ste_dma40.c 94 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/pm.h>
  17. #include <linux/pm_runtime.h>
  18. #include <linux/err.h>
  19. #include <linux/amba/bus.h>
  20. #include <linux/regulator/consumer.h>
  21. #include <linux/platform_data/dma-ste-dma40.h>
  22. #include "dmaengine.h"
  23. #include "ste_dma40_ll.h"
  24. #define D40_NAME "dma40"
  25. #define D40_PHY_CHAN -1
  26. /* For masking out/in 2 bit channel positions */
  27. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  28. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  29. /* Maximum iterations taken before giving up suspending a channel */
  30. #define D40_SUSPEND_MAX_IT 500
  31. /* Milliseconds */
  32. #define DMA40_AUTOSUSPEND_DELAY 100
  33. /* Hardware requirement on LCLA alignment */
  34. #define LCLA_ALIGNMENT 0x40000
  35. /* Max number of links per event group */
  36. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  37. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  38. /* Attempts before giving up to trying to get pages that are aligned */
  39. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  40. /* Bit markings for allocation map */
  41. #define D40_ALLOC_FREE (1 << 31)
  42. #define D40_ALLOC_PHY (1 << 30)
  43. #define D40_ALLOC_LOG_FREE 0
  44. #define MAX(a, b) (((a) < (b)) ? (b) : (a))
  45. /* Reserved event lines for memcpy only. */
  46. #define DB8500_DMA_MEMCPY_EV_0 51
  47. #define DB8500_DMA_MEMCPY_EV_1 56
  48. #define DB8500_DMA_MEMCPY_EV_2 57
  49. #define DB8500_DMA_MEMCPY_EV_3 58
  50. #define DB8500_DMA_MEMCPY_EV_4 59
  51. #define DB8500_DMA_MEMCPY_EV_5 60
  52. static int dma40_memcpy_channels[] = {
  53. DB8500_DMA_MEMCPY_EV_0,
  54. DB8500_DMA_MEMCPY_EV_1,
  55. DB8500_DMA_MEMCPY_EV_2,
  56. DB8500_DMA_MEMCPY_EV_3,
  57. DB8500_DMA_MEMCPY_EV_4,
  58. DB8500_DMA_MEMCPY_EV_5,
  59. };
  60. /* Default configuration for physcial memcpy */
  61. struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
  62. .mode = STEDMA40_MODE_PHYSICAL,
  63. .dir = STEDMA40_MEM_TO_MEM,
  64. .src_info.data_width = STEDMA40_BYTE_WIDTH,
  65. .src_info.psize = STEDMA40_PSIZE_PHY_1,
  66. .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  67. .dst_info.data_width = STEDMA40_BYTE_WIDTH,
  68. .dst_info.psize = STEDMA40_PSIZE_PHY_1,
  69. .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  70. };
  71. /* Default configuration for logical memcpy */
  72. struct stedma40_chan_cfg dma40_memcpy_conf_log = {
  73. .mode = STEDMA40_MODE_LOGICAL,
  74. .dir = STEDMA40_MEM_TO_MEM,
  75. .src_info.data_width = STEDMA40_BYTE_WIDTH,
  76. .src_info.psize = STEDMA40_PSIZE_LOG_1,
  77. .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  78. .dst_info.data_width = STEDMA40_BYTE_WIDTH,
  79. .dst_info.psize = STEDMA40_PSIZE_LOG_1,
  80. .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  81. };
  82. /**
  83. * enum 40_command - The different commands and/or statuses.
  84. *
  85. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  86. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  87. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  88. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  89. */
  90. enum d40_command {
  91. D40_DMA_STOP = 0,
  92. D40_DMA_RUN = 1,
  93. D40_DMA_SUSPEND_REQ = 2,
  94. D40_DMA_SUSPENDED = 3
  95. };
  96. /*
  97. * enum d40_events - The different Event Enables for the event lines.
  98. *
  99. * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
  100. * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
  101. * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
  102. * @D40_ROUND_EVENTLINE: Status check for event line.
  103. */
  104. enum d40_events {
  105. D40_DEACTIVATE_EVENTLINE = 0,
  106. D40_ACTIVATE_EVENTLINE = 1,
  107. D40_SUSPEND_REQ_EVENTLINE = 2,
  108. D40_ROUND_EVENTLINE = 3
  109. };
  110. /*
  111. * These are the registers that has to be saved and later restored
  112. * when the DMA hw is powered off.
  113. * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
  114. */
  115. static u32 d40_backup_regs[] = {
  116. D40_DREG_LCPA,
  117. D40_DREG_LCLA,
  118. D40_DREG_PRMSE,
  119. D40_DREG_PRMSO,
  120. D40_DREG_PRMOE,
  121. D40_DREG_PRMOO,
  122. };
  123. #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
  124. /*
  125. * since 9540 and 8540 has the same HW revision
  126. * use v4a for 9540 or ealier
  127. * use v4b for 8540 or later
  128. * HW revision:
  129. * DB8500ed has revision 0
  130. * DB8500v1 has revision 2
  131. * DB8500v2 has revision 3
  132. * AP9540v1 has revision 4
  133. * DB8540v1 has revision 4
  134. * TODO: Check if all these registers have to be saved/restored on dma40 v4a
  135. */
  136. static u32 d40_backup_regs_v4a[] = {
  137. D40_DREG_PSEG1,
  138. D40_DREG_PSEG2,
  139. D40_DREG_PSEG3,
  140. D40_DREG_PSEG4,
  141. D40_DREG_PCEG1,
  142. D40_DREG_PCEG2,
  143. D40_DREG_PCEG3,
  144. D40_DREG_PCEG4,
  145. D40_DREG_RSEG1,
  146. D40_DREG_RSEG2,
  147. D40_DREG_RSEG3,
  148. D40_DREG_RSEG4,
  149. D40_DREG_RCEG1,
  150. D40_DREG_RCEG2,
  151. D40_DREG_RCEG3,
  152. D40_DREG_RCEG4,
  153. };
  154. #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
  155. static u32 d40_backup_regs_v4b[] = {
  156. D40_DREG_CPSEG1,
  157. D40_DREG_CPSEG2,
  158. D40_DREG_CPSEG3,
  159. D40_DREG_CPSEG4,
  160. D40_DREG_CPSEG5,
  161. D40_DREG_CPCEG1,
  162. D40_DREG_CPCEG2,
  163. D40_DREG_CPCEG3,
  164. D40_DREG_CPCEG4,
  165. D40_DREG_CPCEG5,
  166. D40_DREG_CRSEG1,
  167. D40_DREG_CRSEG2,
  168. D40_DREG_CRSEG3,
  169. D40_DREG_CRSEG4,
  170. D40_DREG_CRSEG5,
  171. D40_DREG_CRCEG1,
  172. D40_DREG_CRCEG2,
  173. D40_DREG_CRCEG3,
  174. D40_DREG_CRCEG4,
  175. D40_DREG_CRCEG5,
  176. };
  177. #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
  178. static u32 d40_backup_regs_chan[] = {
  179. D40_CHAN_REG_SSCFG,
  180. D40_CHAN_REG_SSELT,
  181. D40_CHAN_REG_SSPTR,
  182. D40_CHAN_REG_SSLNK,
  183. D40_CHAN_REG_SDCFG,
  184. D40_CHAN_REG_SDELT,
  185. D40_CHAN_REG_SDPTR,
  186. D40_CHAN_REG_SDLNK,
  187. };
  188. /**
  189. * struct d40_interrupt_lookup - lookup table for interrupt handler
  190. *
  191. * @src: Interrupt mask register.
  192. * @clr: Interrupt clear register.
  193. * @is_error: true if this is an error interrupt.
  194. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  195. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  196. */
  197. struct d40_interrupt_lookup {
  198. u32 src;
  199. u32 clr;
  200. bool is_error;
  201. int offset;
  202. };
  203. static struct d40_interrupt_lookup il_v4a[] = {
  204. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  205. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  206. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  207. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  208. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  209. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  210. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  211. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  212. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  213. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  214. };
  215. static struct d40_interrupt_lookup il_v4b[] = {
  216. {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
  217. {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
  218. {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
  219. {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
  220. {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
  221. {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
  222. {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
  223. {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
  224. {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
  225. {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
  226. {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
  227. {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
  228. };
  229. /**
  230. * struct d40_reg_val - simple lookup struct
  231. *
  232. * @reg: The register.
  233. * @val: The value that belongs to the register in reg.
  234. */
  235. struct d40_reg_val {
  236. unsigned int reg;
  237. unsigned int val;
  238. };
  239. static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
  240. /* Clock every part of the DMA block from start */
  241. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  242. /* Interrupts on all logical channels */
  243. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  244. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  245. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  246. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  247. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  248. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  249. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  250. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  251. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  252. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  253. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  254. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  255. };
  256. static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
  257. /* Clock every part of the DMA block from start */
  258. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  259. /* Interrupts on all logical channels */
  260. { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
  261. { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
  262. { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
  263. { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
  264. { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
  265. { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
  266. { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
  267. { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
  268. { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
  269. { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
  270. { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
  271. { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
  272. { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
  273. { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
  274. { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
  275. };
  276. /**
  277. * struct d40_lli_pool - Structure for keeping LLIs in memory
  278. *
  279. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  280. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  281. * pre_alloc_lli is used.
  282. * @dma_addr: DMA address, if mapped
  283. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  284. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  285. * one buffer to one buffer.
  286. */
  287. struct d40_lli_pool {
  288. void *base;
  289. int size;
  290. dma_addr_t dma_addr;
  291. /* Space for dst and src, plus an extra for padding */
  292. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  293. };
  294. /**
  295. * struct d40_desc - A descriptor is one DMA job.
  296. *
  297. * @lli_phy: LLI settings for physical channel. Both src and dst=
  298. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  299. * lli_len equals one.
  300. * @lli_log: Same as above but for logical channels.
  301. * @lli_pool: The pool with two entries pre-allocated.
  302. * @lli_len: Number of llis of current descriptor.
  303. * @lli_current: Number of transferred llis.
  304. * @lcla_alloc: Number of LCLA entries allocated.
  305. * @txd: DMA engine struct. Used for among other things for communication
  306. * during a transfer.
  307. * @node: List entry.
  308. * @is_in_client_list: true if the client owns this descriptor.
  309. * @cyclic: true if this is a cyclic job
  310. *
  311. * This descriptor is used for both logical and physical transfers.
  312. */
  313. struct d40_desc {
  314. /* LLI physical */
  315. struct d40_phy_lli_bidir lli_phy;
  316. /* LLI logical */
  317. struct d40_log_lli_bidir lli_log;
  318. struct d40_lli_pool lli_pool;
  319. int lli_len;
  320. int lli_current;
  321. int lcla_alloc;
  322. struct dma_async_tx_descriptor txd;
  323. struct list_head node;
  324. bool is_in_client_list;
  325. bool cyclic;
  326. };
  327. /**
  328. * struct d40_lcla_pool - LCLA pool settings and data.
  329. *
  330. * @base: The virtual address of LCLA. 18 bit aligned.
  331. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  332. * This pointer is only there for clean-up on error.
  333. * @pages: The number of pages needed for all physical channels.
  334. * Only used later for clean-up on error
  335. * @lock: Lock to protect the content in this struct.
  336. * @alloc_map: big map over which LCLA entry is own by which job.
  337. */
  338. struct d40_lcla_pool {
  339. void *base;
  340. dma_addr_t dma_addr;
  341. void *base_unaligned;
  342. int pages;
  343. spinlock_t lock;
  344. struct d40_desc **alloc_map;
  345. };
  346. /**
  347. * struct d40_phy_res - struct for handling eventlines mapped to physical
  348. * channels.
  349. *
  350. * @lock: A lock protection this entity.
  351. * @reserved: True if used by secure world or otherwise.
  352. * @num: The physical channel number of this entity.
  353. * @allocated_src: Bit mapped to show which src event line's are mapped to
  354. * this physical channel. Can also be free or physically allocated.
  355. * @allocated_dst: Same as for src but is dst.
  356. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  357. * event line number.
  358. * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
  359. */
  360. struct d40_phy_res {
  361. spinlock_t lock;
  362. bool reserved;
  363. int num;
  364. u32 allocated_src;
  365. u32 allocated_dst;
  366. bool use_soft_lli;
  367. };
  368. struct d40_base;
  369. /**
  370. * struct d40_chan - Struct that describes a channel.
  371. *
  372. * @lock: A spinlock to protect this struct.
  373. * @log_num: The logical number, if any of this channel.
  374. * @pending_tx: The number of pending transfers. Used between interrupt handler
  375. * and tasklet.
  376. * @busy: Set to true when transfer is ongoing on this channel.
  377. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  378. * point is NULL, then the channel is not allocated.
  379. * @chan: DMA engine handle.
  380. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  381. * transfer and call client callback.
  382. * @client: Cliented owned descriptor list.
  383. * @pending_queue: Submitted jobs, to be issued by issue_pending()
  384. * @active: Active descriptor.
  385. * @done: Completed jobs
  386. * @queue: Queued jobs.
  387. * @prepare_queue: Prepared jobs.
  388. * @dma_cfg: The client configuration of this dma channel.
  389. * @configured: whether the dma_cfg configuration is valid
  390. * @base: Pointer to the device instance struct.
  391. * @src_def_cfg: Default cfg register setting for src.
  392. * @dst_def_cfg: Default cfg register setting for dst.
  393. * @log_def: Default logical channel settings.
  394. * @lcpa: Pointer to dst and src lcpa settings.
  395. * @runtime_addr: runtime configured address.
  396. * @runtime_direction: runtime configured direction.
  397. *
  398. * This struct can either "be" a logical or a physical channel.
