged))
  1594. do {
  1595. if (interruptible)
  1596. end = wait_event_interruptible_timeout(ring->irq_queue,
  1597. EXIT_COND,
  1598. timeout_jiffies);
  1599. else
  1600. end = wait_event_timeout(ring->irq_queue, EXIT_COND,
  1601. timeout_jiffies);
  1602. ret = i915_gem_check_wedge(dev_priv, interruptible);
  1603. if (ret)
  1604. end = ret;
  1605. } while (end == 0 && wait_forever);
  1606. getrawmonotonic(&now);
  1607. ring->irq_put(ring);
  1608. trace_i915_gem_request_wait_end(ring, seqno);
  1609. #undef EXIT_COND
  1610. if (timeout) {
  1611. struct timespec sleep_time = timespec_sub(now, before);
  1612. *timeout = timespec_sub(*timeout, sleep_time);
  1613. }
  1614. switch (end) {
  1615. case -EIO:
  1616. case -EAGAIN: /* Wedged */
  1617. case -ERESTARTSYS: /* Signal */
  1618. return (int)end;
  1619. case 0: /* Timeout */
  1620. if (timeout)
  1621. set_normalized_timespec(timeout, 0, 0);
  1622. return -ETIME;
  1623. default: /* Completed */
  1624. WARN_ON(end < 0); /* We're not aware of other errors */
  1625. return 0;
  1626. }
  1627. }
  1628. /**
  1629. * Waits for a sequence number to be signaled, and cleans up the
  1630. * request and object lists appropriately for that event.
  1631. */
  1632. int
  1633. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  1634. {
  1635. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1636. int ret = 0;
  1637. BUG_ON(seqno == 0);
  1638. ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
  1639. if (ret)
  1640. return ret;
  1641. ret = i915_gem_check_olr(ring, seqno);
  1642. if (ret)
  1643. return ret;
  1644. ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
  1645. return ret;
  1646. }
  1647. /**
  1648. * Ensures that all rendering to the object has completed and the object is
  1649. * safe to unbind from the GTT or access from the CPU.
  1650. */
  1651. static __must_check int
  1652. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  1653. bool readonly)
  1654. {
  1655. u32 seqno;
  1656. int ret;
  1657. /* If there is rendering queued on the buffer being evicted, wait for
  1658. * it.
  1659. */
  1660. if (readonly)
  1661. seqno = obj->last_write_seqno;
  1662. else
  1663. seqno = obj->last_read_seqno;
  1664. if (seqno == 0)
  1665. return 0;
  1666. ret = i915_wait_seqno(obj->ring, seqno);
  1667. if (ret)
  1668. return ret;
  1669. /* Manually manage the write flush as we may have not yet retired
  1670. * the buffer.
  1671. */
  1672. if (obj->last_write_seqno &&
  1673. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  1674. obj->last_write_seqno = 0;
  1675. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  1676. }
  1677. i915_gem_retire_requests_ring(obj->ring);
  1678. return 0;
  1679. }
  1680. /**
  1681. * Ensures that an object will eventually get non-busy by flushing any required
  1682. * write domains, emitting any outstanding lazy request and retiring and
  1683. * completed requests.
  1684. */
  1685. static int
  1686. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  1687. {
  1688. int ret;
  1689. if (obj->active) {
  1690. ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
  1691. if (ret)
  1692. return ret;
  1693. i915_gem_retire_requests_ring(obj->ring);
  1694. }
  1695. return 0;
  1696. }
  1697. /**
  1698. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  1699. * @DRM_IOCTL_ARGS: standard ioctl arguments
  1700. *
  1701. * Returns 0 if successful, else an error is returned with the remaining time in
  1702. * the timeout parameter.
  1703. * -ETIME: object is still busy after timeout
  1704. * -ERESTARTSYS: signal interrupted the wait
  1705. * -ENONENT: object doesn't exist
  1706. * Also possible, but rare:
  1707. * -EAGAIN: GPU wedged
  1708. * -ENOMEM: damn
  1709. * -ENODEV: Internal IRQ fail
  1710. * -E?: The add request failed
  1711. *
  1712. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  1713. * non-zero timeout parameter the wait ioctl will wait for the given number of
  1714. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  1715. * without holding struct_mutex the object may become re-busied before this
  1716. * function completes. A similar but shorter * race condition exists in the busy
  1717. * ioctl
  1718. */
  1719. int
  1720. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  1721. {
  1722. struct drm_i915_gem_wait *args = data;
  1723. struct drm_i915_gem_object *obj;
  1724. struct intel_ring_buffer *ring = NULL;
  1725. struct timespec timeout_stack, *timeout = NULL;
  1726. u32 seqno = 0;
  1727. int ret = 0;
  1728. if (args->timeout_ns >= 0) {
  1729. timeout_stack = ns_to_timespec(args->timeout_ns);
  1730. timeout = &timeout_stack;
  1731. }
  1732. ret = i915_mutex_lock_interruptible(dev);
  1733. if (ret)
  1734. return ret;
  1735. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  1736. if (&obj->base == NULL) {
  1737. mutex_unlock(&dev->struct_mutex);
  1738. return -ENOENT;
  1739. }
  1740. /* Need to make sure the object gets inactive eventually. */
  1741. ret = i915_gem_object_flush_active(obj);
  1742. if (ret)
  1743. goto out;
  1744. if (obj->active) {
  1745. seqno = obj->last_read_seqno;
  1746. ring = obj->ring;
  1747. }
  1748. if (seqno == 0)
  1749. goto out;
  1750. /* Do this after OLR check to make sure we make forward progress polling
  1751. * on this IOCTL with a 0 timeout (like busy ioctl)
  1752. */
  1753. if (!args->timeout_ns) {
  1754. ret = -ETIME;
  1755. goto out;
  1756. }
  1757. drm_gem_object_unreference(&obj->base);
  1758. mutex_unlock(&dev->struct_mutex);
  1759. ret = __wait_seqno(ring, seqno, true, timeout);
  1760. if (timeout) {
  1761. WARN_ON(!timespec_valid(timeout));
  1762. args->timeout_ns = timespec_to_ns(timeout);
  1763. }
  1764. return ret;
  1765. out:
  1766. drm_gem_object_unreference(&obj->base);
  1767. mutex_unlock(&dev->struct_mutex);
  1768. return ret;
  1769. }
  1770. /**
  1771. * i915_gem_object_sync - sync an object to a ring.
  1772. *
  1773. * @obj: object which may be in use on another ring.
  1774. * @to: ring we wish to use the object on. May be NULL.
  1775. *
  1776. * This code is meant to abstract object synchronization with the GPU.
  1777. * Calling with NULL implies synchronizing the object with the CPU
  1778. * rather than a particular GPU ring.
  1779. *
  1780. * Returns 0 if successful, else propagates up the lower layer error.
  1781. */
  1782. int
  1783. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1784. struct intel_ring_buffer *to)
  1785. {
  1786. struct intel_ring_buffer *from = obj->ring;
  1787. u32 seqno;
  1788. int ret, idx;
  1789. if (from == NULL || to == from)
  1790. return 0;
  1791. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1792. return i915_gem_object_wait_rendering(obj, false);
  1793. idx = intel_ring_sync_index(from, to);
  1794. seqno = obj->last_read_seqno;
  1795. if (seqno <= from->sync_seqno[idx])
  1796. return 0;
  1797. ret = i915_gem_check_olr(obj->ring, seqno);
  1798. if (ret)
  1799. return ret;
  1800. ret = to->sync_to(to, from, seqno);
  1801. if (!ret)
  1802. from->sync_seqno[idx] = seqno;
  1803. return ret;
  1804. }
  1805. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1806. {
  1807. u32 old_write_domain, old_read_domains;
  1808. /* Act a barrier for all accesses through the GTT */
  1809. mb();
  1810. /* Force a pagefault for domain tracking on next user access */
  1811. i915_gem_release_mmap(obj);
  1812. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1813. return;
  1814. old_read_domains = obj->base.read_domains;
  1815. old_write_domain = obj->base.write_domain;
  1816. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1817. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1818. trace_i915_gem_object_change_domain(obj,
  1819. old_read_domains,
  1820. old_write_domain);
  1821. }
  1822. /**
  1823. * Unbinds an object from the GTT aperture.
  1824. */
  1825. int
  1826. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1827. {
  1828. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1829. int ret = 0;
  1830. if (obj->gtt_space == NULL)
  1831. return 0;
  1832. if (obj->pin_count)
  1833. return -EBUSY;
  1834. ret = i915_gem_object_finish_gpu(obj);
  1835. if (ret)
  1836. return ret;
  1837. /* Continue on if we fail due to EIO, the GPU is hung so we
  1838. * should be safe and we need to cleanup or else we might
  1839. * cause memory corruption through use-after-free.
