inode.c 102 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520
  1. /*
  2. * linux/fs/ext4/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext4_jbd2.h>
  28. #include <linux/jbd2.h>
  29. #include <linux/highuid.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/quotaops.h>
  32. #include <linux/string.h>
  33. #include <linux/buffer_head.h>
  34. #include <linux/writeback.h>
  35. #include <linux/mpage.h>
  36. #include <linux/uio.h>
  37. #include <linux/bio.h>
  38. #include "xattr.h"
  39. #include "acl.h"
  40. /*
  41. * Test whether an inode is a fast symlink.
  42. */
  43. static int ext4_inode_is_fast_symlink(struct inode *inode)
  44. {
  45. int ea_blocks = EXT4_I(inode)->i_file_acl ?
  46. (inode->i_sb->s_blocksize >> 9) : 0;
  47. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  48. }
  49. /*
  50. * The ext4 forget function must perform a revoke if we are freeing data
  51. * which has been journaled. Metadata (eg. indirect blocks) must be
  52. * revoked in all cases.
  53. *
  54. * "bh" may be NULL: a metadata block may have been freed from memory
  55. * but there may still be a record of it in the journal, and that record
  56. * still needs to be revoked.
  57. */
  58. int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
  59. struct buffer_head *bh, ext4_fsblk_t blocknr)
  60. {
  61. int err;
  62. might_sleep();
  63. BUFFER_TRACE(bh, "enter");
  64. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  65. "data mode %lx\n",
  66. bh, is_metadata, inode->i_mode,
  67. test_opt(inode->i_sb, DATA_FLAGS));
  68. /* Never use the revoke function if we are doing full data
  69. * journaling: there is no need to, and a V1 superblock won't
  70. * support it. Otherwise, only skip the revoke on un-journaled
  71. * data blocks. */
  72. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
  73. (!is_metadata && !ext4_should_journal_data(inode))) {
  74. if (bh) {
  75. BUFFER_TRACE(bh, "call jbd2_journal_forget");
  76. return ext4_journal_forget(handle, bh);
  77. }
  78. return 0;
  79. }
  80. /*
  81. * data!=journal && (is_metadata || should_journal_data(inode))
  82. */
  83. BUFFER_TRACE(bh, "call ext4_journal_revoke");
  84. err = ext4_journal_revoke(handle, blocknr, bh);
  85. if (err)
  86. ext4_abort(inode->i_sb, __FUNCTION__,
  87. "error %d when attempting revoke", err);
  88. BUFFER_TRACE(bh, "exit");
  89. return err;
  90. }
  91. /*
  92. * Work out how many blocks we need to proceed with the next chunk of a
  93. * truncate transaction.
  94. */
  95. static unsigned long blocks_for_truncate(struct inode *inode)
  96. {
  97. ext4_lblk_t needed;
  98. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  99. /* Give ourselves just enough room to cope with inodes in which
  100. * i_blocks is corrupt: we've seen disk corruptions in the past
  101. * which resulted in random data in an inode which looked enough
  102. * like a regular file for ext4 to try to delete it. Things
  103. * will go a bit crazy if that happens, but at least we should
  104. * try not to panic the whole kernel. */
  105. if (needed < 2)
  106. needed = 2;
  107. /* But we need to bound the transaction so we don't overflow the
  108. * journal. */
  109. if (needed > EXT4_MAX_TRANS_DATA)
  110. needed = EXT4_MAX_TRANS_DATA;
  111. return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  112. }
  113. /*
  114. * Truncate transactions can be complex and absolutely huge. So we need to
  115. * be able to restart the transaction at a conventient checkpoint to make
  116. * sure we don't overflow the journal.
  117. *
  118. * start_transaction gets us a new handle for a truncate transaction,
  119. * and extend_transaction tries to extend the existing one a bit. If
  120. * extend fails, we need to propagate the failure up and restart the
  121. * transaction in the top-level truncate loop. --sct
  122. */
  123. static handle_t *start_transaction(struct inode *inode)
  124. {
  125. handle_t *result;
  126. result = ext4_journal_start(inode, blocks_for_truncate(inode));
  127. if (!IS_ERR(result))
  128. return result;
  129. ext4_std_error(inode->i_sb, PTR_ERR(result));
  130. return result;
  131. }
  132. /*
  133. * Try to extend this transaction for the purposes of truncation.
  134. *
  135. * Returns 0 if we managed to create more room. If we can't create more
  136. * room, and the transaction must be restarted we return 1.
  137. */
  138. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  139. {
  140. if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
  141. return 0;
  142. if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
  143. return 0;
  144. return 1;
  145. }
  146. /*
  147. * Restart the transaction associated with *handle. This does a commit,
  148. * so before we call here everything must be consistently dirtied against
  149. * this transaction.
  150. */
  151. static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
  152. {
  153. jbd_debug(2, "restarting handle %p\n", handle);
  154. return ext4_journal_restart(handle, blocks_for_truncate(inode));
  155. }
  156. /*
  157. * Called at the last iput() if i_nlink is zero.
  158. */
  159. void ext4_delete_inode (struct inode * inode)
  160. {
  161. handle_t *handle;
  162. truncate_inode_pages(&inode->i_data, 0);
  163. if (is_bad_inode(inode))
  164. goto no_delete;
  165. handle = start_transaction(inode);
  166. if (IS_ERR(handle)) {
  167. /*
  168. * If we're going to skip the normal cleanup, we still need to
  169. * make sure that the in-core orphan linked list is properly
  170. * cleaned up.
  171. */
  172. ext4_orphan_del(NULL, inode);
  173. goto no_delete;
  174. }
  175. if (IS_SYNC(inode))
  176. handle->h_sync = 1;
  177. inode->i_size = 0;
  178. if (inode->i_blocks)
  179. ext4_truncate(inode);
  180. /*
  181. * Kill off the orphan record which ext4_truncate created.
  182. * AKPM: I think this can be inside the above `if'.
  183. * Note that ext4_orphan_del() has to be able to cope with the
  184. * deletion of a non-existent orphan - this is because we don't
  185. * know if ext4_truncate() actually created an orphan record.
  186. * (Well, we could do this if we need to, but heck - it works)
  187. */
  188. ext4_orphan_del(handle, inode);
  189. EXT4_I(inode)->i_dtime = get_seconds();
  190. /*
  191. * One subtle ordering requirement: if anything has gone wrong
  192. * (transaction abort, IO errors, whatever), then we can still
  193. * do these next steps (the fs will already have been marked as
  194. * having errors), but we can't free the inode if the mark_dirty
  195. * fails.
  196. */
  197. if (ext4_mark_inode_dirty(handle, inode))
  198. /* If that failed, just do the required in-core inode clear. */
  199. clear_inode(inode);
  200. else
  201. ext4_free_inode(handle, inode);
  202. ext4_journal_stop(handle);
  203. return;
  204. no_delete:
  205. clear_inode(inode); /* We must guarantee clearing of inode... */
  206. }
  207. typedef struct {
  208. __le32 *p;
  209. __le32 key;
  210. struct buffer_head *bh;
  211. } Indirect;
  212. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  213. {
  214. p->key = *(p->p = v);
  215. p->bh = bh;
  216. }
  217. /**
  218. * ext4_block_to_path - parse the block number into array of offsets
  219. * @inode: inode in question (we are only interested in its superblock)
  220. * @i_block: block number to be parsed
  221. * @offsets: array to store the offsets in
  222. * @boundary: set this non-zero if the referred-to block is likely to be
  223. * followed (on disk) by an indirect block.
  224. *
  225. * To store the locations of file's data ext4 uses a data structure common
  226. * for UNIX filesystems - tree of pointers anchored in the inode, with
  227. * data blocks at leaves and indirect blocks in intermediate nodes.
  228. * This function translates the block number into path in that tree -
  229. * return value is the path length and @offsets[n] is the offset of
  230. * pointer to (n+1)th node in the nth one. If @block is out of range
  231. * (negative or too large) warning is printed and zero returned.
  232. *
  233. * Note: function doesn't find node addresses, so no IO is needed. All
  234. * we need to know is the capacity of indirect blocks (taken from the
  235. * inode->i_sb).
  236. */
  237. /*
  238. * Portability note: the last comparison (check that we fit into triple
  239. * indirect block) is spelled differently, because otherwise on an
  240. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  241. * if our filesystem had 8Kb blocks. We might use long long, but that would
  242. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  243. * i_block would have to be negative in the very beginning, so we would not
  244. * get there at all.
  245. */
  246. static int ext4_block_to_path(struct inode *inode,
  247. ext4_lblk_t i_block,
  248. ext4_lblk_t offsets[4], int *boundary)
  249. {
  250. int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  251. int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  252. const long direct_blocks = EXT4_NDIR_BLOCKS,
  253. indirect_blocks = ptrs,
  254. double_blocks = (1 << (ptrs_bits * 2));
  255. int n = 0;
  256. int final = 0;
  257. if (i_block < 0) {
  258. ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
  259. } else if (i_block < direct_blocks) {
  260. offsets[n++] = i_block;
  261. final = direct_blocks;
  262. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  263. offsets[n++] = EXT4_IND_BLOCK;
  264. offsets[n++] = i_block;
  265. final = ptrs;
  266. } else if ((i_block -= indirect_blocks) < double_blocks) {
  267. offsets[n++] = EXT4_DIND_BLOCK;
  268. offsets[n++] = i_block >> ptrs_bits;
  269. offsets[n++] = i_block & (ptrs - 1);
  270. final = ptrs;
  271. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  272. offsets[n++] = EXT4_TIND_BLOCK;
  273. offsets[n++] = i_block >> (ptrs_bits * 2);
  274. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  275. offsets[n++] = i_block & (ptrs - 1);
  276. final = ptrs;
  277. } else {
  278. ext4_warning(inode->i_sb, "ext4_block_to_path",
  279. "block %lu > max",
  280. i_block + direct_blocks +
  281. indirect_blocks + double_blocks);
  282. }
  283. if (boundary)
  284. *boundary = final - 1 - (i_block & (ptrs - 1));
  285. return n;
  286. }
  287. /**
  288. * ext4_get_branch - read the chain of indirect blocks leading to data
  289. * @inode: inode in question
  290. * @depth: depth of the chain (1 - direct pointer, etc.)
  291. * @offsets: offsets of pointers in inode/indirect blocks
  292. * @chain: place to store the result
  293. * @err: here we store the error value
  294. *
  295. * Function fills the array of triples <key, p, bh> and returns %NULL
  296. * if everything went OK or the pointer to the last filled triple
  297. * (incomplete one) otherwise. Upon the return chain[i].key contains
  298. * the number of (i+1)-th block in the chain (as it is stored in memory,
  299. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  300. * number (it points into struct inode for i==0 and into the bh->b_data
  301. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  302. * block for i>0 and NULL for i==0. In other words, it holds the block
  303. * numbers of the chain, addresses they were taken from (and where we can
  304. * verify that chain did not change) and buffer_heads hosting these
  305. * numbers.
  306. *
  307. * Function stops when it stumbles upon zero pointer (absent block)
  308. * (pointer to last triple returned, *@err == 0)
  309. * or when it gets an IO error reading an indirect block
  310. * (ditto, *@err == -EIO)
  311. * or when it reads all @depth-1 indirect blocks successfully and finds
  312. * the whole chain, all way to the data (returns %NULL, *err == 0).
  313. *
  314. * Need to be called with
  315. * down_read(&EXT4_I(inode)->i_data_sem)
  316. */
  317. static Indirect *ext4_get_branch(struct inode *inode, int depth,
  318. ext4_lblk_t *offsets,
  319. Indirect chain[4], int *err)
  320. {
  321. struct super_block *sb = inode->i_sb;
  322. Indirect *p = chain;
  323. struct buffer_head *bh;
  324. *err = 0;
  325. /* i_data is not going away, no lock needed */
  326. add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
  327. if (!p->key)
  328. goto no_block;
  329. while (--depth) {
  330. bh = sb_bread(sb, le32_to_cpu(p->key));
  331. if (!bh)
  332. goto failure;
  333. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  334. /* Reader: end */
  335. if (!p->key)
  336. goto no_block;
  337. }
  338. return NULL;
  339. failure:
  340. *err = -EIO;
  341. no_block:
  342. return p;
  343. }
  344. /**
  345. * ext4_find_near - find a place for allocation with sufficient locality
  346. * @inode: owner
  347. * @ind: descriptor of indirect block.
  348. *
  349. * This function returns the preferred place for block allocation.
  350. * It is used when heuristic for sequential allocation fails.
  351. * Rules are:
  352. * + if there is a block to the left of our position - allocate near it.
  353. * + if pointer will live in indirect block - allocate near that block.
  354. * + if pointer will live in inode - allocate in the same
  355. * cylinder group.
  356. *
  357. * In the latter case we colour the starting block by the callers PID to
  358. * prevent it from clashing with concurrent allocations for a different inode
  359. * in the same block group. The PID is used here so that functionally related
  360. * files will be close-by on-disk.
  361. *
  362. * Caller must make sure that @ind is valid and will stay that way.
  363. */
  364. static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
  365. {
  366. struct ext4_inode_info *ei = EXT4_I(inode);
  367. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  368. __le32 *p;
  369. ext4_fsblk_t bg_start;
  370. ext4_fsblk_t last_block;
  371. ext4_grpblk_t colour;
  372. /* Try to find previous block */
  373. for (p = ind->p - 1; p >= start; p--) {
  374. if (*p)
  375. return le32_to_cpu(*p);
  376. }
  377. /* No such thing, so let's try location of indirect block */
  378. if (ind->bh)
  379. return ind->bh->b_blocknr;
  380. /*
  381. * It is going to be referred to from the inode itself? OK, just put it
  382. * into the same cylinder group then.
  383. */
  384. bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
  385. last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
  386. if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
  387. colour = (current->pid % 16) *
  388. (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  389. else
  390. colour = (current->pid % 16) * ((last_block - bg_start) / 16);
  391. return bg_start + colour;
  392. }
  393. /**
  394. * ext4_find_goal - find a preferred place for allocation.
  395. * @inode: owner
  396. * @block: block we want
  397. * @partial: pointer to the last triple within a chain
  398. *
  399. * Normally this function find the preferred place for block allocation,
  400. * returns it.
  401. */
  402. static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
  403. Indirect *partial)
  404. {
  405. struct ext4_block_alloc_info *block_i;
  406. block_i = EXT4_I(inode)->i_block_alloc_info;
  407. /*
  408. * try the heuristic for sequential allocation,
  409. * failing that at least try to get decent locality.
  410. */
  411. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  412. && (block_i->last_alloc_physical_block != 0)) {
  413. return block_i->last_alloc_physical_block + 1;
  414. }
  415. return ext4_find_near(inode, partial);
  416. }
  417. /**
  418. * ext4_blks_to_allocate: Look up the block map and count the number
  419. * of direct blocks need to be allocated for the given branch.
  420. *
  421. * @branch: chain of indirect blocks
  422. * @k: number of blocks need for indirect blocks
  423. * @blks: number of data blocks to be mapped.
