backref.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817
  1. /*
  2. * Copyright (C) 2011 STRATO. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/vmalloc.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "backref.h"
  22. #include "ulist.h"
  23. #include "transaction.h"
  24. #include "delayed-ref.h"
  25. #include "locking.h"
  26. struct extent_inode_elem {
  27. u64 inum;
  28. u64 offset;
  29. struct extent_inode_elem *next;
  30. };
  31. static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  32. struct btrfs_file_extent_item *fi,
  33. u64 extent_item_pos,
  34. struct extent_inode_elem **eie)
  35. {
  36. u64 data_offset;
  37. u64 data_len;
  38. struct extent_inode_elem *e;
  39. data_offset = btrfs_file_extent_offset(eb, fi);
  40. data_len = btrfs_file_extent_num_bytes(eb, fi);
  41. if (extent_item_pos < data_offset ||
  42. extent_item_pos >= data_offset + data_len)
  43. return 1;
  44. e = kmalloc(sizeof(*e), GFP_NOFS);
  45. if (!e)
  46. return -ENOMEM;
  47. e->next = *eie;
  48. e->inum = key->objectid;
  49. e->offset = key->offset + (extent_item_pos - data_offset);
  50. *eie = e;
  51. return 0;
  52. }
  53. static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  54. u64 extent_item_pos,
  55. struct extent_inode_elem **eie)
  56. {
  57. u64 disk_byte;
  58. struct btrfs_key key;
  59. struct btrfs_file_extent_item *fi;
  60. int slot;
  61. int nritems;
  62. int extent_type;
  63. int ret;
  64. /*
  65. * from the shared data ref, we only have the leaf but we need
  66. * the key. thus, we must look into all items and see that we
  67. * find one (some) with a reference to our extent item.
  68. */
  69. nritems = btrfs_header_nritems(eb);
  70. for (slot = 0; slot < nritems; ++slot) {
  71. btrfs_item_key_to_cpu(eb, &key, slot);
  72. if (key.type != BTRFS_EXTENT_DATA_KEY)
  73. continue;
  74. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  75. extent_type = btrfs_file_extent_type(eb, fi);
  76. if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  77. continue;
  78. /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
  79. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  80. if (disk_byte != wanted_disk_byte)
  81. continue;
  82. ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
  83. if (ret < 0)
  84. return ret;
  85. }
  86. return 0;
  87. }
  88. /*
  89. * this structure records all encountered refs on the way up to the root
  90. */
  91. struct __prelim_ref {
  92. struct list_head list;
  93. u64 root_id;
  94. struct btrfs_key key_for_search;
  95. int level;
  96. int count;
  97. struct extent_inode_elem *inode_list;
  98. u64 parent;
  99. u64 wanted_disk_byte;
  100. };
  101. /*
  102. * the rules for all callers of this function are:
  103. * - obtaining the parent is the goal
  104. * - if you add a key, you must know that it is a correct key
  105. * - if you cannot add the parent or a correct key, then we will look into the
  106. * block later to set a correct key
  107. *
  108. * delayed refs
  109. * ============
  110. * backref type | shared | indirect | shared | indirect
  111. * information | tree | tree | data | data
  112. * --------------------+--------+----------+--------+----------
  113. * parent logical | y | - | - | -
  114. * key to resolve | - | y | y | y
  115. * tree block logical | - | - | - | -
  116. * root for resolving | y | y | y | y
  117. *
  118. * - column 1: we've the parent -> done
  119. * - column 2, 3, 4: we use the key to find the parent
  120. *
  121. * on disk refs (inline or keyed)
  122. * ==============================
  123. * backref type | shared | indirect | shared | indirect
  124. * information | tree | tree | data | data
  125. * --------------------+--------+----------+--------+----------
  126. * parent logical | y | - | y | -
  127. * key to resolve | - | - | - | y
  128. * tree block logical | y | y | y | y
  129. * root for resolving | - | y | y | y
  130. *
  131. * - column 1, 3: we've the parent -> done
  132. * - column 2: we take the first key from the block to find the parent
  133. * (see __add_missing_keys)
  134. * - column 4: we use the key to find the parent
  135. *
  136. * additional information that's available but not required to find the parent
  137. * block might help in merging entries to gain some speed.
  138. */
  139. static int __add_prelim_ref(struct list_head *head, u64 root_id,
  140. struct btrfs_key *key, int level,
  141. u64 parent, u64 wanted_disk_byte, int count)
  142. {
  143. struct __prelim_ref *ref;
  144. /* in case we're adding delayed refs, we're holding the refs spinlock */
  145. ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
  146. if (!ref)
  147. return -ENOMEM;
  148. ref->root_id = root_id;
  149. if (key)
  150. ref->key_for_search = *key;
  151. else
  152. memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
  153. ref->inode_list = NULL;
  154. ref->level = level;
  155. ref->count = count;
  156. ref->parent = parent;
  157. ref->wanted_disk_byte = wanted_disk_byte;
  158. list_add_tail(&ref->list, head);
  159. return 0;
  160. }
  161. static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
  162. struct ulist *parents, int level,
  163. struct btrfs_key *key_for_search, u64 time_seq,
  164. u64 wanted_disk_byte,
  165. const u64 *extent_item_pos)
  166. {
  167. int ret = 0;
  168. int slot;
  169. struct extent_buffer *eb;
  170. struct btrfs_key key;
  171. struct btrfs_file_extent_item *fi;
  172. struct extent_inode_elem *eie = NULL;
  173. u64 disk_byte;
  174. if (level != 0) {
  175. eb = path->nodes[level];
  176. ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
  177. if (ret < 0)
  178. return ret;
  179. return 0;
  180. }
  181. /*
  182. * We normally enter this function with the path already pointing to
  183. * the first item to check. But sometimes, we may enter it with
  184. * slot==nritems. In that case, go to the next leaf before we continue.