  1840. */
  1841. i915_gem_object_finish_gtt(obj);
  1842. /* Move the object to the CPU domain to ensure that
  1843. * any possible CPU writes while it's not in the GTT
  1844. * are flushed when we go to remap it.
  1845. */
  1846. if (ret == 0)
  1847. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1848. if (ret == -ERESTARTSYS)
  1849. return ret;
  1850. if (ret) {
  1851. /* In the event of a disaster, abandon all caches and
  1852. * hope for the best.
  1853. */
  1854. i915_gem_clflush_object(obj);
  1855. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1856. }
  1857. /* release the fence reg _after_ flushing */
  1858. ret = i915_gem_object_put_fence(obj);
  1859. if (ret)
  1860. return ret;
  1861. trace_i915_gem_object_unbind(obj);
  1862. if (obj->has_global_gtt_mapping)
  1863. i915_gem_gtt_unbind_object(obj);
  1864. if (obj->has_aliasing_ppgtt_mapping) {
  1865. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1866. obj->has_aliasing_ppgtt_mapping = 0;
  1867. }
  1868. i915_gem_gtt_finish_object(obj);
  1869. i915_gem_object_put_pages_gtt(obj);
  1870. list_del_init(&obj->gtt_list);
  1871. list_del_init(&obj->mm_list);
  1872. /* Avoid an unnecessary call to unbind on rebind. */
  1873. obj->map_and_fenceable = true;
  1874. drm_mm_put_block(obj->gtt_space);
  1875. obj->gtt_space = NULL;
  1876. obj->gtt_offset = 0;
  1877. if (i915_gem_object_is_purgeable(obj))
  1878. i915_gem_object_truncate(obj);
  1879. return ret;
  1880. }
  1881. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1882. {
  1883. if (list_empty(&ring->active_list))
  1884. return 0;
  1885. return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
  1886. }
  1887. int i915_gpu_idle(struct drm_device *dev)
  1888. {
  1889. drm_i915_private_t *dev_priv = dev->dev_private;
  1890. struct intel_ring_buffer *ring;
  1891. int ret, i;
  1892. /* Flush everything onto the inactive list. */
  1893. for_each_ring(ring, dev_priv, i) {
  1894. ret = i915_ring_idle(ring);
  1895. if (ret)
  1896. return ret;
  1897. ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
  1898. if (ret)
  1899. return ret;
  1900. }
  1901. return 0;
  1902. }
  1903. static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
  1904. struct drm_i915_gem_object *obj)
  1905. {
  1906. drm_i915_private_t *dev_priv = dev->dev_private;
  1907. uint64_t val;
  1908. if (obj) {
  1909. u32 size = obj->gtt_space->size;
  1910. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1911. 0xfffff000) << 32;
  1912. val |= obj->gtt_offset & 0xfffff000;
  1913. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1914. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1915. if (obj->tiling_mode == I915_TILING_Y)
  1916. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1917. val |= I965_FENCE_REG_VALID;
  1918. } else
  1919. val = 0;
  1920. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
  1921. POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
  1922. }
  1923. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  1924. struct drm_i915_gem_object *obj)
  1925. {
  1926. drm_i915_private_t *dev_priv = dev->dev_private;
  1927. uint64_t val;
  1928. if (obj) {
  1929. u32 size = obj->gtt_space->size;
  1930. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1931. 0xfffff000) << 32;
  1932. val |= obj->gtt_offset & 0xfffff000;
  1933. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1934. if (obj->tiling_mode == I915_TILING_Y)
  1935. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1936. val |= I965_FENCE_REG_VALID;
  1937. } else
  1938. val = 0;
  1939. I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
  1940. POSTING_READ(FENCE_REG_965_0 + reg * 8);
  1941. }
  1942. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  1943. struct drm_i915_gem_object *obj)
  1944. {
  1945. drm_i915_private_t *dev_priv = dev->dev_private;
  1946. u32 val;
  1947. if (obj) {
  1948. u32 size = obj->gtt_space->size;
  1949. int pitch_val;
  1950. int tile_width;
  1951. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1952. (size & -size) != size ||
  1953. (obj->gtt_offset & (size - 1)),
  1954. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1955. obj->gtt_offset, obj->map_and_fenceable, size);
  1956. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1957. tile_width = 128;
  1958. else
  1959. tile_width = 512;
  1960. /* Note: pitch better be a power of two tile widths */
  1961. pitch_val = obj->stride / tile_width;
  1962. pitch_val = ffs(pitch_val) - 1;
  1963. val = obj->gtt_offset;
  1964. if (obj->tiling_mode == I915_TILING_Y)
  1965. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1966. val |= I915_FENCE_SIZE_BITS(size);
  1967. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1968. val |= I830_FENCE_REG_VALID;
  1969. } else
  1970. val = 0;
  1971. if (reg < 8)
  1972. reg = FENCE_REG_830_0 + reg * 4;
  1973. else
  1974. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  1975. I915_WRITE(reg, val);
  1976. POSTING_READ(reg);
  1977. }
  1978. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  1979. struct drm_i915_gem_object *obj)
  1980. {
  1981. drm_i915_private_t *dev_priv = dev->dev_private;
  1982. uint32_t val;
  1983. if (obj) {
  1984. u32 size = obj->gtt_space->size;
  1985. uint32_t pitch_val;
  1986. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1987. (size & -size) != size ||
  1988. (obj->gtt_offset & (size - 1)),
  1989. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1990. obj->gtt_offset, size);
  1991. pitch_val = obj->stride / 128;
  1992. pitch_val = ffs(pitch_val) - 1;
  1993. val = obj->gtt_offset;
  1994. if (obj->tiling_mode == I915_TILING_Y)
  1995. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1996. val |= I830_FENCE_SIZE_BITS(size);
  1997. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1998. val |= I830_FENCE_REG_VALID;
  1999. } else
  2000. val = 0;
  2001. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2002. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2003. }
  2004. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2005. struct drm_i915_gem_object *obj)
  2006. {
  2007. switch (INTEL_INFO(dev)->gen) {
  2008. case 7:
  2009. case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
  2010. case 5:
  2011. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2012. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2013. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2014. default: break;
  2015. }
  2016. }
  2017. static inline int fence_number(struct drm_i915_private *dev_priv,
  2018. struct drm_i915_fence_reg *fence)
  2019. {
  2020. return fence - dev_priv->fence_regs;
  2021. }
  2022. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2023. struct drm_i915_fence_reg *fence,
  2024. bool enable)
  2025. {
  2026. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2027. int reg = fence_number(dev_priv, fence);
  2028. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2029. if (enable) {
  2030. obj->fence_reg = reg;
  2031. fence->obj = obj;
  2032. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2033. } else {
  2034. obj->fence_reg = I915_FENCE_REG_NONE;
  2035. fence->obj = NULL;
  2036. list_del_init(&fence->lru_list);
  2037. }
  2038. }
  2039. static int
  2040. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  2041. {
  2042. if (obj->last_fenced_seqno) {
  2043. int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2044. if (ret)
  2045. return ret;
  2046. obj->last_fenced_seqno = 0;
  2047. }
  2048. /* Ensure that all CPU reads are completed before installing a fence
  2049. * and all writes before removing the fence.
  2050. */
  2051. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2052. mb();
  2053. obj->fenced_gpu_access = false;
  2054. return 0;
  2055. }
  2056. int
  2057. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2058. {
  2059. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2060. int ret;
  2061. ret = i915_gem_object_flush_fence(obj);
  2062. if (ret)
  2063. return ret;
  2064. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2065. return 0;
  2066. i915_gem_object_update_fence(obj,
  2067. &dev_priv->fence_regs[obj->fence_reg],
  2068. false);
  2069. i915_gem_object_fence_lost(obj);
  2070. return 0;
  2071. }
  2072. static struct drm_i915_fence_reg *
  2073. i915_find_fence_reg(struct drm_device *dev)
  2074. {
  2075. struct drm_i915_private *dev_priv = dev->dev_private;
  2076. struct drm_i915_fence_reg *reg, *avail;
  2077. int i;
  2078. /* First try to find a free reg */
  2079. avail = NULL;
  2080. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2081. reg = &dev_priv->fence_regs[i];
  2082. if (!reg->obj)
  2083. return reg;
  2084. if (!reg->pin_count)
  2085. avail = reg;
  2086. }
  2087. if (avail == NULL)
  2088. return NULL;
  2089. /* None available, try to steal one or wait for a user to finish */
  2090. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2091. if (reg->pin_count)
  2092. continue;
  2093. return reg;
  2094. }
  2095. return NULL;
  2096. }
  2097. /**
  2098. * i915_gem_object_get_fence - set up fencing for an object
  2099. * @obj: object to map through a fence reg
  2100. *
  2101. * When mapping objects through the GTT, userspace wants to be able to write
  2102. * to them without having to worry about swizzling if the object is tiled.
