slab.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436
  1. /*
  2. * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
  3. *
  4. * (C) SGI 2006, Christoph Lameter
  5. * Cleaned up and restructured to ease the addition of alternative
  6. * implementations of SLAB allocators.
  7. */
  8. #ifndef _LINUX_SLAB_H
  9. #define _LINUX_SLAB_H
  10. #include <linux/gfp.h>
  11. #include <linux/types.h>
  12. /*
  13. * Flags to pass to kmem_cache_create().
  14. * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
  15. */
  16. #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
  17. #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
  18. #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
  19. #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
  20. #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
  21. #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
  22. #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
  23. /*
  24. * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
  25. *
  26. * This delays freeing the SLAB page by a grace period, it does _NOT_
  27. * delay object freeing. This means that if you do kmem_cache_free()
  28. * that memory location is free to be reused at any time. Thus it may
  29. * be possible to see another object there in the same RCU grace period.
  30. *
  31. * This feature only ensures the memory location backing the object
  32. * stays valid, the trick to using this is relying on an independent
  33. * object validation pass. Something like:
  34. *
  35. * rcu_read_lock()
  36. * again:
  37. * obj = lockless_lookup(key);
  38. * if (obj) {
  39. * if (!try_get_ref(obj)) // might fail for free objects
  40. * goto again;
  41. *
  42. * if (obj->key != key) { // not the object we expected
  43. * put_ref(obj);
  44. * goto again;
  45. * }
  46. * }
  47. * rcu_read_unlock();
  48. *
  49. * See also the comment on struct slab_rcu in mm/slab.c.
  50. */
  51. #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
  52. #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
  53. #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
  54. /* Flag to prevent checks on free */
  55. #ifdef CONFIG_DEBUG_OBJECTS
  56. # define SLAB_DEBUG_OBJECTS 0x00400000UL
  57. #else
  58. # define SLAB_DEBUG_OBJECTS 0x00000000UL
  59. #endif
  60. #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
  61. /* Don't track use of uninitialized memory */
  62. #ifdef CONFIG_KMEMCHECK
  63. # define SLAB_NOTRACK 0x01000000UL
  64. #else
  65. # define SLAB_NOTRACK 0x00000000UL
  66. #endif
  67. #ifdef CONFIG_FAILSLAB
  68. # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
  69. #else
  70. # define SLAB_FAILSLAB 0x00000000UL
  71. #endif
  72. /* The following flags affect the page allocator grouping pages by mobility */
  73. #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
  74. #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
  75. /*
  76. * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
  77. *
  78. * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
  79. *
  80. * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
  81. * Both make kfree a no-op.
  82. */
  83. #define ZERO_SIZE_PTR ((void *)16)
  84. #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
  85. (unsigned long)ZERO_SIZE_PTR)
  86. /*
  87. * Common fields provided in kmem_cache by all slab allocators
  88. * This struct is either used directly by the allocator (SLOB)
  89. * or the allocator must include definitions for all fields
  90. * provided in kmem_cache_common in their definition of kmem_cache.
  91. *
  92. * Once we can do anonymous structs (C11 standard) we could put a
  93. * anonymous struct definition in these allocators so that the
  94. * separate allocations in the kmem_cache structure of SLAB and
  95. * SLUB is no longer needed.
  96. */
  97. #ifdef CONFIG_SLOB
  98. struct kmem_cache {
  99. unsigned int object_size;/* The original size of the object */
  100. unsigned int size; /* The aligned/padded/added on size */
  101. unsigned int align; /* Alignment as calculated */
  102. unsigned long flags; /* Active flags on the slab */
  103. const char *name; /* Slab name for sysfs */
  104. int refcount; /* Use counter */
  105. void (*ctor)(void *); /* Called on object slot creation */
  106. struct list_head list; /* List of all slab caches on the system */
  107. };
  108. #endif
  109. struct mem_cgroup;
  110. /*
  111. * struct kmem_cache related prototypes
  112. */
  113. void __init kmem_cache_init(void);
  114. int slab_is_available(void);
  115. struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
  116. unsigned long,
  117. void (*)(void *));
  118. struct kmem_cache *
  119. kmem_cache_create_memcg(struct mem_cgroup *, const char *, size_t, size_t,
  120. unsigned long, void (*)(void *));
  121. void kmem_cache_destroy(struct kmem_cache *);
  122. int kmem_cache_shrink(struct kmem_cache *);
  123. void kmem_cache_free(struct kmem_cache *, void *);
  124. /*
  125. * Please use this macro to create slab caches. Simply specify the
  126. * name of the structure and maybe some flags that are listed above.
  127. *
  128. * The alignment of the struct determines object alignment. If you
  129. * f.e. add ____cacheline_aligned_in_smp to the struct declaration
  130. * then the objects will be properly aligned in SMP configurations.