  399. */
  400. struct d40_chan {
  401. spinlock_t lock;
  402. int log_num;
  403. int pending_tx;
  404. bool busy;
  405. struct d40_phy_res *phy_chan;
  406. struct dma_chan chan;
  407. struct tasklet_struct tasklet;
  408. struct list_head client;
  409. struct list_head pending_queue;
  410. struct list_head active;
  411. struct list_head done;
  412. struct list_head queue;
  413. struct list_head prepare_queue;
  414. struct stedma40_chan_cfg dma_cfg;
  415. bool configured;
  416. struct d40_base *base;
  417. /* Default register configurations */
  418. u32 src_def_cfg;
  419. u32 dst_def_cfg;
  420. struct d40_def_lcsp log_def;
  421. struct d40_log_lli_full *lcpa;
  422. /* Runtime reconfiguration */
  423. dma_addr_t runtime_addr;
  424. enum dma_transfer_direction runtime_direction;
  425. };
  426. /**
  427. * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
  428. * controller
  429. *
  430. * @backup: the pointer to the registers address array for backup
  431. * @backup_size: the size of the registers address array for backup
  432. * @realtime_en: the realtime enable register
  433. * @realtime_clear: the realtime clear register
  434. * @high_prio_en: the high priority enable register
  435. * @high_prio_clear: the high priority clear register
  436. * @interrupt_en: the interrupt enable register
  437. * @interrupt_clear: the interrupt clear register
  438. * @il: the pointer to struct d40_interrupt_lookup
  439. * @il_size: the size of d40_interrupt_lookup array
  440. * @init_reg: the pointer to the struct d40_reg_val
  441. * @init_reg_size: the size of d40_reg_val array
  442. */
  443. struct d40_gen_dmac {
  444. u32 *backup;
  445. u32 backup_size;
  446. u32 realtime_en;
  447. u32 realtime_clear;
  448. u32 high_prio_en;
  449. u32 high_prio_clear;
  450. u32 interrupt_en;
  451. u32 interrupt_clear;
  452. struct d40_interrupt_lookup *il;
  453. u32 il_size;
  454. struct d40_reg_val *init_reg;
  455. u32 init_reg_size;
  456. };
  457. /**
  458. * struct d40_base - The big global struct, one for each probe'd instance.
  459. *
  460. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  461. * @execmd_lock: Lock for execute command usage since several channels share
  462. * the same physical register.
  463. * @dev: The device structure.
  464. * @virtbase: The virtual base address of the DMA's register.
  465. * @rev: silicon revision detected.
  466. * @clk: Pointer to the DMA clock structure.
  467. * @phy_start: Physical memory start of the DMA registers.
  468. * @phy_size: Size of the DMA register map.
  469. * @irq: The IRQ number.
  470. * @num_phy_chans: The number of physical channels. Read from HW. This
  471. * is the number of available channels for this driver, not counting "Secure
  472. * mode" allocated physical channels.
  473. * @num_log_chans: The number of logical channels. Calculated from
  474. * num_phy_chans.
  475. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  476. * @dma_slave: dma_device channels that can do only do slave transfers.
  477. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  478. * @phy_chans: Room for all possible physical channels in system.
  479. * @log_chans: Room for all possible logical channels in system.
  480. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  481. * to log_chans entries.
  482. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  483. * to phy_chans entries.
  484. * @plat_data: Pointer to provided platform_data which is the driver
  485. * configuration.
  486. * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
  487. * @phy_res: Vector containing all physical channels.
  488. * @lcla_pool: lcla pool settings and data.
  489. * @lcpa_base: The virtual mapped address of LCPA.
  490. * @phy_lcpa: The physical address of the LCPA.
  491. * @lcpa_size: The size of the LCPA area.
  492. * @desc_slab: cache for descriptors.
  493. * @reg_val_backup: Here the values of some hardware registers are stored
  494. * before the DMA is powered off. They are restored when the power is back on.
  495. * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
  496. * later
  497. * @reg_val_backup_chan: Backup data for standard channel parameter registers.
  498. * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
  499. * @initialized: true if the dma has been initialized
  500. * @gen_dmac: the struct for generic registers values to represent u8500/8540
  501. * DMA controller
  502. */
  503. struct d40_base {
  504. spinlock_t interrupt_lock;
  505. spinlock_t execmd_lock;
  506. struct device *dev;
  507. void __iomem *virtbase;
  508. u8 rev:4;
  509. struct clk *clk;
  510. phys_addr_t phy_start;
  511. resource_size_t phy_size;
  512. int irq;
  513. int num_phy_chans;
  514. int num_log_chans;
  515. struct device_dma_parameters dma_parms;
  516. struct dma_device dma_both;
  517. struct dma_device dma_slave;
  518. struct dma_device dma_memcpy;
  519. struct d40_chan *phy_chans;
  520. struct d40_chan *log_chans;
  521. struct d40_chan **lookup_log_chans;
  522. struct d40_chan **lookup_phy_chans;
  523. struct stedma40_platform_data *plat_data;
  524. struct regulator *lcpa_regulator;
  525. /* Physical half channels */
  526. struct d40_phy_res *phy_res;
  527. struct d40_lcla_pool lcla_pool;
  528. void *lcpa_base;
  529. dma_addr_t phy_lcpa;
  530. resource_size_t lcpa_size;
  531. struct kmem_cache *desc_slab;
  532. u32 reg_val_backup[BACKUP_REGS_SZ];
  533. u32 reg_val_backup_v4[MAX(BACKUP_REGS_SZ_V4A, BACKUP_REGS_SZ_V4B)];
  534. u32 *reg_val_backup_chan;
  535. u16 gcc_pwr_off_mask;
  536. bool initialized;
  537. struct d40_gen_dmac gen_dmac;
  538. };
  539. static struct device *chan2dev(struct d40_chan *d40c)
  540. {
  541. return &d40c->chan.dev->device;
  542. }
  543. static bool chan_is_physical(struct d40_chan *chan)
  544. {
  545. return chan->log_num == D40_PHY_CHAN;
  546. }
  547. static bool chan_is_logical(struct d40_chan *chan)
  548. {
  549. return !chan_is_physical(chan);
  550. }
  551. static void __iomem *chan_base(struct d40_chan *chan)
  552. {
  553. return chan->base->virtbase + D40_DREG_PCBASE +
  554. chan->phy_chan->num * D40_DREG_PCDELTA;
  555. }
  556. #define d40_err(dev, format, arg...) \
  557. dev_err(dev, "[%s] " format, __func__, ## arg)
  558. #define chan_err(d40c, format, arg...) \
  559. d40_err(chan2dev(d40c), format, ## arg)
  560. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  561. int lli_len)
  562. {
  563. bool is_log = chan_is_logical(d40c);
  564. u32 align;
  565. void *base;
  566. if (is_log)
  567. align = sizeof(struct d40_log_lli);
  568. else
  569. align = sizeof(struct d40_phy_lli);
  570. if (lli_len == 1) {
  571. base = d40d->lli_pool.pre_alloc_lli;
  572. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  573. d40d->lli_pool.base = NULL;
  574. } else {
  575. d40d->lli_pool.size = lli_len * 2 * align;
  576. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  577. d40d->lli_pool.base = base;
  578. if (d40d->lli_pool.base == NULL)
  579. return -ENOMEM;
  580. }
  581. if (is_log) {
  582. d40d->lli_log.src = PTR_ALIGN(base, align);
  583. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  584. d40d->lli_pool.dma_addr = 0;
  585. } else {
  586. d40d->lli_phy.src = PTR_ALIGN(base, align);
  587. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  588. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  589. d40d->lli_phy.src,
  590. d40d->lli_pool.size,
  591. DMA_TO_DEVICE);
  592. if (dma_mapping_error(d40c->base->dev,
  593. d40d->lli_pool.dma_addr)) {
  594. kfree(d40d->lli_pool.base);
  595. d40d->lli_pool.base = NULL;
  596. d40d->lli_pool.dma_addr = 0;
  597. return -ENOMEM;
  598. }
  599. }
  600. return 0;
  601. }
  602. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  603. {
  604. if (d40d->lli_pool.dma_addr)
  605. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  606. d40d->lli_pool.size, DMA_TO_DEVICE);
  607. kfree(d40d->lli_pool.base);
  608. d40d->lli_pool.base = NULL;
  609. d40d->lli_pool.size = 0;
  610. d40d->lli_log.src = NULL;
  611. d40d->lli_log.dst = NULL;
  612. d40d->lli_phy.src = NULL;
  613. d40d->lli_phy.dst = NULL;
  614. }
  615. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  616. struct d40_desc *d40d)
  617. {
  618. unsigned long flags;
  619. int i;
  620. int ret = -EINVAL;
  621. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  622. /*
  623. * Allocate both src and dst at the same time, therefore the half
  624. * start on 1 since 0 can't be used since zero is used as end marker.
  625. */
  626. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  627. int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
  628. if (!d40c->base->lcla_pool.alloc_map[idx]) {
  629. d40c->base->lcla_pool.alloc_map[idx] = d40d;
  630. d40d->lcla_alloc++;
  631. ret = i;
  632. break;
  633. }
  634. }
  635. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  636. return ret;
  637. }
  638. static int d40_lcla_free_all(struct d40_chan *d40c,
  639. struct d40_desc *d40d)
  640. {
  641. unsigned long flags;
  642. int i;
  643. int ret = -EINVAL;
  644. if (chan_is_physical(d40c))
  645. return 0;
  646. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  647. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  648. int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
  649. if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
  650. d40c->base->lcla_pool.alloc_map[idx] = NULL;
  651. d40d->lcla_alloc--;
  652. if (d40d->lcla_alloc == 0) {
  653. ret = 0;
  654. break;
  655. }
  656. }
  657. }
  658. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  659. return ret;
  660. }
  661. static void d40_desc_remove(struct d40_desc *d40d)
  662. {
  663. list_del(&d40d->node);
  664. }
  665. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  666. {
  667. struct d40_desc *desc = NULL;
  668. if (!list_empty(&d40c->client)) {
  669. struct d40_desc *d;
  670. struct d40_desc *_d;
  671. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  672. if (async_tx_test_ack(&d->txd)) {
  673. d40_desc_remove(d);
  674. desc = d;
  675. memset(desc, 0, sizeof(*desc));
  676. break;
  677. }
  678. }
  679. }
  680. if (!desc)
  681. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  682. if (desc)
  683. INIT_LIST_HEAD(&desc->node);
  684. return desc;
  685. }
  686. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  687. {
  688. d40_pool_lli_free(d40c, d40d);
  689. d40_lcla_free_all(d40c, d40d);
  690. kmem_cache_free(d40c->base->desc_slab, d40d);
  691. }
  692. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  693. {
  694. list_add_tail(&desc->node, &d40c->active);
  695. }
  696. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  697. {
  698. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  699. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  700. void __iomem *base = chan_base(chan);
  701. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  702. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  703. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  704. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  705. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  706. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  707. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  708. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  709. }
  710. static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
  711. {
  712. list_add_tail(&desc->node, &d40c->done);
  713. }
  714. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  715. {
  716. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  717. struct d40_log_lli_bidir *lli = &desc->lli_log;
  718. int lli_current = desc->lli_current;
  719. int lli_len = desc->lli_len;
  720. bool cyclic = desc->cyclic;
  721. int curr_lcla = -EINVAL;
  722. int first_lcla = 0;
  723. bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
  724. bool linkback;
  725. /*
  726. * We may have partially running cyclic transfers, in case we did't get
  727. * enough LCLA entries.
  728. */
  729. linkback = cyclic && lli_current == 0;
  730. /*
  731. * For linkback, we need one LCLA even with only one link, because we
  732. * can't link back to the one in LCPA space
  733. */
  734. if (linkback || (lli_len - lli_current > 1)) {
  735. /*
  736. * If the channel is expected to use only soft_lli don't
  737. * allocate a lcla. This is to avoid a HW issue that exists
  738. * in some controller during a peripheral to memory transfer
  739. * that uses linked lists.
  740. */
  741. if (!(chan->phy_chan->use_soft_lli &&
  742. chan->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM))
  743. curr_lcla = d40_lcla_alloc_one(chan, desc);
  744. first_lcla = curr_lcla;
  745. }
  746. /*
  747. * For linkback, we normally load the LCPA in the loop since we need to
  748. * link it to the second LCLA and not the first. However, if we
  749. * couldn't even get a first LCLA, then we have to run in LCPA and
  750. * reload manually.
  751. */
  752. if (!linkback || curr_lcla == -EINVAL) {
  753. unsigned int flags = 0;
  754. if (curr_lcla == -EINVAL)
  755. flags |= LLI_TERM_INT;
  756. d40_log_lli_lcpa_write(chan->lcpa,
  757. &lli->dst[lli_current],
  758. &lli->src[lli_current],
  759. curr_lcla,
  760. flags);
  761. lli_current++;
  762. }
  763. if (curr_lcla < 0)
  764. goto out;
  765. for (; lli_current < lli_len; lli_current++) {
  766. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  767. 8 * curr_lcla * 2;
  768. struct d40_log_lli *lcla = pool->base + lcla_offset;
  769. unsigned int flags = 0;
  770. int next_lcla;
  771. if (lli_current + 1 < lli_len)
  772. next_lcla = d40_lcla_alloc_one(chan, desc);
  773. else
  774. next_lcla = linkback ? first_lcla : -EINVAL;
  775. if (cyclic || next_lcla == -EINVAL)
  776. flags |= LLI_TERM_INT;
  777. if (linkback && curr_lcla == first_lcla) {
  778. /* First link goes in both LCPA and LCLA */
  779. d40_log_lli_lcpa_write(chan->lcpa,
  780. &lli->dst[lli_current],
  781. &lli->src[lli_current],
  782. next_lcla, flags);
  783. }
  784. /*
  785. * One unused LCLA in the cyclic case if the very first
  786. * next_lcla fails...