  2103. * This function walks the fence regs looking for a free one for @obj,
  2104. * stealing one if it can't find any.
  2105. *
  2106. * It then sets up the reg based on the object's properties: address, pitch
  2107. * and tiling format.
  2108. *
  2109. * For an untiled surface, this removes any existing fence.
  2110. */
  2111. int
  2112. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2113. {
  2114. struct drm_device *dev = obj->base.dev;
  2115. struct drm_i915_private *dev_priv = dev->dev_private;
  2116. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2117. struct drm_i915_fence_reg *reg;
  2118. int ret;
  2119. /* Have we updated the tiling parameters upon the object and so
  2120. * will need to serialise the write to the associated fence register?
  2121. */
  2122. if (obj->fence_dirty) {
  2123. ret = i915_gem_object_flush_fence(obj);
  2124. if (ret)
  2125. return ret;
  2126. }
  2127. /* Just update our place in the LRU if our fence is getting reused. */
  2128. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2129. reg = &dev_priv->fence_regs[obj->fence_reg];
  2130. if (!obj->fence_dirty) {
  2131. list_move_tail(&reg->lru_list,
  2132. &dev_priv->mm.fence_list);
  2133. return 0;
  2134. }
  2135. } else if (enable) {
  2136. reg = i915_find_fence_reg(dev);
  2137. if (reg == NULL)
  2138. return -EDEADLK;
  2139. if (reg->obj) {
  2140. struct drm_i915_gem_object *old = reg->obj;
  2141. ret = i915_gem_object_flush_fence(old);
  2142. if (ret)
  2143. return ret;
  2144. i915_gem_object_fence_lost(old);
  2145. }
  2146. } else
  2147. return 0;
  2148. i915_gem_object_update_fence(obj, reg, enable);
  2149. obj->fence_dirty = false;
  2150. return 0;
  2151. }
  2152. static bool i915_gem_valid_gtt_space(struct drm_device *dev,
  2153. struct drm_mm_node *gtt_space,
  2154. unsigned long cache_level)
  2155. {
  2156. struct drm_mm_node *other;
  2157. /* On non-LLC machines we have to be careful when putting differing
  2158. * types of snoopable memory together to avoid the prefetcher
  2159. * crossing memory domains and dieing.
  2160. */
  2161. if (HAS_LLC(dev))
  2162. return true;
  2163. if (gtt_space == NULL)
  2164. return true;
  2165. if (list_empty(&gtt_space->node_list))
  2166. return true;
  2167. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2168. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2169. return false;
  2170. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2171. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2172. return false;
  2173. return true;
  2174. }
  2175. static void i915_gem_verify_gtt(struct drm_device *dev)
  2176. {
  2177. #if WATCH_GTT
  2178. struct drm_i915_private *dev_priv = dev->dev_private;
  2179. struct drm_i915_gem_object *obj;
  2180. int err = 0;
  2181. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
  2182. if (obj->gtt_space == NULL) {
  2183. printk(KERN_ERR "object found on GTT list with no space reserved\n");
  2184. err++;
  2185. continue;
  2186. }
  2187. if (obj->cache_level != obj->gtt_space->color) {
  2188. printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
  2189. obj->gtt_space->start,
  2190. obj->gtt_space->start + obj->gtt_space->size,
  2191. obj->cache_level,
  2192. obj->gtt_space->color);
  2193. err++;
  2194. continue;
  2195. }
  2196. if (!i915_gem_valid_gtt_space(dev,
  2197. obj->gtt_space,
  2198. obj->cache_level)) {
  2199. printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
  2200. obj->gtt_space->start,
  2201. obj->gtt_space->start + obj->gtt_space->size,
  2202. obj->cache_level);
  2203. err++;
  2204. continue;
  2205. }
  2206. }
  2207. WARN_ON(err);
  2208. #endif
  2209. }
  2210. /**
  2211. * Finds free space in the GTT aperture and binds the object there.
  2212. */
  2213. static int
  2214. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2215. unsigned alignment,
  2216. bool map_and_fenceable)
  2217. {
  2218. struct drm_device *dev = obj->base.dev;
  2219. drm_i915_private_t *dev_priv = dev->dev_private;
  2220. struct drm_mm_node *free_space;
  2221. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2222. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2223. bool mappable, fenceable;
  2224. int ret;
  2225. if (obj->madv != I915_MADV_WILLNEED) {
  2226. DRM_ERROR("Attempting to bind a purgeable object\n");
  2227. return -EINVAL;
  2228. }
  2229. fence_size = i915_gem_get_gtt_size(dev,
  2230. obj->base.size,
  2231. obj->tiling_mode);
  2232. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2233. obj->base.size,
  2234. obj->tiling_mode);
  2235. unfenced_alignment =
  2236. i915_gem_get_unfenced_gtt_alignment(dev,
  2237. obj->base.size,
  2238. obj->tiling_mode);
  2239. if (alignment == 0)
  2240. alignment = map_and_fenceable ? fence_alignment :
  2241. unfenced_alignment;
  2242. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2243. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2244. return -EINVAL;
  2245. }
  2246. size = map_and_fenceable ? fence_size : obj->base.size;
  2247. /* If the object is bigger than the entire aperture, reject it early
  2248. * before evicting everything in a vain attempt to find space.
  2249. */
  2250. if (obj->base.size >
  2251. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2252. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2253. return -E2BIG;
  2254. }
  2255. search_free:
  2256. if (map_and_fenceable)
  2257. free_space =
  2258. drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
  2259. size, alignment, obj->cache_level,
  2260. 0, dev_priv->mm.gtt_mappable_end,
  2261. false);
  2262. else
  2263. free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
  2264. size, alignment, obj->cache_level,
  2265. false);
  2266. if (free_space != NULL) {
  2267. if (map_and_fenceable)
  2268. obj->gtt_space =
  2269. drm_mm_get_block_range_generic(free_space,
  2270. size, alignment, obj->cache_level,
  2271. 0, dev_priv->mm.gtt_mappable_end,
  2272. false);
  2273. else
  2274. obj->gtt_space =
  2275. drm_mm_get_block_generic(free_space,
  2276. size, alignment, obj->cache_level,
  2277. false);
  2278. }
  2279. if (obj->gtt_space == NULL) {
  2280. /* If the gtt is empty and we're still having trouble
  2281. * fitting our object in, we're out of memory.
  2282. */
  2283. ret = i915_gem_evict_something(dev, size, alignment,
  2284. obj->cache_level,
  2285. map_and_fenceable);
  2286. if (ret)
  2287. return ret;
  2288. goto search_free;
  2289. }
  2290. if (WARN_ON(!i915_gem_valid_gtt_space(dev,
  2291. obj->gtt_space,
  2292. obj->cache_level))) {
  2293. drm_mm_put_block(obj->gtt_space);
  2294. obj->gtt_space = NULL;
  2295. return -EINVAL;
  2296. }
  2297. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2298. if (ret) {
  2299. drm_mm_put_block(obj->gtt_space);
  2300. obj->gtt_space = NULL;
  2301. if (ret == -ENOMEM) {
  2302. /* first try to reclaim some memory by clearing the GTT */
  2303. ret = i915_gem_evict_everything(dev, false);
  2304. if (ret) {
  2305. /* now try to shrink everyone else */
  2306. if (gfpmask) {
  2307. gfpmask = 0;
  2308. goto search_free;
  2309. }
  2310. return -ENOMEM;
  2311. }
  2312. goto search_free;
  2313. }
  2314. return ret;
  2315. }
  2316. ret = i915_gem_gtt_prepare_object(obj);
  2317. if (ret) {
  2318. i915_gem_object_put_pages_gtt(obj);
  2319. drm_mm_put_block(obj->gtt_space);
  2320. obj->gtt_space = NULL;
  2321. if (i915_gem_evict_everything(dev, false))
  2322. return ret;
  2323. goto search_free;
  2324. }
  2325. if (!dev_priv->mm.aliasing_ppgtt)
  2326. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2327. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2328. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2329. /* Assert that the object is not currently in any GPU domain. As it
  2330. * wasn't in the GTT, there shouldn't be any way it could have been in
  2331. * a GPU cache
  2332. */
  2333. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2334. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2335. obj->gtt_offset = obj->gtt_space->start;
  2336. fenceable =
  2337. obj->gtt_space->size == fence_size &&
  2338. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2339. mappable =
  2340. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2341. obj->map_and_fenceable = mappable && fenceable;
  2342. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2343. i915_gem_verify_gtt(dev);
  2344. return 0;
  2345. }
  2346. void
  2347. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2348. {
  2349. /* If we don't have a page list set up, then we're not pinned
  2350. * to GPU, and we can ignore the cache flush because it'll happen
  2351. * again at bind time.
