vmx.c 226 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "cpuid.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <linux/mod_devicetable.h>
  29. #include <linux/ftrace_event.h>
  30. #include <linux/slab.h>
  31. #include <linux/tboot.h>
  32. #include "kvm_cache_regs.h"
  33. #include "x86.h"
  34. #include <asm/io.h>
  35. #include <asm/desc.h>
  36. #include <asm/vmx.h>
  37. #include <asm/virtext.h>
  38. #include <asm/mce.h>
  39. #include <asm/i387.h>
  40. #include <asm/xcr.h>
  41. #include <asm/perf_event.h>
  42. #include <asm/kexec.h>
  43. #include "trace.h"
  44. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  45. #define __ex_clear(x, reg) \
  46. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. static const struct x86_cpu_id vmx_cpu_id[] = {
  50. X86_FEATURE_MATCH(X86_FEATURE_VMX),
  51. {}
  52. };
  53. MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  54. static bool __read_mostly enable_vpid = 1;
  55. module_param_named(vpid, enable_vpid, bool, 0444);
  56. static bool __read_mostly flexpriority_enabled = 1;
  57. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  58. static bool __read_mostly enable_ept = 1;
  59. module_param_named(ept, enable_ept, bool, S_IRUGO);
  60. static bool __read_mostly enable_unrestricted_guest = 1;
  61. module_param_named(unrestricted_guest,
  62. enable_unrestricted_guest, bool, S_IRUGO);
  63. static bool __read_mostly enable_ept_ad_bits = 1;
  64. module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  65. static bool __read_mostly emulate_invalid_guest_state = true;
  66. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  67. static bool __read_mostly vmm_exclusive = 1;
  68. module_param(vmm_exclusive, bool, S_IRUGO);
  69. static bool __read_mostly fasteoi = 1;
  70. module_param(fasteoi, bool, S_IRUGO);
  71. static bool __read_mostly enable_apicv = 1;
  72. module_param(enable_apicv, bool, S_IRUGO);
  73. /*
  74. * If nested=1, nested virtualization is supported, i.e., guests may use
  75. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  76. * use VMX instructions.
  77. */
  78. static bool __read_mostly nested = 0;
  79. module_param(nested, bool, S_IRUGO);
  80. #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
  81. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
  82. #define KVM_VM_CR0_ALWAYS_ON \
  83. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  84. #define KVM_CR4_GUEST_OWNED_BITS \
  85. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  86. | X86_CR4_OSXMMEXCPT)
  87. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  88. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  89. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  90. /*
  91. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  92. * ple_gap: upper bound on the amount of time between two successive
  93. * executions of PAUSE in a loop. Also indicate if ple enabled.
  94. * According to test, this time is usually smaller than 128 cycles.
  95. * ple_window: upper bound on the amount of time a guest is allowed to execute
  96. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  97. * less than 2^12 cycles
  98. * Time is measured based on a counter that runs at the same rate as the TSC,
  99. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  100. */
  101. #define KVM_VMX_DEFAULT_PLE_GAP 128
  102. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  103. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  104. module_param(ple_gap, int, S_IRUGO);
  105. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  106. module_param(ple_window, int, S_IRUGO);
  107. extern const ulong vmx_return;
  108. #define NR_AUTOLOAD_MSRS 8
  109. #define VMCS02_POOL_SIZE 1
  110. struct vmcs {
  111. u32 revision_id;
  112. u32 abort;
  113. char data[0];
  114. };
  115. /*
  116. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  117. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  118. * loaded on this CPU (so we can clear them if the CPU goes down).
  119. */
  120. struct loaded_vmcs {
  121. struct vmcs *vmcs;
  122. int cpu;
  123. int launched;
  124. struct list_head loaded_vmcss_on_cpu_link;
  125. };
  126. struct shared_msr_entry {
  127. unsigned index;
  128. u64 data;
  129. u64 mask;
  130. };
  131. /*
  132. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  133. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  134. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  135. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  136. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  137. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  138. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  139. * underlying hardware which will be used to run L2.
  140. * This structure is packed to ensure that its layout is identical across
  141. * machines (necessary for live migration).
  142. * If there are changes in this struct, VMCS12_REVISION must be changed.
  143. */
  144. typedef u64 natural_width;
  145. struct __packed vmcs12 {
  146. /* According to the Intel spec, a VMCS region must start with the
  147. * following two fields. Then follow implementation-specific data.
  148. */
  149. u32 revision_id;
  150. u32 abort;
  151. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  152. u32 padding[7]; /* room for future expansion */
  153. u64 io_bitmap_a;
  154. u64 io_bitmap_b;
  155. u64 msr_bitmap;
  156. u64 vm_exit_msr_store_addr;
  157. u64 vm_exit_msr_load_addr;
  158. u64 vm_entry_msr_load_addr;
  159. u64 tsc_offset;
  160. u64 virtual_apic_page_addr;
  161. u64 apic_access_addr;
  162. u64 ept_pointer;
  163. u64 guest_physical_address;
  164. u64 vmcs_link_pointer;
  165. u64 guest_ia32_debugctl;
  166. u64 guest_ia32_pat;
  167. u64 guest_ia32_efer;
  168. u64 guest_ia32_perf_global_ctrl;
  169. u64 guest_pdptr0;
  170. u64 guest_pdptr1;
  171. u64 guest_pdptr2;
  172. u64 guest_pdptr3;
  173. u64 host_ia32_pat;
  174. u64 host_ia32_efer;
  175. u64 host_ia32_perf_global_ctrl;
  176. u64 padding64[8]; /* room for future expansion */
  177. /*
  178. * To allow migration of L1 (complete with its L2 guests) between
  179. * machines of different natural widths (32 or 64 bit), we cannot have
  180. * unsigned long fields with no explict size. We use u64 (aliased
  181. * natural_width) instead. Luckily, x86 is little-endian.
  182. */
  183. natural_width cr0_guest_host_mask;
  184. natural_width cr4_guest_host_mask;
  185. natural_width cr0_read_shadow;
  186. natural_width cr4_read_shadow;
  187. natural_width cr3_target_value0;
  188. natural_width cr3_target_value1;
  189. natural_width cr3_target_value2;
  190. natural_width cr3_target_value3;
  191. natural_width exit_qualification;
  192. natural_width guest_linear_address;
  193. natural_width guest_cr0;
  194. natural_width guest_cr3;
  195. natural_width guest_cr4;
  196. natural_width guest_es_base;
  197. natural_width guest_cs_base;
  198. natural_width guest_ss_base;
  199. natural_width guest_ds_base;
  200. natural_width guest_fs_base;
  201. natural_width guest_gs_base;
  202. natural_width guest_ldtr_base;
  203. natural_width guest_tr_base;
  204. natural_width guest_gdtr_base;
  205. natural_width guest_idtr_base;
  206. natural_width guest_dr7;
  207. natural_width guest_rsp;
  208. natural_width guest_rip;
  209. natural_width guest_rflags;
  210. natural_width guest_pending_dbg_exceptions;
  211. natural_width guest_sysenter_esp;
  212. natural_width guest_sysenter_eip;
  213. natural_width host_cr0;
  214. natural_width host_cr3;
  215. natural_width host_cr4;
  216. natural_width host_fs_base;
  217. natural_width host_gs_base;
  218. natural_width host_tr_base;
  219. natural_width host_gdtr_base;
  220. natural_width host_idtr_base;
  221. natural_width host_ia32_sysenter_esp;
  222. natural_width host_ia32_sysenter_eip;
  223. natural_width host_rsp;
  224. natural_width host_rip;
  225. natural_width paddingl[8]; /* room for future expansion */
  226. u32 pin_based_vm_exec_control;
  227. u32 cpu_based_vm_exec_control;
  228. u32 exception_bitmap;
  229. u32 page_fault_error_code_mask;
  230. u32 page_fault_error_code_match;
  231. u32 cr3_target_count;
  232. u32 vm_exit_controls;
  233. u32 vm_exit_msr_store_count;
  234. u32 vm_exit_msr_load_count;
  235. u32 vm_entry_controls;
  236. u32 vm_entry_msr_load_count;
  237. u32 vm_entry_intr_info_field;
  238. u32 vm_entry_exception_error_code;
  239. u32 vm_entry_instruction_len;
  240. u32 tpr_threshold;
  241. u32 secondary_vm_exec_control;
  242. u32 vm_instruction_error;
  243. u32 vm_exit_reason;
  244. u32 vm_exit_intr_info;
  245. u32 vm_exit_intr_error_code;
  246. u32 idt_vectoring_info_field;
  247. u32 idt_vectoring_error_code;
  248. u32 vm_exit_instruction_len;
  249. u32 vmx_instruction_info;
  250. u32 guest_es_limit;
  251. u32 guest_cs_limit;
  252. u32 guest_ss_limit;
  253. u32 guest_ds_limit;
  254. u32 guest_fs_limit;
  255. u32 guest_gs_limit;
  256. u32 guest_ldtr_limit;
  257. u32 guest_tr_limit;
  258. u32 guest_gdtr_limit;
  259. u32 guest_idtr_limit;
  260. u32 guest_es_ar_bytes;
  261. u32 guest_cs_ar_bytes;
  262. u32 guest_ss_ar_bytes;
  263. u32 guest_ds_ar_bytes;
  264. u32 guest_fs_ar_bytes;
  265. u32 guest_gs_ar_bytes;
  266. u32 guest_ldtr_ar_bytes;
  267. u32 guest_tr_ar_bytes;
  268. u32 guest_interruptibility_info;
  269. u32 guest_activity_state;
  270. u32 guest_sysenter_cs;
  271. u32 host_ia32_sysenter_cs;
  272. u32 vmx_preemption_timer_value;
  273. u32 padding32[7]; /* room for future expansion */
  274. u16 virtual_processor_id;
  275. u16 guest_es_selector;
  276. u16 guest_cs_selector;
  277. u16 guest_ss_selector;
  278. u16 guest_ds_selector;
  279. u16 guest_fs_selector;
  280. u16 guest_gs_selector;
  281. u16 guest_ldtr_selector;
  282. u16 guest_tr_selector;
  283. u16 host_es_selector;
  284. u16 host_cs_selector;
  285. u16 host_ss_selector;
  286. u16 host_ds_selector;
  287. u16 host_fs_selector;
  288. u16 host_gs_selector;
  289. u16 host_tr_selector;
  290. };
  291. /*
  292. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  293. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  294. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  295. */
  296. #define VMCS12_REVISION 0x11e57ed0
  297. /*
  298. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  299. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  300. * current implementation, 4K are reserved to avoid future complications.
  301. */
  302. #define VMCS12_SIZE 0x1000
  303. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  304. struct vmcs02_list {
  305. struct list_head list;
  306. gpa_t vmptr;
  307. struct loaded_vmcs vmcs02;
  308. };
  309. /*
  310. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  311. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  312. */
  313. struct nested_vmx {
  314. /* Has the level1 guest done vmxon? */
  315. bool vmxon;
  316. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  317. gpa_t current_vmptr;
  318. /* The host-usable pointer to the above */
  319. struct page *current_vmcs12_page;
  320. struct vmcs12 *current_vmcs12;
  321. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  322. struct list_head vmcs02_pool;
  323. int vmcs02_num;
  324. u64 vmcs01_tsc_offset;
  325. /* L2 must run next, and mustn't decide to exit to L1. */
  326. bool nested_run_pending;
  327. /*
  328. * Guest pages referred to in vmcs02 with host-physical pointers, so
  329. * we must keep them pinned while L2 runs.
  330. */
  331. struct page *apic_access_page;
  332. };
  333. #define POSTED_INTR_ON 0
  334. /* Posted-Interrupt Descriptor */
  335. struct pi_desc {
  336. u32 pir[8]; /* Posted interrupt requested */
  337. u32 control; /* bit 0 of control is outstanding notification bit */
  338. u32 rsvd[7];
  339. } __aligned(64);
  340. static bool pi_test_and_set_on(struct pi_desc *pi_desc)
  341. {
  342. return test_and_set_bit(POSTED_INTR_ON,
  343. (unsigned long *)&pi_desc->control);
  344. }
  345. static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
  346. {
  347. return test_and_clear_bit(POSTED_INTR_ON,
  348. (unsigned long *)&pi_desc->control);
  349. }
  350. static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
  351. {
  352. return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
  353. }
  354. struct vcpu_vmx {
  355. struct kvm_vcpu vcpu;
  356. unsigned long host_rsp;
  357. u8 fail;
  358. u8 cpl;
  359. bool nmi_known_unmasked;
  360. u32 exit_intr_info;
  361. u32 idt_vectoring_info;
  362. ulong rflags;
  363. struct shared_msr_entry *guest_msrs;
  364. int nmsrs;
  365. int save_nmsrs;
  366. unsigned long host_idt_base;
  367. #ifdef CONFIG_X86_64
  368. u64 msr_host_kernel_gs_base;
  369. u64 msr_guest_kernel_gs_base;
  370. #endif
  371. /*
  372. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  373. * non-nested (L1) guest, it always points to vmcs01. For a nested
  374. * guest (L2), it points to a different VMCS.
  375. */
  376. struct loaded_vmcs vmcs01;
  377. struct loaded_vmcs *loaded_vmcs;
  378. bool __launched; /* temporary, used in vmx_vcpu_run */
  379. struct msr_autoload {
  380. unsigned nr;
  381. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  382. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  383. } msr_autoload;
  384. struct {
  385. int loaded;
  386. u16 fs_sel, gs_sel, ldt_sel;
  387. #ifdef CONFIG_X86_64
  388. u16 ds_sel, es_sel;
  389. #endif
  390. int gs_ldt_reload_needed;
  391. int fs_reload_needed;
  392. } host_state;
  393. struct {
  394. int vm86_active;
  395. ulong save_rflags;
  396. struct kvm_segment segs[8];
  397. } rmode;
  398. struct {
  399. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  400. struct kvm_save_segment {
  401. u16 selector;
  402. unsigned long base;
  403. u32 limit;
  404. u32 ar;
  405. } seg[8];
  406. } segment_cache;
  407. int vpid;
  408. bool emulation_required;
  409. /* Support for vnmi-less CPUs */
  410. int soft_vnmi_blocked;
  411. ktime_t entry_time;
  412. s64 vnmi_blocked_time;
  413. u32 exit_reason;
  414. bool rdtscp_enabled;
  415. /* Posted interrupt descriptor */
  416. struct pi_desc pi_desc;
  417. /* Support for a guest hypervisor (nested VMX) */
  418. struct nested_vmx nested;
  419. };
  420. enum segment_cache_field {
  421. SEG_FIELD_SEL = 0,
  422. SEG_FIELD_BASE = 1,
  423. SEG_FIELD_LIMIT = 2,
  424. SEG_FIELD_AR = 3,
  425. SEG_FIELD_NR = 4
  426. };
  427. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  428. {
  429. return container_of(vcpu, struct vcpu_vmx, vcpu);
  430. }
  431. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  432. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  433. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  434. [number##_HIGH] = VMCS12_OFFSET(name)+4
  435. static const unsigned short vmcs_field_to_offset_table[] = {
  436. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  437. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  438. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  439. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  440. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  441. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  442. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  443. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  444. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  445. FIELD(HOST_ES_SELECTOR, host_es_selector),
  446. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  447. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  448. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  449. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  450. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  451. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  452. FIELD64(IO_BITMAP_A, io_bitmap_a),
  453. FIELD64(IO_BITMAP_B, io_bitmap_b),
  454. FIELD64(MSR_BITMAP, msr_bitmap),
  455. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  456. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  457. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  458. FIELD64(TSC_OFFSET, tsc_offset),
  459. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  460. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  461. FIELD64(EPT_POINTER, ept_pointer),
  462. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  463. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  464. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  465. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  466. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  467. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  468. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  469. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  470. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  471. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  472. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  473. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  474. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  475. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  476. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  477. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  478. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  479. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  480. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  481. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  482. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  483. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  484. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  485. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  486. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  487. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  488. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  489. FIELD(TPR_THRESHOLD, tpr_threshold),
  490. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  491. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  492. FIELD(VM_EXIT_REASON, vm_exit_reason),
  493. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  494. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  495. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  496. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  497. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  498. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  499. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  500. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  501. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  502. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  503. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  504. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  505. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  506. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  507. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  508. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  509. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  510. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  511. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  512. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  513. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  514. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  515. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  516. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  517. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  518. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  519. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  520. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  521. FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
  522. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  523. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  524. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  525. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  526. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  527. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  528. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  529. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  530. FIELD(EXIT_QUALIFICATION, exit_qualification),
  531. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  532. FIELD(GUEST_CR0, guest_cr0),
  533. FIELD(GUEST_CR3, guest_cr3),
  534. FIELD(GUEST_CR4, guest_cr4),
  535. FIELD(GUEST_ES_BASE, guest_es_base),
  536. FIELD(GUEST_CS_BASE, guest_cs_base),
  537. FIELD(GUEST_SS_BASE, guest_ss_base),
  538. FIELD(GUEST_DS_BASE, guest_ds_base),
  539. FIELD(GUEST_FS_BASE, guest_fs_base),
  540. FIELD(GUEST_GS_BASE, guest_gs_base),
  541. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  542. FIELD(GUEST_TR_BASE, guest_tr_base),
  543. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  544. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  545. FIELD(GUEST_DR7, guest_dr7),
  546. FIELD(GUEST_RSP, guest_rsp),
  547. FIELD(GUEST_RIP, guest_rip),
  548. FIELD(GUEST_RFLAGS, guest_rflags),
  549. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  550. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  551. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  552. FIELD(HOST_CR0, host_cr0),
  553. FIELD(HOST_CR3, host_cr3),
  554. FIELD(HOST_CR4, host_cr4),
  555. FIELD(HOST_FS_BASE, host_fs_base),
  556. FIELD(HOST_GS_BASE, host_gs_base),
  557. FIELD(HOST_TR_BASE, host_tr_base),
  558. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  559. FIELD(HOST_IDTR_BASE, host_idtr_base),
  560. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  561. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  562. FIELD(HOST_RSP, host_rsp),
  563. FIELD(HOST_RIP, host_rip),
  564. };
  565. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  566. static inline short vmcs_field_to_offset(unsigned long field)
  567. {
  568. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  569. return -1;
  570. return vmcs_field_to_offset_table[field];
  571. }
  572. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  573. {
  574. return to_vmx(vcpu)->nested.current_vmcs12;
  575. }
  576. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  577. {
  578. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  579. if (is_error_page(page))
  580. return NULL;
  581. return page;
  582. }
  583. static void nested_release_page(struct page *page)
  584. {
  585. kvm_release_page_dirty(page);
  586. }
  587. static void nested_release_page_clean(struct page *page)
  588. {
  589. kvm_release_page_clean(page);
  590. }
  591. static u64 construct_eptp(unsigned long root_hpa);
  592. static void kvm_cpu_vmxon(u64 addr);
  593. static void kvm_cpu_vmxoff(void);
  594. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  595. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  596. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  597. struct kvm_segment *var, int seg);
  598. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  599. struct kvm_segment *var, int seg);
  600. static bool guest_state_valid(struct kvm_vcpu *vcpu);
  601. static u32 vmx_segment_access_rights(struct kvm_segment *var);
  602. static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
  603. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  604. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  605. /*
  606. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  607. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  608. */
  609. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  610. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  611. static unsigned long *vmx_io_bitmap_a;
  612. static unsigned long *vmx_io_bitmap_b;
  613. static unsigned long *vmx_msr_bitmap_legacy;
  614. static unsigned long *vmx_msr_bitmap_longmode;
  615. static unsigned long *vmx_msr_bitmap_legacy_x2apic;
  616. static unsigned long *vmx_msr_bitmap_longmode_x2apic;
  617. static bool cpu_has_load_ia32_efer;
  618. static bool cpu_has_load_perf_global_ctrl;
  619. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  620. static DEFINE_SPINLOCK(vmx_vpid_lock);
  621. static struct vmcs_config {
  622. int size;
  623. int order;
  624. u32 revision_id;
  625. u32 pin_based_exec_ctrl;
  626. u32 cpu_based_exec_ctrl;
  627. u32 cpu_based_2nd_exec_ctrl;
  628. u32 vmexit_ctrl;
  629. u32 vmentry_ctrl;
  630. } vmcs_config;
  631. static struct vmx_capability {
  632. u32 ept;
  633. u32 vpid;
  634. } vmx_capability;
  635. #define VMX_SEGMENT_FIELD(seg) \
  636. [VCPU_SREG_##seg] = { \
  637. .selector = GUEST_##seg##_SELECTOR, \
  638. .base = GUEST_##seg##_BASE, \
  639. .limit = GUEST_##seg##_LIMIT, \
  640. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  641. }
  642. static const struct kvm_vmx_segment_field {
  643. unsigned selector;
  644. unsigned base;
  645. unsigned limit;
  646. unsigned ar_bytes;
  647. } kvm_vmx_segment_fields[] = {
  648. VMX_SEGMENT_FIELD(CS),
  649. VMX_SEGMENT_FIELD(DS),
  650. VMX_SEGMENT_FIELD(ES),
  651. VMX_SEGMENT_FIELD(FS),
  652. VMX_SEGMENT_FIELD(GS),
  653. VMX_SEGMENT_FIELD(SS),
  654. VMX_SEGMENT_FIELD(TR),
  655. VMX_SEGMENT_FIELD(LDTR),
  656. };
  657. static u64 host_efer;
  658. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  659. /*
  660. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  661. * away by decrementing the array size.
  662. */
  663. static const u32 vmx_msr_index[] = {
  664. #ifdef CONFIG_X86_64
  665. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  666. #endif
  667. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  668. };
  669. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  670. static inline bool is_page_fault(u32 intr_info)
  671. {
  672. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  673. INTR_INFO_VALID_MASK)) ==
  674. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  675. }
  676. static inline bool is_no_device(u32 intr_info)
  677. {
  678. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  679. INTR_INFO_VALID_MASK)) ==
  680. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  681. }
  682. static inline bool is_invalid_opcode(u32 intr_info)
  683. {
  684. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  685. INTR_INFO_VALID_MASK)) ==
  686. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  687. }
  688. static inline bool is_external_interrupt(u32 intr_info)
  689. {
  690. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  691. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  692. }
  693. static inline bool is_machine_check(u32 intr_info)
  694. {
  695. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  696. INTR_INFO_VALID_MASK)) ==
  697. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  698. }
  699. static inline bool cpu_has_vmx_msr_bitmap(void)
  700. {
  701. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  702. }
  703. static inline bool cpu_has_vmx_tpr_shadow(void)
  704. {
  705. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  706. }
  707. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  708. {
  709. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  710. }
  711. static inline bool cpu_has_secondary_exec_ctrls(void)
  712. {
  713. return vmcs_config.cpu_based_exec_ctrl &
  714. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  715. }
  716. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  717. {
  718. return vmcs_config.cpu_based_2nd_exec_ctrl &
  719. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  720. }
  721. static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
  722. {
  723. return vmcs_config.cpu_based_2nd_exec_ctrl &
  724. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  725. }
  726. static inline bool cpu_has_vmx_apic_register_virt(void)
  727. {
  728. return vmcs_config.cpu_based_2nd_exec_ctrl &
  729. SECONDARY_EXEC_APIC_REGISTER_VIRT;
  730. }
  731. static inline bool cpu_has_vmx_virtual_intr_delivery(void)
  732. {
  733. return vmcs_config.cpu_based_2nd_exec_ctrl &
  734. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
  735. }
  736. static inline bool cpu_has_vmx_posted_intr(void)
  737. {
  738. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
  739. }
  740. static inline bool cpu_has_vmx_apicv(void)
  741. {
  742. return cpu_has_vmx_apic_register_virt() &&
  743. cpu_has_vmx_virtual_intr_delivery() &&
  744. cpu_has_vmx_posted_intr();
  745. }
  746. static inline bool cpu_has_vmx_flexpriority(void)
  747. {
  748. return cpu_has_vmx_tpr_shadow() &&
  749. cpu_has_vmx_virtualize_apic_accesses();
  750. }
  751. static inline bool cpu_has_vmx_ept_execute_only(void)
  752. {
  753. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  754. }
  755. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  756. {
  757. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  758. }
  759. static inline bool cpu_has_vmx_eptp_writeback(void)
  760. {
  761. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  762. }
  763. static inline bool cpu_has_vmx_ept_2m_page(void)
  764. {
  765. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  766. }
  767. static inline bool cpu_has_vmx_ept_1g_page(void)
  768. {
  769. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  770. }
  771. static inline bool cpu_has_vmx_ept_4levels(void)
  772. {
  773. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  774. }
  775. static inline bool cpu_has_vmx_ept_ad_bits(void)
  776. {
  777. return vmx_capability.ept & VMX_EPT_AD_BIT;
  778. }
  779. static inline bool cpu_has_vmx_invept_context(void)
  780. {
  781. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  782. }
  783. static inline bool cpu_has_vmx_invept_global(void)
  784. {
  785. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  786. }
  787. static inline bool cpu_has_vmx_invvpid_single(void)
  788. {
  789. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  790. }
  791. static inline bool cpu_has_vmx_invvpid_global(void)
  792. {
  793. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  794. }
  795. static inline bool cpu_has_vmx_ept(void)
  796. {
  797. return vmcs_config.cpu_based_2nd_exec_ctrl &
  798. SECONDARY_EXEC_ENABLE_EPT;
  799. }
  800. static inline bool cpu_has_vmx_unrestricted_guest(void)
  801. {
  802. return vmcs_config.cpu_based_2nd_exec_ctrl &
  803. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  804. }
  805. static inline bool cpu_has_vmx_ple(void)
  806. {
  807. return vmcs_config.cpu_based_2nd_exec_ctrl &
  808. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  809. }
  810. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  811. {
  812. return flexpriority_enabled && irqchip_in_kernel(kvm);
  813. }
  814. static inline bool cpu_has_vmx_vpid(void)
  815. {
  816. return vmcs_config.cpu_based_2nd_exec_ctrl &
  817. SECONDARY_EXEC_ENABLE_VPID;
  818. }
  819. static inline bool cpu_has_vmx_rdtscp(void)
  820. {
  821. return vmcs_config.cpu_based_2nd_exec_ctrl &
  822. SECONDARY_EXEC_RDTSCP;
  823. }
  824. static inline bool cpu_has_vmx_invpcid(void)
  825. {
  826. return vmcs_config.cpu_based_2nd_exec_ctrl &
  827. SECONDARY_EXEC_ENABLE_INVPCID;
  828. }
  829. static inline bool cpu_has_virtual_nmis(void)
  830. {
  831. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  832. }
  833. static inline bool cpu_has_vmx_wbinvd_exit(void)
  834. {
  835. return vmcs_config.cpu_based_2nd_exec_ctrl &
  836. SECONDARY_EXEC_WBINVD_EXITING;
  837. }
  838. static inline bool report_flexpriority(void)
  839. {
  840. return flexpriority_enabled;
  841. }
  842. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  843. {
  844. return vmcs12->cpu_based_vm_exec_control & bit;
  845. }
  846. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  847. {
  848. return (vmcs12->cpu_based_vm_exec_control &
  849. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  850. (vmcs12->secondary_vm_exec_control & bit);
  851. }
  852. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  853. struct kvm_vcpu *vcpu)
  854. {
  855. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  856. }
  857. static inline bool is_exception(u32 intr_info)
  858. {
  859. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  860. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  861. }
  862. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  863. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  864. struct vmcs12 *vmcs12,
  865. u32 reason, unsigned long qualification);
  866. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  867. {
  868. int i;
  869. for (i = 0; i < vmx->nmsrs; ++i)
  870. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  871. return i;
  872. return -1;
  873. }
  874. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  875. {
  876. struct {
  877. u64 vpid : 16;
  878. u64 rsvd : 48;
  879. u64 gva;
  880. } operand = { vpid, 0, gva };
  881. asm volatile (__ex(ASM_VMX_INVVPID)
  882. /* CF==1 or ZF==1 --> rc = -1 */
  883. "; ja 1f ; ud2 ; 1:"
  884. : : "a"(&operand), "c"(ext) : "cc", "memory");
  885. }
  886. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  887. {
  888. struct {
  889. u64 eptp, gpa;
  890. } operand = {eptp, gpa};
  891. asm volatile (__ex(ASM_VMX_INVEPT)
  892. /* CF==1 or ZF==1 --> rc = -1 */
  893. "; ja 1f ; ud2 ; 1:\n"
  894. : : "a" (&operand), "c" (ext) : "cc", "memory");
  895. }
  896. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  897. {
  898. int i;
  899. i = __find_msr_index(vmx, msr);
  900. if (i >= 0)
  901. return &vmx->guest_msrs[i];
  902. return NULL;
  903. }
  904. static void vmcs_clear(struct vmcs *vmcs)
  905. {
  906. u64 phys_addr = __pa(vmcs);
  907. u8 error;
  908. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  909. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  910. : "cc", "memory");
  911. if (error)
  912. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  913. vmcs, phys_addr);
  914. }
  915. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  916. {
  917. vmcs_clear(loaded_vmcs->vmcs);
  918. loaded_vmcs->cpu = -1;
  919. loaded_vmcs->launched = 0;
  920. }
  921. static void vmcs_load(struct vmcs *vmcs)
  922. {
  923. u64 phys_addr = __pa(vmcs);
  924. u8 error;
  925. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  926. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  927. : "cc", "memory");
  928. if (error)
  929. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  930. vmcs, phys_addr);
  931. }
  932. #ifdef CONFIG_KEXEC
  933. /*
  934. * This bitmap is used to indicate whether the vmclear
  935. * operation is enabled on all cpus. All disabled by
  936. * default.