  424. * @blocks_to_boundary: the offset in the indirect block
  425. *
  426. * return the total number of blocks to be allocate, including the
  427. * direct and indirect blocks.
  428. */
  429. static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  430. int blocks_to_boundary)
  431. {
  432. unsigned long count = 0;
  433. /*
  434. * Simple case, [t,d]Indirect block(s) has not allocated yet
  435. * then it's clear blocks on that path have not allocated
  436. */
  437. if (k > 0) {
  438. /* right now we don't handle cross boundary allocation */
  439. if (blks < blocks_to_boundary + 1)
  440. count += blks;
  441. else
  442. count += blocks_to_boundary + 1;
  443. return count;
  444. }
  445. count++;
  446. while (count < blks && count <= blocks_to_boundary &&
  447. le32_to_cpu(*(branch[0].p + count)) == 0) {
  448. count++;
  449. }
  450. return count;
  451. }
  452. /**
  453. * ext4_alloc_blocks: multiple allocate blocks needed for a branch
  454. * @indirect_blks: the number of blocks need to allocate for indirect
  455. * blocks
  456. *
  457. * @new_blocks: on return it will store the new block numbers for
  458. * the indirect blocks(if needed) and the first direct block,
  459. * @blks: on return it will store the total number of allocated
  460. * direct blocks
  461. */
  462. static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
  463. ext4_fsblk_t goal, int indirect_blks, int blks,
  464. ext4_fsblk_t new_blocks[4], int *err)
  465. {
  466. int target, i;
  467. unsigned long count = 0;
  468. int index = 0;
  469. ext4_fsblk_t current_block = 0;
  470. int ret = 0;
  471. /*
  472. * Here we try to allocate the requested multiple blocks at once,
  473. * on a best-effort basis.
  474. * To build a branch, we should allocate blocks for
  475. * the indirect blocks(if not allocated yet), and at least
  476. * the first direct block of this branch. That's the
  477. * minimum number of blocks need to allocate(required)
  478. */
  479. target = blks + indirect_blks;
  480. while (1) {
  481. count = target;
  482. /* allocating blocks for indirect blocks and direct blocks */
  483. current_block = ext4_new_blocks(handle,inode,goal,&count,err);
  484. if (*err)
  485. goto failed_out;
  486. target -= count;
  487. /* allocate blocks for indirect blocks */
  488. while (index < indirect_blks && count) {
  489. new_blocks[index++] = current_block++;
  490. count--;
  491. }
  492. if (count > 0)
  493. break;
  494. }
  495. /* save the new block number for the first direct block */
  496. new_blocks[index] = current_block;
  497. /* total number of blocks allocated for direct blocks */
  498. ret = count;
  499. *err = 0;
  500. return ret;
  501. failed_out:
  502. for (i = 0; i <index; i++)
  503. ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
  504. return ret;
  505. }
  506. /**
  507. * ext4_alloc_branch - allocate and set up a chain of blocks.
  508. * @inode: owner
  509. * @indirect_blks: number of allocated indirect blocks
  510. * @blks: number of allocated direct blocks
  511. * @offsets: offsets (in the blocks) to store the pointers to next.
  512. * @branch: place to store the chain in.
  513. *
  514. * This function allocates blocks, zeroes out all but the last one,
  515. * links them into chain and (if we are synchronous) writes them to disk.
  516. * In other words, it prepares a branch that can be spliced onto the
  517. * inode. It stores the information about that chain in the branch[], in
  518. * the same format as ext4_get_branch() would do. We are calling it after
  519. * we had read the existing part of chain and partial points to the last
  520. * triple of that (one with zero ->key). Upon the exit we have the same
  521. * picture as after the successful ext4_get_block(), except that in one
  522. * place chain is disconnected - *branch->p is still zero (we did not
  523. * set the last link), but branch->key contains the number that should
  524. * be placed into *branch->p to fill that gap.
  525. *
  526. * If allocation fails we free all blocks we've allocated (and forget
  527. * their buffer_heads) and return the error value the from failed
  528. * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  529. * as described above and return 0.
  530. */
  531. static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
  532. int indirect_blks, int *blks, ext4_fsblk_t goal,
  533. ext4_lblk_t *offsets, Indirect *branch)
  534. {
  535. int blocksize = inode->i_sb->s_blocksize;
  536. int i, n = 0;
  537. int err = 0;
  538. struct buffer_head *bh;
  539. int num;
  540. ext4_fsblk_t new_blocks[4];
  541. ext4_fsblk_t current_block;
  542. num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
  543. *blks, new_blocks, &err);
  544. if (err)
  545. return err;
  546. branch[0].key = cpu_to_le32(new_blocks[0]);
  547. /*
  548. * metadata blocks and data blocks are allocated.
  549. */
  550. for (n = 1; n <= indirect_blks; n++) {
  551. /*
  552. * Get buffer_head for parent block, zero it out
  553. * and set the pointer to new one, then send
  554. * parent to disk.
  555. */
  556. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  557. branch[n].bh = bh;
  558. lock_buffer(bh);
  559. BUFFER_TRACE(bh, "call get_create_access");
  560. err = ext4_journal_get_create_access(handle, bh);
  561. if (err) {
  562. unlock_buffer(bh);
  563. brelse(bh);
  564. goto failed;
  565. }
  566. memset(bh->b_data, 0, blocksize);
  567. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  568. branch[n].key = cpu_to_le32(new_blocks[n]);
  569. *branch[n].p = branch[n].key;
  570. if ( n == indirect_blks) {
  571. current_block = new_blocks[n];
  572. /*
  573. * End of chain, update the last new metablock of
  574. * the chain to point to the new allocated
  575. * data blocks numbers
  576. */
  577. for (i=1; i < num; i++)
  578. *(branch[n].p + i) = cpu_to_le32(++current_block);
  579. }
  580. BUFFER_TRACE(bh, "marking uptodate");
  581. set_buffer_uptodate(bh);
  582. unlock_buffer(bh);
  583. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  584. err = ext4_journal_dirty_metadata(handle, bh);
  585. if (err)
  586. goto failed;
  587. }
  588. *blks = num;
  589. return err;
  590. failed:
  591. /* Allocation failed, free what we already allocated */
  592. for (i = 1; i <= n ; i++) {
  593. BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
  594. ext4_journal_forget(handle, branch[i].bh);
  595. }
  596. for (i = 0; i <indirect_blks; i++)
  597. ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
  598. ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
  599. return err;
  600. }
  601. /**
  602. * ext4_splice_branch - splice the allocated branch onto inode.
  603. * @inode: owner
  604. * @block: (logical) number of block we are adding
  605. * @chain: chain of indirect blocks (with a missing link - see
  606. * ext4_alloc_branch)
  607. * @where: location of missing link
  608. * @num: number of indirect blocks we are adding
  609. * @blks: number of direct blocks we are adding
  610. *
  611. * This function fills the missing link and does all housekeeping needed in
  612. * inode (->i_blocks, etc.). In case of success we end up with the full
  613. * chain to new block and return 0.
  614. */
  615. static int ext4_splice_branch(handle_t *handle, struct inode *inode,
  616. ext4_lblk_t block, Indirect *where, int num, int blks)
  617. {
  618. int i;
  619. int err = 0;
  620. struct ext4_block_alloc_info *block_i;
  621. ext4_fsblk_t current_block;
  622. block_i = EXT4_I(inode)->i_block_alloc_info;
  623. /*
  624. * If we're splicing into a [td]indirect block (as opposed to the
  625. * inode) then we need to get write access to the [td]indirect block
  626. * before the splice.
  627. */
  628. if (where->bh) {
  629. BUFFER_TRACE(where->bh, "get_write_access");
  630. err = ext4_journal_get_write_access(handle, where->bh);
  631. if (err)
  632. goto err_out;
  633. }
  634. /* That's it */
  635. *where->p = where->key;
  636. /*
  637. * Update the host buffer_head or inode to point to more just allocated
  638. * direct blocks blocks
  639. */
  640. if (num == 0 && blks > 1) {
  641. current_block = le32_to_cpu(where->key) + 1;
  642. for (i = 1; i < blks; i++)
  643. *(where->p + i ) = cpu_to_le32(current_block++);
  644. }
  645. /*
  646. * update the most recently allocated logical & physical block
  647. * in i_block_alloc_info, to assist find the proper goal block for next
  648. * allocation
  649. */
  650. if (block_i) {
  651. block_i->last_alloc_logical_block = block + blks - 1;
  652. block_i->last_alloc_physical_block =
  653. le32_to_cpu(where[num].key) + blks - 1;
  654. }
  655. /* We are done with atomic stuff, now do the rest of housekeeping */
  656. inode->i_ctime = ext4_current_time(inode);
  657. ext4_mark_inode_dirty(handle, inode);
  658. /* had we spliced it onto indirect block? */
  659. if (where->bh) {
  660. /*
  661. * If we spliced it onto an indirect block, we haven't
  662. * altered the inode. Note however that if it is being spliced
  663. * onto an indirect block at the very end of the file (the
  664. * file is growing) then we *will* alter the inode to reflect
  665. * the new i_size. But that is not done here - it is done in
  666. * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
  667. */
  668. jbd_debug(5, "splicing indirect only\n");
  669. BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
  670. err = ext4_journal_dirty_metadata(handle, where->bh);
  671. if (err)
  672. goto err_out;
  673. } else {
  674. /*
  675. * OK, we spliced it into the inode itself on a direct block.
  676. * Inode was dirtied above.
  677. */
  678. jbd_debug(5, "splicing direct\n");
  679. }
  680. return err;
  681. err_out:
  682. for (i = 1; i <= num; i++) {
  683. BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
  684. ext4_journal_forget(handle, where[i].bh);
  685. ext4_free_blocks(handle, inode,
  686. le32_to_cpu(where[i-1].key), 1, 0);
  687. }
  688. ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
  689. return err;
  690. }
  691. /*
  692. * Allocation strategy is simple: if we have to allocate something, we will
  693. * have to go the whole way to leaf. So let's do it before attaching anything
  694. * to tree, set linkage between the newborn blocks, write them if sync is
  695. * required, recheck the path, free and repeat if check fails, otherwise
  696. * set the last missing link (that will protect us from any truncate-generated
  697. * removals - all blocks on the path are immune now) and possibly force the
  698. * write on the parent block.
  699. * That has a nice additional property: no special recovery from the failed
  700. * allocations is needed - we simply release blocks and do not touch anything
  701. * reachable from inode.
  702. *
  703. * `handle' can be NULL if create == 0.
  704. *
  705. * return > 0, # of blocks mapped or allocated.
  706. * return = 0, if plain lookup failed.
  707. * return < 0, error case.
  708. *
  709. *
  710. * Need to be called with
  711. * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
  712. * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
  713. */
  714. int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
  715. ext4_lblk_t iblock, unsigned long maxblocks,
  716. struct buffer_head *bh_result,
  717. int create, int extend_disksize)
  718. {
  719. int err = -EIO;
  720. ext4_lblk_t offsets[4];
  721. Indirect chain[4];
  722. Indirect *partial;
  723. ext4_fsblk_t goal;
  724. int indirect_blks;
  725. int blocks_to_boundary = 0;
  726. int depth;
  727. struct ext4_inode_info *ei = EXT4_I(inode);
  728. int count = 0;
  729. ext4_fsblk_t first_block = 0;
  730. J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
  731. J_ASSERT(handle != NULL || create == 0);
  732. depth = ext4_block_to_path(inode, iblock, offsets,
  733. &blocks_to_boundary);
  734. if (depth == 0)
  735. goto out;
  736. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  737. /* Simplest case - block found, no allocation needed */
  738. if (!partial) {
  739. first_block = le32_to_cpu(chain[depth - 1].key);
  740. clear_buffer_new(bh_result);
  741. count++;
  742. /*map more blocks*/
  743. while (count < maxblocks && count <= blocks_to_boundary) {
  744. ext4_fsblk_t blk;
  745. blk = le32_to_cpu(*(chain[depth-1].p + count));
  746. if (blk == first_block + count)
  747. count++;
  748. else
  749. break;
  750. }
  751. goto got_it;
  752. }
  753. /* Next simple case - plain lookup or failed read of indirect block */
  754. if (!create || err == -EIO)
  755. goto cleanup;
  756. /*
  757. * Okay, we need to do block allocation. Lazily initialize the block
  758. * allocation info here if necessary
  759. */
  760. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  761. ext4_init_block_alloc_info(inode);
  762. goal = ext4_find_goal(inode, iblock, partial);
  763. /* the number of blocks need to allocate for [d,t]indirect blocks */
  764. indirect_blks = (chain + depth) - partial - 1;
  765. /*
  766. * Next look up the indirect map to count the totoal number of
  767. * direct blocks to allocate for this branch.
  768. */
  769. count = ext4_blks_to_allocate(partial, indirect_blks,
  770. maxblocks, blocks_to_boundary);
  771. /*
  772. * Block out ext4_truncate while we alter the tree
  773. */
  774. err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
  775. offsets + (partial - chain), partial);
  776. /*
  777. * The ext4_splice_branch call will free and forget any buffers
  778. * on the new chain if there is a failure, but that risks using
  779. * up transaction credits, especially for bitmaps where the
  780. * credits cannot be returned. Can we handle this somehow? We
  781. * may need to return -EAGAIN upwards in the worst case. --sct
  782. */
  783. if (!err)
  784. err = ext4_splice_branch(handle, inode, iblock,
  785. partial, indirect_blks, count);
  786. /*
  787. * i_disksize growing is protected by i_data_sem. Don't forget to
  788. * protect it if you're about to implement concurrent
  789. * ext4_get_block() -bzzz
  790. */
  791. if (!err && extend_disksize && inode->i_size > ei->i_disksize)
  792. ei->i_disksize = inode->i_size;
  793. if (err)
  794. goto cleanup;
  795. set_buffer_new(bh_result);
  796. got_it:
  797. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  798. if (count > blocks_to_boundary)
  799. set_buffer_boundary(bh_result);
  800. err = count;
  801. /* Clean up and exit */
  802. partial = chain + depth - 1; /* the whole chain */
  803. cleanup:
  804. while (partial > chain) {
  805. BUFFER_TRACE(partial->bh, "call brelse");
  806. brelse(partial->bh);
  807. partial--;
  808. }
  809. BUFFER_TRACE(bh_result, "returned");
  810. out:
  811. return err;
  812. }
  813. /* Maximum number of blocks we map for direct IO at once. */
  814. #define DIO_MAX_BLOCKS 4096
  815. /*
  816. * Number of credits we need for writing DIO_MAX_BLOCKS:
  817. * We need sb + group descriptor + bitmap + inode -> 4
  818. * For B blocks with A block pointers per block we need:
  819. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  820. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  821. */
  822. #define DIO_CREDITS 25
  823. /*
  824. *
  825. *
  826. * ext4_ext4 get_block() wrapper function
  827. * It will do a look up first, and returns if the blocks already mapped.
  828. * Otherwise it takes the write lock of the i_data_sem and allocate blocks
  829. * and store the allocated blocks in the result buffer head and mark it
  830. * mapped.