  2352. */
  2353. if (obj->pages == NULL)
  2354. return;
  2355. /* If the GPU is snooping the contents of the CPU cache,
  2356. * we do not need to manually clear the CPU cache lines. However,
  2357. * the caches are only snooped when the render cache is
  2358. * flushed/invalidated. As we always have to emit invalidations
  2359. * and flushes when moving into and out of the RENDER domain, correct
  2360. * snooping behaviour occurs naturally as the result of our domain
  2361. * tracking.
  2362. */
  2363. if (obj->cache_level != I915_CACHE_NONE)
  2364. return;
  2365. trace_i915_gem_object_clflush(obj);
  2366. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2367. }
  2368. /** Flushes the GTT write domain for the object if it's dirty. */
  2369. static void
  2370. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2371. {
  2372. uint32_t old_write_domain;
  2373. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2374. return;
  2375. /* No actual flushing is required for the GTT write domain. Writes
  2376. * to it immediately go to main memory as far as we know, so there's
  2377. * no chipset flush. It also doesn't land in render cache.
  2378. *
  2379. * However, we do have to enforce the order so that all writes through
  2380. * the GTT land before any writes to the device, such as updates to
  2381. * the GATT itself.
  2382. */
  2383. wmb();
  2384. old_write_domain = obj->base.write_domain;
  2385. obj->base.write_domain = 0;
  2386. trace_i915_gem_object_change_domain(obj,
  2387. obj->base.read_domains,
  2388. old_write_domain);
  2389. }
  2390. /** Flushes the CPU write domain for the object if it's dirty. */
  2391. static void
  2392. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2393. {
  2394. uint32_t old_write_domain;
  2395. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2396. return;
  2397. i915_gem_clflush_object(obj);
  2398. intel_gtt_chipset_flush();
  2399. old_write_domain = obj->base.write_domain;
  2400. obj->base.write_domain = 0;
  2401. trace_i915_gem_object_change_domain(obj,
  2402. obj->base.read_domains,
  2403. old_write_domain);
  2404. }
  2405. /**
  2406. * Moves a single object to the GTT read, and possibly write domain.
  2407. *
  2408. * This function returns when the move is complete, including waiting on
  2409. * flushes to occur.
  2410. */
  2411. int
  2412. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2413. {
  2414. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2415. uint32_t old_write_domain, old_read_domains;
  2416. int ret;
  2417. /* Not valid to be called on unbound objects. */
  2418. if (obj->gtt_space == NULL)
  2419. return -EINVAL;
  2420. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2421. return 0;
  2422. ret = i915_gem_object_wait_rendering(obj, !write);
  2423. if (ret)
  2424. return ret;
  2425. i915_gem_object_flush_cpu_write_domain(obj);
  2426. old_write_domain = obj->base.write_domain;
  2427. old_read_domains = obj->base.read_domains;
  2428. /* It should now be out of any other write domains, and we can update
  2429. * the domain values for our changes.
  2430. */
  2431. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2432. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2433. if (write) {
  2434. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2435. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2436. obj->dirty = 1;
  2437. }
  2438. trace_i915_gem_object_change_domain(obj,
  2439. old_read_domains,
  2440. old_write_domain);
  2441. /* And bump the LRU for this access */
  2442. if (i915_gem_object_is_inactive(obj))
  2443. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2444. return 0;
  2445. }
  2446. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2447. enum i915_cache_level cache_level)
  2448. {
  2449. struct drm_device *dev = obj->base.dev;
  2450. drm_i915_private_t *dev_priv = dev->dev_private;
  2451. int ret;
  2452. if (obj->cache_level == cache_level)
  2453. return 0;
  2454. if (obj->pin_count) {
  2455. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2456. return -EBUSY;
  2457. }
  2458. if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
  2459. ret = i915_gem_object_unbind(obj);
  2460. if (ret)
  2461. return ret;
  2462. }
  2463. if (obj->gtt_space) {
  2464. ret = i915_gem_object_finish_gpu(obj);
  2465. if (ret)
  2466. return ret;
  2467. i915_gem_object_finish_gtt(obj);
  2468. /* Before SandyBridge, you could not use tiling or fence
  2469. * registers with snooped memory, so relinquish any fences
  2470. * currently pointing to our region in the aperture.
  2471. */
  2472. if (INTEL_INFO(dev)->gen < 6) {
  2473. ret = i915_gem_object_put_fence(obj);
  2474. if (ret)
  2475. return ret;
  2476. }
  2477. if (obj->has_global_gtt_mapping)
  2478. i915_gem_gtt_bind_object(obj, cache_level);
  2479. if (obj->has_aliasing_ppgtt_mapping)
  2480. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2481. obj, cache_level);
  2482. obj->gtt_space->color = cache_level;
  2483. }
  2484. if (cache_level == I915_CACHE_NONE) {
  2485. u32 old_read_domains, old_write_domain;
  2486. /* If we're coming from LLC cached, then we haven't
  2487. * actually been tracking whether the data is in the
  2488. * CPU cache or not, since we only allow one bit set
  2489. * in obj->write_domain and have been skipping the clflushes.
  2490. * Just set it to the CPU cache for now.
  2491. */
  2492. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2493. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2494. old_read_domains = obj->base.read_domains;
  2495. old_write_domain = obj->base.write_domain;
  2496. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2497. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2498. trace_i915_gem_object_change_domain(obj,
  2499. old_read_domains,
  2500. old_write_domain);
  2501. }
  2502. obj->cache_level = cache_level;
  2503. i915_gem_verify_gtt(dev);
  2504. return 0;
  2505. }
  2506. int i915_gem_get_cacheing_ioctl(struct drm_device *dev, void *data,
  2507. struct drm_file *file)
  2508. {
  2509. struct drm_i915_gem_cacheing *args = data;
  2510. struct drm_i915_gem_object *obj;
  2511. int ret;
  2512. ret = i915_mutex_lock_interruptible(dev);
  2513. if (ret)
  2514. return ret;
  2515. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2516. if (&obj->base == NULL) {
  2517. ret = -ENOENT;
  2518. goto unlock;
  2519. }
  2520. args->cacheing = obj->cache_level != I915_CACHE_NONE;
  2521. drm_gem_object_unreference(&obj->base);
  2522. unlock:
  2523. mutex_unlock(&dev->struct_mutex);
  2524. return ret;
  2525. }
  2526. int i915_gem_set_cacheing_ioctl(struct drm_device *dev, void *data,
  2527. struct drm_file *file)
  2528. {
  2529. struct drm_i915_gem_cacheing *args = data;
  2530. struct drm_i915_gem_object *obj;
  2531. enum i915_cache_level level;
  2532. int ret;
  2533. ret = i915_mutex_lock_interruptible(dev);
  2534. if (ret)
  2535. return ret;
  2536. switch (args->cacheing) {
  2537. case I915_CACHEING_NONE:
  2538. level = I915_CACHE_NONE;
  2539. break;
  2540. case I915_CACHEING_CACHED:
  2541. level = I915_CACHE_LLC;
  2542. break;
  2543. default:
  2544. return -EINVAL;
  2545. }
  2546. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2547. if (&obj->base == NULL) {
  2548. ret = -ENOENT;
  2549. goto unlock;
  2550. }
  2551. ret = i915_gem_object_set_cache_level(obj, level);
  2552. drm_gem_object_unreference(&obj->base);
  2553. unlock:
  2554. mutex_unlock(&dev->struct_mutex);
  2555. return ret;
  2556. }
  2557. /*
  2558. * Prepare buffer for display plane (scanout, cursors, etc).
  2559. * Can be called from an uninterruptible phase (modesetting) and allows
  2560. * any flushes to be pipelined (for pageflips).
  2561. */
  2562. int
  2563. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2564. u32 alignment,
  2565. struct intel_ring_buffer *pipelined)
  2566. {
  2567. u32 old_read_domains, old_write_domain;
  2568. int ret;
  2569. if (pipelined != obj->ring) {
  2570. ret = i915_gem_object_sync(obj, pipelined);
  2571. if (ret)
  2572. return ret;
  2573. }
  2574. /* The display engine is not coherent with the LLC cache on gen6. As
  2575. * a result, we make sure that the pinning that is about to occur is
  2576. * done with uncached PTEs. This is lowest common denominator for all
  2577. * chipsets.