  937. */
  938. static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
  939. static inline void crash_enable_local_vmclear(int cpu)
  940. {
  941. cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
  942. }
  943. static inline void crash_disable_local_vmclear(int cpu)
  944. {
  945. cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
  946. }
  947. static inline int crash_local_vmclear_enabled(int cpu)
  948. {
  949. return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
  950. }
  951. static void crash_vmclear_local_loaded_vmcss(void)
  952. {
  953. int cpu = raw_smp_processor_id();
  954. struct loaded_vmcs *v;
  955. if (!crash_local_vmclear_enabled(cpu))
  956. return;
  957. list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
  958. loaded_vmcss_on_cpu_link)
  959. vmcs_clear(v->vmcs);
  960. }
  961. #else
  962. static inline void crash_enable_local_vmclear(int cpu) { }
  963. static inline void crash_disable_local_vmclear(int cpu) { }
  964. #endif /* CONFIG_KEXEC */
  965. static void __loaded_vmcs_clear(void *arg)
  966. {
  967. struct loaded_vmcs *loaded_vmcs = arg;
  968. int cpu = raw_smp_processor_id();
  969. if (loaded_vmcs->cpu != cpu)
  970. return; /* vcpu migration can race with cpu offline */
  971. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  972. per_cpu(current_vmcs, cpu) = NULL;
  973. crash_disable_local_vmclear(cpu);
  974. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  975. /*
  976. * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
  977. * is before setting loaded_vmcs->vcpu to -1 which is done in
  978. * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
  979. * then adds the vmcs into percpu list before it is deleted.
  980. */
  981. smp_wmb();
  982. loaded_vmcs_init(loaded_vmcs);
  983. crash_enable_local_vmclear(cpu);
  984. }
  985. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  986. {
  987. int cpu = loaded_vmcs->cpu;
  988. if (cpu != -1)
  989. smp_call_function_single(cpu,
  990. __loaded_vmcs_clear, loaded_vmcs, 1);
  991. }
  992. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  993. {
  994. if (vmx->vpid == 0)
  995. return;
  996. if (cpu_has_vmx_invvpid_single())
  997. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  998. }
  999. static inline void vpid_sync_vcpu_global(void)
  1000. {
  1001. if (cpu_has_vmx_invvpid_global())
  1002. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  1003. }
  1004. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  1005. {
  1006. if (cpu_has_vmx_invvpid_single())
  1007. vpid_sync_vcpu_single(vmx);
  1008. else
  1009. vpid_sync_vcpu_global();
  1010. }
  1011. static inline void ept_sync_global(void)
  1012. {
  1013. if (cpu_has_vmx_invept_global())
  1014. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  1015. }
  1016. static inline void ept_sync_context(u64 eptp)
  1017. {
  1018. if (enable_ept) {
  1019. if (cpu_has_vmx_invept_context())
  1020. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  1021. else
  1022. ept_sync_global();
  1023. }
  1024. }
  1025. static __always_inline unsigned long vmcs_readl(unsigned long field)
  1026. {
  1027. unsigned long value;
  1028. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  1029. : "=a"(value) : "d"(field) : "cc");
  1030. return value;
  1031. }
  1032. static __always_inline u16 vmcs_read16(unsigned long field)
  1033. {
  1034. return vmcs_readl(field);
  1035. }
  1036. static __always_inline u32 vmcs_read32(unsigned long field)
  1037. {
  1038. return vmcs_readl(field);
  1039. }
  1040. static __always_inline u64 vmcs_read64(unsigned long field)
  1041. {
  1042. #ifdef CONFIG_X86_64
  1043. return vmcs_readl(field);
  1044. #else
  1045. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  1046. #endif
  1047. }
  1048. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  1049. {
  1050. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  1051. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  1052. dump_stack();
  1053. }
  1054. static void vmcs_writel(unsigned long field, unsigned long value)
  1055. {
  1056. u8 error;
  1057. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  1058. : "=q"(error) : "a"(value), "d"(field) : "cc");
  1059. if (unlikely(error))
  1060. vmwrite_error(field, value);
  1061. }
  1062. static void vmcs_write16(unsigned long field, u16 value)
  1063. {
  1064. vmcs_writel(field, value);
  1065. }
  1066. static void vmcs_write32(unsigned long field, u32 value)
  1067. {
  1068. vmcs_writel(field, value);
  1069. }
  1070. static void vmcs_write64(unsigned long field, u64 value)
  1071. {
  1072. vmcs_writel(field, value);
  1073. #ifndef CONFIG_X86_64
  1074. asm volatile ("");
  1075. vmcs_writel(field+1, value >> 32);
  1076. #endif
  1077. }
  1078. static void vmcs_clear_bits(unsigned long field, u32 mask)
  1079. {
  1080. vmcs_writel(field, vmcs_readl(field) & ~mask);
  1081. }
  1082. static void vmcs_set_bits(unsigned long field, u32 mask)
  1083. {
  1084. vmcs_writel(field, vmcs_readl(field) | mask);
  1085. }
  1086. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  1087. {
  1088. vmx->segment_cache.bitmask = 0;
  1089. }
  1090. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  1091. unsigned field)
  1092. {
  1093. bool ret;
  1094. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  1095. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  1096. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  1097. vmx->segment_cache.bitmask = 0;
  1098. }
  1099. ret = vmx->segment_cache.bitmask & mask;
  1100. vmx->segment_cache.bitmask |= mask;
  1101. return ret;
  1102. }
  1103. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  1104. {
  1105. u16 *p = &vmx->segment_cache.seg[seg].selector;
  1106. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  1107. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1108. return *p;
  1109. }
  1110. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1111. {
  1112. ulong *p = &vmx->segment_cache.seg[seg].base;
  1113. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1114. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1115. return *p;
  1116. }
  1117. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1118. {
  1119. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1120. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1121. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1122. return *p;
  1123. }
  1124. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1125. {
  1126. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1127. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1128. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1129. return *p;
  1130. }
  1131. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1132. {
  1133. u32 eb;
  1134. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1135. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1136. if ((vcpu->guest_debug &
  1137. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1138. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1139. eb |= 1u << BP_VECTOR;
  1140. if (to_vmx(vcpu)->rmode.vm86_active)
  1141. eb = ~0;
  1142. if (enable_ept)
  1143. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1144. if (vcpu->fpu_active)
  1145. eb &= ~(1u << NM_VECTOR);
  1146. /* When we are running a nested L2 guest and L1 specified for it a
  1147. * certain exception bitmap, we must trap the same exceptions and pass
  1148. * them to L1. When running L2, we will only handle the exceptions
  1149. * specified above if L1 did not want them.
  1150. */
  1151. if (is_guest_mode(vcpu))
  1152. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1153. vmcs_write32(EXCEPTION_BITMAP, eb);
  1154. }
  1155. static void clear_atomic_switch_msr_special(unsigned long entry,
  1156. unsigned long exit)
  1157. {
  1158. vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
  1159. vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
  1160. }
  1161. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1162. {
  1163. unsigned i;
  1164. struct msr_autoload *m = &vmx->msr_autoload;
  1165. switch (msr) {
  1166. case MSR_EFER:
  1167. if (cpu_has_load_ia32_efer) {
  1168. clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1169. VM_EXIT_LOAD_IA32_EFER);
  1170. return;
  1171. }
  1172. break;
  1173. case MSR_CORE_PERF_GLOBAL_CTRL:
  1174. if (cpu_has_load_perf_global_ctrl) {
  1175. clear_atomic_switch_msr_special(
  1176. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1177. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  1178. return;
  1179. }
  1180. break;
  1181. }
  1182. for (i = 0; i < m->nr; ++i)
  1183. if (m->guest[i].index == msr)
  1184. break;
  1185. if (i == m->nr)
  1186. return;
  1187. --m->nr;
  1188. m->guest[i] = m->guest[m->nr];
  1189. m->host[i] = m->host[m->nr];
  1190. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1191. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1192. }
  1193. static void add_atomic_switch_msr_special(unsigned long entry,
  1194. unsigned long exit, unsigned long guest_val_vmcs,
  1195. unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
  1196. {
  1197. vmcs_write64(guest_val_vmcs, guest_val);
  1198. vmcs_write64(host_val_vmcs, host_val);
  1199. vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
  1200. vmcs_set_bits(VM_EXIT_CONTROLS, exit);
  1201. }
  1202. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1203. u64 guest_val, u64 host_val)
  1204. {
  1205. unsigned i;
  1206. struct msr_autoload *m = &vmx->msr_autoload;
  1207. switch (msr) {
  1208. case MSR_EFER:
  1209. if (cpu_has_load_ia32_efer) {
  1210. add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1211. VM_EXIT_LOAD_IA32_EFER,
  1212. GUEST_IA32_EFER,
  1213. HOST_IA32_EFER,
  1214. guest_val, host_val);
  1215. return;
  1216. }
  1217. break;
  1218. case MSR_CORE_PERF_GLOBAL_CTRL:
  1219. if (cpu_has_load_perf_global_ctrl) {
  1220. add_atomic_switch_msr_special(
  1221. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1222. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
  1223. GUEST_IA32_PERF_GLOBAL_CTRL,
  1224. HOST_IA32_PERF_GLOBAL_CTRL,
  1225. guest_val, host_val);
  1226. return;
  1227. }
  1228. break;
  1229. }
  1230. for (i = 0; i < m->nr; ++i)
  1231. if (m->guest[i].index == msr)
  1232. break;
  1233. if (i == NR_AUTOLOAD_MSRS) {
  1234. printk_once(KERN_WARNING"Not enough mst switch entries. "
  1235. "Can't add msr %x\n", msr);
  1236. return;
  1237. } else if (i == m->nr) {
  1238. ++m->nr;
  1239. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1240. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1241. }
  1242. m->guest[i].index = msr;
  1243. m->guest[i].value = guest_val;
  1244. m->host[i].index = msr;
  1245. m->host[i].value = host_val;
  1246. }
  1247. static void reload_tss(void)
  1248. {
  1249. /*
  1250. * VT restores TR but not its size. Useless.
  1251. */
  1252. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1253. struct desc_struct *descs;
  1254. descs = (void *)gdt->address;
  1255. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1256. load_TR_desc();
  1257. }
  1258. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1259. {
  1260. u64 guest_efer;
  1261. u64 ignore_bits;
  1262. guest_efer = vmx->vcpu.arch.efer;
  1263. /*
  1264. * NX is emulated; LMA and LME handled by hardware; SCE meaningless
  1265. * outside long mode
  1266. */
  1267. ignore_bits = EFER_NX | EFER_SCE;
  1268. #ifdef CONFIG_X86_64
  1269. ignore_bits |= EFER_LMA | EFER_LME;
  1270. /* SCE is meaningful only in long mode on Intel */
  1271. if (guest_efer & EFER_LMA)
  1272. ignore_bits &= ~(u64)EFER_SCE;
  1273. #endif
  1274. guest_efer &= ~ignore_bits;
  1275. guest_efer |= host_efer & ignore_bits;
  1276. vmx->guest_msrs[efer_offset].data = guest_efer;
  1277. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1278. clear_atomic_switch_msr(vmx, MSR_EFER);
  1279. /* On ept, can't emulate nx, and must switch nx atomically */
  1280. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1281. guest_efer = vmx->vcpu.arch.efer;
  1282. if (!(guest_efer & EFER_LMA))
  1283. guest_efer &= ~EFER_LME;
  1284. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1285. return false;
  1286. }
  1287. return true;
  1288. }
  1289. static unsigned long segment_base(u16 selector)
  1290. {
  1291. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1292. struct desc_struct *d;
  1293. unsigned long table_base;
  1294. unsigned long v;
  1295. if (!(selector & ~3))
  1296. return 0;
  1297. table_base = gdt->address;
  1298. if (selector & 4) { /* from ldt */
  1299. u16 ldt_selector = kvm_read_ldt();
  1300. if (!(ldt_selector & ~3))
  1301. return 0;
  1302. table_base = segment_base(ldt_selector);
  1303. }
  1304. d = (struct desc_struct *)(table_base + (selector & ~7));
  1305. v = get_desc_base(d);
  1306. #ifdef CONFIG_X86_64
  1307. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1308. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1309. #endif
  1310. return v;
  1311. }
  1312. static inline unsigned long kvm_read_tr_base(void)
  1313. {
  1314. u16 tr;
  1315. asm("str %0" : "=g"(tr));
  1316. return segment_base(tr);
  1317. }
  1318. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1319. {
  1320. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1321. int i;
  1322. if (vmx->host_state.loaded)
  1323. return;
  1324. vmx->host_state.loaded = 1;
  1325. /*
  1326. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1327. * allow segment selectors with cpl > 0 or ti == 1.
  1328. */
  1329. vmx->host_state.ldt_sel = kvm_read_ldt();
  1330. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1331. savesegment(fs, vmx->host_state.fs_sel);
  1332. if (!(vmx->host_state.fs_sel & 7)) {
  1333. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1334. vmx->host_state.fs_reload_needed = 0;
  1335. } else {
  1336. vmcs_write16(HOST_FS_SELECTOR, 0);
  1337. vmx->host_state.fs_reload_needed = 1;
  1338. }
  1339. savesegment(gs, vmx->host_state.gs_sel);
  1340. if (!(vmx->host_state.gs_sel & 7))
  1341. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1342. else {
  1343. vmcs_write16(HOST_GS_SELECTOR, 0);
  1344. vmx->host_state.gs_ldt_reload_needed = 1;
  1345. }
  1346. #ifdef CONFIG_X86_64
  1347. savesegment(ds, vmx->host_state.ds_sel);
  1348. savesegment(es, vmx->host_state.es_sel);
  1349. #endif
  1350. #ifdef CONFIG_X86_64
  1351. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1352. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1353. #else
  1354. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1355. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1356. #endif
  1357. #ifdef CONFIG_X86_64
  1358. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1359. if (is_long_mode(&vmx->vcpu))
  1360. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1361. #endif
  1362. for (i = 0; i < vmx->save_nmsrs; ++i)
  1363. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1364. vmx->guest_msrs[i].data,
  1365. vmx->guest_msrs[i].mask);
  1366. }
  1367. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1368. {
  1369. if (!vmx->host_state.loaded)
  1370. return;
  1371. ++vmx->vcpu.stat.host_state_reload;
  1372. vmx->host_state.loaded = 0;
  1373. #ifdef CONFIG_X86_64
  1374. if (is_long_mode(&vmx->vcpu))
  1375. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1376. #endif
  1377. if (vmx->host_state.gs_ldt_reload_needed) {
  1378. kvm_load_ldt(vmx->host_state.ldt_sel);
  1379. #ifdef CONFIG_X86_64
  1380. load_gs_index(vmx->host_state.gs_sel);
  1381. #else
  1382. loadsegment(gs, vmx->host_state.gs_sel);
  1383. #endif
  1384. }
  1385. if (vmx->host_state.fs_reload_needed)
  1386. loadsegment(fs, vmx->host_state.fs_sel);
  1387. #ifdef CONFIG_X86_64
  1388. if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
  1389. loadsegment(ds, vmx->host_state.ds_sel);
  1390. loadsegment(es, vmx->host_state.es_sel);
  1391. }
  1392. #endif
  1393. reload_tss();
  1394. #ifdef CONFIG_X86_64
  1395. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1396. #endif
  1397. /*
  1398. * If the FPU is not active (through the host task or
  1399. * the guest vcpu), then restore the cr0.TS bit.
  1400. */
  1401. if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
  1402. stts();
  1403. load_gdt(&__get_cpu_var(host_gdt));
  1404. }
  1405. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1406. {
  1407. preempt_disable();
  1408. __vmx_load_host_state(vmx);
  1409. preempt_enable();
  1410. }
  1411. /*
  1412. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1413. * vcpu mutex is already taken.
  1414. */
  1415. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1416. {
  1417. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1418. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1419. if (!vmm_exclusive)
  1420. kvm_cpu_vmxon(phys_addr);
  1421. else if (vmx->loaded_vmcs->cpu != cpu)
  1422. loaded_vmcs_clear(vmx->loaded_vmcs);
  1423. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1424. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1425. vmcs_load(vmx->loaded_vmcs->vmcs);
  1426. }
  1427. if (vmx->loaded_vmcs->cpu != cpu) {
  1428. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1429. unsigned long sysenter_esp;
  1430. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1431. local_irq_disable();
  1432. crash_disable_local_vmclear(cpu);
  1433. /*
  1434. * Read loaded_vmcs->cpu should be before fetching
  1435. * loaded_vmcs->loaded_vmcss_on_cpu_link.
  1436. * See the comments in __loaded_vmcs_clear().
  1437. */
  1438. smp_rmb();
  1439. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1440. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1441. crash_enable_local_vmclear(cpu);
  1442. local_irq_enable();
  1443. /*
  1444. * Linux uses per-cpu TSS and GDT, so set these when switching
  1445. * processors.
  1446. */
  1447. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1448. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1449. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1450. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1451. vmx->loaded_vmcs->cpu = cpu;
  1452. }
  1453. }
  1454. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1455. {
  1456. __vmx_load_host_state(to_vmx(vcpu));
  1457. if (!vmm_exclusive) {
  1458. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1459. vcpu->cpu = -1;
  1460. kvm_cpu_vmxoff();
  1461. }
  1462. }
  1463. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1464. {
  1465. ulong cr0;
  1466. if (vcpu->fpu_active)
  1467. return;
  1468. vcpu->fpu_active = 1;
  1469. cr0 = vmcs_readl(GUEST_CR0);
  1470. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1471. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1472. vmcs_writel(GUEST_CR0, cr0);
  1473. update_exception_bitmap(vcpu);
  1474. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1475. if (is_guest_mode(vcpu))
  1476. vcpu->arch.cr0_guest_owned_bits &=
  1477. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1478. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1479. }
  1480. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1481. /*
  1482. * Return the cr0 value that a nested guest would read. This is a combination
  1483. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1484. * its hypervisor (cr0_read_shadow).
  1485. */
  1486. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1487. {
  1488. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1489. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1490. }
  1491. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1492. {
  1493. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1494. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1495. }
  1496. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1497. {
  1498. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1499. * set this *before* calling this function.
  1500. */
  1501. vmx_decache_cr0_guest_bits(vcpu);
  1502. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1503. update_exception_bitmap(vcpu);
  1504. vcpu->arch.cr0_guest_owned_bits = 0;
  1505. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1506. if (is_guest_mode(vcpu)) {
  1507. /*
  1508. * L1's specified read shadow might not contain the TS bit,
  1509. * so now that we turned on shadowing of this bit, we need to
  1510. * set this bit of the shadow. Like in nested_vmx_run we need
  1511. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1512. * up-to-date here because we just decached cr0.TS (and we'll
  1513. * only update vmcs12->guest_cr0 on nested exit).
  1514. */
  1515. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1516. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1517. (vcpu->arch.cr0 & X86_CR0_TS);
  1518. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1519. } else
  1520. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1521. }
  1522. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1523. {
  1524. unsigned long rflags, save_rflags;
  1525. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1526. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1527. rflags = vmcs_readl(GUEST_RFLAGS);
  1528. if (to_vmx(vcpu)->rmode.vm86_active) {
  1529. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1530. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1531. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1532. }
  1533. to_vmx(vcpu)->rflags = rflags;
  1534. }
  1535. return to_vmx(vcpu)->rflags;
  1536. }
  1537. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1538. {
  1539. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1540. to_vmx(vcpu)->rflags = rflags;
  1541. if (to_vmx(vcpu)->rmode.vm86_active) {
  1542. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1543. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1544. }
  1545. vmcs_writel(GUEST_RFLAGS, rflags);
  1546. }
  1547. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1548. {
  1549. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1550. int ret = 0;
  1551. if (interruptibility & GUEST_INTR_STATE_STI)
  1552. ret |= KVM_X86_SHADOW_INT_STI;
  1553. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1554. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1555. return ret & mask;
  1556. }
  1557. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1558. {
  1559. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1560. u32 interruptibility = interruptibility_old;
  1561. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1562. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1563. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1564. else if (mask & KVM_X86_SHADOW_INT_STI)
  1565. interruptibility |= GUEST_INTR_STATE_STI;
  1566. if ((interruptibility != interruptibility_old))
  1567. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1568. }
  1569. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1570. {
  1571. unsigned long rip;
  1572. rip = kvm_rip_read(vcpu);
  1573. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1574. kvm_rip_write(vcpu, rip);
  1575. /* skipping an emulated instruction also counts */
  1576. vmx_set_interrupt_shadow(vcpu, 0);
  1577. }
  1578. /*
  1579. * KVM wants to inject page-faults which it got to the guest. This function
  1580. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1581. * This function assumes it is called with the exit reason in vmcs02 being
  1582. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1583. * is running).
  1584. */
  1585. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1586. {
  1587. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1588. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1589. if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
  1590. return 0;
  1591. nested_vmx_vmexit(vcpu);
  1592. return 1;
  1593. }
  1594. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1595. bool has_error_code, u32 error_code,
  1596. bool reinject)
  1597. {
  1598. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1599. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1600. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1601. nested_pf_handled(vcpu))
  1602. return;
  1603. if (has_error_code) {
  1604. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1605. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1606. }
  1607. if (vmx->rmode.vm86_active) {
  1608. int inc_eip = 0;
  1609. if (kvm_exception_is_soft(nr))
  1610. inc_eip = vcpu->arch.event_exit_inst_len;
  1611. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1612. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1613. return;
  1614. }
  1615. if (kvm_exception_is_soft(nr)) {
  1616. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1617. vmx->vcpu.arch.event_exit_inst_len);
  1618. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1619. } else
  1620. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1621. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1622. }
  1623. static bool vmx_rdtscp_supported(void)
  1624. {
  1625. return cpu_has_vmx_rdtscp();
  1626. }
  1627. static bool vmx_invpcid_supported(void)
  1628. {
  1629. return cpu_has_vmx_invpcid() && enable_ept;
  1630. }
  1631. /*
  1632. * Swap MSR entry in host/guest MSR entry array.
  1633. */
  1634. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1635. {
  1636. struct shared_msr_entry tmp;
  1637. tmp = vmx->guest_msrs[to];
  1638. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1639. vmx->guest_msrs[from] = tmp;
  1640. }
  1641. static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
  1642. {
  1643. unsigned long *msr_bitmap;
  1644. if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
  1645. if (is_long_mode(vcpu))
  1646. msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
  1647. else
  1648. msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
  1649. } else {
  1650. if (is_long_mode(vcpu))
  1651. msr_bitmap = vmx_msr_bitmap_longmode;
  1652. else
  1653. msr_bitmap = vmx_msr_bitmap_legacy;
  1654. }
  1655. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1656. }
  1657. /*
  1658. * Set up the vmcs to automatically save and restore system
  1659. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1660. * mode, as fiddling with msrs is very expensive.
  1661. */
  1662. static void setup_msrs(struct vcpu_vmx *vmx)
  1663. {
  1664. int save_nmsrs, index;
  1665. save_nmsrs = 0;
  1666. #ifdef CONFIG_X86_64
  1667. if (is_long_mode(&vmx->vcpu)) {
  1668. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1669. if (index >= 0)
  1670. move_msr_up(vmx, index, save_nmsrs++);
  1671. index = __find_msr_index(vmx, MSR_LSTAR);
  1672. if (index >= 0)
  1673. move_msr_up(vmx, index, save_nmsrs++);
  1674. index = __find_msr_index(vmx, MSR_CSTAR);
  1675. if (index >= 0)
  1676. move_msr_up(vmx, index, save_nmsrs++);
  1677. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1678. if (index >= 0 && vmx->rdtscp_enabled)
  1679. move_msr_up(vmx, index, save_nmsrs++);
  1680. /*
  1681. * MSR_STAR is only needed on long mode guests, and only
  1682. * if efer.sce is enabled.
  1683. */
  1684. index = __find_msr_index(vmx, MSR_STAR);
  1685. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1686. move_msr_up(vmx, index, save_nmsrs++);
  1687. }
  1688. #endif
  1689. index = __find_msr_index(vmx, MSR_EFER);
  1690. if (index >= 0 && update_transition_efer(vmx, index))
  1691. move_msr_up(vmx, index, save_nmsrs++);
  1692. vmx->save_nmsrs = save_nmsrs;
  1693. if (cpu_has_vmx_msr_bitmap())
  1694. vmx_set_msr_bitmap(&vmx->vcpu);
  1695. }
  1696. /*
  1697. * reads and returns guest's timestamp counter "register"
  1698. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1699. */
  1700. static u64 guest_read_tsc(void)
  1701. {
  1702. u64 host_tsc, tsc_offset;
  1703. rdtscll(host_tsc);
  1704. tsc_offset = vmcs_read64(TSC_OFFSET);
  1705. return host_tsc + tsc_offset;
  1706. }
  1707. /*
  1708. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1709. * counter, even if a nested guest (L2) is currently running.
  1710. */
  1711. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
  1712. {
  1713. u64 tsc_offset;
  1714. tsc_offset = is_guest_mode(vcpu) ?
  1715. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1716. vmcs_read64(TSC_OFFSET);
  1717. return host_tsc + tsc_offset;
  1718. }
  1719. /*
  1720. * Engage any workarounds for mis-matched TSC rates. Currently limited to
  1721. * software catchup for faster rates on slower CPUs.
  1722. */
  1723. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
  1724. {
  1725. if (!scale)
  1726. return;
  1727. if (user_tsc_khz > tsc_khz) {
  1728. vcpu->arch.tsc_catchup = 1;
  1729. vcpu->arch.tsc_always_catchup = 1;
  1730. } else
  1731. WARN(1, "user requested TSC rate below hardware speed\n");
  1732. }
  1733. static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
  1734. {
  1735. return vmcs_read64(TSC_OFFSET);
  1736. }
  1737. /*
  1738. * writes 'offset' into guest's timestamp counter offset register
  1739. */
  1740. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1741. {
  1742. if (is_guest_mode(vcpu)) {
  1743. /*
  1744. * We're here if L1 chose not to trap WRMSR to TSC. According
  1745. * to the spec, this should set L1's TSC; The offset that L1
  1746. * set for L2 remains unchanged, and still needs to be added
  1747. * to the newly set TSC to get L2's TSC.
  1748. */
  1749. struct vmcs12 *vmcs12;
  1750. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1751. /* recalculate vmcs02.TSC_OFFSET: */
  1752. vmcs12 = get_vmcs12(vcpu);
  1753. vmcs_write64(TSC_OFFSET, offset +
  1754. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1755. vmcs12->tsc_offset : 0));
  1756. } else {
  1757. vmcs_write64(TSC_OFFSET, offset);
  1758. }
  1759. }
  1760. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
  1761. {
  1762. u64 offset = vmcs_read64(TSC_OFFSET);
  1763. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1764. if (is_guest_mode(vcpu)) {
  1765. /* Even when running L2, the adjustment needs to apply to L1 */
  1766. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1767. }
  1768. }
  1769. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1770. {
  1771. return target_tsc - native_read_tsc();
  1772. }
  1773. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1774. {
  1775. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1776. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1777. }
  1778. /*
  1779. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1780. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1781. * all guests if the "nested" module option is off, and can also be disabled
  1782. * for a single guest by disabling its VMX cpuid bit.