  787. */
  788. d40_log_lli_lcla_write(lcla,
  789. &lli->dst[lli_current],
  790. &lli->src[lli_current],
  791. next_lcla, flags);
  792. /*
  793. * Cache maintenance is not needed if lcla is
  794. * mapped in esram
  795. */
  796. if (!use_esram_lcla) {
  797. dma_sync_single_range_for_device(chan->base->dev,
  798. pool->dma_addr, lcla_offset,
  799. 2 * sizeof(struct d40_log_lli),
  800. DMA_TO_DEVICE);
  801. }
  802. curr_lcla = next_lcla;
  803. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  804. lli_current++;
  805. break;
  806. }
  807. }
  808. out:
  809. desc->lli_current = lli_current;
  810. }
  811. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  812. {
  813. if (chan_is_physical(d40c)) {
  814. d40_phy_lli_load(d40c, d40d);
  815. d40d->lli_current = d40d->lli_len;
  816. } else
  817. d40_log_lli_to_lcxa(d40c, d40d);
  818. }
  819. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  820. {
  821. struct d40_desc *d;
  822. if (list_empty(&d40c->active))
  823. return NULL;
  824. d = list_first_entry(&d40c->active,
  825. struct d40_desc,
  826. node);
  827. return d;
  828. }
  829. /* remove desc from current queue and add it to the pending_queue */
  830. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  831. {
  832. d40_desc_remove(desc);
  833. desc->is_in_client_list = false;
  834. list_add_tail(&desc->node, &d40c->pending_queue);
  835. }
  836. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  837. {
  838. struct d40_desc *d;
  839. if (list_empty(&d40c->pending_queue))
  840. return NULL;
  841. d = list_first_entry(&d40c->pending_queue,
  842. struct d40_desc,
  843. node);
  844. return d;
  845. }
  846. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  847. {
  848. struct d40_desc *d;
  849. if (list_empty(&d40c->queue))
  850. return NULL;
  851. d = list_first_entry(&d40c->queue,
  852. struct d40_desc,
  853. node);
  854. return d;
  855. }
  856. static struct d40_desc *d40_first_done(struct d40_chan *d40c)
  857. {
  858. if (list_empty(&d40c->done))
  859. return NULL;
  860. return list_first_entry(&d40c->done, struct d40_desc, node);
  861. }
  862. static int d40_psize_2_burst_size(bool is_log, int psize)
  863. {
  864. if (is_log) {
  865. if (psize == STEDMA40_PSIZE_LOG_1)
  866. return 1;
  867. } else {
  868. if (psize == STEDMA40_PSIZE_PHY_1)
  869. return 1;
  870. }
  871. return 2 << psize;
  872. }
  873. /*
  874. * The dma only supports transmitting packages up to
  875. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  876. * dma elements required to send the entire sg list
  877. */
  878. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  879. {
  880. int dmalen;
  881. u32 max_w = max(data_width1, data_width2);
  882. u32 min_w = min(data_width1, data_width2);
  883. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  884. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  885. seg_max -= (1 << max_w);
  886. if (!IS_ALIGNED(size, 1 << max_w))
  887. return -EINVAL;
  888. if (size <= seg_max)
  889. dmalen = 1;
  890. else {
  891. dmalen = size / seg_max;
  892. if (dmalen * seg_max < size)
  893. dmalen++;
  894. }
  895. return dmalen;
  896. }
  897. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  898. u32 data_width1, u32 data_width2)
  899. {
  900. struct scatterlist *sg;
  901. int i;
  902. int len = 0;
  903. int ret;
  904. for_each_sg(sgl, sg, sg_len, i) {
  905. ret = d40_size_2_dmalen(sg_dma_len(sg),
  906. data_width1, data_width2);
  907. if (ret < 0)
  908. return ret;
  909. len += ret;
  910. }
  911. return len;
  912. }
  913. #ifdef CONFIG_PM
  914. static void dma40_backup(void __iomem *baseaddr, u32 *backup,
  915. u32 *regaddr, int num, bool save)
  916. {
  917. int i;
  918. for (i = 0; i < num; i++) {
  919. void __iomem *addr = baseaddr + regaddr[i];
  920. if (save)
  921. backup[i] = readl_relaxed(addr);
  922. else
  923. writel_relaxed(backup[i], addr);
  924. }
  925. }
  926. static void d40_save_restore_registers(struct d40_base *base, bool save)
  927. {
  928. int i;
  929. /* Save/Restore channel specific registers */
  930. for (i = 0; i < base->num_phy_chans; i++) {
  931. void __iomem *addr;
  932. int idx;
  933. if (base->phy_res[i].reserved)
  934. continue;
  935. addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
  936. idx = i * ARRAY_SIZE(d40_backup_regs_chan);
  937. dma40_backup(addr, &base->reg_val_backup_chan[idx],
  938. d40_backup_regs_chan,
  939. ARRAY_SIZE(d40_backup_regs_chan),
  940. save);
  941. }
  942. /* Save/Restore global registers */
  943. dma40_backup(base->virtbase, base->reg_val_backup,
  944. d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
  945. save);
  946. /* Save/Restore registers only existing on dma40 v3 and later */
  947. if (base->gen_dmac.backup)
  948. dma40_backup(base->virtbase, base->reg_val_backup_v4,
  949. base->gen_dmac.backup,
  950. base->gen_dmac.backup_size,
  951. save);
  952. }
  953. #else
  954. static void d40_save_restore_registers(struct d40_base *base, bool save)
  955. {
  956. }
  957. #endif
  958. static int __d40_execute_command_phy(struct d40_chan *d40c,
  959. enum d40_command command)
  960. {
  961. u32 status;
  962. int i;
  963. void __iomem *active_reg;
  964. int ret = 0;
  965. unsigned long flags;
  966. u32 wmask;
  967. if (command == D40_DMA_STOP) {
  968. ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
  969. if (ret)
  970. return ret;
  971. }
  972. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  973. if (d40c->phy_chan->num % 2 == 0)
  974. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  975. else
  976. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  977. if (command == D40_DMA_SUSPEND_REQ) {
  978. status = (readl(active_reg) &
  979. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  980. D40_CHAN_POS(d40c->phy_chan->num);
  981. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  982. goto done;
  983. }
  984. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  985. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  986. active_reg);
  987. if (command == D40_DMA_SUSPEND_REQ) {
  988. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  989. status = (readl(active_reg) &
  990. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  991. D40_CHAN_POS(d40c->phy_chan->num);
  992. cpu_relax();
  993. /*
  994. * Reduce the number of bus accesses while
  995. * waiting for the DMA to suspend.
  996. */
  997. udelay(3);
  998. if (status == D40_DMA_STOP ||
  999. status == D40_DMA_SUSPENDED)
  1000. break;
  1001. }
  1002. if (i == D40_SUSPEND_MAX_IT) {
  1003. chan_err(d40c,
  1004. "unable to suspend the chl %d (log: %d) status %x\n",
  1005. d40c->phy_chan->num, d40c->log_num,
  1006. status);
  1007. dump_stack();
  1008. ret = -EBUSY;
  1009. }
  1010. }
  1011. done:
  1012. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  1013. return ret;
  1014. }
  1015. static void d40_term_all(struct d40_chan *d40c)
  1016. {
  1017. struct d40_desc *d40d;
  1018. struct d40_desc *_d;
  1019. /* Release completed descriptors */
  1020. while ((d40d = d40_first_done(d40c))) {
  1021. d40_desc_remove(d40d);
  1022. d40_desc_free(d40c, d40d);
  1023. }
  1024. /* Release active descriptors */
  1025. while ((d40d = d40_first_active_get(d40c))) {
  1026. d40_desc_remove(d40d);
  1027. d40_desc_free(d40c, d40d);
  1028. }
  1029. /* Release queued descriptors waiting for transfer */
  1030. while ((d40d = d40_first_queued(d40c))) {
  1031. d40_desc_remove(d40d);
  1032. d40_desc_free(d40c, d40d);
  1033. }
  1034. /* Release pending descriptors */
  1035. while ((d40d = d40_first_pending(d40c))) {
  1036. d40_desc_remove(d40d);
  1037. d40_desc_free(d40c, d40d);
  1038. }
  1039. /* Release client owned descriptors */
  1040. if (!list_empty(&d40c->client))
  1041. list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
  1042. d40_desc_remove(d40d);
  1043. d40_desc_free(d40c, d40d);
  1044. }
  1045. /* Release descriptors in prepare queue */
  1046. if (!list_empty(&d40c->prepare_queue))
  1047. list_for_each_entry_safe(d40d, _d,
  1048. &d40c->prepare_queue, node) {
  1049. d40_desc_remove(d40d);
  1050. d40_desc_free(d40c, d40d);
  1051. }
  1052. d40c->pending_tx = 0;
  1053. }
  1054. static void __d40_config_set_event(struct d40_chan *d40c,
  1055. enum d40_events event_type, u32 event,
  1056. int reg)
  1057. {
  1058. void __iomem *addr = chan_base(d40c) + reg;
  1059. int tries;
  1060. u32 status;
  1061. switch (event_type) {
  1062. case D40_DEACTIVATE_EVENTLINE:
  1063. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  1064. | ~D40_EVENTLINE_MASK(event), addr);
  1065. break;
  1066. case D40_SUSPEND_REQ_EVENTLINE:
  1067. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  1068. D40_EVENTLINE_POS(event);
  1069. if (status == D40_DEACTIVATE_EVENTLINE ||
  1070. status == D40_SUSPEND_REQ_EVENTLINE)
  1071. break;
  1072. writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
  1073. | ~D40_EVENTLINE_MASK(event), addr);
  1074. for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
  1075. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  1076. D40_EVENTLINE_POS(event);
  1077. cpu_relax();
  1078. /*
  1079. * Reduce the number of bus accesses while
  1080. * waiting for the DMA to suspend.
  1081. */
  1082. udelay(3);
  1083. if (status == D40_DEACTIVATE_EVENTLINE)
  1084. break;
  1085. }
  1086. if (tries == D40_SUSPEND_MAX_IT) {
  1087. chan_err(d40c,
  1088. "unable to stop the event_line chl %d (log: %d)"
  1089. "status %x\n", d40c->phy_chan->num,
  1090. d40c->log_num, status);
  1091. }
  1092. break;
  1093. case D40_ACTIVATE_EVENTLINE:
  1094. /*
  1095. * The hardware sometimes doesn't register the enable when src and dst
  1096. * event lines are active on the same logical channel. Retry to ensure
  1097. * it does. Usually only one retry is sufficient.
