ksm.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587
  1. /*
  2. * Memory merging support.
  3. *
  4. * This code enables dynamic sharing of identical pages found in different
  5. * memory areas, even if they are not shared by fork()
  6. *
  7. * Copyright (C) 2008-2009 Red Hat, Inc.
  8. * Authors:
  9. * Izik Eidus
  10. * Andrea Arcangeli
  11. * Chris Wright
  12. * Hugh Dickins
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2.
  15. */
  16. #include <linux/errno.h>
  17. #include <linux/mm.h>
  18. #include <linux/fs.h>
  19. #include <linux/mman.h>
  20. #include <linux/sched.h>
  21. #include <linux/rwsem.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/rmap.h>
  24. #include <linux/spinlock.h>
  25. #include <linux/jhash.h>
  26. #include <linux/delay.h>
  27. #include <linux/kthread.h>
  28. #include <linux/wait.h>
  29. #include <linux/slab.h>
  30. #include <linux/rbtree.h>
  31. #include <linux/mmu_notifier.h>
  32. #include <linux/ksm.h>
  33. #include <asm/tlbflush.h>
  34. /*
  35. * A few notes about the KSM scanning process,
  36. * to make it easier to understand the data structures below:
  37. *
  38. * In order to reduce excessive scanning, KSM sorts the memory pages by their
  39. * contents into a data structure that holds pointers to the pages' locations.
  40. *
  41. * Since the contents of the pages may change at any moment, KSM cannot just
  42. * insert the pages into a normal sorted tree and expect it to find anything.
  43. * Therefore KSM uses two data structures - the stable and the unstable tree.
  44. *
  45. * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  46. * by their contents. Because each such page is write-protected, searching on
  47. * this tree is fully assured to be working (except when pages are unmapped),
  48. * and therefore this tree is called the stable tree.
  49. *
  50. * In addition to the stable tree, KSM uses a second data structure called the
  51. * unstable tree: this tree holds pointers to pages which have been found to
  52. * be "unchanged for a period of time". The unstable tree sorts these pages
  53. * by their contents, but since they are not write-protected, KSM cannot rely
  54. * upon the unstable tree to work correctly - the unstable tree is liable to
  55. * be corrupted as its contents are modified, and so it is called unstable.
  56. *
  57. * KSM solves this problem by several techniques:
  58. *
  59. * 1) The unstable tree is flushed every time KSM completes scanning all
  60. * memory areas, and then the tree is rebuilt again from the beginning.
  61. * 2) KSM will only insert into the unstable tree, pages whose hash value
  62. * has not changed since the previous scan of all memory areas.
  63. * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
  64. * colors of the nodes and not on their contents, assuring that even when
  65. * the tree gets "corrupted" it won't get out of balance, so scanning time
  66. * remains the same (also, searching and inserting nodes in an rbtree uses
  67. * the same algorithm, so we have no overhead when we flush and rebuild).
  68. * 4) KSM never flushes the stable tree, which means that even if it were to
  69. * take 10 attempts to find a page in the unstable tree, once it is found,
  70. * it is secured in the stable tree. (When we scan a new page, we first
  71. * compare it against the stable tree, and then against the unstable tree.)
  72. */
  73. /**
  74. * struct mm_slot - ksm information per mm that is being scanned
  75. * @link: link to the mm_slots hash list
  76. * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
  77. * @rmap_list: head for this mm_slot's list of rmap_items
  78. * @mm: the mm that this information is valid for
  79. */
  80. struct mm_slot {
  81. struct hlist_node link;
  82. struct list_head mm_list;
  83. struct list_head rmap_list;
  84. struct mm_struct *mm;
  85. };
  86. /**
  87. * struct ksm_scan - cursor for scanning
  88. * @mm_slot: the current mm_slot we are scanning
  89. * @address: the next address inside that to be scanned
  90. * @rmap_item: the current rmap that we are scanning inside the rmap_list
  91. * @seqnr: count of completed full scans (needed when removing unstable node)
  92. *
  93. * There is only the one ksm_scan instance of this cursor structure.
  94. */
  95. struct ksm_scan {
  96. struct mm_slot *mm_slot;
  97. unsigned long address;
  98. struct rmap_item *rmap_item;
  99. unsigned long seqnr;
  100. };
  101. /**
  102. * struct rmap_item - reverse mapping item for virtual addresses
  103. * @link: link into mm_slot's rmap_list (rmap_list is per mm)
  104. * @mm: the memory structure this rmap_item is pointing into
  105. * @address: the virtual address this rmap_item tracks (+ flags in low bits)
  106. * @oldchecksum: previous checksum of the page at that virtual address
  107. * @node: rb_node of this rmap_item in either unstable or stable tree
  108. * @next: next rmap_item hanging off the same node of the stable tree
  109. * @prev: previous rmap_item hanging off the same node of the stable tree
  110. */
  111. struct rmap_item {
  112. struct list_head link;
  113. struct mm_struct *mm;
  114. unsigned long address; /* + low bits used for flags below */
  115. union {
  116. unsigned int oldchecksum; /* when unstable */
  117. struct rmap_item *next; /* when stable */
  118. };
  119. union {
  120. struct rb_node node; /* when tree node */
  121. struct rmap_item *prev; /* in stable list */
  122. };
  123. };
  124. #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
  125. #define NODE_FLAG 0x100 /* is a node of unstable or stable tree */
  126. #define STABLE_FLAG 0x200 /* is a node or list item of stable tree */
  127. /* The stable and unstable tree heads */
  128. static struct rb_root root_stable_tree = RB_ROOT;
  129. static struct rb_root root_unstable_tree = RB_ROOT;
  130. #define MM_SLOTS_HASH_HEADS 1024
  131. static struct hlist_head *mm_slots_hash;
  132. static struct mm_slot ksm_mm_head = {
  133. .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
  134. };
  135. static struct ksm_scan ksm_scan = {
  136. .mm_slot = &ksm_mm_head,
  137. };
  138. static struct kmem_cache *rmap_item_cache;
  139. static struct kmem_cache *mm_slot_cache;
  140. /* The number of nodes in the stable tree */
  141. static unsigned long ksm_pages_shared;
  142. /* The number of page slots additionally sharing those nodes */
  143. static unsigned long ksm_pages_sharing;
  144. /* The number of nodes in the unstable tree */
  145. static unsigned long ksm_pages_unshared;
  146. /* The number of rmap_items in use: to calculate pages_volatile */
  147. static unsigned long ksm_rmap_items;
  148. /* Limit on the number of unswappable pages used */
  149. static unsigned long ksm_max_kernel_pages;
  150. /* Number of pages ksmd should scan in one batch */
  151. static unsigned int ksm_thread_pages_to_scan;
  152. /* Milliseconds ksmd should sleep between batches */
  153. static unsigned int ksm_thread_sleep_millisecs;