  831. *
  832. * If file type is extents based, it will call ext4_ext_get_blocks(),
  833. * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
  834. * based files
  835. *
  836. * On success, it returns the number of blocks being mapped or allocate.
  837. * if create==0 and the blocks are pre-allocated and uninitialized block,
  838. * the result buffer head is unmapped. If the create ==1, it will make sure
  839. * the buffer head is mapped.
  840. *
  841. * It returns 0 if plain look up failed (blocks have not been allocated), in
  842. * that casem, buffer head is unmapped
  843. *
  844. * It returns the error in case of allocation failure.
  845. */
  846. int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
  847. unsigned long max_blocks, struct buffer_head *bh,
  848. int create, int extend_disksize)
  849. {
  850. int retval;
  851. clear_buffer_mapped(bh);
  852. /*
  853. * Try to see if we can get the block without requesting
  854. * for new file system block.
  855. */
  856. down_read((&EXT4_I(inode)->i_data_sem));
  857. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  858. retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
  859. bh, 0, 0);
  860. } else {
  861. retval = ext4_get_blocks_handle(handle,
  862. inode, block, max_blocks, bh, 0, 0);
  863. }
  864. up_read((&EXT4_I(inode)->i_data_sem));
  865. /* If it is only a block(s) look up */
  866. if (!create)
  867. return retval;
  868. /*
  869. * Returns if the blocks have already allocated
  870. *
  871. * Note that if blocks have been preallocated
  872. * ext4_ext_get_block() returns th create = 0
  873. * with buffer head unmapped.
  874. */
  875. if (retval > 0 && buffer_mapped(bh))
  876. return retval;
  877. /*
  878. * New blocks allocate and/or writing to uninitialized extent
  879. * will possibly result in updating i_data, so we take
  880. * the write lock of i_data_sem, and call get_blocks()
  881. * with create == 1 flag.
  882. */
  883. down_write((&EXT4_I(inode)->i_data_sem));
  884. /*
  885. * We need to check for EXT4 here because migrate
  886. * could have changed the inode type in between
  887. */
  888. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  889. retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
  890. bh, create, extend_disksize);
  891. } else {
  892. retval = ext4_get_blocks_handle(handle, inode, block,
  893. max_blocks, bh, create, extend_disksize);
  894. if (retval > 0 && buffer_new(bh)) {
  895. /*
  896. * We allocated new blocks which will result in
  897. * i_data's format changing. Force the migrate
  898. * to fail by clearing migrate flags
  899. */
  900. EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
  901. ~EXT4_EXT_MIGRATE;
  902. }
  903. }
  904. up_write((&EXT4_I(inode)->i_data_sem));
  905. return retval;
  906. }
  907. static int ext4_get_block(struct inode *inode, sector_t iblock,
  908. struct buffer_head *bh_result, int create)
  909. {
  910. handle_t *handle = ext4_journal_current_handle();
  911. int ret = 0, started = 0;
  912. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  913. if (create && !handle) {
  914. /* Direct IO write... */
  915. if (max_blocks > DIO_MAX_BLOCKS)
  916. max_blocks = DIO_MAX_BLOCKS;
  917. handle = ext4_journal_start(inode, DIO_CREDITS +
  918. 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
  919. if (IS_ERR(handle)) {
  920. ret = PTR_ERR(handle);
  921. goto out;
  922. }
  923. started = 1;
  924. }
  925. ret = ext4_get_blocks_wrap(handle, inode, iblock,
  926. max_blocks, bh_result, create, 0);
  927. if (ret > 0) {
  928. bh_result->b_size = (ret << inode->i_blkbits);
  929. ret = 0;
  930. }
  931. if (started)
  932. ext4_journal_stop(handle);
  933. out:
  934. return ret;
  935. }
  936. /*
  937. * `handle' can be NULL if create is zero
  938. */
  939. struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
  940. ext4_lblk_t block, int create, int *errp)
  941. {
  942. struct buffer_head dummy;
  943. int fatal = 0, err;
  944. J_ASSERT(handle != NULL || create == 0);
  945. dummy.b_state = 0;
  946. dummy.b_blocknr = -1000;
  947. buffer_trace_init(&dummy.b_history);
  948. err = ext4_get_blocks_wrap(handle, inode, block, 1,
  949. &dummy, create, 1);
  950. /*
  951. * ext4_get_blocks_handle() returns number of blocks
  952. * mapped. 0 in case of a HOLE.
  953. */
  954. if (err > 0) {
  955. if (err > 1)
  956. WARN_ON(1);
  957. err = 0;
  958. }
  959. *errp = err;
  960. if (!err && buffer_mapped(&dummy)) {
  961. struct buffer_head *bh;
  962. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  963. if (!bh) {
  964. *errp = -EIO;
  965. goto err;
  966. }
  967. if (buffer_new(&dummy)) {
  968. J_ASSERT(create != 0);
  969. J_ASSERT(handle != NULL);
  970. /*
  971. * Now that we do not always journal data, we should
  972. * keep in mind whether this should always journal the
  973. * new buffer as metadata. For now, regular file
  974. * writes use ext4_get_block instead, so it's not a
  975. * problem.
  976. */
  977. lock_buffer(bh);
  978. BUFFER_TRACE(bh, "call get_create_access");
  979. fatal = ext4_journal_get_create_access(handle, bh);
  980. if (!fatal && !buffer_uptodate(bh)) {
  981. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  982. set_buffer_uptodate(bh);
  983. }
  984. unlock_buffer(bh);
  985. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  986. err = ext4_journal_dirty_metadata(handle, bh);
  987. if (!fatal)
  988. fatal = err;
  989. } else {
  990. BUFFER_TRACE(bh, "not a new buffer");
  991. }
  992. if (fatal) {
  993. *errp = fatal;
  994. brelse(bh);
  995. bh = NULL;
  996. }
  997. return bh;
  998. }
  999. err:
  1000. return NULL;
  1001. }
  1002. struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
  1003. ext4_lblk_t block, int create, int *err)
  1004. {
  1005. struct buffer_head * bh;
  1006. bh = ext4_getblk(handle, inode, block, create, err);
  1007. if (!bh)
  1008. return bh;
  1009. if (buffer_uptodate(bh))
  1010. return bh;
  1011. ll_rw_block(READ_META, 1, &bh);
  1012. wait_on_buffer(bh);
  1013. if (buffer_uptodate(bh))
  1014. return bh;
  1015. put_bh(bh);
  1016. *err = -EIO;
  1017. return NULL;
  1018. }
  1019. static int walk_page_buffers( handle_t *handle,
  1020. struct buffer_head *head,
  1021. unsigned from,
  1022. unsigned to,
  1023. int *partial,
  1024. int (*fn)( handle_t *handle,
  1025. struct buffer_head *bh))
  1026. {
  1027. struct buffer_head *bh;
  1028. unsigned block_start, block_end;
  1029. unsigned blocksize = head->b_size;
  1030. int err, ret = 0;
  1031. struct buffer_head *next;
  1032. for ( bh = head, block_start = 0;
  1033. ret == 0 && (bh != head || !block_start);
  1034. block_start = block_end, bh = next)
  1035. {
  1036. next = bh->b_this_page;
  1037. block_end = block_start + blocksize;
  1038. if (block_end <= from || block_start >= to) {
  1039. if (partial && !buffer_uptodate(bh))
  1040. *partial = 1;
  1041. continue;
  1042. }
  1043. err = (*fn)(handle, bh);
  1044. if (!ret)
  1045. ret = err;
  1046. }
  1047. return ret;
  1048. }
  1049. /*
  1050. * To preserve ordering, it is essential that the hole instantiation and
  1051. * the data write be encapsulated in a single transaction. We cannot
  1052. * close off a transaction and start a new one between the ext4_get_block()
  1053. * and the commit_write(). So doing the jbd2_journal_start at the start of
  1054. * prepare_write() is the right place.
  1055. *
  1056. * Also, this function can nest inside ext4_writepage() ->
  1057. * block_write_full_page(). In that case, we *know* that ext4_writepage()
  1058. * has generated enough buffer credits to do the whole page. So we won't
  1059. * block on the journal in that case, which is good, because the caller may
  1060. * be PF_MEMALLOC.
  1061. *
  1062. * By accident, ext4 can be reentered when a transaction is open via
  1063. * quota file writes. If we were to commit the transaction while thus
  1064. * reentered, there can be a deadlock - we would be holding a quota
  1065. * lock, and the commit would never complete if another thread had a
  1066. * transaction open and was blocking on the quota lock - a ranking
  1067. * violation.
  1068. *
  1069. * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
  1070. * will _not_ run commit under these circumstances because handle->h_ref
  1071. * is elevated. We'll still have enough credits for the tiny quotafile
  1072. * write.
  1073. */
  1074. static int do_journal_get_write_access(handle_t *handle,
  1075. struct buffer_head *bh)
  1076. {
  1077. if (!buffer_mapped(bh) || buffer_freed(bh))
  1078. return 0;
  1079. return ext4_journal_get_write_access(handle, bh);
  1080. }
  1081. static int ext4_write_begin(struct file *file, struct address_space *mapping,
  1082. loff_t pos, unsigned len, unsigned flags,
  1083. struct page **pagep, void **fsdata)
  1084. {
  1085. struct inode *inode = mapping->host;
  1086. int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
  1087. handle_t *handle;
  1088. int retries = 0;
  1089. struct page *page;
  1090. pgoff_t index;
  1091. unsigned from, to;
  1092. index = pos >> PAGE_CACHE_SHIFT;
  1093. from = pos & (PAGE_CACHE_SIZE - 1);
  1094. to = from + len;
  1095. retry:
  1096. page = __grab_cache_page(mapping, index);
  1097. if (!page)
  1098. return -ENOMEM;
  1099. *pagep = page;
  1100. handle = ext4_journal_start(inode, needed_blocks);
  1101. if (IS_ERR(handle)) {
  1102. unlock_page(page);
  1103. page_cache_release(page);
  1104. ret = PTR_ERR(handle);
  1105. goto out;
  1106. }
  1107. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1108. ext4_get_block);
  1109. if (!ret && ext4_should_journal_data(inode)) {
  1110. ret = walk_page_buffers(handle, page_buffers(page),
  1111. from, to, NULL, do_journal_get_write_access);
  1112. }
  1113. if (ret) {
  1114. ext4_journal_stop(handle);
  1115. unlock_page(page);
  1116. page_cache_release(page);
  1117. }
  1118. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  1119. goto retry;
  1120. out:
  1121. return ret;
  1122. }
  1123. int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1124. {
  1125. int err = jbd2_journal_dirty_data(handle, bh);
  1126. if (err)
  1127. ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
  1128. bh, handle, err);
  1129. return err;
  1130. }
  1131. /* For write_end() in data=journal mode */
  1132. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1133. {
  1134. if (!buffer_mapped(bh) || buffer_freed(bh))
  1135. return 0;
  1136. set_buffer_uptodate(bh);
  1137. return ext4_journal_dirty_metadata(handle, bh);
  1138. }
  1139. /*
  1140. * Generic write_end handler for ordered and writeback ext4 journal modes.
  1141. * We can't use generic_write_end, because that unlocks the page and we need to
  1142. * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
  1143. * after block_write_end.
  1144. */
  1145. static int ext4_generic_write_end(struct file *file,
  1146. struct address_space *mapping,
  1147. loff_t pos, unsigned len, unsigned copied,
  1148. struct page *page, void *fsdata)
  1149. {
  1150. struct inode *inode = file->f_mapping->host;
  1151. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1152. if (pos+copied > inode->i_size) {
  1153. i_size_write(inode, pos+copied);
  1154. mark_inode_dirty(inode);
  1155. }
  1156. return copied;
  1157. }
  1158. /*
  1159. * We need to pick up the new inode size which generic_commit_write gave us
  1160. * `file' can be NULL - eg, when called from page_symlink().
  1161. *
  1162. * ext4 never places buffers on inode->i_mapping->private_list. metadata
  1163. * buffers are managed internally.
  1164. */
  1165. static int ext4_ordered_write_end(struct file *file,
  1166. struct address_space *mapping,
  1167. loff_t pos, unsigned len, unsigned copied,
  1168. struct page *page, void *fsdata)
  1169. {
  1170. handle_t *handle = ext4_journal_current_handle();
  1171. struct inode *inode = file->f_mapping->host;
  1172. unsigned from, to;
  1173. int ret = 0, ret2;
  1174. from = pos & (PAGE_CACHE_SIZE - 1);
  1175. to = from + len;
  1176. ret = walk_page_buffers(handle, page_buffers(page),
  1177. from, to, NULL, ext4_journal_dirty_data);
  1178. if (ret == 0) {
  1179. /*
  1180. * generic_write_end() will run mark_inode_dirty() if i_size
  1181. * changes. So let's piggyback the i_disksize mark_inode_dirty
  1182. * into that.
  1183. */
  1184. loff_t new_i_size;
  1185. new_i_size = pos + copied;
  1186. if (new_i_size > EXT4_I(inode)->i_disksize)
  1187. EXT4_I(inode)->i_disksize = new_i_size;
  1188. copied = ext4_generic_write_end(file, mapping, pos, len, copied,
  1189. page, fsdata);
  1190. if (copied < 0)
  1191. ret = copied;
  1192. }
  1193. ret2 = ext4_journal_stop(handle);
  1194. if (!ret)
  1195. ret = ret2;
  1196. unlock_page(page);
  1197. page_cache_release(page);
  1198. return ret ? ret : copied;
  1199. }
  1200. static int ext4_writeback_write_end(struct file *file,
  1201. struct address_space *mapping,
  1202. loff_t pos, unsigned len, unsigned copied,
  1203. struct page *page, void *fsdata)
  1204. {
  1205. handle_t *handle = ext4_journal_current_handle();
  1206. struct inode *inode = file->f_mapping->host;
  1207. int ret = 0, ret2;
  1208. loff_t new_i_size;
  1209. new_i_size = pos + copied;
  1210. if (new_i_size > EXT4_I(inode)->i_disksize)
  1211. EXT4_I(inode)->i_disksize = new_i_size;
  1212. copied = ext4_generic_write_end(file, mapping, pos, len, copied,
  1213. page, fsdata);
  1214. if (copied < 0)
  1215. ret = copied;
  1216. ret2 = ext4_journal_stop(handle);
  1217. if (!ret)
  1218. ret = ret2;
  1219. unlock_page(page);
  1220. page_cache_release(page);
  1221. return ret ? ret : copied;
  1222. }
  1223. static int ext4_journalled_write_end(struct file *file,
  1224. struct address_space *mapping,
  1225. loff_t pos, unsigned len, unsigned copied,
  1226. struct page *page, void *fsdata)
  1227. {
  1228. handle_t *handle = ext4_journal_current_handle();
  1229. struct inode *inode = mapping->host;
  1230. int ret = 0, ret2;
  1231. int partial = 0;
  1232. unsigned from, to;
  1233. from = pos & (PAGE_CACHE_SIZE - 1);
  1234. to = from + len;
  1235. if (copied < len) {
  1236. if (!PageUptodate(page))
  1237. copied = 0;
  1238. page_zero_new_buffers(page, from+copied, to);
  1239. }
  1240. ret = walk_page_buffers(handle, page_buffers(page), from,
  1241. to, &partial, write_end_fn);
  1242. if (!partial)
  1243. SetPageUptodate(page);
  1244. if (pos+copied > inode->i_size)
  1245. i_size_write(inode, pos+copied);
  1246. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1247. if (inode->i_size > EXT4_I(inode)->i_disksize) {
  1248. EXT4_I(inode)->i_disksize = inode->i_size;
  1249. ret2 = ext4_mark_inode_dirty(handle, inode);
  1250. if (!ret)
  1251. ret = ret2;
  1252. }
  1253. ret2 = ext4_journal_stop(handle);
  1254. if (!ret)
  1255. ret = ret2;
  1256. unlock_page(page);
  1257. page_cache_release(page);
  1258. return ret ? ret : copied;
  1259. }
  1260. /*
  1261. * bmap() is special. It gets used by applications such as lilo and by
  1262. * the swapper to find the on-disk block of a specific piece of data.
