rt2500pci.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2500pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  46. {
  47. u32 reg;
  48. unsigned int i;
  49. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  50. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  51. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  52. break;
  53. udelay(REGISTER_BUSY_DELAY);
  54. }
  55. return reg;
  56. }
  57. static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  58. const unsigned int word, const u8 value)
  59. {
  60. u32 reg;
  61. /*
  62. * Wait until the BBP becomes ready.
  63. */
  64. reg = rt2500pci_bbp_check(rt2x00dev);
  65. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  66. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  67. return;
  68. }
  69. /*
  70. * Write the data into the BBP.
  71. */
  72. reg = 0;
  73. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  74. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  75. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  76. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  77. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  78. }
  79. static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  80. const unsigned int word, u8 *value)
  81. {
  82. u32 reg;
  83. /*
  84. * Wait until the BBP becomes ready.
  85. */
  86. reg = rt2500pci_bbp_check(rt2x00dev);
  87. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  88. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  89. return;
  90. }
  91. /*
  92. * Write the request into the BBP.
  93. */
  94. reg = 0;
  95. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  96. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  97. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  98. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  99. /*
  100. * Wait until the BBP becomes ready.
  101. */
  102. reg = rt2500pci_bbp_check(rt2x00dev);
  103. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  104. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  105. *value = 0xff;
  106. return;
  107. }
  108. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  109. }
  110. static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
  111. const unsigned int word, const u32 value)
  112. {
  113. u32 reg;
  114. unsigned int i;
  115. if (!word)
  116. return;
  117. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  118. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  119. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  120. goto rf_write;
  121. udelay(REGISTER_BUSY_DELAY);
  122. }
  123. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  124. return;
  125. rf_write:
  126. reg = 0;
  127. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  128. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  129. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  130. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  131. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  132. rt2x00_rf_write(rt2x00dev, word, value);
  133. }
  134. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  135. {
  136. struct rt2x00_dev *rt2x00dev = eeprom->data;
  137. u32 reg;
  138. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  139. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  140. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  141. eeprom->reg_data_clock =
  142. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  143. eeprom->reg_chip_select =
  144. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  145. }
  146. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  147. {
  148. struct rt2x00_dev *rt2x00dev = eeprom->data;
  149. u32 reg = 0;
  150. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  151. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  152. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  153. !!eeprom->reg_data_clock);
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  155. !!eeprom->reg_chip_select);
  156. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  157. }
  158. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  159. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  160. static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
  161. const unsigned int word, u32 *data)
  162. {
  163. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  164. }
  165. static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
  166. const unsigned int word, u32 data)
  167. {
  168. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  169. }
  170. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  171. .owner = THIS_MODULE,
  172. .csr = {
  173. .read = rt2500pci_read_csr,
  174. .write = rt2500pci_write_csr,
  175. .word_size = sizeof(u32),
  176. .word_count = CSR_REG_SIZE / sizeof(u32),
  177. },
  178. .eeprom = {
  179. .read = rt2x00_eeprom_read,
  180. .write = rt2x00_eeprom_write,
  181. .word_size = sizeof(u16),
  182. .word_count = EEPROM_SIZE / sizeof(u16),
  183. },
  184. .bbp = {
  185. .read = rt2500pci_bbp_read,
  186. .write = rt2500pci_bbp_write,
  187. .word_size = sizeof(u8),
  188. .word_count = BBP_SIZE / sizeof(u8),
  189. },
  190. .rf = {
  191. .read = rt2x00_rf_read,
  192. .write = rt2500pci_rf_write,
  193. .word_size = sizeof(u32),
  194. .word_count = RF_SIZE / sizeof(u32),
  195. },
  196. };
  197. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  198. #ifdef CONFIG_RT2500PCI_RFKILL
  199. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  200. {
  201. u32 reg;
  202. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  203. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  204. }
  205. #else
  206. #define rt2500pci_rfkill_poll NULL
  207. #endif /* CONFIG_RT2500PCI_RFKILL */
  208. #ifdef CONFIG_RT2500PCI_LEDS
  209. static void rt2500pci_led_brightness(struct led_classdev *led_cdev,
  210. enum led_brightness brightness)
  211. {
  212. struct rt2x00_led *led =
  213. container_of(led_cdev, struct rt2x00_led, led_dev);
  214. unsigned int enabled = brightness != LED_OFF;
  215. unsigned int activity =
  216. led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
  217. u32 reg;
  218. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  219. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
  220. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  221. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled && activity);
  222. }
  223. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  224. }
  225. #else
  226. #define rt2500pci_led_brightness NULL
  227. #endif /* CONFIG_RT2500PCI_LEDS */
  228. /*
  229. * Configuration handlers.
  230. */
  231. static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
  232. struct rt2x00_intf *intf,
  233. struct rt2x00intf_conf *conf,
  234. const unsigned int flags)
  235. {
  236. struct data_queue *queue =
  237. rt2x00queue_get_queue(rt2x00dev, RT2X00_BCN_QUEUE_BEACON);
  238. unsigned int bcn_preload;
  239. u32 reg;
  240. if (flags & CONFIG_UPDATE_TYPE) {
  241. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  242. /*
  243. * Enable beacon config
  244. */
  245. bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
  246. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  247. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  248. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
  249. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  250. /*
  251. * Enable synchronisation.