  1098. */
  1099. tries = 100;
  1100. while (--tries) {
  1101. writel((D40_ACTIVATE_EVENTLINE <<
  1102. D40_EVENTLINE_POS(event)) |
  1103. ~D40_EVENTLINE_MASK(event), addr);
  1104. if (readl(addr) & D40_EVENTLINE_MASK(event))
  1105. break;
  1106. }
  1107. if (tries != 99)
  1108. dev_dbg(chan2dev(d40c),
  1109. "[%s] workaround enable S%cLNK (%d tries)\n",
  1110. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  1111. 100 - tries);
  1112. WARN_ON(!tries);
  1113. break;
  1114. case D40_ROUND_EVENTLINE:
  1115. BUG();
  1116. break;
  1117. }
  1118. }
  1119. static void d40_config_set_event(struct d40_chan *d40c,
  1120. enum d40_events event_type)
  1121. {
  1122. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
  1123. /* Enable event line connected to device (or memcpy) */
  1124. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1125. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1126. __d40_config_set_event(d40c, event_type, event,
  1127. D40_CHAN_REG_SSLNK);
  1128. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM)
  1129. __d40_config_set_event(d40c, event_type, event,
  1130. D40_CHAN_REG_SDLNK);
  1131. }
  1132. static u32 d40_chan_has_events(struct d40_chan *d40c)
  1133. {
  1134. void __iomem *chanbase = chan_base(d40c);
  1135. u32 val;
  1136. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  1137. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  1138. return val;
  1139. }
  1140. static int
  1141. __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
  1142. {
  1143. unsigned long flags;
  1144. int ret = 0;
  1145. u32 active_status;
  1146. void __iomem *active_reg;
  1147. if (d40c->phy_chan->num % 2 == 0)
  1148. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1149. else
  1150. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1151. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  1152. switch (command) {
  1153. case D40_DMA_STOP:
  1154. case D40_DMA_SUSPEND_REQ:
  1155. active_status = (readl(active_reg) &
  1156. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1157. D40_CHAN_POS(d40c->phy_chan->num);
  1158. if (active_status == D40_DMA_RUN)
  1159. d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
  1160. else
  1161. d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
  1162. if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
  1163. ret = __d40_execute_command_phy(d40c, command);
  1164. break;
  1165. case D40_DMA_RUN:
  1166. d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
  1167. ret = __d40_execute_command_phy(d40c, command);
  1168. break;
  1169. case D40_DMA_SUSPENDED:
  1170. BUG();
  1171. break;
  1172. }
  1173. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  1174. return ret;
  1175. }
  1176. static int d40_channel_execute_command(struct d40_chan *d40c,
  1177. enum d40_command command)
  1178. {
  1179. if (chan_is_logical(d40c))
  1180. return __d40_execute_command_log(d40c, command);
  1181. else
  1182. return __d40_execute_command_phy(d40c, command);
  1183. }
  1184. static u32 d40_get_prmo(struct d40_chan *d40c)
  1185. {
  1186. static const unsigned int phy_map[] = {
  1187. [STEDMA40_PCHAN_BASIC_MODE]
  1188. = D40_DREG_PRMO_PCHAN_BASIC,
  1189. [STEDMA40_PCHAN_MODULO_MODE]
  1190. = D40_DREG_PRMO_PCHAN_MODULO,
  1191. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  1192. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  1193. };
  1194. static const unsigned int log_map[] = {
  1195. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  1196. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  1197. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  1198. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  1199. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  1200. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  1201. };
  1202. if (chan_is_physical(d40c))
  1203. return phy_map[d40c->dma_cfg.mode_opt];
  1204. else
  1205. return log_map[d40c->dma_cfg.mode_opt];
  1206. }
  1207. static void d40_config_write(struct d40_chan *d40c)
  1208. {
  1209. u32 addr_base;
  1210. u32 var;
  1211. /* Odd addresses are even addresses + 4 */
  1212. addr_base = (d40c->phy_chan->num % 2) * 4;
  1213. /* Setup channel mode to logical or physical */
  1214. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  1215. D40_CHAN_POS(d40c->phy_chan->num);
  1216. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  1217. /* Setup operational mode option register */
  1218. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  1219. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  1220. if (chan_is_logical(d40c)) {
  1221. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  1222. & D40_SREG_ELEM_LOG_LIDX_MASK;
  1223. void __iomem *chanbase = chan_base(d40c);
  1224. /* Set default config for CFG reg */
  1225. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  1226. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  1227. /* Set LIDX for lcla */
  1228. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  1229. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  1230. /* Clear LNK which will be used by d40_chan_has_events() */
  1231. writel(0, chanbase + D40_CHAN_REG_SSLNK);
  1232. writel(0, chanbase + D40_CHAN_REG_SDLNK);
  1233. }
  1234. }
  1235. static u32 d40_residue(struct d40_chan *d40c)
  1236. {
  1237. u32 num_elt;
  1238. if (chan_is_logical(d40c))
  1239. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  1240. >> D40_MEM_LCSP2_ECNT_POS;
  1241. else {
  1242. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  1243. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  1244. >> D40_SREG_ELEM_PHY_ECNT_POS;
  1245. }
  1246. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  1247. }
  1248. static bool d40_tx_is_linked(struct d40_chan *d40c)
  1249. {
  1250. bool is_link;
  1251. if (chan_is_logical(d40c))
  1252. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  1253. else
  1254. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  1255. & D40_SREG_LNK_PHYS_LNK_MASK;
  1256. return is_link;
  1257. }
  1258. static int d40_pause(struct d40_chan *d40c)
  1259. {
  1260. int res = 0;
  1261. unsigned long flags;
  1262. if (!d40c->busy)
  1263. return 0;
  1264. pm_runtime_get_sync(d40c->base->dev);
  1265. spin_lock_irqsave(&d40c->lock, flags);
  1266. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1267. pm_runtime_mark_last_busy(d40c->base->dev);
  1268. pm_runtime_put_autosuspend(d40c->base->dev);
  1269. spin_unlock_irqrestore(&d40c->lock, flags);
  1270. return res;
  1271. }
  1272. static int d40_resume(struct d40_chan *d40c)
  1273. {
  1274. int res = 0;
  1275. unsigned long flags;
  1276. if (!d40c->busy)
  1277. return 0;
  1278. spin_lock_irqsave(&d40c->lock, flags);
  1279. pm_runtime_get_sync(d40c->base->dev);
  1280. /* If bytes left to transfer or linked tx resume job */
  1281. if (d40_residue(d40c) || d40_tx_is_linked(d40c))
  1282. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  1283. pm_runtime_mark_last_busy(d40c->base->dev);
  1284. pm_runtime_put_autosuspend(d40c->base->dev);
  1285. spin_unlock_irqrestore(&d40c->lock, flags);
  1286. return res;
  1287. }
  1288. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  1289. {
  1290. struct d40_chan *d40c = container_of(tx->chan,
  1291. struct d40_chan,
  1292. chan);
  1293. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  1294. unsigned long flags;
  1295. dma_cookie_t cookie;
  1296. spin_lock_irqsave(&d40c->lock, flags);
  1297. cookie = dma_cookie_assign(tx);
  1298. d40_desc_queue(d40c, d40d);
  1299. spin_unlock_irqrestore(&d40c->lock, flags);
  1300. return cookie;
  1301. }
  1302. static int d40_start(struct d40_chan *d40c)
  1303. {
  1304. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  1305. }
  1306. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  1307. {
  1308. struct d40_desc *d40d;
  1309. int err;
  1310. /* Start queued jobs, if any */
  1311. d40d = d40_first_queued(d40c);
  1312. if (d40d != NULL) {
  1313. if (!d40c->busy) {
  1314. d40c->busy = true;
  1315. pm_runtime_get_sync(d40c->base->dev);
  1316. }
  1317. /* Remove from queue */
  1318. d40_desc_remove(d40d);
  1319. /* Add to active queue */
  1320. d40_desc_submit(d40c, d40d);
  1321. /* Initiate DMA job */
  1322. d40_desc_load(d40c, d40d);
  1323. /* Start dma job */
  1324. err = d40_start(d40c);
  1325. if (err)
  1326. return NULL;
  1327. }
  1328. return d40d;
  1329. }
  1330. /* called from interrupt context */
  1331. static void dma_tc_handle(struct d40_chan *d40c)
  1332. {
  1333. struct d40_desc *d40d;
  1334. /* Get first active entry from list */
  1335. d40d = d40_first_active_get(d40c);
  1336. if (d40d == NULL)
  1337. return;
  1338. if (d40d->cyclic) {
  1339. /*
  1340. * If this was a paritially loaded list, we need to reloaded
  1341. * it, and only when the list is completed. We need to check
  1342. * for done because the interrupt will hit for every link, and
  1343. * not just the last one.
  1344. */
  1345. if (d40d->lli_current < d40d->lli_len
  1346. && !d40_tx_is_linked(d40c)
  1347. && !d40_residue(d40c)) {
  1348. d40_lcla_free_all(d40c, d40d);
  1349. d40_desc_load(d40c, d40d);
  1350. (void) d40_start(d40c);
  1351. if (d40d->lli_current == d40d->lli_len)
  1352. d40d->lli_current = 0;
  1353. }
  1354. } else {
  1355. d40_lcla_free_all(d40c, d40d);
  1356. if (d40d->lli_current < d40d->lli_len) {
  1357. d40_desc_load(d40c, d40d);
  1358. /* Start dma job */
  1359. (void) d40_start(d40c);
  1360. return;
  1361. }
  1362. if (d40_queue_start(d40c) == NULL)
  1363. d40c->busy = false;
  1364. pm_runtime_mark_last_busy(d40c->base->dev);
  1365. pm_runtime_put_autosuspend(d40c->base->dev);
  1366. d40_desc_remove(d40d);
  1367. d40_desc_done(d40c, d40d);
  1368. }
  1369. d40c->pending_tx++;
  1370. tasklet_schedule(&d40c->tasklet);
  1371. }
  1372. static void dma_tasklet(unsigned long data)
  1373. {
  1374. struct d40_chan *d40c = (struct d40_chan *) data;
  1375. struct d40_desc *d40d;
  1376. unsigned long flags;
  1377. dma_async_tx_callback callback;
  1378. void *callback_param;
  1379. spin_lock_irqsave(&d40c->lock, flags);
  1380. /* Get first entry from the done list */
  1381. d40d = d40_first_done(d40c);
  1382. if (d40d == NULL) {
  1383. /* Check if we have reached here for cyclic job */
  1384. d40d = d40_first_active_get(d40c);
  1385. if (d40d == NULL || !d40d->cyclic)
  1386. goto err;
  1387. }
  1388. if (!d40d->cyclic)
  1389. dma_cookie_complete(&d40d->txd);
  1390. /*
  1391. * If terminating a channel pending_tx is set to zero.
  1392. * This prevents any finished active jobs to return to the client.
  1393. */
  1394. if (d40c->pending_tx == 0) {
  1395. spin_unlock_irqrestore(&d40c->lock, flags);
  1396. return;
  1397. }
  1398. /* Callback to client */
  1399. callback = d40d->txd.callback;
  1400. callback_param = d40d->txd.callback_param;
  1401. if (!d40d->cyclic) {
  1402. if (async_tx_test_ack(&d40d->txd)) {
  1403. d40_desc_remove(d40d);
  1404. d40_desc_free(d40c, d40d);
  1405. } else if (!d40d->is_in_client_list) {
  1406. d40_desc_remove(d40d);
  1407. d40_lcla_free_all(d40c, d40d);
  1408. list_add_tail(&d40d->node, &d40c->client);
  1409. d40d->is_in_client_list = true;
  1410. }
  1411. }
  1412. d40c->pending_tx--;
  1413. if (d40c->pending_tx)
  1414. tasklet_schedule(&d40c->tasklet);
  1415. spin_unlock_irqrestore(&d40c->lock, flags);
  1416. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1417. callback(callback_param);
  1418. return;
  1419. err:
  1420. /* Rescue manouver if receiving double interrupts */
  1421. if (d40c->pending_tx > 0)
  1422. d40c->pending_tx--;
  1423. spin_unlock_irqrestore(&d40c->lock, flags);
  1424. }
  1425. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1426. {
  1427. int i;
  1428. u32 idx;
  1429. u32 row;
  1430. long chan = -1;
  1431. struct d40_chan *d40c;
  1432. unsigned long flags;
  1433. struct d40_base *base = data;
  1434. u32 regs[base->gen_dmac.il_size];
  1435. struct d40_interrupt_lookup *il = base->gen_dmac.il;
  1436. u32 il_size = base->gen_dmac.il_size;
  1437. spin_lock_irqsave(&base->interrupt_lock, flags);
  1438. /* Read interrupt status of both logical and physical channels */
  1439. for (i = 0; i < il_size; i++)
  1440. regs[i] = readl(base->virtbase + il[i].src);
  1441. for (;;) {
  1442. chan = find_next_bit((unsigned long *)regs,
  1443. BITS_PER_LONG * il_size, chan + 1);
  1444. /* No more set bits found? */
  1445. if (chan == BITS_PER_LONG * il_size)
  1446. break;
  1447. row = chan / BITS_PER_LONG;
  1448. idx = chan & (BITS_PER_LONG - 1);
  1449. if (il[row].offset == D40_PHY_CHAN)
  1450. d40c = base->lookup_phy_chans[idx];
  1451. else
  1452. d40c = base->lookup_log_chans[il[row].offset + idx];
  1453. if (!d40c) {
  1454. /*
  1455. * No error because this can happen if something else
  1456. * in the system is using the channel.
  1457. */
  1458. continue;
  1459. }
  1460. /* ACK interrupt */
  1461. writel(1 << idx, base->virtbase + il[row].clr);
  1462. spin_lock(&d40c->lock);
  1463. if (!il[row].is_error)
  1464. dma_tc_handle(d40c);
  1465. else
  1466. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1467. chan, il[row].offset, idx);
  1468. spin_unlock(&d40c->lock);
  1469. }
  1470. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1471. return IRQ_HANDLED;
  1472. }
  1473. static int d40_validate_conf(struct d40_chan *d40c,
  1474. struct stedma40_chan_cfg *conf)
  1475. {
  1476. int res = 0;
  1477. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1478. if (!conf->dir) {
  1479. chan_err(d40c, "Invalid direction.\n");
  1480. res = -EINVAL;
  1481. }
  1482. if ((is_log && conf->dev_type > d40c->base->num_log_chans) ||
  1483. (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
  1484. (conf->dev_type < 0)) {
  1485. chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
  1486. res = -EINVAL;
  1487. }
  1488. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1489. d40c->base->plat_data->dev_tx[conf->dev_type] == 0 &&
  1490. d40c->runtime_addr == 0) {
  1491. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1492. conf->dev_type);
  1493. res = -EINVAL;
  1494. }
  1495. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1496. d40c->base->plat_data->dev_rx[conf->dev_type] == 0 &&
  1497. d40c->runtime_addr == 0) {
  1498. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1499. conf->dev_type);
  1500. res = -EINVAL;
  1501. }
  1502. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1503. /*
  1504. * DMAC HW supports it. Will be added to this driver,
  1505. * in case any dma client requires it.