  154. #define KSM_RUN_STOP 0
  155. #define KSM_RUN_MERGE 1
  156. #define KSM_RUN_UNMERGE 2
  157. static unsigned int ksm_run;
  158. static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
  159. static DEFINE_MUTEX(ksm_thread_mutex);
  160. static DEFINE_SPINLOCK(ksm_mmlist_lock);
  161. #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
  162. sizeof(struct __struct), __alignof__(struct __struct),\
  163. (__flags), NULL)
  164. static int __init ksm_slab_init(void)
  165. {
  166. rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
  167. if (!rmap_item_cache)
  168. goto out;
  169. mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
  170. if (!mm_slot_cache)
  171. goto out_free;
  172. return 0;
  173. out_free:
  174. kmem_cache_destroy(rmap_item_cache);
  175. out:
  176. return -ENOMEM;
  177. }
  178. static void __init ksm_slab_free(void)
  179. {
  180. kmem_cache_destroy(mm_slot_cache);
  181. kmem_cache_destroy(rmap_item_cache);
  182. mm_slot_cache = NULL;
  183. }
  184. static inline struct rmap_item *alloc_rmap_item(void)
  185. {
  186. struct rmap_item *rmap_item;
  187. rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
  188. if (rmap_item)
  189. ksm_rmap_items++;
  190. return rmap_item;
  191. }
  192. static inline void free_rmap_item(struct rmap_item *rmap_item)
  193. {
  194. ksm_rmap_items--;
  195. rmap_item->mm = NULL; /* debug safety */
  196. kmem_cache_free(rmap_item_cache, rmap_item);
  197. }
  198. static inline struct mm_slot *alloc_mm_slot(void)
  199. {
  200. if (!mm_slot_cache) /* initialization failed */
  201. return NULL;
  202. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  203. }
  204. static inline void free_mm_slot(struct mm_slot *mm_slot)
  205. {
  206. kmem_cache_free(mm_slot_cache, mm_slot);
  207. }
  208. static int __init mm_slots_hash_init(void)
  209. {
  210. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  211. GFP_KERNEL);
  212. if (!mm_slots_hash)
  213. return -ENOMEM;
  214. return 0;
  215. }
  216. static void __init mm_slots_hash_free(void)
  217. {
  218. kfree(mm_slots_hash);
  219. }
  220. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  221. {
  222. struct mm_slot *mm_slot;
  223. struct hlist_head *bucket;
  224. struct hlist_node *node;
  225. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  226. % MM_SLOTS_HASH_HEADS];
  227. hlist_for_each_entry(mm_slot, node, bucket, link) {
  228. if (mm == mm_slot->mm)
  229. return mm_slot;
  230. }
  231. return NULL;
  232. }
  233. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  234. struct mm_slot *mm_slot)
  235. {
  236. struct hlist_head *bucket;
  237. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  238. % MM_SLOTS_HASH_HEADS];
  239. mm_slot->mm = mm;
  240. INIT_LIST_HEAD(&mm_slot->rmap_list);
  241. hlist_add_head(&mm_slot->link, bucket);
  242. }
  243. static inline int in_stable_tree(struct rmap_item *rmap_item)
  244. {
  245. return rmap_item->address & STABLE_FLAG;
  246. }
  247. /*
  248. * We use break_ksm to break COW on a ksm page: it's a stripped down
  249. *
  250. * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
  251. * put_page(page);
  252. *
  253. * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
  254. * in case the application has unmapped and remapped mm,addr meanwhile.
  255. * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
  256. * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
  257. */
  258. static void break_ksm(struct vm_area_struct *vma, unsigned long addr)
  259. {
  260. struct page *page;
  261. int ret;
  262. do {
  263. cond_resched();
  264. page = follow_page(vma, addr, FOLL_GET);
  265. if (!page)
  266. break;
  267. if (PageKsm(page))
  268. ret = handle_mm_fault(vma->vm_mm, vma, addr,
  269. FAULT_FLAG_WRITE);
  270. else
  271. ret = VM_FAULT_WRITE;
  272. put_page(page);
  273. } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS)));
  274. /* Which leaves us looping there if VM_FAULT_OOM: hmmm... */
  275. }
  276. static void __break_cow(struct mm_struct *mm, unsigned long addr)
  277. {
  278. struct vm_area_struct *vma;
  279. vma = find_vma(mm, addr);
  280. if (!vma || vma->vm_start > addr)
  281. return;
  282. if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
  283. return;
  284. break_ksm(vma, addr);
  285. }
  286. static void break_cow(struct mm_struct *mm, unsigned long addr)
  287. {
  288. down_read(&mm->mmap_sem);
  289. __break_cow(mm, addr);
  290. up_read(&mm->mmap_sem);
  291. }
  292. static struct page *get_mergeable_page(struct rmap_item *rmap_item)
  293. {
  294. struct mm_struct *mm = rmap_item->mm;
  295. unsigned long addr = rmap_item->address;
  296. struct vm_area_struct *vma;
  297. struct page *page;
  298. down_read(&mm->mmap_sem);
  299. vma = find_vma(mm, addr);
  300. if (!vma || vma->vm_start > addr)
  301. goto out;
  302. if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
  303. goto out;
  304. page = follow_page(vma, addr, FOLL_GET);
  305. if (!page)
  306. goto out;
  307. if (PageAnon(page)) {
  308. flush_anon_page(vma, page, addr);
  309. flush_dcache_page(page);
  310. } else {
  311. put_page(page);
  312. out: page = NULL;
  313. }
  314. up_read(&mm->mmap_sem);
  315. return page;
  316. }
  317. /*
  318. * get_ksm_page: checks if the page at the virtual address in rmap_item
  319. * is still PageKsm, in which case we can trust the content of the page,
  320. * and it returns the gotten page; but NULL if the page has been zapped.
  321. */
  322. static struct page *get_ksm_page(struct rmap_item *rmap_item)
  323. {
  324. struct page *page;
  325. page = get_mergeable_page(rmap_item);
  326. if (page && !PageKsm(page)) {
  327. put_page(page);
  328. page = NULL;
  329. }
  330. return page;
  331. }
  332. /*
  333. * Removing rmap_item from stable or unstable tree.
  334. * This function will clean the information from the stable/unstable tree.
  335. */
  336. static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
  337. {
  338. if (in_stable_tree(rmap_item)) {
  339. struct rmap_item *next_item = rmap_item->next;
  340. if (rmap_item->address & NODE_FLAG) {
  341. if (next_item) {
  342. rb_replace_node(&rmap_item->node,
  343. &next_item->node,
  344. &root_stable_tree);
  345. next_item->address |= NODE_FLAG;
  346. ksm_pages_sharing--;
  347. } else {
  348. rb_erase(&rmap_item->node, &root_stable_tree);
  349. ksm_pages_shared--;
  350. }
  351. } else {
  352. struct rmap_item *prev_item = rmap_item->prev;
  353. BUG_ON(prev_item->next != rmap_item);
  354. prev_item->next = next_item;
  355. if (next_item) {
  356. BUG_ON(next_item->prev != rmap_item);
  357. next_item->prev = rmap_item->prev;
  358. }
  359. ksm_pages_sharing--;
  360. }
  361. rmap_item->next = NULL;
  362. } else if (rmap_item->address & NODE_FLAG) {
  363. unsigned char age;
  364. /*
  365. * ksm_thread can and must skip the rb_erase, because
  366. * root_unstable_tree was already reset to RB_ROOT.