  252. */
  253. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  254. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  255. rt2x00_set_field32(&reg, CSR14_TBCN,
  256. (conf->sync == TSF_SYNC_BEACON));
  257. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  258. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  259. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  260. }
  261. if (flags & CONFIG_UPDATE_MAC)
  262. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  263. conf->mac, sizeof(conf->mac));
  264. if (flags & CONFIG_UPDATE_BSSID)
  265. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  266. conf->bssid, sizeof(conf->bssid));
  267. }
  268. static int rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
  269. const int short_preamble,
  270. const int ack_timeout,
  271. const int ack_consume_time)
  272. {
  273. int preamble_mask;
  274. u32 reg;
  275. /*
  276. * When short preamble is enabled, we should set bit 0x08
  277. */
  278. preamble_mask = short_preamble << 3;
  279. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  280. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
  281. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
  282. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  283. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  284. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
  285. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  286. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  287. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  288. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  289. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  290. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  291. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  292. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  293. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  294. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  295. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  296. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  297. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  298. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  299. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  300. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  301. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  302. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  303. return 0;
  304. }
  305. static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  306. const int basic_rate_mask)
  307. {
  308. rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
  309. }
  310. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  311. struct rf_channel *rf, const int txpower)
  312. {
  313. u8 r70;
  314. /*
  315. * Set TXpower.
  316. */
  317. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  318. /*
  319. * Switch on tuning bits.
  320. * For RT2523 devices we do not need to update the R1 register.
  321. */
  322. if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
  323. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  324. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  325. /*
  326. * For RT2525 we should first set the channel to half band higher.
  327. */
  328. if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  329. static const u32 vals[] = {
  330. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  331. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  332. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  333. 0x00080d2e, 0x00080d3a
  334. };
  335. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  336. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  337. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  338. if (rf->rf4)
  339. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  340. }
  341. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  342. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  343. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  344. if (rf->rf4)
  345. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  346. /*
  347. * Channel 14 requires the Japan filter bit to be set.
  348. */
  349. r70 = 0x46;
  350. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  351. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  352. msleep(1);
  353. /*
  354. * Switch off tuning bits.
  355. * For RT2523 devices we do not need to update the R1 register.
  356. */
  357. if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  358. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  359. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  360. }
  361. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  362. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  363. /*
  364. * Clear false CRC during channel switch.
  365. */
  366. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  367. }
  368. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  369. const int txpower)
  370. {
  371. u32 rf3;
  372. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  373. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  374. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  375. }
  376. static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  377. struct antenna_setup *ant)
  378. {
  379. u32 reg;
  380. u8 r14;
  381. u8 r2;
  382. rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
  383. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  384. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  385. /*
  386. * Configure the TX antenna.
  387. */
  388. switch (ant->tx) {
  389. case ANTENNA_A:
  390. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  391. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  392. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  393. break;
  394. case ANTENNA_HW_DIVERSITY:
  395. case ANTENNA_SW_DIVERSITY:
  396. /*
  397. * NOTE: We should never come here because rt2x00lib is
  398. * supposed to catch this and send us the correct antenna
  399. * explicitely. However we are nog going to bug about this.
  400. * Instead, just default to antenna B.
  401. */
  402. case ANTENNA_B:
  403. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  404. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  405. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  406. break;
  407. }
  408. /*
  409. * Configure the RX antenna.
  410. */
  411. switch (ant->rx) {
  412. case ANTENNA_A:
  413. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  414. break;
  415. case ANTENNA_HW_DIVERSITY:
  416. case ANTENNA_SW_DIVERSITY:
  417. /*
  418. * NOTE: We should never come here because rt2x00lib is
  419. * supposed to catch this and send us the correct antenna
  420. * explicitely. However we are nog going to bug about this.
  421. * Instead, just default to antenna B.
  422. */
  423. case ANTENNA_B:
  424. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  425. break;
  426. }
  427. /*
  428. * RT2525E and RT5222 need to flip TX I/Q
  429. */
  430. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  431. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  432. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  433. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  434. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  435. /*
  436. * RT2525E does not need RX I/Q Flip.
  437. */
  438. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  439. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  440. } else {
  441. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  442. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  443. }
  444. rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
  445. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  446. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  447. }
  448. static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
  449. struct rt2x00lib_conf *libconf)
  450. {
  451. u32 reg;
  452. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  453. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
  454. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  455. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  456. rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
  457. rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
  458. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  459. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  460. rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
  461. rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
  462. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  463. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  464. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  465. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  466. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  467. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  468. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  469. libconf->conf->beacon_int * 16);
  470. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  471. libconf->conf->beacon_int * 16);
  472. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  473. }
  474. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  475. struct rt2x00lib_conf *libconf,
  476. const unsigned int flags)
  477. {
  478. if (flags & CONFIG_UPDATE_PHYMODE)
  479. rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
  480. if (flags & CONFIG_UPDATE_CHANNEL)
  481. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  482. libconf->conf->power_level);
  483. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  484. rt2500pci_config_txpower(rt2x00dev,
  485. libconf->conf->power_level);
  486. if (flags & CONFIG_UPDATE_ANTENNA)
  487. rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
  488. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  489. rt2500pci_config_duration(rt2x00dev, libconf);
  490. }
  491. /*
  492. * Link tuning
  493. */
  494. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  495. struct link_qual *qual)
  496. {
  497. u32 reg;
  498. /*
  499. * Update FCS error count from register.
  500. */
  501. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  502. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  503. /*
  504. * Update False CCA count from register.
  505. */
  506. rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
  507. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  508. }
  509. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  510. {
  511. rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
  512. rt2x00dev->link.vgc_level = 0x48;
  513. }
  514. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  515. {
  516. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  517. u8 r17;
  518. /*
  519. * To prevent collisions with MAC ASIC on chipsets
  520. * up to version C the link tuning should halt after 20
  521. * seconds while being associated.