  185. */
  186. if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
  187. ret = btrfs_next_old_leaf(root, path, time_seq);
  188. while (!ret) {
  189. eb = path->nodes[0];
  190. slot = path->slots[0];
  191. btrfs_item_key_to_cpu(eb, &key, slot);
  192. if (key.objectid != key_for_search->objectid ||
  193. key.type != BTRFS_EXTENT_DATA_KEY)
  194. break;
  195. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  196. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  197. if (disk_byte == wanted_disk_byte) {
  198. eie = NULL;
  199. if (extent_item_pos) {
  200. ret = check_extent_in_eb(&key, eb, fi,
  201. *extent_item_pos,
  202. &eie);
  203. if (ret < 0)
  204. break;
  205. }
  206. if (!ret) {
  207. ret = ulist_add(parents, eb->start,
  208. (uintptr_t)eie, GFP_NOFS);
  209. if (ret < 0)
  210. break;
  211. if (!extent_item_pos) {
  212. ret = btrfs_next_old_leaf(root, path,
  213. time_seq);
  214. continue;
  215. }
  216. }
  217. }
  218. ret = btrfs_next_old_item(root, path, time_seq);
  219. }
  220. if (ret > 0)
  221. ret = 0;
  222. return ret;
  223. }
  224. /*
  225. * resolve an indirect backref in the form (root_id, key, level)
  226. * to a logical address
  227. */
  228. static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
  229. struct btrfs_path *path, u64 time_seq,
  230. struct __prelim_ref *ref,
  231. struct ulist *parents,
  232. const u64 *extent_item_pos)
  233. {
  234. struct btrfs_root *root;
  235. struct btrfs_key root_key;
  236. struct extent_buffer *eb;
  237. int ret = 0;
  238. int root_level;
  239. int level = ref->level;
  240. root_key.objectid = ref->root_id;
  241. root_key.type = BTRFS_ROOT_ITEM_KEY;
  242. root_key.offset = (u64)-1;
  243. root = btrfs_read_fs_root_no_name(fs_info, &root_key);
  244. if (IS_ERR(root)) {
  245. ret = PTR_ERR(root);
  246. goto out;
  247. }
  248. root_level = btrfs_old_root_level(root, time_seq);
  249. if (root_level + 1 == level)
  250. goto out;
  251. path->lowest_level = level;
  252. ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
  253. pr_debug("search slot in root %llu (level %d, ref count %d) returned "
  254. "%d for key (%llu %u %llu)\n",
  255. (unsigned long long)ref->root_id, level, ref->count, ret,
  256. (unsigned long long)ref->key_for_search.objectid,
  257. ref->key_for_search.type,
  258. (unsigned long long)ref->key_for_search.offset);
  259. if (ret < 0)
  260. goto out;
  261. eb = path->nodes[level];
  262. while (!eb) {
  263. if (!level) {
  264. WARN_ON(1);
  265. ret = 1;
  266. goto out;
  267. }
  268. level--;
  269. eb = path->nodes[level];
  270. }
  271. ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
  272. time_seq, ref->wanted_disk_byte,
  273. extent_item_pos);
  274. out:
  275. path->lowest_level = 0;
  276. btrfs_release_path(path);
  277. return ret;
  278. }
  279. /*
  280. * resolve all indirect backrefs from the list
  281. */
  282. static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
  283. struct btrfs_path *path, u64 time_seq,
  284. struct list_head *head,
  285. const u64 *extent_item_pos)
  286. {
  287. int err;
  288. int ret = 0;
  289. struct __prelim_ref *ref;
  290. struct __prelim_ref *ref_safe;
  291. struct __prelim_ref *new_ref;
  292. struct ulist *parents;
  293. struct ulist_node *node;
  294. struct ulist_iterator uiter;
  295. parents = ulist_alloc(GFP_NOFS);
  296. if (!parents)
  297. return -ENOMEM;
  298. /*
  299. * _safe allows us to insert directly after the current item without
  300. * iterating over the newly inserted items.
  301. * we're also allowed to re-assign ref during iteration.
  302. */
  303. list_for_each_entry_safe(ref, ref_safe, head, list) {
  304. if (ref->parent) /* already direct */
  305. continue;
  306. if (ref->count == 0)
  307. continue;
  308. err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
  309. parents, extent_item_pos);
  310. if (err == -ENOMEM)
  311. goto out;
  312. if (err)
  313. continue;
  314. /* we put the first parent into the ref at hand */
  315. ULIST_ITER_INIT(&uiter);
  316. node = ulist_next(parents, &uiter);
  317. ref->parent = node ? node->val : 0;
  318. ref->inode_list = node ?
  319. (struct extent_inode_elem *)(uintptr_t)node->aux : 0;
  320. /* additional parents require new refs being added here */
  321. while ((node = ulist_next(parents, &uiter))) {
  322. new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
  323. if (!new_ref) {
  324. ret = -ENOMEM;
  325. goto out;
  326. }
  327. memcpy(new_ref, ref, sizeof(*ref));
  328. new_ref->parent = node->val;
  329. new_ref->inode_list = (struct extent_inode_elem *)
  330. (uintptr_t)node->aux;
  331. list_add(&new_ref->list, &ref->list);
  332. }
  333. ulist_reinit(parents);
  334. }
  335. out:
  336. ulist_free(parents);
  337. return ret;
  338. }
  339. static inline int ref_for_same_block(struct __prelim_ref *ref1,
  340. struct __prelim_ref *ref2)
  341. {
  342. if (ref1->level != ref2->level)
  343. return 0;
  344. if (ref1->root_id != ref2->root_id)
  345. return 0;
  346. if (ref1->key_for_search.type != ref2->key_for_search.type)
  347. return 0;
  348. if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
  349. return 0;
  350. if (ref1->key_for_search.offset != ref2->key_for_search.offset)
  351. return 0;
  352. if (ref1->parent != ref2->parent)
  353. return 0;
  354. return 1;
  355. }
  356. /*
  357. * read tree blocks and add keys where required.
  358. */
  359. static int __add_missing_keys(struct btrfs_fs_info *fs_info,
  360. struct list_head *head)
  361. {
  362. struct list_head *pos;
  363. struct extent_buffer *eb;
  364. list_for_each(pos, head) {
  365. struct __prelim_ref *ref;
  366. ref = list_entry(pos, struct __prelim_ref, list);
  367. if (ref->parent)
  368. continue;
  369. if (ref->key_for_search.type)
  370. continue;
  371. BUG_ON(!ref->wanted_disk_byte);
  372. eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
  373. fs_info->tree_root->leafsize, 0);
  374. if (!eb || !extent_buffer_uptodate(eb)) {
  375. free_extent_buffer(eb);
  376. return -EIO;
  377. }
  378. btrfs_tree_read_lock(eb);
  379. if (btrfs_header_level(eb) == 0)
  380. btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
  381. else
  382. btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
  383. btrfs_tree_read_unlock(eb);
  384. free_extent_buffer(eb);
  385. }
  386. return 0;
  387. }
  388. /*
  389. * merge two lists of backrefs and adjust counts accordingly
  390. *
  391. * mode = 1: merge identical keys, if key is set
  392. * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
  393. * additionally, we could even add a key range for the blocks we
  394. * looked into to merge even more (-> replace unresolved refs by those
  395. * having a parent).