  1263. *
  1264. * Naturally, this is dangerous if the block concerned is still in the
  1265. * journal. If somebody makes a swapfile on an ext4 data-journaling
  1266. * filesystem and enables swap, then they may get a nasty shock when the
  1267. * data getting swapped to that swapfile suddenly gets overwritten by
  1268. * the original zero's written out previously to the journal and
  1269. * awaiting writeback in the kernel's buffer cache.
  1270. *
  1271. * So, if we see any bmap calls here on a modified, data-journaled file,
  1272. * take extra steps to flush any blocks which might be in the cache.
  1273. */
  1274. static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
  1275. {
  1276. struct inode *inode = mapping->host;
  1277. journal_t *journal;
  1278. int err;
  1279. if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
  1280. /*
  1281. * This is a REALLY heavyweight approach, but the use of
  1282. * bmap on dirty files is expected to be extremely rare:
  1283. * only if we run lilo or swapon on a freshly made file
  1284. * do we expect this to happen.
  1285. *
  1286. * (bmap requires CAP_SYS_RAWIO so this does not
  1287. * represent an unprivileged user DOS attack --- we'd be
  1288. * in trouble if mortal users could trigger this path at
  1289. * will.)
  1290. *
  1291. * NB. EXT4_STATE_JDATA is not set on files other than
  1292. * regular files. If somebody wants to bmap a directory
  1293. * or symlink and gets confused because the buffer
  1294. * hasn't yet been flushed to disk, they deserve
  1295. * everything they get.
  1296. */
  1297. EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
  1298. journal = EXT4_JOURNAL(inode);
  1299. jbd2_journal_lock_updates(journal);
  1300. err = jbd2_journal_flush(journal);
  1301. jbd2_journal_unlock_updates(journal);
  1302. if (err)
  1303. return 0;
  1304. }
  1305. return generic_block_bmap(mapping,block,ext4_get_block);
  1306. }
  1307. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1308. {
  1309. get_bh(bh);
  1310. return 0;
  1311. }
  1312. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1313. {
  1314. put_bh(bh);
  1315. return 0;
  1316. }
  1317. static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1318. {
  1319. if (buffer_mapped(bh))
  1320. return ext4_journal_dirty_data(handle, bh);
  1321. return 0;
  1322. }
  1323. /*
  1324. * Note that we always start a transaction even if we're not journalling
  1325. * data. This is to preserve ordering: any hole instantiation within
  1326. * __block_write_full_page -> ext4_get_block() should be journalled
  1327. * along with the data so we don't crash and then get metadata which
  1328. * refers to old data.
  1329. *
  1330. * In all journalling modes block_write_full_page() will start the I/O.
  1331. *
  1332. * Problem:
  1333. *
  1334. * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1335. * ext4_writepage()
  1336. *
  1337. * Similar for:
  1338. *
  1339. * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1340. *
  1341. * Same applies to ext4_get_block(). We will deadlock on various things like
  1342. * lock_journal and i_data_sem
  1343. *
  1344. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1345. * allocations fail.
  1346. *
  1347. * 16May01: If we're reentered then journal_current_handle() will be
  1348. * non-zero. We simply *return*.
  1349. *
  1350. * 1 July 2001: @@@ FIXME:
  1351. * In journalled data mode, a data buffer may be metadata against the
  1352. * current transaction. But the same file is part of a shared mapping
  1353. * and someone does a writepage() on it.
  1354. *
  1355. * We will move the buffer onto the async_data list, but *after* it has
  1356. * been dirtied. So there's a small window where we have dirty data on
  1357. * BJ_Metadata.
  1358. *
  1359. * Note that this only applies to the last partial page in the file. The
  1360. * bit which block_write_full_page() uses prepare/commit for. (That's
  1361. * broken code anyway: it's wrong for msync()).
  1362. *
  1363. * It's a rare case: affects the final partial page, for journalled data
  1364. * where the file is subject to bith write() and writepage() in the same
  1365. * transction. To fix it we'll need a custom block_write_full_page().
  1366. * We'll probably need that anyway for journalling writepage() output.
  1367. *
  1368. * We don't honour synchronous mounts for writepage(). That would be
  1369. * disastrous. Any write() or metadata operation will sync the fs for
  1370. * us.
  1371. *
  1372. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1373. * we don't need to open a transaction here.
  1374. */
  1375. static int ext4_ordered_writepage(struct page *page,
  1376. struct writeback_control *wbc)
  1377. {
  1378. struct inode *inode = page->mapping->host;
  1379. struct buffer_head *page_bufs;
  1380. handle_t *handle = NULL;
  1381. int ret = 0;
  1382. int err;
  1383. J_ASSERT(PageLocked(page));
  1384. /*
  1385. * We give up here if we're reentered, because it might be for a
  1386. * different filesystem.
  1387. */
  1388. if (ext4_journal_current_handle())
  1389. goto out_fail;
  1390. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1391. if (IS_ERR(handle)) {
  1392. ret = PTR_ERR(handle);
  1393. goto out_fail;
  1394. }
  1395. if (!page_has_buffers(page)) {
  1396. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1397. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1398. }
  1399. page_bufs = page_buffers(page);
  1400. walk_page_buffers(handle, page_bufs, 0,
  1401. PAGE_CACHE_SIZE, NULL, bget_one);
  1402. ret = block_write_full_page(page, ext4_get_block, wbc);
  1403. /*
  1404. * The page can become unlocked at any point now, and
  1405. * truncate can then come in and change things. So we
  1406. * can't touch *page from now on. But *page_bufs is
  1407. * safe due to elevated refcount.
  1408. */
  1409. /*
  1410. * And attach them to the current transaction. But only if
  1411. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1412. * and generally junk.
  1413. */
  1414. if (ret == 0) {
  1415. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1416. NULL, jbd2_journal_dirty_data_fn);
  1417. if (!ret)
  1418. ret = err;
  1419. }
  1420. walk_page_buffers(handle, page_bufs, 0,
  1421. PAGE_CACHE_SIZE, NULL, bput_one);
  1422. err = ext4_journal_stop(handle);
  1423. if (!ret)
  1424. ret = err;
  1425. return ret;
  1426. out_fail:
  1427. redirty_page_for_writepage(wbc, page);
  1428. unlock_page(page);
  1429. return ret;
  1430. }
  1431. static int ext4_writeback_writepage(struct page *page,
  1432. struct writeback_control *wbc)
  1433. {
  1434. struct inode *inode = page->mapping->host;
  1435. handle_t *handle = NULL;
  1436. int ret = 0;
  1437. int err;
  1438. if (ext4_journal_current_handle())
  1439. goto out_fail;
  1440. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1441. if (IS_ERR(handle)) {
  1442. ret = PTR_ERR(handle);
  1443. goto out_fail;
  1444. }
  1445. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  1446. ret = nobh_writepage(page, ext4_get_block, wbc);
  1447. else
  1448. ret = block_write_full_page(page, ext4_get_block, wbc);
  1449. err = ext4_journal_stop(handle);
  1450. if (!ret)
  1451. ret = err;
  1452. return ret;
  1453. out_fail:
  1454. redirty_page_for_writepage(wbc, page);
  1455. unlock_page(page);
  1456. return ret;
  1457. }
  1458. static int ext4_journalled_writepage(struct page *page,
  1459. struct writeback_control *wbc)
  1460. {
  1461. struct inode *inode = page->mapping->host;
  1462. handle_t *handle = NULL;
  1463. int ret = 0;
  1464. int err;
  1465. if (ext4_journal_current_handle())
  1466. goto no_write;
  1467. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1468. if (IS_ERR(handle)) {
  1469. ret = PTR_ERR(handle);
  1470. goto no_write;
  1471. }
  1472. if (!page_has_buffers(page) || PageChecked(page)) {
  1473. /*
  1474. * It's mmapped pagecache. Add buffers and journal it. There
  1475. * doesn't seem much point in redirtying the page here.
  1476. */
  1477. ClearPageChecked(page);
  1478. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1479. ext4_get_block);
  1480. if (ret != 0) {
  1481. ext4_journal_stop(handle);
  1482. goto out_unlock;
  1483. }
  1484. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1485. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1486. err = walk_page_buffers(handle, page_buffers(page), 0,
  1487. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1488. if (ret == 0)
  1489. ret = err;
  1490. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1491. unlock_page(page);
  1492. } else {
  1493. /*
  1494. * It may be a page full of checkpoint-mode buffers. We don't
  1495. * really know unless we go poke around in the buffer_heads.
  1496. * But block_write_full_page will do the right thing.
  1497. */
  1498. ret = block_write_full_page(page, ext4_get_block, wbc);
  1499. }
  1500. err = ext4_journal_stop(handle);
  1501. if (!ret)
  1502. ret = err;
  1503. out:
  1504. return ret;
  1505. no_write:
  1506. redirty_page_for_writepage(wbc, page);
  1507. out_unlock:
  1508. unlock_page(page);
  1509. goto out;
  1510. }
  1511. static int ext4_readpage(struct file *file, struct page *page)
  1512. {
  1513. return mpage_readpage(page, ext4_get_block);
  1514. }
  1515. static int
  1516. ext4_readpages(struct file *file, struct address_space *mapping,
  1517. struct list_head *pages, unsigned nr_pages)
  1518. {
  1519. return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
  1520. }
  1521. static void ext4_invalidatepage(struct page *page, unsigned long offset)
  1522. {
  1523. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  1524. /*
  1525. * If it's a full truncate we just forget about the pending dirtying
  1526. */
  1527. if (offset == 0)
  1528. ClearPageChecked(page);
  1529. jbd2_journal_invalidatepage(journal, page, offset);
  1530. }
  1531. static int ext4_releasepage(struct page *page, gfp_t wait)
  1532. {
  1533. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  1534. WARN_ON(PageChecked(page));
  1535. if (!page_has_buffers(page))
  1536. return 0;
  1537. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  1538. }
  1539. /*
  1540. * If the O_DIRECT write will extend the file then add this inode to the
  1541. * orphan list. So recovery will truncate it back to the original size
  1542. * if the machine crashes during the write.
  1543. *
  1544. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1545. * crashes then stale disk data _may_ be exposed inside the file. But current
  1546. * VFS code falls back into buffered path in that case so we are safe.
  1547. */
  1548. static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
  1549. const struct iovec *iov, loff_t offset,
  1550. unsigned long nr_segs)
  1551. {
  1552. struct file *file = iocb->ki_filp;
  1553. struct inode *inode = file->f_mapping->host;
  1554. struct ext4_inode_info *ei = EXT4_I(inode);
  1555. handle_t *handle;
  1556. ssize_t ret;
  1557. int orphan = 0;
  1558. size_t count = iov_length(iov, nr_segs);
  1559. if (rw == WRITE) {
  1560. loff_t final_size = offset + count;
  1561. if (final_size > inode->i_size) {
  1562. /* Credits for sb + inode write */
  1563. handle = ext4_journal_start(inode, 2);
  1564. if (IS_ERR(handle)) {
  1565. ret = PTR_ERR(handle);
  1566. goto out;
  1567. }
  1568. ret = ext4_orphan_add(handle, inode);
  1569. if (ret) {
  1570. ext4_journal_stop(handle);
  1571. goto out;
  1572. }
  1573. orphan = 1;
  1574. ei->i_disksize = inode->i_size;
  1575. ext4_journal_stop(handle);
  1576. }
  1577. }
  1578. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1579. offset, nr_segs,
  1580. ext4_get_block, NULL);
  1581. if (orphan) {
  1582. int err;
  1583. /* Credits for sb + inode write */
  1584. handle = ext4_journal_start(inode, 2);
  1585. if (IS_ERR(handle)) {
  1586. /* This is really bad luck. We've written the data
  1587. * but cannot extend i_size. Bail out and pretend
  1588. * the write failed... */
  1589. ret = PTR_ERR(handle);
  1590. goto out;
  1591. }
  1592. if (inode->i_nlink)
  1593. ext4_orphan_del(handle, inode);
  1594. if (ret > 0) {
  1595. loff_t end = offset + ret;
  1596. if (end > inode->i_size) {
  1597. ei->i_disksize = end;
  1598. i_size_write(inode, end);
  1599. /*
  1600. * We're going to return a positive `ret'
  1601. * here due to non-zero-length I/O, so there's
  1602. * no way of reporting error returns from
  1603. * ext4_mark_inode_dirty() to userspace. So
  1604. * ignore it.
  1605. */
  1606. ext4_mark_inode_dirty(handle, inode);
  1607. }
  1608. }
  1609. err = ext4_journal_stop(handle);
  1610. if (ret == 0)
  1611. ret = err;
  1612. }
  1613. out:
  1614. return ret;
  1615. }
  1616. /*
  1617. * Pages can be marked dirty completely asynchronously from ext4's journalling
  1618. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1619. * much here because ->set_page_dirty is called under VFS locks. The page is
  1620. * not necessarily locked.
  1621. *
  1622. * We cannot just dirty the page and leave attached buffers clean, because the
  1623. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1624. * or jbddirty because all the journalling code will explode.
  1625. *
  1626. * So what we do is to mark the page "pending dirty" and next time writepage
  1627. * is called, propagate that into the buffers appropriately.