  522. */
  523. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
  524. rt2x00dev->intf_associated &&
  525. rt2x00dev->link.count > 20)
  526. return;
  527. rt2500pci_bbp_read(rt2x00dev, 17, &r17);
  528. /*
  529. * Chipset versions C and lower should directly continue
  530. * to the dynamic CCA tuning. Chipset version D and higher
  531. * should go straight to dynamic CCA tuning when they
  532. * are not associated.
  533. */
  534. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
  535. !rt2x00dev->intf_associated)
  536. goto dynamic_cca_tune;
  537. /*
  538. * A too low RSSI will cause too much false CCA which will
  539. * then corrupt the R17 tuning. To remidy this the tuning should
  540. * be stopped (While making sure the R17 value will not exceed limits)
  541. */
  542. if (rssi < -80 && rt2x00dev->link.count > 20) {
  543. if (r17 >= 0x41) {
  544. r17 = rt2x00dev->link.vgc_level;
  545. rt2500pci_bbp_write(rt2x00dev, 17, r17);
  546. }
  547. return;
  548. }
  549. /*
  550. * Special big-R17 for short distance
  551. */
  552. if (rssi >= -58) {
  553. if (r17 != 0x50)
  554. rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
  555. return;
  556. }
  557. /*
  558. * Special mid-R17 for middle distance
  559. */
  560. if (rssi >= -74) {
  561. if (r17 != 0x41)
  562. rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
  563. return;
  564. }
  565. /*
  566. * Leave short or middle distance condition, restore r17
  567. * to the dynamic tuning range.
  568. */
  569. if (r17 >= 0x41) {
  570. rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
  571. return;
  572. }
  573. dynamic_cca_tune:
  574. /*
  575. * R17 is inside the dynamic tuning range,
  576. * start tuning the link based on the false cca counter.
  577. */
  578. if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
  579. rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
  580. rt2x00dev->link.vgc_level = r17;
  581. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
  582. rt2500pci_bbp_write(rt2x00dev, 17, --r17);
  583. rt2x00dev->link.vgc_level = r17;
  584. }
  585. }
  586. /*
  587. * Initialization functions.
  588. */
  589. static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
  590. struct queue_entry *entry)
  591. {
  592. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  593. u32 word;
  594. rt2x00_desc_read(priv_rx->desc, 1, &word);
  595. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->dma);
  596. rt2x00_desc_write(priv_rx->desc, 1, word);
  597. rt2x00_desc_read(priv_rx->desc, 0, &word);
  598. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  599. rt2x00_desc_write(priv_rx->desc, 0, word);
  600. }
  601. static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
  602. struct queue_entry *entry)
  603. {
  604. struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
  605. u32 word;
  606. rt2x00_desc_read(priv_tx->desc, 1, &word);
  607. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->dma);
  608. rt2x00_desc_write(priv_tx->desc, 1, word);
  609. rt2x00_desc_read(priv_tx->desc, 0, &word);
  610. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  611. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  612. rt2x00_desc_write(priv_tx->desc, 0, word);
  613. }
  614. static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
  615. {
  616. struct queue_entry_priv_pci_rx *priv_rx;
  617. struct queue_entry_priv_pci_tx *priv_tx;
  618. u32 reg;
  619. /*
  620. * Initialize registers.
  621. */
  622. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  623. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  624. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  625. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  626. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  627. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  628. priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
  629. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  630. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER, priv_tx->dma);
  631. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  632. priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
  633. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  634. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER, priv_tx->dma);
  635. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  636. priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
  637. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  638. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER, priv_tx->dma);
  639. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  640. priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
  641. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  642. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER, priv_tx->dma);
  643. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  644. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  645. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  646. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  647. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  648. priv_rx = rt2x00dev->rx->entries[0].priv_data;
  649. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  650. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_tx->dma);
  651. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  652. return 0;
  653. }
  654. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  655. {
  656. u32 reg;
  657. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  658. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  659. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
  660. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  661. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  662. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  663. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  664. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  665. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  666. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  667. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  668. rt2x00dev->rx->data_size / 128);
  669. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  670. /*
  671. * Always use CWmin and CWmax set in descriptor.
  672. */
  673. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  674. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  675. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  676. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  677. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
  678. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
  679. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  680. rt2x00pci_register_write(rt2x00dev, CNT3, 0);
  681. rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
  682. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  683. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  684. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  685. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  686. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  687. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  688. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  689. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  690. rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
  691. rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
  692. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  693. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  694. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  695. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  696. rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
  697. rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
  698. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  699. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  700. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  701. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  702. rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
  703. rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
  704. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  705. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  706. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  707. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  708. rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
  709. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  710. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  711. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  712. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  713. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  714. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  715. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  716. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  717. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  718. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  719. rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
  720. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  721. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  722. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  723. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  724. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  725. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  726. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  727. rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
  728. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  729. rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  730. rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  731. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  732. return -EBUSY;
  733. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
  734. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  735. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  736. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  737. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  738. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  739. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  740. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  741. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  742. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  743. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  744. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  745. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  746. rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  747. rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  748. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  749. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  750. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  751. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  752. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  753. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  754. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  755. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  756. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  757. /*
  758. * We must clear the FCS and FIFO error count.
  759. * These registers are cleared on read,
  760. * so we may pass a useless variable to store the value.