  2578. *
  2579. * However for gen6+, we could do better by using the GFDT bit instead
  2580. * of uncaching, which would allow us to flush all the LLC-cached data
  2581. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2582. */
  2583. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2584. if (ret)
  2585. return ret;
  2586. /* As the user may map the buffer once pinned in the display plane
  2587. * (e.g. libkms for the bootup splash), we have to ensure that we
  2588. * always use map_and_fenceable for all scanout buffers.
  2589. */
  2590. ret = i915_gem_object_pin(obj, alignment, true);
  2591. if (ret)
  2592. return ret;
  2593. i915_gem_object_flush_cpu_write_domain(obj);
  2594. old_write_domain = obj->base.write_domain;
  2595. old_read_domains = obj->base.read_domains;
  2596. /* It should now be out of any other write domains, and we can update
  2597. * the domain values for our changes.
  2598. */
  2599. obj->base.write_domain = 0;
  2600. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2601. trace_i915_gem_object_change_domain(obj,
  2602. old_read_domains,
  2603. old_write_domain);
  2604. return 0;
  2605. }
  2606. int
  2607. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2608. {
  2609. int ret;
  2610. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2611. return 0;
  2612. ret = i915_gem_object_wait_rendering(obj, false);
  2613. if (ret)
  2614. return ret;
  2615. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2616. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2617. return 0;
  2618. }
  2619. /**
  2620. * Moves a single object to the CPU read, and possibly write domain.
  2621. *
  2622. * This function returns when the move is complete, including waiting on
  2623. * flushes to occur.
  2624. */
  2625. int
  2626. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2627. {
  2628. uint32_t old_write_domain, old_read_domains;
  2629. int ret;
  2630. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2631. return 0;
  2632. ret = i915_gem_object_wait_rendering(obj, !write);
  2633. if (ret)
  2634. return ret;
  2635. i915_gem_object_flush_gtt_write_domain(obj);
  2636. old_write_domain = obj->base.write_domain;
  2637. old_read_domains = obj->base.read_domains;
  2638. /* Flush the CPU cache if it's still invalid. */
  2639. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2640. i915_gem_clflush_object(obj);
  2641. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2642. }
  2643. /* It should now be out of any other write domains, and we can update
  2644. * the domain values for our changes.
  2645. */
  2646. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2647. /* If we're writing through the CPU, then the GPU read domains will
  2648. * need to be invalidated at next use.
  2649. */
  2650. if (write) {
  2651. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2652. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2653. }
  2654. trace_i915_gem_object_change_domain(obj,
  2655. old_read_domains,
  2656. old_write_domain);
  2657. return 0;
  2658. }
  2659. /* Throttle our rendering by waiting until the ring has completed our requests
  2660. * emitted over 20 msec ago.
  2661. *
  2662. * Note that if we were to use the current jiffies each time around the loop,
  2663. * we wouldn't escape the function with any frames outstanding if the time to
  2664. * render a frame was over 20ms.
  2665. *
  2666. * This should get us reasonable parallelism between CPU and GPU but also
  2667. * relatively low latency when blocking on a particular request to finish.
  2668. */
  2669. static int
  2670. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2671. {
  2672. struct drm_i915_private *dev_priv = dev->dev_private;
  2673. struct drm_i915_file_private *file_priv = file->driver_priv;
  2674. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2675. struct drm_i915_gem_request *request;
  2676. struct intel_ring_buffer *ring = NULL;
  2677. u32 seqno = 0;
  2678. int ret;
  2679. if (atomic_read(&dev_priv->mm.wedged))
  2680. return -EIO;
  2681. spin_lock(&file_priv->mm.lock);
  2682. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2683. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2684. break;
  2685. ring = request->ring;
  2686. seqno = request->seqno;
  2687. }
  2688. spin_unlock(&file_priv->mm.lock);
  2689. if (seqno == 0)
  2690. return 0;
  2691. ret = __wait_seqno(ring, seqno, true, NULL);
  2692. if (ret == 0)
  2693. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2694. return ret;
  2695. }
  2696. int
  2697. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2698. uint32_t alignment,
  2699. bool map_and_fenceable)
  2700. {
  2701. int ret;
  2702. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2703. if (obj->gtt_space != NULL) {
  2704. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2705. (map_and_fenceable && !obj->map_and_fenceable)) {
  2706. WARN(obj->pin_count,
  2707. "bo is already pinned with incorrect alignment:"
  2708. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2709. " obj->map_and_fenceable=%d\n",
  2710. obj->gtt_offset, alignment,
  2711. map_and_fenceable,
  2712. obj->map_and_fenceable);
  2713. ret = i915_gem_object_unbind(obj);
  2714. if (ret)
  2715. return ret;
  2716. }
  2717. }
  2718. if (obj->gtt_space == NULL) {
  2719. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2720. map_and_fenceable);
  2721. if (ret)
  2722. return ret;
  2723. }
  2724. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2725. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2726. obj->pin_count++;
  2727. obj->pin_mappable |= map_and_fenceable;
  2728. return 0;
  2729. }
  2730. void
  2731. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2732. {
  2733. BUG_ON(obj->pin_count == 0);
  2734. BUG_ON(obj->gtt_space == NULL);
  2735. if (--obj->pin_count == 0)
  2736. obj->pin_mappable = false;
  2737. }
  2738. int
  2739. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2740. struct drm_file *file)
  2741. {
  2742. struct drm_i915_gem_pin *args = data;
  2743. struct drm_i915_gem_object *obj;
  2744. int ret;
  2745. ret = i915_mutex_lock_interruptible(dev);
  2746. if (ret)
  2747. return ret;
  2748. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2749. if (&obj->base == NULL) {
  2750. ret = -ENOENT;
  2751. goto unlock;
  2752. }
  2753. if (obj->madv != I915_MADV_WILLNEED) {
  2754. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2755. ret = -EINVAL;
  2756. goto out;
  2757. }
  2758. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2759. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2760. args->handle);
  2761. ret = -EINVAL;
  2762. goto out;
  2763. }
  2764. obj->user_pin_count++;
  2765. obj->pin_filp = file;
  2766. if (obj->user_pin_count == 1) {
  2767. ret = i915_gem_object_pin(obj, args->alignment, true);
  2768. if (ret)
  2769. goto out;
  2770. }
  2771. /* XXX - flush the CPU caches for pinned objects
  2772. * as the X server doesn't manage domains yet
  2773. */
  2774. i915_gem_object_flush_cpu_write_domain(obj);
  2775. args->offset = obj->gtt_offset;
  2776. out:
  2777. drm_gem_object_unreference(&obj->base);
  2778. unlock:
  2779. mutex_unlock(&dev->struct_mutex);
  2780. return ret;
  2781. }
  2782. int
  2783. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2784. struct drm_file *file)
  2785. {
  2786. struct drm_i915_gem_pin *args = data;
  2787. struct drm_i915_gem_object *obj;
  2788. int ret;
  2789. ret = i915_mutex_lock_interruptible(dev);
  2790. if (ret)
  2791. return ret;
  2792. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2793. if (&obj->base == NULL) {
  2794. ret = -ENOENT;
  2795. goto unlock;
  2796. }
  2797. if (obj->pin_filp != file) {
  2798. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2799. args->handle);
  2800. ret = -EINVAL;
  2801. goto out;
  2802. }
  2803. obj->user_pin_count--;
  2804. if (obj->user_pin_count == 0) {
  2805. obj->pin_filp = NULL;
  2806. i915_gem_object_unpin(obj);
  2807. }
  2808. out:
  2809. drm_gem_object_unreference(&obj->base);
  2810. unlock:
  2811. mutex_unlock(&dev->struct_mutex);
  2812. return ret;
  2813. }
  2814. int
  2815. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2816. struct drm_file *file)
  2817. {
  2818. struct drm_i915_gem_busy *args = data;
  2819. struct drm_i915_gem_object *obj;
  2820. int ret;
  2821. ret = i915_mutex_lock_interruptible(dev);
  2822. if (ret)
  2823. return ret;
  2824. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2825. if (&obj->base == NULL) {
  2826. ret = -ENOENT;
  2827. goto unlock;
  2828. }
  2829. /* Count all active objects as busy, even if they are currently not used
  2830. * by the gpu. Users of this interface expect objects to eventually
  2831. * become non-busy without any further actions, therefore emit any
  2832. * necessary flushes here.