  367. * But __ksm_exit has to be careful: do the rb_erase
  368. * if it's interrupting a scan, and this rmap_item was
  369. * inserted by this scan rather than left from before.
  370. *
  371. * Because of the case in which remove_mm_from_lists
  372. * increments seqnr before removing rmaps, unstable_nr
  373. * may even be 2 behind seqnr, but should never be
  374. * further behind. Yes, I did have trouble with this!
  375. */
  376. age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
  377. BUG_ON(age > 2);
  378. if (!age)
  379. rb_erase(&rmap_item->node, &root_unstable_tree);
  380. ksm_pages_unshared--;
  381. }
  382. rmap_item->address &= PAGE_MASK;
  383. cond_resched(); /* we're called from many long loops */
  384. }
  385. static void remove_all_slot_rmap_items(struct mm_slot *mm_slot)
  386. {
  387. struct rmap_item *rmap_item, *node;
  388. list_for_each_entry_safe(rmap_item, node, &mm_slot->rmap_list, link) {
  389. remove_rmap_item_from_tree(rmap_item);
  390. list_del(&rmap_item->link);
  391. free_rmap_item(rmap_item);
  392. }
  393. }
  394. static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
  395. struct list_head *cur)
  396. {
  397. struct rmap_item *rmap_item;
  398. while (cur != &mm_slot->rmap_list) {
  399. rmap_item = list_entry(cur, struct rmap_item, link);
  400. cur = cur->next;
  401. remove_rmap_item_from_tree(rmap_item);
  402. list_del(&rmap_item->link);
  403. free_rmap_item(rmap_item);
  404. }
  405. }
  406. /*
  407. * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
  408. * than check every pte of a given vma, the locking doesn't quite work for
  409. * that - an rmap_item is assigned to the stable tree after inserting ksm
  410. * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
  411. * rmap_items from parent to child at fork time (so as not to waste time
  412. * if exit comes before the next scan reaches it).
  413. */
  414. static void unmerge_ksm_pages(struct vm_area_struct *vma,
  415. unsigned long start, unsigned long end)
  416. {
  417. unsigned long addr;
  418. for (addr = start; addr < end; addr += PAGE_SIZE)
  419. break_ksm(vma, addr);
  420. }
  421. static void unmerge_and_remove_all_rmap_items(void)
  422. {
  423. struct mm_slot *mm_slot;
  424. struct mm_struct *mm;
  425. struct vm_area_struct *vma;
  426. list_for_each_entry(mm_slot, &ksm_mm_head.mm_list, mm_list) {
  427. mm = mm_slot->mm;
  428. down_read(&mm->mmap_sem);
  429. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  430. if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
  431. continue;
  432. unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end);
  433. }
  434. remove_all_slot_rmap_items(mm_slot);
  435. up_read(&mm->mmap_sem);
  436. }
  437. spin_lock(&ksm_mmlist_lock);
  438. if (ksm_scan.mm_slot != &ksm_mm_head) {
  439. ksm_scan.mm_slot = &ksm_mm_head;
  440. ksm_scan.seqnr++;
  441. }
  442. spin_unlock(&ksm_mmlist_lock);
  443. }
  444. static void remove_mm_from_lists(struct mm_struct *mm)
  445. {
  446. struct mm_slot *mm_slot;
  447. spin_lock(&ksm_mmlist_lock);
  448. mm_slot = get_mm_slot(mm);
  449. /*
  450. * This mm_slot is always at the scanning cursor when we're
  451. * called from scan_get_next_rmap_item; but it's a special
  452. * case when we're called from __ksm_exit.
  453. */
  454. if (ksm_scan.mm_slot == mm_slot) {
  455. ksm_scan.mm_slot = list_entry(
  456. mm_slot->mm_list.next, struct mm_slot, mm_list);
  457. ksm_scan.address = 0;
  458. ksm_scan.rmap_item = list_entry(
  459. &ksm_scan.mm_slot->rmap_list, struct rmap_item, link);
  460. if (ksm_scan.mm_slot == &ksm_mm_head)
  461. ksm_scan.seqnr++;
  462. }
  463. hlist_del(&mm_slot->link);
  464. list_del(&mm_slot->mm_list);
  465. spin_unlock(&ksm_mmlist_lock);
  466. remove_all_slot_rmap_items(mm_slot);
  467. free_mm_slot(mm_slot);
  468. clear_bit(MMF_VM_MERGEABLE, &mm->flags);
  469. }
  470. static u32 calc_checksum(struct page *page)
  471. {
  472. u32 checksum;
  473. void *addr = kmap_atomic(page, KM_USER0);
  474. checksum = jhash2(addr, PAGE_SIZE / 4, 17);
  475. kunmap_atomic(addr, KM_USER0);
  476. return checksum;
  477. }
  478. static int memcmp_pages(struct page *page1, struct page *page2)
  479. {
  480. char *addr1, *addr2;
  481. int ret;
  482. addr1 = kmap_atomic(page1, KM_USER0);
  483. addr2 = kmap_atomic(page2, KM_USER1);
  484. ret = memcmp(addr1, addr2, PAGE_SIZE);
  485. kunmap_atomic(addr2, KM_USER1);
  486. kunmap_atomic(addr1, KM_USER0);
  487. return ret;
  488. }
  489. static inline int pages_identical(struct page *page1, struct page *page2)
  490. {
  491. return !memcmp_pages(page1, page2);
  492. }
  493. static int write_protect_page(struct vm_area_struct *vma, struct page *page,
  494. pte_t *orig_pte)
  495. {
  496. struct mm_struct *mm = vma->vm_mm;
  497. unsigned long addr;
  498. pte_t *ptep;
  499. spinlock_t *ptl;
  500. int swapped;
  501. int err = -EFAULT;
  502. addr = page_address_in_vma(page, vma);
  503. if (addr == -EFAULT)
  504. goto out;
  505. ptep = page_check_address(page, mm, addr, &ptl, 0);
  506. if (!ptep)
  507. goto out;
  508. if (pte_write(*ptep)) {
  509. pte_t entry;
  510. swapped = PageSwapCache(page);
  511. flush_cache_page(vma, addr, page_to_pfn(page));
  512. /*
  513. * Ok this is tricky, when get_user_pages_fast() run it doesnt
  514. * take any lock, therefore the check that we are going to make
  515. * with the pagecount against the mapcount is racey and
  516. * O_DIRECT can happen right after the check.