  761. */
  762. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  763. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  764. return 0;
  765. }
  766. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  767. {
  768. unsigned int i;
  769. u16 eeprom;
  770. u8 reg_id;
  771. u8 value;
  772. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  773. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  774. if ((value != 0xff) && (value != 0x00))
  775. goto continue_csr_init;
  776. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  777. udelay(REGISTER_BUSY_DELAY);
  778. }
  779. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  780. return -EACCES;
  781. continue_csr_init:
  782. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  783. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  784. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  785. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  786. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  787. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  788. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  789. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  790. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  791. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  792. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  793. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  794. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  795. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  796. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  797. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  798. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  799. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  800. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  801. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  802. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  803. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  804. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  805. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  806. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  807. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  808. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  809. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  810. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  811. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  812. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  813. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  814. if (eeprom != 0xffff && eeprom != 0x0000) {
  815. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  816. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  817. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  818. }
  819. }
  820. return 0;
  821. }
  822. /*
  823. * Device state switch handlers.
  824. */
  825. static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  826. enum dev_state state)
  827. {
  828. u32 reg;
  829. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  830. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  831. state == STATE_RADIO_RX_OFF);
  832. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  833. }
  834. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  835. enum dev_state state)
  836. {
  837. int mask = (state == STATE_RADIO_IRQ_OFF);
  838. u32 reg;
  839. /*
  840. * When interrupts are being enabled, the interrupt registers
  841. * should clear the register to assure a clean state.
  842. */
  843. if (state == STATE_RADIO_IRQ_ON) {
  844. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  845. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  846. }
  847. /*
  848. * Only toggle the interrupts bits we are going to use.
  849. * Non-checked interrupt bits are disabled by default.
  850. */
  851. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  852. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  853. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  854. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  855. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  856. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  857. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  858. }
  859. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  860. {
  861. /*
  862. * Initialize all registers.
  863. */
  864. if (rt2500pci_init_queues(rt2x00dev) ||
  865. rt2500pci_init_registers(rt2x00dev) ||
  866. rt2500pci_init_bbp(rt2x00dev)) {
  867. ERROR(rt2x00dev, "Register initialization failed.\n");
  868. return -EIO;
  869. }
  870. /*
  871. * Enable interrupts.
  872. */
  873. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  874. return 0;
  875. }
  876. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  877. {
  878. u32 reg;
  879. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  880. /*
  881. * Disable synchronisation.
  882. */
  883. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  884. /*
  885. * Cancel RX and TX.
  886. */
  887. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  888. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  889. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  890. /*
  891. * Disable interrupts.
  892. */
  893. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  894. }
  895. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  896. enum dev_state state)
  897. {
  898. u32 reg;
  899. unsigned int i;
  900. char put_to_sleep;
  901. char bbp_state;
  902. char rf_state;
  903. put_to_sleep = (state != STATE_AWAKE);
  904. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  905. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  906. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  907. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  908. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  909. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  910. /*
  911. * Device is not guaranteed to be in the requested state yet.
  912. * We must wait until the register indicates that the
  913. * device has entered the correct state.
  914. */
  915. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  916. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  917. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  918. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  919. if (bbp_state == state && rf_state == state)
  920. return 0;
  921. msleep(10);
  922. }
  923. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  924. "current device state: bbp %d and rf %d.\n",
  925. state, bbp_state, rf_state);
  926. return -EBUSY;
  927. }
  928. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  929. enum dev_state state)
  930. {
  931. int retval = 0;
  932. switch (state) {
  933. case STATE_RADIO_ON:
  934. retval = rt2500pci_enable_radio(rt2x00dev);
  935. break;
  936. case STATE_RADIO_OFF:
  937. rt2500pci_disable_radio(rt2x00dev);
  938. break;
  939. case STATE_RADIO_RX_ON:
  940. case STATE_RADIO_RX_ON_LINK:
  941. rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  942. break;
  943. case STATE_RADIO_RX_OFF:
  944. case STATE_RADIO_RX_OFF_LINK:
  945. rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  946. break;
  947. case STATE_DEEP_SLEEP:
  948. case STATE_SLEEP:
  949. case STATE_STANDBY:
  950. case STATE_AWAKE:
  951. retval = rt2500pci_set_state(rt2x00dev, state);
  952. break;
  953. default:
  954. retval = -ENOTSUPP;
  955. break;
  956. }
  957. return retval;
  958. }
  959. /*
  960. * TX descriptor initialization
  961. */
  962. static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  963. struct sk_buff *skb,
  964. struct txentry_desc *txdesc,
  965. struct ieee80211_tx_control *control)
  966. {
  967. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  968. __le32 *txd = skbdesc->desc;
  969. u32 word;
  970. /*
  971. * Start writing the descriptor words.