  396. * mode = 2: merge identical parents
  397. */
  398. static void __merge_refs(struct list_head *head, int mode)
  399. {
  400. struct list_head *pos1;
  401. list_for_each(pos1, head) {
  402. struct list_head *n2;
  403. struct list_head *pos2;
  404. struct __prelim_ref *ref1;
  405. ref1 = list_entry(pos1, struct __prelim_ref, list);
  406. for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
  407. pos2 = n2, n2 = pos2->next) {
  408. struct __prelim_ref *ref2;
  409. struct __prelim_ref *xchg;
  410. struct extent_inode_elem *eie;
  411. ref2 = list_entry(pos2, struct __prelim_ref, list);
  412. if (mode == 1) {
  413. if (!ref_for_same_block(ref1, ref2))
  414. continue;
  415. if (!ref1->parent && ref2->parent) {
  416. xchg = ref1;
  417. ref1 = ref2;
  418. ref2 = xchg;
  419. }
  420. } else {
  421. if (ref1->parent != ref2->parent)
  422. continue;
  423. }
  424. eie = ref1->inode_list;
  425. while (eie && eie->next)
  426. eie = eie->next;
  427. if (eie)
  428. eie->next = ref2->inode_list;
  429. else
  430. ref1->inode_list = ref2->inode_list;
  431. ref1->count += ref2->count;
  432. list_del(&ref2->list);
  433. kfree(ref2);
  434. }
  435. }
  436. }
  437. /*
  438. * add all currently queued delayed refs from this head whose seq nr is
  439. * smaller or equal that seq to the list
  440. */
  441. static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
  442. struct list_head *prefs)
  443. {
  444. struct btrfs_delayed_extent_op *extent_op = head->extent_op;
  445. struct rb_node *n = &head->node.rb_node;
  446. struct btrfs_key key;
  447. struct btrfs_key op_key = {0};
  448. int sgn;
  449. int ret = 0;
  450. if (extent_op && extent_op->update_key)
  451. btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
  452. while ((n = rb_prev(n))) {
  453. struct btrfs_delayed_ref_node *node;
  454. node = rb_entry(n, struct btrfs_delayed_ref_node,
  455. rb_node);
  456. if (node->bytenr != head->node.bytenr)
  457. break;
  458. WARN_ON(node->is_head);
  459. if (node->seq > seq)
  460. continue;
  461. switch (node->action) {
  462. case BTRFS_ADD_DELAYED_EXTENT:
  463. case BTRFS_UPDATE_DELAYED_HEAD:
  464. WARN_ON(1);
  465. continue;
  466. case BTRFS_ADD_DELAYED_REF:
  467. sgn = 1;
  468. break;
  469. case BTRFS_DROP_DELAYED_REF:
  470. sgn = -1;
  471. break;
  472. default:
  473. BUG_ON(1);
  474. }
  475. switch (node->type) {
  476. case BTRFS_TREE_BLOCK_REF_KEY: {
  477. struct btrfs_delayed_tree_ref *ref;
  478. ref = btrfs_delayed_node_to_tree_ref(node);
  479. ret = __add_prelim_ref(prefs, ref->root, &op_key,
  480. ref->level + 1, 0, node->bytenr,
  481. node->ref_mod * sgn);
  482. break;
  483. }
  484. case BTRFS_SHARED_BLOCK_REF_KEY: {
  485. struct btrfs_delayed_tree_ref *ref;
  486. ref = btrfs_delayed_node_to_tree_ref(node);
  487. ret = __add_prelim_ref(prefs, ref->root, NULL,
  488. ref->level + 1, ref->parent,
  489. node->bytenr,
  490. node->ref_mod * sgn);
  491. break;
  492. }
  493. case BTRFS_EXTENT_DATA_REF_KEY: {
  494. struct btrfs_delayed_data_ref *ref;
  495. ref = btrfs_delayed_node_to_data_ref(node);
  496. key.objectid = ref->objectid;
  497. key.type = BTRFS_EXTENT_DATA_KEY;
  498. key.offset = ref->offset;
  499. ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
  500. node->bytenr,
  501. node->ref_mod * sgn);
  502. break;
  503. }
  504. case BTRFS_SHARED_DATA_REF_KEY: {
  505. struct btrfs_delayed_data_ref *ref;
  506. ref = btrfs_delayed_node_to_data_ref(node);
  507. key.objectid = ref->objectid;
  508. key.type = BTRFS_EXTENT_DATA_KEY;
  509. key.offset = ref->offset;
  510. ret = __add_prelim_ref(prefs, ref->root, &key, 0,
  511. ref->parent, node->bytenr,
  512. node->ref_mod * sgn);
  513. break;
  514. }
  515. default:
  516. WARN_ON(1);
  517. }
  518. if (ret)
  519. return ret;
  520. }
  521. return 0;
  522. }
  523. /*
  524. * add all inline backrefs for bytenr to the list
  525. */
  526. static int __add_inline_refs(struct btrfs_fs_info *fs_info,
  527. struct btrfs_path *path, u64 bytenr,
  528. int *info_level, struct list_head *prefs)
  529. {
  530. int ret = 0;
  531. int slot;
  532. struct extent_buffer *leaf;
  533. struct btrfs_key key;
  534. struct btrfs_key found_key;
  535. unsigned long ptr;
  536. unsigned long end;
  537. struct btrfs_extent_item *ei;
  538. u64 flags;
  539. u64 item_size;
  540. /*
  541. * enumerate all inline refs
  542. */
  543. leaf = path->nodes[0];
  544. slot = path->slots[0];
  545. item_size = btrfs_item_size_nr(leaf, slot);
  546. BUG_ON(item_size < sizeof(*ei));
  547. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  548. flags = btrfs_extent_flags(leaf, ei);
  549. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  550. ptr = (unsigned long)(ei + 1);
  551. end = (unsigned long)ei + item_size;
  552. if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
  553. flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  554. struct btrfs_tree_block_info *info;
  555. info = (struct btrfs_tree_block_info *)ptr;
  556. *info_level = btrfs_tree_block_level(leaf, info);
  557. ptr += sizeof(struct btrfs_tree_block_info);
  558. BUG_ON(ptr > end);
  559. } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
  560. *info_level = found_key.offset;
  561. } else {
  562. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
  563. }
  564. while (ptr < end) {
  565. struct btrfs_extent_inline_ref *iref;
  566. u64 offset;
  567. int type;
  568. iref = (struct btrfs_extent_inline_ref *)ptr;
  569. type = btrfs_extent_inline_ref_type(leaf, iref);
  570. offset = btrfs_extent_inline_ref_offset(leaf, iref);
  571. switch (type) {
  572. case BTRFS_SHARED_BLOCK_REF_KEY:
  573. ret = __add_prelim_ref(prefs, 0, NULL,
  574. *info_level + 1, offset,
  575. bytenr, 1);
  576. break;
  577. case BTRFS_SHARED_DATA_REF_KEY: {
  578. struct btrfs_shared_data_ref *sdref;
  579. int count;
  580. sdref = (struct btrfs_shared_data_ref *)(iref + 1);
  581. count = btrfs_shared_data_ref_count(leaf, sdref);
  582. ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
  583. bytenr, count);
  584. break;
  585. }
  586. case BTRFS_TREE_BLOCK_REF_KEY:
  587. ret = __add_prelim_ref(prefs, offset, NULL,
  588. *info_level + 1, 0,
  589. bytenr, 1);
  590. break;
  591. case BTRFS_EXTENT_DATA_REF_KEY: {
  592. struct btrfs_extent_data_ref *dref;
  593. int count;
  594. u64 root;
  595. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  596. count = btrfs_extent_data_ref_count(leaf, dref);
  597. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  598. dref);
  599. key.type = BTRFS_EXTENT_DATA_KEY;
  600. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  601. root = btrfs_extent_data_ref_root(leaf, dref);
  602. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  603. bytenr, count);