  1506. */
  1507. chan_err(d40c, "periph to periph not supported\n");
  1508. res = -EINVAL;
  1509. }
  1510. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1511. (1 << conf->src_info.data_width) !=
  1512. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1513. (1 << conf->dst_info.data_width)) {
  1514. /*
  1515. * The DMAC hardware only supports
  1516. * src (burst x width) == dst (burst x width)
  1517. */
  1518. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1519. res = -EINVAL;
  1520. }
  1521. return res;
  1522. }
  1523. static bool d40_alloc_mask_set(struct d40_phy_res *phy,
  1524. bool is_src, int log_event_line, bool is_log,
  1525. bool *first_user)
  1526. {
  1527. unsigned long flags;
  1528. spin_lock_irqsave(&phy->lock, flags);
  1529. *first_user = ((phy->allocated_src | phy->allocated_dst)
  1530. == D40_ALLOC_FREE);
  1531. if (!is_log) {
  1532. /* Physical interrupts are masked per physical full channel */
  1533. if (phy->allocated_src == D40_ALLOC_FREE &&
  1534. phy->allocated_dst == D40_ALLOC_FREE) {
  1535. phy->allocated_dst = D40_ALLOC_PHY;
  1536. phy->allocated_src = D40_ALLOC_PHY;
  1537. goto found;
  1538. } else
  1539. goto not_found;
  1540. }
  1541. /* Logical channel */
  1542. if (is_src) {
  1543. if (phy->allocated_src == D40_ALLOC_PHY)
  1544. goto not_found;
  1545. if (phy->allocated_src == D40_ALLOC_FREE)
  1546. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1547. if (!(phy->allocated_src & (1 << log_event_line))) {
  1548. phy->allocated_src |= 1 << log_event_line;
  1549. goto found;
  1550. } else
  1551. goto not_found;
  1552. } else {
  1553. if (phy->allocated_dst == D40_ALLOC_PHY)
  1554. goto not_found;
  1555. if (phy->allocated_dst == D40_ALLOC_FREE)
  1556. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1557. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1558. phy->allocated_dst |= 1 << log_event_line;
  1559. goto found;
  1560. } else
  1561. goto not_found;
  1562. }
  1563. not_found:
  1564. spin_unlock_irqrestore(&phy->lock, flags);
  1565. return false;
  1566. found:
  1567. spin_unlock_irqrestore(&phy->lock, flags);
  1568. return true;
  1569. }
  1570. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1571. int log_event_line)
  1572. {
  1573. unsigned long flags;
  1574. bool is_free = false;
  1575. spin_lock_irqsave(&phy->lock, flags);
  1576. if (!log_event_line) {
  1577. phy->allocated_dst = D40_ALLOC_FREE;
  1578. phy->allocated_src = D40_ALLOC_FREE;
  1579. is_free = true;
  1580. goto out;
  1581. }
  1582. /* Logical channel */
  1583. if (is_src) {
  1584. phy->allocated_src &= ~(1 << log_event_line);
  1585. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1586. phy->allocated_src = D40_ALLOC_FREE;
  1587. } else {
  1588. phy->allocated_dst &= ~(1 << log_event_line);
  1589. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1590. phy->allocated_dst = D40_ALLOC_FREE;
  1591. }
  1592. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1593. D40_ALLOC_FREE);
  1594. out:
  1595. spin_unlock_irqrestore(&phy->lock, flags);
  1596. return is_free;
  1597. }
  1598. static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
  1599. {
  1600. int dev_type = d40c->dma_cfg.dev_type;
  1601. int event_group;
  1602. int event_line;
  1603. struct d40_phy_res *phys;
  1604. int i;
  1605. int j;
  1606. int log_num;
  1607. int num_phy_chans;
  1608. bool is_src;
  1609. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1610. phys = d40c->base->phy_res;
  1611. num_phy_chans = d40c->base->num_phy_chans;
  1612. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1613. log_num = 2 * dev_type;
  1614. is_src = true;
  1615. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1616. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1617. /* dst event lines are used for logical memcpy */
  1618. log_num = 2 * dev_type + 1;
  1619. is_src = false;
  1620. } else
  1621. return -EINVAL;
  1622. event_group = D40_TYPE_TO_GROUP(dev_type);
  1623. event_line = D40_TYPE_TO_EVENT(dev_type);
  1624. if (!is_log) {
  1625. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1626. /* Find physical half channel */
  1627. if (d40c->dma_cfg.use_fixed_channel) {
  1628. i = d40c->dma_cfg.phy_channel;
  1629. if (d40_alloc_mask_set(&phys[i], is_src,
  1630. 0, is_log,
  1631. first_phy_user))
  1632. goto found_phy;
  1633. } else {
  1634. for (i = 0; i < num_phy_chans; i++) {
  1635. if (d40_alloc_mask_set(&phys[i], is_src,
  1636. 0, is_log,
  1637. first_phy_user))
  1638. goto found_phy;
  1639. }
  1640. }
  1641. } else
  1642. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1643. int phy_num = j + event_group * 2;
  1644. for (i = phy_num; i < phy_num + 2; i++) {
  1645. if (d40_alloc_mask_set(&phys[i],
  1646. is_src,
  1647. 0,
  1648. is_log,
  1649. first_phy_user))
  1650. goto found_phy;
  1651. }
  1652. }
  1653. return -EINVAL;
  1654. found_phy:
  1655. d40c->phy_chan = &phys[i];
  1656. d40c->log_num = D40_PHY_CHAN;
  1657. goto out;
  1658. }
  1659. if (dev_type == -1)
  1660. return -EINVAL;
  1661. /* Find logical channel */
  1662. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1663. int phy_num = j + event_group * 2;
  1664. if (d40c->dma_cfg.use_fixed_channel) {
  1665. i = d40c->dma_cfg.phy_channel;
  1666. if ((i != phy_num) && (i != phy_num + 1)) {
  1667. dev_err(chan2dev(d40c),
  1668. "invalid fixed phy channel %d\n", i);
  1669. return -EINVAL;
  1670. }
  1671. if (d40_alloc_mask_set(&phys[i], is_src, event_line,
  1672. is_log, first_phy_user))
  1673. goto found_log;
  1674. dev_err(chan2dev(d40c),
  1675. "could not allocate fixed phy channel %d\n", i);
  1676. return -EINVAL;
  1677. }
  1678. /*
  1679. * Spread logical channels across all available physical rather
  1680. * than pack every logical channel at the first available phy
  1681. * channels.
  1682. */
  1683. if (is_src) {
  1684. for (i = phy_num; i < phy_num + 2; i++) {
  1685. if (d40_alloc_mask_set(&phys[i], is_src,
  1686. event_line, is_log,
  1687. first_phy_user))
  1688. goto found_log;
  1689. }
  1690. } else {
  1691. for (i = phy_num + 1; i >= phy_num; i--) {
  1692. if (d40_alloc_mask_set(&phys[i], is_src,
  1693. event_line, is_log,
  1694. first_phy_user))
  1695. goto found_log;
  1696. }
  1697. }
  1698. }
  1699. return -EINVAL;
  1700. found_log:
  1701. d40c->phy_chan = &phys[i];
  1702. d40c->log_num = log_num;
  1703. out:
  1704. if (is_log)
  1705. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1706. else
  1707. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1708. return 0;
  1709. }
  1710. static int d40_config_memcpy(struct d40_chan *d40c)
  1711. {
  1712. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1713. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1714. d40c->dma_cfg = dma40_memcpy_conf_log;
  1715. d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
  1716. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1717. dma_has_cap(DMA_SLAVE, cap)) {
  1718. d40c->dma_cfg = dma40_memcpy_conf_phy;
  1719. } else {
  1720. chan_err(d40c, "No memcpy\n");
  1721. return -EINVAL;
  1722. }
  1723. return 0;
  1724. }
  1725. static int d40_free_dma(struct d40_chan *d40c)
  1726. {
  1727. int res = 0;
  1728. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
  1729. struct d40_phy_res *phy = d40c->phy_chan;
  1730. bool is_src;
  1731. /* Terminate all queued and active transfers */
  1732. d40_term_all(d40c);
  1733. if (phy == NULL) {
  1734. chan_err(d40c, "phy == null\n");
  1735. return -EINVAL;
  1736. }
  1737. if (phy->allocated_src == D40_ALLOC_FREE &&
  1738. phy->allocated_dst == D40_ALLOC_FREE) {
  1739. chan_err(d40c, "channel already free\n");
  1740. return -EINVAL;
  1741. }
  1742. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1743. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM)
  1744. is_src = false;
  1745. else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1746. is_src = true;
  1747. else {
  1748. chan_err(d40c, "Unknown direction\n");
  1749. return -EINVAL;
  1750. }
  1751. pm_runtime_get_sync(d40c->base->dev);
  1752. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1753. if (res) {
  1754. chan_err(d40c, "stop failed\n");
  1755. goto out;
  1756. }
  1757. d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
  1758. if (chan_is_logical(d40c))
  1759. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1760. else
  1761. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1762. if (d40c->busy) {
  1763. pm_runtime_mark_last_busy(d40c->base->dev);
  1764. pm_runtime_put_autosuspend(d40c->base->dev);
  1765. }
  1766. d40c->busy = false;
  1767. d40c->phy_chan = NULL;
  1768. d40c->configured = false;
  1769. out:
  1770. pm_runtime_mark_last_busy(d40c->base->dev);
  1771. pm_runtime_put_autosuspend(d40c->base->dev);
  1772. return res;
  1773. }
  1774. static bool d40_is_paused(struct d40_chan *d40c)
  1775. {
  1776. void __iomem *chanbase = chan_base(d40c);
  1777. bool is_paused = false;
  1778. unsigned long flags;
  1779. void __iomem *active_reg;
  1780. u32 status;
  1781. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
  1782. spin_lock_irqsave(&d40c->lock, flags);
  1783. if (chan_is_physical(d40c)) {
  1784. if (d40c->phy_chan->num % 2 == 0)
  1785. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1786. else
  1787. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1788. status = (readl(active_reg) &
  1789. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1790. D40_CHAN_POS(d40c->phy_chan->num);
  1791. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1792. is_paused = true;
  1793. goto _exit;
  1794. }
  1795. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1796. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1797. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1798. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1799. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1800. } else {
  1801. chan_err(d40c, "Unknown direction\n");
  1802. goto _exit;
  1803. }
  1804. status = (status & D40_EVENTLINE_MASK(event)) >>
  1805. D40_EVENTLINE_POS(event);
  1806. if (status != D40_DMA_RUN)
  1807. is_paused = true;
  1808. _exit:
  1809. spin_unlock_irqrestore(&d40c->lock, flags);
  1810. return is_paused;
  1811. }
  1812. static u32 stedma40_residue(struct dma_chan *chan)
  1813. {
  1814. struct d40_chan *d40c =
  1815. container_of(chan, struct d40_chan, chan);
  1816. u32 bytes_left;
  1817. unsigned long flags;
  1818. spin_lock_irqsave(&d40c->lock, flags);
  1819. bytes_left = d40_residue(d40c);
  1820. spin_unlock_irqrestore(&d40c->lock, flags);
  1821. return bytes_left;
  1822. }
  1823. static int
  1824. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1825. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1826. unsigned int sg_len, dma_addr_t src_dev_addr,
  1827. dma_addr_t dst_dev_addr)
  1828. {
  1829. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1830. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1831. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1832. int ret;
  1833. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1834. src_dev_addr,
  1835. desc->lli_log.src,
  1836. chan->log_def.lcsp1,
  1837. src_info->data_width,
  1838. dst_info->data_width);
  1839. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1840. dst_dev_addr,
  1841. desc->lli_log.dst,
  1842. chan->log_def.lcsp3,
  1843. dst_info->data_width,
  1844. src_info->data_width);
  1845. return ret < 0 ? ret : 0;
  1846. }
  1847. static int
  1848. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1849. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1850. unsigned int sg_len, dma_addr_t src_dev_addr,
  1851. dma_addr_t dst_dev_addr)
  1852. {
  1853. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1854. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1855. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1856. unsigned long flags = 0;
  1857. int ret;
  1858. if (desc->cyclic)
  1859. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1860. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1861. desc->lli_phy.src,
  1862. virt_to_phys(desc->lli_phy.src),
  1863. chan->src_def_cfg,
  1864. src_info, dst_info, flags);
  1865. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1866. desc->lli_phy.dst,
  1867. virt_to_phys(desc->lli_phy.dst),
  1868. chan->dst_def_cfg,
  1869. dst_info, src_info, flags);
  1870. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1871. desc->lli_pool.size, DMA_TO_DEVICE);
  1872. return ret < 0 ? ret : 0;
  1873. }
  1874. static struct d40_desc *
  1875. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1876. unsigned int sg_len, unsigned long dma_flags)
  1877. {
  1878. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1879. struct d40_desc *desc;
  1880. int ret;
  1881. desc = d40_desc_get(chan);
  1882. if (!desc)
  1883. return NULL;
  1884. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1885. cfg->dst_info.data_width);
  1886. if (desc->lli_len < 0) {
  1887. chan_err(chan, "Unaligned size\n");
  1888. goto err;
  1889. }
  1890. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1891. if (ret < 0) {
  1892. chan_err(chan, "Could not allocate lli\n");
  1893. goto err;
  1894. }
  1895. desc->lli_current = 0;
  1896. desc->txd.flags = dma_flags;
  1897. desc->txd.tx_submit = d40_tx_submit;
  1898. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1899. return desc;
  1900. err:
  1901. d40_desc_free(chan, desc);
  1902. return NULL;
  1903. }
  1904. static dma_addr_t
  1905. d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
  1906. {
  1907. struct stedma40_platform_data *plat = chan->base->plat_data;
  1908. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1909. dma_addr_t addr = 0;
  1910. if (chan->runtime_addr)
  1911. return chan->runtime_addr;
  1912. if (direction == DMA_DEV_TO_MEM)
  1913. addr = plat->dev_rx[cfg->dev_type];
  1914. else if (direction == DMA_MEM_TO_DEV)
  1915. addr = plat->dev_tx[cfg->dev_type];
  1916. return addr;
  1917. }
  1918. static struct dma_async_tx_descriptor *
  1919. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1920. struct scatterlist *sg_dst, unsigned int sg_len,
  1921. enum dma_transfer_direction direction, unsigned long dma_flags)
  1922. {
  1923. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1924. dma_addr_t src_dev_addr = 0;
  1925. dma_addr_t dst_dev_addr = 0;
  1926. struct d40_desc *desc;
  1927. unsigned long flags;
  1928. int ret;
  1929. if (!chan->phy_chan) {
  1930. chan_err(chan, "Cannot prepare unallocated channel\n");
  1931. return NULL;
  1932. }
  1933. spin_lock_irqsave(&chan->lock, flags);
  1934. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1935. if (desc == NULL)
  1936. goto err;
  1937. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1938. desc->cyclic = true;
  1939. if (direction != DMA_TRANS_NONE) {
  1940. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1941. if (direction == DMA_DEV_TO_MEM)
  1942. src_dev_addr = dev_addr;
  1943. else if (direction == DMA_MEM_TO_DEV)
  1944. dst_dev_addr = dev_addr;
  1945. }
  1946. if (chan_is_logical(chan))
  1947. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1948. sg_len, src_dev_addr, dst_dev_addr);
  1949. else
  1950. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1951. sg_len, src_dev_addr, dst_dev_addr);
  1952. if (ret) {
  1953. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1954. chan_is_logical(chan) ? "log" : "phy", ret);
  1955. goto err;
  1956. }
  1957. /*
  1958. * add descriptor to the prepare queue in order to be able
  1959. * to free them later in terminate_all
  1960. */
  1961. list_add_tail(&desc->node, &chan->prepare_queue);
  1962. spin_unlock_irqrestore(&chan->lock, flags);
  1963. return &desc->txd;
  1964. err:
  1965. if (desc)
  1966. d40_desc_free(chan, desc);
  1967. spin_unlock_irqrestore(&chan->lock, flags);
  1968. return NULL;
  1969. }
  1970. bool stedma40_filter(struct dma_chan *chan, void *data)
  1971. {
  1972. struct stedma40_chan_cfg *info = data;
  1973. struct d40_chan *d40c =
  1974. container_of(chan, struct d40_chan, chan);
  1975. int err;
  1976. if (data) {
  1977. err = d40_validate_conf(d40c, info);
  1978. if (!err)
  1979. d40c->dma_cfg = *info;
  1980. } else
  1981. err = d40_config_memcpy(d40c);
  1982. if (!err)
  1983. d40c->configured = true;
  1984. return err == 0;
  1985. }
  1986. EXPORT_SYMBOL(stedma40_filter);
  1987. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1988. {
  1989. bool realtime = d40c->dma_cfg.realtime;
  1990. bool highprio = d40c->dma_cfg.high_priority;
  1991. u32 rtreg;
  1992. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1993. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1994. u32 bit = 1 << event;
  1995. u32 prioreg;
  1996. struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
  1997. rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
  1998. /*
  1999. * Due to a hardware bug, in some cases a logical channel triggered by
  2000. * a high priority destination event line can generate extra packet
  2001. * transactions.