  972. */
  973. rt2x00_desc_read(txd, 2, &word);
  974. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  975. rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
  976. rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
  977. rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
  978. rt2x00_desc_write(txd, 2, word);
  979. rt2x00_desc_read(txd, 3, &word);
  980. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  981. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  982. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
  983. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
  984. rt2x00_desc_write(txd, 3, word);
  985. rt2x00_desc_read(txd, 10, &word);
  986. rt2x00_set_field32(&word, TXD_W10_RTS,
  987. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  988. rt2x00_desc_write(txd, 10, word);
  989. rt2x00_desc_read(txd, 0, &word);
  990. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  991. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  992. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  993. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  994. rt2x00_set_field32(&word, TXD_W0_ACK,
  995. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  996. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  997. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  998. rt2x00_set_field32(&word, TXD_W0_OFDM,
  999. test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
  1000. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1001. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1002. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1003. !!(control->flags &
  1004. IEEE80211_TXCTL_LONG_RETRY_LIMIT));
  1005. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
  1006. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1007. rt2x00_desc_write(txd, 0, word);
  1008. }
  1009. /*
  1010. * TX data initialization
  1011. */
  1012. static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1013. const unsigned int queue)
  1014. {
  1015. u32 reg;
  1016. if (queue == RT2X00_BCN_QUEUE_BEACON) {
  1017. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1018. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  1019. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1020. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1021. }
  1022. return;
  1023. }
  1024. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1025. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
  1026. (queue == IEEE80211_TX_QUEUE_DATA0));
  1027. rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
  1028. (queue == IEEE80211_TX_QUEUE_DATA1));
  1029. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
  1030. (queue == RT2X00_BCN_QUEUE_ATIM));
  1031. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1032. }
  1033. /*
  1034. * RX control handlers
  1035. */
  1036. static void rt2500pci_fill_rxdone(struct queue_entry *entry,
  1037. struct rxdone_entry_desc *rxdesc)
  1038. {
  1039. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  1040. u32 word0;
  1041. u32 word2;
  1042. rt2x00_desc_read(priv_rx->desc, 0, &word0);
  1043. rt2x00_desc_read(priv_rx->desc, 2, &word2);
  1044. rxdesc->flags = 0;
  1045. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1046. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1047. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1048. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1049. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1050. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1051. entry->queue->rt2x00dev->rssi_offset;
  1052. rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
  1053. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1054. rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
  1055. }
  1056. /*
  1057. * Interrupt functions.
  1058. */
  1059. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
  1060. const enum ieee80211_tx_queue queue_idx)
  1061. {
  1062. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1063. struct queue_entry_priv_pci_tx *priv_tx;
  1064. struct queue_entry *entry;
  1065. struct txdone_entry_desc txdesc;
  1066. u32 word;
  1067. while (!rt2x00queue_empty(queue)) {
  1068. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1069. priv_tx = entry->priv_data;
  1070. rt2x00_desc_read(priv_tx->desc, 0, &word);
  1071. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1072. !rt2x00_get_field32(word, TXD_W0_VALID))
  1073. break;
  1074. /*
  1075. * Obtain the status about this packet.
  1076. */
  1077. txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
  1078. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1079. rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
  1080. }
  1081. }
  1082. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1083. {
  1084. struct rt2x00_dev *rt2x00dev = dev_instance;
  1085. u32 reg;
  1086. /*
  1087. * Get the interrupt sources & saved to local variable.
  1088. * Write register value back to clear pending interrupts.
  1089. */
  1090. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1091. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1092. if (!reg)
  1093. return IRQ_NONE;
  1094. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  1095. return IRQ_HANDLED;
  1096. /*
  1097. * Handle interrupts, walk through all bits
  1098. * and run the tasks, the bits are checked in order of
  1099. * priority.
  1100. */
  1101. /*
  1102. * 1 - Beacon timer expired interrupt.
  1103. */
  1104. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1105. rt2x00lib_beacondone(rt2x00dev);
  1106. /*
  1107. * 2 - Rx ring done interrupt.
  1108. */
  1109. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1110. rt2x00pci_rxdone(rt2x00dev);
  1111. /*
  1112. * 3 - Atim ring transmit done interrupt.
  1113. */
  1114. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1115. rt2500pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
  1116. /*
  1117. * 4 - Priority ring transmit done interrupt.
  1118. */
  1119. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1120. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  1121. /*
  1122. * 5 - Tx ring transmit done interrupt.
  1123. */
  1124. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1125. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  1126. return IRQ_HANDLED;
  1127. }
  1128. /*
  1129. * Device probe functions.
  1130. */
  1131. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1132. {
  1133. struct eeprom_93cx6 eeprom;
  1134. u32 reg;
  1135. u16 word;
  1136. u8 *mac;
  1137. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1138. eeprom.data = rt2x00dev;
  1139. eeprom.register_read = rt2500pci_eepromregister_read;
  1140. eeprom.register_write = rt2500pci_eepromregister_write;
  1141. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1142. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1143. eeprom.reg_data_in = 0;
  1144. eeprom.reg_data_out = 0;
  1145. eeprom.reg_data_clock = 0;
  1146. eeprom.reg_chip_select = 0;
  1147. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1148. EEPROM_SIZE / sizeof(u16));
  1149. /*
  1150. * Start validation of the data that has been read.
  1151. */
  1152. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1153. if (!is_valid_ether_addr(mac)) {
  1154. DECLARE_MAC_BUF(macbuf);
  1155. random_ether_addr(mac);
  1156. EEPROM(rt2x00dev, "MAC: %s\n",
  1157. print_mac(macbuf, mac));
  1158. }
  1159. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1160. if (word == 0xffff) {
  1161. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1162. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1163. ANTENNA_SW_DIVERSITY);
  1164. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1165. ANTENNA_SW_DIVERSITY);
  1166. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1167. LED_MODE_DEFAULT);
  1168. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1169. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1170. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1171. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1172. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1173. }
  1174. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1175. if (word == 0xffff) {
  1176. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1177. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1178. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1179. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1180. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1181. }
  1182. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1183. if (word == 0xffff) {
  1184. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1185. DEFAULT_RSSI_OFFSET);
  1186. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1187. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1188. }
  1189. return 0;
  1190. }
  1191. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1192. {
  1193. u32 reg;
  1194. u16 value;
  1195. u16 eeprom;
  1196. /*
  1197. * Read EEPROM word for configuration.