  2833. */
  2834. ret = i915_gem_object_flush_active(obj);
  2835. args->busy = obj->active;
  2836. if (obj->ring) {
  2837. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  2838. args->busy |= intel_ring_flag(obj->ring) << 16;
  2839. }
  2840. drm_gem_object_unreference(&obj->base);
  2841. unlock:
  2842. mutex_unlock(&dev->struct_mutex);
  2843. return ret;
  2844. }
  2845. int
  2846. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2847. struct drm_file *file_priv)
  2848. {
  2849. return i915_gem_ring_throttle(dev, file_priv);
  2850. }
  2851. int
  2852. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2853. struct drm_file *file_priv)
  2854. {
  2855. struct drm_i915_gem_madvise *args = data;
  2856. struct drm_i915_gem_object *obj;
  2857. int ret;
  2858. switch (args->madv) {
  2859. case I915_MADV_DONTNEED:
  2860. case I915_MADV_WILLNEED:
  2861. break;
  2862. default:
  2863. return -EINVAL;
  2864. }
  2865. ret = i915_mutex_lock_interruptible(dev);
  2866. if (ret)
  2867. return ret;
  2868. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2869. if (&obj->base == NULL) {
  2870. ret = -ENOENT;
  2871. goto unlock;
  2872. }
  2873. if (obj->pin_count) {
  2874. ret = -EINVAL;
  2875. goto out;
  2876. }
  2877. if (obj->madv != __I915_MADV_PURGED)
  2878. obj->madv = args->madv;
  2879. /* if the object is no longer bound, discard its backing storage */
  2880. if (i915_gem_object_is_purgeable(obj) &&
  2881. obj->gtt_space == NULL)
  2882. i915_gem_object_truncate(obj);
  2883. args->retained = obj->madv != __I915_MADV_PURGED;
  2884. out:
  2885. drm_gem_object_unreference(&obj->base);
  2886. unlock:
  2887. mutex_unlock(&dev->struct_mutex);
  2888. return ret;
  2889. }
  2890. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2891. size_t size)
  2892. {
  2893. struct drm_i915_private *dev_priv = dev->dev_private;
  2894. struct drm_i915_gem_object *obj;
  2895. struct address_space *mapping;
  2896. u32 mask;
  2897. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2898. if (obj == NULL)
  2899. return NULL;
  2900. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2901. kfree(obj);
  2902. return NULL;
  2903. }
  2904. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  2905. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  2906. /* 965gm cannot relocate objects above 4GiB. */
  2907. mask &= ~__GFP_HIGHMEM;
  2908. mask |= __GFP_DMA32;
  2909. }
  2910. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2911. mapping_set_gfp_mask(mapping, mask);
  2912. i915_gem_info_add_obj(dev_priv, size);
  2913. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2914. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2915. if (HAS_LLC(dev)) {
  2916. /* On some devices, we can have the GPU use the LLC (the CPU
  2917. * cache) for about a 10% performance improvement
  2918. * compared to uncached. Graphics requests other than
  2919. * display scanout are coherent with the CPU in
  2920. * accessing this cache. This means in this mode we
  2921. * don't need to clflush on the CPU side, and on the
  2922. * GPU side we only need to flush internal caches to
  2923. * get data visible to the CPU.
  2924. *
  2925. * However, we maintain the display planes as UC, and so
  2926. * need to rebind when first used as such.
  2927. */
  2928. obj->cache_level = I915_CACHE_LLC;
  2929. } else
  2930. obj->cache_level = I915_CACHE_NONE;
  2931. obj->base.driver_private = NULL;
  2932. obj->fence_reg = I915_FENCE_REG_NONE;
  2933. INIT_LIST_HEAD(&obj->mm_list);
  2934. INIT_LIST_HEAD(&obj->gtt_list);
  2935. INIT_LIST_HEAD(&obj->ring_list);
  2936. INIT_LIST_HEAD(&obj->exec_list);
  2937. obj->madv = I915_MADV_WILLNEED;
  2938. /* Avoid an unnecessary call to unbind on the first bind. */
  2939. obj->map_and_fenceable = true;
  2940. return obj;
  2941. }
  2942. int i915_gem_init_object(struct drm_gem_object *obj)
  2943. {
  2944. BUG();
  2945. return 0;
  2946. }
  2947. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2948. {
  2949. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2950. struct drm_device *dev = obj->base.dev;
  2951. drm_i915_private_t *dev_priv = dev->dev_private;
  2952. trace_i915_gem_object_destroy(obj);
  2953. if (gem_obj->import_attach)
  2954. drm_prime_gem_destroy(gem_obj, obj->sg_table);
  2955. if (obj->phys_obj)
  2956. i915_gem_detach_phys_object(dev, obj);
  2957. obj->pin_count = 0;
  2958. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  2959. bool was_interruptible;
  2960. was_interruptible = dev_priv->mm.interruptible;
  2961. dev_priv->mm.interruptible = false;
  2962. WARN_ON(i915_gem_object_unbind(obj));
  2963. dev_priv->mm.interruptible = was_interruptible;
  2964. }
  2965. if (obj->base.map_list.map)
  2966. drm_gem_free_mmap_offset(&obj->base);
  2967. drm_gem_object_release(&obj->base);
  2968. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2969. kfree(obj->bit_17);
  2970. kfree(obj);
  2971. }
  2972. int
  2973. i915_gem_idle(struct drm_device *dev)
  2974. {
  2975. drm_i915_private_t *dev_priv = dev->dev_private;
  2976. int ret;
  2977. mutex_lock(&dev->struct_mutex);
  2978. if (dev_priv->mm.suspended) {
  2979. mutex_unlock(&dev->struct_mutex);
  2980. return 0;
  2981. }
  2982. ret = i915_gpu_idle(dev);
  2983. if (ret) {
  2984. mutex_unlock(&dev->struct_mutex);
  2985. return ret;
  2986. }
  2987. i915_gem_retire_requests(dev);
  2988. /* Under UMS, be paranoid and evict. */
  2989. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  2990. i915_gem_evict_everything(dev, false);
  2991. i915_gem_reset_fences(dev);
  2992. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2993. * We need to replace this with a semaphore, or something.
  2994. * And not confound mm.suspended!