  604. break;
  605. }
  606. default:
  607. WARN_ON(1);
  608. }
  609. if (ret)
  610. return ret;
  611. ptr += btrfs_extent_inline_ref_size(type);
  612. }
  613. return 0;
  614. }
  615. /*
  616. * add all non-inline backrefs for bytenr to the list
  617. */
  618. static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
  619. struct btrfs_path *path, u64 bytenr,
  620. int info_level, struct list_head *prefs)
  621. {
  622. struct btrfs_root *extent_root = fs_info->extent_root;
  623. int ret;
  624. int slot;
  625. struct extent_buffer *leaf;
  626. struct btrfs_key key;
  627. while (1) {
  628. ret = btrfs_next_item(extent_root, path);
  629. if (ret < 0)
  630. break;
  631. if (ret) {
  632. ret = 0;
  633. break;
  634. }
  635. slot = path->slots[0];
  636. leaf = path->nodes[0];
  637. btrfs_item_key_to_cpu(leaf, &key, slot);
  638. if (key.objectid != bytenr)
  639. break;
  640. if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
  641. continue;
  642. if (key.type > BTRFS_SHARED_DATA_REF_KEY)
  643. break;
  644. switch (key.type) {
  645. case BTRFS_SHARED_BLOCK_REF_KEY:
  646. ret = __add_prelim_ref(prefs, 0, NULL,
  647. info_level + 1, key.offset,
  648. bytenr, 1);
  649. break;
  650. case BTRFS_SHARED_DATA_REF_KEY: {
  651. struct btrfs_shared_data_ref *sdref;
  652. int count;
  653. sdref = btrfs_item_ptr(leaf, slot,
  654. struct btrfs_shared_data_ref);
  655. count = btrfs_shared_data_ref_count(leaf, sdref);
  656. ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
  657. bytenr, count);
  658. break;
  659. }
  660. case BTRFS_TREE_BLOCK_REF_KEY:
  661. ret = __add_prelim_ref(prefs, key.offset, NULL,
  662. info_level + 1, 0,
  663. bytenr, 1);
  664. break;
  665. case BTRFS_EXTENT_DATA_REF_KEY: {
  666. struct btrfs_extent_data_ref *dref;
  667. int count;
  668. u64 root;
  669. dref = btrfs_item_ptr(leaf, slot,
  670. struct btrfs_extent_data_ref);
  671. count = btrfs_extent_data_ref_count(leaf, dref);
  672. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  673. dref);
  674. key.type = BTRFS_EXTENT_DATA_KEY;
  675. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  676. root = btrfs_extent_data_ref_root(leaf, dref);
  677. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  678. bytenr, count);
  679. break;
  680. }
  681. default:
  682. WARN_ON(1);
  683. }
  684. if (ret)
  685. return ret;
  686. }
  687. return ret;
  688. }
  689. /*
  690. * this adds all existing backrefs (inline backrefs, backrefs and delayed
  691. * refs) for the given bytenr to the refs list, merges duplicates and resolves
  692. * indirect refs to their parent bytenr.
  693. * When roots are found, they're added to the roots list
  694. *
  695. * FIXME some caching might speed things up
  696. */
  697. static int find_parent_nodes(struct btrfs_trans_handle *trans,
  698. struct btrfs_fs_info *fs_info, u64 bytenr,
  699. u64 time_seq, struct ulist *refs,
  700. struct ulist *roots, const u64 *extent_item_pos)
  701. {
  702. struct btrfs_key key;
  703. struct btrfs_path *path;
  704. struct btrfs_delayed_ref_root *delayed_refs = NULL;
  705. struct btrfs_delayed_ref_head *head;
  706. int info_level = 0;
  707. int ret;
  708. struct list_head prefs_delayed;
  709. struct list_head prefs;
  710. struct __prelim_ref *ref;
  711. INIT_LIST_HEAD(&prefs);
  712. INIT_LIST_HEAD(&prefs_delayed);
  713. key.objectid = bytenr;
  714. key.offset = (u64)-1;
  715. if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
  716. key.type = BTRFS_METADATA_ITEM_KEY;
  717. else
  718. key.type = BTRFS_EXTENT_ITEM_KEY;
  719. path = btrfs_alloc_path();
  720. if (!path)
  721. return -ENOMEM;
  722. if (!trans)
  723. path->search_commit_root = 1;
  724. /*
  725. * grab both a lock on the path and a lock on the delayed ref head.
  726. * We need both to get a consistent picture of how the refs look
  727. * at a specified point in time
  728. */
  729. again:
  730. head = NULL;
  731. ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
  732. if (ret < 0)
  733. goto out;
  734. BUG_ON(ret == 0);
  735. if (trans) {
  736. /*
  737. * look if there are updates for this ref queued and lock the
  738. * head
  739. */
  740. delayed_refs = &trans->transaction->delayed_refs;
  741. spin_lock(&delayed_refs->lock);
  742. head = btrfs_find_delayed_ref_head(trans, bytenr);
  743. if (head) {
  744. if (!mutex_trylock(&head->mutex)) {
  745. atomic_inc(&head->node.refs);
  746. spin_unlock(&delayed_refs->lock);
  747. btrfs_release_path(path);
  748. /*
  749. * Mutex was contended, block until it's
  750. * released and try again
  751. */
  752. mutex_lock(&head->mutex);
  753. mutex_unlock(&head->mutex);
  754. btrfs_put_delayed_ref(&head->node);
  755. goto again;
  756. }
  757. ret = __add_delayed_refs(head, time_seq,
  758. &prefs_delayed);
  759. mutex_unlock(&head->mutex);
  760. if (ret) {
  761. spin_unlock(&delayed_refs->lock);
  762. goto out;
  763. }
  764. }
  765. spin_unlock(&delayed_refs->lock);
  766. }
  767. if (path->slots[0]) {
  768. struct extent_buffer *leaf;
  769. int slot;
  770. path->slots[0]--;
  771. leaf = path->nodes[0];
  772. slot = path->slots[0];
  773. btrfs_item_key_to_cpu(leaf, &key, slot);
  774. if (key.objectid == bytenr &&
  775. (key.type == BTRFS_EXTENT_ITEM_KEY ||
  776. key.type == BTRFS_METADATA_ITEM_KEY)) {
  777. ret = __add_inline_refs(fs_info, path, bytenr,
  778. &info_level, &prefs);
  779. if (ret)
  780. goto out;
  781. ret = __add_keyed_refs(fs_info, path, bytenr,
  782. info_level, &prefs);
  783. if (ret)
  784. goto out;
  785. }
  786. }
  787. btrfs_release_path(path);
  788. list_splice_init(&prefs_delayed, &prefs);
  789. ret = __add_missing_keys(fs_info, &prefs);
  790. if (ret)
  791. goto out;
  792. __merge_refs(&prefs, 1);
  793. ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
  794. extent_item_pos);
  795. if (ret)
  796. goto out;
  797. __merge_refs(&prefs, 2);
  798. while (!list_empty(&prefs)) {
  799. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  800. list_del(&ref->list);
  801. WARN_ON(ref->count < 0);
  802. if (ref->count && ref->root_id && ref->parent == 0) {
  803. /* no parent == root of tree */
  804. ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
  805. if (ret < 0)
  806. goto out;
  807. }
  808. if (ref->count && ref->parent) {
  809. struct extent_inode_elem *eie = NULL;
  810. if (extent_item_pos && !ref->inode_list) {
  811. u32 bsz;
  812. struct extent_buffer *eb;
  813. bsz = btrfs_level_size(fs_info->extent_root,
  814. info_level);
  815. eb = read_tree_block(fs_info->extent_root,
  816. ref->parent, bsz, 0);
  817. if (!eb || !extent_buffer_uptodate(eb)) {
  818. free_extent_buffer(eb);
  819. ret = -EIO;