  1198. */
  1199. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1200. /*
  1201. * Identify RF chipset.
  1202. */
  1203. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1204. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1205. rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
  1206. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1207. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1208. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1209. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1210. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1211. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1212. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1213. return -ENODEV;
  1214. }
  1215. /*
  1216. * Identify default antenna configuration.
  1217. */
  1218. rt2x00dev->default_ant.tx =
  1219. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1220. rt2x00dev->default_ant.rx =
  1221. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1222. /*
  1223. * Store led mode, for correct led behaviour.
  1224. */
  1225. #ifdef CONFIG_RT2500PCI_LEDS
  1226. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1227. switch (value) {
  1228. case LED_MODE_ASUS:
  1229. case LED_MODE_ALPHA:
  1230. case LED_MODE_DEFAULT:
  1231. rt2x00dev->led_flags = LED_SUPPORT_RADIO;
  1232. break;
  1233. case LED_MODE_TXRX_ACTIVITY:
  1234. rt2x00dev->led_flags =
  1235. LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
  1236. break;
  1237. case LED_MODE_SIGNAL_STRENGTH:
  1238. rt2x00dev->led_flags = LED_SUPPORT_RADIO;
  1239. break;
  1240. }
  1241. #endif /* CONFIG_RT2500PCI_LEDS */
  1242. /*
  1243. * Detect if this device has an hardware controlled radio.
  1244. */
  1245. #ifdef CONFIG_RT2500PCI_RFKILL
  1246. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1247. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1248. #endif /* CONFIG_RT2500PCI_RFKILL */
  1249. /*
  1250. * Check if the BBP tuning should be enabled.
  1251. */
  1252. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1253. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1254. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1255. /*
  1256. * Read the RSSI <-> dBm offset information.
  1257. */
  1258. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1259. rt2x00dev->rssi_offset =
  1260. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1261. return 0;
  1262. }
  1263. /*
  1264. * RF value list for RF2522
  1265. * Supports: 2.4 GHz
  1266. */
  1267. static const struct rf_channel rf_vals_bg_2522[] = {
  1268. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1269. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1270. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1271. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1272. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1273. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1274. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1275. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1276. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1277. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1278. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1279. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1280. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1281. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1282. };
  1283. /*
  1284. * RF value list for RF2523
  1285. * Supports: 2.4 GHz
  1286. */
  1287. static const struct rf_channel rf_vals_bg_2523[] = {
  1288. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1289. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1290. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1291. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1292. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1293. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1294. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1295. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1296. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1297. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1298. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1299. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1300. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1301. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1302. };
  1303. /*
  1304. * RF value list for RF2524
  1305. * Supports: 2.4 GHz
  1306. */
  1307. static const struct rf_channel rf_vals_bg_2524[] = {
  1308. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1309. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1310. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1311. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1312. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1313. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1314. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1315. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1316. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1317. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1318. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1319. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1320. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1321. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1322. };
  1323. /*
  1324. * RF value list for RF2525
  1325. * Supports: 2.4 GHz
  1326. */
  1327. static const struct rf_channel rf_vals_bg_2525[] = {
  1328. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1329. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1330. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1331. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1332. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1333. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1334. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1335. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1336. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1337. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1338. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1339. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1340. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1341. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1342. };
  1343. /*
  1344. * RF value list for RF2525e
  1345. * Supports: 2.4 GHz
  1346. */
  1347. static const struct rf_channel rf_vals_bg_2525e[] = {
  1348. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1349. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1350. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1351. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1352. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1353. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1354. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1355. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1356. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1357. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1358. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1359. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1360. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1361. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1362. };
  1363. /*
  1364. * RF value list for RF5222
  1365. * Supports: 2.4 GHz & 5.2 GHz
  1366. */
  1367. static const struct rf_channel rf_vals_5222[] = {
  1368. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1369. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1370. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1371. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1372. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1373. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1374. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1375. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1376. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1377. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1378. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1379. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1380. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1381. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1382. /* 802.11 UNI / HyperLan 2 */
  1383. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1384. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1385. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1386. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1387. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1388. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1389. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1390. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1391. /* 802.11 HyperLan 2 */
  1392. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1393. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1394. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1395. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1396. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1397. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1398. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1399. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1400. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1401. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1402. /* 802.11 UNII */
  1403. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1404. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1405. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1406. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1407. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1408. };
  1409. static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1410. {
  1411. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1412. u8 *txpower;
  1413. unsigned int i;
  1414. /*
  1415. * Initialize all hw fields.
  1416. */
  1417. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1418. rt2x00dev->hw->extra_tx_headroom = 0;
  1419. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1420. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1421. rt2x00dev->hw->queues = 2;
  1422. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1423. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1424. rt2x00_eeprom_addr(rt2x00dev,
  1425. EEPROM_MAC_ADDR_0));
  1426. /*
  1427. * Convert tx_power array in eeprom.
  1428. */
  1429. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1430. for (i = 0; i < 14; i++)
  1431. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1432. /*
  1433. * Initialize hw_mode information.
  1434. */
  1435. spec->num_modes = 2;
  1436. spec->num_rates = 12;
  1437. spec->tx_power_a = NULL;
  1438. spec->tx_power_bg = txpower;
  1439. spec->tx_power_default = DEFAULT_TXPOWER;
  1440. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1441. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1442. spec->channels = rf_vals_bg_2522;
  1443. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1444. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1445. spec->channels = rf_vals_bg_2523;
  1446. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1447. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1448. spec->channels = rf_vals_bg_2524;
  1449. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1450. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1451. spec->channels = rf_vals_bg_2525;
  1452. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1453. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1454. spec->channels = rf_vals_bg_2525e;
  1455. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1456. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1457. spec->channels = rf_vals_5222;
  1458. spec->num_modes = 3;
  1459. }
  1460. }
  1461. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1462. {
  1463. int retval;
  1464. /*
  1465. * Allocate eeprom data.