  1783. */
  1784. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1785. {
  1786. return nested && guest_cpuid_has_vmx(vcpu);
  1787. }
  1788. /*
  1789. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1790. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1791. * The same values should also be used to verify that vmcs12 control fields are
  1792. * valid during nested entry from L1 to L2.
  1793. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1794. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1795. * bit in the high half is on if the corresponding bit in the control field
  1796. * may be on. See also vmx_control_verify().
  1797. * TODO: allow these variables to be modified (downgraded) by module options
  1798. * or other means.
  1799. */
  1800. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1801. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1802. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1803. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1804. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1805. static u32 nested_vmx_misc_low, nested_vmx_misc_high;
  1806. static __init void nested_vmx_setup_ctls_msrs(void)
  1807. {
  1808. /*
  1809. * Note that as a general rule, the high half of the MSRs (bits in
  1810. * the control fields which may be 1) should be initialized by the
  1811. * intersection of the underlying hardware's MSR (i.e., features which
  1812. * can be supported) and the list of features we want to expose -
  1813. * because they are known to be properly supported in our code.
  1814. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1815. * be set to 0, meaning that L1 may turn off any of these bits. The
  1816. * reason is that if one of these bits is necessary, it will appear
  1817. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1818. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1819. * nested_vmx_exit_handled() will not pass related exits to L1.
  1820. * These rules have exceptions below.
  1821. */
  1822. /* pin-based controls */
  1823. rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
  1824. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
  1825. /*
  1826. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1827. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1828. */
  1829. nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
  1830. nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
  1831. PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
  1832. PIN_BASED_VMX_PREEMPTION_TIMER;
  1833. nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
  1834. /*
  1835. * Exit controls
  1836. * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
  1837. * 17 must be 1.
  1838. */
  1839. nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
  1840. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1841. #ifdef CONFIG_X86_64
  1842. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1843. #else
  1844. nested_vmx_exit_ctls_high = 0;
  1845. #endif
  1846. nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
  1847. /* entry controls */
  1848. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1849. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1850. /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
  1851. nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
  1852. nested_vmx_entry_ctls_high &=
  1853. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1854. nested_vmx_entry_ctls_high |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
  1855. /* cpu-based controls */
  1856. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1857. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1858. nested_vmx_procbased_ctls_low = 0;
  1859. nested_vmx_procbased_ctls_high &=
  1860. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1861. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1862. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1863. CPU_BASED_CR3_STORE_EXITING |
  1864. #ifdef CONFIG_X86_64
  1865. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1866. #endif
  1867. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1868. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1869. CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
  1870. CPU_BASED_PAUSE_EXITING |
  1871. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1872. /*
  1873. * We can allow some features even when not supported by the
  1874. * hardware. For example, L1 can specify an MSR bitmap - and we
  1875. * can use it to avoid exits to L1 - even when L0 runs L2
  1876. * without MSR bitmaps.
  1877. */
  1878. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1879. /* secondary cpu-based controls */
  1880. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1881. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1882. nested_vmx_secondary_ctls_low = 0;
  1883. nested_vmx_secondary_ctls_high &=
  1884. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1885. SECONDARY_EXEC_WBINVD_EXITING;
  1886. /* miscellaneous data */
  1887. rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
  1888. nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
  1889. VMX_MISC_SAVE_EFER_LMA;
  1890. nested_vmx_misc_high = 0;
  1891. }
  1892. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1893. {
  1894. /*
  1895. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1896. */
  1897. return ((control & high) | low) == control;
  1898. }
  1899. static inline u64 vmx_control_msr(u32 low, u32 high)
  1900. {
  1901. return low | ((u64)high << 32);
  1902. }
  1903. /*
  1904. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1905. * also let it use VMX-specific MSRs.
  1906. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1907. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1908. * like all other MSRs).
  1909. */
  1910. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1911. {
  1912. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1913. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1914. /*
  1915. * According to the spec, processors which do not support VMX
  1916. * should throw a #GP(0) when VMX capability MSRs are read.
  1917. */
  1918. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1919. return 1;
  1920. }
  1921. switch (msr_index) {
  1922. case MSR_IA32_FEATURE_CONTROL:
  1923. *pdata = 0;
  1924. break;
  1925. case MSR_IA32_VMX_BASIC:
  1926. /*
  1927. * This MSR reports some information about VMX support. We
  1928. * should return information about the VMX we emulate for the
  1929. * guest, and the VMCS structure we give it - not about the
  1930. * VMX support of the underlying hardware.
  1931. */
  1932. *pdata = VMCS12_REVISION |
  1933. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1934. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1935. break;
  1936. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1937. case MSR_IA32_VMX_PINBASED_CTLS:
  1938. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1939. nested_vmx_pinbased_ctls_high);
  1940. break;
  1941. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1942. case MSR_IA32_VMX_PROCBASED_CTLS:
  1943. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1944. nested_vmx_procbased_ctls_high);
  1945. break;
  1946. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1947. case MSR_IA32_VMX_EXIT_CTLS:
  1948. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1949. nested_vmx_exit_ctls_high);
  1950. break;
  1951. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1952. case MSR_IA32_VMX_ENTRY_CTLS:
  1953. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1954. nested_vmx_entry_ctls_high);
  1955. break;
  1956. case MSR_IA32_VMX_MISC:
  1957. *pdata = vmx_control_msr(nested_vmx_misc_low,
  1958. nested_vmx_misc_high);
  1959. break;
  1960. /*
  1961. * These MSRs specify bits which the guest must keep fixed (on or off)
  1962. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1963. * We picked the standard core2 setting.
  1964. */
  1965. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1966. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1967. case MSR_IA32_VMX_CR0_FIXED0:
  1968. *pdata = VMXON_CR0_ALWAYSON;
  1969. break;
  1970. case MSR_IA32_VMX_CR0_FIXED1:
  1971. *pdata = -1ULL;
  1972. break;
  1973. case MSR_IA32_VMX_CR4_FIXED0:
  1974. *pdata = VMXON_CR4_ALWAYSON;
  1975. break;
  1976. case MSR_IA32_VMX_CR4_FIXED1:
  1977. *pdata = -1ULL;
  1978. break;
  1979. case MSR_IA32_VMX_VMCS_ENUM:
  1980. *pdata = 0x1f;
  1981. break;
  1982. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1983. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1984. nested_vmx_secondary_ctls_high);
  1985. break;
  1986. case MSR_IA32_VMX_EPT_VPID_CAP:
  1987. /* Currently, no nested ept or nested vpid */
  1988. *pdata = 0;
  1989. break;
  1990. default:
  1991. return 0;
  1992. }
  1993. return 1;
  1994. }
  1995. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1996. {
  1997. if (!nested_vmx_allowed(vcpu))
  1998. return 0;
  1999. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  2000. /* TODO: the right thing. */
  2001. return 1;
  2002. /*
  2003. * No need to treat VMX capability MSRs specially: If we don't handle
  2004. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  2005. */
  2006. return 0;
  2007. }
  2008. /*
  2009. * Reads an msr value (of 'msr_index') into 'pdata'.
  2010. * Returns 0 on success, non-0 otherwise.
  2011. * Assumes vcpu_load() was already called.
  2012. */
  2013. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  2014. {
  2015. u64 data;
  2016. struct shared_msr_entry *msr;
  2017. if (!pdata) {
  2018. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  2019. return -EINVAL;
  2020. }
  2021. switch (msr_index) {
  2022. #ifdef CONFIG_X86_64
  2023. case MSR_FS_BASE:
  2024. data = vmcs_readl(GUEST_FS_BASE);
  2025. break;
  2026. case MSR_GS_BASE:
  2027. data = vmcs_readl(GUEST_GS_BASE);
  2028. break;
  2029. case MSR_KERNEL_GS_BASE:
  2030. vmx_load_host_state(to_vmx(vcpu));
  2031. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  2032. break;
  2033. #endif
  2034. case MSR_EFER:
  2035. return kvm_get_msr_common(vcpu, msr_index, pdata);
  2036. case MSR_IA32_TSC:
  2037. data = guest_read_tsc();
  2038. break;
  2039. case MSR_IA32_SYSENTER_CS:
  2040. data = vmcs_read32(GUEST_SYSENTER_CS);
  2041. break;
  2042. case MSR_IA32_SYSENTER_EIP:
  2043. data = vmcs_readl(GUEST_SYSENTER_EIP);
  2044. break;
  2045. case MSR_IA32_SYSENTER_ESP:
  2046. data = vmcs_readl(GUEST_SYSENTER_ESP);
  2047. break;
  2048. case MSR_TSC_AUX:
  2049. if (!to_vmx(vcpu)->rdtscp_enabled)
  2050. return 1;
  2051. /* Otherwise falls through */
  2052. default:
  2053. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  2054. return 0;
  2055. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  2056. if (msr) {
  2057. data = msr->data;
  2058. break;
  2059. }
  2060. return kvm_get_msr_common(vcpu, msr_index, pdata);
  2061. }
  2062. *pdata = data;
  2063. return 0;
  2064. }
  2065. /*
  2066. * Writes msr value into into the appropriate "register".
  2067. * Returns 0 on success, non-0 otherwise.
  2068. * Assumes vcpu_load() was already called.
  2069. */
  2070. static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
  2071. {
  2072. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2073. struct shared_msr_entry *msr;
  2074. int ret = 0;
  2075. u32 msr_index = msr_info->index;
  2076. u64 data = msr_info->data;
  2077. switch (msr_index) {
  2078. case MSR_EFER:
  2079. ret = kvm_set_msr_common(vcpu, msr_info);
  2080. break;
  2081. #ifdef CONFIG_X86_64
  2082. case MSR_FS_BASE:
  2083. vmx_segment_cache_clear(vmx);
  2084. vmcs_writel(GUEST_FS_BASE, data);
  2085. break;
  2086. case MSR_GS_BASE:
  2087. vmx_segment_cache_clear(vmx);
  2088. vmcs_writel(GUEST_GS_BASE, data);
  2089. break;
  2090. case MSR_KERNEL_GS_BASE:
  2091. vmx_load_host_state(vmx);
  2092. vmx->msr_guest_kernel_gs_base = data;
  2093. break;
  2094. #endif
  2095. case MSR_IA32_SYSENTER_CS:
  2096. vmcs_write32(GUEST_SYSENTER_CS, data);
  2097. break;
  2098. case MSR_IA32_SYSENTER_EIP:
  2099. vmcs_writel(GUEST_SYSENTER_EIP, data);
  2100. break;
  2101. case MSR_IA32_SYSENTER_ESP:
  2102. vmcs_writel(GUEST_SYSENTER_ESP, data);
  2103. break;
  2104. case MSR_IA32_TSC:
  2105. kvm_write_tsc(vcpu, msr_info);
  2106. break;
  2107. case MSR_IA32_CR_PAT:
  2108. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2109. vmcs_write64(GUEST_IA32_PAT, data);
  2110. vcpu->arch.pat = data;
  2111. break;
  2112. }
  2113. ret = kvm_set_msr_common(vcpu, msr_info);
  2114. break;
  2115. case MSR_IA32_TSC_ADJUST:
  2116. ret = kvm_set_msr_common(vcpu, msr_info);
  2117. break;
  2118. case MSR_TSC_AUX:
  2119. if (!vmx->rdtscp_enabled)
  2120. return 1;
  2121. /* Check reserved bit, higher 32 bits should be zero */
  2122. if ((data >> 32) != 0)
  2123. return 1;
  2124. /* Otherwise falls through */
  2125. default:
  2126. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  2127. break;
  2128. msr = find_msr_entry(vmx, msr_index);
  2129. if (msr) {
  2130. msr->data = data;
  2131. if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
  2132. preempt_disable();
  2133. kvm_set_shared_msr(msr->index, msr->data,
  2134. msr->mask);
  2135. preempt_enable();
  2136. }
  2137. break;
  2138. }
  2139. ret = kvm_set_msr_common(vcpu, msr_info);
  2140. }
  2141. return ret;
  2142. }
  2143. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  2144. {
  2145. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  2146. switch (reg) {
  2147. case VCPU_REGS_RSP:
  2148. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  2149. break;
  2150. case VCPU_REGS_RIP:
  2151. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  2152. break;
  2153. case VCPU_EXREG_PDPTR:
  2154. if (enable_ept)
  2155. ept_save_pdptrs(vcpu);
  2156. break;
  2157. default:
  2158. break;
  2159. }
  2160. }
  2161. static __init int cpu_has_kvm_support(void)
  2162. {
  2163. return cpu_has_vmx();
  2164. }
  2165. static __init int vmx_disabled_by_bios(void)
  2166. {
  2167. u64 msr;
  2168. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  2169. if (msr & FEATURE_CONTROL_LOCKED) {
  2170. /* launched w/ TXT and VMX disabled */
  2171. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2172. && tboot_enabled())
  2173. return 1;
  2174. /* launched w/o TXT and VMX only enabled w/ TXT */
  2175. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2176. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2177. && !tboot_enabled()) {
  2178. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  2179. "activate TXT before enabling KVM\n");
  2180. return 1;
  2181. }
  2182. /* launched w/o TXT and VMX disabled */
  2183. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2184. && !tboot_enabled())
  2185. return 1;
  2186. }
  2187. return 0;
  2188. }
  2189. static void kvm_cpu_vmxon(u64 addr)
  2190. {
  2191. asm volatile (ASM_VMX_VMXON_RAX
  2192. : : "a"(&addr), "m"(addr)
  2193. : "memory", "cc");
  2194. }
  2195. static int hardware_enable(void *garbage)
  2196. {
  2197. int cpu = raw_smp_processor_id();
  2198. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  2199. u64 old, test_bits;
  2200. if (read_cr4() & X86_CR4_VMXE)
  2201. return -EBUSY;
  2202. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  2203. /*
  2204. * Now we can enable the vmclear operation in kdump
  2205. * since the loaded_vmcss_on_cpu list on this cpu
  2206. * has been initialized.
  2207. *
  2208. * Though the cpu is not in VMX operation now, there
  2209. * is no problem to enable the vmclear operation
  2210. * for the loaded_vmcss_on_cpu list is empty!
  2211. */
  2212. crash_enable_local_vmclear(cpu);
  2213. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  2214. test_bits = FEATURE_CONTROL_LOCKED;
  2215. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2216. if (tboot_enabled())
  2217. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2218. if ((old & test_bits) != test_bits) {
  2219. /* enable and lock */
  2220. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2221. }
  2222. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2223. if (vmm_exclusive) {
  2224. kvm_cpu_vmxon(phys_addr);
  2225. ept_sync_global();
  2226. }
  2227. store_gdt(&__get_cpu_var(host_gdt));
  2228. return 0;
  2229. }
  2230. static void vmclear_local_loaded_vmcss(void)
  2231. {
  2232. int cpu = raw_smp_processor_id();
  2233. struct loaded_vmcs *v, *n;
  2234. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2235. loaded_vmcss_on_cpu_link)
  2236. __loaded_vmcs_clear(v);
  2237. }
  2238. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2239. * tricks.
  2240. */
  2241. static void kvm_cpu_vmxoff(void)
  2242. {
  2243. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2244. }
  2245. static void hardware_disable(void *garbage)
  2246. {
  2247. if (vmm_exclusive) {
  2248. vmclear_local_loaded_vmcss();
  2249. kvm_cpu_vmxoff();
  2250. }
  2251. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2252. }
  2253. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2254. u32 msr, u32 *result)
  2255. {
  2256. u32 vmx_msr_low, vmx_msr_high;
  2257. u32 ctl = ctl_min | ctl_opt;
  2258. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2259. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2260. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2261. /* Ensure minimum (required) set of control bits are supported. */
  2262. if (ctl_min & ~ctl)
  2263. return -EIO;
  2264. *result = ctl;
  2265. return 0;
  2266. }
  2267. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2268. {
  2269. u32 vmx_msr_low, vmx_msr_high;
  2270. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2271. return vmx_msr_high & ctl;
  2272. }
  2273. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2274. {
  2275. u32 vmx_msr_low, vmx_msr_high;
  2276. u32 min, opt, min2, opt2;
  2277. u32 _pin_based_exec_control = 0;
  2278. u32 _cpu_based_exec_control = 0;
  2279. u32 _cpu_based_2nd_exec_control = 0;
  2280. u32 _vmexit_control = 0;
  2281. u32 _vmentry_control = 0;
  2282. min = CPU_BASED_HLT_EXITING |
  2283. #ifdef CONFIG_X86_64
  2284. CPU_BASED_CR8_LOAD_EXITING |
  2285. CPU_BASED_CR8_STORE_EXITING |
  2286. #endif
  2287. CPU_BASED_CR3_LOAD_EXITING |
  2288. CPU_BASED_CR3_STORE_EXITING |
  2289. CPU_BASED_USE_IO_BITMAPS |
  2290. CPU_BASED_MOV_DR_EXITING |
  2291. CPU_BASED_USE_TSC_OFFSETING |
  2292. CPU_BASED_MWAIT_EXITING |
  2293. CPU_BASED_MONITOR_EXITING |
  2294. CPU_BASED_INVLPG_EXITING |
  2295. CPU_BASED_RDPMC_EXITING;
  2296. opt = CPU_BASED_TPR_SHADOW |
  2297. CPU_BASED_USE_MSR_BITMAPS |
  2298. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2299. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2300. &_cpu_based_exec_control) < 0)
  2301. return -EIO;
  2302. #ifdef CONFIG_X86_64
  2303. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2304. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2305. ~CPU_BASED_CR8_STORE_EXITING;
  2306. #endif
  2307. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2308. min2 = 0;
  2309. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2310. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
  2311. SECONDARY_EXEC_WBINVD_EXITING |
  2312. SECONDARY_EXEC_ENABLE_VPID |
  2313. SECONDARY_EXEC_ENABLE_EPT |
  2314. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2315. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2316. SECONDARY_EXEC_RDTSCP |
  2317. SECONDARY_EXEC_ENABLE_INVPCID |
  2318. SECONDARY_EXEC_APIC_REGISTER_VIRT |
  2319. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
  2320. if (adjust_vmx_controls(min2, opt2,
  2321. MSR_IA32_VMX_PROCBASED_CTLS2,
  2322. &_cpu_based_2nd_exec_control) < 0)
  2323. return -EIO;
  2324. }
  2325. #ifndef CONFIG_X86_64
  2326. if (!(_cpu_based_2nd_exec_control &
  2327. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2328. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2329. #endif
  2330. if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2331. _cpu_based_2nd_exec_control &= ~(
  2332. SECONDARY_EXEC_APIC_REGISTER_VIRT |
  2333. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
  2334. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
  2335. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2336. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2337. enabled */
  2338. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2339. CPU_BASED_CR3_STORE_EXITING |
  2340. CPU_BASED_INVLPG_EXITING);
  2341. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2342. vmx_capability.ept, vmx_capability.vpid);
  2343. }
  2344. min = 0;
  2345. #ifdef CONFIG_X86_64
  2346. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2347. #endif
  2348. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
  2349. VM_EXIT_ACK_INTR_ON_EXIT;
  2350. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2351. &_vmexit_control) < 0)
  2352. return -EIO;
  2353. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2354. opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
  2355. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2356. &_pin_based_exec_control) < 0)
  2357. return -EIO;
  2358. if (!(_cpu_based_2nd_exec_control &
  2359. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
  2360. !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
  2361. _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
  2362. min = 0;
  2363. opt = VM_ENTRY_LOAD_IA32_PAT;
  2364. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2365. &_vmentry_control) < 0)
  2366. return -EIO;
  2367. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2368. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2369. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2370. return -EIO;
  2371. #ifdef CONFIG_X86_64
  2372. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2373. if (vmx_msr_high & (1u<<16))
  2374. return -EIO;
  2375. #endif
  2376. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2377. if (((vmx_msr_high >> 18) & 15) != 6)
  2378. return -EIO;
  2379. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2380. vmcs_conf->order = get_order(vmcs_config.size);
  2381. vmcs_conf->revision_id = vmx_msr_low;
  2382. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2383. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2384. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2385. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2386. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2387. cpu_has_load_ia32_efer =
  2388. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2389. VM_ENTRY_LOAD_IA32_EFER)
  2390. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2391. VM_EXIT_LOAD_IA32_EFER);
  2392. cpu_has_load_perf_global_ctrl =
  2393. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2394. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
  2395. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2396. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  2397. /*
  2398. * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
  2399. * but due to arrata below it can't be used. Workaround is to use
  2400. * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
  2401. *
  2402. * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
  2403. *
  2404. * AAK155 (model 26)
  2405. * AAP115 (model 30)
  2406. * AAT100 (model 37)
  2407. * BC86,AAY89,BD102 (model 44)
  2408. * BA97 (model 46)
  2409. *
  2410. */
  2411. if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
  2412. switch (boot_cpu_data.x86_model) {
  2413. case 26:
  2414. case 30:
  2415. case 37:
  2416. case 44:
  2417. case 46:
  2418. cpu_has_load_perf_global_ctrl = false;
  2419. printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
  2420. "does not work properly. Using workaround\n");
  2421. break;
  2422. default:
  2423. break;
  2424. }
  2425. }
  2426. return 0;
  2427. }
  2428. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2429. {
  2430. int node = cpu_to_node(cpu);
  2431. struct page *pages;
  2432. struct vmcs *vmcs;
  2433. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2434. if (!pages)
  2435. return NULL;
  2436. vmcs = page_address(pages);
  2437. memset(vmcs, 0, vmcs_config.size);
  2438. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2439. return vmcs;
  2440. }
  2441. static struct vmcs *alloc_vmcs(void)
  2442. {
  2443. return alloc_vmcs_cpu(raw_smp_processor_id());
  2444. }
  2445. static void free_vmcs(struct vmcs *vmcs)
  2446. {
  2447. free_pages((unsigned long)vmcs, vmcs_config.order);
  2448. }
  2449. /*
  2450. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2451. */
  2452. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2453. {
  2454. if (!loaded_vmcs->vmcs)
  2455. return;
  2456. loaded_vmcs_clear(loaded_vmcs);
  2457. free_vmcs(loaded_vmcs->vmcs);
  2458. loaded_vmcs->vmcs = NULL;
  2459. }
  2460. static void free_kvm_area(void)
  2461. {
  2462. int cpu;
  2463. for_each_possible_cpu(cpu) {
  2464. free_vmcs(per_cpu(vmxarea, cpu));
  2465. per_cpu(vmxarea, cpu) = NULL;
  2466. }
  2467. }
  2468. static __init int alloc_kvm_area(void)
  2469. {
  2470. int cpu;
  2471. for_each_possible_cpu(cpu) {
  2472. struct vmcs *vmcs;
  2473. vmcs = alloc_vmcs_cpu(cpu);
  2474. if (!vmcs) {
  2475. free_kvm_area();
  2476. return -ENOMEM;
  2477. }
  2478. per_cpu(vmxarea, cpu) = vmcs;
  2479. }
  2480. return 0;
  2481. }
  2482. static __init int hardware_setup(void)
  2483. {
  2484. if (setup_vmcs_config(&vmcs_config) < 0)
  2485. return -EIO;
  2486. if (boot_cpu_has(X86_FEATURE_NX))
  2487. kvm_enable_efer_bits(EFER_NX);
  2488. if (!cpu_has_vmx_vpid())
  2489. enable_vpid = 0;
  2490. if (!cpu_has_vmx_ept() ||
  2491. !cpu_has_vmx_ept_4levels()) {
  2492. enable_ept = 0;
  2493. enable_unrestricted_guest = 0;
  2494. enable_ept_ad_bits = 0;
  2495. }
  2496. if (!cpu_has_vmx_ept_ad_bits())
  2497. enable_ept_ad_bits = 0;
  2498. if (!cpu_has_vmx_unrestricted_guest())
  2499. enable_unrestricted_guest = 0;
  2500. if (!cpu_has_vmx_flexpriority())
  2501. flexpriority_enabled = 0;
  2502. if (!cpu_has_vmx_tpr_shadow())
  2503. kvm_x86_ops->update_cr8_intercept = NULL;
  2504. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2505. kvm_disable_largepages();
  2506. if (!cpu_has_vmx_ple())
  2507. ple_gap = 0;
  2508. if (!cpu_has_vmx_apicv())
  2509. enable_apicv = 0;
  2510. if (enable_apicv)
  2511. kvm_x86_ops->update_cr8_intercept = NULL;
  2512. else {
  2513. kvm_x86_ops->hwapic_irr_update = NULL;
  2514. kvm_x86_ops->deliver_posted_interrupt = NULL;
  2515. kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
  2516. }
  2517. if (nested)
  2518. nested_vmx_setup_ctls_msrs();
  2519. return alloc_kvm_area();
  2520. }
  2521. static __exit void hardware_unsetup(void)
  2522. {
  2523. free_kvm_area();
  2524. }
  2525. static bool emulation_required(struct kvm_vcpu *vcpu)
  2526. {
  2527. return emulate_invalid_guest_state && !guest_state_valid(vcpu);
  2528. }
  2529. static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
  2530. struct kvm_segment *save)
  2531. {
  2532. if (!emulate_invalid_guest_state) {
  2533. /*
  2534. * CS and SS RPL should be equal during guest entry according
  2535. * to VMX spec, but in reality it is not always so. Since vcpu
  2536. * is in the middle of the transition from real mode to
  2537. * protected mode it is safe to assume that RPL 0 is a good
  2538. * default value.
  2539. */
  2540. if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
  2541. save->selector &= ~SELECTOR_RPL_MASK;
  2542. save->dpl = save->selector & SELECTOR_RPL_MASK;
  2543. save->s = 1;
  2544. }
  2545. vmx_set_segment(vcpu, save, seg);
  2546. }
  2547. static void enter_pmode(struct kvm_vcpu *vcpu)
  2548. {
  2549. unsigned long flags;
  2550. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2551. /*
  2552. * Update real mode segment cache. It may be not up-to-date if sement
  2553. * register was written while vcpu was in a guest mode.
  2554. */
  2555. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2556. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2557. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2558. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2559. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2560. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2561. vmx->rmode.vm86_active = 0;
  2562. vmx_segment_cache_clear(vmx);
  2563. vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2564. flags = vmcs_readl(GUEST_RFLAGS);
  2565. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2566. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2567. vmcs_writel(GUEST_RFLAGS, flags);
  2568. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2569. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2570. update_exception_bitmap(vcpu);
  2571. fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
  2572. fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
  2573. fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2574. fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2575. fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2576. fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2577. /* CPL is always 0 when CPU enters protected mode */
  2578. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2579. vmx->cpl = 0;
  2580. }
  2581. static void fix_rmode_seg(int seg, struct kvm_segment *save)
  2582. {
  2583. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2584. struct kvm_segment var = *save;
  2585. var.dpl = 0x3;
  2586. if (seg == VCPU_SREG_CS)
  2587. var.type = 0x3;
  2588. if (!emulate_invalid_guest_state) {
  2589. var.selector = var.base >> 4;
  2590. var.base = var.base & 0xffff0;
  2591. var.limit = 0xffff;
  2592. var.g = 0;
  2593. var.db = 0;
  2594. var.present = 1;
  2595. var.s = 1;
  2596. var.l = 0;
  2597. var.unusable = 0;
  2598. var.type = 0x3;
  2599. var.avl = 0;
  2600. if (save->base & 0xf)
  2601. printk_once(KERN_WARNING "kvm: segment base is not "
  2602. "paragraph aligned when entering "
  2603. "protected mode (seg=%d)", seg);
  2604. }
  2605. vmcs_write16(sf->selector, var.selector);
  2606. vmcs_write32(sf->base, var.base);
  2607. vmcs_write32(sf->limit, var.limit);
  2608. vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
  2609. }
  2610. static void enter_rmode(struct kvm_vcpu *vcpu)
  2611. {
  2612. unsigned long flags;
  2613. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2614. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2615. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2616. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2617. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2618. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2619. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2620. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2621. vmx->rmode.vm86_active = 1;
  2622. /*
  2623. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2624. * vcpu. Warn the user that an update is overdue.