  820. goto out;
  821. }
  822. ret = find_extent_in_eb(eb, bytenr,
  823. *extent_item_pos, &eie);
  824. ref->inode_list = eie;
  825. free_extent_buffer(eb);
  826. }
  827. ret = ulist_add_merge(refs, ref->parent,
  828. (uintptr_t)ref->inode_list,
  829. (u64 *)&eie, GFP_NOFS);
  830. if (ret < 0)
  831. goto out;
  832. if (!ret && extent_item_pos) {
  833. /*
  834. * we've recorded that parent, so we must extend
  835. * its inode list here
  836. */
  837. BUG_ON(!eie);
  838. while (eie->next)
  839. eie = eie->next;
  840. eie->next = ref->inode_list;
  841. }
  842. }
  843. kfree(ref);
  844. }
  845. out:
  846. btrfs_free_path(path);
  847. while (!list_empty(&prefs)) {
  848. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  849. list_del(&ref->list);
  850. kfree(ref);
  851. }
  852. while (!list_empty(&prefs_delayed)) {
  853. ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
  854. list);
  855. list_del(&ref->list);
  856. kfree(ref);
  857. }
  858. return ret;
  859. }
  860. static void free_leaf_list(struct ulist *blocks)
  861. {
  862. struct ulist_node *node = NULL;
  863. struct extent_inode_elem *eie;
  864. struct extent_inode_elem *eie_next;
  865. struct ulist_iterator uiter;
  866. ULIST_ITER_INIT(&uiter);
  867. while ((node = ulist_next(blocks, &uiter))) {
  868. if (!node->aux)
  869. continue;
  870. eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
  871. for (; eie; eie = eie_next) {
  872. eie_next = eie->next;
  873. kfree(eie);
  874. }
  875. node->aux = 0;
  876. }
  877. ulist_free(blocks);
  878. }
  879. /*
  880. * Finds all leafs with a reference to the specified combination of bytenr and
  881. * offset. key_list_head will point to a list of corresponding keys (caller must
  882. * free each list element). The leafs will be stored in the leafs ulist, which
  883. * must be freed with ulist_free.
  884. *
  885. * returns 0 on success, <0 on error
  886. */
  887. static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
  888. struct btrfs_fs_info *fs_info, u64 bytenr,
  889. u64 time_seq, struct ulist **leafs,
  890. const u64 *extent_item_pos)
  891. {
  892. struct ulist *tmp;
  893. int ret;
  894. tmp = ulist_alloc(GFP_NOFS);
  895. if (!tmp)
  896. return -ENOMEM;
  897. *leafs = ulist_alloc(GFP_NOFS);
  898. if (!*leafs) {
  899. ulist_free(tmp);
  900. return -ENOMEM;
  901. }
  902. ret = find_parent_nodes(trans, fs_info, bytenr,
  903. time_seq, *leafs, tmp, extent_item_pos);
  904. ulist_free(tmp);
  905. if (ret < 0 && ret != -ENOENT) {
  906. free_leaf_list(*leafs);
  907. return ret;
  908. }
  909. return 0;
  910. }
  911. /*
  912. * walk all backrefs for a given extent to find all roots that reference this
  913. * extent. Walking a backref means finding all extents that reference this
  914. * extent and in turn walk the backrefs of those, too. Naturally this is a
  915. * recursive process, but here it is implemented in an iterative fashion: We
  916. * find all referencing extents for the extent in question and put them on a
  917. * list. In turn, we find all referencing extents for those, further appending
  918. * to the list. The way we iterate the list allows adding more elements after
  919. * the current while iterating. The process stops when we reach the end of the
  920. * list. Found roots are added to the roots list.
  921. *
  922. * returns 0 on success, < 0 on error.
  923. */
  924. int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
  925. struct btrfs_fs_info *fs_info, u64 bytenr,
  926. u64 time_seq, struct ulist **roots)
  927. {
  928. struct ulist *tmp;
  929. struct ulist_node *node = NULL;
  930. struct ulist_iterator uiter;
  931. int ret;
  932. tmp = ulist_alloc(GFP_NOFS);
  933. if (!tmp)
  934. return -ENOMEM;
  935. *roots = ulist_alloc(GFP_NOFS);
  936. if (!*roots) {
  937. ulist_free(tmp);
  938. return -ENOMEM;
  939. }
  940. ULIST_ITER_INIT(&uiter);
  941. while (1) {
  942. ret = find_parent_nodes(trans, fs_info, bytenr,
  943. time_seq, tmp, *roots, NULL);
  944. if (ret < 0 && ret != -ENOENT) {
  945. ulist_free(tmp);
  946. ulist_free(*roots);
  947. return ret;
  948. }
  949. node = ulist_next(tmp, &uiter);
  950. if (!node)
  951. break;
  952. bytenr = node->val;
  953. }
  954. ulist_free(tmp);
  955. return 0;
  956. }
  957. static int __inode_info(u64 inum, u64 ioff, u8 key_type,
  958. struct btrfs_root *fs_root, struct btrfs_path *path,
  959. struct btrfs_key *found_key)
  960. {
  961. int ret;
  962. struct btrfs_key key;
  963. struct extent_buffer *eb;
  964. key.type = key_type;
  965. key.objectid = inum;
  966. key.offset = ioff;
  967. ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
  968. if (ret < 0)
  969. return ret;
  970. eb = path->nodes[0];
  971. if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
  972. ret = btrfs_next_leaf(fs_root, path);
  973. if (ret)
  974. return ret;
  975. eb = path->nodes[0];
  976. }
  977. btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
  978. if (found_key->type != key.type || found_key->objectid != key.objectid)
  979. return 1;
  980. return 0;
  981. }
  982. /*
  983. * this makes the path point to (inum INODE_ITEM ioff)
  984. */
  985. int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  986. struct btrfs_path *path)
  987. {
  988. struct btrfs_key key;
  989. return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
  990. &key);
  991. }
  992. static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  993. struct btrfs_path *path,
  994. struct btrfs_key *found_key)
  995. {
  996. return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
  997. found_key);
  998. }
  999. int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
  1000. u64 start_off, struct btrfs_path *path,
  1001. struct btrfs_inode_extref **ret_extref,
  1002. u64 *found_off)
  1003. {
  1004. int ret, slot;
  1005. struct btrfs_key key;
  1006. struct btrfs_key found_key;
  1007. struct btrfs_inode_extref *extref;
  1008. struct extent_buffer *leaf;
  1009. unsigned long ptr;
  1010. key.objectid = inode_objectid;
  1011. btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
  1012. key.offset = start_off;
  1013. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1014. if (ret < 0)
  1015. return ret;
  1016. while (1) {
  1017. leaf = path->nodes[0];
  1018. slot = path->slots[0];
  1019. if (slot >= btrfs_header_nritems(leaf)) {
  1020. /*
  1021. * If the item at offset is not found,
  1022. * btrfs_search_slot will point us to the slot
  1023. * where it should be inserted. In our case
  1024. * that will be the slot directly before the
  1025. * next INODE_REF_KEY_V2 item. In the case
  1026. * that we're pointing to the last slot in a
  1027. * leaf, we must move one leaf over.