  517. * So we clear the pte and flush the tlb before the check
  518. * this assure us that no O_DIRECT can happen after the check
  519. * or in the middle of the check.
  520. */
  521. entry = ptep_clear_flush(vma, addr, ptep);
  522. /*
  523. * Check that no O_DIRECT or similar I/O is in progress on the
  524. * page
  525. */
  526. if ((page_mapcount(page) + 2 + swapped) != page_count(page)) {
  527. set_pte_at_notify(mm, addr, ptep, entry);
  528. goto out_unlock;
  529. }
  530. entry = pte_wrprotect(entry);
  531. set_pte_at_notify(mm, addr, ptep, entry);
  532. }
  533. *orig_pte = *ptep;
  534. err = 0;
  535. out_unlock:
  536. pte_unmap_unlock(ptep, ptl);
  537. out:
  538. return err;
  539. }
  540. /**
  541. * replace_page - replace page in vma by new ksm page
  542. * @vma: vma that holds the pte pointing to oldpage
  543. * @oldpage: the page we are replacing by newpage
  544. * @newpage: the ksm page we replace oldpage by
  545. * @orig_pte: the original value of the pte
  546. *
  547. * Returns 0 on success, -EFAULT on failure.
  548. */
  549. static int replace_page(struct vm_area_struct *vma, struct page *oldpage,
  550. struct page *newpage, pte_t orig_pte)
  551. {
  552. struct mm_struct *mm = vma->vm_mm;
  553. pgd_t *pgd;
  554. pud_t *pud;
  555. pmd_t *pmd;
  556. pte_t *ptep;
  557. spinlock_t *ptl;
  558. unsigned long addr;
  559. pgprot_t prot;
  560. int err = -EFAULT;
  561. prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE);
  562. addr = page_address_in_vma(oldpage, vma);
  563. if (addr == -EFAULT)
  564. goto out;
  565. pgd = pgd_offset(mm, addr);
  566. if (!pgd_present(*pgd))
  567. goto out;
  568. pud = pud_offset(pgd, addr);
  569. if (!pud_present(*pud))
  570. goto out;
  571. pmd = pmd_offset(pud, addr);
  572. if (!pmd_present(*pmd))
  573. goto out;
  574. ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
  575. if (!pte_same(*ptep, orig_pte)) {
  576. pte_unmap_unlock(ptep, ptl);
  577. goto out;
  578. }
  579. get_page(newpage);
  580. page_add_ksm_rmap(newpage);
  581. flush_cache_page(vma, addr, pte_pfn(*ptep));
  582. ptep_clear_flush(vma, addr, ptep);
  583. set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot));
  584. page_remove_rmap(oldpage);
  585. put_page(oldpage);
  586. pte_unmap_unlock(ptep, ptl);
  587. err = 0;
  588. out:
  589. return err;
  590. }
  591. /*
  592. * try_to_merge_one_page - take two pages and merge them into one
  593. * @vma: the vma that hold the pte pointing into oldpage
  594. * @oldpage: the page that we want to replace with newpage
  595. * @newpage: the page that we want to map instead of oldpage
  596. *
  597. * Note:
  598. * oldpage should be a PageAnon page, while newpage should be a PageKsm page,
  599. * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm.
  600. *
  601. * This function returns 0 if the pages were merged, -EFAULT otherwise.
  602. */
  603. static int try_to_merge_one_page(struct vm_area_struct *vma,
  604. struct page *oldpage,
  605. struct page *newpage)
  606. {
  607. pte_t orig_pte = __pte(0);
  608. int err = -EFAULT;
  609. if (!(vma->vm_flags & VM_MERGEABLE))
  610. goto out;
  611. if (!PageAnon(oldpage))
  612. goto out;
  613. get_page(newpage);
  614. get_page(oldpage);
  615. /*
  616. * We need the page lock to read a stable PageSwapCache in
  617. * write_protect_page(). We use trylock_page() instead of
  618. * lock_page() because we don't want to wait here - we
  619. * prefer to continue scanning and merging different pages,
  620. * then come back to this page when it is unlocked.
  621. */
  622. if (!trylock_page(oldpage))
  623. goto out_putpage;
  624. /*
  625. * If this anonymous page is mapped only here, its pte may need
  626. * to be write-protected. If it's mapped elsewhere, all of its
  627. * ptes are necessarily already write-protected. But in either
  628. * case, we need to lock and check page_count is not raised.
  629. */
  630. if (write_protect_page(vma, oldpage, &orig_pte)) {
  631. unlock_page(oldpage);
  632. goto out_putpage;
  633. }
  634. unlock_page(oldpage);
  635. if (pages_identical(oldpage, newpage))
  636. err = replace_page(vma, oldpage, newpage, orig_pte);
  637. out_putpage:
  638. put_page(oldpage);
  639. put_page(newpage);
  640. out:
  641. return err;
  642. }
  643. /*
  644. * try_to_merge_two_pages - take two identical pages and prepare them
  645. * to be merged into one page.
  646. *
  647. * This function returns 0 if we successfully mapped two identical pages
  648. * into one page, -EFAULT otherwise.
  649. *
  650. * Note that this function allocates a new kernel page: if one of the pages
  651. * is already a ksm page, try_to_merge_with_ksm_page should be used.
  652. */
  653. static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1,
  654. struct page *page1, struct mm_struct *mm2,
  655. unsigned long addr2, struct page *page2)
  656. {
  657. struct vm_area_struct *vma;
  658. struct page *kpage;
  659. int err = -EFAULT;
  660. /*
  661. * The number of nodes in the stable tree
  662. * is the number of kernel pages that we hold.
  663. */
  664. if (ksm_max_kernel_pages &&
  665. ksm_max_kernel_pages <= ksm_pages_shared)
  666. return err;
  667. kpage = alloc_page(GFP_HIGHUSER);
  668. if (!kpage)
  669. return err;
  670. down_read(&mm1->mmap_sem);
  671. vma = find_vma(mm1, addr1);
  672. if (!vma || vma->vm_start > addr1) {
  673. put_page(kpage);
  674. up_read(&mm1->mmap_sem);
  675. return err;
  676. }
  677. copy_user_highpage(kpage, page1, addr1, vma);
  678. err = try_to_merge_one_page(vma, page1, kpage);
  679. up_read(&mm1->mmap_sem);
  680. if (!err) {
  681. down_read(&mm2->mmap_sem);
  682. vma = find_vma(mm2, addr2);
  683. if (!vma || vma->vm_start > addr2) {
  684. put_page(kpage);
  685. up_read(&mm2->mmap_sem);
  686. break_cow(mm1, addr1);
  687. return -EFAULT;
  688. }
  689. err = try_to_merge_one_page(vma, page2, kpage);
  690. up_read(&mm2->mmap_sem);
  691. /*
  692. * If the second try_to_merge_one_page failed, we have a
  693. * ksm page with just one pte pointing to it, so break it.