  1466. */
  1467. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1468. if (retval)
  1469. return retval;
  1470. retval = rt2500pci_init_eeprom(rt2x00dev);
  1471. if (retval)
  1472. return retval;
  1473. /*
  1474. * Initialize hw specifications.
  1475. */
  1476. rt2500pci_probe_hw_mode(rt2x00dev);
  1477. /*
  1478. * This device requires the atim queue
  1479. */
  1480. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1481. /*
  1482. * Set the rssi offset.
  1483. */
  1484. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1485. return 0;
  1486. }
  1487. /*
  1488. * IEEE80211 stack callback functions.
  1489. */
  1490. static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
  1491. unsigned int changed_flags,
  1492. unsigned int *total_flags,
  1493. int mc_count,
  1494. struct dev_addr_list *mc_list)
  1495. {
  1496. struct rt2x00_dev *rt2x00dev = hw->priv;
  1497. u32 reg;
  1498. /*
  1499. * Mask off any flags we are going to ignore from
  1500. * the total_flags field.
  1501. */
  1502. *total_flags &=
  1503. FIF_ALLMULTI |
  1504. FIF_FCSFAIL |
  1505. FIF_PLCPFAIL |
  1506. FIF_CONTROL |
  1507. FIF_OTHER_BSS |
  1508. FIF_PROMISC_IN_BSS;
  1509. /*
  1510. * Apply some rules to the filters:
  1511. * - Some filters imply different filters to be set.
  1512. * - Some things we can't filter out at all.
  1513. */
  1514. if (mc_count)
  1515. *total_flags |= FIF_ALLMULTI;
  1516. if (*total_flags & FIF_OTHER_BSS ||
  1517. *total_flags & FIF_PROMISC_IN_BSS)
  1518. *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
  1519. /*
  1520. * Check if there is any work left for us.
  1521. */
  1522. if (rt2x00dev->packet_filter == *total_flags)
  1523. return;
  1524. rt2x00dev->packet_filter = *total_flags;
  1525. /*
  1526. * Start configuration steps.
  1527. * Note that the version error will always be dropped
  1528. * and broadcast frames will always be accepted since
  1529. * there is no filter for it at this time.
  1530. */
  1531. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  1532. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  1533. !(*total_flags & FIF_FCSFAIL));
  1534. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  1535. !(*total_flags & FIF_PLCPFAIL));
  1536. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  1537. !(*total_flags & FIF_CONTROL));
  1538. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  1539. !(*total_flags & FIF_PROMISC_IN_BSS));
  1540. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  1541. !(*total_flags & FIF_PROMISC_IN_BSS));
  1542. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  1543. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  1544. !(*total_flags & FIF_ALLMULTI));
  1545. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  1546. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  1547. }
  1548. static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
  1549. u32 short_retry, u32 long_retry)
  1550. {
  1551. struct rt2x00_dev *rt2x00dev = hw->priv;
  1552. u32 reg;
  1553. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  1554. rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
  1555. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
  1556. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  1557. return 0;
  1558. }
  1559. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
  1560. {
  1561. struct rt2x00_dev *rt2x00dev = hw->priv;
  1562. u64 tsf;
  1563. u32 reg;
  1564. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1565. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1566. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1567. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1568. return tsf;
  1569. }
  1570. static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
  1571. {
  1572. struct rt2x00_dev *rt2x00dev = hw->priv;
  1573. rt2x00pci_register_write(rt2x00dev, CSR16, 0);
  1574. rt2x00pci_register_write(rt2x00dev, CSR17, 0);
  1575. }
  1576. static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
  1577. struct ieee80211_tx_control *control)
  1578. {
  1579. struct rt2x00_dev *rt2x00dev = hw->priv;
  1580. struct rt2x00_intf *intf = vif_to_intf(control->vif);
  1581. struct queue_entry_priv_pci_tx *priv_tx;
  1582. struct skb_frame_desc *skbdesc;
  1583. if (unlikely(!intf->beacon))
  1584. return -ENOBUFS;
  1585. priv_tx = intf->beacon->priv_data;
  1586. /*
  1587. * Fill in skb descriptor
  1588. */
  1589. skbdesc = get_skb_frame_desc(skb);
  1590. memset(skbdesc, 0, sizeof(*skbdesc));
  1591. skbdesc->data = skb->data;
  1592. skbdesc->data_len = skb->len;
  1593. skbdesc->desc = priv_tx->desc;
  1594. skbdesc->desc_len = intf->beacon->queue->desc_size;
  1595. skbdesc->entry = intf->beacon;
  1596. /*
  1597. * mac80211 doesn't provide the control->queue variable
  1598. * for beacons. Set our own queue identification so
  1599. * it can be used during descriptor initialization.
  1600. */
  1601. control->queue = RT2X00_BCN_QUEUE_BEACON;
  1602. rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
  1603. /*
  1604. * Enable beacon generation.
  1605. * Write entire beacon with descriptor to register,
  1606. * and kick the beacon generator.