  1628. */
  1629. static int ext4_journalled_set_page_dirty(struct page *page)
  1630. {
  1631. SetPageChecked(page);
  1632. return __set_page_dirty_nobuffers(page);
  1633. }
  1634. static const struct address_space_operations ext4_ordered_aops = {
  1635. .readpage = ext4_readpage,
  1636. .readpages = ext4_readpages,
  1637. .writepage = ext4_ordered_writepage,
  1638. .sync_page = block_sync_page,
  1639. .write_begin = ext4_write_begin,
  1640. .write_end = ext4_ordered_write_end,
  1641. .bmap = ext4_bmap,
  1642. .invalidatepage = ext4_invalidatepage,
  1643. .releasepage = ext4_releasepage,
  1644. .direct_IO = ext4_direct_IO,
  1645. .migratepage = buffer_migrate_page,
  1646. };
  1647. static const struct address_space_operations ext4_writeback_aops = {
  1648. .readpage = ext4_readpage,
  1649. .readpages = ext4_readpages,
  1650. .writepage = ext4_writeback_writepage,
  1651. .sync_page = block_sync_page,
  1652. .write_begin = ext4_write_begin,
  1653. .write_end = ext4_writeback_write_end,
  1654. .bmap = ext4_bmap,
  1655. .invalidatepage = ext4_invalidatepage,
  1656. .releasepage = ext4_releasepage,
  1657. .direct_IO = ext4_direct_IO,
  1658. .migratepage = buffer_migrate_page,
  1659. };
  1660. static const struct address_space_operations ext4_journalled_aops = {
  1661. .readpage = ext4_readpage,
  1662. .readpages = ext4_readpages,
  1663. .writepage = ext4_journalled_writepage,
  1664. .sync_page = block_sync_page,
  1665. .write_begin = ext4_write_begin,
  1666. .write_end = ext4_journalled_write_end,
  1667. .set_page_dirty = ext4_journalled_set_page_dirty,
  1668. .bmap = ext4_bmap,
  1669. .invalidatepage = ext4_invalidatepage,
  1670. .releasepage = ext4_releasepage,
  1671. };
  1672. void ext4_set_aops(struct inode *inode)
  1673. {
  1674. if (ext4_should_order_data(inode))
  1675. inode->i_mapping->a_ops = &ext4_ordered_aops;
  1676. else if (ext4_should_writeback_data(inode))
  1677. inode->i_mapping->a_ops = &ext4_writeback_aops;
  1678. else
  1679. inode->i_mapping->a_ops = &ext4_journalled_aops;
  1680. }
  1681. /*
  1682. * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
  1683. * up to the end of the block which corresponds to `from'.
  1684. * This required during truncate. We need to physically zero the tail end
  1685. * of that block so it doesn't yield old data if the file is later grown.
  1686. */
  1687. int ext4_block_truncate_page(handle_t *handle, struct page *page,
  1688. struct address_space *mapping, loff_t from)
  1689. {
  1690. ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1691. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1692. unsigned blocksize, length, pos;
  1693. ext4_lblk_t iblock;
  1694. struct inode *inode = mapping->host;
  1695. struct buffer_head *bh;
  1696. int err = 0;
  1697. blocksize = inode->i_sb->s_blocksize;
  1698. length = blocksize - (offset & (blocksize - 1));
  1699. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1700. /*
  1701. * For "nobh" option, we can only work if we don't need to
  1702. * read-in the page - otherwise we create buffers to do the IO.
  1703. */
  1704. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  1705. ext4_should_writeback_data(inode) && PageUptodate(page)) {
  1706. zero_user(page, offset, length);
  1707. set_page_dirty(page);
  1708. goto unlock;
  1709. }
  1710. if (!page_has_buffers(page))
  1711. create_empty_buffers(page, blocksize, 0);
  1712. /* Find the buffer that contains "offset" */
  1713. bh = page_buffers(page);
  1714. pos = blocksize;
  1715. while (offset >= pos) {
  1716. bh = bh->b_this_page;
  1717. iblock++;
  1718. pos += blocksize;
  1719. }
  1720. err = 0;
  1721. if (buffer_freed(bh)) {
  1722. BUFFER_TRACE(bh, "freed: skip");
  1723. goto unlock;
  1724. }
  1725. if (!buffer_mapped(bh)) {
  1726. BUFFER_TRACE(bh, "unmapped");
  1727. ext4_get_block(inode, iblock, bh, 0);
  1728. /* unmapped? It's a hole - nothing to do */
  1729. if (!buffer_mapped(bh)) {
  1730. BUFFER_TRACE(bh, "still unmapped");
  1731. goto unlock;
  1732. }
  1733. }
  1734. /* Ok, it's mapped. Make sure it's up-to-date */
  1735. if (PageUptodate(page))
  1736. set_buffer_uptodate(bh);
  1737. if (!buffer_uptodate(bh)) {
  1738. err = -EIO;
  1739. ll_rw_block(READ, 1, &bh);
  1740. wait_on_buffer(bh);
  1741. /* Uhhuh. Read error. Complain and punt. */
  1742. if (!buffer_uptodate(bh))
  1743. goto unlock;
  1744. }
  1745. if (ext4_should_journal_data(inode)) {
  1746. BUFFER_TRACE(bh, "get write access");
  1747. err = ext4_journal_get_write_access(handle, bh);
  1748. if (err)
  1749. goto unlock;
  1750. }
  1751. zero_user(page, offset, length);
  1752. BUFFER_TRACE(bh, "zeroed end of block");
  1753. err = 0;
  1754. if (ext4_should_journal_data(inode)) {
  1755. err = ext4_journal_dirty_metadata(handle, bh);
  1756. } else {
  1757. if (ext4_should_order_data(inode))
  1758. err = ext4_journal_dirty_data(handle, bh);
  1759. mark_buffer_dirty(bh);
  1760. }
  1761. unlock:
  1762. unlock_page(page);
  1763. page_cache_release(page);
  1764. return err;
  1765. }
  1766. /*
  1767. * Probably it should be a library function... search for first non-zero word
  1768. * or memcmp with zero_page, whatever is better for particular architecture.
  1769. * Linus?
  1770. */
  1771. static inline int all_zeroes(__le32 *p, __le32 *q)
  1772. {
  1773. while (p < q)
  1774. if (*p++)
  1775. return 0;
  1776. return 1;
  1777. }
  1778. /**
  1779. * ext4_find_shared - find the indirect blocks for partial truncation.
  1780. * @inode: inode in question
  1781. * @depth: depth of the affected branch
  1782. * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
  1783. * @chain: place to store the pointers to partial indirect blocks
  1784. * @top: place to the (detached) top of branch
  1785. *
  1786. * This is a helper function used by ext4_truncate().
  1787. *
  1788. * When we do truncate() we may have to clean the ends of several
  1789. * indirect blocks but leave the blocks themselves alive. Block is
  1790. * partially truncated if some data below the new i_size is refered
  1791. * from it (and it is on the path to the first completely truncated
  1792. * data block, indeed). We have to free the top of that path along
  1793. * with everything to the right of the path. Since no allocation
  1794. * past the truncation point is possible until ext4_truncate()
  1795. * finishes, we may safely do the latter, but top of branch may
  1796. * require special attention - pageout below the truncation point
  1797. * might try to populate it.
  1798. *
  1799. * We atomically detach the top of branch from the tree, store the
  1800. * block number of its root in *@top, pointers to buffer_heads of
  1801. * partially truncated blocks - in @chain[].bh and pointers to
  1802. * their last elements that should not be removed - in
  1803. * @chain[].p. Return value is the pointer to last filled element
  1804. * of @chain.
  1805. *
  1806. * The work left to caller to do the actual freeing of subtrees:
  1807. * a) free the subtree starting from *@top
  1808. * b) free the subtrees whose roots are stored in
  1809. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1810. * c) free the subtrees growing from the inode past the @chain[0].
  1811. * (no partially truncated stuff there). */
  1812. static Indirect *ext4_find_shared(struct inode *inode, int depth,
  1813. ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
  1814. {
  1815. Indirect *partial, *p;
  1816. int k, err;
  1817. *top = 0;
  1818. /* Make k index the deepest non-null offest + 1 */
  1819. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1820. ;
  1821. partial = ext4_get_branch(inode, k, offsets, chain, &err);
  1822. /* Writer: pointers */
  1823. if (!partial)
  1824. partial = chain + k-1;
  1825. /*
  1826. * If the branch acquired continuation since we've looked at it -
  1827. * fine, it should all survive and (new) top doesn't belong to us.
  1828. */
  1829. if (!partial->key && *partial->p)
  1830. /* Writer: end */
  1831. goto no_top;
  1832. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1833. ;
  1834. /*
  1835. * OK, we've found the last block that must survive. The rest of our
  1836. * branch should be detached before unlocking. However, if that rest
  1837. * of branch is all ours and does not grow immediately from the inode
  1838. * it's easier to cheat and just decrement partial->p.
  1839. */
  1840. if (p == chain + k - 1 && p > chain) {
  1841. p->p--;
  1842. } else {
  1843. *top = *p->p;
  1844. /* Nope, don't do this in ext4. Must leave the tree intact */
  1845. #if 0
  1846. *p->p = 0;
  1847. #endif
  1848. }
  1849. /* Writer: end */
  1850. while(partial > p) {
  1851. brelse(partial->bh);
  1852. partial--;
  1853. }
  1854. no_top:
  1855. return partial;
  1856. }
  1857. /*
  1858. * Zero a number of block pointers in either an inode or an indirect block.
  1859. * If we restart the transaction we must again get write access to the
  1860. * indirect block for further modification.
  1861. *
  1862. * We release `count' blocks on disk, but (last - first) may be greater
  1863. * than `count' because there can be holes in there.
  1864. */
  1865. static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
  1866. struct buffer_head *bh, ext4_fsblk_t block_to_free,
  1867. unsigned long count, __le32 *first, __le32 *last)
  1868. {
  1869. __le32 *p;
  1870. if (try_to_extend_transaction(handle, inode)) {
  1871. if (bh) {
  1872. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  1873. ext4_journal_dirty_metadata(handle, bh);
  1874. }
  1875. ext4_mark_inode_dirty(handle, inode);
  1876. ext4_journal_test_restart(handle, inode);
  1877. if (bh) {
  1878. BUFFER_TRACE(bh, "retaking write access");
  1879. ext4_journal_get_write_access(handle, bh);
  1880. }
  1881. }
  1882. /*
  1883. * Any buffers which are on the journal will be in memory. We find
  1884. * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
  1885. * on them. We've already detached each block from the file, so
  1886. * bforget() in jbd2_journal_forget() should be safe.
  1887. *
  1888. * AKPM: turn on bforget in jbd2_journal_forget()!!!
  1889. */
  1890. for (p = first; p < last; p++) {
  1891. u32 nr = le32_to_cpu(*p);
  1892. if (nr) {
  1893. struct buffer_head *tbh;
  1894. *p = 0;
  1895. tbh = sb_find_get_block(inode->i_sb, nr);
  1896. ext4_forget(handle, 0, inode, tbh, nr);
  1897. }
  1898. }
  1899. ext4_free_blocks(handle, inode, block_to_free, count, 0);
  1900. }
  1901. /**
  1902. * ext4_free_data - free a list of data blocks
  1903. * @handle: handle for this transaction
  1904. * @inode: inode we are dealing with
  1905. * @this_bh: indirect buffer_head which contains *@first and *@last
  1906. * @first: array of block numbers
  1907. * @last: points immediately past the end of array
  1908. *
  1909. * We are freeing all blocks refered from that array (numbers are stored as
  1910. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1911. *
  1912. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1913. * blocks are contiguous then releasing them at one time will only affect one
  1914. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1915. * actually use a lot of journal space.
  1916. *
  1917. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1918. * block pointers.
  1919. */
  1920. static void ext4_free_data(handle_t *handle, struct inode *inode,
  1921. struct buffer_head *this_bh,
  1922. __le32 *first, __le32 *last)
  1923. {
  1924. ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1925. unsigned long count = 0; /* Number of blocks in the run */
  1926. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1927. corresponding to
  1928. block_to_free */
  1929. ext4_fsblk_t nr; /* Current block # */
  1930. __le32 *p; /* Pointer into inode/ind
  1931. for current block */
  1932. int err;
  1933. if (this_bh) { /* For indirect block */
  1934. BUFFER_TRACE(this_bh, "get_write_access");
  1935. err = ext4_journal_get_write_access(handle, this_bh);
  1936. /* Important: if we can't update the indirect pointers
  1937. * to the blocks, we can't free them. */
  1938. if (err)
  1939. return;
  1940. }
  1941. for (p = first; p < last; p++) {
  1942. nr = le32_to_cpu(*p);
  1943. if (nr) {
  1944. /* accumulate blocks to free if they're contiguous */
  1945. if (count == 0) {
  1946. block_to_free = nr;
  1947. block_to_free_p = p;
  1948. count = 1;
  1949. } else if (nr == block_to_free + count) {
  1950. count++;
  1951. } else {
  1952. ext4_clear_blocks(handle, inode, this_bh,
  1953. block_to_free,
  1954. count, block_to_free_p, p);
  1955. block_to_free = nr;
  1956. block_to_free_p = p;
  1957. count = 1;
  1958. }
  1959. }
  1960. }
  1961. if (count > 0)
  1962. ext4_clear_blocks(handle, inode, this_bh, block_to_free,
  1963. count, block_to_free_p, p);
  1964. if (this_bh) {
  1965. BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
  1966. ext4_journal_dirty_metadata(handle, this_bh);
  1967. }
  1968. }
  1969. /**
  1970. * ext4_free_branches - free an array of branches
  1971. * @handle: JBD handle for this transaction
  1972. * @inode: inode we are dealing with
  1973. * @parent_bh: the buffer_head which contains *@first and *@last
  1974. * @first: array of block numbers
  1975. * @last: pointer immediately past the end of array
  1976. * @depth: depth of the branches to free
  1977. *
  1978. * We are freeing all blocks refered from these branches (numbers are
  1979. * stored as little-endian 32-bit) and updating @inode->i_blocks
  1980. * appropriately.
  1981. */
  1982. static void ext4_free_branches(handle_t *handle, struct inode *inode,
  1983. struct buffer_head *parent_bh,
  1984. __le32 *first, __le32 *last, int depth)
  1985. {
  1986. ext4_fsblk_t nr;
  1987. __le32 *p;
  1988. if (is_handle_aborted(handle))
  1989. return;
  1990. if (depth--) {
  1991. struct buffer_head *bh;
  1992. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  1993. p = last;
  1994. while (--p >= first) {
  1995. nr = le32_to_cpu(*p);
  1996. if (!nr)
  1997. continue; /* A hole */
  1998. /* Go read the buffer for the next level down */
  1999. bh = sb_bread(inode->i_sb, nr);
  2000. /*
  2001. * A read failure? Report error and clear slot
  2002. * (should be rare).
  2003. */
  2004. if (!bh) {
  2005. ext4_error(inode->i_sb, "ext4_free_branches",
  2006. "Read failure, inode=%lu, block=%llu",
  2007. inode->i_ino, nr);
  2008. continue;
  2009. }
  2010. /* This zaps the entire block. Bottom up. */
  2011. BUFFER_TRACE(bh, "free child branches");
  2012. ext4_free_branches(handle, inode, bh,
  2013. (__le32*)bh->b_data,
  2014. (__le32*)bh->b_data + addr_per_block,
  2015. depth);
  2016. /*
  2017. * We've probably journalled the indirect block several
  2018. * times during the truncate. But it's no longer
  2019. * needed and we now drop it from the transaction via
  2020. * jbd2_journal_revoke().