  2002. *
  2003. * The workaround is to not set the high priority level for the
  2004. * destination event lines that trigger logical channels.
  2005. */
  2006. if (!src && chan_is_logical(d40c))
  2007. highprio = false;
  2008. prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
  2009. /* Destination event lines are stored in the upper halfword */
  2010. if (!src)
  2011. bit <<= 16;
  2012. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  2013. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  2014. }
  2015. static void d40_set_prio_realtime(struct d40_chan *d40c)
  2016. {
  2017. if (d40c->base->rev < 3)
  2018. return;
  2019. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  2020. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  2021. __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
  2022. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  2023. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  2024. __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
  2025. }
  2026. /* DMA ENGINE functions */
  2027. static int d40_alloc_chan_resources(struct dma_chan *chan)
  2028. {
  2029. int err;
  2030. unsigned long flags;
  2031. struct d40_chan *d40c =
  2032. container_of(chan, struct d40_chan, chan);
  2033. bool is_free_phy;
  2034. spin_lock_irqsave(&d40c->lock, flags);
  2035. dma_cookie_init(chan);
  2036. /* If no dma configuration is set use default configuration (memcpy) */
  2037. if (!d40c->configured) {
  2038. err = d40_config_memcpy(d40c);
  2039. if (err) {
  2040. chan_err(d40c, "Failed to configure memcpy channel\n");
  2041. goto fail;
  2042. }
  2043. }
  2044. err = d40_allocate_channel(d40c, &is_free_phy);
  2045. if (err) {
  2046. chan_err(d40c, "Failed to allocate channel\n");
  2047. d40c->configured = false;
  2048. goto fail;
  2049. }
  2050. pm_runtime_get_sync(d40c->base->dev);
  2051. /* Fill in basic CFG register values */
  2052. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  2053. &d40c->dst_def_cfg, chan_is_logical(d40c));
  2054. d40_set_prio_realtime(d40c);
  2055. if (chan_is_logical(d40c)) {
  2056. d40_log_cfg(&d40c->dma_cfg,
  2057. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2058. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  2059. d40c->lcpa = d40c->base->lcpa_base +
  2060. d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
  2061. else
  2062. d40c->lcpa = d40c->base->lcpa_base +
  2063. d40c->dma_cfg.dev_type *
  2064. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  2065. }
  2066. dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
  2067. chan_is_logical(d40c) ? "logical" : "physical",
  2068. d40c->phy_chan->num,
  2069. d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
  2070. /*
  2071. * Only write channel configuration to the DMA if the physical
  2072. * resource is free. In case of multiple logical channels
  2073. * on the same physical resource, only the first write is necessary.
  2074. */
  2075. if (is_free_phy)
  2076. d40_config_write(d40c);
  2077. fail:
  2078. pm_runtime_mark_last_busy(d40c->base->dev);
  2079. pm_runtime_put_autosuspend(d40c->base->dev);
  2080. spin_unlock_irqrestore(&d40c->lock, flags);
  2081. return err;
  2082. }
  2083. static void d40_free_chan_resources(struct dma_chan *chan)
  2084. {
  2085. struct d40_chan *d40c =
  2086. container_of(chan, struct d40_chan, chan);
  2087. int err;
  2088. unsigned long flags;
  2089. if (d40c->phy_chan == NULL) {
  2090. chan_err(d40c, "Cannot free unallocated channel\n");
  2091. return;
  2092. }
  2093. spin_lock_irqsave(&d40c->lock, flags);
  2094. err = d40_free_dma(d40c);
  2095. if (err)
  2096. chan_err(d40c, "Failed to free channel\n");
  2097. spin_unlock_irqrestore(&d40c->lock, flags);
  2098. }
  2099. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  2100. dma_addr_t dst,
  2101. dma_addr_t src,
  2102. size_t size,
  2103. unsigned long dma_flags)
  2104. {
  2105. struct scatterlist dst_sg;
  2106. struct scatterlist src_sg;
  2107. sg_init_table(&dst_sg, 1);
  2108. sg_init_table(&src_sg, 1);
  2109. sg_dma_address(&dst_sg) = dst;
  2110. sg_dma_address(&src_sg) = src;
  2111. sg_dma_len(&dst_sg) = size;
  2112. sg_dma_len(&src_sg) = size;
  2113. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  2114. }
  2115. static struct dma_async_tx_descriptor *
  2116. d40_prep_memcpy_sg(struct dma_chan *chan,
  2117. struct scatterlist *dst_sg, unsigned int dst_nents,
  2118. struct scatterlist *src_sg, unsigned int src_nents,
  2119. unsigned long dma_flags)
  2120. {
  2121. if (dst_nents != src_nents)
  2122. return NULL;
  2123. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  2124. }
  2125. static struct dma_async_tx_descriptor *
  2126. d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  2127. unsigned int sg_len, enum dma_transfer_direction direction,
  2128. unsigned long dma_flags, void *context)
  2129. {
  2130. if (!is_slave_direction(direction))
  2131. return NULL;
  2132. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  2133. }
  2134. static struct dma_async_tx_descriptor *
  2135. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  2136. size_t buf_len, size_t period_len,
  2137. enum dma_transfer_direction direction, unsigned long flags,
  2138. void *context)
  2139. {
  2140. unsigned int periods = buf_len / period_len;
  2141. struct dma_async_tx_descriptor *txd;
  2142. struct scatterlist *sg;
  2143. int i;
  2144. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  2145. for (i = 0; i < periods; i++) {
  2146. sg_dma_address(&sg[i]) = dma_addr;
  2147. sg_dma_len(&sg[i]) = period_len;
  2148. dma_addr += period_len;
  2149. }
  2150. sg[periods].offset = 0;
  2151. sg_dma_len(&sg[periods]) = 0;
  2152. sg[periods].page_link =
  2153. ((unsigned long)sg | 0x01) & ~0x02;
  2154. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  2155. DMA_PREP_INTERRUPT);
  2156. kfree(sg);
  2157. return txd;
  2158. }
  2159. static enum dma_status d40_tx_status(struct dma_chan *chan,
  2160. dma_cookie_t cookie,
  2161. struct dma_tx_state *txstate)
  2162. {
  2163. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2164. enum dma_status ret;
  2165. if (d40c->phy_chan == NULL) {
  2166. chan_err(d40c, "Cannot read status of unallocated channel\n");
  2167. return -EINVAL;
  2168. }
  2169. ret = dma_cookie_status(chan, cookie, txstate);
  2170. if (ret != DMA_SUCCESS)
  2171. dma_set_residue(txstate, stedma40_residue(chan));
  2172. if (d40_is_paused(d40c))
  2173. ret = DMA_PAUSED;
  2174. return ret;
  2175. }
  2176. static void d40_issue_pending(struct dma_chan *chan)
  2177. {
  2178. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2179. unsigned long flags;
  2180. if (d40c->phy_chan == NULL) {
  2181. chan_err(d40c, "Channel is not allocated!\n");
  2182. return;
  2183. }
  2184. spin_lock_irqsave(&d40c->lock, flags);
  2185. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  2186. /* Busy means that queued jobs are already being processed */
  2187. if (!d40c->busy)
  2188. (void) d40_queue_start(d40c);
  2189. spin_unlock_irqrestore(&d40c->lock, flags);
  2190. }
  2191. static void d40_terminate_all(struct dma_chan *chan)
  2192. {
  2193. unsigned long flags;
  2194. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2195. int ret;
  2196. spin_lock_irqsave(&d40c->lock, flags);
  2197. pm_runtime_get_sync(d40c->base->dev);
  2198. ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
  2199. if (ret)
  2200. chan_err(d40c, "Failed to stop channel\n");
  2201. d40_term_all(d40c);
  2202. pm_runtime_mark_last_busy(d40c->base->dev);
  2203. pm_runtime_put_autosuspend(d40c->base->dev);
  2204. if (d40c->busy) {
  2205. pm_runtime_mark_last_busy(d40c->base->dev);
  2206. pm_runtime_put_autosuspend(d40c->base->dev);
  2207. }
  2208. d40c->busy = false;
  2209. spin_unlock_irqrestore(&d40c->lock, flags);
  2210. }
  2211. static int
  2212. dma40_config_to_halfchannel(struct d40_chan *d40c,
  2213. struct stedma40_half_channel_info *info,
  2214. enum dma_slave_buswidth width,
  2215. u32 maxburst)
  2216. {
  2217. enum stedma40_periph_data_width addr_width;
  2218. int psize;
  2219. switch (width) {
  2220. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  2221. addr_width = STEDMA40_BYTE_WIDTH;
  2222. break;
  2223. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  2224. addr_width = STEDMA40_HALFWORD_WIDTH;
  2225. break;
  2226. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  2227. addr_width = STEDMA40_WORD_WIDTH;
  2228. break;
  2229. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  2230. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  2231. break;
  2232. default:
  2233. dev_err(d40c->base->dev,
  2234. "illegal peripheral address width "
  2235. "requested (%d)\n",
  2236. width);
  2237. return -EINVAL;
  2238. }
  2239. if (chan_is_logical(d40c)) {
  2240. if (maxburst >= 16)
  2241. psize = STEDMA40_PSIZE_LOG_16;
  2242. else if (maxburst >= 8)
  2243. psize = STEDMA40_PSIZE_LOG_8;
  2244. else if (maxburst >= 4)
  2245. psize = STEDMA40_PSIZE_LOG_4;
  2246. else
  2247. psize = STEDMA40_PSIZE_LOG_1;
  2248. } else {
  2249. if (maxburst >= 16)
  2250. psize = STEDMA40_PSIZE_PHY_16;
  2251. else if (maxburst >= 8)
  2252. psize = STEDMA40_PSIZE_PHY_8;
  2253. else if (maxburst >= 4)
  2254. psize = STEDMA40_PSIZE_PHY_4;
  2255. else
  2256. psize = STEDMA40_PSIZE_PHY_1;
  2257. }
  2258. info->data_width = addr_width;
  2259. info->psize = psize;
  2260. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  2261. return 0;
  2262. }
  2263. /* Runtime reconfiguration extension */
  2264. static int d40_set_runtime_config(struct dma_chan *chan,
  2265. struct dma_slave_config *config)
  2266. {
  2267. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2268. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  2269. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  2270. dma_addr_t config_addr;
  2271. u32 src_maxburst, dst_maxburst;
  2272. int ret;
  2273. src_addr_width = config->src_addr_width;
  2274. src_maxburst = config->src_maxburst;
  2275. dst_addr_width = config->dst_addr_width;
  2276. dst_maxburst = config->dst_maxburst;
  2277. if (config->direction == DMA_DEV_TO_MEM) {
  2278. dma_addr_t dev_addr_rx =
  2279. d40c->base->plat_data->dev_rx[cfg->dev_type];
  2280. config_addr = config->src_addr;
  2281. if (dev_addr_rx)
  2282. dev_dbg(d40c->base->dev,
  2283. "channel has a pre-wired RX address %08x "
  2284. "overriding with %08x\n",
  2285. dev_addr_rx, config_addr);
  2286. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  2287. dev_dbg(d40c->base->dev,
  2288. "channel was not configured for peripheral "
  2289. "to memory transfer (%d) overriding\n",
  2290. cfg->dir);
  2291. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  2292. /* Configure the memory side */
  2293. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2294. dst_addr_width = src_addr_width;
  2295. if (dst_maxburst == 0)
  2296. dst_maxburst = src_maxburst;
  2297. } else if (config->direction == DMA_MEM_TO_DEV) {
  2298. dma_addr_t dev_addr_tx =
  2299. d40c->base->plat_data->dev_tx[cfg->dev_type];
  2300. config_addr = config->dst_addr;
  2301. if (dev_addr_tx)
  2302. dev_dbg(d40c->base->dev,
  2303. "channel has a pre-wired TX address %08x "
  2304. "overriding with %08x\n",
  2305. dev_addr_tx, config_addr);