  694. */
  695. if (err)
  696. break_cow(mm1, addr1);
  697. }
  698. put_page(kpage);
  699. return err;
  700. }
  701. /*
  702. * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
  703. * but no new kernel page is allocated: kpage must already be a ksm page.
  704. */
  705. static int try_to_merge_with_ksm_page(struct mm_struct *mm1,
  706. unsigned long addr1,
  707. struct page *page1,
  708. struct page *kpage)
  709. {
  710. struct vm_area_struct *vma;
  711. int err = -EFAULT;
  712. down_read(&mm1->mmap_sem);
  713. vma = find_vma(mm1, addr1);
  714. if (!vma || vma->vm_start > addr1) {
  715. up_read(&mm1->mmap_sem);
  716. return err;
  717. }
  718. err = try_to_merge_one_page(vma, page1, kpage);
  719. up_read(&mm1->mmap_sem);
  720. return err;
  721. }
  722. /*
  723. * stable_tree_search - search page inside the stable tree
  724. * @page: the page that we are searching identical pages to.
  725. * @page2: pointer into identical page that we are holding inside the stable
  726. * tree that we have found.
  727. * @rmap_item: the reverse mapping item
  728. *
  729. * This function checks if there is a page inside the stable tree
  730. * with identical content to the page that we are scanning right now.
  731. *
  732. * This function return rmap_item pointer to the identical item if found,
  733. * NULL otherwise.
  734. */
  735. static struct rmap_item *stable_tree_search(struct page *page,
  736. struct page **page2,
  737. struct rmap_item *rmap_item)
  738. {
  739. struct rb_node *node = root_stable_tree.rb_node;
  740. while (node) {
  741. struct rmap_item *tree_rmap_item, *next_rmap_item;
  742. int ret;
  743. tree_rmap_item = rb_entry(node, struct rmap_item, node);
  744. while (tree_rmap_item) {
  745. BUG_ON(!in_stable_tree(tree_rmap_item));
  746. cond_resched();
  747. page2[0] = get_ksm_page(tree_rmap_item);
  748. if (page2[0])
  749. break;
  750. next_rmap_item = tree_rmap_item->next;
  751. remove_rmap_item_from_tree(tree_rmap_item);
  752. tree_rmap_item = next_rmap_item;
  753. }
  754. if (!tree_rmap_item)
  755. return NULL;
  756. ret = memcmp_pages(page, page2[0]);
  757. if (ret < 0) {
  758. put_page(page2[0]);
  759. node = node->rb_left;
  760. } else if (ret > 0) {
  761. put_page(page2[0]);
  762. node = node->rb_right;
  763. } else {
  764. return tree_rmap_item;
  765. }
  766. }
  767. return NULL;
  768. }
  769. /*
  770. * stable_tree_insert - insert rmap_item pointing to new ksm page
  771. * into the stable tree.
  772. *
  773. * @page: the page that we are searching identical page to inside the stable
  774. * tree.
  775. * @rmap_item: pointer to the reverse mapping item.
  776. *
  777. * This function returns rmap_item if success, NULL otherwise.
  778. */
  779. static struct rmap_item *stable_tree_insert(struct page *page,
  780. struct rmap_item *rmap_item)
  781. {
  782. struct rb_node **new = &root_stable_tree.rb_node;
  783. struct rb_node *parent = NULL;
  784. while (*new) {
  785. struct rmap_item *tree_rmap_item, *next_rmap_item;
  786. struct page *tree_page;
  787. int ret;
  788. tree_rmap_item = rb_entry(*new, struct rmap_item, node);
  789. while (tree_rmap_item) {
  790. BUG_ON(!in_stable_tree(tree_rmap_item));
  791. cond_resched();
  792. tree_page = get_ksm_page(tree_rmap_item);
  793. if (tree_page)
  794. break;
  795. next_rmap_item = tree_rmap_item->next;
  796. remove_rmap_item_from_tree(tree_rmap_item);
  797. tree_rmap_item = next_rmap_item;
  798. }
  799. if (!tree_rmap_item)
  800. return NULL;
  801. ret = memcmp_pages(page, tree_page);
  802. put_page(tree_page);
  803. parent = *new;
  804. if (ret < 0)
  805. new = &parent->rb_left;
  806. else if (ret > 0)
  807. new = &parent->rb_right;
  808. else {
  809. /*
  810. * It is not a bug that stable_tree_search() didn't
  811. * find this node: because at that time our page was
  812. * not yet write-protected, so may have changed since.
  813. */
  814. return NULL;
  815. }
  816. }
  817. rmap_item->address |= NODE_FLAG | STABLE_FLAG;
  818. rmap_item->next = NULL;
  819. rb_link_node(&rmap_item->node, parent, new);
  820. rb_insert_color(&rmap_item->node, &root_stable_tree);
  821. ksm_pages_shared++;
  822. return rmap_item;
  823. }
  824. /*
  825. * unstable_tree_search_insert - search and insert items into the unstable tree.
  826. *
  827. * @page: the page that we are going to search for identical page or to insert
  828. * into the unstable tree
  829. * @page2: pointer into identical page that was found inside the unstable tree
  830. * @rmap_item: the reverse mapping item of page
  831. *
  832. * This function searches for a page in the unstable tree identical to the
  833. * page currently being scanned; and if no identical page is found in the
  834. * tree, we insert rmap_item as a new object into the unstable tree.
  835. *
  836. * This function returns pointer to rmap_item found to be identical
  837. * to the currently scanned page, NULL otherwise.
  838. *
  839. * This function does both searching and inserting, because they share
  840. * the same walking algorithm in an rbtree.
  841. */
  842. static struct rmap_item *unstable_tree_search_insert(struct page *page,
  843. struct page **page2,
  844. struct rmap_item *rmap_item)
  845. {
  846. struct rb_node **new = &root_unstable_tree.rb_node;
  847. struct rb_node *parent = NULL;
  848. while (*new) {
  849. struct rmap_item *tree_rmap_item;
  850. int ret;
  851. tree_rmap_item = rb_entry(*new, struct rmap_item, node);
  852. page2[0] = get_mergeable_page(tree_rmap_item);
  853. if (!page2[0])
  854. return NULL;
  855. /*
  856. * Don't substitute an unswappable ksm page
  857. * just for one good swappable forked page.