  1028. */
  1029. ret = btrfs_next_leaf(root, path);
  1030. if (ret) {
  1031. if (ret >= 1)
  1032. ret = -ENOENT;
  1033. break;
  1034. }
  1035. continue;
  1036. }
  1037. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  1038. /*
  1039. * Check that we're still looking at an extended ref key for
  1040. * this particular objectid. If we have different
  1041. * objectid or type then there are no more to be found
  1042. * in the tree and we can exit.
  1043. */
  1044. ret = -ENOENT;
  1045. if (found_key.objectid != inode_objectid)
  1046. break;
  1047. if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
  1048. break;
  1049. ret = 0;
  1050. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1051. extref = (struct btrfs_inode_extref *)ptr;
  1052. *ret_extref = extref;
  1053. if (found_off)
  1054. *found_off = found_key.offset;
  1055. break;
  1056. }
  1057. return ret;
  1058. }
  1059. /*
  1060. * this iterates to turn a name (from iref/extref) into a full filesystem path.
  1061. * Elements of the path are separated by '/' and the path is guaranteed to be
  1062. * 0-terminated. the path is only given within the current file system.
  1063. * Therefore, it never starts with a '/'. the caller is responsible to provide
  1064. * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
  1065. * the start point of the resulting string is returned. this pointer is within
  1066. * dest, normally.
  1067. * in case the path buffer would overflow, the pointer is decremented further
  1068. * as if output was written to the buffer, though no more output is actually
  1069. * generated. that way, the caller can determine how much space would be
  1070. * required for the path to fit into the buffer. in that case, the returned
  1071. * value will be smaller than dest. callers must check this!
  1072. */
  1073. char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
  1074. u32 name_len, unsigned long name_off,
  1075. struct extent_buffer *eb_in, u64 parent,
  1076. char *dest, u32 size)
  1077. {
  1078. int slot;
  1079. u64 next_inum;
  1080. int ret;
  1081. s64 bytes_left = ((s64)size) - 1;
  1082. struct extent_buffer *eb = eb_in;
  1083. struct btrfs_key found_key;
  1084. int leave_spinning = path->leave_spinning;
  1085. struct btrfs_inode_ref *iref;
  1086. if (bytes_left >= 0)
  1087. dest[bytes_left] = '\0';
  1088. path->leave_spinning = 1;
  1089. while (1) {
  1090. bytes_left -= name_len;
  1091. if (bytes_left >= 0)
  1092. read_extent_buffer(eb, dest + bytes_left,
  1093. name_off, name_len);
  1094. if (eb != eb_in) {
  1095. btrfs_tree_read_unlock_blocking(eb);
  1096. free_extent_buffer(eb);
  1097. }
  1098. ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
  1099. if (ret > 0)
  1100. ret = -ENOENT;
  1101. if (ret)
  1102. break;
  1103. next_inum = found_key.offset;
  1104. /* regular exit ahead */
  1105. if (parent == next_inum)
  1106. break;
  1107. slot = path->slots[0];
  1108. eb = path->nodes[0];
  1109. /* make sure we can use eb after releasing the path */
  1110. if (eb != eb_in) {
  1111. atomic_inc(&eb->refs);
  1112. btrfs_tree_read_lock(eb);
  1113. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1114. }
  1115. btrfs_release_path(path);
  1116. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1117. name_len = btrfs_inode_ref_name_len(eb, iref);
  1118. name_off = (unsigned long)(iref + 1);
  1119. parent = next_inum;
  1120. --bytes_left;
  1121. if (bytes_left >= 0)
  1122. dest[bytes_left] = '/';
  1123. }
  1124. btrfs_release_path(path);
  1125. path->leave_spinning = leave_spinning;
  1126. if (ret)
  1127. return ERR_PTR(ret);
  1128. return dest + bytes_left;
  1129. }
  1130. /*
  1131. * this makes the path point to (logical EXTENT_ITEM *)
  1132. * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
  1133. * tree blocks and <0 on error.
  1134. */
  1135. int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
  1136. struct btrfs_path *path, struct btrfs_key *found_key,
  1137. u64 *flags_ret)
  1138. {
  1139. int ret;
  1140. u64 flags;
  1141. u64 size = 0;
  1142. u32 item_size;
  1143. struct extent_buffer *eb;
  1144. struct btrfs_extent_item *ei;
  1145. struct btrfs_key key;
  1146. if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
  1147. key.type = BTRFS_METADATA_ITEM_KEY;
  1148. else
  1149. key.type = BTRFS_EXTENT_ITEM_KEY;
  1150. key.objectid = logical;
  1151. key.offset = (u64)-1;
  1152. ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
  1153. if (ret < 0)
  1154. return ret;
  1155. ret = btrfs_previous_item(fs_info->extent_root, path,
  1156. 0, BTRFS_EXTENT_ITEM_KEY);
  1157. if (ret < 0)
  1158. return ret;
  1159. btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
  1160. if (found_key->type == BTRFS_METADATA_ITEM_KEY)
  1161. size = fs_info->extent_root->leafsize;
  1162. else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
  1163. size = found_key->offset;
  1164. if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
  1165. found_key->type != BTRFS_METADATA_ITEM_KEY) ||
  1166. found_key->objectid > logical ||
  1167. found_key->objectid + size <= logical) {
  1168. pr_debug("logical %llu is not within any extent\n",
  1169. (unsigned long long)logical);
  1170. return -ENOENT;
  1171. }
  1172. eb = path->nodes[0];
  1173. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  1174. BUG_ON(item_size < sizeof(*ei));
  1175. ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
  1176. flags = btrfs_extent_flags(eb, ei);
  1177. pr_debug("logical %llu is at position %llu within the extent (%llu "
  1178. "EXTENT_ITEM %llu) flags %#llx size %u\n",
  1179. (unsigned long long)logical,
  1180. (unsigned long long)(logical - found_key->objectid),
  1181. (unsigned long long)found_key->objectid,
  1182. (unsigned long long)found_key->offset,
  1183. (unsigned long long)flags, item_size);
  1184. WARN_ON(!flags_ret);
  1185. if (flags_ret) {
  1186. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1187. *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
  1188. else if (flags & BTRFS_EXTENT_FLAG_DATA)
  1189. *flags_ret = BTRFS_EXTENT_FLAG_DATA;
  1190. else
  1191. BUG_ON(1);
  1192. return 0;
  1193. }
  1194. return -EIO;
  1195. }
  1196. /*
  1197. * helper function to iterate extent inline refs. ptr must point to a 0 value
  1198. * for the first call and may be modified. it is used to track state.
  1199. * if more refs exist, 0 is returned and the next call to
  1200. * __get_extent_inline_ref must pass the modified ptr parameter to get the
  1201. * next ref. after the last ref was processed, 1 is returned.