  2306. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  2307. dev_dbg(d40c->base->dev,
  2308. "channel was not configured for memory "
  2309. "to peripheral transfer (%d) overriding\n",
  2310. cfg->dir);
  2311. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  2312. /* Configure the memory side */
  2313. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2314. src_addr_width = dst_addr_width;
  2315. if (src_maxburst == 0)
  2316. src_maxburst = dst_maxburst;
  2317. } else {
  2318. dev_err(d40c->base->dev,
  2319. "unrecognized channel direction %d\n",
  2320. config->direction);
  2321. return -EINVAL;
  2322. }
  2323. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  2324. dev_err(d40c->base->dev,
  2325. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  2326. src_maxburst,
  2327. src_addr_width,
  2328. dst_maxburst,
  2329. dst_addr_width);
  2330. return -EINVAL;
  2331. }
  2332. if (src_maxburst > 16) {
  2333. src_maxburst = 16;
  2334. dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
  2335. } else if (dst_maxburst > 16) {
  2336. dst_maxburst = 16;
  2337. src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
  2338. }
  2339. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  2340. src_addr_width,
  2341. src_maxburst);
  2342. if (ret)
  2343. return ret;
  2344. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  2345. dst_addr_width,
  2346. dst_maxburst);
  2347. if (ret)
  2348. return ret;
  2349. /* Fill in register values */
  2350. if (chan_is_logical(d40c))
  2351. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2352. else
  2353. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  2354. &d40c->dst_def_cfg, false);
  2355. /* These settings will take precedence later */
  2356. d40c->runtime_addr = config_addr;
  2357. d40c->runtime_direction = config->direction;
  2358. dev_dbg(d40c->base->dev,
  2359. "configured channel %s for %s, data width %d/%d, "
  2360. "maxburst %d/%d elements, LE, no flow control\n",
  2361. dma_chan_name(chan),
  2362. (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
  2363. src_addr_width, dst_addr_width,
  2364. src_maxburst, dst_maxburst);
  2365. return 0;
  2366. }
  2367. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  2368. unsigned long arg)
  2369. {
  2370. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2371. if (d40c->phy_chan == NULL) {
  2372. chan_err(d40c, "Channel is not allocated!\n");
  2373. return -EINVAL;
  2374. }
  2375. switch (cmd) {
  2376. case DMA_TERMINATE_ALL:
  2377. d40_terminate_all(chan);
  2378. return 0;
  2379. case DMA_PAUSE:
  2380. return d40_pause(d40c);
  2381. case DMA_RESUME:
  2382. return d40_resume(d40c);
  2383. case DMA_SLAVE_CONFIG:
  2384. return d40_set_runtime_config(chan,
  2385. (struct dma_slave_config *) arg);
  2386. default:
  2387. break;
  2388. }
  2389. /* Other commands are unimplemented */
  2390. return -ENXIO;
  2391. }
  2392. /* Initialization functions */
  2393. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  2394. struct d40_chan *chans, int offset,
  2395. int num_chans)
  2396. {
  2397. int i = 0;
  2398. struct d40_chan *d40c;
  2399. INIT_LIST_HEAD(&dma->channels);
  2400. for (i = offset; i < offset + num_chans; i++) {
  2401. d40c = &chans[i];
  2402. d40c->base = base;
  2403. d40c->chan.device = dma;
  2404. spin_lock_init(&d40c->lock);
  2405. d40c->log_num = D40_PHY_CHAN;
  2406. INIT_LIST_HEAD(&d40c->done);
  2407. INIT_LIST_HEAD(&d40c->active);
  2408. INIT_LIST_HEAD(&d40c->queue);
  2409. INIT_LIST_HEAD(&d40c->pending_queue);
  2410. INIT_LIST_HEAD(&d40c->client);
  2411. INIT_LIST_HEAD(&d40c->prepare_queue);
  2412. tasklet_init(&d40c->tasklet, dma_tasklet,
  2413. (unsigned long) d40c);
  2414. list_add_tail(&d40c->chan.device_node,
  2415. &dma->channels);
  2416. }
  2417. }
  2418. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  2419. {
  2420. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  2421. dev->device_prep_slave_sg = d40_prep_slave_sg;
  2422. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  2423. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2424. /*
  2425. * This controller can only access address at even
  2426. * 32bit boundaries, i.e. 2^2
  2427. */
  2428. dev->copy_align = 2;
  2429. }
  2430. if (dma_has_cap(DMA_SG, dev->cap_mask))
  2431. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  2432. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2433. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2434. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2435. dev->device_free_chan_resources = d40_free_chan_resources;
  2436. dev->device_issue_pending = d40_issue_pending;
  2437. dev->device_tx_status = d40_tx_status;
  2438. dev->device_control = d40_control;
  2439. dev->dev = base->dev;
  2440. }
  2441. static int __init d40_dmaengine_init(struct d40_base *base,
  2442. int num_reserved_chans)
  2443. {
  2444. int err ;
  2445. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2446. 0, base->num_log_chans);
  2447. dma_cap_zero(base->dma_slave.cap_mask);
  2448. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2449. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2450. d40_ops_init(base, &base->dma_slave);
  2451. err = dma_async_device_register(&base->dma_slave);
  2452. if (err) {
  2453. d40_err(base->dev, "Failed to register slave channels\n");
  2454. goto failure1;
  2455. }
  2456. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2457. base->num_log_chans, ARRAY_SIZE(dma40_memcpy_channels));
  2458. dma_cap_zero(base->dma_memcpy.cap_mask);
  2459. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2460. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2461. d40_ops_init(base, &base->dma_memcpy);
  2462. err = dma_async_device_register(&base->dma_memcpy);
  2463. if (err) {
  2464. d40_err(base->dev,
  2465. "Failed to regsiter memcpy only channels\n");
  2466. goto failure2;
  2467. }
  2468. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2469. 0, num_reserved_chans);
  2470. dma_cap_zero(base->dma_both.cap_mask);
  2471. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2472. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2473. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2474. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2475. d40_ops_init(base, &base->dma_both);
  2476. err = dma_async_device_register(&base->dma_both);
  2477. if (err) {
  2478. d40_err(base->dev,
  2479. "Failed to register logical and physical capable channels\n");
  2480. goto failure3;
  2481. }
  2482. return 0;
  2483. failure3:
  2484. dma_async_device_unregister(&base->dma_memcpy);
  2485. failure2:
  2486. dma_async_device_unregister(&base->dma_slave);
  2487. failure1:
  2488. return err;
  2489. }
  2490. /* Suspend resume functionality */
  2491. #ifdef CONFIG_PM
  2492. static int dma40_pm_suspend(struct device *dev)
  2493. {
  2494. struct platform_device *pdev = to_platform_device(dev);
  2495. struct d40_base *base = platform_get_drvdata(pdev);
  2496. int ret = 0;
  2497. if (base->lcpa_regulator)
  2498. ret = regulator_disable(base->lcpa_regulator);
  2499. return ret;
  2500. }
  2501. static int dma40_runtime_suspend(struct device *dev)
  2502. {
  2503. struct platform_device *pdev = to_platform_device(dev);
  2504. struct d40_base *base = platform_get_drvdata(pdev);
  2505. d40_save_restore_registers(base, true);
  2506. /* Don't disable/enable clocks for v1 due to HW bugs */
  2507. if (base->rev != 1)
  2508. writel_relaxed(base->gcc_pwr_off_mask,
  2509. base->virtbase + D40_DREG_GCC);
  2510. return 0;
  2511. }
  2512. static int dma40_runtime_resume(struct device *dev)
  2513. {
  2514. struct platform_device *pdev = to_platform_device(dev);
  2515. struct d40_base *base = platform_get_drvdata(pdev);
  2516. if (base->initialized)
  2517. d40_save_restore_registers(base, false);
  2518. writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
  2519. base->virtbase + D40_DREG_GCC);
  2520. return 0;
  2521. }
  2522. static int dma40_resume(struct device *dev)
  2523. {
  2524. struct platform_device *pdev = to_platform_device(dev);
  2525. struct d40_base *base = platform_get_drvdata(pdev);
  2526. int ret = 0;
  2527. if (base->lcpa_regulator)
  2528. ret = regulator_enable(base->lcpa_regulator);
  2529. return ret;
  2530. }
  2531. static const struct dev_pm_ops dma40_pm_ops = {
  2532. .suspend = dma40_pm_suspend,
  2533. .runtime_suspend = dma40_runtime_suspend,
  2534. .runtime_resume = dma40_runtime_resume,
  2535. .resume = dma40_resume,
  2536. };
  2537. #define DMA40_PM_OPS (&dma40_pm_ops)
  2538. #else
  2539. #define DMA40_PM_OPS NULL
  2540. #endif
  2541. /* Initialization functions. */
  2542. static int __init d40_phy_res_init(struct d40_base *base)
  2543. {
  2544. int i;
  2545. int num_phy_chans_avail = 0;
  2546. u32 val[2];
  2547. int odd_even_bit = -2;
  2548. int gcc = D40_DREG_GCC_ENA;
  2549. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2550. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2551. for (i = 0; i < base->num_phy_chans; i++) {
  2552. base->phy_res[i].num = i;
  2553. odd_even_bit += 2 * ((i % 2) == 0);
  2554. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2555. /* Mark security only channels as occupied */
  2556. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2557. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2558. base->phy_res[i].reserved = true;
  2559. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2560. D40_DREG_GCC_SRC);
  2561. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2562. D40_DREG_GCC_DST);
  2563. } else {
  2564. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2565. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2566. base->phy_res[i].reserved = false;
  2567. num_phy_chans_avail++;
  2568. }
  2569. spin_lock_init(&base->phy_res[i].lock);
  2570. }
  2571. /* Mark disabled channels as occupied */
  2572. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2573. int chan = base->plat_data->disabled_channels[i];
  2574. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2575. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2576. base->phy_res[chan].reserved = true;
  2577. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2578. D40_DREG_GCC_SRC);
  2579. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2580. D40_DREG_GCC_DST);
  2581. num_phy_chans_avail--;
  2582. }
  2583. /* Mark soft_lli channels */
  2584. for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
  2585. int chan = base->plat_data->soft_lli_chans[i];
  2586. base->phy_res[chan].use_soft_lli = true;
  2587. }
  2588. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2589. num_phy_chans_avail, base->num_phy_chans);
  2590. /* Verify settings extended vs standard */
  2591. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2592. for (i = 0; i < base->num_phy_chans; i++) {
  2593. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2594. (val[0] & 0x3) != 1)
  2595. dev_info(base->dev,
  2596. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2597. __func__, i, val[0] & 0x3);
  2598. val[0] = val[0] >> 2;
  2599. }
  2600. /*
  2601. * To keep things simple, Enable all clocks initially.
  2602. * The clocks will get managed later post channel allocation.
  2603. * The clocks for the event lines on which reserved channels exists
  2604. * are not managed here.