  2625. */
  2626. if (!vcpu->kvm->arch.tss_addr)
  2627. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2628. "called before entering vcpu\n");
  2629. vmx_segment_cache_clear(vmx);
  2630. vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
  2631. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2632. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2633. flags = vmcs_readl(GUEST_RFLAGS);
  2634. vmx->rmode.save_rflags = flags;
  2635. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2636. vmcs_writel(GUEST_RFLAGS, flags);
  2637. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2638. update_exception_bitmap(vcpu);
  2639. fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
  2640. fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
  2641. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2642. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2643. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2644. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2645. kvm_mmu_reset_context(vcpu);
  2646. }
  2647. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2648. {
  2649. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2650. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2651. if (!msr)
  2652. return;
  2653. /*
  2654. * Force kernel_gs_base reloading before EFER changes, as control
  2655. * of this msr depends on is_long_mode().
  2656. */
  2657. vmx_load_host_state(to_vmx(vcpu));
  2658. vcpu->arch.efer = efer;
  2659. if (efer & EFER_LMA) {
  2660. vmcs_write32(VM_ENTRY_CONTROLS,
  2661. vmcs_read32(VM_ENTRY_CONTROLS) |
  2662. VM_ENTRY_IA32E_MODE);
  2663. msr->data = efer;
  2664. } else {
  2665. vmcs_write32(VM_ENTRY_CONTROLS,
  2666. vmcs_read32(VM_ENTRY_CONTROLS) &
  2667. ~VM_ENTRY_IA32E_MODE);
  2668. msr->data = efer & ~EFER_LME;
  2669. }
  2670. setup_msrs(vmx);
  2671. }
  2672. #ifdef CONFIG_X86_64
  2673. static void enter_lmode(struct kvm_vcpu *vcpu)
  2674. {
  2675. u32 guest_tr_ar;
  2676. vmx_segment_cache_clear(to_vmx(vcpu));
  2677. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2678. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2679. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2680. __func__);
  2681. vmcs_write32(GUEST_TR_AR_BYTES,
  2682. (guest_tr_ar & ~AR_TYPE_MASK)
  2683. | AR_TYPE_BUSY_64_TSS);
  2684. }
  2685. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2686. }
  2687. static void exit_lmode(struct kvm_vcpu *vcpu)
  2688. {
  2689. vmcs_write32(VM_ENTRY_CONTROLS,
  2690. vmcs_read32(VM_ENTRY_CONTROLS)
  2691. & ~VM_ENTRY_IA32E_MODE);
  2692. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2693. }
  2694. #endif
  2695. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2696. {
  2697. vpid_sync_context(to_vmx(vcpu));
  2698. if (enable_ept) {
  2699. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2700. return;
  2701. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2702. }
  2703. }
  2704. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2705. {
  2706. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2707. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2708. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2709. }
  2710. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2711. {
  2712. if (enable_ept && is_paging(vcpu))
  2713. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2714. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2715. }
  2716. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2717. {
  2718. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2719. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2720. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2721. }
  2722. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2723. {
  2724. if (!test_bit(VCPU_EXREG_PDPTR,
  2725. (unsigned long *)&vcpu->arch.regs_dirty))
  2726. return;
  2727. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2728. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2729. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2730. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2731. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2732. }
  2733. }
  2734. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2735. {
  2736. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2737. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2738. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2739. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2740. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2741. }
  2742. __set_bit(VCPU_EXREG_PDPTR,
  2743. (unsigned long *)&vcpu->arch.regs_avail);
  2744. __set_bit(VCPU_EXREG_PDPTR,
  2745. (unsigned long *)&vcpu->arch.regs_dirty);
  2746. }
  2747. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2748. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2749. unsigned long cr0,
  2750. struct kvm_vcpu *vcpu)
  2751. {
  2752. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2753. vmx_decache_cr3(vcpu);
  2754. if (!(cr0 & X86_CR0_PG)) {
  2755. /* From paging/starting to nonpaging */
  2756. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2757. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2758. (CPU_BASED_CR3_LOAD_EXITING |
  2759. CPU_BASED_CR3_STORE_EXITING));
  2760. vcpu->arch.cr0 = cr0;
  2761. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2762. } else if (!is_paging(vcpu)) {
  2763. /* From nonpaging to paging */
  2764. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2765. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2766. ~(CPU_BASED_CR3_LOAD_EXITING |
  2767. CPU_BASED_CR3_STORE_EXITING));
  2768. vcpu->arch.cr0 = cr0;
  2769. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2770. }
  2771. if (!(cr0 & X86_CR0_WP))
  2772. *hw_cr0 &= ~X86_CR0_WP;
  2773. }
  2774. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2775. {
  2776. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2777. unsigned long hw_cr0;
  2778. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
  2779. if (enable_unrestricted_guest)
  2780. hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2781. else {
  2782. hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
  2783. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2784. enter_pmode(vcpu);
  2785. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2786. enter_rmode(vcpu);
  2787. }
  2788. #ifdef CONFIG_X86_64
  2789. if (vcpu->arch.efer & EFER_LME) {
  2790. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2791. enter_lmode(vcpu);
  2792. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2793. exit_lmode(vcpu);
  2794. }
  2795. #endif
  2796. if (enable_ept)
  2797. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2798. if (!vcpu->fpu_active)
  2799. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2800. vmcs_writel(CR0_READ_SHADOW, cr0);
  2801. vmcs_writel(GUEST_CR0, hw_cr0);
  2802. vcpu->arch.cr0 = cr0;
  2803. /* depends on vcpu->arch.cr0 to be set to a new value */
  2804. vmx->emulation_required = emulation_required(vcpu);
  2805. }
  2806. static u64 construct_eptp(unsigned long root_hpa)
  2807. {
  2808. u64 eptp;
  2809. /* TODO write the value reading from MSR */
  2810. eptp = VMX_EPT_DEFAULT_MT |
  2811. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2812. if (enable_ept_ad_bits)
  2813. eptp |= VMX_EPT_AD_ENABLE_BIT;
  2814. eptp |= (root_hpa & PAGE_MASK);
  2815. return eptp;
  2816. }
  2817. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2818. {
  2819. unsigned long guest_cr3;
  2820. u64 eptp;
  2821. guest_cr3 = cr3;
  2822. if (enable_ept) {
  2823. eptp = construct_eptp(cr3);
  2824. vmcs_write64(EPT_POINTER, eptp);
  2825. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2826. vcpu->kvm->arch.ept_identity_map_addr;
  2827. ept_load_pdptrs(vcpu);
  2828. }
  2829. vmx_flush_tlb(vcpu);
  2830. vmcs_writel(GUEST_CR3, guest_cr3);
  2831. }
  2832. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2833. {
  2834. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2835. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2836. if (cr4 & X86_CR4_VMXE) {
  2837. /*
  2838. * To use VMXON (and later other VMX instructions), a guest
  2839. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2840. * So basically the check on whether to allow nested VMX
  2841. * is here.
  2842. */
  2843. if (!nested_vmx_allowed(vcpu))
  2844. return 1;
  2845. }
  2846. if (to_vmx(vcpu)->nested.vmxon &&
  2847. ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
  2848. return 1;
  2849. vcpu->arch.cr4 = cr4;
  2850. if (enable_ept) {
  2851. if (!is_paging(vcpu)) {
  2852. hw_cr4 &= ~X86_CR4_PAE;
  2853. hw_cr4 |= X86_CR4_PSE;
  2854. /*
  2855. * SMEP is disabled if CPU is in non-paging mode in
  2856. * hardware. However KVM always uses paging mode to
  2857. * emulate guest non-paging mode with TDP.
  2858. * To emulate this behavior, SMEP needs to be manually
  2859. * disabled when guest switches to non-paging mode.
  2860. */
  2861. hw_cr4 &= ~X86_CR4_SMEP;
  2862. } else if (!(cr4 & X86_CR4_PAE)) {
  2863. hw_cr4 &= ~X86_CR4_PAE;
  2864. }
  2865. }
  2866. vmcs_writel(CR4_READ_SHADOW, cr4);
  2867. vmcs_writel(GUEST_CR4, hw_cr4);
  2868. return 0;
  2869. }
  2870. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2871. struct kvm_segment *var, int seg)
  2872. {
  2873. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2874. u32 ar;
  2875. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  2876. *var = vmx->rmode.segs[seg];
  2877. if (seg == VCPU_SREG_TR
  2878. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2879. return;
  2880. var->base = vmx_read_guest_seg_base(vmx, seg);
  2881. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2882. return;
  2883. }
  2884. var->base = vmx_read_guest_seg_base(vmx, seg);
  2885. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2886. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2887. ar = vmx_read_guest_seg_ar(vmx, seg);
  2888. var->type = ar & 15;
  2889. var->s = (ar >> 4) & 1;
  2890. var->dpl = (ar >> 5) & 3;
  2891. var->present = (ar >> 7) & 1;
  2892. var->avl = (ar >> 12) & 1;
  2893. var->l = (ar >> 13) & 1;
  2894. var->db = (ar >> 14) & 1;
  2895. var->g = (ar >> 15) & 1;
  2896. var->unusable = (ar >> 16) & 1;
  2897. }
  2898. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2899. {
  2900. struct kvm_segment s;
  2901. if (to_vmx(vcpu)->rmode.vm86_active) {
  2902. vmx_get_segment(vcpu, &s, seg);
  2903. return s.base;
  2904. }
  2905. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2906. }
  2907. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2908. {
  2909. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2910. if (!is_protmode(vcpu))
  2911. return 0;
  2912. if (!is_long_mode(vcpu)
  2913. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2914. return 3;
  2915. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2916. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2917. vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
  2918. }
  2919. return vmx->cpl;
  2920. }
  2921. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2922. {
  2923. u32 ar;
  2924. if (var->unusable || !var->present)
  2925. ar = 1 << 16;
  2926. else {
  2927. ar = var->type & 15;
  2928. ar |= (var->s & 1) << 4;
  2929. ar |= (var->dpl & 3) << 5;
  2930. ar |= (var->present & 1) << 7;
  2931. ar |= (var->avl & 1) << 12;
  2932. ar |= (var->l & 1) << 13;
  2933. ar |= (var->db & 1) << 14;
  2934. ar |= (var->g & 1) << 15;
  2935. }
  2936. return ar;
  2937. }
  2938. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2939. struct kvm_segment *var, int seg)
  2940. {
  2941. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2942. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2943. vmx_segment_cache_clear(vmx);
  2944. if (seg == VCPU_SREG_CS)
  2945. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2946. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  2947. vmx->rmode.segs[seg] = *var;
  2948. if (seg == VCPU_SREG_TR)
  2949. vmcs_write16(sf->selector, var->selector);
  2950. else if (var->s)
  2951. fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
  2952. goto out;
  2953. }
  2954. vmcs_writel(sf->base, var->base);
  2955. vmcs_write32(sf->limit, var->limit);
  2956. vmcs_write16(sf->selector, var->selector);
  2957. /*
  2958. * Fix the "Accessed" bit in AR field of segment registers for older
  2959. * qemu binaries.
  2960. * IA32 arch specifies that at the time of processor reset the
  2961. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2962. * is setting it to 0 in the userland code. This causes invalid guest
  2963. * state vmexit when "unrestricted guest" mode is turned on.
  2964. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2965. * tree. Newer qemu binaries with that qemu fix would not need this
  2966. * kvm hack.
  2967. */
  2968. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2969. var->type |= 0x1; /* Accessed */
  2970. vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
  2971. out:
  2972. vmx->emulation_required |= emulation_required(vcpu);
  2973. }
  2974. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2975. {
  2976. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2977. *db = (ar >> 14) & 1;
  2978. *l = (ar >> 13) & 1;
  2979. }
  2980. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2981. {
  2982. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2983. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2984. }
  2985. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2986. {
  2987. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2988. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2989. }
  2990. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2991. {
  2992. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2993. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2994. }
  2995. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2996. {
  2997. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2998. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2999. }
  3000. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  3001. {
  3002. struct kvm_segment var;
  3003. u32 ar;
  3004. vmx_get_segment(vcpu, &var, seg);
  3005. var.dpl = 0x3;
  3006. if (seg == VCPU_SREG_CS)
  3007. var.type = 0x3;
  3008. ar = vmx_segment_access_rights(&var);
  3009. if (var.base != (var.selector << 4))
  3010. return false;
  3011. if (var.limit != 0xffff)
  3012. return false;
  3013. if (ar != 0xf3)
  3014. return false;
  3015. return true;
  3016. }
  3017. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  3018. {
  3019. struct kvm_segment cs;
  3020. unsigned int cs_rpl;
  3021. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3022. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  3023. if (cs.unusable)
  3024. return false;
  3025. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  3026. return false;
  3027. if (!cs.s)
  3028. return false;
  3029. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  3030. if (cs.dpl > cs_rpl)
  3031. return false;
  3032. } else {
  3033. if (cs.dpl != cs_rpl)
  3034. return false;
  3035. }
  3036. if (!cs.present)
  3037. return false;
  3038. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  3039. return true;
  3040. }
  3041. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  3042. {
  3043. struct kvm_segment ss;
  3044. unsigned int ss_rpl;
  3045. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3046. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  3047. if (ss.unusable)
  3048. return true;
  3049. if (ss.type != 3 && ss.type != 7)
  3050. return false;
  3051. if (!ss.s)
  3052. return false;
  3053. if (ss.dpl != ss_rpl) /* DPL != RPL */
  3054. return false;
  3055. if (!ss.present)
  3056. return false;
  3057. return true;
  3058. }
  3059. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  3060. {
  3061. struct kvm_segment var;
  3062. unsigned int rpl;
  3063. vmx_get_segment(vcpu, &var, seg);
  3064. rpl = var.selector & SELECTOR_RPL_MASK;
  3065. if (var.unusable)
  3066. return true;
  3067. if (!var.s)
  3068. return false;
  3069. if (!var.present)
  3070. return false;
  3071. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  3072. if (var.dpl < rpl) /* DPL < RPL */
  3073. return false;
  3074. }
  3075. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  3076. * rights flags
  3077. */
  3078. return true;
  3079. }
  3080. static bool tr_valid(struct kvm_vcpu *vcpu)
  3081. {
  3082. struct kvm_segment tr;
  3083. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  3084. if (tr.unusable)
  3085. return false;
  3086. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3087. return false;
  3088. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  3089. return false;
  3090. if (!tr.present)
  3091. return false;
  3092. return true;
  3093. }
  3094. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  3095. {
  3096. struct kvm_segment ldtr;
  3097. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  3098. if (ldtr.unusable)
  3099. return true;
  3100. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3101. return false;
  3102. if (ldtr.type != 2)
  3103. return false;
  3104. if (!ldtr.present)
  3105. return false;
  3106. return true;
  3107. }
  3108. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  3109. {
  3110. struct kvm_segment cs, ss;
  3111. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3112. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3113. return ((cs.selector & SELECTOR_RPL_MASK) ==
  3114. (ss.selector & SELECTOR_RPL_MASK));
  3115. }
  3116. /*
  3117. * Check if guest state is valid. Returns true if valid, false if
  3118. * not.
  3119. * We assume that registers are always usable
  3120. */
  3121. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  3122. {
  3123. if (enable_unrestricted_guest)
  3124. return true;
  3125. /* real mode guest state checks */
  3126. if (!is_protmode(vcpu)) {
  3127. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  3128. return false;
  3129. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  3130. return false;
  3131. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  3132. return false;
  3133. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  3134. return false;
  3135. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  3136. return false;
  3137. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  3138. return false;
  3139. } else {
  3140. /* protected mode guest state checks */
  3141. if (!cs_ss_rpl_check(vcpu))
  3142. return false;
  3143. if (!code_segment_valid(vcpu))
  3144. return false;
  3145. if (!stack_segment_valid(vcpu))
  3146. return false;
  3147. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  3148. return false;
  3149. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  3150. return false;
  3151. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  3152. return false;
  3153. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  3154. return false;
  3155. if (!tr_valid(vcpu))
  3156. return false;
  3157. if (!ldtr_valid(vcpu))
  3158. return false;
  3159. }
  3160. /* TODO:
  3161. * - Add checks on RIP
  3162. * - Add checks on RFLAGS
  3163. */
  3164. return true;
  3165. }
  3166. static int init_rmode_tss(struct kvm *kvm)
  3167. {
  3168. gfn_t fn;
  3169. u16 data = 0;
  3170. int r, idx, ret = 0;
  3171. idx = srcu_read_lock(&kvm->srcu);
  3172. fn = kvm->arch.tss_addr >> PAGE_SHIFT;
  3173. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3174. if (r < 0)
  3175. goto out;
  3176. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  3177. r = kvm_write_guest_page(kvm, fn++, &data,
  3178. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  3179. if (r < 0)
  3180. goto out;
  3181. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  3182. if (r < 0)
  3183. goto out;
  3184. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3185. if (r < 0)
  3186. goto out;
  3187. data = ~0;
  3188. r = kvm_write_guest_page(kvm, fn, &data,
  3189. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  3190. sizeof(u8));
  3191. if (r < 0)
  3192. goto out;
  3193. ret = 1;
  3194. out:
  3195. srcu_read_unlock(&kvm->srcu, idx);
  3196. return ret;
  3197. }
  3198. static int init_rmode_identity_map(struct kvm *kvm)
  3199. {
  3200. int i, idx, r, ret;
  3201. pfn_t identity_map_pfn;
  3202. u32 tmp;
  3203. if (!enable_ept)
  3204. return 1;
  3205. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  3206. printk(KERN_ERR "EPT: identity-mapping pagetable "
  3207. "haven't been allocated!\n");
  3208. return 0;
  3209. }
  3210. if (likely(kvm->arch.ept_identity_pagetable_done))
  3211. return 1;
  3212. ret = 0;
  3213. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  3214. idx = srcu_read_lock(&kvm->srcu);
  3215. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  3216. if (r < 0)
  3217. goto out;
  3218. /* Set up identity-mapping pagetable for EPT in real mode */
  3219. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  3220. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  3221. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  3222. r = kvm_write_guest_page(kvm, identity_map_pfn,
  3223. &tmp, i * sizeof(tmp), sizeof(tmp));
  3224. if (r < 0)
  3225. goto out;
  3226. }
  3227. kvm->arch.ept_identity_pagetable_done = true;
  3228. ret = 1;
  3229. out:
  3230. srcu_read_unlock(&kvm->srcu, idx);
  3231. return ret;
  3232. }
  3233. static void seg_setup(int seg)
  3234. {
  3235. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3236. unsigned int ar;
  3237. vmcs_write16(sf->selector, 0);
  3238. vmcs_writel(sf->base, 0);
  3239. vmcs_write32(sf->limit, 0xffff);
  3240. ar = 0x93;
  3241. if (seg == VCPU_SREG_CS)
  3242. ar |= 0x08; /* code segment */
  3243. vmcs_write32(sf->ar_bytes, ar);
  3244. }
  3245. static int alloc_apic_access_page(struct kvm *kvm)
  3246. {
  3247. struct page *page;
  3248. struct kvm_userspace_memory_region kvm_userspace_mem;
  3249. int r = 0;
  3250. mutex_lock(&kvm->slots_lock);
  3251. if (kvm->arch.apic_access_page)
  3252. goto out;
  3253. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  3254. kvm_userspace_mem.flags = 0;
  3255. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  3256. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3257. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
  3258. if (r)
  3259. goto out;
  3260. page = gfn_to_page(kvm, 0xfee00);
  3261. if (is_error_page(page)) {
  3262. r = -EFAULT;
  3263. goto out;
  3264. }
  3265. kvm->arch.apic_access_page = page;
  3266. out:
  3267. mutex_unlock(&kvm->slots_lock);
  3268. return r;
  3269. }
  3270. static int alloc_identity_pagetable(struct kvm *kvm)
  3271. {
  3272. struct page *page;
  3273. struct kvm_userspace_memory_region kvm_userspace_mem;
  3274. int r = 0;
  3275. mutex_lock(&kvm->slots_lock);
  3276. if (kvm->arch.ept_identity_pagetable)
  3277. goto out;
  3278. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3279. kvm_userspace_mem.flags = 0;
  3280. kvm_userspace_mem.guest_phys_addr =
  3281. kvm->arch.ept_identity_map_addr;
  3282. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3283. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
  3284. if (r)
  3285. goto out;
  3286. page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3287. if (is_error_page(page)) {
  3288. r = -EFAULT;
  3289. goto out;
  3290. }
  3291. kvm->arch.ept_identity_pagetable = page;
  3292. out:
  3293. mutex_unlock(&kvm->slots_lock);
  3294. return r;
  3295. }
  3296. static void allocate_vpid(struct vcpu_vmx *vmx)
  3297. {
  3298. int vpid;
  3299. vmx->vpid = 0;
  3300. if (!enable_vpid)
  3301. return;
  3302. spin_lock(&vmx_vpid_lock);
  3303. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3304. if (vpid < VMX_NR_VPIDS) {
  3305. vmx->vpid = vpid;
  3306. __set_bit(vpid, vmx_vpid_bitmap);
  3307. }
  3308. spin_unlock(&vmx_vpid_lock);
  3309. }
  3310. static void free_vpid(struct vcpu_vmx *vmx)
  3311. {
  3312. if (!enable_vpid)
  3313. return;
  3314. spin_lock(&vmx_vpid_lock);
  3315. if (vmx->vpid != 0)
  3316. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3317. spin_unlock(&vmx_vpid_lock);
  3318. }
  3319. #define MSR_TYPE_R 1
  3320. #define MSR_TYPE_W 2
  3321. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
  3322. u32 msr, int type)
  3323. {
  3324. int f = sizeof(unsigned long);
  3325. if (!cpu_has_vmx_msr_bitmap())
  3326. return;
  3327. /*
  3328. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3329. * have the write-low and read-high bitmap offsets the wrong way round.
  3330. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3331. */
  3332. if (msr <= 0x1fff) {
  3333. if (type & MSR_TYPE_R)
  3334. /* read-low */
  3335. __clear_bit(msr, msr_bitmap + 0x000 / f);
  3336. if (type & MSR_TYPE_W)
  3337. /* write-low */
  3338. __clear_bit(msr, msr_bitmap + 0x800 / f);
  3339. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3340. msr &= 0x1fff;
  3341. if (type & MSR_TYPE_R)
  3342. /* read-high */
  3343. __clear_bit(msr, msr_bitmap + 0x400 / f);
  3344. if (type & MSR_TYPE_W)
  3345. /* write-high */
  3346. __clear_bit(msr, msr_bitmap + 0xc00 / f);
  3347. }
  3348. }
  3349. static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
  3350. u32 msr, int type)
  3351. {
  3352. int f = sizeof(unsigned long);
  3353. if (!cpu_has_vmx_msr_bitmap())
  3354. return;
  3355. /*
  3356. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3357. * have the write-low and read-high bitmap offsets the wrong way round.
  3358. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3359. */
  3360. if (msr <= 0x1fff) {
  3361. if (type & MSR_TYPE_R)
  3362. /* read-low */
  3363. __set_bit(msr, msr_bitmap + 0x000 / f);
  3364. if (type & MSR_TYPE_W)
  3365. /* write-low */
  3366. __set_bit(msr, msr_bitmap + 0x800 / f);
  3367. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3368. msr &= 0x1fff;
  3369. if (type & MSR_TYPE_R)
  3370. /* read-high */
  3371. __set_bit(msr, msr_bitmap + 0x400 / f);
  3372. if (type & MSR_TYPE_W)
  3373. /* write-high */
  3374. __set_bit(msr, msr_bitmap + 0xc00 / f);
  3375. }
  3376. }
  3377. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3378. {
  3379. if (!longmode_only)
  3380. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
  3381. msr, MSR_TYPE_R | MSR_TYPE_W);
  3382. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
  3383. msr, MSR_TYPE_R | MSR_TYPE_W);
  3384. }
  3385. static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
  3386. {
  3387. __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3388. msr, MSR_TYPE_R);
  3389. __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3390. msr, MSR_TYPE_R);
  3391. }
  3392. static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
  3393. {
  3394. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3395. msr, MSR_TYPE_R);
  3396. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3397. msr, MSR_TYPE_R);
  3398. }
  3399. static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
  3400. {
  3401. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3402. msr, MSR_TYPE_W);
  3403. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3404. msr, MSR_TYPE_W);
  3405. }
  3406. static int vmx_vm_has_apicv(struct kvm *kvm)
  3407. {
  3408. return enable_apicv && irqchip_in_kernel(kvm);
  3409. }
  3410. /*
  3411. * Send interrupt to vcpu via posted interrupt way.
  3412. * 1. If target vcpu is running(non-root mode), send posted interrupt
  3413. * notification to vcpu and hardware will sync PIR to vIRR atomically.
  3414. * 2. If target vcpu isn't running(root mode), kick it to pick up the
  3415. * interrupt from PIR in next vmentry.
  3416. */
  3417. static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
  3418. {
  3419. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3420. int r;
  3421. if (pi_test_and_set_pir(vector, &vmx->pi_desc))
  3422. return;
  3423. r = pi_test_and_set_on(&vmx->pi_desc);
  3424. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3425. if (!r && (vcpu->mode == IN_GUEST_MODE))
  3426. apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
  3427. POSTED_INTR_VECTOR);
  3428. else
  3429. kvm_vcpu_kick(vcpu);
  3430. }
  3431. static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
  3432. {
  3433. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3434. if (!pi_test_and_clear_on(&vmx->pi_desc))
  3435. return;
  3436. kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
  3437. }
  3438. static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
  3439. {
  3440. return;
  3441. }
  3442. /*
  3443. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3444. * will not change in the lifetime of the guest.
  3445. * Note that host-state that does change is set elsewhere. E.g., host-state
  3446. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3447. */
  3448. static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
  3449. {
  3450. u32 low32, high32;
  3451. unsigned long tmpl;
  3452. struct desc_ptr dt;
  3453. vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
  3454. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3455. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3456. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3457. #ifdef CONFIG_X86_64
  3458. /*
  3459. * Load null selectors, so we can avoid reloading them in
  3460. * __vmx_load_host_state(), in case userspace uses the null selectors
  3461. * too (the expected case).
  3462. */
  3463. vmcs_write16(HOST_DS_SELECTOR, 0);
  3464. vmcs_write16(HOST_ES_SELECTOR, 0);
  3465. #else
  3466. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3467. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3468. #endif
  3469. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3470. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3471. native_store_idt(&dt);
  3472. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3473. vmx->host_idt_base = dt.address;
  3474. vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
  3475. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3476. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3477. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3478. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3479. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3480. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3481. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3482. }
  3483. }
  3484. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3485. {
  3486. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3487. if (enable_ept)
  3488. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3489. if (is_guest_mode(&vmx->vcpu))
  3490. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3491. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3492. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3493. }
  3494. static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
  3495. {
  3496. u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
  3497. if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
  3498. pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
  3499. return pin_based_exec_ctrl;
  3500. }
  3501. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3502. {
  3503. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3504. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3505. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3506. #ifdef CONFIG_X86_64
  3507. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3508. CPU_BASED_CR8_LOAD_EXITING;
  3509. #endif
  3510. }
  3511. if (!enable_ept)
  3512. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3513. CPU_BASED_CR3_LOAD_EXITING |
  3514. CPU_BASED_INVLPG_EXITING;
  3515. return exec_control;
  3516. }
  3517. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3518. {
  3519. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3520. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3521. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3522. if (vmx->vpid == 0)
  3523. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3524. if (!enable_ept) {
  3525. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3526. enable_unrestricted_guest = 0;
  3527. /* Enable INVPCID for non-ept guests may cause performance regression. */
  3528. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  3529. }
  3530. if (!enable_unrestricted_guest)
  3531. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3532. if (!ple_gap)
  3533. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3534. if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
  3535. exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
  3536. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
  3537. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  3538. return exec_control;
  3539. }
  3540. static void ept_set_mmio_spte_mask(void)
  3541. {
  3542. /*
  3543. * EPT Misconfigurations can be generated if the value of bits 2:0
  3544. * of an EPT paging-structure entry is 110b (write/execute).