  858. */
  859. if (page == page2[0]) {
  860. put_page(page2[0]);
  861. return NULL;
  862. }
  863. ret = memcmp_pages(page, page2[0]);
  864. parent = *new;
  865. if (ret < 0) {
  866. put_page(page2[0]);
  867. new = &parent->rb_left;
  868. } else if (ret > 0) {
  869. put_page(page2[0]);
  870. new = &parent->rb_right;
  871. } else {
  872. return tree_rmap_item;
  873. }
  874. }
  875. rmap_item->address |= NODE_FLAG;
  876. rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
  877. rb_link_node(&rmap_item->node, parent, new);
  878. rb_insert_color(&rmap_item->node, &root_unstable_tree);
  879. ksm_pages_unshared++;
  880. return NULL;
  881. }
  882. /*
  883. * stable_tree_append - add another rmap_item to the linked list of
  884. * rmap_items hanging off a given node of the stable tree, all sharing
  885. * the same ksm page.
  886. */
  887. static void stable_tree_append(struct rmap_item *rmap_item,
  888. struct rmap_item *tree_rmap_item)
  889. {
  890. rmap_item->next = tree_rmap_item->next;
  891. rmap_item->prev = tree_rmap_item;
  892. if (tree_rmap_item->next)
  893. tree_rmap_item->next->prev = rmap_item;
  894. tree_rmap_item->next = rmap_item;
  895. rmap_item->address |= STABLE_FLAG;
  896. ksm_pages_sharing++;
  897. }
  898. /*
  899. * cmp_and_merge_page - take a page computes its hash value and check if there
  900. * is similar hash value to different page,
  901. * in case we find that there is similar hash to different page we call to
  902. * try_to_merge_two_pages().
  903. *
  904. * @page: the page that we are searching identical page to.
  905. * @rmap_item: the reverse mapping into the virtual address of this page
  906. */
  907. static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
  908. {
  909. struct page *page2[1];
  910. struct rmap_item *tree_rmap_item;
  911. unsigned int checksum;
  912. int err;
  913. if (in_stable_tree(rmap_item))
  914. remove_rmap_item_from_tree(rmap_item);
  915. /* We first start with searching the page inside the stable tree */
  916. tree_rmap_item = stable_tree_search(page, page2, rmap_item);
  917. if (tree_rmap_item) {
  918. if (page == page2[0]) /* forked */
  919. err = 0;
  920. else
  921. err = try_to_merge_with_ksm_page(rmap_item->mm,
  922. rmap_item->address,
  923. page, page2[0]);
  924. put_page(page2[0]);
  925. if (!err) {
  926. /*
  927. * The page was successfully merged:
  928. * add its rmap_item to the stable tree.
  929. */
  930. stable_tree_append(rmap_item, tree_rmap_item);
  931. }
  932. return;
  933. }
  934. /*
  935. * A ksm page might have got here by fork, but its other
  936. * references have already been removed from the stable tree.
  937. */
  938. if (PageKsm(page))
  939. break_cow(rmap_item->mm, rmap_item->address);
  940. /*
  941. * In case the hash value of the page was changed from the last time we
  942. * have calculated it, this page to be changed frequely, therefore we
  943. * don't want to insert it to the unstable tree, and we don't want to
  944. * waste our time to search if there is something identical to it there.
  945. */
  946. checksum = calc_checksum(page);
  947. if (rmap_item->oldchecksum != checksum) {
  948. rmap_item->oldchecksum = checksum;
  949. return;
  950. }
  951. tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item);
  952. if (tree_rmap_item) {
  953. err = try_to_merge_two_pages(rmap_item->mm,
  954. rmap_item->address, page,
  955. tree_rmap_item->mm,
  956. tree_rmap_item->address, page2[0]);
  957. /*
  958. * As soon as we merge this page, we want to remove the
  959. * rmap_item of the page we have merged with from the unstable
  960. * tree, and insert it instead as new node in the stable tree.
  961. */
  962. if (!err) {
  963. rb_erase(&tree_rmap_item->node, &root_unstable_tree);
  964. tree_rmap_item->address &= ~NODE_FLAG;
  965. ksm_pages_unshared--;
  966. /*
  967. * If we fail to insert the page into the stable tree,
  968. * we will have 2 virtual addresses that are pointing
  969. * to a ksm page left outside the stable tree,
  970. * in which case we need to break_cow on both.
  971. */
  972. if (stable_tree_insert(page2[0], tree_rmap_item))
  973. stable_tree_append(rmap_item, tree_rmap_item);
  974. else {
  975. break_cow(tree_rmap_item->mm,
  976. tree_rmap_item->address);
  977. break_cow(rmap_item->mm, rmap_item->address);
  978. }
  979. }
  980. put_page(page2[0]);
  981. }
  982. }
  983. static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
  984. struct list_head *cur,
  985. unsigned long addr)
  986. {
  987. struct rmap_item *rmap_item;
  988. while (cur != &mm_slot->rmap_list) {
  989. rmap_item = list_entry(cur, struct rmap_item, link);
  990. if ((rmap_item->address & PAGE_MASK) == addr) {
  991. if (!in_stable_tree(rmap_item))
  992. remove_rmap_item_from_tree(rmap_item);
  993. return rmap_item;
  994. }
  995. if (rmap_item->address > addr)
  996. break;
  997. cur = cur->next;
  998. remove_rmap_item_from_tree(rmap_item);
  999. list_del(&rmap_item->link);
  1000. free_rmap_item(rmap_item);
  1001. }
  1002. rmap_item = alloc_rmap_item();
  1003. if (rmap_item) {
  1004. /* It has already been zeroed */
  1005. rmap_item->mm = mm_slot->mm;
  1006. rmap_item->address = addr;
  1007. list_add_tail(&rmap_item->link, cur);
  1008. }
  1009. return rmap_item;
  1010. }
  1011. static struct rmap_item *scan_get_next_rmap_item(struct page **page)
  1012. {
  1013. struct mm_struct *mm;
  1014. struct mm_slot *slot;
  1015. struct vm_area_struct *vma;
  1016. struct rmap_item *rmap_item;
  1017. if (list_empty(&ksm_mm_head.mm_list))
  1018. return NULL;
  1019. slot = ksm_scan.mm_slot;
  1020. if (slot == &ksm_mm_head) {
  1021. root_unstable_tree = RB_ROOT;
  1022. spin_lock(&ksm_mmlist_lock);
  1023. slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
  1024. ksm_scan.mm_slot = slot;
  1025. spin_unlock(&ksm_mmlist_lock);
  1026. next_mm:
  1027. ksm_scan.address = 0;
  1028. ksm_scan.rmap_item = list_entry(&slot->rmap_list,
  1029. struct rmap_item, link);
  1030. }
  1031. mm = slot->mm;
  1032. down_read(&mm->mmap_sem);
  1033. for (vma = find_vma(mm, ksm_scan.address); vma; vma = vma->vm_next) {
  1034. if (!(vma->vm_flags & VM_MERGEABLE))
  1035. continue;
  1036. if (ksm_scan.address < vma->vm_start)
  1037. ksm_scan.address = vma->vm_start;
  1038. if (!vma->anon_vma)
  1039. ksm_scan.address = vma->vm_end;
  1040. while (ksm_scan.address < vma->vm_end) {
  1041. *page = follow_page(vma, ksm_scan.address, FOLL_GET);
  1042. if (*page && PageAnon(*page)) {
  1043. flush_anon_page(vma, *page, ksm_scan.address);
  1044. flush_dcache_page(*page);
  1045. rmap_item = get_next_rmap_item(slot,
  1046. ksm_scan.rmap_item->link.next,
  1047. ksm_scan.address);
  1048. if (rmap_item) {
  1049. ksm_scan.rmap_item = rmap_item;
  1050. ksm_scan.address += PAGE_SIZE;
  1051. } else
  1052. put_page(*page);
  1053. up_read(&mm->mmap_sem);
  1054. return rmap_item;
  1055. }
  1056. if (*page)
  1057. put_page(*page);
  1058. ksm_scan.address += PAGE_SIZE;
  1059. cond_resched();
  1060. }
  1061. }
  1062. if (!ksm_scan.address) {
  1063. /*
  1064. * We've completed a full scan of all vmas, holding mmap_sem
  1065. * throughout, and found no VM_MERGEABLE: so do the same as
  1066. * __ksm_exit does to remove this mm from all our lists now.