  2995. */
  2996. dev_priv->mm.suspended = 1;
  2997. del_timer_sync(&dev_priv->hangcheck_timer);
  2998. i915_kernel_lost_context(dev);
  2999. i915_gem_cleanup_ringbuffer(dev);
  3000. mutex_unlock(&dev->struct_mutex);
  3001. /* Cancel the retire work handler, which should be idle now. */
  3002. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3003. return 0;
  3004. }
  3005. void i915_gem_l3_remap(struct drm_device *dev)
  3006. {
  3007. drm_i915_private_t *dev_priv = dev->dev_private;
  3008. u32 misccpctl;
  3009. int i;
  3010. if (!IS_IVYBRIDGE(dev))
  3011. return;
  3012. if (!dev_priv->mm.l3_remap_info)
  3013. return;
  3014. misccpctl = I915_READ(GEN7_MISCCPCTL);
  3015. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  3016. POSTING_READ(GEN7_MISCCPCTL);
  3017. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3018. u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
  3019. if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
  3020. DRM_DEBUG("0x%x was already programmed to %x\n",
  3021. GEN7_L3LOG_BASE + i, remap);
  3022. if (remap && !dev_priv->mm.l3_remap_info[i/4])
  3023. DRM_DEBUG_DRIVER("Clearing remapped register\n");
  3024. I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
  3025. }
  3026. /* Make sure all the writes land before disabling dop clock gating */
  3027. POSTING_READ(GEN7_L3LOG_BASE);
  3028. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  3029. }
  3030. void i915_gem_init_swizzling(struct drm_device *dev)
  3031. {
  3032. drm_i915_private_t *dev_priv = dev->dev_private;
  3033. if (INTEL_INFO(dev)->gen < 5 ||
  3034. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3035. return;
  3036. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3037. DISP_TILE_SURFACE_SWIZZLING);
  3038. if (IS_GEN5(dev))
  3039. return;
  3040. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3041. if (IS_GEN6(dev))
  3042. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3043. else
  3044. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3045. }
  3046. void i915_gem_init_ppgtt(struct drm_device *dev)
  3047. {
  3048. drm_i915_private_t *dev_priv = dev->dev_private;
  3049. uint32_t pd_offset;
  3050. struct intel_ring_buffer *ring;
  3051. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  3052. uint32_t __iomem *pd_addr;
  3053. uint32_t pd_entry;
  3054. int i;
  3055. if (!dev_priv->mm.aliasing_ppgtt)
  3056. return;
  3057. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  3058. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  3059. dma_addr_t pt_addr;
  3060. if (dev_priv->mm.gtt->needs_dmar)
  3061. pt_addr = ppgtt->pt_dma_addr[i];
  3062. else
  3063. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  3064. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  3065. pd_entry |= GEN6_PDE_VALID;
  3066. writel(pd_entry, pd_addr + i);
  3067. }
  3068. readl(pd_addr);
  3069. pd_offset = ppgtt->pd_offset;
  3070. pd_offset /= 64; /* in cachelines, */
  3071. pd_offset <<= 16;
  3072. if (INTEL_INFO(dev)->gen == 6) {
  3073. uint32_t ecochk, gab_ctl, ecobits;
  3074. ecobits = I915_READ(GAC_ECO_BITS);
  3075. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  3076. gab_ctl = I915_READ(GAB_CTL);
  3077. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  3078. ecochk = I915_READ(GAM_ECOCHK);
  3079. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  3080. ECOCHK_PPGTT_CACHE64B);
  3081. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3082. } else if (INTEL_INFO(dev)->gen >= 7) {
  3083. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  3084. /* GFX_MODE is per-ring on gen7+ */
  3085. }
  3086. for_each_ring(ring, dev_priv, i) {
  3087. if (INTEL_INFO(dev)->gen >= 7)
  3088. I915_WRITE(RING_MODE_GEN7(ring),
  3089. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3090. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  3091. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  3092. }
  3093. }
  3094. static bool
  3095. intel_enable_blt(struct drm_device *dev)
  3096. {
  3097. if (!HAS_BLT(dev))
  3098. return false;
  3099. /* The blitter was dysfunctional on early prototypes */
  3100. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3101. DRM_INFO("BLT not supported on this pre-production hardware;"
  3102. " graphics performance will be degraded.\n");
  3103. return false;
  3104. }
  3105. return true;
  3106. }
  3107. int
  3108. i915_gem_init_hw(struct drm_device *dev)
  3109. {
  3110. drm_i915_private_t *dev_priv = dev->dev_private;
  3111. int ret;
  3112. if (!intel_enable_gtt())
  3113. return -EIO;
  3114. i915_gem_l3_remap(dev);
  3115. i915_gem_init_swizzling(dev);
  3116. ret = intel_init_render_ring_buffer(dev);
  3117. if (ret)
  3118. return ret;
  3119. if (HAS_BSD(dev)) {
  3120. ret = intel_init_bsd_ring_buffer(dev);
  3121. if (ret)
  3122. goto cleanup_render_ring;
  3123. }
  3124. if (intel_enable_blt(dev)) {
  3125. ret = intel_init_blt_ring_buffer(dev);
  3126. if (ret)
  3127. goto cleanup_bsd_ring;
  3128. }
  3129. dev_priv->next_seqno = 1;
  3130. /*
  3131. * XXX: There was some w/a described somewhere suggesting loading
  3132. * contexts before PPGTT.
  3133. */
  3134. i915_gem_context_init(dev);
  3135. i915_gem_init_ppgtt(dev);
  3136. return 0;
  3137. cleanup_bsd_ring:
  3138. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3139. cleanup_render_ring:
  3140. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3141. return ret;
  3142. }
  3143. static bool
  3144. intel_enable_ppgtt(struct drm_device *dev)
  3145. {
  3146. if (i915_enable_ppgtt >= 0)
  3147. return i915_enable_ppgtt;
  3148. #ifdef CONFIG_INTEL_IOMMU
  3149. /* Disable ppgtt on SNB if VT-d is on. */
  3150. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  3151. return false;
  3152. #endif
  3153. return true;
  3154. }
  3155. int i915_gem_init(struct drm_device *dev)
  3156. {
  3157. struct drm_i915_private *dev_priv = dev->dev_private;
  3158. unsigned long gtt_size, mappable_size;
  3159. int ret;
  3160. gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
  3161. mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
  3162. mutex_lock(&dev->struct_mutex);
  3163. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  3164. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  3165. * aperture accordingly when using aliasing ppgtt. */
  3166. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  3167. i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
  3168. ret = i915_gem_init_aliasing_ppgtt(dev);
  3169. if (ret) {
  3170. mutex_unlock(&dev->struct_mutex);
  3171. return ret;
  3172. }
  3173. } else {
  3174. /* Let GEM Manage all of the aperture.
  3175. *
  3176. * However, leave one page at the end still bound to the scratch
  3177. * page. There are a number of places where the hardware
  3178. * apparently prefetches past the end of the object, and we've
  3179. * seen multiple hangs with the GPU head pointer stuck in a
  3180. * batchbuffer bound at the last page of the aperture. One page
  3181. * should be enough to keep any prefetching inside of the
  3182. * aperture.
  3183. */
  3184. i915_gem_init_global_gtt(dev, 0, mappable_size,
  3185. gtt_size);
  3186. }
  3187. ret = i915_gem_init_hw(dev);
  3188. mutex_unlock(&dev->struct_mutex);
  3189. if (ret) {
  3190. i915_gem_cleanup_aliasing_ppgtt(dev);
  3191. return ret;
  3192. }
  3193. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3194. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3195. dev_priv->dri1.allow_batchbuffer = 1;
  3196. return 0;
  3197. }
  3198. void
  3199. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3200. {
  3201. drm_i915_private_t *dev_priv = dev->dev_private;
  3202. struct intel_ring_buffer *ring;
  3203. int i;
  3204. for_each_ring(ring, dev_priv, i)
  3205. intel_cleanup_ring_buffer(ring);
  3206. }
  3207. int
  3208. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3209. struct drm_file *file_priv)
  3210. {
  3211. drm_i915_private_t *dev_priv = dev->dev_private;
  3212. int ret;
  3213. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3214. return 0;
  3215. if (atomic_read(&dev_priv->mm.wedged)) {
  3216. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3217. atomic_set(&dev_priv->mm.wedged, 0);
  3218. }
  3219. mutex_lock(&dev->struct_mutex);
  3220. dev_priv->mm.suspended = 0;
  3221. ret = i915_gem_init_hw(dev);
  3222. if (ret != 0) {
  3223. mutex_unlock(&dev->struct_mutex);
  3224. return ret;
  3225. }
  3226. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3227. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3228. mutex_unlock(&dev->struct_mutex);
  3229. ret = drm_irq_install(dev);
  3230. if (ret)
  3231. goto cleanup_ringbuffer;
  3232. return 0;
  3233. cleanup_ringbuffer:
  3234. mutex_lock(&dev->struct_mutex);
  3235. i915_gem_cleanup_ringbuffer(dev);
  3236. dev_priv->mm.suspended = 1;
  3237. mutex_unlock(&dev->struct_mutex);
  3238. return ret;
  3239. }
  3240. int
  3241. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3242. struct drm_file *file_priv)
  3243. {
  3244. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3245. return 0;
  3246. drm_irq_uninstall(dev);
  3247. return i915_gem_idle(dev);
  3248. }
  3249. void
  3250. i915_gem_lastclose(struct drm_device *dev)
  3251. {
  3252. int ret;
  3253. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3254. return;
  3255. ret = i915_gem_idle(dev);
  3256. if (ret)
  3257. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3258. }
  3259. static void
  3260. init_ring_lists(struct intel_ring_buffer *ring)
  3261. {