  1202. * returns <0 on error
  1203. */
  1204. static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
  1205. struct btrfs_extent_item *ei, u32 item_size,
  1206. struct btrfs_extent_inline_ref **out_eiref,
  1207. int *out_type)
  1208. {
  1209. unsigned long end;
  1210. u64 flags;
  1211. struct btrfs_tree_block_info *info;
  1212. if (!*ptr) {
  1213. /* first call */
  1214. flags = btrfs_extent_flags(eb, ei);
  1215. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1216. info = (struct btrfs_tree_block_info *)(ei + 1);
  1217. *out_eiref =
  1218. (struct btrfs_extent_inline_ref *)(info + 1);
  1219. } else {
  1220. *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
  1221. }
  1222. *ptr = (unsigned long)*out_eiref;
  1223. if ((void *)*ptr >= (void *)ei + item_size)
  1224. return -ENOENT;
  1225. }
  1226. end = (unsigned long)ei + item_size;
  1227. *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
  1228. *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
  1229. *ptr += btrfs_extent_inline_ref_size(*out_type);
  1230. WARN_ON(*ptr > end);
  1231. if (*ptr == end)
  1232. return 1; /* last */
  1233. return 0;
  1234. }
  1235. /*
  1236. * reads the tree block backref for an extent. tree level and root are returned
  1237. * through out_level and out_root. ptr must point to a 0 value for the first
  1238. * call and may be modified (see __get_extent_inline_ref comment).
  1239. * returns 0 if data was provided, 1 if there was no more data to provide or
  1240. * <0 on error.
  1241. */
  1242. int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
  1243. struct btrfs_extent_item *ei, u32 item_size,
  1244. u64 *out_root, u8 *out_level)
  1245. {
  1246. int ret;
  1247. int type;
  1248. struct btrfs_tree_block_info *info;
  1249. struct btrfs_extent_inline_ref *eiref;
  1250. if (*ptr == (unsigned long)-1)
  1251. return 1;
  1252. while (1) {
  1253. ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
  1254. &eiref, &type);
  1255. if (ret < 0)
  1256. return ret;
  1257. if (type == BTRFS_TREE_BLOCK_REF_KEY ||
  1258. type == BTRFS_SHARED_BLOCK_REF_KEY)
  1259. break;
  1260. if (ret == 1)
  1261. return 1;
  1262. }
  1263. /* we can treat both ref types equally here */
  1264. info = (struct btrfs_tree_block_info *)(ei + 1);
  1265. *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
  1266. *out_level = btrfs_tree_block_level(eb, info);
  1267. if (ret == 1)
  1268. *ptr = (unsigned long)-1;
  1269. return 0;
  1270. }
  1271. static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
  1272. u64 root, u64 extent_item_objectid,
  1273. iterate_extent_inodes_t *iterate, void *ctx)
  1274. {
  1275. struct extent_inode_elem *eie;
  1276. int ret = 0;
  1277. for (eie = inode_list; eie; eie = eie->next) {
  1278. pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
  1279. "root %llu\n", extent_item_objectid,
  1280. eie->inum, eie->offset, root);
  1281. ret = iterate(eie->inum, eie->offset, root, ctx);
  1282. if (ret) {
  1283. pr_debug("stopping iteration for %llu due to ret=%d\n",
  1284. extent_item_objectid, ret);
  1285. break;
  1286. }
  1287. }
  1288. return ret;
  1289. }
  1290. /*
  1291. * calls iterate() for every inode that references the extent identified by
  1292. * the given parameters.
  1293. * when the iterator function returns a non-zero value, iteration stops.
  1294. */
  1295. int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
  1296. u64 extent_item_objectid, u64 extent_item_pos,
  1297. int search_commit_root,
  1298. iterate_extent_inodes_t *iterate, void *ctx)
  1299. {
  1300. int ret;
  1301. struct btrfs_trans_handle *trans = NULL;
  1302. struct ulist *refs = NULL;
  1303. struct ulist *roots = NULL;
  1304. struct ulist_node *ref_node = NULL;
  1305. struct ulist_node *root_node = NULL;
  1306. struct seq_list tree_mod_seq_elem = {};
  1307. struct ulist_iterator ref_uiter;
  1308. struct ulist_iterator root_uiter;
  1309. pr_debug("resolving all inodes for extent %llu\n",
  1310. extent_item_objectid);
  1311. if (!search_commit_root) {
  1312. trans = btrfs_join_transaction(fs_info->extent_root);
  1313. if (IS_ERR(trans))
  1314. return PTR_ERR(trans);
  1315. btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1316. }
  1317. ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
  1318. tree_mod_seq_elem.seq, &refs,
  1319. &extent_item_pos);
  1320. if (ret)
  1321. goto out;
  1322. ULIST_ITER_INIT(&ref_uiter);
  1323. while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
  1324. ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
  1325. tree_mod_seq_elem.seq, &roots);
  1326. if (ret)
  1327. break;
  1328. ULIST_ITER_INIT(&root_uiter);
  1329. while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
  1330. pr_debug("root %llu references leaf %llu, data list "
  1331. "%#llx\n", root_node->val, ref_node->val,
  1332. (long long)ref_node->aux);
  1333. ret = iterate_leaf_refs((struct extent_inode_elem *)
  1334. (uintptr_t)ref_node->aux,
  1335. root_node->val,
  1336. extent_item_objectid,
  1337. iterate, ctx);
  1338. }
  1339. ulist_free(roots);
  1340. }
  1341. free_leaf_list(refs);
  1342. out:
  1343. if (!search_commit_root) {
  1344. btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1345. btrfs_end_transaction(trans, fs_info->extent_root);
  1346. }
  1347. return ret;
  1348. }
  1349. int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
  1350. struct btrfs_path *path,
  1351. iterate_extent_inodes_t *iterate, void *ctx)
  1352. {
  1353. int ret;
  1354. u64 extent_item_pos;
  1355. u64 flags = 0;
  1356. struct btrfs_key found_key;
  1357. int search_commit_root = path->search_commit_root;
  1358. ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
  1359. btrfs_release_path(path);
  1360. if (ret < 0)
  1361. return ret;
  1362. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1363. return -EINVAL;
  1364. extent_item_pos = logical - found_key.objectid;
  1365. ret = iterate_extent_inodes(fs_info, found_key.objectid,
  1366. extent_item_pos, search_commit_root,
  1367. iterate, ctx);
  1368. return ret;
  1369. }
  1370. typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
  1371. struct extent_buffer *eb, void *ctx);
  1372. static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
  1373. struct btrfs_path *path,
  1374. iterate_irefs_t *iterate, void *ctx)
  1375. {
  1376. int ret = 0;
  1377. int slot;
  1378. u32 cur;
  1379. u32 len;
  1380. u32 name_len;
  1381. u64 parent = 0;
  1382. int found = 0;
  1383. struct extent_buffer *eb;
  1384. struct btrfs_item *item;
  1385. struct btrfs_inode_ref *iref;
  1386. struct btrfs_key found_key;
  1387. while (!ret) {
  1388. path->leave_spinning = 1;
  1389. ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
  1390. &found_key);
  1391. if (ret < 0)
  1392. break;
  1393. if (ret) {
  1394. ret = found ? 0 : -ENOENT;
  1395. break;
  1396. }
  1397. ++found;
  1398. parent = found_key.offset;