  1067. */
  1068. remove_mm_from_lists(mm);
  1069. up_read(&mm->mmap_sem);
  1070. slot = ksm_scan.mm_slot;
  1071. if (slot != &ksm_mm_head)
  1072. goto next_mm;
  1073. return NULL;
  1074. }
  1075. /*
  1076. * Nuke all the rmap_items that are above this current rmap:
  1077. * because there were no VM_MERGEABLE vmas with such addresses.
  1078. */
  1079. remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next);
  1080. up_read(&mm->mmap_sem);
  1081. spin_lock(&ksm_mmlist_lock);
  1082. slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
  1083. ksm_scan.mm_slot = slot;
  1084. spin_unlock(&ksm_mmlist_lock);
  1085. /* Repeat until we've completed scanning the whole list */
  1086. if (slot != &ksm_mm_head)
  1087. goto next_mm;
  1088. /*
  1089. * Bump seqnr here rather than at top, so that __ksm_exit
  1090. * can skip rb_erase on unstable tree until we run again.
  1091. */
  1092. ksm_scan.seqnr++;
  1093. return NULL;
  1094. }
  1095. /**
  1096. * ksm_do_scan - the ksm scanner main worker function.
  1097. * @scan_npages - number of pages we want to scan before we return.
  1098. */
  1099. static void ksm_do_scan(unsigned int scan_npages)
  1100. {
  1101. struct rmap_item *rmap_item;
  1102. struct page *page;
  1103. while (scan_npages--) {
  1104. cond_resched();
  1105. rmap_item = scan_get_next_rmap_item(&page);
  1106. if (!rmap_item)
  1107. return;
  1108. if (!PageKsm(page) || !in_stable_tree(rmap_item))
  1109. cmp_and_merge_page(page, rmap_item);
  1110. else if (page_mapcount(page) == 1) {
  1111. /*
  1112. * Replace now-unshared ksm page by ordinary page.
  1113. */
  1114. break_cow(rmap_item->mm, rmap_item->address);
  1115. remove_rmap_item_from_tree(rmap_item);
  1116. rmap_item->oldchecksum = calc_checksum(page);
  1117. }
  1118. put_page(page);
  1119. }
  1120. }
  1121. static int ksm_scan_thread(void *nothing)
  1122. {
  1123. set_user_nice(current, 5);
  1124. while (!kthread_should_stop()) {
  1125. if (ksm_run & KSM_RUN_MERGE) {
  1126. mutex_lock(&ksm_thread_mutex);
  1127. ksm_do_scan(ksm_thread_pages_to_scan);
  1128. mutex_unlock(&ksm_thread_mutex);
  1129. schedule_timeout_interruptible(
  1130. msecs_to_jiffies(ksm_thread_sleep_millisecs));
  1131. } else {
  1132. wait_event_interruptible(ksm_thread_wait,
  1133. (ksm_run & KSM_RUN_MERGE) ||
  1134. kthread_should_stop());
  1135. }
  1136. }
  1137. return 0;
  1138. }
  1139. int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
  1140. unsigned long end, int advice, unsigned long *vm_flags)
  1141. {
  1142. struct mm_struct *mm = vma->vm_mm;
  1143. switch (advice) {
  1144. case MADV_MERGEABLE:
  1145. /*
  1146. * Be somewhat over-protective for now!
  1147. */
  1148. if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
  1149. VM_PFNMAP | VM_IO | VM_DONTEXPAND |
  1150. VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
  1151. VM_MIXEDMAP | VM_SAO))
  1152. return 0; /* just ignore the advice */
  1153. if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
  1154. if (__ksm_enter(mm) < 0)
  1155. return -EAGAIN;
  1156. *vm_flags |= VM_MERGEABLE;
  1157. break;
  1158. case MADV_UNMERGEABLE:
  1159. if (!(*vm_flags & VM_MERGEABLE))
  1160. return 0; /* just ignore the advice */
  1161. if (vma->anon_vma)
  1162. unmerge_ksm_pages(vma, start, end);
  1163. *vm_flags &= ~VM_MERGEABLE;
  1164. break;
  1165. }
  1166. return 0;
  1167. }
  1168. int __ksm_enter(struct mm_struct *mm)
  1169. {
  1170. struct mm_slot *mm_slot = alloc_mm_slot();
  1171. if (!mm_slot)
  1172. return -ENOMEM;
  1173. spin_lock(&ksm_mmlist_lock);
  1174. insert_to_mm_slots_hash(mm, mm_slot);
  1175. /*
  1176. * Insert just behind the scanning cursor, to let the area settle
  1177. * down a little; when fork is followed by immediate exec, we don't
  1178. * want ksmd to waste time setting up and tearing down an rmap_list.
  1179. */
  1180. list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
  1181. spin_unlock(&ksm_mmlist_lock);
  1182. set_bit(MMF_VM_MERGEABLE, &mm->flags);
  1183. return 0;
  1184. }
  1185. void __ksm_exit(struct mm_struct *mm)
  1186. {
  1187. /*
  1188. * This process is exiting: doesn't hold and doesn't need mmap_sem;
  1189. * but we do need to exclude ksmd and other exiters while we modify
  1190. * the various lists and trees.