  3545. * Also, magic bits (0xffull << 49) is set to quickly identify mmio
  3546. * spte.
  3547. */
  3548. kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
  3549. }
  3550. /*
  3551. * Sets up the vmcs for emulated real mode.
  3552. */
  3553. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3554. {
  3555. #ifdef CONFIG_X86_64
  3556. unsigned long a;
  3557. #endif
  3558. int i;
  3559. /* I/O */
  3560. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3561. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3562. if (cpu_has_vmx_msr_bitmap())
  3563. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3564. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3565. /* Control */
  3566. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
  3567. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3568. if (cpu_has_secondary_exec_ctrls()) {
  3569. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3570. vmx_secondary_exec_control(vmx));
  3571. }
  3572. if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
  3573. vmcs_write64(EOI_EXIT_BITMAP0, 0);
  3574. vmcs_write64(EOI_EXIT_BITMAP1, 0);
  3575. vmcs_write64(EOI_EXIT_BITMAP2, 0);
  3576. vmcs_write64(EOI_EXIT_BITMAP3, 0);
  3577. vmcs_write16(GUEST_INTR_STATUS, 0);
  3578. vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
  3579. vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
  3580. }
  3581. if (ple_gap) {
  3582. vmcs_write32(PLE_GAP, ple_gap);
  3583. vmcs_write32(PLE_WINDOW, ple_window);
  3584. }
  3585. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3586. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3587. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3588. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3589. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3590. vmx_set_constant_host_state(vmx);
  3591. #ifdef CONFIG_X86_64
  3592. rdmsrl(MSR_FS_BASE, a);
  3593. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3594. rdmsrl(MSR_GS_BASE, a);
  3595. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3596. #else
  3597. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3598. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3599. #endif
  3600. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3601. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3602. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3603. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3604. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3605. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3606. u32 msr_low, msr_high;
  3607. u64 host_pat;
  3608. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3609. host_pat = msr_low | ((u64) msr_high << 32);
  3610. /* Write the default value follow host pat */
  3611. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3612. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3613. vmx->vcpu.arch.pat = host_pat;
  3614. }
  3615. for (i = 0; i < NR_VMX_MSR; ++i) {
  3616. u32 index = vmx_msr_index[i];
  3617. u32 data_low, data_high;
  3618. int j = vmx->nmsrs;
  3619. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3620. continue;
  3621. if (wrmsr_safe(index, data_low, data_high) < 0)
  3622. continue;
  3623. vmx->guest_msrs[j].index = i;
  3624. vmx->guest_msrs[j].data = 0;
  3625. vmx->guest_msrs[j].mask = -1ull;
  3626. ++vmx->nmsrs;
  3627. }
  3628. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3629. /* 22.2.1, 20.8.1 */
  3630. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3631. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3632. set_cr4_guest_host_mask(vmx);
  3633. return 0;
  3634. }
  3635. static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3636. {
  3637. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3638. u64 msr;
  3639. vmx->rmode.vm86_active = 0;
  3640. vmx->soft_vnmi_blocked = 0;
  3641. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3642. kvm_set_cr8(&vmx->vcpu, 0);
  3643. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3644. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3645. msr |= MSR_IA32_APICBASE_BSP;
  3646. kvm_set_apic_base(&vmx->vcpu, msr);
  3647. vmx_segment_cache_clear(vmx);
  3648. seg_setup(VCPU_SREG_CS);
  3649. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3650. vmcs_write32(GUEST_CS_BASE, 0xffff0000);
  3651. seg_setup(VCPU_SREG_DS);
  3652. seg_setup(VCPU_SREG_ES);
  3653. seg_setup(VCPU_SREG_FS);
  3654. seg_setup(VCPU_SREG_GS);
  3655. seg_setup(VCPU_SREG_SS);
  3656. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3657. vmcs_writel(GUEST_TR_BASE, 0);
  3658. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3659. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3660. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3661. vmcs_writel(GUEST_LDTR_BASE, 0);
  3662. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3663. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3664. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3665. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3666. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3667. vmcs_writel(GUEST_RFLAGS, 0x02);
  3668. kvm_rip_write(vcpu, 0xfff0);
  3669. vmcs_writel(GUEST_GDTR_BASE, 0);
  3670. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3671. vmcs_writel(GUEST_IDTR_BASE, 0);
  3672. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3673. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3674. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3675. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3676. /* Special registers */
  3677. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3678. setup_msrs(vmx);
  3679. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3680. if (cpu_has_vmx_tpr_shadow()) {
  3681. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3682. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3683. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3684. __pa(vmx->vcpu.arch.apic->regs));
  3685. vmcs_write32(TPR_THRESHOLD, 0);
  3686. }
  3687. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3688. vmcs_write64(APIC_ACCESS_ADDR,
  3689. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3690. if (vmx_vm_has_apicv(vcpu->kvm))
  3691. memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
  3692. if (vmx->vpid != 0)
  3693. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3694. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3695. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3696. vmx_set_cr4(&vmx->vcpu, 0);
  3697. vmx_set_efer(&vmx->vcpu, 0);
  3698. vmx_fpu_activate(&vmx->vcpu);
  3699. update_exception_bitmap(&vmx->vcpu);
  3700. vpid_sync_context(vmx);
  3701. }
  3702. /*
  3703. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3704. * For most existing hypervisors, this will always return true.
  3705. */
  3706. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3707. {
  3708. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3709. PIN_BASED_EXT_INTR_MASK;
  3710. }
  3711. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3712. {
  3713. u32 cpu_based_vm_exec_control;
  3714. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3715. /*
  3716. * We get here if vmx_interrupt_allowed() said we can't
  3717. * inject to L1 now because L2 must run. Ask L2 to exit
  3718. * right after entry, so we can inject to L1 more promptly.
  3719. */
  3720. kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
  3721. return;
  3722. }
  3723. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3724. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3725. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3726. }
  3727. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3728. {
  3729. u32 cpu_based_vm_exec_control;
  3730. if (!cpu_has_virtual_nmis()) {
  3731. enable_irq_window(vcpu);
  3732. return;
  3733. }
  3734. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3735. enable_irq_window(vcpu);
  3736. return;
  3737. }
  3738. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3739. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3740. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3741. }
  3742. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3743. {
  3744. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3745. uint32_t intr;
  3746. int irq = vcpu->arch.interrupt.nr;
  3747. trace_kvm_inj_virq(irq);
  3748. ++vcpu->stat.irq_injections;
  3749. if (vmx->rmode.vm86_active) {
  3750. int inc_eip = 0;
  3751. if (vcpu->arch.interrupt.soft)
  3752. inc_eip = vcpu->arch.event_exit_inst_len;
  3753. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3754. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3755. return;
  3756. }
  3757. intr = irq | INTR_INFO_VALID_MASK;
  3758. if (vcpu->arch.interrupt.soft) {
  3759. intr |= INTR_TYPE_SOFT_INTR;
  3760. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3761. vmx->vcpu.arch.event_exit_inst_len);
  3762. } else
  3763. intr |= INTR_TYPE_EXT_INTR;
  3764. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3765. }
  3766. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3767. {
  3768. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3769. if (is_guest_mode(vcpu))
  3770. return;
  3771. if (!cpu_has_virtual_nmis()) {
  3772. /*
  3773. * Tracking the NMI-blocked state in software is built upon
  3774. * finding the next open IRQ window. This, in turn, depends on
  3775. * well-behaving guests: They have to keep IRQs disabled at
  3776. * least as long as the NMI handler runs. Otherwise we may
  3777. * cause NMI nesting, maybe breaking the guest. But as this is
  3778. * highly unlikely, we can live with the residual risk.
  3779. */
  3780. vmx->soft_vnmi_blocked = 1;
  3781. vmx->vnmi_blocked_time = 0;
  3782. }
  3783. ++vcpu->stat.nmi_injections;
  3784. vmx->nmi_known_unmasked = false;
  3785. if (vmx->rmode.vm86_active) {
  3786. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3787. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3788. return;
  3789. }
  3790. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3791. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3792. }
  3793. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3794. {
  3795. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3796. return 0;
  3797. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3798. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3799. | GUEST_INTR_STATE_NMI));
  3800. }
  3801. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3802. {
  3803. if (!cpu_has_virtual_nmis())
  3804. return to_vmx(vcpu)->soft_vnmi_blocked;
  3805. if (to_vmx(vcpu)->nmi_known_unmasked)
  3806. return false;
  3807. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3808. }
  3809. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3810. {
  3811. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3812. if (!cpu_has_virtual_nmis()) {
  3813. if (vmx->soft_vnmi_blocked != masked) {
  3814. vmx->soft_vnmi_blocked = masked;
  3815. vmx->vnmi_blocked_time = 0;
  3816. }
  3817. } else {
  3818. vmx->nmi_known_unmasked = !masked;
  3819. if (masked)
  3820. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3821. GUEST_INTR_STATE_NMI);
  3822. else
  3823. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3824. GUEST_INTR_STATE_NMI);
  3825. }
  3826. }
  3827. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3828. {
  3829. if (is_guest_mode(vcpu)) {
  3830. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3831. if (to_vmx(vcpu)->nested.nested_run_pending)
  3832. return 0;
  3833. if (nested_exit_on_intr(vcpu)) {
  3834. nested_vmx_vmexit(vcpu);
  3835. vmcs12->vm_exit_reason =
  3836. EXIT_REASON_EXTERNAL_INTERRUPT;
  3837. vmcs12->vm_exit_intr_info = 0;
  3838. /*
  3839. * fall through to normal code, but now in L1, not L2
  3840. */
  3841. }
  3842. }
  3843. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3844. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3845. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3846. }
  3847. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3848. {
  3849. int ret;
  3850. struct kvm_userspace_memory_region tss_mem = {
  3851. .slot = TSS_PRIVATE_MEMSLOT,
  3852. .guest_phys_addr = addr,
  3853. .memory_size = PAGE_SIZE * 3,
  3854. .flags = 0,
  3855. };
  3856. ret = kvm_set_memory_region(kvm, &tss_mem);
  3857. if (ret)
  3858. return ret;
  3859. kvm->arch.tss_addr = addr;
  3860. if (!init_rmode_tss(kvm))
  3861. return -ENOMEM;
  3862. return 0;
  3863. }
  3864. static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
  3865. {
  3866. switch (vec) {
  3867. case BP_VECTOR:
  3868. /*
  3869. * Update instruction length as we may reinject the exception
  3870. * from user space while in guest debugging mode.
  3871. */
  3872. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3873. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3874. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3875. return false;
  3876. /* fall through */
  3877. case DB_VECTOR:
  3878. if (vcpu->guest_debug &
  3879. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3880. return false;
  3881. /* fall through */
  3882. case DE_VECTOR:
  3883. case OF_VECTOR:
  3884. case BR_VECTOR:
  3885. case UD_VECTOR:
  3886. case DF_VECTOR:
  3887. case SS_VECTOR:
  3888. case GP_VECTOR:
  3889. case MF_VECTOR:
  3890. return true;
  3891. break;
  3892. }
  3893. return false;
  3894. }
  3895. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3896. int vec, u32 err_code)
  3897. {
  3898. /*
  3899. * Instruction with address size override prefix opcode 0x67
  3900. * Cause the #SS fault with 0 error code in VM86 mode.
  3901. */
  3902. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
  3903. if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
  3904. if (vcpu->arch.halt_request) {
  3905. vcpu->arch.halt_request = 0;
  3906. return kvm_emulate_halt(vcpu);
  3907. }
  3908. return 1;
  3909. }
  3910. return 0;
  3911. }
  3912. /*
  3913. * Forward all other exceptions that are valid in real mode.
  3914. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3915. * the required debugging infrastructure rework.
  3916. */
  3917. kvm_queue_exception(vcpu, vec);
  3918. return 1;
  3919. }
  3920. /*
  3921. * Trigger machine check on the host. We assume all the MSRs are already set up
  3922. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3923. * We pass a fake environment to the machine check handler because we want
  3924. * the guest to be always treated like user space, no matter what context
  3925. * it used internally.
  3926. */
  3927. static void kvm_machine_check(void)
  3928. {
  3929. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3930. struct pt_regs regs = {
  3931. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3932. .flags = X86_EFLAGS_IF,
  3933. };
  3934. do_machine_check(&regs, 0);
  3935. #endif
  3936. }
  3937. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3938. {
  3939. /* already handled by vcpu_run */
  3940. return 1;
  3941. }
  3942. static int handle_exception(struct kvm_vcpu *vcpu)
  3943. {
  3944. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3945. struct kvm_run *kvm_run = vcpu->run;
  3946. u32 intr_info, ex_no, error_code;
  3947. unsigned long cr2, rip, dr6;
  3948. u32 vect_info;
  3949. enum emulation_result er;
  3950. vect_info = vmx->idt_vectoring_info;
  3951. intr_info = vmx->exit_intr_info;
  3952. if (is_machine_check(intr_info))
  3953. return handle_machine_check(vcpu);
  3954. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3955. return 1; /* already handled by vmx_vcpu_run() */
  3956. if (is_no_device(intr_info)) {
  3957. vmx_fpu_activate(vcpu);
  3958. return 1;
  3959. }
  3960. if (is_invalid_opcode(intr_info)) {
  3961. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3962. if (er != EMULATE_DONE)
  3963. kvm_queue_exception(vcpu, UD_VECTOR);
  3964. return 1;
  3965. }
  3966. error_code = 0;
  3967. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3968. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3969. /*
  3970. * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
  3971. * MMIO, it is better to report an internal error.
  3972. * See the comments in vmx_handle_exit.
  3973. */
  3974. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3975. !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
  3976. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3977. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3978. vcpu->run->internal.ndata = 2;
  3979. vcpu->run->internal.data[0] = vect_info;
  3980. vcpu->run->internal.data[1] = intr_info;
  3981. return 0;
  3982. }
  3983. if (is_page_fault(intr_info)) {
  3984. /* EPT won't cause page fault directly */
  3985. BUG_ON(enable_ept);
  3986. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3987. trace_kvm_page_fault(cr2, error_code);
  3988. if (kvm_event_needs_reinjection(vcpu))
  3989. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3990. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3991. }
  3992. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3993. if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
  3994. return handle_rmode_exception(vcpu, ex_no, error_code);
  3995. switch (ex_no) {
  3996. case DB_VECTOR:
  3997. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3998. if (!(vcpu->guest_debug &
  3999. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  4000. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  4001. kvm_queue_exception(vcpu, DB_VECTOR);
  4002. return 1;
  4003. }
  4004. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  4005. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  4006. /* fall through */
  4007. case BP_VECTOR:
  4008. /*
  4009. * Update instruction length as we may reinject #BP from
  4010. * user space while in guest debugging mode. Reading it for
  4011. * #DB as well causes no harm, it is not used in that case.
  4012. */
  4013. vmx->vcpu.arch.event_exit_inst_len =
  4014. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  4015. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  4016. rip = kvm_rip_read(vcpu);
  4017. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  4018. kvm_run->debug.arch.exception = ex_no;
  4019. break;
  4020. default:
  4021. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  4022. kvm_run->ex.exception = ex_no;
  4023. kvm_run->ex.error_code = error_code;
  4024. break;
  4025. }
  4026. return 0;
  4027. }
  4028. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  4029. {
  4030. ++vcpu->stat.irq_exits;
  4031. return 1;
  4032. }
  4033. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  4034. {
  4035. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4036. return 0;
  4037. }
  4038. static int handle_io(struct kvm_vcpu *vcpu)
  4039. {
  4040. unsigned long exit_qualification;
  4041. int size, in, string;
  4042. unsigned port;
  4043. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4044. string = (exit_qualification & 16) != 0;
  4045. in = (exit_qualification & 8) != 0;
  4046. ++vcpu->stat.io_exits;
  4047. if (string || in)
  4048. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4049. port = exit_qualification >> 16;
  4050. size = (exit_qualification & 7) + 1;
  4051. skip_emulated_instruction(vcpu);
  4052. return kvm_fast_pio_out(vcpu, size, port);
  4053. }
  4054. static void
  4055. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  4056. {
  4057. /*
  4058. * Patch in the VMCALL instruction:
  4059. */
  4060. hypercall[0] = 0x0f;
  4061. hypercall[1] = 0x01;
  4062. hypercall[2] = 0xc1;
  4063. }
  4064. /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
  4065. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  4066. {
  4067. if (is_guest_mode(vcpu)) {
  4068. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  4069. unsigned long orig_val = val;
  4070. /*
  4071. * We get here when L2 changed cr0 in a way that did not change
  4072. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  4073. * but did change L0 shadowed bits. So we first calculate the
  4074. * effective cr0 value that L1 would like to write into the
  4075. * hardware. It consists of the L2-owned bits from the new
  4076. * value combined with the L1-owned bits from L1's guest_cr0.
  4077. */
  4078. val = (val & ~vmcs12->cr0_guest_host_mask) |
  4079. (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
  4080. /* TODO: will have to take unrestricted guest mode into
  4081. * account */
  4082. if ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)
  4083. return 1;
  4084. if (kvm_set_cr0(vcpu, val))
  4085. return 1;
  4086. vmcs_writel(CR0_READ_SHADOW, orig_val);
  4087. return 0;
  4088. } else {
  4089. if (to_vmx(vcpu)->nested.vmxon &&
  4090. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  4091. return 1;
  4092. return kvm_set_cr0(vcpu, val);
  4093. }
  4094. }
  4095. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  4096. {
  4097. if (is_guest_mode(vcpu)) {
  4098. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  4099. unsigned long orig_val = val;
  4100. /* analogously to handle_set_cr0 */
  4101. val = (val & ~vmcs12->cr4_guest_host_mask) |
  4102. (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
  4103. if (kvm_set_cr4(vcpu, val))
  4104. return 1;
  4105. vmcs_writel(CR4_READ_SHADOW, orig_val);
  4106. return 0;
  4107. } else
  4108. return kvm_set_cr4(vcpu, val);
  4109. }
  4110. /* called to set cr0 as approriate for clts instruction exit. */
  4111. static void handle_clts(struct kvm_vcpu *vcpu)
  4112. {
  4113. if (is_guest_mode(vcpu)) {
  4114. /*
  4115. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  4116. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  4117. * just pretend it's off (also in arch.cr0 for fpu_activate).
  4118. */
  4119. vmcs_writel(CR0_READ_SHADOW,
  4120. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  4121. vcpu->arch.cr0 &= ~X86_CR0_TS;
  4122. } else
  4123. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  4124. }
  4125. static int handle_cr(struct kvm_vcpu *vcpu)
  4126. {
  4127. unsigned long exit_qualification, val;
  4128. int cr;
  4129. int reg;
  4130. int err;
  4131. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4132. cr = exit_qualification & 15;
  4133. reg = (exit_qualification >> 8) & 15;
  4134. switch ((exit_qualification >> 4) & 3) {
  4135. case 0: /* mov to cr */
  4136. val = kvm_register_read(vcpu, reg);
  4137. trace_kvm_cr_write(cr, val);
  4138. switch (cr) {
  4139. case 0:
  4140. err = handle_set_cr0(vcpu, val);
  4141. kvm_complete_insn_gp(vcpu, err);
  4142. return 1;
  4143. case 3:
  4144. err = kvm_set_cr3(vcpu, val);
  4145. kvm_complete_insn_gp(vcpu, err);
  4146. return 1;
  4147. case 4:
  4148. err = handle_set_cr4(vcpu, val);
  4149. kvm_complete_insn_gp(vcpu, err);
  4150. return 1;
  4151. case 8: {
  4152. u8 cr8_prev = kvm_get_cr8(vcpu);
  4153. u8 cr8 = kvm_register_read(vcpu, reg);
  4154. err = kvm_set_cr8(vcpu, cr8);
  4155. kvm_complete_insn_gp(vcpu, err);
  4156. if (irqchip_in_kernel(vcpu->kvm))
  4157. return 1;
  4158. if (cr8_prev <= cr8)
  4159. return 1;
  4160. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  4161. return 0;
  4162. }
  4163. }
  4164. break;
  4165. case 2: /* clts */
  4166. handle_clts(vcpu);
  4167. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  4168. skip_emulated_instruction(vcpu);
  4169. vmx_fpu_activate(vcpu);
  4170. return 1;
  4171. case 1: /*mov from cr*/
  4172. switch (cr) {
  4173. case 3:
  4174. val = kvm_read_cr3(vcpu);
  4175. kvm_register_write(vcpu, reg, val);
  4176. trace_kvm_cr_read(cr, val);
  4177. skip_emulated_instruction(vcpu);
  4178. return 1;
  4179. case 8:
  4180. val = kvm_get_cr8(vcpu);
  4181. kvm_register_write(vcpu, reg, val);
  4182. trace_kvm_cr_read(cr, val);
  4183. skip_emulated_instruction(vcpu);
  4184. return 1;
  4185. }
  4186. break;
  4187. case 3: /* lmsw */
  4188. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  4189. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  4190. kvm_lmsw(vcpu, val);
  4191. skip_emulated_instruction(vcpu);
  4192. return 1;
  4193. default:
  4194. break;
  4195. }
  4196. vcpu->run->exit_reason = 0;
  4197. vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  4198. (int)(exit_qualification >> 4) & 3, cr);
  4199. return 0;
  4200. }
  4201. static int handle_dr(struct kvm_vcpu *vcpu)
  4202. {
  4203. unsigned long exit_qualification;
  4204. int dr, reg;
  4205. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  4206. if (!kvm_require_cpl(vcpu, 0))
  4207. return 1;
  4208. dr = vmcs_readl(GUEST_DR7);
  4209. if (dr & DR7_GD) {
  4210. /*
  4211. * As the vm-exit takes precedence over the debug trap, we
  4212. * need to emulate the latter, either for the host or the
  4213. * guest debugging itself.
  4214. */
  4215. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4216. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  4217. vcpu->run->debug.arch.dr7 = dr;
  4218. vcpu->run->debug.arch.pc =
  4219. vmcs_readl(GUEST_CS_BASE) +
  4220. vmcs_readl(GUEST_RIP);
  4221. vcpu->run->debug.arch.exception = DB_VECTOR;
  4222. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  4223. return 0;
  4224. } else {
  4225. vcpu->arch.dr7 &= ~DR7_GD;
  4226. vcpu->arch.dr6 |= DR6_BD;
  4227. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  4228. kvm_queue_exception(vcpu, DB_VECTOR);
  4229. return 1;
  4230. }
  4231. }
  4232. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4233. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  4234. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  4235. if (exit_qualification & TYPE_MOV_FROM_DR) {
  4236. unsigned long val;
  4237. if (!kvm_get_dr(vcpu, dr, &val))
  4238. kvm_register_write(vcpu, reg, val);
  4239. } else
  4240. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  4241. skip_emulated_instruction(vcpu);
  4242. return 1;
  4243. }
  4244. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  4245. {
  4246. vmcs_writel(GUEST_DR7, val);
  4247. }
  4248. static int handle_cpuid(struct kvm_vcpu *vcpu)
  4249. {
  4250. kvm_emulate_cpuid(vcpu);
  4251. return 1;
  4252. }
  4253. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  4254. {
  4255. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4256. u64 data;
  4257. if (vmx_get_msr(vcpu, ecx, &data)) {
  4258. trace_kvm_msr_read_ex(ecx);
  4259. kvm_inject_gp(vcpu, 0);
  4260. return 1;
  4261. }
  4262. trace_kvm_msr_read(ecx, data);
  4263. /* FIXME: handling of bits 32:63 of rax, rdx */
  4264. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  4265. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  4266. skip_emulated_instruction(vcpu);
  4267. return 1;
  4268. }
  4269. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  4270. {
  4271. struct msr_data msr;
  4272. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4273. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  4274. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  4275. msr.data = data;
  4276. msr.index = ecx;
  4277. msr.host_initiated = false;
  4278. if (vmx_set_msr(vcpu, &msr) != 0) {
  4279. trace_kvm_msr_write_ex(ecx, data);
  4280. kvm_inject_gp(vcpu, 0);
  4281. return 1;
  4282. }
  4283. trace_kvm_msr_write(ecx, data);
  4284. skip_emulated_instruction(vcpu);
  4285. return 1;
  4286. }
  4287. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  4288. {
  4289. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4290. return 1;
  4291. }
  4292. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  4293. {
  4294. u32 cpu_based_vm_exec_control;
  4295. /* clear pending irq */
  4296. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4297. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  4298. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4299. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4300. ++vcpu->stat.irq_window_exits;
  4301. /*
  4302. * If the user space waits to inject interrupts, exit as soon as
  4303. * possible
  4304. */
  4305. if (!irqchip_in_kernel(vcpu->kvm) &&
  4306. vcpu->run->request_interrupt_window &&
  4307. !kvm_cpu_has_interrupt(vcpu)) {
  4308. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  4309. return 0;
  4310. }
  4311. return 1;
  4312. }
  4313. static int handle_halt(struct kvm_vcpu *vcpu)
  4314. {
  4315. skip_emulated_instruction(vcpu);
  4316. return kvm_emulate_halt(vcpu);
  4317. }
  4318. static int handle_vmcall(struct kvm_vcpu *vcpu)
  4319. {
  4320. skip_emulated_instruction(vcpu);
  4321. kvm_emulate_hypercall(vcpu);
  4322. return 1;
  4323. }
  4324. static int handle_invd(struct kvm_vcpu *vcpu)
  4325. {
  4326. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4327. }
  4328. static int handle_invlpg(struct kvm_vcpu *vcpu)
  4329. {
  4330. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4331. kvm_mmu_invlpg(vcpu, exit_qualification);
  4332. skip_emulated_instruction(vcpu);
  4333. return 1;
  4334. }
  4335. static int handle_rdpmc(struct kvm_vcpu *vcpu)
  4336. {
  4337. int err;
  4338. err = kvm_rdpmc(vcpu);
  4339. kvm_complete_insn_gp(vcpu, err);
  4340. return 1;
  4341. }
  4342. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  4343. {
  4344. skip_emulated_instruction(vcpu);
  4345. kvm_emulate_wbinvd(vcpu);
  4346. return 1;
  4347. }
  4348. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  4349. {
  4350. u64 new_bv = kvm_read_edx_eax(vcpu);
  4351. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4352. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  4353. skip_emulated_instruction(vcpu);
  4354. return 1;
  4355. }
  4356. static int handle_apic_access(struct kvm_vcpu *vcpu)
  4357. {
  4358. if (likely(fasteoi)) {
  4359. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4360. int access_type, offset;
  4361. access_type = exit_qualification & APIC_ACCESS_TYPE;
  4362. offset = exit_qualification & APIC_ACCESS_OFFSET;
  4363. /*
  4364. * Sane guest uses MOV to write EOI, with written value
  4365. * not cared. So make a short-circuit here by avoiding
  4366. * heavy instruction emulation.