  131. */
  132. #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
  133. sizeof(struct __struct), __alignof__(struct __struct),\
  134. (__flags), NULL)
  135. /*
  136. * The largest kmalloc size supported by the slab allocators is
  137. * 32 megabyte (2^25) or the maximum allocatable page order if that is
  138. * less than 32 MB.
  139. *
  140. * WARNING: Its not easy to increase this value since the allocators have
  141. * to do various tricks to work around compiler limitations in order to
  142. * ensure proper constant folding.
  143. */
  144. #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
  145. (MAX_ORDER + PAGE_SHIFT - 1) : 25)
  146. #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH)
  147. #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
  148. /*
  149. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  150. * alignment larger than the alignment of a 64-bit integer.
  151. * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
  152. */
  153. #ifdef ARCH_DMA_MINALIGN
  154. #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
  155. #else
  156. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  157. #endif
  158. /*
  159. * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
  160. * Intended for arches that get misalignment faults even for 64 bit integer
  161. * aligned buffers.
  162. */
  163. #ifndef ARCH_SLAB_MINALIGN
  164. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  165. #endif
  166. /*
  167. * This is the main placeholder for memcg-related information in kmem caches.
  168. * struct kmem_cache will hold a pointer to it, so the memory cost while
  169. * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it
  170. * would otherwise be if that would be bundled in kmem_cache: we'll need an
  171. * extra pointer chase. But the trade off clearly lays in favor of not
  172. * penalizing non-users.
  173. *
  174. * Both the root cache and the child caches will have it. For the root cache,
  175. * this will hold a dynamically allocated array large enough to hold
  176. * information about the currently limited memcgs in the system.
  177. *
  178. * Child caches will hold extra metadata needed for its operation. Fields are:
  179. *
  180. * @memcg: pointer to the memcg this cache belongs to
  181. * @list: list_head for the list of all caches in this memcg
  182. * @root_cache: pointer to the global, root cache, this cache was derived from
  183. */
  184. struct memcg_cache_params {
  185. bool is_root_cache;
  186. union {
  187. struct kmem_cache *memcg_caches[0];
  188. struct {
  189. struct mem_cgroup *memcg;
  190. struct list_head list;
  191. struct kmem_cache *root_cache;
  192. };
  193. };
  194. };
  195. int memcg_update_all_caches(int num_memcgs);
  196. /*
  197. * Common kmalloc functions provided by all allocators
  198. */
  199. void * __must_check __krealloc(const void *, size_t, gfp_t);
  200. void * __must_check krealloc(const void *, size_t, gfp_t);
  201. void kfree(const void *);
  202. void kzfree(const void *);
  203. size_t ksize(const void *);
  204. /*
  205. * Allocator specific definitions. These are mainly used to establish optimized
  206. * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
  207. * selecting the appropriate general cache at compile time.
  208. *
  209. * Allocators must define at least:
  210. *
  211. * kmem_cache_alloc()
  212. * __kmalloc()
  213. * kmalloc()
  214. *
  215. * Those wishing to support NUMA must also define:
  216. *
  217. * kmem_cache_alloc_node()
  218. * kmalloc_node()
  219. *
  220. * See each allocator definition file for additional comments and
  221. * implementation notes.
  222. */
  223. #ifdef CONFIG_SLUB
  224. #include <linux/slub_def.h>
  225. #elif defined(CONFIG_SLOB)
  226. #include <linux/slob_def.h>
  227. #else
  228. #include <linux/slab_def.h>
  229. #endif
  230. /**
  231. * kmalloc_array - allocate memory for an array.
  232. * @n: number of elements.
  233. * @size: element size.
  234. * @flags: the type of memory to allocate.
  235. *
  236. * The @flags argument may be one of:
  237. *
  238. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  239. *
  240. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  241. *
  242. * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
  243. * For example, use this inside interrupt handlers.
  244. *
  245. * %GFP_HIGHUSER - Allocate pages from high memory.
  246. *
  247. * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
  248. *
  249. * %GFP_NOFS - Do not make any fs calls while trying to get memory.
  250. *
  251. * %GFP_NOWAIT - Allocation will not sleep.
  252. *
  253. * %GFP_THISNODE - Allocate node-local memory only.
  254. *
  255. * %GFP_DMA - Allocation suitable for DMA.
  256. * Should only be used for kmalloc() caches. Otherwise, use a
  257. * slab created with SLAB_DMA.
  258. *
  259. * Also it is possible to set different flags by OR'ing
  260. * in one or more of the following additional @flags:
  261. *
  262. * %__GFP_COLD - Request cache-cold pages instead of
  263. * trying to return cache-warm pages.