  1191. */
  1192. mutex_lock(&ksm_thread_mutex);
  1193. remove_mm_from_lists(mm);
  1194. mutex_unlock(&ksm_thread_mutex);
  1195. }
  1196. #define KSM_ATTR_RO(_name) \
  1197. static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
  1198. #define KSM_ATTR(_name) \
  1199. static struct kobj_attribute _name##_attr = \
  1200. __ATTR(_name, 0644, _name##_show, _name##_store)
  1201. static ssize_t sleep_millisecs_show(struct kobject *kobj,
  1202. struct kobj_attribute *attr, char *buf)
  1203. {
  1204. return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
  1205. }
  1206. static ssize_t sleep_millisecs_store(struct kobject *kobj,
  1207. struct kobj_attribute *attr,
  1208. const char *buf, size_t count)
  1209. {
  1210. unsigned long msecs;
  1211. int err;
  1212. err = strict_strtoul(buf, 10, &msecs);
  1213. if (err || msecs > UINT_MAX)
  1214. return -EINVAL;
  1215. ksm_thread_sleep_millisecs = msecs;
  1216. return count;
  1217. }
  1218. KSM_ATTR(sleep_millisecs);
  1219. static ssize_t pages_to_scan_show(struct kobject *kobj,
  1220. struct kobj_attribute *attr, char *buf)
  1221. {
  1222. return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
  1223. }
  1224. static ssize_t pages_to_scan_store(struct kobject *kobj,
  1225. struct kobj_attribute *attr,
  1226. const char *buf, size_t count)
  1227. {
  1228. int err;
  1229. unsigned long nr_pages;
  1230. err = strict_strtoul(buf, 10, &nr_pages);
  1231. if (err || nr_pages > UINT_MAX)
  1232. return -EINVAL;
  1233. ksm_thread_pages_to_scan = nr_pages;
  1234. return count;
  1235. }
  1236. KSM_ATTR(pages_to_scan);
  1237. static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
  1238. char *buf)
  1239. {
  1240. return sprintf(buf, "%u\n", ksm_run);
  1241. }
  1242. static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
  1243. const char *buf, size_t count)
  1244. {
  1245. int err;
  1246. unsigned long flags;
  1247. err = strict_strtoul(buf, 10, &flags);
  1248. if (err || flags > UINT_MAX)
  1249. return -EINVAL;
  1250. if (flags > KSM_RUN_UNMERGE)
  1251. return -EINVAL;
  1252. /*
  1253. * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
  1254. * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
  1255. * breaking COW to free the unswappable pages_shared (but leaves
  1256. * mm_slots on the list for when ksmd may be set running again).
  1257. */
  1258. mutex_lock(&ksm_thread_mutex);
  1259. if (ksm_run != flags) {
  1260. ksm_run = flags;
  1261. if (flags & KSM_RUN_UNMERGE)
  1262. unmerge_and_remove_all_rmap_items();
  1263. }
  1264. mutex_unlock(&ksm_thread_mutex);
  1265. if (flags & KSM_RUN_MERGE)
  1266. wake_up_interruptible(&ksm_thread_wait);
  1267. return count;
  1268. }
  1269. KSM_ATTR(run);
  1270. static ssize_t max_kernel_pages_store(struct kobject *kobj,
  1271. struct kobj_attribute *attr,
  1272. const char *buf, size_t count)
  1273. {
  1274. int err;
  1275. unsigned long nr_pages;
  1276. err = strict_strtoul(buf, 10, &nr_pages);
  1277. if (err)
  1278. return -EINVAL;
  1279. ksm_max_kernel_pages = nr_pages;
  1280. return count;
  1281. }
  1282. static ssize_t max_kernel_pages_show(struct kobject *kobj,
  1283. struct kobj_attribute *attr, char *buf)
  1284. {
  1285. return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
  1286. }
  1287. KSM_ATTR(max_kernel_pages);
  1288. static ssize_t pages_shared_show(struct kobject *kobj,
  1289. struct kobj_attribute *attr, char *buf)
  1290. {
  1291. return sprintf(buf, "%lu\n", ksm_pages_shared);
  1292. }
  1293. KSM_ATTR_RO(pages_shared);
  1294. static ssize_t pages_sharing_show(struct kobject *kobj,
  1295. struct kobj_attribute *attr, char *buf)
  1296. {
  1297. return sprintf(buf, "%lu\n", ksm_pages_sharing);
  1298. }
  1299. KSM_ATTR_RO(pages_sharing);
  1300. static ssize_t pages_unshared_show(struct kobject *kobj,
  1301. struct kobj_attribute *attr, char *buf)
  1302. {
  1303. return sprintf(buf, "%lu\n", ksm_pages_unshared);
  1304. }
  1305. KSM_ATTR_RO(pages_unshared);
  1306. static ssize_t pages_volatile_show(struct kobject *kobj,
  1307. struct kobj_attribute *attr, char *buf)
  1308. {
  1309. long ksm_pages_volatile;
  1310. ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
  1311. - ksm_pages_sharing - ksm_pages_unshared;
  1312. /*
  1313. * It was not worth any locking to calculate that statistic,
  1314. * but it might therefore sometimes be negative: conceal that.
  1315. */
  1316. if (ksm_pages_volatile < 0)
  1317. ksm_pages_volatile = 0;
  1318. return sprintf(buf, "%ld\n", ksm_pages_volatile);
  1319. }
  1320. KSM_ATTR_RO(pages_volatile);
  1321. static ssize_t full_scans_show(struct kobject *kobj,
  1322. struct kobj_attribute *attr, char *buf)
  1323. {
  1324. return sprintf(buf, "%lu\n", ksm_scan.seqnr);
  1325. }
  1326. KSM_ATTR_RO(full_scans);
  1327. static struct attribute *ksm_attrs[] = {
  1328. &sleep_millisecs_attr.attr,
  1329. &pages_to_scan_attr.attr,
  1330. &run_attr.attr,
  1331. &max_kernel_pages_attr.attr,
  1332. &pages_shared_attr.attr,
  1333. &pages_sharing_attr.attr,
  1334. &pages_unshared_attr.attr,
  1335. &pages_volatile_attr.attr,
  1336. &full_scans_attr.attr,
  1337. NULL,
  1338. };
  1339. static struct attribute_group ksm_attr_group = {
  1340. .attrs = ksm_attrs,
  1341. .name = "ksm",
  1342. };
  1343. static int __init ksm_init(void)
  1344. {
  1345. struct task_struct *ksm_thread;
  1346. int err;
  1347. err = ksm_slab_init();
  1348. if (err)
  1349. goto out;
  1350. err = mm_slots_hash_init();
  1351. if (err)
  1352. goto out_free1;
  1353. ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
  1354. if (IS_ERR(ksm_thread)) {
  1355. printk(KERN_ERR "ksm: creating kthread failed\n");
  1356. err = PTR_ERR(ksm_thread);
  1357. goto out_free2;
  1358. }
  1359. err = sysfs_create_group(mm_kobj, &ksm_attr_group);
  1360. if (err) {
  1361. printk(KERN_ERR "ksm: register sysfs failed\n");
  1362. goto out_free3;
  1363. }
  1364. return 0;
  1365. out_free3:
  1366. kthread_stop(ksm_thread);
  1367. out_free2:
  1368. mm_slots_hash_free();
  1369. out_free1:
  1370. ksm_slab_free();
  1371. out:
  1372. return err;
  1373. }
  1374. module_init(ksm_init)