  4367. */
  4368. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  4369. (offset == APIC_EOI)) {
  4370. kvm_lapic_set_eoi(vcpu);
  4371. skip_emulated_instruction(vcpu);
  4372. return 1;
  4373. }
  4374. }
  4375. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4376. }
  4377. static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
  4378. {
  4379. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4380. int vector = exit_qualification & 0xff;
  4381. /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
  4382. kvm_apic_set_eoi_accelerated(vcpu, vector);
  4383. return 1;
  4384. }
  4385. static int handle_apic_write(struct kvm_vcpu *vcpu)
  4386. {
  4387. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4388. u32 offset = exit_qualification & 0xfff;
  4389. /* APIC-write VM exit is trap-like and thus no need to adjust IP */
  4390. kvm_apic_write_nodecode(vcpu, offset);
  4391. return 1;
  4392. }
  4393. static int handle_task_switch(struct kvm_vcpu *vcpu)
  4394. {
  4395. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4396. unsigned long exit_qualification;
  4397. bool has_error_code = false;
  4398. u32 error_code = 0;
  4399. u16 tss_selector;
  4400. int reason, type, idt_v, idt_index;
  4401. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  4402. idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
  4403. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  4404. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4405. reason = (u32)exit_qualification >> 30;
  4406. if (reason == TASK_SWITCH_GATE && idt_v) {
  4407. switch (type) {
  4408. case INTR_TYPE_NMI_INTR:
  4409. vcpu->arch.nmi_injected = false;
  4410. vmx_set_nmi_mask(vcpu, true);
  4411. break;
  4412. case INTR_TYPE_EXT_INTR:
  4413. case INTR_TYPE_SOFT_INTR:
  4414. kvm_clear_interrupt_queue(vcpu);
  4415. break;
  4416. case INTR_TYPE_HARD_EXCEPTION:
  4417. if (vmx->idt_vectoring_info &
  4418. VECTORING_INFO_DELIVER_CODE_MASK) {
  4419. has_error_code = true;
  4420. error_code =
  4421. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  4422. }
  4423. /* fall through */
  4424. case INTR_TYPE_SOFT_EXCEPTION:
  4425. kvm_clear_exception_queue(vcpu);
  4426. break;
  4427. default:
  4428. break;
  4429. }
  4430. }
  4431. tss_selector = exit_qualification;
  4432. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4433. type != INTR_TYPE_EXT_INTR &&
  4434. type != INTR_TYPE_NMI_INTR))
  4435. skip_emulated_instruction(vcpu);
  4436. if (kvm_task_switch(vcpu, tss_selector,
  4437. type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
  4438. has_error_code, error_code) == EMULATE_FAIL) {
  4439. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4440. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4441. vcpu->run->internal.ndata = 0;
  4442. return 0;
  4443. }
  4444. /* clear all local breakpoint enable flags */
  4445. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4446. /*
  4447. * TODO: What about debug traps on tss switch?
  4448. * Are we supposed to inject them and update dr6?
  4449. */
  4450. return 1;
  4451. }
  4452. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4453. {
  4454. unsigned long exit_qualification;
  4455. gpa_t gpa;
  4456. u32 error_code;
  4457. int gla_validity;
  4458. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4459. gla_validity = (exit_qualification >> 7) & 0x3;
  4460. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4461. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4462. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4463. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4464. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4465. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4466. (long unsigned int)exit_qualification);
  4467. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4468. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4469. return 0;
  4470. }
  4471. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4472. trace_kvm_page_fault(gpa, exit_qualification);
  4473. /* It is a write fault? */
  4474. error_code = exit_qualification & (1U << 1);
  4475. /* ept page table is present? */
  4476. error_code |= (exit_qualification >> 3) & 0x1;
  4477. return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
  4478. }
  4479. static u64 ept_rsvd_mask(u64 spte, int level)
  4480. {
  4481. int i;
  4482. u64 mask = 0;
  4483. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4484. mask |= (1ULL << i);
  4485. if (level > 2)
  4486. /* bits 7:3 reserved */
  4487. mask |= 0xf8;
  4488. else if (level == 2) {
  4489. if (spte & (1ULL << 7))
  4490. /* 2MB ref, bits 20:12 reserved */
  4491. mask |= 0x1ff000;
  4492. else
  4493. /* bits 6:3 reserved */
  4494. mask |= 0x78;
  4495. }
  4496. return mask;
  4497. }
  4498. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4499. int level)
  4500. {
  4501. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4502. /* 010b (write-only) */
  4503. WARN_ON((spte & 0x7) == 0x2);
  4504. /* 110b (write/execute) */
  4505. WARN_ON((spte & 0x7) == 0x6);
  4506. /* 100b (execute-only) and value not supported by logical processor */
  4507. if (!cpu_has_vmx_ept_execute_only())
  4508. WARN_ON((spte & 0x7) == 0x4);
  4509. /* not 000b */
  4510. if ((spte & 0x7)) {
  4511. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4512. if (rsvd_bits != 0) {
  4513. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4514. __func__, rsvd_bits);
  4515. WARN_ON(1);
  4516. }
  4517. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4518. u64 ept_mem_type = (spte & 0x38) >> 3;
  4519. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4520. ept_mem_type == 7) {
  4521. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4522. __func__, ept_mem_type);
  4523. WARN_ON(1);
  4524. }
  4525. }
  4526. }
  4527. }
  4528. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4529. {
  4530. u64 sptes[4];
  4531. int nr_sptes, i, ret;
  4532. gpa_t gpa;
  4533. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4534. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4535. if (likely(ret == 1))
  4536. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4537. EMULATE_DONE;
  4538. if (unlikely(!ret))
  4539. return 1;
  4540. /* It is the real ept misconfig */
  4541. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4542. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4543. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4544. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4545. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4546. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4547. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4548. return 0;
  4549. }
  4550. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4551. {
  4552. u32 cpu_based_vm_exec_control;
  4553. /* clear pending NMI */
  4554. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4555. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4556. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4557. ++vcpu->stat.nmi_window_exits;
  4558. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4559. return 1;
  4560. }
  4561. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4562. {
  4563. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4564. enum emulation_result err = EMULATE_DONE;
  4565. int ret = 1;
  4566. u32 cpu_exec_ctrl;
  4567. bool intr_window_requested;
  4568. unsigned count = 130;
  4569. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4570. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4571. while (!guest_state_valid(vcpu) && count-- != 0) {
  4572. if (intr_window_requested && vmx_interrupt_allowed(vcpu))
  4573. return handle_interrupt_window(&vmx->vcpu);
  4574. if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
  4575. return 1;
  4576. err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
  4577. if (err == EMULATE_DO_MMIO) {
  4578. ret = 0;
  4579. goto out;
  4580. }
  4581. if (err != EMULATE_DONE) {
  4582. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4583. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4584. vcpu->run->internal.ndata = 0;
  4585. return 0;
  4586. }
  4587. if (signal_pending(current))
  4588. goto out;
  4589. if (need_resched())
  4590. schedule();
  4591. }
  4592. vmx->emulation_required = emulation_required(vcpu);
  4593. out:
  4594. return ret;
  4595. }
  4596. /*
  4597. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4598. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4599. */
  4600. static int handle_pause(struct kvm_vcpu *vcpu)
  4601. {
  4602. skip_emulated_instruction(vcpu);
  4603. kvm_vcpu_on_spin(vcpu);
  4604. return 1;
  4605. }
  4606. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4607. {
  4608. kvm_queue_exception(vcpu, UD_VECTOR);
  4609. return 1;
  4610. }
  4611. /*
  4612. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4613. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4614. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4615. * allows keeping them loaded on the processor, and in the future will allow
  4616. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4617. * every entry if they never change.
  4618. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4619. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4620. *
  4621. * The following functions allocate and free a vmcs02 in this pool.
  4622. */
  4623. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4624. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4625. {
  4626. struct vmcs02_list *item;
  4627. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4628. if (item->vmptr == vmx->nested.current_vmptr) {
  4629. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4630. return &item->vmcs02;
  4631. }
  4632. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4633. /* Recycle the least recently used VMCS. */
  4634. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4635. struct vmcs02_list, list);
  4636. item->vmptr = vmx->nested.current_vmptr;
  4637. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4638. return &item->vmcs02;
  4639. }
  4640. /* Create a new VMCS */
  4641. item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4642. if (!item)
  4643. return NULL;
  4644. item->vmcs02.vmcs = alloc_vmcs();
  4645. if (!item->vmcs02.vmcs) {
  4646. kfree(item);
  4647. return NULL;
  4648. }
  4649. loaded_vmcs_init(&item->vmcs02);
  4650. item->vmptr = vmx->nested.current_vmptr;
  4651. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4652. vmx->nested.vmcs02_num++;
  4653. return &item->vmcs02;
  4654. }
  4655. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4656. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4657. {
  4658. struct vmcs02_list *item;
  4659. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4660. if (item->vmptr == vmptr) {
  4661. free_loaded_vmcs(&item->vmcs02);
  4662. list_del(&item->list);
  4663. kfree(item);
  4664. vmx->nested.vmcs02_num--;
  4665. return;
  4666. }
  4667. }
  4668. /*
  4669. * Free all VMCSs saved for this vcpu, except the one pointed by
  4670. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4671. * currently used, if running L2), and vmcs01 when running L2.
  4672. */
  4673. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4674. {
  4675. struct vmcs02_list *item, *n;
  4676. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4677. if (vmx->loaded_vmcs != &item->vmcs02)
  4678. free_loaded_vmcs(&item->vmcs02);
  4679. list_del(&item->list);
  4680. kfree(item);
  4681. }
  4682. vmx->nested.vmcs02_num = 0;
  4683. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4684. free_loaded_vmcs(&vmx->vmcs01);
  4685. }
  4686. /*
  4687. * Emulate the VMXON instruction.
  4688. * Currently, we just remember that VMX is active, and do not save or even
  4689. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4690. * do not currently need to store anything in that guest-allocated memory
  4691. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4692. * argument is different from the VMXON pointer (which the spec says they do).
  4693. */
  4694. static int handle_vmon(struct kvm_vcpu *vcpu)
  4695. {
  4696. struct kvm_segment cs;
  4697. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4698. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4699. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4700. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4701. * Otherwise, we should fail with #UD. We test these now:
  4702. */
  4703. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4704. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4705. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4706. kvm_queue_exception(vcpu, UD_VECTOR);
  4707. return 1;
  4708. }
  4709. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4710. if (is_long_mode(vcpu) && !cs.l) {
  4711. kvm_queue_exception(vcpu, UD_VECTOR);
  4712. return 1;
  4713. }
  4714. if (vmx_get_cpl(vcpu)) {
  4715. kvm_inject_gp(vcpu, 0);
  4716. return 1;
  4717. }
  4718. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4719. vmx->nested.vmcs02_num = 0;
  4720. vmx->nested.vmxon = true;
  4721. skip_emulated_instruction(vcpu);
  4722. return 1;
  4723. }
  4724. /*
  4725. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4726. * for running VMX instructions (except VMXON, whose prerequisites are
  4727. * slightly different). It also specifies what exception to inject otherwise.
  4728. */
  4729. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4730. {
  4731. struct kvm_segment cs;
  4732. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4733. if (!vmx->nested.vmxon) {
  4734. kvm_queue_exception(vcpu, UD_VECTOR);
  4735. return 0;
  4736. }
  4737. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4738. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4739. (is_long_mode(vcpu) && !cs.l)) {
  4740. kvm_queue_exception(vcpu, UD_VECTOR);
  4741. return 0;
  4742. }
  4743. if (vmx_get_cpl(vcpu)) {
  4744. kvm_inject_gp(vcpu, 0);
  4745. return 0;
  4746. }
  4747. return 1;
  4748. }
  4749. /*
  4750. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4751. * just stops using VMX.
  4752. */
  4753. static void free_nested(struct vcpu_vmx *vmx)
  4754. {
  4755. if (!vmx->nested.vmxon)
  4756. return;
  4757. vmx->nested.vmxon = false;
  4758. if (vmx->nested.current_vmptr != -1ull) {
  4759. kunmap(vmx->nested.current_vmcs12_page);
  4760. nested_release_page(vmx->nested.current_vmcs12_page);
  4761. vmx->nested.current_vmptr = -1ull;
  4762. vmx->nested.current_vmcs12 = NULL;
  4763. }
  4764. /* Unpin physical memory we referred to in current vmcs02 */
  4765. if (vmx->nested.apic_access_page) {
  4766. nested_release_page(vmx->nested.apic_access_page);
  4767. vmx->nested.apic_access_page = 0;
  4768. }
  4769. nested_free_all_saved_vmcss(vmx);
  4770. }
  4771. /* Emulate the VMXOFF instruction */
  4772. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4773. {
  4774. if (!nested_vmx_check_permission(vcpu))
  4775. return 1;
  4776. free_nested(to_vmx(vcpu));
  4777. skip_emulated_instruction(vcpu);
  4778. return 1;
  4779. }
  4780. /*
  4781. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4782. * exit caused by such an instruction (run by a guest hypervisor).
  4783. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4784. * #UD or #GP.
  4785. */
  4786. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4787. unsigned long exit_qualification,
  4788. u32 vmx_instruction_info, gva_t *ret)
  4789. {
  4790. /*
  4791. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4792. * Execution", on an exit, vmx_instruction_info holds most of the
  4793. * addressing components of the operand. Only the displacement part
  4794. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4795. * For how an actual address is calculated from all these components,
  4796. * refer to Vol. 1, "Operand Addressing".
  4797. */
  4798. int scaling = vmx_instruction_info & 3;
  4799. int addr_size = (vmx_instruction_info >> 7) & 7;
  4800. bool is_reg = vmx_instruction_info & (1u << 10);
  4801. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4802. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4803. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4804. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4805. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4806. if (is_reg) {
  4807. kvm_queue_exception(vcpu, UD_VECTOR);
  4808. return 1;
  4809. }
  4810. /* Addr = segment_base + offset */
  4811. /* offset = base + [index * scale] + displacement */
  4812. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4813. if (base_is_valid)
  4814. *ret += kvm_register_read(vcpu, base_reg);
  4815. if (index_is_valid)
  4816. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4817. *ret += exit_qualification; /* holds the displacement */
  4818. if (addr_size == 1) /* 32 bit */
  4819. *ret &= 0xffffffff;
  4820. /*
  4821. * TODO: throw #GP (and return 1) in various cases that the VM*
  4822. * instructions require it - e.g., offset beyond segment limit,
  4823. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4824. * address, and so on. Currently these are not checked.
  4825. */
  4826. return 0;
  4827. }
  4828. /*
  4829. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4830. * set the success or error code of an emulated VMX instruction, as specified
  4831. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4832. */
  4833. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4834. {
  4835. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4836. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4837. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4838. }
  4839. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4840. {
  4841. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4842. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4843. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4844. | X86_EFLAGS_CF);
  4845. }
  4846. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4847. u32 vm_instruction_error)
  4848. {
  4849. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4850. /*
  4851. * failValid writes the error number to the current VMCS, which
  4852. * can't be done there isn't a current VMCS.
  4853. */
  4854. nested_vmx_failInvalid(vcpu);
  4855. return;
  4856. }
  4857. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4858. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4859. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4860. | X86_EFLAGS_ZF);
  4861. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4862. }
  4863. /* Emulate the VMCLEAR instruction */
  4864. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4865. {
  4866. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4867. gva_t gva;
  4868. gpa_t vmptr;
  4869. struct vmcs12 *vmcs12;
  4870. struct page *page;
  4871. struct x86_exception e;
  4872. if (!nested_vmx_check_permission(vcpu))
  4873. return 1;
  4874. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4875. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4876. return 1;
  4877. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4878. sizeof(vmptr), &e)) {
  4879. kvm_inject_page_fault(vcpu, &e);
  4880. return 1;
  4881. }
  4882. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4883. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4884. skip_emulated_instruction(vcpu);
  4885. return 1;
  4886. }
  4887. if (vmptr == vmx->nested.current_vmptr) {
  4888. kunmap(vmx->nested.current_vmcs12_page);
  4889. nested_release_page(vmx->nested.current_vmcs12_page);
  4890. vmx->nested.current_vmptr = -1ull;
  4891. vmx->nested.current_vmcs12 = NULL;
  4892. }
  4893. page = nested_get_page(vcpu, vmptr);
  4894. if (page == NULL) {
  4895. /*
  4896. * For accurate processor emulation, VMCLEAR beyond available
  4897. * physical memory should do nothing at all. However, it is
  4898. * possible that a nested vmx bug, not a guest hypervisor bug,
  4899. * resulted in this case, so let's shut down before doing any
  4900. * more damage:
  4901. */
  4902. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4903. return 1;
  4904. }
  4905. vmcs12 = kmap(page);
  4906. vmcs12->launch_state = 0;
  4907. kunmap(page);
  4908. nested_release_page(page);
  4909. nested_free_vmcs02(vmx, vmptr);
  4910. skip_emulated_instruction(vcpu);
  4911. nested_vmx_succeed(vcpu);
  4912. return 1;
  4913. }
  4914. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4915. /* Emulate the VMLAUNCH instruction */
  4916. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4917. {
  4918. return nested_vmx_run(vcpu, true);
  4919. }
  4920. /* Emulate the VMRESUME instruction */
  4921. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4922. {
  4923. return nested_vmx_run(vcpu, false);
  4924. }
  4925. enum vmcs_field_type {
  4926. VMCS_FIELD_TYPE_U16 = 0,
  4927. VMCS_FIELD_TYPE_U64 = 1,
  4928. VMCS_FIELD_TYPE_U32 = 2,
  4929. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4930. };
  4931. static inline int vmcs_field_type(unsigned long field)
  4932. {
  4933. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4934. return VMCS_FIELD_TYPE_U32;
  4935. return (field >> 13) & 0x3 ;
  4936. }
  4937. static inline int vmcs_field_readonly(unsigned long field)
  4938. {
  4939. return (((field >> 10) & 0x3) == 1);
  4940. }
  4941. /*
  4942. * Read a vmcs12 field. Since these can have varying lengths and we return
  4943. * one type, we chose the biggest type (u64) and zero-extend the return value
  4944. * to that size. Note that the caller, handle_vmread, might need to use only
  4945. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4946. * 64-bit fields are to be returned).
  4947. */
  4948. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4949. unsigned long field, u64 *ret)
  4950. {
  4951. short offset = vmcs_field_to_offset(field);
  4952. char *p;
  4953. if (offset < 0)
  4954. return 0;
  4955. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4956. switch (vmcs_field_type(field)) {
  4957. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4958. *ret = *((natural_width *)p);
  4959. return 1;
  4960. case VMCS_FIELD_TYPE_U16:
  4961. *ret = *((u16 *)p);
  4962. return 1;
  4963. case VMCS_FIELD_TYPE_U32:
  4964. *ret = *((u32 *)p);
  4965. return 1;
  4966. case VMCS_FIELD_TYPE_U64:
  4967. *ret = *((u64 *)p);
  4968. return 1;
  4969. default:
  4970. return 0; /* can never happen. */
  4971. }
  4972. }
  4973. /*
  4974. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4975. * used before) all generate the same failure when it is missing.
  4976. */
  4977. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4978. {
  4979. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4980. if (vmx->nested.current_vmptr == -1ull) {
  4981. nested_vmx_failInvalid(vcpu);
  4982. skip_emulated_instruction(vcpu);
  4983. return 0;
  4984. }
  4985. return 1;
  4986. }
  4987. static int handle_vmread(struct kvm_vcpu *vcpu)
  4988. {
  4989. unsigned long field;
  4990. u64 field_value;
  4991. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4992. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4993. gva_t gva = 0;
  4994. if (!nested_vmx_check_permission(vcpu) ||
  4995. !nested_vmx_check_vmcs12(vcpu))
  4996. return 1;
  4997. /* Decode instruction info and find the field to read */
  4998. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4999. /* Read the field, zero-extended to a u64 field_value */
  5000. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  5001. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  5002. skip_emulated_instruction(vcpu);
  5003. return 1;
  5004. }
  5005. /*
  5006. * Now copy part of this value to register or memory, as requested.
  5007. * Note that the number of bits actually copied is 32 or 64 depending
  5008. * on the guest's mode (32 or 64 bit), not on the given field's length.
  5009. */
  5010. if (vmx_instruction_info & (1u << 10)) {
  5011. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  5012. field_value);
  5013. } else {
  5014. if (get_vmx_mem_address(vcpu, exit_qualification,
  5015. vmx_instruction_info, &gva))
  5016. return 1;
  5017. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  5018. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  5019. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  5020. }
  5021. nested_vmx_succeed(vcpu);
  5022. skip_emulated_instruction(vcpu);
  5023. return 1;
  5024. }
  5025. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  5026. {
  5027. unsigned long field;
  5028. gva_t gva;
  5029. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5030. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5031. char *p;
  5032. short offset;
  5033. /* The value to write might be 32 or 64 bits, depending on L1's long
  5034. * mode, and eventually we need to write that into a field of several
  5035. * possible lengths. The code below first zero-extends the value to 64
  5036. * bit (field_value), and then copies only the approriate number of
  5037. * bits into the vmcs12 field.
  5038. */
  5039. u64 field_value = 0;
  5040. struct x86_exception e;
  5041. if (!nested_vmx_check_permission(vcpu) ||
  5042. !nested_vmx_check_vmcs12(vcpu))
  5043. return 1;
  5044. if (vmx_instruction_info & (1u << 10))
  5045. field_value = kvm_register_read(vcpu,
  5046. (((vmx_instruction_info) >> 3) & 0xf));
  5047. else {
  5048. if (get_vmx_mem_address(vcpu, exit_qualification,
  5049. vmx_instruction_info, &gva))
  5050. return 1;
  5051. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  5052. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  5053. kvm_inject_page_fault(vcpu, &e);
  5054. return 1;
  5055. }
  5056. }
  5057. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  5058. if (vmcs_field_readonly(field)) {
  5059. nested_vmx_failValid(vcpu,
  5060. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  5061. skip_emulated_instruction(vcpu);
  5062. return 1;
  5063. }
  5064. offset = vmcs_field_to_offset(field);
  5065. if (offset < 0) {
  5066. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  5067. skip_emulated_instruction(vcpu);
  5068. return 1;
  5069. }
  5070. p = ((char *) get_vmcs12(vcpu)) + offset;
  5071. switch (vmcs_field_type(field)) {
  5072. case VMCS_FIELD_TYPE_U16:
  5073. *(u16 *)p = field_value;
  5074. break;
  5075. case VMCS_FIELD_TYPE_U32:
  5076. *(u32 *)p = field_value;
  5077. break;
  5078. case VMCS_FIELD_TYPE_U64:
  5079. *(u64 *)p = field_value;
  5080. break;
  5081. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  5082. *(natural_width *)p = field_value;
  5083. break;
  5084. default:
  5085. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  5086. skip_emulated_instruction(vcpu);
  5087. return 1;
  5088. }
  5089. nested_vmx_succeed(vcpu);
  5090. skip_emulated_instruction(vcpu);
  5091. return 1;
  5092. }
  5093. /* Emulate the VMPTRLD instruction */
  5094. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  5095. {
  5096. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5097. gva_t gva;
  5098. gpa_t vmptr;
  5099. struct x86_exception e;
  5100. if (!nested_vmx_check_permission(vcpu))
  5101. return 1;
  5102. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  5103. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  5104. return 1;
  5105. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  5106. sizeof(vmptr), &e)) {
  5107. kvm_inject_page_fault(vcpu, &e);
  5108. return 1;
  5109. }
  5110. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  5111. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  5112. skip_emulated_instruction(vcpu);
  5113. return 1;
  5114. }
  5115. if (vmx->nested.current_vmptr != vmptr) {
  5116. struct vmcs12 *new_vmcs12;
  5117. struct page *page;
  5118. page = nested_get_page(vcpu, vmptr);
  5119. if (page == NULL) {
  5120. nested_vmx_failInvalid(vcpu);
  5121. skip_emulated_instruction(vcpu);
  5122. return 1;
  5123. }
  5124. new_vmcs12 = kmap(page);
  5125. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  5126. kunmap(page);
  5127. nested_release_page_clean(page);
  5128. nested_vmx_failValid(vcpu,
  5129. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  5130. skip_emulated_instruction(vcpu);
  5131. return 1;
  5132. }
  5133. if (vmx->nested.current_vmptr != -1ull) {
  5134. kunmap(vmx->nested.current_vmcs12_page);
  5135. nested_release_page(vmx->nested.current_vmcs12_page);
  5136. }
  5137. vmx->nested.current_vmptr = vmptr;
  5138. vmx->nested.current_vmcs12 = new_vmcs12;
  5139. vmx->nested.current_vmcs12_page = page;
  5140. }
  5141. nested_vmx_succeed(vcpu);
  5142. skip_emulated_instruction(vcpu);
  5143. return 1;
  5144. }
  5145. /* Emulate the VMPTRST instruction */
  5146. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  5147. {
  5148. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5149. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5150. gva_t vmcs_gva;
  5151. struct x86_exception e;
  5152. if (!nested_vmx_check_permission(vcpu))
  5153. return 1;
  5154. if (get_vmx_mem_address(vcpu, exit_qualification,
  5155. vmx_instruction_info, &vmcs_gva))
  5156. return 1;
  5157. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  5158. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  5159. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  5160. sizeof(u64), &e)) {
  5161. kvm_inject_page_fault(vcpu, &e);
  5162. return 1;
  5163. }
  5164. nested_vmx_succeed(vcpu);
  5165. skip_emulated_instruction(vcpu);
  5166. return 1;
  5167. }
  5168. /*
  5169. * The exit handlers return 1 if the exit was handled fully and guest execution
  5170. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  5171. * to be done to userspace and return 0.
  5172. */
  5173. static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  5174. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  5175. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  5176. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  5177. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  5178. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  5179. [EXIT_REASON_CR_ACCESS] = handle_cr,
  5180. [EXIT_REASON_DR_ACCESS] = handle_dr,
  5181. [EXIT_REASON_CPUID] = handle_cpuid,
  5182. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  5183. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  5184. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  5185. [EXIT_REASON_HLT] = handle_halt,
  5186. [EXIT_REASON_INVD] = handle_invd,
  5187. [EXIT_REASON_INVLPG] = handle_invlpg,
  5188. [EXIT_REASON_RDPMC] = handle_rdpmc,
  5189. [EXIT_REASON_VMCALL] = handle_vmcall,
  5190. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  5191. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  5192. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  5193. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  5194. [EXIT_REASON_VMREAD] = handle_vmread,
  5195. [EXIT_REASON_VMRESUME] = handle_vmresume,
  5196. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  5197. [EXIT_REASON_VMOFF] = handle_vmoff,
  5198. [EXIT_REASON_VMON] = handle_vmon,
  5199. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  5200. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  5201. [EXIT_REASON_APIC_WRITE] = handle_apic_write,
  5202. [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
  5203. [EXIT_REASON_WBINVD] = handle_wbinvd,
  5204. [EXIT_REASON_XSETBV] = handle_xsetbv,
  5205. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  5206. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  5207. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  5208. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  5209. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  5210. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  5211. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  5212. };
  5213. static const int kvm_vmx_max_exit_handlers =
  5214. ARRAY_SIZE(kvm_vmx_exit_handlers);
  5215. static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
  5216. struct vmcs12 *vmcs12)
  5217. {
  5218. unsigned long exit_qualification;
  5219. gpa_t bitmap, last_bitmap;
  5220. unsigned int port;
  5221. int size;
  5222. u8 b;
  5223. if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
  5224. return 1;
  5225. if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
  5226. return 0;
  5227. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5228. port = exit_qualification >> 16;
  5229. size = (exit_qualification & 7) + 1;
  5230. last_bitmap = (gpa_t)-1;
  5231. b = -1;
  5232. while (size > 0) {
  5233. if (port < 0x8000)
  5234. bitmap = vmcs12->io_bitmap_a;
  5235. else if (port < 0x10000)
  5236. bitmap = vmcs12->io_bitmap_b;
  5237. else
  5238. return 1;
  5239. bitmap += (port & 0x7fff) / 8;
  5240. if (last_bitmap != bitmap)
  5241. if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
  5242. return 1;
  5243. if (b & (1 << (port & 7)))
  5244. return 1;
  5245. port++;
  5246. size--;
  5247. last_bitmap = bitmap;
  5248. }
  5249. return 0;
  5250. }
  5251. /*
  5252. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  5253. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  5254. * disinterest in the current event (read or write a specific MSR) by using an
  5255. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  5256. */
  5257. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  5258. struct vmcs12 *vmcs12, u32 exit_reason)
  5259. {
  5260. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  5261. gpa_t bitmap;
  5262. if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
  5263. return 1;
  5264. /*
  5265. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  5266. * for the four combinations of read/write and low/high MSR numbers.
  5267. * First we need to figure out which of the four to use:
  5268. */
  5269. bitmap = vmcs12->msr_bitmap;
  5270. if (exit_reason == EXIT_REASON_MSR_WRITE)
  5271. bitmap += 2048;
  5272. if (msr_index >= 0xc0000000) {
  5273. msr_index -= 0xc0000000;
  5274. bitmap += 1024;
  5275. }
  5276. /* Then read the msr_index'th bit from this bitmap: */
  5277. if (msr_index < 1024*8) {
  5278. unsigned char b;
  5279. if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
  5280. return 1;
  5281. return 1 & (b >> (msr_index & 7));
  5282. } else
  5283. return 1; /* let L1 handle the wrong parameter */
  5284. }
  5285. /*
  5286. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  5287. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  5288. * intercept (via guest_host_mask etc.) the current event.