  2021. *
  2022. * That's easy if it's exclusively part of this
  2023. * transaction. But if it's part of the committing
  2024. * transaction then jbd2_journal_forget() will simply
  2025. * brelse() it. That means that if the underlying
  2026. * block is reallocated in ext4_get_block(),
  2027. * unmap_underlying_metadata() will find this block
  2028. * and will try to get rid of it. damn, damn.
  2029. *
  2030. * If this block has already been committed to the
  2031. * journal, a revoke record will be written. And
  2032. * revoke records must be emitted *before* clearing
  2033. * this block's bit in the bitmaps.
  2034. */
  2035. ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
  2036. /*
  2037. * Everything below this this pointer has been
  2038. * released. Now let this top-of-subtree go.
  2039. *
  2040. * We want the freeing of this indirect block to be
  2041. * atomic in the journal with the updating of the
  2042. * bitmap block which owns it. So make some room in
  2043. * the journal.
  2044. *
  2045. * We zero the parent pointer *after* freeing its
  2046. * pointee in the bitmaps, so if extend_transaction()
  2047. * for some reason fails to put the bitmap changes and
  2048. * the release into the same transaction, recovery
  2049. * will merely complain about releasing a free block,
  2050. * rather than leaking blocks.
  2051. */
  2052. if (is_handle_aborted(handle))
  2053. return;
  2054. if (try_to_extend_transaction(handle, inode)) {
  2055. ext4_mark_inode_dirty(handle, inode);
  2056. ext4_journal_test_restart(handle, inode);
  2057. }
  2058. ext4_free_blocks(handle, inode, nr, 1, 1);
  2059. if (parent_bh) {
  2060. /*
  2061. * The block which we have just freed is
  2062. * pointed to by an indirect block: journal it
  2063. */
  2064. BUFFER_TRACE(parent_bh, "get_write_access");
  2065. if (!ext4_journal_get_write_access(handle,
  2066. parent_bh)){
  2067. *p = 0;
  2068. BUFFER_TRACE(parent_bh,
  2069. "call ext4_journal_dirty_metadata");
  2070. ext4_journal_dirty_metadata(handle,
  2071. parent_bh);
  2072. }
  2073. }
  2074. }
  2075. } else {
  2076. /* We have reached the bottom of the tree. */
  2077. BUFFER_TRACE(parent_bh, "free data blocks");
  2078. ext4_free_data(handle, inode, parent_bh, first, last);
  2079. }
  2080. }
  2081. /*
  2082. * ext4_truncate()
  2083. *
  2084. * We block out ext4_get_block() block instantiations across the entire
  2085. * transaction, and VFS/VM ensures that ext4_truncate() cannot run
  2086. * simultaneously on behalf of the same inode.
  2087. *
  2088. * As we work through the truncate and commmit bits of it to the journal there
  2089. * is one core, guiding principle: the file's tree must always be consistent on
  2090. * disk. We must be able to restart the truncate after a crash.
  2091. *
  2092. * The file's tree may be transiently inconsistent in memory (although it
  2093. * probably isn't), but whenever we close off and commit a journal transaction,
  2094. * the contents of (the filesystem + the journal) must be consistent and
  2095. * restartable. It's pretty simple, really: bottom up, right to left (although
  2096. * left-to-right works OK too).
  2097. *
  2098. * Note that at recovery time, journal replay occurs *before* the restart of
  2099. * truncate against the orphan inode list.
  2100. *
  2101. * The committed inode has the new, desired i_size (which is the same as
  2102. * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
  2103. * that this inode's truncate did not complete and it will again call
  2104. * ext4_truncate() to have another go. So there will be instantiated blocks
  2105. * to the right of the truncation point in a crashed ext4 filesystem. But
  2106. * that's fine - as long as they are linked from the inode, the post-crash
  2107. * ext4_truncate() run will find them and release them.
  2108. */
  2109. void ext4_truncate(struct inode *inode)
  2110. {
  2111. handle_t *handle;
  2112. struct ext4_inode_info *ei = EXT4_I(inode);
  2113. __le32 *i_data = ei->i_data;
  2114. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  2115. struct address_space *mapping = inode->i_mapping;
  2116. ext4_lblk_t offsets[4];
  2117. Indirect chain[4];
  2118. Indirect *partial;
  2119. __le32 nr = 0;
  2120. int n;
  2121. ext4_lblk_t last_block;
  2122. unsigned blocksize = inode->i_sb->s_blocksize;
  2123. struct page *page;
  2124. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  2125. S_ISLNK(inode->i_mode)))
  2126. return;
  2127. if (ext4_inode_is_fast_symlink(inode))
  2128. return;
  2129. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2130. return;
  2131. /*
  2132. * We have to lock the EOF page here, because lock_page() nests
  2133. * outside jbd2_journal_start().
  2134. */
  2135. if ((inode->i_size & (blocksize - 1)) == 0) {
  2136. /* Block boundary? Nothing to do */
  2137. page = NULL;
  2138. } else {
  2139. page = grab_cache_page(mapping,
  2140. inode->i_size >> PAGE_CACHE_SHIFT);
  2141. if (!page)
  2142. return;
  2143. }
  2144. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  2145. ext4_ext_truncate(inode, page);
  2146. return;
  2147. }
  2148. handle = start_transaction(inode);
  2149. if (IS_ERR(handle)) {
  2150. if (page) {
  2151. clear_highpage(page);
  2152. flush_dcache_page(page);
  2153. unlock_page(page);
  2154. page_cache_release(page);
  2155. }
  2156. return; /* AKPM: return what? */
  2157. }
  2158. last_block = (inode->i_size + blocksize-1)
  2159. >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
  2160. if (page)
  2161. ext4_block_truncate_page(handle, page, mapping, inode->i_size);
  2162. n = ext4_block_to_path(inode, last_block, offsets, NULL);
  2163. if (n == 0)
  2164. goto out_stop; /* error */
  2165. /*
  2166. * OK. This truncate is going to happen. We add the inode to the
  2167. * orphan list, so that if this truncate spans multiple transactions,
  2168. * and we crash, we will resume the truncate when the filesystem
  2169. * recovers. It also marks the inode dirty, to catch the new size.
  2170. *
  2171. * Implication: the file must always be in a sane, consistent
  2172. * truncatable state while each transaction commits.
  2173. */
  2174. if (ext4_orphan_add(handle, inode))
  2175. goto out_stop;
  2176. /*
  2177. * The orphan list entry will now protect us from any crash which
  2178. * occurs before the truncate completes, so it is now safe to propagate
  2179. * the new, shorter inode size (held for now in i_size) into the
  2180. * on-disk inode. We do this via i_disksize, which is the value which
  2181. * ext4 *really* writes onto the disk inode.
  2182. */
  2183. ei->i_disksize = inode->i_size;
  2184. /*
  2185. * From here we block out all ext4_get_block() callers who want to
  2186. * modify the block allocation tree.
  2187. */
  2188. down_write(&ei->i_data_sem);
  2189. if (n == 1) { /* direct blocks */
  2190. ext4_free_data(handle, inode, NULL, i_data+offsets[0],
  2191. i_data + EXT4_NDIR_BLOCKS);
  2192. goto do_indirects;
  2193. }
  2194. partial = ext4_find_shared(inode, n, offsets, chain, &nr);
  2195. /* Kill the top of shared branch (not detached) */
  2196. if (nr) {
  2197. if (partial == chain) {
  2198. /* Shared branch grows from the inode */
  2199. ext4_free_branches(handle, inode, NULL,
  2200. &nr, &nr+1, (chain+n-1) - partial);
  2201. *partial->p = 0;
  2202. /*
  2203. * We mark the inode dirty prior to restart,
  2204. * and prior to stop. No need for it here.
  2205. */
  2206. } else {
  2207. /* Shared branch grows from an indirect block */
  2208. BUFFER_TRACE(partial->bh, "get_write_access");
  2209. ext4_free_branches(handle, inode, partial->bh,
  2210. partial->p,
  2211. partial->p+1, (chain+n-1) - partial);
  2212. }
  2213. }
  2214. /* Clear the ends of indirect blocks on the shared branch */
  2215. while (partial > chain) {
  2216. ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
  2217. (__le32*)partial->bh->b_data+addr_per_block,
  2218. (chain+n-1) - partial);
  2219. BUFFER_TRACE(partial->bh, "call brelse");
  2220. brelse (partial->bh);
  2221. partial--;
  2222. }
  2223. do_indirects:
  2224. /* Kill the remaining (whole) subtrees */
  2225. switch (offsets[0]) {
  2226. default:
  2227. nr = i_data[EXT4_IND_BLOCK];
  2228. if (nr) {
  2229. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2230. i_data[EXT4_IND_BLOCK] = 0;
  2231. }
  2232. case EXT4_IND_BLOCK:
  2233. nr = i_data[EXT4_DIND_BLOCK];
  2234. if (nr) {
  2235. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2236. i_data[EXT4_DIND_BLOCK] = 0;
  2237. }
  2238. case EXT4_DIND_BLOCK:
  2239. nr = i_data[EXT4_TIND_BLOCK];
  2240. if (nr) {
  2241. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2242. i_data[EXT4_TIND_BLOCK] = 0;
  2243. }
  2244. case EXT4_TIND_BLOCK:
  2245. ;
  2246. }
  2247. ext4_discard_reservation(inode);
  2248. up_write(&ei->i_data_sem);
  2249. inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
  2250. ext4_mark_inode_dirty(handle, inode);
  2251. /*
  2252. * In a multi-transaction truncate, we only make the final transaction
  2253. * synchronous
  2254. */
  2255. if (IS_SYNC(inode))
  2256. handle->h_sync = 1;
  2257. out_stop:
  2258. /*
  2259. * If this was a simple ftruncate(), and the file will remain alive
  2260. * then we need to clear up the orphan record which we created above.
  2261. * However, if this was a real unlink then we were called by
  2262. * ext4_delete_inode(), and we allow that function to clean up the
  2263. * orphan info for us.
  2264. */
  2265. if (inode->i_nlink)
  2266. ext4_orphan_del(handle, inode);
  2267. ext4_journal_stop(handle);
  2268. }
  2269. static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
  2270. unsigned long ino, struct ext4_iloc *iloc)
  2271. {
  2272. unsigned long desc, group_desc;
  2273. ext4_group_t block_group;
  2274. unsigned long offset;
  2275. ext4_fsblk_t block;
  2276. struct buffer_head *bh;
  2277. struct ext4_group_desc * gdp;
  2278. if (!ext4_valid_inum(sb, ino)) {
  2279. /*
  2280. * This error is already checked for in namei.c unless we are
  2281. * looking at an NFS filehandle, in which case no error
  2282. * report is needed
  2283. */
  2284. return 0;
  2285. }
  2286. block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
  2287. if (block_group >= EXT4_SB(sb)->s_groups_count) {
  2288. ext4_error(sb,"ext4_get_inode_block","group >= groups count");
  2289. return 0;
  2290. }
  2291. smp_rmb();
  2292. group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
  2293. desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
  2294. bh = EXT4_SB(sb)->s_group_desc[group_desc];
  2295. if (!bh) {
  2296. ext4_error (sb, "ext4_get_inode_block",
  2297. "Descriptor not loaded");
  2298. return 0;
  2299. }
  2300. gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
  2301. desc * EXT4_DESC_SIZE(sb));
  2302. /*
  2303. * Figure out the offset within the block group inode table
  2304. */
  2305. offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
  2306. EXT4_INODE_SIZE(sb);
  2307. block = ext4_inode_table(sb, gdp) +
  2308. (offset >> EXT4_BLOCK_SIZE_BITS(sb));
  2309. iloc->block_group = block_group;
  2310. iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
  2311. return block;
  2312. }
  2313. /*
  2314. * ext4_get_inode_loc returns with an extra refcount against the inode's
  2315. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2316. * data in memory that is needed to recreate the on-disk version of this
  2317. * inode.
  2318. */
  2319. static int __ext4_get_inode_loc(struct inode *inode,
  2320. struct ext4_iloc *iloc, int in_mem)
  2321. {
  2322. ext4_fsblk_t block;
  2323. struct buffer_head *bh;
  2324. block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2325. if (!block)
  2326. return -EIO;
  2327. bh = sb_getblk(inode->i_sb, block);
  2328. if (!bh) {
  2329. ext4_error (inode->i_sb, "ext4_get_inode_loc",
  2330. "unable to read inode block - "
  2331. "inode=%lu, block=%llu",
  2332. inode->i_ino, block);
  2333. return -EIO;
  2334. }
  2335. if (!buffer_uptodate(bh)) {
  2336. lock_buffer(bh);
  2337. if (buffer_uptodate(bh)) {
  2338. /* someone brought it uptodate while we waited */
  2339. unlock_buffer(bh);
  2340. goto has_buffer;
  2341. }
  2342. /*
  2343. * If we have all information of the inode in memory and this
  2344. * is the only valid inode in the block, we need not read the
  2345. * block.
  2346. */
  2347. if (in_mem) {
  2348. struct buffer_head *bitmap_bh;
  2349. struct ext4_group_desc *desc;
  2350. int inodes_per_buffer;
  2351. int inode_offset, i;
  2352. ext4_group_t block_group;
  2353. int start;
  2354. block_group = (inode->i_ino - 1) /
  2355. EXT4_INODES_PER_GROUP(inode->i_sb);
  2356. inodes_per_buffer = bh->b_size /
  2357. EXT4_INODE_SIZE(inode->i_sb);
  2358. inode_offset = ((inode->i_ino - 1) %
  2359. EXT4_INODES_PER_GROUP(inode->i_sb));
  2360. start = inode_offset & ~(inodes_per_buffer - 1);
  2361. /* Is the inode bitmap in cache? */
  2362. desc = ext4_get_group_desc(inode->i_sb,
  2363. block_group, NULL);
  2364. if (!desc)
  2365. goto make_io;
  2366. bitmap_bh = sb_getblk(inode->i_sb,
  2367. ext4_inode_bitmap(inode->i_sb, desc));
  2368. if (!bitmap_bh)
  2369. goto make_io;
  2370. /*
  2371. * If the inode bitmap isn't in cache then the
  2372. * optimisation may end up performing two reads instead
  2373. * of one, so skip it.
  2374. */
  2375. if (!buffer_uptodate(bitmap_bh)) {
  2376. brelse(bitmap_bh);
  2377. goto make_io;
  2378. }
  2379. for (i = start; i < start + inodes_per_buffer; i++) {
  2380. if (i == inode_offset)
  2381. continue;
  2382. if (ext4_test_bit(i, bitmap_bh->b_data))
  2383. break;
  2384. }
  2385. brelse(bitmap_bh);
  2386. if (i == start + inodes_per_buffer) {
  2387. /* all other inodes are free, so skip I/O */
  2388. memset(bh->b_data, 0, bh->b_size);
  2389. set_buffer_uptodate(bh);
  2390. unlock_buffer(bh);
  2391. goto has_buffer;
  2392. }
  2393. }
  2394. make_io:
  2395. /*
  2396. * There are other valid inodes in the buffer, this inode
  2397. * has in-inode xattrs, or we don't have this inode in memory.
  2398. * Read the block from disk.