  1399. slot = path->slots[0];
  1400. eb = path->nodes[0];
  1401. /* make sure we can use eb after releasing the path */
  1402. atomic_inc(&eb->refs);
  1403. btrfs_tree_read_lock(eb);
  1404. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1405. btrfs_release_path(path);
  1406. item = btrfs_item_nr(eb, slot);
  1407. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1408. for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
  1409. name_len = btrfs_inode_ref_name_len(eb, iref);
  1410. /* path must be released before calling iterate()! */
  1411. pr_debug("following ref at offset %u for inode %llu in "
  1412. "tree %llu\n", cur,
  1413. (unsigned long long)found_key.objectid,
  1414. (unsigned long long)fs_root->objectid);
  1415. ret = iterate(parent, name_len,
  1416. (unsigned long)(iref + 1), eb, ctx);
  1417. if (ret)
  1418. break;
  1419. len = sizeof(*iref) + name_len;
  1420. iref = (struct btrfs_inode_ref *)((char *)iref + len);
  1421. }
  1422. btrfs_tree_read_unlock_blocking(eb);
  1423. free_extent_buffer(eb);
  1424. }
  1425. btrfs_release_path(path);
  1426. return ret;
  1427. }
  1428. static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
  1429. struct btrfs_path *path,
  1430. iterate_irefs_t *iterate, void *ctx)
  1431. {
  1432. int ret;
  1433. int slot;
  1434. u64 offset = 0;
  1435. u64 parent;
  1436. int found = 0;
  1437. struct extent_buffer *eb;
  1438. struct btrfs_inode_extref *extref;
  1439. struct extent_buffer *leaf;
  1440. u32 item_size;
  1441. u32 cur_offset;
  1442. unsigned long ptr;
  1443. while (1) {
  1444. ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
  1445. &offset);
  1446. if (ret < 0)
  1447. break;
  1448. if (ret) {
  1449. ret = found ? 0 : -ENOENT;
  1450. break;
  1451. }
  1452. ++found;
  1453. slot = path->slots[0];
  1454. eb = path->nodes[0];
  1455. /* make sure we can use eb after releasing the path */
  1456. atomic_inc(&eb->refs);
  1457. btrfs_tree_read_lock(eb);
  1458. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1459. btrfs_release_path(path);
  1460. leaf = path->nodes[0];
  1461. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1462. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1463. cur_offset = 0;
  1464. while (cur_offset < item_size) {
  1465. u32 name_len;
  1466. extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
  1467. parent = btrfs_inode_extref_parent(eb, extref);
  1468. name_len = btrfs_inode_extref_name_len(eb, extref);
  1469. ret = iterate(parent, name_len,
  1470. (unsigned long)&extref->name, eb, ctx);
  1471. if (ret)
  1472. break;
  1473. cur_offset += btrfs_inode_extref_name_len(leaf, extref);
  1474. cur_offset += sizeof(*extref);
  1475. }
  1476. btrfs_tree_read_unlock_blocking(eb);
  1477. free_extent_buffer(eb);
  1478. offset++;
  1479. }
  1480. btrfs_release_path(path);
  1481. return ret;
  1482. }
  1483. static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
  1484. struct btrfs_path *path, iterate_irefs_t *iterate,
  1485. void *ctx)
  1486. {
  1487. int ret;
  1488. int found_refs = 0;
  1489. ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
  1490. if (!ret)
  1491. ++found_refs;
  1492. else if (ret != -ENOENT)
  1493. return ret;
  1494. ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
  1495. if (ret == -ENOENT && found_refs)
  1496. return 0;
  1497. return ret;
  1498. }
  1499. /*
  1500. * returns 0 if the path could be dumped (probably truncated)
  1501. * returns <0 in case of an error
  1502. */
  1503. static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
  1504. struct extent_buffer *eb, void *ctx)
  1505. {
  1506. struct inode_fs_paths *ipath = ctx;
  1507. char *fspath;
  1508. char *fspath_min;
  1509. int i = ipath->fspath->elem_cnt;
  1510. const int s_ptr = sizeof(char *);
  1511. u32 bytes_left;
  1512. bytes_left = ipath->fspath->bytes_left > s_ptr ?
  1513. ipath->fspath->bytes_left - s_ptr : 0;
  1514. fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
  1515. fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
  1516. name_off, eb, inum, fspath_min, bytes_left);
  1517. if (IS_ERR(fspath))
  1518. return PTR_ERR(fspath);
  1519. if (fspath > fspath_min) {
  1520. ipath->fspath->val[i] = (u64)(unsigned long)fspath;
  1521. ++ipath->fspath->elem_cnt;
  1522. ipath->fspath->bytes_left = fspath - fspath_min;
  1523. } else {
  1524. ++ipath->fspath->elem_missed;
  1525. ipath->fspath->bytes_missing += fspath_min - fspath;
  1526. ipath->fspath->bytes_left = 0;
  1527. }
  1528. return 0;
  1529. }
  1530. /*
  1531. * this dumps all file system paths to the inode into the ipath struct, provided
  1532. * is has been created large enough. each path is zero-terminated and accessed
  1533. * from ipath->fspath->val[i].
  1534. * when it returns, there are ipath->fspath->elem_cnt number of paths available
  1535. * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
  1536. * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
  1537. * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
  1538. * have been needed to return all paths.
  1539. */
  1540. int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
  1541. {
  1542. return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
  1543. inode_to_path, ipath);
  1544. }
  1545. struct btrfs_data_container *init_data_container(u32 total_bytes)
  1546. {
  1547. struct btrfs_data_container *data;
  1548. size_t alloc_bytes;
  1549. alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
  1550. data = vmalloc(alloc_bytes);
  1551. if (!data)
  1552. return ERR_PTR(-ENOMEM);
  1553. if (total_bytes >= sizeof(*data)) {
  1554. data->bytes_left = total_bytes - sizeof(*data);
  1555. data->bytes_missing = 0;
  1556. } else {
  1557. data->bytes_missing = sizeof(*data) - total_bytes;
  1558. data->bytes_left = 0;
  1559. }
  1560. data->elem_cnt = 0;
  1561. data->elem_missed = 0;
  1562. return data;
  1563. }
  1564. /*
  1565. * allocates space to return multiple file system paths for an inode.
  1566. * total_bytes to allocate are passed, note that space usable for actual path
  1567. * information will be total_bytes - sizeof(struct inode_fs_paths).
  1568. * the returned pointer must be freed with free_ipath() in the end.
  1569. */
  1570. struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
  1571. struct btrfs_path *path)
  1572. {
  1573. struct inode_fs_paths *ifp;
  1574. struct btrfs_data_container *fspath;
  1575. fspath = init_data_container(total_bytes);
  1576. if (IS_ERR(fspath))
  1577. return (void *)fspath;
  1578. ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
  1579. if (!ifp) {
  1580. kfree(fspath);
  1581. return ERR_PTR(-ENOMEM);
  1582. }
  1583. ifp->btrfs_path = path;
  1584. ifp->fspath = fspath;
  1585. ifp->fs_root = fs_root;
  1586. return ifp;
  1587. }
  1588. void free_ipath(struct inode_fs_paths *ipath)
  1589. {
  1590. if (!ipath)
  1591. return;
  1592. vfree(ipath->fspath);
  1593. kfree(ipath);
  1594. }