  264. *
  265. * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
  266. *
  267. * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
  268. * (think twice before using).
  269. *
  270. * %__GFP_NORETRY - If memory is not immediately available,
  271. * then give up at once.
  272. *
  273. * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
  274. *
  275. * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
  276. *
  277. * There are other flags available as well, but these are not intended
  278. * for general use, and so are not documented here. For a full list of
  279. * potential flags, always refer to linux/gfp.h.
  280. */
  281. static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
  282. {
  283. if (size != 0 && n > SIZE_MAX / size)
  284. return NULL;
  285. return __kmalloc(n * size, flags);
  286. }
  287. /**
  288. * kcalloc - allocate memory for an array. The memory is set to zero.
  289. * @n: number of elements.
  290. * @size: element size.
  291. * @flags: the type of memory to allocate (see kmalloc).
  292. */
  293. static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
  294. {
  295. return kmalloc_array(n, size, flags | __GFP_ZERO);
  296. }
  297. #if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
  298. /**
  299. * kmalloc_node - allocate memory from a specific node
  300. * @size: how many bytes of memory are required.
  301. * @flags: the type of memory to allocate (see kcalloc).
  302. * @node: node to allocate from.
  303. *
  304. * kmalloc() for non-local nodes, used to allocate from a specific node
  305. * if available. Equivalent to kmalloc() in the non-NUMA single-node
  306. * case.
  307. */
  308. static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  309. {
  310. return kmalloc(size, flags);
  311. }
  312. static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
  313. {
  314. return __kmalloc(size, flags);
  315. }
  316. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  317. static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
  318. gfp_t flags, int node)
  319. {
  320. return kmem_cache_alloc(cachep, flags);
  321. }
  322. #endif /* !CONFIG_NUMA && !CONFIG_SLOB */
  323. /*
  324. * kmalloc_track_caller is a special version of kmalloc that records the
  325. * calling function of the routine calling it for slab leak tracking instead
  326. * of just the calling function (confusing, eh?).
  327. * It's useful when the call to kmalloc comes from a widely-used standard
  328. * allocator where we care about the real place the memory allocation
  329. * request comes from.
  330. */
  331. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
  332. (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
  333. (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
  334. extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
  335. #define kmalloc_track_caller(size, flags) \
  336. __kmalloc_track_caller(size, flags, _RET_IP_)
  337. #else
  338. #define kmalloc_track_caller(size, flags) \
  339. __kmalloc(size, flags)
  340. #endif /* DEBUG_SLAB */
  341. #ifdef CONFIG_NUMA
  342. /*
  343. * kmalloc_node_track_caller is a special version of kmalloc_node that
  344. * records the calling function of the routine calling it for slab leak
  345. * tracking instead of just the calling function (confusing, eh?).
  346. * It's useful when the call to kmalloc_node comes from a widely-used
  347. * standard allocator where we care about the real place the memory
  348. * allocation request comes from.
  349. */
  350. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
  351. (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
  352. (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
  353. extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
  354. #define kmalloc_node_track_caller(size, flags, node) \
  355. __kmalloc_node_track_caller(size, flags, node, \
  356. _RET_IP_)
  357. #else
  358. #define kmalloc_node_track_caller(size, flags, node) \
  359. __kmalloc_node(size, flags, node)
  360. #endif
  361. #else /* CONFIG_NUMA */
  362. #define kmalloc_node_track_caller(size, flags, node) \
  363. kmalloc_track_caller(size, flags)
  364. #endif /* CONFIG_NUMA */
  365. /*
  366. * Shortcuts
  367. */
  368. static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
  369. {
  370. return kmem_cache_alloc(k, flags | __GFP_ZERO);
  371. }
  372. /**
  373. * kzalloc - allocate memory. The memory is set to zero.
  374. * @size: how many bytes of memory are required.
  375. * @flags: the type of memory to allocate (see kmalloc).
  376. */
  377. static inline void *kzalloc(size_t size, gfp_t flags)
  378. {
  379. return kmalloc(size, flags | __GFP_ZERO);
  380. }
  381. /**
  382. * kzalloc_node - allocate zeroed memory from a particular memory node.
  383. * @size: how many bytes of memory are required.
  384. * @flags: the type of memory to allocate (see kmalloc).
  385. * @node: memory node from which to allocate
  386. */
  387. static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
  388. {
  389. return kmalloc_node(size, flags | __GFP_ZERO, node);
  390. }
  391. /*
  392. * Determine the size of a slab object
  393. */
  394. static inline unsigned int kmem_cache_size(struct kmem_cache *s)
  395. {
  396. return s->object_size;
  397. }
  398. void __init kmem_cache_init_late(void);
  399. #endif /* _LINUX_SLAB_H */