  2399. */
  2400. get_bh(bh);
  2401. bh->b_end_io = end_buffer_read_sync;
  2402. submit_bh(READ_META, bh);
  2403. wait_on_buffer(bh);
  2404. if (!buffer_uptodate(bh)) {
  2405. ext4_error(inode->i_sb, "ext4_get_inode_loc",
  2406. "unable to read inode block - "
  2407. "inode=%lu, block=%llu",
  2408. inode->i_ino, block);
  2409. brelse(bh);
  2410. return -EIO;
  2411. }
  2412. }
  2413. has_buffer:
  2414. iloc->bh = bh;
  2415. return 0;
  2416. }
  2417. int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
  2418. {
  2419. /* We have all inode data except xattrs in memory here. */
  2420. return __ext4_get_inode_loc(inode, iloc,
  2421. !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
  2422. }
  2423. void ext4_set_inode_flags(struct inode *inode)
  2424. {
  2425. unsigned int flags = EXT4_I(inode)->i_flags;
  2426. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2427. if (flags & EXT4_SYNC_FL)
  2428. inode->i_flags |= S_SYNC;
  2429. if (flags & EXT4_APPEND_FL)
  2430. inode->i_flags |= S_APPEND;
  2431. if (flags & EXT4_IMMUTABLE_FL)
  2432. inode->i_flags |= S_IMMUTABLE;
  2433. if (flags & EXT4_NOATIME_FL)
  2434. inode->i_flags |= S_NOATIME;
  2435. if (flags & EXT4_DIRSYNC_FL)
  2436. inode->i_flags |= S_DIRSYNC;
  2437. }
  2438. /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
  2439. void ext4_get_inode_flags(struct ext4_inode_info *ei)
  2440. {
  2441. unsigned int flags = ei->vfs_inode.i_flags;
  2442. ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
  2443. EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
  2444. if (flags & S_SYNC)
  2445. ei->i_flags |= EXT4_SYNC_FL;
  2446. if (flags & S_APPEND)
  2447. ei->i_flags |= EXT4_APPEND_FL;
  2448. if (flags & S_IMMUTABLE)
  2449. ei->i_flags |= EXT4_IMMUTABLE_FL;
  2450. if (flags & S_NOATIME)
  2451. ei->i_flags |= EXT4_NOATIME_FL;
  2452. if (flags & S_DIRSYNC)
  2453. ei->i_flags |= EXT4_DIRSYNC_FL;
  2454. }
  2455. static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
  2456. struct ext4_inode_info *ei)
  2457. {
  2458. blkcnt_t i_blocks ;
  2459. struct inode *inode = &(ei->vfs_inode);
  2460. struct super_block *sb = inode->i_sb;
  2461. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  2462. EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
  2463. /* we are using combined 48 bit field */
  2464. i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
  2465. le32_to_cpu(raw_inode->i_blocks_lo);
  2466. if (ei->i_flags & EXT4_HUGE_FILE_FL) {
  2467. /* i_blocks represent file system block size */
  2468. return i_blocks << (inode->i_blkbits - 9);
  2469. } else {
  2470. return i_blocks;
  2471. }
  2472. } else {
  2473. return le32_to_cpu(raw_inode->i_blocks_lo);
  2474. }
  2475. }
  2476. struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
  2477. {
  2478. struct ext4_iloc iloc;
  2479. struct ext4_inode *raw_inode;
  2480. struct ext4_inode_info *ei;
  2481. struct buffer_head *bh;
  2482. struct inode *inode;
  2483. long ret;
  2484. int block;
  2485. inode = iget_locked(sb, ino);
  2486. if (!inode)
  2487. return ERR_PTR(-ENOMEM);
  2488. if (!(inode->i_state & I_NEW))
  2489. return inode;
  2490. ei = EXT4_I(inode);
  2491. #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
  2492. ei->i_acl = EXT4_ACL_NOT_CACHED;
  2493. ei->i_default_acl = EXT4_ACL_NOT_CACHED;
  2494. #endif
  2495. ei->i_block_alloc_info = NULL;
  2496. ret = __ext4_get_inode_loc(inode, &iloc, 0);
  2497. if (ret < 0)
  2498. goto bad_inode;
  2499. bh = iloc.bh;
  2500. raw_inode = ext4_raw_inode(&iloc);
  2501. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2502. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2503. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2504. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2505. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2506. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2507. }
  2508. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2509. ei->i_state = 0;
  2510. ei->i_dir_start_lookup = 0;
  2511. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2512. /* We now have enough fields to check if the inode was active or not.
  2513. * This is needed because nfsd might try to access dead inodes
  2514. * the test is that same one that e2fsck uses
  2515. * NeilBrown 1999oct15
  2516. */
  2517. if (inode->i_nlink == 0) {
  2518. if (inode->i_mode == 0 ||
  2519. !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
  2520. /* this inode is deleted */
  2521. brelse (bh);
  2522. ret = -ESTALE;
  2523. goto bad_inode;
  2524. }
  2525. /* The only unlinked inodes we let through here have
  2526. * valid i_mode and are being read by the orphan
  2527. * recovery code: that's fine, we're about to complete
  2528. * the process of deleting those. */
  2529. }
  2530. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2531. inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
  2532. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
  2533. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  2534. cpu_to_le32(EXT4_OS_HURD)) {
  2535. ei->i_file_acl |=
  2536. ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
  2537. }
  2538. inode->i_size = ext4_isize(raw_inode);
  2539. ei->i_disksize = inode->i_size;
  2540. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2541. ei->i_block_group = iloc.block_group;
  2542. /*
  2543. * NOTE! The in-memory inode i_data array is in little-endian order
  2544. * even on big-endian machines: we do NOT byteswap the block numbers!
  2545. */
  2546. for (block = 0; block < EXT4_N_BLOCKS; block++)
  2547. ei->i_data[block] = raw_inode->i_block[block];
  2548. INIT_LIST_HEAD(&ei->i_orphan);
  2549. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  2550. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2551. if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2552. EXT4_INODE_SIZE(inode->i_sb)) {
  2553. brelse (bh);
  2554. ret = -EIO;
  2555. goto bad_inode;
  2556. }
  2557. if (ei->i_extra_isize == 0) {
  2558. /* The extra space is currently unused. Use it. */
  2559. ei->i_extra_isize = sizeof(struct ext4_inode) -
  2560. EXT4_GOOD_OLD_INODE_SIZE;
  2561. } else {
  2562. __le32 *magic = (void *)raw_inode +
  2563. EXT4_GOOD_OLD_INODE_SIZE +
  2564. ei->i_extra_isize;
  2565. if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
  2566. ei->i_state |= EXT4_STATE_XATTR;
  2567. }
  2568. } else
  2569. ei->i_extra_isize = 0;
  2570. EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
  2571. EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
  2572. EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
  2573. EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
  2574. inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
  2575. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  2576. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  2577. inode->i_version |=
  2578. (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
  2579. }
  2580. if (S_ISREG(inode->i_mode)) {
  2581. inode->i_op = &ext4_file_inode_operations;
  2582. inode->i_fop = &ext4_file_operations;
  2583. ext4_set_aops(inode);
  2584. } else if (S_ISDIR(inode->i_mode)) {
  2585. inode->i_op = &ext4_dir_inode_operations;
  2586. inode->i_fop = &ext4_dir_operations;
  2587. } else if (S_ISLNK(inode->i_mode)) {
  2588. if (ext4_inode_is_fast_symlink(inode))
  2589. inode->i_op = &ext4_fast_symlink_inode_operations;
  2590. else {
  2591. inode->i_op = &ext4_symlink_inode_operations;
  2592. ext4_set_aops(inode);
  2593. }
  2594. } else {
  2595. inode->i_op = &ext4_special_inode_operations;
  2596. if (raw_inode->i_block[0])
  2597. init_special_inode(inode, inode->i_mode,
  2598. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2599. else
  2600. init_special_inode(inode, inode->i_mode,
  2601. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2602. }
  2603. brelse (iloc.bh);
  2604. ext4_set_inode_flags(inode);
  2605. unlock_new_inode(inode);
  2606. return inode;
  2607. bad_inode:
  2608. iget_failed(inode);
  2609. return ERR_PTR(ret);
  2610. }
  2611. static int ext4_inode_blocks_set(handle_t *handle,
  2612. struct ext4_inode *raw_inode,
  2613. struct ext4_inode_info *ei)
  2614. {
  2615. struct inode *inode = &(ei->vfs_inode);
  2616. u64 i_blocks = inode->i_blocks;
  2617. struct super_block *sb = inode->i_sb;
  2618. int err = 0;
  2619. if (i_blocks <= ~0U) {
  2620. /*
  2621. * i_blocks can be represnted in a 32 bit variable
  2622. * as multiple of 512 bytes
  2623. */
  2624. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  2625. raw_inode->i_blocks_high = 0;
  2626. ei->i_flags &= ~EXT4_HUGE_FILE_FL;
  2627. } else if (i_blocks <= 0xffffffffffffULL) {
  2628. /*
  2629. * i_blocks can be represented in a 48 bit variable
  2630. * as multiple of 512 bytes
  2631. */
  2632. err = ext4_update_rocompat_feature(handle, sb,
  2633. EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
  2634. if (err)
  2635. goto err_out;
  2636. /* i_block is stored in the split 48 bit fields */
  2637. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  2638. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  2639. ei->i_flags &= ~EXT4_HUGE_FILE_FL;
  2640. } else {
  2641. /*
  2642. * i_blocks should be represented in a 48 bit variable
  2643. * as multiple of file system block size
  2644. */
  2645. err = ext4_update_rocompat_feature(handle, sb,
  2646. EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
  2647. if (err)
  2648. goto err_out;
  2649. ei->i_flags |= EXT4_HUGE_FILE_FL;
  2650. /* i_block is stored in file system block size */
  2651. i_blocks = i_blocks >> (inode->i_blkbits - 9);
  2652. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  2653. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  2654. }
  2655. err_out:
  2656. return err;
  2657. }
  2658. /*
  2659. * Post the struct inode info into an on-disk inode location in the
  2660. * buffer-cache. This gobbles the caller's reference to the
  2661. * buffer_head in the inode location struct.
  2662. *
  2663. * The caller must have write access to iloc->bh.
  2664. */
  2665. static int ext4_do_update_inode(handle_t *handle,
  2666. struct inode *inode,
  2667. struct ext4_iloc *iloc)
  2668. {
  2669. struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
  2670. struct ext4_inode_info *ei = EXT4_I(inode);
  2671. struct buffer_head *bh = iloc->bh;
  2672. int err = 0, rc, block;
  2673. /* For fields not not tracking in the in-memory inode,
  2674. * initialise them to zero for new inodes. */
  2675. if (ei->i_state & EXT4_STATE_NEW)
  2676. memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
  2677. ext4_get_inode_flags(ei);
  2678. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2679. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2680. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2681. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2682. /*
  2683. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2684. * re-used with the upper 16 bits of the uid/gid intact
  2685. */
  2686. if(!ei->i_dtime) {
  2687. raw_inode->i_uid_high =
  2688. cpu_to_le16(high_16_bits(inode->i_uid));
  2689. raw_inode->i_gid_high =
  2690. cpu_to_le16(high_16_bits(inode->i_gid));
  2691. } else {
  2692. raw_inode->i_uid_high = 0;
  2693. raw_inode->i_gid_high = 0;
  2694. }
  2695. } else {
  2696. raw_inode->i_uid_low =
  2697. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2698. raw_inode->i_gid_low =
  2699. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2700. raw_inode->i_uid_high = 0;
  2701. raw_inode->i_gid_high = 0;
  2702. }
  2703. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2704. EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
  2705. EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
  2706. EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
  2707. EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
  2708. if (ext4_inode_blocks_set(handle, raw_inode, ei))
  2709. goto out_brelse;
  2710. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2711. /* clear the migrate flag in the raw_inode */
  2712. raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
  2713. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  2714. cpu_to_le32(EXT4_OS_HURD))
  2715. raw_inode->i_file_acl_high =
  2716. cpu_to_le16(ei->i_file_acl >> 32);
  2717. raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
  2718. ext4_isize_set(raw_inode, ei->i_disksize);
  2719. if (ei->i_disksize > 0x7fffffffULL) {
  2720. struct super_block *sb = inode->i_sb;
  2721. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
  2722. EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2723. EXT4_SB(sb)->s_es->s_rev_level ==
  2724. cpu_to_le32(EXT4_GOOD_OLD_REV)) {
  2725. /* If this is the first large file
  2726. * created, add a flag to the superblock.
  2727. */
  2728. err = ext4_journal_get_write_access(handle,
  2729. EXT4_SB(sb)->s_sbh);
  2730. if (err)
  2731. goto out_brelse;
  2732. ext4_update_dynamic_rev(sb);
  2733. EXT4_SET_RO_COMPAT_FEATURE(sb,
  2734. EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
  2735. sb->s_dirt = 1;
  2736. handle->h_sync = 1;
  2737. err = ext4_journal_dirty_metadata(handle,
  2738. EXT4_SB(sb)->s_sbh);
  2739. }
  2740. }
  2741. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2742. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2743. if (old_valid_dev(inode->i_rdev)) {
  2744. raw_inode->i_block[0] =
  2745. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2746. raw_inode->i_block[1] = 0;
  2747. } else {
  2748. raw_inode->i_block[0] = 0;
  2749. raw_inode->i_block[1] =
  2750. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2751. raw_inode->i_block[2] = 0;
  2752. }
  2753. } else for (block = 0; block < EXT4_N_BLOCKS; block++)
  2754. raw_inode->i_block[block] = ei->i_data[block];
  2755. raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
  2756. if (ei->i_extra_isize) {
  2757. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  2758. raw_inode->i_version_hi =
  2759. cpu_to_le32(inode->i_version >> 32);
  2760. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2761. }
  2762. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  2763. rc = ext4_journal_dirty_metadata(handle, bh);
  2764. if (!err)
  2765. err = rc;
  2766. ei->i_state &= ~EXT4_STATE_NEW;
  2767. out_brelse:
  2768. brelse (bh);
  2769. ext4_std_error(inode->i_sb, err);
  2770. return err;
  2771. }
  2772. /*
  2773. * ext4_write_inode()
  2774. *
  2775. * We are called from a few places:
  2776. *
  2777. * - Within generic_file_write() for O_SYNC files.
  2778. * Here, there will be no transaction running. We wait for any running
  2779. * trasnaction to commit.
  2780. *
  2781. * - Within sys_sync(), kupdate and such.
  2782. * We wait on commit, if tol to.
  2783. *
  2784. * - Within prune_icache() (PF_MEMALLOC == true)
  2785. * Here we simply return. We can't afford to block kswapd on the
  2786. * journal commit.
  2787. *
  2788. * In all cases it is actually safe for us to return without doing anything,
  2789. * because the inode has been copied into a raw inode buffer in
  2790. * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2791. * knfsd.
  2792. *
  2793. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2794. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2795. * which we are interested.