  5289. */
  5290. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  5291. struct vmcs12 *vmcs12)
  5292. {
  5293. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5294. int cr = exit_qualification & 15;
  5295. int reg = (exit_qualification >> 8) & 15;
  5296. unsigned long val = kvm_register_read(vcpu, reg);
  5297. switch ((exit_qualification >> 4) & 3) {
  5298. case 0: /* mov to cr */
  5299. switch (cr) {
  5300. case 0:
  5301. if (vmcs12->cr0_guest_host_mask &
  5302. (val ^ vmcs12->cr0_read_shadow))
  5303. return 1;
  5304. break;
  5305. case 3:
  5306. if ((vmcs12->cr3_target_count >= 1 &&
  5307. vmcs12->cr3_target_value0 == val) ||
  5308. (vmcs12->cr3_target_count >= 2 &&
  5309. vmcs12->cr3_target_value1 == val) ||
  5310. (vmcs12->cr3_target_count >= 3 &&
  5311. vmcs12->cr3_target_value2 == val) ||
  5312. (vmcs12->cr3_target_count >= 4 &&
  5313. vmcs12->cr3_target_value3 == val))
  5314. return 0;
  5315. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  5316. return 1;
  5317. break;
  5318. case 4:
  5319. if (vmcs12->cr4_guest_host_mask &
  5320. (vmcs12->cr4_read_shadow ^ val))
  5321. return 1;
  5322. break;
  5323. case 8:
  5324. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  5325. return 1;
  5326. break;
  5327. }
  5328. break;
  5329. case 2: /* clts */
  5330. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  5331. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  5332. return 1;
  5333. break;
  5334. case 1: /* mov from cr */
  5335. switch (cr) {
  5336. case 3:
  5337. if (vmcs12->cpu_based_vm_exec_control &
  5338. CPU_BASED_CR3_STORE_EXITING)
  5339. return 1;
  5340. break;
  5341. case 8:
  5342. if (vmcs12->cpu_based_vm_exec_control &
  5343. CPU_BASED_CR8_STORE_EXITING)
  5344. return 1;
  5345. break;
  5346. }
  5347. break;
  5348. case 3: /* lmsw */
  5349. /*
  5350. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  5351. * cr0. Other attempted changes are ignored, with no exit.
  5352. */
  5353. if (vmcs12->cr0_guest_host_mask & 0xe &
  5354. (val ^ vmcs12->cr0_read_shadow))
  5355. return 1;
  5356. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  5357. !(vmcs12->cr0_read_shadow & 0x1) &&
  5358. (val & 0x1))
  5359. return 1;
  5360. break;
  5361. }
  5362. return 0;
  5363. }
  5364. /*
  5365. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  5366. * should handle it ourselves in L0 (and then continue L2). Only call this
  5367. * when in is_guest_mode (L2).
  5368. */
  5369. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  5370. {
  5371. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5372. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5373. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5374. u32 exit_reason = vmx->exit_reason;
  5375. if (vmx->nested.nested_run_pending)
  5376. return 0;
  5377. if (unlikely(vmx->fail)) {
  5378. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  5379. vmcs_read32(VM_INSTRUCTION_ERROR));
  5380. return 1;
  5381. }
  5382. switch (exit_reason) {
  5383. case EXIT_REASON_EXCEPTION_NMI:
  5384. if (!is_exception(intr_info))
  5385. return 0;
  5386. else if (is_page_fault(intr_info))
  5387. return enable_ept;
  5388. return vmcs12->exception_bitmap &
  5389. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  5390. case EXIT_REASON_EXTERNAL_INTERRUPT:
  5391. return 0;
  5392. case EXIT_REASON_TRIPLE_FAULT:
  5393. return 1;
  5394. case EXIT_REASON_PENDING_INTERRUPT:
  5395. return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
  5396. case EXIT_REASON_NMI_WINDOW:
  5397. return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
  5398. case EXIT_REASON_TASK_SWITCH:
  5399. return 1;
  5400. case EXIT_REASON_CPUID:
  5401. return 1;
  5402. case EXIT_REASON_HLT:
  5403. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  5404. case EXIT_REASON_INVD:
  5405. return 1;
  5406. case EXIT_REASON_INVLPG:
  5407. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  5408. case EXIT_REASON_RDPMC:
  5409. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  5410. case EXIT_REASON_RDTSC:
  5411. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  5412. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  5413. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  5414. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  5415. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  5416. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  5417. /*
  5418. * VMX instructions trap unconditionally. This allows L1 to
  5419. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  5420. */
  5421. return 1;
  5422. case EXIT_REASON_CR_ACCESS:
  5423. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  5424. case EXIT_REASON_DR_ACCESS:
  5425. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  5426. case EXIT_REASON_IO_INSTRUCTION:
  5427. return nested_vmx_exit_handled_io(vcpu, vmcs12);
  5428. case EXIT_REASON_MSR_READ:
  5429. case EXIT_REASON_MSR_WRITE:
  5430. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  5431. case EXIT_REASON_INVALID_STATE:
  5432. return 1;
  5433. case EXIT_REASON_MWAIT_INSTRUCTION:
  5434. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  5435. case EXIT_REASON_MONITOR_INSTRUCTION:
  5436. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  5437. case EXIT_REASON_PAUSE_INSTRUCTION:
  5438. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  5439. nested_cpu_has2(vmcs12,
  5440. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  5441. case EXIT_REASON_MCE_DURING_VMENTRY:
  5442. return 0;
  5443. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  5444. return 1;
  5445. case EXIT_REASON_APIC_ACCESS:
  5446. return nested_cpu_has2(vmcs12,
  5447. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  5448. case EXIT_REASON_EPT_VIOLATION:
  5449. case EXIT_REASON_EPT_MISCONFIG:
  5450. return 0;
  5451. case EXIT_REASON_PREEMPTION_TIMER:
  5452. return vmcs12->pin_based_vm_exec_control &
  5453. PIN_BASED_VMX_PREEMPTION_TIMER;
  5454. case EXIT_REASON_WBINVD:
  5455. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  5456. case EXIT_REASON_XSETBV:
  5457. return 1;
  5458. default:
  5459. return 1;
  5460. }
  5461. }
  5462. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  5463. {
  5464. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  5465. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  5466. }
  5467. /*
  5468. * The guest has exited. See if we can fix it or if we need userspace
  5469. * assistance.
  5470. */
  5471. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  5472. {
  5473. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5474. u32 exit_reason = vmx->exit_reason;
  5475. u32 vectoring_info = vmx->idt_vectoring_info;
  5476. /* If guest state is invalid, start emulating */
  5477. if (vmx->emulation_required)
  5478. return handle_invalid_guest_state(vcpu);
  5479. /*
  5480. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  5481. * we did not inject a still-pending event to L1 now because of
  5482. * nested_run_pending, we need to re-enable this bit.
  5483. */
  5484. if (vmx->nested.nested_run_pending)
  5485. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5486. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  5487. exit_reason == EXIT_REASON_VMRESUME))
  5488. vmx->nested.nested_run_pending = 1;
  5489. else
  5490. vmx->nested.nested_run_pending = 0;
  5491. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5492. nested_vmx_vmexit(vcpu);
  5493. return 1;
  5494. }
  5495. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5496. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5497. vcpu->run->fail_entry.hardware_entry_failure_reason
  5498. = exit_reason;
  5499. return 0;
  5500. }
  5501. if (unlikely(vmx->fail)) {
  5502. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5503. vcpu->run->fail_entry.hardware_entry_failure_reason
  5504. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5505. return 0;
  5506. }
  5507. /*
  5508. * Note:
  5509. * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
  5510. * delivery event since it indicates guest is accessing MMIO.
  5511. * The vm-exit can be triggered again after return to guest that
  5512. * will cause infinite loop.
  5513. */
  5514. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5515. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5516. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5517. exit_reason != EXIT_REASON_TASK_SWITCH)) {
  5518. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  5519. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
  5520. vcpu->run->internal.ndata = 2;
  5521. vcpu->run->internal.data[0] = vectoring_info;
  5522. vcpu->run->internal.data[1] = exit_reason;
  5523. return 0;
  5524. }
  5525. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5526. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5527. get_vmcs12(vcpu), vcpu)))) {
  5528. if (vmx_interrupt_allowed(vcpu)) {
  5529. vmx->soft_vnmi_blocked = 0;
  5530. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5531. vcpu->arch.nmi_pending) {
  5532. /*
  5533. * This CPU don't support us in finding the end of an
  5534. * NMI-blocked window if the guest runs with IRQs
  5535. * disabled. So we pull the trigger after 1 s of
  5536. * futile waiting, but inform the user about this.
  5537. */
  5538. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5539. "state on VCPU %d after 1 s timeout\n",
  5540. __func__, vcpu->vcpu_id);
  5541. vmx->soft_vnmi_blocked = 0;
  5542. }
  5543. }
  5544. if (exit_reason < kvm_vmx_max_exit_handlers
  5545. && kvm_vmx_exit_handlers[exit_reason])
  5546. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5547. else {
  5548. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5549. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5550. }
  5551. return 0;
  5552. }
  5553. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5554. {
  5555. if (irr == -1 || tpr < irr) {
  5556. vmcs_write32(TPR_THRESHOLD, 0);
  5557. return;
  5558. }
  5559. vmcs_write32(TPR_THRESHOLD, irr);
  5560. }
  5561. static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
  5562. {
  5563. u32 sec_exec_control;
  5564. /*
  5565. * There is not point to enable virtualize x2apic without enable
  5566. * apicv
  5567. */
  5568. if (!cpu_has_vmx_virtualize_x2apic_mode() ||
  5569. !vmx_vm_has_apicv(vcpu->kvm))
  5570. return;
  5571. if (!vm_need_tpr_shadow(vcpu->kvm))
  5572. return;
  5573. sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5574. if (set) {
  5575. sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5576. sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  5577. } else {
  5578. sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  5579. sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5580. }
  5581. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
  5582. vmx_set_msr_bitmap(vcpu);
  5583. }
  5584. static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
  5585. {
  5586. u16 status;
  5587. u8 old;
  5588. if (!vmx_vm_has_apicv(kvm))
  5589. return;
  5590. if (isr == -1)
  5591. isr = 0;
  5592. status = vmcs_read16(GUEST_INTR_STATUS);
  5593. old = status >> 8;
  5594. if (isr != old) {
  5595. status &= 0xff;
  5596. status |= isr << 8;
  5597. vmcs_write16(GUEST_INTR_STATUS, status);
  5598. }
  5599. }
  5600. static void vmx_set_rvi(int vector)
  5601. {
  5602. u16 status;
  5603. u8 old;
  5604. status = vmcs_read16(GUEST_INTR_STATUS);
  5605. old = (u8)status & 0xff;
  5606. if ((u8)vector != old) {
  5607. status &= ~0xff;
  5608. status |= (u8)vector;
  5609. vmcs_write16(GUEST_INTR_STATUS, status);
  5610. }
  5611. }
  5612. static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
  5613. {
  5614. if (max_irr == -1)
  5615. return;
  5616. vmx_set_rvi(max_irr);
  5617. }
  5618. static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
  5619. {
  5620. if (!vmx_vm_has_apicv(vcpu->kvm))
  5621. return;
  5622. vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
  5623. vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
  5624. vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
  5625. vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
  5626. }
  5627. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5628. {
  5629. u32 exit_intr_info;
  5630. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5631. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5632. return;
  5633. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5634. exit_intr_info = vmx->exit_intr_info;
  5635. /* Handle machine checks before interrupts are enabled */
  5636. if (is_machine_check(exit_intr_info))
  5637. kvm_machine_check();
  5638. /* We need to handle NMIs before interrupts are enabled */
  5639. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5640. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5641. kvm_before_handle_nmi(&vmx->vcpu);
  5642. asm("int $2");
  5643. kvm_after_handle_nmi(&vmx->vcpu);
  5644. }
  5645. }
  5646. static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
  5647. {
  5648. u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5649. /*
  5650. * If external interrupt exists, IF bit is set in rflags/eflags on the
  5651. * interrupt stack frame, and interrupt will be enabled on a return
  5652. * from interrupt handler.
  5653. */
  5654. if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
  5655. == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
  5656. unsigned int vector;
  5657. unsigned long entry;
  5658. gate_desc *desc;
  5659. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5660. #ifdef CONFIG_X86_64
  5661. unsigned long tmp;
  5662. #endif
  5663. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5664. desc = (gate_desc *)vmx->host_idt_base + vector;
  5665. entry = gate_offset(*desc);
  5666. asm volatile(
  5667. #ifdef CONFIG_X86_64
  5668. "mov %%" _ASM_SP ", %[sp]\n\t"
  5669. "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
  5670. "push $%c[ss]\n\t"
  5671. "push %[sp]\n\t"
  5672. #endif
  5673. "pushf\n\t"
  5674. "orl $0x200, (%%" _ASM_SP ")\n\t"
  5675. __ASM_SIZE(push) " $%c[cs]\n\t"
  5676. "call *%[entry]\n\t"
  5677. :
  5678. #ifdef CONFIG_X86_64
  5679. [sp]"=&r"(tmp)
  5680. #endif
  5681. :
  5682. [entry]"r"(entry),
  5683. [ss]"i"(__KERNEL_DS),
  5684. [cs]"i"(__KERNEL_CS)
  5685. );
  5686. } else
  5687. local_irq_enable();
  5688. }
  5689. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5690. {
  5691. u32 exit_intr_info;
  5692. bool unblock_nmi;
  5693. u8 vector;
  5694. bool idtv_info_valid;
  5695. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5696. if (cpu_has_virtual_nmis()) {
  5697. if (vmx->nmi_known_unmasked)
  5698. return;
  5699. /*
  5700. * Can't use vmx->exit_intr_info since we're not sure what
  5701. * the exit reason is.
  5702. */
  5703. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5704. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5705. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5706. /*
  5707. * SDM 3: 27.7.1.2 (September 2008)
  5708. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5709. * a guest IRET fault.
  5710. * SDM 3: 23.2.2 (September 2008)
  5711. * Bit 12 is undefined in any of the following cases:
  5712. * If the VM exit sets the valid bit in the IDT-vectoring
  5713. * information field.
  5714. * If the VM exit is due to a double fault.
  5715. */
  5716. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5717. vector != DF_VECTOR && !idtv_info_valid)
  5718. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5719. GUEST_INTR_STATE_NMI);
  5720. else
  5721. vmx->nmi_known_unmasked =
  5722. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5723. & GUEST_INTR_STATE_NMI);
  5724. } else if (unlikely(vmx->soft_vnmi_blocked))
  5725. vmx->vnmi_blocked_time +=
  5726. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5727. }
  5728. static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
  5729. u32 idt_vectoring_info,
  5730. int instr_len_field,
  5731. int error_code_field)
  5732. {
  5733. u8 vector;
  5734. int type;
  5735. bool idtv_info_valid;
  5736. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5737. vcpu->arch.nmi_injected = false;
  5738. kvm_clear_exception_queue(vcpu);
  5739. kvm_clear_interrupt_queue(vcpu);
  5740. if (!idtv_info_valid)
  5741. return;
  5742. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5743. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5744. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5745. switch (type) {
  5746. case INTR_TYPE_NMI_INTR:
  5747. vcpu->arch.nmi_injected = true;
  5748. /*
  5749. * SDM 3: 27.7.1.2 (September 2008)
  5750. * Clear bit "block by NMI" before VM entry if a NMI
  5751. * delivery faulted.
  5752. */
  5753. vmx_set_nmi_mask(vcpu, false);
  5754. break;
  5755. case INTR_TYPE_SOFT_EXCEPTION:
  5756. vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
  5757. /* fall through */
  5758. case INTR_TYPE_HARD_EXCEPTION:
  5759. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  5760. u32 err = vmcs_read32(error_code_field);
  5761. kvm_queue_exception_e(vcpu, vector, err);
  5762. } else
  5763. kvm_queue_exception(vcpu, vector);
  5764. break;
  5765. case INTR_TYPE_SOFT_INTR:
  5766. vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
  5767. /* fall through */
  5768. case INTR_TYPE_EXT_INTR:
  5769. kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
  5770. break;
  5771. default:
  5772. break;
  5773. }
  5774. }
  5775. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  5776. {
  5777. __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
  5778. VM_EXIT_INSTRUCTION_LEN,
  5779. IDT_VECTORING_ERROR_CODE);
  5780. }
  5781. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  5782. {
  5783. __vmx_complete_interrupts(vcpu,
  5784. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  5785. VM_ENTRY_INSTRUCTION_LEN,
  5786. VM_ENTRY_EXCEPTION_ERROR_CODE);
  5787. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  5788. }
  5789. static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
  5790. {
  5791. int i, nr_msrs;
  5792. struct perf_guest_switch_msr *msrs;
  5793. msrs = perf_guest_get_msrs(&nr_msrs);
  5794. if (!msrs)
  5795. return;
  5796. for (i = 0; i < nr_msrs; i++)
  5797. if (msrs[i].host == msrs[i].guest)
  5798. clear_atomic_switch_msr(vmx, msrs[i].msr);
  5799. else
  5800. add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
  5801. msrs[i].host);
  5802. }
  5803. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  5804. {
  5805. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5806. unsigned long debugctlmsr;
  5807. /* Record the guest's net vcpu time for enforced NMI injections. */
  5808. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  5809. vmx->entry_time = ktime_get();
  5810. /* Don't enter VMX if guest state is invalid, let the exit handler
  5811. start emulation until we arrive back to a valid state */
  5812. if (vmx->emulation_required)
  5813. return;
  5814. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  5815. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  5816. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  5817. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  5818. /* When single-stepping over STI and MOV SS, we must clear the
  5819. * corresponding interruptibility bits in the guest state. Otherwise
  5820. * vmentry fails as it then expects bit 14 (BS) in pending debug
  5821. * exceptions being set, but that's not correct for the guest debugging
  5822. * case. */
  5823. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5824. vmx_set_interrupt_shadow(vcpu, 0);
  5825. atomic_switch_perf_msrs(vmx);
  5826. debugctlmsr = get_debugctlmsr();
  5827. vmx->__launched = vmx->loaded_vmcs->launched;
  5828. asm(
  5829. /* Store host registers */
  5830. "push %%" _ASM_DX "; push %%" _ASM_BP ";"
  5831. "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
  5832. "push %%" _ASM_CX " \n\t"
  5833. "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  5834. "je 1f \n\t"
  5835. "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  5836. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  5837. "1: \n\t"
  5838. /* Reload cr2 if changed */
  5839. "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
  5840. "mov %%cr2, %%" _ASM_DX " \n\t"
  5841. "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
  5842. "je 2f \n\t"
  5843. "mov %%" _ASM_AX", %%cr2 \n\t"
  5844. "2: \n\t"
  5845. /* Check if vmlaunch of vmresume is needed */
  5846. "cmpl $0, %c[launched](%0) \n\t"
  5847. /* Load guest registers. Don't clobber flags. */
  5848. "mov %c[rax](%0), %%" _ASM_AX " \n\t"
  5849. "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
  5850. "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
  5851. "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
  5852. "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
  5853. "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
  5854. #ifdef CONFIG_X86_64
  5855. "mov %c[r8](%0), %%r8 \n\t"
  5856. "mov %c[r9](%0), %%r9 \n\t"
  5857. "mov %c[r10](%0), %%r10 \n\t"
  5858. "mov %c[r11](%0), %%r11 \n\t"
  5859. "mov %c[r12](%0), %%r12 \n\t"
  5860. "mov %c[r13](%0), %%r13 \n\t"
  5861. "mov %c[r14](%0), %%r14 \n\t"
  5862. "mov %c[r15](%0), %%r15 \n\t"
  5863. #endif
  5864. "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
  5865. /* Enter guest mode */
  5866. "jne 1f \n\t"
  5867. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  5868. "jmp 2f \n\t"
  5869. "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
  5870. "2: "
  5871. /* Save guest registers, load host registers, keep flags */
  5872. "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
  5873. "pop %0 \n\t"
  5874. "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
  5875. "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
  5876. __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
  5877. "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
  5878. "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
  5879. "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
  5880. "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
  5881. #ifdef CONFIG_X86_64
  5882. "mov %%r8, %c[r8](%0) \n\t"
  5883. "mov %%r9, %c[r9](%0) \n\t"
  5884. "mov %%r10, %c[r10](%0) \n\t"
  5885. "mov %%r11, %c[r11](%0) \n\t"
  5886. "mov %%r12, %c[r12](%0) \n\t"
  5887. "mov %%r13, %c[r13](%0) \n\t"
  5888. "mov %%r14, %c[r14](%0) \n\t"
  5889. "mov %%r15, %c[r15](%0) \n\t"
  5890. #endif
  5891. "mov %%cr2, %%" _ASM_AX " \n\t"
  5892. "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
  5893. "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
  5894. "setbe %c[fail](%0) \n\t"
  5895. ".pushsection .rodata \n\t"
  5896. ".global vmx_return \n\t"
  5897. "vmx_return: " _ASM_PTR " 2b \n\t"
  5898. ".popsection"
  5899. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  5900. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  5901. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  5902. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  5903. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  5904. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  5905. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  5906. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  5907. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  5908. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  5909. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  5910. #ifdef CONFIG_X86_64
  5911. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  5912. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  5913. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  5914. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  5915. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  5916. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  5917. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  5918. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  5919. #endif
  5920. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  5921. [wordsize]"i"(sizeof(ulong))
  5922. : "cc", "memory"
  5923. #ifdef CONFIG_X86_64
  5924. , "rax", "rbx", "rdi", "rsi"
  5925. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  5926. #else
  5927. , "eax", "ebx", "edi", "esi"
  5928. #endif
  5929. );
  5930. /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
  5931. if (debugctlmsr)
  5932. update_debugctlmsr(debugctlmsr);
  5933. #ifndef CONFIG_X86_64
  5934. /*
  5935. * The sysexit path does not restore ds/es, so we must set them to
  5936. * a reasonable value ourselves.
  5937. *
  5938. * We can't defer this to vmx_load_host_state() since that function
  5939. * may be executed in interrupt context, which saves and restore segments
  5940. * around it, nullifying its effect.
  5941. */
  5942. loadsegment(ds, __USER_DS);
  5943. loadsegment(es, __USER_DS);
  5944. #endif
  5945. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  5946. | (1 << VCPU_EXREG_RFLAGS)
  5947. | (1 << VCPU_EXREG_CPL)
  5948. | (1 << VCPU_EXREG_PDPTR)
  5949. | (1 << VCPU_EXREG_SEGMENTS)
  5950. | (1 << VCPU_EXREG_CR3));
  5951. vcpu->arch.regs_dirty = 0;
  5952. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5953. vmx->loaded_vmcs->launched = 1;
  5954. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  5955. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  5956. vmx_complete_atomic_exit(vmx);
  5957. vmx_recover_nmi_blocking(vmx);
  5958. vmx_complete_interrupts(vmx);
  5959. }
  5960. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  5961. {
  5962. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5963. free_vpid(vmx);
  5964. free_nested(vmx);
  5965. free_loaded_vmcs(vmx->loaded_vmcs);
  5966. kfree(vmx->guest_msrs);
  5967. kvm_vcpu_uninit(vcpu);
  5968. kmem_cache_free(kvm_vcpu_cache, vmx);
  5969. }
  5970. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  5971. {
  5972. int err;
  5973. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  5974. int cpu;
  5975. if (!vmx)
  5976. return ERR_PTR(-ENOMEM);
  5977. allocate_vpid(vmx);
  5978. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  5979. if (err)
  5980. goto free_vcpu;
  5981. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  5982. err = -ENOMEM;
  5983. if (!vmx->guest_msrs) {
  5984. goto uninit_vcpu;
  5985. }
  5986. vmx->loaded_vmcs = &vmx->vmcs01;
  5987. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  5988. if (!vmx->loaded_vmcs->vmcs)
  5989. goto free_msrs;
  5990. if (!vmm_exclusive)
  5991. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  5992. loaded_vmcs_init(vmx->loaded_vmcs);
  5993. if (!vmm_exclusive)
  5994. kvm_cpu_vmxoff();
  5995. cpu = get_cpu();
  5996. vmx_vcpu_load(&vmx->vcpu, cpu);
  5997. vmx->vcpu.cpu = cpu;
  5998. err = vmx_vcpu_setup(vmx);
  5999. vmx_vcpu_put(&vmx->vcpu);
  6000. put_cpu();
  6001. if (err)
  6002. goto free_vmcs;
  6003. if (vm_need_virtualize_apic_accesses(kvm)) {
  6004. err = alloc_apic_access_page(kvm);
  6005. if (err)
  6006. goto free_vmcs;
  6007. }
  6008. if (enable_ept) {
  6009. if (!kvm->arch.ept_identity_map_addr)
  6010. kvm->arch.ept_identity_map_addr =
  6011. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  6012. err = -ENOMEM;
  6013. if (alloc_identity_pagetable(kvm) != 0)
  6014. goto free_vmcs;
  6015. if (!init_rmode_identity_map(kvm))
  6016. goto free_vmcs;
  6017. }
  6018. vmx->nested.current_vmptr = -1ull;
  6019. vmx->nested.current_vmcs12 = NULL;
  6020. return &vmx->vcpu;
  6021. free_vmcs:
  6022. free_loaded_vmcs(vmx->loaded_vmcs);
  6023. free_msrs:
  6024. kfree(vmx->guest_msrs);
  6025. uninit_vcpu:
  6026. kvm_vcpu_uninit(&vmx->vcpu);
  6027. free_vcpu:
  6028. free_vpid(vmx);
  6029. kmem_cache_free(kvm_vcpu_cache, vmx);
  6030. return ERR_PTR(err);
  6031. }
  6032. static void __init vmx_check_processor_compat(void *rtn)
  6033. {
  6034. struct vmcs_config vmcs_conf;
  6035. *(int *)rtn = 0;
  6036. if (setup_vmcs_config(&vmcs_conf) < 0)
  6037. *(int *)rtn = -EIO;
  6038. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  6039. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  6040. smp_processor_id());
  6041. *(int *)rtn = -EIO;
  6042. }
  6043. }
  6044. static int get_ept_level(void)
  6045. {
  6046. return VMX_EPT_DEFAULT_GAW + 1;
  6047. }
  6048. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  6049. {
  6050. u64 ret;
  6051. /* For VT-d and EPT combination
  6052. * 1. MMIO: always map as UC
  6053. * 2. EPT with VT-d:
  6054. * a. VT-d without snooping control feature: can't guarantee the
  6055. * result, try to trust guest.
  6056. * b. VT-d with snooping control feature: snooping control feature of
  6057. * VT-d engine can guarantee the cache correctness. Just set it
  6058. * to WB to keep consistent with host. So the same as item 3.
  6059. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  6060. * consistent with host MTRR
  6061. */
  6062. if (is_mmio)
  6063. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  6064. else if (vcpu->kvm->arch.iommu_domain &&
  6065. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  6066. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  6067. VMX_EPT_MT_EPTE_SHIFT;
  6068. else
  6069. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  6070. | VMX_EPT_IPAT_BIT;
  6071. return ret;
  6072. }
  6073. static int vmx_get_lpage_level(void)
  6074. {
  6075. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  6076. return PT_DIRECTORY_LEVEL;
  6077. else
  6078. /* For shadow and EPT supported 1GB page */
  6079. return PT_PDPE_LEVEL;
  6080. }
  6081. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  6082. {
  6083. struct kvm_cpuid_entry2 *best;
  6084. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6085. u32 exec_control;
  6086. vmx->rdtscp_enabled = false;
  6087. if (vmx_rdtscp_supported()) {
  6088. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  6089. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  6090. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  6091. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  6092. vmx->rdtscp_enabled = true;
  6093. else {
  6094. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  6095. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  6096. exec_control);
  6097. }
  6098. }
  6099. }
  6100. /* Exposing INVPCID only when PCID is exposed */
  6101. best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
  6102. if (vmx_invpcid_supported() &&
  6103. best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
  6104. guest_cpuid_has_pcid(vcpu)) {
  6105. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  6106. exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
  6107. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  6108. exec_control);
  6109. } else {
  6110. if (cpu_has_secondary_exec_ctrls()) {
  6111. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  6112. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  6113. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  6114. exec_control);
  6115. }
  6116. if (best)
  6117. best->ebx &= ~bit(X86_FEATURE_INVPCID);
  6118. }
  6119. }
  6120. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  6121. {
  6122. if (func == 1 && nested)
  6123. entry->ecx |= bit(X86_FEATURE_VMX);
  6124. }
  6125. /*
  6126. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  6127. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  6128. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  6129. * guest in a way that will both be appropriate to L1's requests, and our
  6130. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  6131. * function also has additional necessary side-effects, like setting various
  6132. * vcpu->arch fields.