  1607. */
  1608. memcpy(priv_tx->data, skb->data, skb->len);
  1609. rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
  1610. return 0;
  1611. }
  1612. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1613. {
  1614. struct rt2x00_dev *rt2x00dev = hw->priv;
  1615. u32 reg;
  1616. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1617. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1618. }
  1619. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1620. .tx = rt2x00mac_tx,
  1621. .start = rt2x00mac_start,
  1622. .stop = rt2x00mac_stop,
  1623. .add_interface = rt2x00mac_add_interface,
  1624. .remove_interface = rt2x00mac_remove_interface,
  1625. .config = rt2x00mac_config,
  1626. .config_interface = rt2x00mac_config_interface,
  1627. .configure_filter = rt2500pci_configure_filter,
  1628. .get_stats = rt2x00mac_get_stats,
  1629. .set_retry_limit = rt2500pci_set_retry_limit,
  1630. .bss_info_changed = rt2x00mac_bss_info_changed,
  1631. .conf_tx = rt2x00mac_conf_tx,
  1632. .get_tx_stats = rt2x00mac_get_tx_stats,
  1633. .get_tsf = rt2500pci_get_tsf,
  1634. .reset_tsf = rt2500pci_reset_tsf,
  1635. .beacon_update = rt2500pci_beacon_update,
  1636. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1637. };
  1638. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1639. .irq_handler = rt2500pci_interrupt,
  1640. .probe_hw = rt2500pci_probe_hw,
  1641. .initialize = rt2x00pci_initialize,
  1642. .uninitialize = rt2x00pci_uninitialize,
  1643. .init_rxentry = rt2500pci_init_rxentry,
  1644. .init_txentry = rt2500pci_init_txentry,
  1645. .set_device_state = rt2500pci_set_device_state,
  1646. .rfkill_poll = rt2500pci_rfkill_poll,
  1647. .link_stats = rt2500pci_link_stats,
  1648. .reset_tuner = rt2500pci_reset_tuner,
  1649. .link_tuner = rt2500pci_link_tuner,
  1650. .led_brightness = rt2500pci_led_brightness,
  1651. .write_tx_desc = rt2500pci_write_tx_desc,
  1652. .write_tx_data = rt2x00pci_write_tx_data,
  1653. .kick_tx_queue = rt2500pci_kick_tx_queue,
  1654. .fill_rxdone = rt2500pci_fill_rxdone,
  1655. .config_intf = rt2500pci_config_intf,
  1656. .config_preamble = rt2500pci_config_preamble,
  1657. .config = rt2500pci_config,
  1658. };
  1659. static const struct data_queue_desc rt2500pci_queue_rx = {
  1660. .entry_num = RX_ENTRIES,
  1661. .data_size = DATA_FRAME_SIZE,
  1662. .desc_size = RXD_DESC_SIZE,
  1663. .priv_size = sizeof(struct queue_entry_priv_pci_rx),
  1664. };
  1665. static const struct data_queue_desc rt2500pci_queue_tx = {
  1666. .entry_num = TX_ENTRIES,
  1667. .data_size = DATA_FRAME_SIZE,
  1668. .desc_size = TXD_DESC_SIZE,
  1669. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1670. };
  1671. static const struct data_queue_desc rt2500pci_queue_bcn = {
  1672. .entry_num = BEACON_ENTRIES,
  1673. .data_size = MGMT_FRAME_SIZE,
  1674. .desc_size = TXD_DESC_SIZE,
  1675. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1676. };
  1677. static const struct data_queue_desc rt2500pci_queue_atim = {
  1678. .entry_num = ATIM_ENTRIES,
  1679. .data_size = DATA_FRAME_SIZE,
  1680. .desc_size = TXD_DESC_SIZE,
  1681. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1682. };
  1683. static const struct rt2x00_ops rt2500pci_ops = {
  1684. .name = KBUILD_MODNAME,
  1685. .max_sta_intf = 1,
  1686. .max_ap_intf = 1,
  1687. .eeprom_size = EEPROM_SIZE,
  1688. .rf_size = RF_SIZE,
  1689. .rx = &rt2500pci_queue_rx,
  1690. .tx = &rt2500pci_queue_tx,
  1691. .bcn = &rt2500pci_queue_bcn,
  1692. .atim = &rt2500pci_queue_atim,
  1693. .lib = &rt2500pci_rt2x00_ops,
  1694. .hw = &rt2500pci_mac80211_ops,
  1695. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1696. .debugfs = &rt2500pci_rt2x00debug,
  1697. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1698. };
  1699. /*
  1700. * RT2500pci module information.
  1701. */
  1702. static struct pci_device_id rt2500pci_device_table[] = {
  1703. { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
  1704. { 0, }
  1705. };
  1706. MODULE_AUTHOR(DRV_PROJECT);
  1707. MODULE_VERSION(DRV_VERSION);
  1708. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1709. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1710. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1711. MODULE_LICENSE("GPL");
  1712. static struct pci_driver rt2500pci_driver = {
  1713. .name = KBUILD_MODNAME,
  1714. .id_table = rt2500pci_device_table,
  1715. .probe = rt2x00pci_probe,
  1716. .remove = __devexit_p(rt2x00pci_remove),
  1717. .suspend = rt2x00pci_suspend,
  1718. .resume = rt2x00pci_resume,
  1719. };
  1720. static int __init rt2500pci_init(void)
  1721. {
  1722. return pci_register_driver(&rt2500pci_driver);
  1723. }
  1724. static void __exit rt2500pci_exit(void)
  1725. {
  1726. pci_unregister_driver(&rt2500pci_driver);
  1727. }
  1728. module_init(rt2500pci_init);
  1729. module_exit(rt2500pci_exit);