  3262. INIT_LIST_HEAD(&ring->active_list);
  3263. INIT_LIST_HEAD(&ring->request_list);
  3264. }
  3265. void
  3266. i915_gem_load(struct drm_device *dev)
  3267. {
  3268. int i;
  3269. drm_i915_private_t *dev_priv = dev->dev_private;
  3270. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3271. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3272. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3273. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3274. for (i = 0; i < I915_NUM_RINGS; i++)
  3275. init_ring_lists(&dev_priv->ring[i]);
  3276. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3277. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3278. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3279. i915_gem_retire_work_handler);
  3280. init_completion(&dev_priv->error_completion);
  3281. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3282. if (IS_GEN3(dev)) {
  3283. I915_WRITE(MI_ARB_STATE,
  3284. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3285. }
  3286. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3287. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3288. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3289. dev_priv->fence_reg_start = 3;
  3290. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3291. dev_priv->num_fence_regs = 16;
  3292. else
  3293. dev_priv->num_fence_regs = 8;
  3294. /* Initialize fence registers to zero */
  3295. i915_gem_reset_fences(dev);
  3296. i915_gem_detect_bit_6_swizzle(dev);
  3297. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3298. dev_priv->mm.interruptible = true;
  3299. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3300. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3301. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3302. }
  3303. /*
  3304. * Create a physically contiguous memory object for this object
  3305. * e.g. for cursor + overlay regs
  3306. */
  3307. static int i915_gem_init_phys_object(struct drm_device *dev,
  3308. int id, int size, int align)
  3309. {
  3310. drm_i915_private_t *dev_priv = dev->dev_private;
  3311. struct drm_i915_gem_phys_object *phys_obj;
  3312. int ret;
  3313. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3314. return 0;
  3315. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3316. if (!phys_obj)
  3317. return -ENOMEM;
  3318. phys_obj->id = id;
  3319. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3320. if (!phys_obj->handle) {
  3321. ret = -ENOMEM;
  3322. goto kfree_obj;
  3323. }
  3324. #ifdef CONFIG_X86
  3325. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3326. #endif
  3327. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3328. return 0;
  3329. kfree_obj:
  3330. kfree(phys_obj);
  3331. return ret;
  3332. }
  3333. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3334. {
  3335. drm_i915_private_t *dev_priv = dev->dev_private;
  3336. struct drm_i915_gem_phys_object *phys_obj;
  3337. if (!dev_priv->mm.phys_objs[id - 1])
  3338. return;
  3339. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3340. if (phys_obj->cur_obj) {
  3341. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3342. }
  3343. #ifdef CONFIG_X86
  3344. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3345. #endif
  3346. drm_pci_free(dev, phys_obj->handle);
  3347. kfree(phys_obj);
  3348. dev_priv->mm.phys_objs[id - 1] = NULL;
  3349. }
  3350. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3351. {
  3352. int i;
  3353. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3354. i915_gem_free_phys_object(dev, i);
  3355. }
  3356. void i915_gem_detach_phys_object(struct drm_device *dev,
  3357. struct drm_i915_gem_object *obj)
  3358. {
  3359. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3360. char *vaddr;
  3361. int i;
  3362. int page_count;
  3363. if (!obj->phys_obj)
  3364. return;
  3365. vaddr = obj->phys_obj->handle->vaddr;
  3366. page_count = obj->base.size / PAGE_SIZE;
  3367. for (i = 0; i < page_count; i++) {
  3368. struct page *page = shmem_read_mapping_page(mapping, i);
  3369. if (!IS_ERR(page)) {
  3370. char *dst = kmap_atomic(page);
  3371. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3372. kunmap_atomic(dst);
  3373. drm_clflush_pages(&page, 1);
  3374. set_page_dirty(page);
  3375. mark_page_accessed(page);
  3376. page_cache_release(page);
  3377. }
  3378. }
  3379. intel_gtt_chipset_flush();
  3380. obj->phys_obj->cur_obj = NULL;
  3381. obj->phys_obj = NULL;
  3382. }
  3383. int
  3384. i915_gem_attach_phys_object(struct drm_device *dev,
  3385. struct drm_i915_gem_object *obj,
  3386. int id,
  3387. int align)
  3388. {
  3389. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3390. drm_i915_private_t *dev_priv = dev->dev_private;
  3391. int ret = 0;
  3392. int page_count;
  3393. int i;
  3394. if (id > I915_MAX_PHYS_OBJECT)
  3395. return -EINVAL;
  3396. if (obj->phys_obj) {
  3397. if (obj->phys_obj->id == id)
  3398. return 0;
  3399. i915_gem_detach_phys_object(dev, obj);
  3400. }
  3401. /* create a new object */
  3402. if (!dev_priv->mm.phys_objs[id - 1]) {
  3403. ret = i915_gem_init_phys_object(dev, id,
  3404. obj->base.size, align);
  3405. if (ret) {
  3406. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3407. id, obj->base.size);
  3408. return ret;
  3409. }
  3410. }
  3411. /* bind to the object */
  3412. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3413. obj->phys_obj->cur_obj = obj;
  3414. page_count = obj->base.size / PAGE_SIZE;
  3415. for (i = 0; i < page_count; i++) {
  3416. struct page *page;
  3417. char *dst, *src;
  3418. page = shmem_read_mapping_page(mapping, i);
  3419. if (IS_ERR(page))
  3420. return PTR_ERR(page);
  3421. src = kmap_atomic(page);
  3422. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3423. memcpy(dst, src, PAGE_SIZE);
  3424. kunmap_atomic(src);
  3425. mark_page_accessed(page);
  3426. page_cache_release(page);
  3427. }
  3428. return 0;
  3429. }
  3430. static int
  3431. i915_gem_phys_pwrite(struct drm_device *dev,
  3432. struct drm_i915_gem_object *obj,
  3433. struct drm_i915_gem_pwrite *args,
  3434. struct drm_file *file_priv)
  3435. {
  3436. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3437. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3438. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3439. unsigned long unwritten;
  3440. /* The physical object once assigned is fixed for the lifetime
  3441. * of the obj, so we can safely drop the lock and continue
  3442. * to access vaddr.
  3443. */
  3444. mutex_unlock(&dev->struct_mutex);
  3445. unwritten = copy_from_user(vaddr, user_data, args->size);
  3446. mutex_lock(&dev->struct_mutex);
  3447. if (unwritten)
  3448. return -EFAULT;
  3449. }
  3450. intel_gtt_chipset_flush();
  3451. return 0;
  3452. }
  3453. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3454. {
  3455. struct drm_i915_file_private *file_priv = file->driver_priv;
  3456. /* Clean up our request list when the client is going away, so that
  3457. * later retire_requests won't dereference our soon-to-be-gone
  3458. * file_priv.
  3459. */
  3460. spin_lock(&file_priv->mm.lock);
  3461. while (!list_empty(&file_priv->mm.request_list)) {
  3462. struct drm_i915_gem_request *request;
  3463. request = list_first_entry(&file_priv->mm.request_list,
  3464. struct drm_i915_gem_request,
  3465. client_list);
  3466. list_del(&request->client_list);
  3467. request->file_priv = NULL;
  3468. }
  3469. spin_unlock(&file_priv->mm.lock);
  3470. }
  3471. static int
  3472. i915_gpu_is_active(struct drm_device *dev)
  3473. {
  3474. drm_i915_private_t *dev_priv = dev->dev_private;
  3475. return !list_empty(&dev_priv->mm.active_list);
  3476. }
  3477. static int
  3478. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3479. {
  3480. struct drm_i915_private *dev_priv =
  3481. container_of(shrinker,
  3482. struct drm_i915_private,
  3483. mm.inactive_shrinker);
  3484. struct drm_device *dev = dev_priv->dev;
  3485. struct drm_i915_gem_object *obj, *next;
  3486. int nr_to_scan = sc->nr_to_scan;
  3487. int cnt;
  3488. if (!mutex_trylock(&dev->struct_mutex))
  3489. return 0;
  3490. /* "fast-path" to count number of available objects */
  3491. if (nr_to_scan == 0) {
  3492. cnt = 0;
  3493. list_for_each_entry(obj,
  3494. &dev_priv->mm.inactive_list,
  3495. mm_list)
  3496. cnt++;
  3497. mutex_unlock(&dev->struct_mutex);
  3498. return cnt / 100 * sysctl_vfs_cache_pressure;
  3499. }
  3500. rescan:
  3501. /* first scan for clean buffers */
  3502. i915_gem_retire_requests(dev);
  3503. list_for_each_entry_safe(obj, next,
  3504. &dev_priv->mm.inactive_list,
  3505. mm_list) {
  3506. if (i915_gem_object_is_purgeable(obj)) {
  3507. if (i915_gem_object_unbind(obj) == 0 &&
  3508. --nr_to_scan == 0)
  3509. break;
  3510. }
  3511. }
  3512. /* second pass, evict/count anything still on the inactive list */
  3513. cnt = 0;
  3514. list_for_each_entry_safe(obj, next,
  3515. &dev_priv->mm.inactive_list,
  3516. mm_list) {
  3517. if (nr_to_scan &&
  3518. i915_gem_object_unbind(obj) == 0)
  3519. nr_to_scan--;
  3520. else
  3521. cnt++;
  3522. }
  3523. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3524. /*
  3525. * We are desperate for pages, so as a last resort, wait
  3526. * for the GPU to finish and discard whatever we can.
  3527. * This has a dramatic impact to reduce the number of
  3528. * OOM-killer events whilst running the GPU aggressively.
  3529. */
  3530. if (i915_gpu_idle(dev) == 0)
  3531. goto rescan;
  3532. }
  3533. mutex_unlock(&dev->struct_mutex);
  3534. return cnt / 100 * sysctl_vfs_cache_pressure;
  3535. }