  6133. */
  6134. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6135. {
  6136. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6137. u32 exec_control;
  6138. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  6139. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  6140. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  6141. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  6142. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  6143. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  6144. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  6145. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  6146. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  6147. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  6148. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  6149. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  6150. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  6151. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  6152. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  6153. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  6154. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  6155. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  6156. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  6157. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  6158. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  6159. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  6160. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  6161. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  6162. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  6163. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  6164. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  6165. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  6166. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  6167. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  6168. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  6169. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  6170. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  6171. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  6172. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  6173. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  6174. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  6175. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  6176. vmcs12->vm_entry_intr_info_field);
  6177. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  6178. vmcs12->vm_entry_exception_error_code);
  6179. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  6180. vmcs12->vm_entry_instruction_len);
  6181. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  6182. vmcs12->guest_interruptibility_info);
  6183. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  6184. kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
  6185. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  6186. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  6187. vmcs12->guest_pending_dbg_exceptions);
  6188. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  6189. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  6190. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  6191. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  6192. (vmcs_config.pin_based_exec_ctrl |
  6193. vmcs12->pin_based_vm_exec_control));
  6194. if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
  6195. vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
  6196. vmcs12->vmx_preemption_timer_value);
  6197. /*
  6198. * Whether page-faults are trapped is determined by a combination of
  6199. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  6200. * If enable_ept, L0 doesn't care about page faults and we should
  6201. * set all of these to L1's desires. However, if !enable_ept, L0 does
  6202. * care about (at least some) page faults, and because it is not easy
  6203. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  6204. * to exit on each and every L2 page fault. This is done by setting
  6205. * MASK=MATCH=0 and (see below) EB.PF=1.
  6206. * Note that below we don't need special code to set EB.PF beyond the
  6207. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  6208. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  6209. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  6210. *
  6211. * A problem with this approach (when !enable_ept) is that L1 may be
  6212. * injected with more page faults than it asked for. This could have
  6213. * caused problems, but in practice existing hypervisors don't care.
  6214. * To fix this, we will need to emulate the PFEC checking (on the L1
  6215. * page tables), using walk_addr(), when injecting PFs to L1.
  6216. */
  6217. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  6218. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  6219. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  6220. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  6221. if (cpu_has_secondary_exec_ctrls()) {
  6222. u32 exec_control = vmx_secondary_exec_control(vmx);
  6223. if (!vmx->rdtscp_enabled)
  6224. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  6225. /* Take the following fields only from vmcs12 */
  6226. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  6227. if (nested_cpu_has(vmcs12,
  6228. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  6229. exec_control |= vmcs12->secondary_vm_exec_control;
  6230. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  6231. /*
  6232. * Translate L1 physical address to host physical
  6233. * address for vmcs02. Keep the page pinned, so this
  6234. * physical address remains valid. We keep a reference
  6235. * to it so we can release it later.
  6236. */
  6237. if (vmx->nested.apic_access_page) /* shouldn't happen */
  6238. nested_release_page(vmx->nested.apic_access_page);
  6239. vmx->nested.apic_access_page =
  6240. nested_get_page(vcpu, vmcs12->apic_access_addr);
  6241. /*
  6242. * If translation failed, no matter: This feature asks
  6243. * to exit when accessing the given address, and if it
  6244. * can never be accessed, this feature won't do
  6245. * anything anyway.
  6246. */
  6247. if (!vmx->nested.apic_access_page)
  6248. exec_control &=
  6249. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  6250. else
  6251. vmcs_write64(APIC_ACCESS_ADDR,
  6252. page_to_phys(vmx->nested.apic_access_page));
  6253. }
  6254. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  6255. }
  6256. /*
  6257. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  6258. * Some constant fields are set here by vmx_set_constant_host_state().
  6259. * Other fields are different per CPU, and will be set later when
  6260. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  6261. */
  6262. vmx_set_constant_host_state(vmx);
  6263. /*
  6264. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  6265. * entry, but only if the current (host) sp changed from the value
  6266. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  6267. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  6268. * here we just force the write to happen on entry.
  6269. */
  6270. vmx->host_rsp = 0;
  6271. exec_control = vmx_exec_control(vmx); /* L0's desires */
  6272. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  6273. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  6274. exec_control &= ~CPU_BASED_TPR_SHADOW;
  6275. exec_control |= vmcs12->cpu_based_vm_exec_control;
  6276. /*
  6277. * Merging of IO and MSR bitmaps not currently supported.
  6278. * Rather, exit every time.
  6279. */
  6280. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  6281. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  6282. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  6283. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  6284. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  6285. * bitwise-or of what L1 wants to trap for L2, and what we want to
  6286. * trap. Note that CR0.TS also needs updating - we do this later.
  6287. */
  6288. update_exception_bitmap(vcpu);
  6289. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  6290. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6291. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  6292. vmcs_write32(VM_EXIT_CONTROLS,
  6293. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  6294. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  6295. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  6296. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  6297. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  6298. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  6299. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  6300. set_cr4_guest_host_mask(vmx);
  6301. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  6302. vmcs_write64(TSC_OFFSET,
  6303. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  6304. else
  6305. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6306. if (enable_vpid) {
  6307. /*
  6308. * Trivially support vpid by letting L2s share their parent
  6309. * L1's vpid. TODO: move to a more elaborate solution, giving
  6310. * each L2 its own vpid and exposing the vpid feature to L1.
  6311. */
  6312. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  6313. vmx_flush_tlb(vcpu);
  6314. }
  6315. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  6316. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  6317. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  6318. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6319. else
  6320. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6321. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  6322. vmx_set_efer(vcpu, vcpu->arch.efer);
  6323. /*
  6324. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  6325. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  6326. * The CR0_READ_SHADOW is what L2 should have expected to read given
  6327. * the specifications by L1; It's not enough to take
  6328. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  6329. * have more bits than L1 expected.
  6330. */
  6331. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  6332. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  6333. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  6334. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  6335. /* shadow page tables on either EPT or shadow page tables */
  6336. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  6337. kvm_mmu_reset_context(vcpu);
  6338. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  6339. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  6340. }
  6341. /*
  6342. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  6343. * for running an L2 nested guest.
  6344. */
  6345. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  6346. {
  6347. struct vmcs12 *vmcs12;
  6348. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6349. int cpu;
  6350. struct loaded_vmcs *vmcs02;
  6351. if (!nested_vmx_check_permission(vcpu) ||
  6352. !nested_vmx_check_vmcs12(vcpu))
  6353. return 1;
  6354. skip_emulated_instruction(vcpu);
  6355. vmcs12 = get_vmcs12(vcpu);
  6356. /*
  6357. * The nested entry process starts with enforcing various prerequisites
  6358. * on vmcs12 as required by the Intel SDM, and act appropriately when
  6359. * they fail: As the SDM explains, some conditions should cause the
  6360. * instruction to fail, while others will cause the instruction to seem
  6361. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  6362. * To speed up the normal (success) code path, we should avoid checking
  6363. * for misconfigurations which will anyway be caught by the processor
  6364. * when using the merged vmcs02.
  6365. */
  6366. if (vmcs12->launch_state == launch) {
  6367. nested_vmx_failValid(vcpu,
  6368. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  6369. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  6370. return 1;
  6371. }
  6372. if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
  6373. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6374. return 1;
  6375. }
  6376. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  6377. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  6378. /*TODO: Also verify bits beyond physical address width are 0*/
  6379. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6380. return 1;
  6381. }
  6382. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  6383. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  6384. /*TODO: Also verify bits beyond physical address width are 0*/
  6385. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6386. return 1;
  6387. }
  6388. if (vmcs12->vm_entry_msr_load_count > 0 ||
  6389. vmcs12->vm_exit_msr_load_count > 0 ||
  6390. vmcs12->vm_exit_msr_store_count > 0) {
  6391. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  6392. __func__);
  6393. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6394. return 1;
  6395. }
  6396. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  6397. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  6398. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  6399. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  6400. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  6401. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  6402. !vmx_control_verify(vmcs12->vm_exit_controls,
  6403. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  6404. !vmx_control_verify(vmcs12->vm_entry_controls,
  6405. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  6406. {
  6407. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6408. return 1;
  6409. }
  6410. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6411. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6412. nested_vmx_failValid(vcpu,
  6413. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  6414. return 1;
  6415. }
  6416. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6417. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6418. nested_vmx_entry_failure(vcpu, vmcs12,
  6419. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6420. return 1;
  6421. }
  6422. if (vmcs12->vmcs_link_pointer != -1ull) {
  6423. nested_vmx_entry_failure(vcpu, vmcs12,
  6424. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  6425. return 1;
  6426. }
  6427. /*
  6428. * We're finally done with prerequisite checking, and can start with
  6429. * the nested entry.
  6430. */
  6431. vmcs02 = nested_get_current_vmcs02(vmx);
  6432. if (!vmcs02)
  6433. return -ENOMEM;
  6434. enter_guest_mode(vcpu);
  6435. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  6436. cpu = get_cpu();
  6437. vmx->loaded_vmcs = vmcs02;
  6438. vmx_vcpu_put(vcpu);
  6439. vmx_vcpu_load(vcpu, cpu);
  6440. vcpu->cpu = cpu;
  6441. put_cpu();
  6442. vmx_segment_cache_clear(vmx);
  6443. vmcs12->launch_state = 1;
  6444. prepare_vmcs02(vcpu, vmcs12);
  6445. /*
  6446. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  6447. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  6448. * returned as far as L1 is concerned. It will only return (and set
  6449. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  6450. */
  6451. return 1;
  6452. }
  6453. /*
  6454. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  6455. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  6456. * This function returns the new value we should put in vmcs12.guest_cr0.
  6457. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  6458. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  6459. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  6460. * didn't trap the bit, because if L1 did, so would L0).
  6461. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  6462. * been modified by L2, and L1 knows it. So just leave the old value of
  6463. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  6464. * isn't relevant, because if L0 traps this bit it can set it to anything.
  6465. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  6466. * changed these bits, and therefore they need to be updated, but L0
  6467. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  6468. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  6469. */
  6470. static inline unsigned long
  6471. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6472. {
  6473. return
  6474. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  6475. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  6476. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  6477. vcpu->arch.cr0_guest_owned_bits));
  6478. }
  6479. static inline unsigned long
  6480. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6481. {
  6482. return
  6483. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  6484. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  6485. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  6486. vcpu->arch.cr4_guest_owned_bits));
  6487. }
  6488. static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
  6489. struct vmcs12 *vmcs12)
  6490. {
  6491. u32 idt_vectoring;
  6492. unsigned int nr;
  6493. if (vcpu->arch.exception.pending) {
  6494. nr = vcpu->arch.exception.nr;
  6495. idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
  6496. if (kvm_exception_is_soft(nr)) {
  6497. vmcs12->vm_exit_instruction_len =
  6498. vcpu->arch.event_exit_inst_len;
  6499. idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
  6500. } else
  6501. idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
  6502. if (vcpu->arch.exception.has_error_code) {
  6503. idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
  6504. vmcs12->idt_vectoring_error_code =
  6505. vcpu->arch.exception.error_code;
  6506. }
  6507. vmcs12->idt_vectoring_info_field = idt_vectoring;
  6508. } else if (vcpu->arch.nmi_pending) {
  6509. vmcs12->idt_vectoring_info_field =
  6510. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
  6511. } else if (vcpu->arch.interrupt.pending) {
  6512. nr = vcpu->arch.interrupt.nr;
  6513. idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
  6514. if (vcpu->arch.interrupt.soft) {
  6515. idt_vectoring |= INTR_TYPE_SOFT_INTR;
  6516. vmcs12->vm_entry_instruction_len =
  6517. vcpu->arch.event_exit_inst_len;
  6518. } else
  6519. idt_vectoring |= INTR_TYPE_EXT_INTR;
  6520. vmcs12->idt_vectoring_info_field = idt_vectoring;
  6521. }
  6522. }
  6523. /*
  6524. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  6525. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  6526. * and this function updates it to reflect the changes to the guest state while
  6527. * L2 was running (and perhaps made some exits which were handled directly by L0
  6528. * without going back to L1), and to reflect the exit reason.
  6529. * Note that we do not have to copy here all VMCS fields, just those that
  6530. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  6531. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  6532. * which already writes to vmcs12 directly.
  6533. */
  6534. static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6535. {
  6536. /* update guest state fields: */
  6537. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  6538. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  6539. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  6540. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  6541. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  6542. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  6543. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  6544. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  6545. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  6546. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  6547. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  6548. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  6549. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  6550. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  6551. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  6552. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  6553. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  6554. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  6555. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  6556. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  6557. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  6558. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  6559. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  6560. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  6561. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  6562. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  6563. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  6564. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  6565. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  6566. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  6567. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  6568. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  6569. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  6570. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  6571. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  6572. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  6573. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  6574. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  6575. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  6576. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  6577. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  6578. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  6579. vmcs12->guest_interruptibility_info =
  6580. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  6581. vmcs12->guest_pending_dbg_exceptions =
  6582. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  6583. vmcs12->vm_entry_controls =
  6584. (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
  6585. (vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
  6586. /* TODO: These cannot have changed unless we have MSR bitmaps and
  6587. * the relevant bit asks not to trap the change */
  6588. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  6589. if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
  6590. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  6591. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  6592. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  6593. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  6594. /* update exit information fields: */
  6595. vmcs12->vm_exit_reason = to_vmx(vcpu)->exit_reason;
  6596. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  6597. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6598. if ((vmcs12->vm_exit_intr_info &
  6599. (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
  6600. (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
  6601. vmcs12->vm_exit_intr_error_code =
  6602. vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  6603. vmcs12->idt_vectoring_info_field = 0;
  6604. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  6605. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  6606. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
  6607. /* vm_entry_intr_info_field is cleared on exit. Emulate this
  6608. * instead of reading the real value. */
  6609. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  6610. /*
  6611. * Transfer the event that L0 or L1 may wanted to inject into
  6612. * L2 to IDT_VECTORING_INFO_FIELD.
  6613. */
  6614. vmcs12_save_pending_event(vcpu, vmcs12);
  6615. }
  6616. /*
  6617. * Drop what we picked up for L2 via vmx_complete_interrupts. It is
  6618. * preserved above and would only end up incorrectly in L1.
  6619. */
  6620. vcpu->arch.nmi_injected = false;
  6621. kvm_clear_exception_queue(vcpu);
  6622. kvm_clear_interrupt_queue(vcpu);
  6623. }
  6624. /*
  6625. * A part of what we need to when the nested L2 guest exits and we want to
  6626. * run its L1 parent, is to reset L1's guest state to the host state specified
  6627. * in vmcs12.
  6628. * This function is to be called not only on normal nested exit, but also on
  6629. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  6630. * Failures During or After Loading Guest State").
  6631. * This function should be called when the active VMCS is L1's (vmcs01).
  6632. */
  6633. static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
  6634. struct vmcs12 *vmcs12)
  6635. {
  6636. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  6637. vcpu->arch.efer = vmcs12->host_ia32_efer;
  6638. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  6639. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6640. else
  6641. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6642. vmx_set_efer(vcpu, vcpu->arch.efer);
  6643. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  6644. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  6645. vmx_set_rflags(vcpu, X86_EFLAGS_BIT1);
  6646. /*
  6647. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  6648. * actually changed, because it depends on the current state of
  6649. * fpu_active (which may have changed).
  6650. * Note that vmx_set_cr0 refers to efer set above.
  6651. */
  6652. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  6653. /*
  6654. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  6655. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  6656. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  6657. */
  6658. update_exception_bitmap(vcpu);
  6659. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  6660. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6661. /*
  6662. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  6663. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  6664. */
  6665. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  6666. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  6667. /* shadow page tables on either EPT or shadow page tables */
  6668. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  6669. kvm_mmu_reset_context(vcpu);
  6670. if (enable_vpid) {
  6671. /*
  6672. * Trivially support vpid by letting L2s share their parent
  6673. * L1's vpid. TODO: move to a more elaborate solution, giving
  6674. * each L2 its own vpid and exposing the vpid feature to L1.
  6675. */
  6676. vmx_flush_tlb(vcpu);
  6677. }
  6678. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  6679. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  6680. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  6681. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  6682. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  6683. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  6684. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  6685. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  6686. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  6687. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  6688. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  6689. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  6690. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  6691. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  6692. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6693. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6694. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6695. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6696. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6697. vmcs12->host_ia32_perf_global_ctrl);
  6698. kvm_set_dr(vcpu, 7, 0x400);
  6699. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  6700. }
  6701. /*
  6702. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6703. * and modify vmcs12 to make it see what it would expect to see there if
  6704. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6705. */
  6706. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6707. {
  6708. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6709. int cpu;
  6710. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6711. /* trying to cancel vmlaunch/vmresume is a bug */
  6712. WARN_ON_ONCE(vmx->nested.nested_run_pending);
  6713. leave_guest_mode(vcpu);
  6714. prepare_vmcs12(vcpu, vmcs12);
  6715. cpu = get_cpu();
  6716. vmx->loaded_vmcs = &vmx->vmcs01;
  6717. vmx_vcpu_put(vcpu);
  6718. vmx_vcpu_load(vcpu, cpu);
  6719. vcpu->cpu = cpu;
  6720. put_cpu();
  6721. vmx_segment_cache_clear(vmx);
  6722. /* if no vmcs02 cache requested, remove the one we used */
  6723. if (VMCS02_POOL_SIZE == 0)
  6724. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  6725. load_vmcs12_host_state(vcpu, vmcs12);
  6726. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  6727. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6728. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  6729. vmx->host_rsp = 0;
  6730. /* Unpin physical memory we referred to in vmcs02 */
  6731. if (vmx->nested.apic_access_page) {
  6732. nested_release_page(vmx->nested.apic_access_page);
  6733. vmx->nested.apic_access_page = 0;
  6734. }
  6735. /*
  6736. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  6737. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  6738. * success or failure flag accordingly.
  6739. */
  6740. if (unlikely(vmx->fail)) {
  6741. vmx->fail = 0;
  6742. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  6743. } else
  6744. nested_vmx_succeed(vcpu);
  6745. }
  6746. /*
  6747. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  6748. * 23.7 "VM-entry failures during or after loading guest state" (this also
  6749. * lists the acceptable exit-reason and exit-qualification parameters).
  6750. * It should only be called before L2 actually succeeded to run, and when
  6751. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  6752. */
  6753. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  6754. struct vmcs12 *vmcs12,
  6755. u32 reason, unsigned long qualification)
  6756. {
  6757. load_vmcs12_host_state(vcpu, vmcs12);
  6758. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  6759. vmcs12->exit_qualification = qualification;
  6760. nested_vmx_succeed(vcpu);
  6761. }
  6762. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  6763. struct x86_instruction_info *info,
  6764. enum x86_intercept_stage stage)
  6765. {
  6766. return X86EMUL_CONTINUE;
  6767. }
  6768. static struct kvm_x86_ops vmx_x86_ops = {
  6769. .cpu_has_kvm_support = cpu_has_kvm_support,
  6770. .disabled_by_bios = vmx_disabled_by_bios,
  6771. .hardware_setup = hardware_setup,
  6772. .hardware_unsetup = hardware_unsetup,
  6773. .check_processor_compatibility = vmx_check_processor_compat,
  6774. .hardware_enable = hardware_enable,
  6775. .hardware_disable = hardware_disable,
  6776. .cpu_has_accelerated_tpr = report_flexpriority,
  6777. .vcpu_create = vmx_create_vcpu,
  6778. .vcpu_free = vmx_free_vcpu,
  6779. .vcpu_reset = vmx_vcpu_reset,
  6780. .prepare_guest_switch = vmx_save_host_state,
  6781. .vcpu_load = vmx_vcpu_load,
  6782. .vcpu_put = vmx_vcpu_put,
  6783. .update_db_bp_intercept = update_exception_bitmap,
  6784. .get_msr = vmx_get_msr,
  6785. .set_msr = vmx_set_msr,
  6786. .get_segment_base = vmx_get_segment_base,
  6787. .get_segment = vmx_get_segment,
  6788. .set_segment = vmx_set_segment,
  6789. .get_cpl = vmx_get_cpl,
  6790. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  6791. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  6792. .decache_cr3 = vmx_decache_cr3,
  6793. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  6794. .set_cr0 = vmx_set_cr0,
  6795. .set_cr3 = vmx_set_cr3,
  6796. .set_cr4 = vmx_set_cr4,
  6797. .set_efer = vmx_set_efer,
  6798. .get_idt = vmx_get_idt,
  6799. .set_idt = vmx_set_idt,
  6800. .get_gdt = vmx_get_gdt,
  6801. .set_gdt = vmx_set_gdt,
  6802. .set_dr7 = vmx_set_dr7,
  6803. .cache_reg = vmx_cache_reg,
  6804. .get_rflags = vmx_get_rflags,
  6805. .set_rflags = vmx_set_rflags,
  6806. .fpu_activate = vmx_fpu_activate,
  6807. .fpu_deactivate = vmx_fpu_deactivate,
  6808. .tlb_flush = vmx_flush_tlb,
  6809. .run = vmx_vcpu_run,
  6810. .handle_exit = vmx_handle_exit,
  6811. .skip_emulated_instruction = skip_emulated_instruction,
  6812. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  6813. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  6814. .patch_hypercall = vmx_patch_hypercall,
  6815. .set_irq = vmx_inject_irq,
  6816. .set_nmi = vmx_inject_nmi,
  6817. .queue_exception = vmx_queue_exception,
  6818. .cancel_injection = vmx_cancel_injection,
  6819. .interrupt_allowed = vmx_interrupt_allowed,
  6820. .nmi_allowed = vmx_nmi_allowed,
  6821. .get_nmi_mask = vmx_get_nmi_mask,
  6822. .set_nmi_mask = vmx_set_nmi_mask,
  6823. .enable_nmi_window = enable_nmi_window,
  6824. .enable_irq_window = enable_irq_window,
  6825. .update_cr8_intercept = update_cr8_intercept,
  6826. .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
  6827. .vm_has_apicv = vmx_vm_has_apicv,
  6828. .load_eoi_exitmap = vmx_load_eoi_exitmap,
  6829. .hwapic_irr_update = vmx_hwapic_irr_update,
  6830. .hwapic_isr_update = vmx_hwapic_isr_update,
  6831. .sync_pir_to_irr = vmx_sync_pir_to_irr,
  6832. .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
  6833. .set_tss_addr = vmx_set_tss_addr,
  6834. .get_tdp_level = get_ept_level,
  6835. .get_mt_mask = vmx_get_mt_mask,
  6836. .get_exit_info = vmx_get_exit_info,
  6837. .get_lpage_level = vmx_get_lpage_level,
  6838. .cpuid_update = vmx_cpuid_update,
  6839. .rdtscp_supported = vmx_rdtscp_supported,
  6840. .invpcid_supported = vmx_invpcid_supported,
  6841. .set_supported_cpuid = vmx_set_supported_cpuid,
  6842. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  6843. .set_tsc_khz = vmx_set_tsc_khz,
  6844. .read_tsc_offset = vmx_read_tsc_offset,
  6845. .write_tsc_offset = vmx_write_tsc_offset,
  6846. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  6847. .compute_tsc_offset = vmx_compute_tsc_offset,
  6848. .read_l1_tsc = vmx_read_l1_tsc,
  6849. .set_tdp_cr3 = vmx_set_cr3,
  6850. .check_intercept = vmx_check_intercept,
  6851. .handle_external_intr = vmx_handle_external_intr,
  6852. };
  6853. static int __init vmx_init(void)
  6854. {
  6855. int r, i, msr;
  6856. rdmsrl_safe(MSR_EFER, &host_efer);
  6857. for (i = 0; i < NR_VMX_MSR; ++i)
  6858. kvm_define_shared_msr(i, vmx_msr_index[i]);
  6859. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  6860. if (!vmx_io_bitmap_a)
  6861. return -ENOMEM;
  6862. r = -ENOMEM;
  6863. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  6864. if (!vmx_io_bitmap_b)
  6865. goto out;
  6866. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  6867. if (!vmx_msr_bitmap_legacy)
  6868. goto out1;
  6869. vmx_msr_bitmap_legacy_x2apic =
  6870. (unsigned long *)__get_free_page(GFP_KERNEL);
  6871. if (!vmx_msr_bitmap_legacy_x2apic)
  6872. goto out2;
  6873. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  6874. if (!vmx_msr_bitmap_longmode)
  6875. goto out3;
  6876. vmx_msr_bitmap_longmode_x2apic =
  6877. (unsigned long *)__get_free_page(GFP_KERNEL);
  6878. if (!vmx_msr_bitmap_longmode_x2apic)
  6879. goto out4;
  6880. /*
  6881. * Allow direct access to the PC debug port (it is often used for I/O
  6882. * delays, but the vmexits simply slow things down).
  6883. */
  6884. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  6885. clear_bit(0x80, vmx_io_bitmap_a);
  6886. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  6887. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  6888. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  6889. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  6890. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  6891. __alignof__(struct vcpu_vmx), THIS_MODULE);
  6892. if (r)
  6893. goto out5;
  6894. #ifdef CONFIG_KEXEC
  6895. rcu_assign_pointer(crash_vmclear_loaded_vmcss,
  6896. crash_vmclear_local_loaded_vmcss);
  6897. #endif
  6898. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  6899. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  6900. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  6901. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  6902. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  6903. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  6904. memcpy(vmx_msr_bitmap_legacy_x2apic,
  6905. vmx_msr_bitmap_legacy, PAGE_SIZE);
  6906. memcpy(vmx_msr_bitmap_longmode_x2apic,
  6907. vmx_msr_bitmap_longmode, PAGE_SIZE);
  6908. if (enable_apicv) {
  6909. for (msr = 0x800; msr <= 0x8ff; msr++)
  6910. vmx_disable_intercept_msr_read_x2apic(msr);
  6911. /* According SDM, in x2apic mode, the whole id reg is used.
  6912. * But in KVM, it only use the highest eight bits. Need to
  6913. * intercept it */
  6914. vmx_enable_intercept_msr_read_x2apic(0x802);
  6915. /* TMCCT */
  6916. vmx_enable_intercept_msr_read_x2apic(0x839);
  6917. /* TPR */
  6918. vmx_disable_intercept_msr_write_x2apic(0x808);
  6919. /* EOI */
  6920. vmx_disable_intercept_msr_write_x2apic(0x80b);
  6921. /* SELF-IPI */
  6922. vmx_disable_intercept_msr_write_x2apic(0x83f);
  6923. }
  6924. if (enable_ept) {
  6925. kvm_mmu_set_mask_ptes(0ull,
  6926. (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
  6927. (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
  6928. 0ull, VMX_EPT_EXECUTABLE_MASK);
  6929. ept_set_mmio_spte_mask();
  6930. kvm_enable_tdp();
  6931. } else
  6932. kvm_disable_tdp();
  6933. return 0;
  6934. out5:
  6935. free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
  6936. out4:
  6937. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6938. out3:
  6939. free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
  6940. out2:
  6941. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6942. out1:
  6943. free_page((unsigned long)vmx_io_bitmap_b);
  6944. out:
  6945. free_page((unsigned long)vmx_io_bitmap_a);
  6946. return r;
  6947. }
  6948. static void __exit vmx_exit(void)
  6949. {
  6950. free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
  6951. free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
  6952. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6953. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6954. free_page((unsigned long)vmx_io_bitmap_b);
  6955. free_page((unsigned long)vmx_io_bitmap_a);
  6956. #ifdef CONFIG_KEXEC
  6957. rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
  6958. synchronize_rcu();
  6959. #endif
  6960. kvm_exit();
  6961. }
  6962. module_init(vmx_init)
  6963. module_exit(vmx_exit)