  2796. *
  2797. * It would be a bug for them to not do this. The code:
  2798. *
  2799. * mark_inode_dirty(inode)
  2800. * stuff();
  2801. * inode->i_size = expr;
  2802. *
  2803. * is in error because a kswapd-driven write_inode() could occur while
  2804. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2805. * will no longer be on the superblock's dirty inode list.
  2806. */
  2807. int ext4_write_inode(struct inode *inode, int wait)
  2808. {
  2809. if (current->flags & PF_MEMALLOC)
  2810. return 0;
  2811. if (ext4_journal_current_handle()) {
  2812. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2813. dump_stack();
  2814. return -EIO;
  2815. }
  2816. if (!wait)
  2817. return 0;
  2818. return ext4_force_commit(inode->i_sb);
  2819. }
  2820. /*
  2821. * ext4_setattr()
  2822. *
  2823. * Called from notify_change.
  2824. *
  2825. * We want to trap VFS attempts to truncate the file as soon as
  2826. * possible. In particular, we want to make sure that when the VFS
  2827. * shrinks i_size, we put the inode on the orphan list and modify
  2828. * i_disksize immediately, so that during the subsequent flushing of
  2829. * dirty pages and freeing of disk blocks, we can guarantee that any
  2830. * commit will leave the blocks being flushed in an unused state on
  2831. * disk. (On recovery, the inode will get truncated and the blocks will
  2832. * be freed, so we have a strong guarantee that no future commit will
  2833. * leave these blocks visible to the user.)
  2834. *
  2835. * Called with inode->sem down.
  2836. */
  2837. int ext4_setattr(struct dentry *dentry, struct iattr *attr)
  2838. {
  2839. struct inode *inode = dentry->d_inode;
  2840. int error, rc = 0;
  2841. const unsigned int ia_valid = attr->ia_valid;
  2842. error = inode_change_ok(inode, attr);
  2843. if (error)
  2844. return error;
  2845. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2846. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2847. handle_t *handle;
  2848. /* (user+group)*(old+new) structure, inode write (sb,
  2849. * inode block, ? - but truncate inode update has it) */
  2850. handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
  2851. EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  2852. if (IS_ERR(handle)) {
  2853. error = PTR_ERR(handle);
  2854. goto err_out;
  2855. }
  2856. error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
  2857. if (error) {
  2858. ext4_journal_stop(handle);
  2859. return error;
  2860. }
  2861. /* Update corresponding info in inode so that everything is in
  2862. * one transaction */
  2863. if (attr->ia_valid & ATTR_UID)
  2864. inode->i_uid = attr->ia_uid;
  2865. if (attr->ia_valid & ATTR_GID)
  2866. inode->i_gid = attr->ia_gid;
  2867. error = ext4_mark_inode_dirty(handle, inode);
  2868. ext4_journal_stop(handle);
  2869. }
  2870. if (attr->ia_valid & ATTR_SIZE) {
  2871. if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
  2872. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  2873. if (attr->ia_size > sbi->s_bitmap_maxbytes) {
  2874. error = -EFBIG;
  2875. goto err_out;
  2876. }
  2877. }
  2878. }
  2879. if (S_ISREG(inode->i_mode) &&
  2880. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2881. handle_t *handle;
  2882. handle = ext4_journal_start(inode, 3);
  2883. if (IS_ERR(handle)) {
  2884. error = PTR_ERR(handle);
  2885. goto err_out;
  2886. }
  2887. error = ext4_orphan_add(handle, inode);
  2888. EXT4_I(inode)->i_disksize = attr->ia_size;
  2889. rc = ext4_mark_inode_dirty(handle, inode);
  2890. if (!error)
  2891. error = rc;
  2892. ext4_journal_stop(handle);
  2893. }
  2894. rc = inode_setattr(inode, attr);
  2895. /* If inode_setattr's call to ext4_truncate failed to get a
  2896. * transaction handle at all, we need to clean up the in-core
  2897. * orphan list manually. */
  2898. if (inode->i_nlink)
  2899. ext4_orphan_del(NULL, inode);
  2900. if (!rc && (ia_valid & ATTR_MODE))
  2901. rc = ext4_acl_chmod(inode);
  2902. err_out:
  2903. ext4_std_error(inode->i_sb, error);
  2904. if (!error)
  2905. error = rc;
  2906. return error;
  2907. }
  2908. /*
  2909. * How many blocks doth make a writepage()?
  2910. *
  2911. * With N blocks per page, it may be:
  2912. * N data blocks
  2913. * 2 indirect block
  2914. * 2 dindirect
  2915. * 1 tindirect
  2916. * N+5 bitmap blocks (from the above)
  2917. * N+5 group descriptor summary blocks
  2918. * 1 inode block
  2919. * 1 superblock.
  2920. * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
  2921. *
  2922. * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
  2923. *
  2924. * With ordered or writeback data it's the same, less the N data blocks.
  2925. *
  2926. * If the inode's direct blocks can hold an integral number of pages then a
  2927. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2928. * and dindirect block, and the "5" above becomes "3".
  2929. *
  2930. * This still overestimates under most circumstances. If we were to pass the
  2931. * start and end offsets in here as well we could do block_to_path() on each
  2932. * block and work out the exact number of indirects which are touched. Pah.
  2933. */
  2934. int ext4_writepage_trans_blocks(struct inode *inode)
  2935. {
  2936. int bpp = ext4_journal_blocks_per_page(inode);
  2937. int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
  2938. int ret;
  2939. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
  2940. return ext4_ext_writepage_trans_blocks(inode, bpp);
  2941. if (ext4_should_journal_data(inode))
  2942. ret = 3 * (bpp + indirects) + 2;
  2943. else
  2944. ret = 2 * (bpp + indirects) + 2;
  2945. #ifdef CONFIG_QUOTA
  2946. /* We know that structure was already allocated during DQUOT_INIT so
  2947. * we will be updating only the data blocks + inodes */
  2948. ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
  2949. #endif
  2950. return ret;
  2951. }
  2952. /*
  2953. * The caller must have previously called ext4_reserve_inode_write().
  2954. * Give this, we know that the caller already has write access to iloc->bh.
  2955. */
  2956. int ext4_mark_iloc_dirty(handle_t *handle,
  2957. struct inode *inode, struct ext4_iloc *iloc)
  2958. {
  2959. int err = 0;
  2960. if (test_opt(inode->i_sb, I_VERSION))
  2961. inode_inc_iversion(inode);
  2962. /* the do_update_inode consumes one bh->b_count */
  2963. get_bh(iloc->bh);
  2964. /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
  2965. err = ext4_do_update_inode(handle, inode, iloc);
  2966. put_bh(iloc->bh);
  2967. return err;
  2968. }
  2969. /*
  2970. * On success, We end up with an outstanding reference count against
  2971. * iloc->bh. This _must_ be cleaned up later.
  2972. */
  2973. int
  2974. ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
  2975. struct ext4_iloc *iloc)
  2976. {
  2977. int err = 0;
  2978. if (handle) {
  2979. err = ext4_get_inode_loc(inode, iloc);
  2980. if (!err) {
  2981. BUFFER_TRACE(iloc->bh, "get_write_access");
  2982. err = ext4_journal_get_write_access(handle, iloc->bh);
  2983. if (err) {
  2984. brelse(iloc->bh);
  2985. iloc->bh = NULL;
  2986. }
  2987. }
  2988. }
  2989. ext4_std_error(inode->i_sb, err);
  2990. return err;
  2991. }
  2992. /*
  2993. * Expand an inode by new_extra_isize bytes.
  2994. * Returns 0 on success or negative error number on failure.
  2995. */
  2996. static int ext4_expand_extra_isize(struct inode *inode,
  2997. unsigned int new_extra_isize,
  2998. struct ext4_iloc iloc,
  2999. handle_t *handle)
  3000. {
  3001. struct ext4_inode *raw_inode;
  3002. struct ext4_xattr_ibody_header *header;
  3003. struct ext4_xattr_entry *entry;
  3004. if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
  3005. return 0;
  3006. raw_inode = ext4_raw_inode(&iloc);
  3007. header = IHDR(inode, raw_inode);
  3008. entry = IFIRST(header);
  3009. /* No extended attributes present */
  3010. if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
  3011. header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
  3012. memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
  3013. new_extra_isize);
  3014. EXT4_I(inode)->i_extra_isize = new_extra_isize;
  3015. return 0;
  3016. }
  3017. /* try to expand with EAs present */
  3018. return ext4_expand_extra_isize_ea(inode, new_extra_isize,
  3019. raw_inode, handle);
  3020. }
  3021. /*
  3022. * What we do here is to mark the in-core inode as clean with respect to inode
  3023. * dirtiness (it may still be data-dirty).
  3024. * This means that the in-core inode may be reaped by prune_icache
  3025. * without having to perform any I/O. This is a very good thing,
  3026. * because *any* task may call prune_icache - even ones which
  3027. * have a transaction open against a different journal.
  3028. *
  3029. * Is this cheating? Not really. Sure, we haven't written the
  3030. * inode out, but prune_icache isn't a user-visible syncing function.
  3031. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  3032. * we start and wait on commits.
  3033. *
  3034. * Is this efficient/effective? Well, we're being nice to the system
  3035. * by cleaning up our inodes proactively so they can be reaped
  3036. * without I/O. But we are potentially leaving up to five seconds'
  3037. * worth of inodes floating about which prune_icache wants us to
  3038. * write out. One way to fix that would be to get prune_icache()
  3039. * to do a write_super() to free up some memory. It has the desired
  3040. * effect.
  3041. */
  3042. int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3043. {
  3044. struct ext4_iloc iloc;
  3045. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  3046. static unsigned int mnt_count;
  3047. int err, ret;
  3048. might_sleep();
  3049. err = ext4_reserve_inode_write(handle, inode, &iloc);
  3050. if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
  3051. !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
  3052. /*
  3053. * We need extra buffer credits since we may write into EA block
  3054. * with this same handle. If journal_extend fails, then it will
  3055. * only result in a minor loss of functionality for that inode.
  3056. * If this is felt to be critical, then e2fsck should be run to
  3057. * force a large enough s_min_extra_isize.
  3058. */
  3059. if ((jbd2_journal_extend(handle,
  3060. EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
  3061. ret = ext4_expand_extra_isize(inode,
  3062. sbi->s_want_extra_isize,
  3063. iloc, handle);
  3064. if (ret) {
  3065. EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
  3066. if (mnt_count !=
  3067. le16_to_cpu(sbi->s_es->s_mnt_count)) {
  3068. ext4_warning(inode->i_sb, __FUNCTION__,
  3069. "Unable to expand inode %lu. Delete"
  3070. " some EAs or run e2fsck.",
  3071. inode->i_ino);
  3072. mnt_count =
  3073. le16_to_cpu(sbi->s_es->s_mnt_count);
  3074. }
  3075. }
  3076. }
  3077. }
  3078. if (!err)
  3079. err = ext4_mark_iloc_dirty(handle, inode, &iloc);
  3080. return err;
  3081. }
  3082. /*
  3083. * ext4_dirty_inode() is called from __mark_inode_dirty()
  3084. *
  3085. * We're really interested in the case where a file is being extended.
  3086. * i_size has been changed by generic_commit_write() and we thus need
  3087. * to include the updated inode in the current transaction.
  3088. *
  3089. * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
  3090. * are allocated to the file.
  3091. *
  3092. * If the inode is marked synchronous, we don't honour that here - doing
  3093. * so would cause a commit on atime updates, which we don't bother doing.
  3094. * We handle synchronous inodes at the highest possible level.
  3095. */
  3096. void ext4_dirty_inode(struct inode *inode)
  3097. {
  3098. handle_t *current_handle = ext4_journal_current_handle();
  3099. handle_t *handle;
  3100. handle = ext4_journal_start(inode, 2);
  3101. if (IS_ERR(handle))
  3102. goto out;
  3103. if (current_handle &&
  3104. current_handle->h_transaction != handle->h_transaction) {
  3105. /* This task has a transaction open against a different fs */
  3106. printk(KERN_EMERG "%s: transactions do not match!\n",
  3107. __FUNCTION__);
  3108. } else {
  3109. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3110. current_handle);
  3111. ext4_mark_inode_dirty(handle, inode);
  3112. }
  3113. ext4_journal_stop(handle);
  3114. out:
  3115. return;
  3116. }
  3117. #if 0
  3118. /*
  3119. * Bind an inode's backing buffer_head into this transaction, to prevent
  3120. * it from being flushed to disk early. Unlike
  3121. * ext4_reserve_inode_write, this leaves behind no bh reference and
  3122. * returns no iloc structure, so the caller needs to repeat the iloc
  3123. * lookup to mark the inode dirty later.
  3124. */
  3125. static int ext4_pin_inode(handle_t *handle, struct inode *inode)
  3126. {
  3127. struct ext4_iloc iloc;
  3128. int err = 0;
  3129. if (handle) {
  3130. err = ext4_get_inode_loc(inode, &iloc);
  3131. if (!err) {
  3132. BUFFER_TRACE(iloc.bh, "get_write_access");
  3133. err = jbd2_journal_get_write_access(handle, iloc.bh);
  3134. if (!err)
  3135. err = ext4_journal_dirty_metadata(handle,
  3136. iloc.bh);
  3137. brelse(iloc.bh);
  3138. }
  3139. }
  3140. ext4_std_error(inode->i_sb, err);
  3141. return err;
  3142. }
  3143. #endif
  3144. int ext4_change_inode_journal_flag(struct inode *inode, int val)
  3145. {
  3146. journal_t *journal;
  3147. handle_t *handle;
  3148. int err;
  3149. /*
  3150. * We have to be very careful here: changing a data block's
  3151. * journaling status dynamically is dangerous. If we write a
  3152. * data block to the journal, change the status and then delete
  3153. * that block, we risk forgetting to revoke the old log record
  3154. * from the journal and so a subsequent replay can corrupt data.
  3155. * So, first we make sure that the journal is empty and that
  3156. * nobody is changing anything.
  3157. */
  3158. journal = EXT4_JOURNAL(inode);
  3159. if (is_journal_aborted(journal))
  3160. return -EROFS;
  3161. jbd2_journal_lock_updates(journal);
  3162. jbd2_journal_flush(journal);
  3163. /*
  3164. * OK, there are no updates running now, and all cached data is
  3165. * synced to disk. We are now in a completely consistent state
  3166. * which doesn't have anything in the journal, and we know that
  3167. * no filesystem updates are running, so it is safe to modify
  3168. * the inode's in-core data-journaling state flag now.
  3169. */
  3170. if (val)
  3171. EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
  3172. else
  3173. EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
  3174. ext4_set_aops(inode);
  3175. jbd2_journal_unlock_updates(journal);
  3176. /* Finally we can mark the inode as dirty. */
  3177. handle = ext4_journal_start(inode, 1);
  3178. if (IS_ERR(handle))
  3179. return PTR_ERR(handle);
  3180. err = ext4_mark_inode_dirty(handle, inode);
  3181. handle->h_sync = 1;
  3182. ext4_journal_stop(handle);
  3183. ext4_std_error(inode->i_sb, err);
  3184. return err;
  3185. }