  2605. */
  2606. writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
  2607. base->gcc_pwr_off_mask = gcc;
  2608. return num_phy_chans_avail;
  2609. }
  2610. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2611. {
  2612. struct stedma40_platform_data *plat_data;
  2613. struct clk *clk = NULL;
  2614. void __iomem *virtbase = NULL;
  2615. struct resource *res = NULL;
  2616. struct d40_base *base = NULL;
  2617. int num_log_chans = 0;
  2618. int num_phy_chans;
  2619. int clk_ret = -EINVAL;
  2620. int i;
  2621. u32 pid;
  2622. u32 cid;
  2623. u8 rev;
  2624. clk = clk_get(&pdev->dev, NULL);
  2625. if (IS_ERR(clk)) {
  2626. d40_err(&pdev->dev, "No matching clock found\n");
  2627. goto failure;
  2628. }
  2629. clk_ret = clk_prepare_enable(clk);
  2630. if (clk_ret) {
  2631. d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
  2632. goto failure;
  2633. }
  2634. /* Get IO for DMAC base address */
  2635. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2636. if (!res)
  2637. goto failure;
  2638. if (request_mem_region(res->start, resource_size(res),
  2639. D40_NAME " I/O base") == NULL)
  2640. goto failure;
  2641. virtbase = ioremap(res->start, resource_size(res));
  2642. if (!virtbase)
  2643. goto failure;
  2644. /* This is just a regular AMBA PrimeCell ID actually */
  2645. for (pid = 0, i = 0; i < 4; i++)
  2646. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2647. & 255) << (i * 8);
  2648. for (cid = 0, i = 0; i < 4; i++)
  2649. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2650. & 255) << (i * 8);
  2651. if (cid != AMBA_CID) {
  2652. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2653. goto failure;
  2654. }
  2655. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2656. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2657. AMBA_MANF_BITS(pid),
  2658. AMBA_VENDOR_ST);
  2659. goto failure;
  2660. }
  2661. /*
  2662. * HW revision:
  2663. * DB8500ed has revision 0
  2664. * ? has revision 1
  2665. * DB8500v1 has revision 2
  2666. * DB8500v2 has revision 3
  2667. * AP9540v1 has revision 4
  2668. * DB8540v1 has revision 4
  2669. */
  2670. rev = AMBA_REV_BITS(pid);
  2671. plat_data = pdev->dev.platform_data;
  2672. /* The number of physical channels on this HW */
  2673. if (plat_data->num_of_phy_chans)
  2674. num_phy_chans = plat_data->num_of_phy_chans;
  2675. else
  2676. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2677. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x with %d physical channels\n",
  2678. rev, res->start, num_phy_chans);
  2679. if (rev < 2) {
  2680. d40_err(&pdev->dev, "hardware revision: %d is not supported",
  2681. rev);
  2682. goto failure;
  2683. }
  2684. /* Count the number of logical channels in use */
  2685. for (i = 0; i < plat_data->dev_len; i++)
  2686. if (plat_data->dev_rx[i] != 0)
  2687. num_log_chans++;
  2688. for (i = 0; i < plat_data->dev_len; i++)
  2689. if (plat_data->dev_tx[i] != 0)
  2690. num_log_chans++;
  2691. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2692. (num_phy_chans + num_log_chans + ARRAY_SIZE(dma40_memcpy_channels)) *
  2693. sizeof(struct d40_chan), GFP_KERNEL);
  2694. if (base == NULL) {
  2695. d40_err(&pdev->dev, "Out of memory\n");
  2696. goto failure;
  2697. }
  2698. base->rev = rev;
  2699. base->clk = clk;
  2700. base->num_phy_chans = num_phy_chans;
  2701. base->num_log_chans = num_log_chans;
  2702. base->phy_start = res->start;
  2703. base->phy_size = resource_size(res);
  2704. base->virtbase = virtbase;
  2705. base->plat_data = plat_data;
  2706. base->dev = &pdev->dev;
  2707. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2708. base->log_chans = &base->phy_chans[num_phy_chans];
  2709. if (base->plat_data->num_of_phy_chans == 14) {
  2710. base->gen_dmac.backup = d40_backup_regs_v4b;
  2711. base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
  2712. base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
  2713. base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
  2714. base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
  2715. base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
  2716. base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
  2717. base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
  2718. base->gen_dmac.il = il_v4b;
  2719. base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
  2720. base->gen_dmac.init_reg = dma_init_reg_v4b;
  2721. base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
  2722. } else {
  2723. if (base->rev >= 3) {
  2724. base->gen_dmac.backup = d40_backup_regs_v4a;
  2725. base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
  2726. }
  2727. base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
  2728. base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
  2729. base->gen_dmac.realtime_en = D40_DREG_RSEG1;
  2730. base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
  2731. base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
  2732. base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
  2733. base->gen_dmac.il = il_v4a;
  2734. base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
  2735. base->gen_dmac.init_reg = dma_init_reg_v4a;
  2736. base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
  2737. }
  2738. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2739. GFP_KERNEL);
  2740. if (!base->phy_res)
  2741. goto failure;
  2742. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2743. sizeof(struct d40_chan *),
  2744. GFP_KERNEL);
  2745. if (!base->lookup_phy_chans)
  2746. goto failure;
  2747. if (num_log_chans + ARRAY_SIZE(dma40_memcpy_channels)) {
  2748. /*
  2749. * The max number of logical channels are event lines for all
  2750. * src devices and dst devices
  2751. */
  2752. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2753. sizeof(struct d40_chan *),
  2754. GFP_KERNEL);
  2755. if (!base->lookup_log_chans)
  2756. goto failure;
  2757. }
  2758. base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
  2759. sizeof(d40_backup_regs_chan),
  2760. GFP_KERNEL);
  2761. if (!base->reg_val_backup_chan)
  2762. goto failure;
  2763. base->lcla_pool.alloc_map =
  2764. kzalloc(num_phy_chans * sizeof(struct d40_desc *)
  2765. * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
  2766. if (!base->lcla_pool.alloc_map)
  2767. goto failure;
  2768. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2769. 0, SLAB_HWCACHE_ALIGN,
  2770. NULL);
  2771. if (base->desc_slab == NULL)
  2772. goto failure;
  2773. return base;
  2774. failure:
  2775. if (!clk_ret)
  2776. clk_disable_unprepare(clk);
  2777. if (!IS_ERR(clk))
  2778. clk_put(clk);
  2779. if (virtbase)
  2780. iounmap(virtbase);
  2781. if (res)
  2782. release_mem_region(res->start,
  2783. resource_size(res));
  2784. if (virtbase)
  2785. iounmap(virtbase);
  2786. if (base) {
  2787. kfree(base->lcla_pool.alloc_map);
  2788. kfree(base->reg_val_backup_chan);
  2789. kfree(base->lookup_log_chans);
  2790. kfree(base->lookup_phy_chans);
  2791. kfree(base->phy_res);
  2792. kfree(base);
  2793. }
  2794. return NULL;
  2795. }
  2796. static void __init d40_hw_init(struct d40_base *base)
  2797. {
  2798. int i;
  2799. u32 prmseo[2] = {0, 0};
  2800. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2801. u32 pcmis = 0;
  2802. u32 pcicr = 0;
  2803. struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
  2804. u32 reg_size = base->gen_dmac.init_reg_size;
  2805. for (i = 0; i < reg_size; i++)
  2806. writel(dma_init_reg[i].val,
  2807. base->virtbase + dma_init_reg[i].reg);
  2808. /* Configure all our dma channels to default settings */
  2809. for (i = 0; i < base->num_phy_chans; i++) {
  2810. activeo[i % 2] = activeo[i % 2] << 2;
  2811. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2812. == D40_ALLOC_PHY) {
  2813. activeo[i % 2] |= 3;
  2814. continue;
  2815. }
  2816. /* Enable interrupt # */
  2817. pcmis = (pcmis << 1) | 1;
  2818. /* Clear interrupt # */
  2819. pcicr = (pcicr << 1) | 1;
  2820. /* Set channel to physical mode */
  2821. prmseo[i % 2] = prmseo[i % 2] << 2;
  2822. prmseo[i % 2] |= 1;
  2823. }
  2824. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2825. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2826. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2827. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2828. /* Write which interrupt to enable */
  2829. writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
  2830. /* Write which interrupt to clear */
  2831. writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
  2832. /* These are __initdata and cannot be accessed after init */
  2833. base->gen_dmac.init_reg = NULL;
  2834. base->gen_dmac.init_reg_size = 0;
  2835. }
  2836. static int __init d40_lcla_allocate(struct d40_base *base)
  2837. {
  2838. struct d40_lcla_pool *pool = &base->lcla_pool;
  2839. unsigned long *page_list;
  2840. int i, j;
  2841. int ret = 0;
  2842. /*
  2843. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2844. * To full fill this hardware requirement without wasting 256 kb
  2845. * we allocate pages until we get an aligned one.
  2846. */
  2847. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2848. GFP_KERNEL);
  2849. if (!page_list) {
  2850. ret = -ENOMEM;
  2851. goto failure;
  2852. }
  2853. /* Calculating how many pages that are required */
  2854. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2855. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2856. page_list[i] = __get_free_pages(GFP_KERNEL,
  2857. base->lcla_pool.pages);
  2858. if (!page_list[i]) {
  2859. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2860. base->lcla_pool.pages);
  2861. for (j = 0; j < i; j++)
  2862. free_pages(page_list[j], base->lcla_pool.pages);
  2863. goto failure;
  2864. }
  2865. if ((virt_to_phys((void *)page_list[i]) &
  2866. (LCLA_ALIGNMENT - 1)) == 0)
  2867. break;
  2868. }
  2869. for (j = 0; j < i; j++)
  2870. free_pages(page_list[j], base->lcla_pool.pages);
  2871. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2872. base->lcla_pool.base = (void *)page_list[i];
  2873. } else {
  2874. /*
  2875. * After many attempts and no succees with finding the correct
  2876. * alignment, try with allocating a big buffer.
  2877. */
  2878. dev_warn(base->dev,
  2879. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2880. __func__, base->lcla_pool.pages);
  2881. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2882. base->num_phy_chans +
  2883. LCLA_ALIGNMENT,
  2884. GFP_KERNEL);
  2885. if (!base->lcla_pool.base_unaligned) {
  2886. ret = -ENOMEM;
  2887. goto failure;
  2888. }
  2889. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2890. LCLA_ALIGNMENT);
  2891. }
  2892. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2893. SZ_1K * base->num_phy_chans,
  2894. DMA_TO_DEVICE);
  2895. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2896. pool->dma_addr = 0;
  2897. ret = -ENOMEM;
  2898. goto failure;
  2899. }
  2900. writel(virt_to_phys(base->lcla_pool.base),
  2901. base->virtbase + D40_DREG_LCLA);
  2902. failure:
  2903. kfree(page_list);
  2904. return ret;
  2905. }
  2906. static int __init d40_probe(struct platform_device *pdev)
  2907. {
  2908. int err;
  2909. int ret = -ENOENT;
  2910. struct d40_base *base;
  2911. struct resource *res = NULL;
  2912. int num_reserved_chans;
  2913. u32 val;
  2914. base = d40_hw_detect_init(pdev);
  2915. if (!base)
  2916. goto failure;
  2917. num_reserved_chans = d40_phy_res_init(base);
  2918. platform_set_drvdata(pdev, base);
  2919. spin_lock_init(&base->interrupt_lock);
  2920. spin_lock_init(&base->execmd_lock);
  2921. /* Get IO for logical channel parameter address */
  2922. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2923. if (!res) {
  2924. ret = -ENOENT;
  2925. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2926. goto failure;
  2927. }
  2928. base->lcpa_size = resource_size(res);
  2929. base->phy_lcpa = res->start;
  2930. if (request_mem_region(res->start, resource_size(res),
  2931. D40_NAME " I/O lcpa") == NULL) {
  2932. ret = -EBUSY;
  2933. d40_err(&pdev->dev,
  2934. "Failed to request LCPA region 0x%x-0x%x\n",
  2935. res->start, res->end);
  2936. goto failure;
  2937. }
  2938. /* We make use of ESRAM memory for this. */
  2939. val = readl(base->virtbase + D40_DREG_LCPA);
  2940. if (res->start != val && val != 0) {
  2941. dev_warn(&pdev->dev,
  2942. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2943. __func__, val, res->start);
  2944. } else
  2945. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2946. base->lcpa_base = ioremap(res->start, resource_size(res));
  2947. if (!base->lcpa_base) {
  2948. ret = -ENOMEM;
  2949. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2950. goto failure;
  2951. }
  2952. /* If lcla has to be located in ESRAM we don't need to allocate */
  2953. if (base->plat_data->use_esram_lcla) {
  2954. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2955. "lcla_esram");
  2956. if (!res) {
  2957. ret = -ENOENT;
  2958. d40_err(&pdev->dev,
  2959. "No \"lcla_esram\" memory resource\n");
  2960. goto failure;
  2961. }
  2962. base->lcla_pool.base = ioremap(res->start,
  2963. resource_size(res));
  2964. if (!base->lcla_pool.base) {
  2965. ret = -ENOMEM;
  2966. d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
  2967. goto failure;
  2968. }
  2969. writel(res->start, base->virtbase + D40_DREG_LCLA);
  2970. } else {
  2971. ret = d40_lcla_allocate(base);
  2972. if (ret) {
  2973. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2974. goto failure;
  2975. }
  2976. }
  2977. spin_lock_init(&base->lcla_pool.lock);
  2978. base->irq = platform_get_irq(pdev, 0);
  2979. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2980. if (ret) {
  2981. d40_err(&pdev->dev, "No IRQ defined\n");
  2982. goto failure;
  2983. }
  2984. pm_runtime_irq_safe(base->dev);
  2985. pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
  2986. pm_runtime_use_autosuspend(base->dev);
  2987. pm_runtime_enable(base->dev);
  2988. pm_runtime_resume(base->dev);
  2989. if (base->plat_data->use_esram_lcla) {
  2990. base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
  2991. if (IS_ERR(base->lcpa_regulator)) {
  2992. d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
  2993. base->lcpa_regulator = NULL;
  2994. goto failure;
  2995. }
  2996. ret = regulator_enable(base->lcpa_regulator);
  2997. if (ret) {
  2998. d40_err(&pdev->dev,
  2999. "Failed to enable lcpa_regulator\n");
  3000. regulator_put(base->lcpa_regulator);
  3001. base->lcpa_regulator = NULL;
  3002. goto failure;
  3003. }
  3004. }
  3005. base->initialized = true;
  3006. err = d40_dmaengine_init(base, num_reserved_chans);
  3007. if (err)
  3008. goto failure;
  3009. base->dev->dma_parms = &base->dma_parms;
  3010. err = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
  3011. if (err) {
  3012. d40_err(&pdev->dev, "Failed to set dma max seg size\n");
  3013. goto failure;
  3014. }
  3015. d40_hw_init(base);
  3016. dev_info(base->dev, "initialized\n");
  3017. return 0;
  3018. failure:
  3019. if (base) {
  3020. if (base->desc_slab)
  3021. kmem_cache_destroy(base->desc_slab);
  3022. if (base->virtbase)
  3023. iounmap(base->virtbase);
  3024. if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
  3025. iounmap(base->lcla_pool.base);
  3026. base->lcla_pool.base = NULL;
  3027. }
  3028. if (base->lcla_pool.dma_addr)
  3029. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  3030. SZ_1K * base->num_phy_chans,
  3031. DMA_TO_DEVICE);
  3032. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  3033. free_pages((unsigned long)base->lcla_pool.base,
  3034. base->lcla_pool.pages);
  3035. kfree(base->lcla_pool.base_unaligned);
  3036. if (base->phy_lcpa)
  3037. release_mem_region(base->phy_lcpa,
  3038. base->lcpa_size);
  3039. if (base->phy_start)
  3040. release_mem_region(base->phy_start,
  3041. base->phy_size);
  3042. if (base->clk) {
  3043. clk_disable_unprepare(base->clk);
  3044. clk_put(base->clk);
  3045. }
  3046. if (base->lcpa_regulator) {
  3047. regulator_disable(base->lcpa_regulator);
  3048. regulator_put(base->lcpa_regulator);
  3049. }
  3050. kfree(base->lcla_pool.alloc_map);
  3051. kfree(base->lookup_log_chans);
  3052. kfree(base->lookup_phy_chans);
  3053. kfree(base->phy_res);
  3054. kfree(base);
  3055. }
  3056. d40_err(&pdev->dev, "probe failed\n");
  3057. return ret;
  3058. }
  3059. static struct platform_driver d40_driver = {
  3060. .driver = {
  3061. .owner = THIS_MODULE,
  3062. .name = D40_NAME,
  3063. .pm = DMA40_PM_OPS,
  3064. },
  3065. };
  3066. static int __init stedma40_init(void)
  3067. {
  3068. return platform_driver_probe(&d40_driver, d40_probe);
  3069. }
  3070. subsys_initcall(stedma40_init);