paging_tmpl.h 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
  33. #elif PTTYPE == 32
  34. #define pt_element_t u32
  35. #define guest_walker guest_walker32
  36. #define FNAME(name) paging##32_##name
  37. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  38. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  39. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  40. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  41. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  42. #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
  43. #else
  44. #error Invalid PTTYPE value
  45. #endif
  46. /*
  47. * The guest_walker structure emulates the behavior of the hardware page
  48. * table walker.
  49. */
  50. struct guest_walker {
  51. int level;
  52. gfn_t table_gfn;
  53. pt_element_t *table;
  54. pt_element_t *ptep;
  55. pt_element_t inherited_ar;
  56. };
  57. /*
  58. * Fetch a guest pte for a guest virtual address
  59. */
  60. static void FNAME(walk_addr)(struct guest_walker *walker,
  61. struct kvm_vcpu *vcpu, gva_t addr)
  62. {
  63. hpa_t hpa;
  64. struct kvm_memory_slot *slot;
  65. pt_element_t *ptep;
  66. pt_element_t root;
  67. walker->level = vcpu->mmu.root_level;
  68. walker->table = NULL;
  69. root = vcpu->cr3;
  70. #if PTTYPE == 64
  71. if (!is_long_mode(vcpu)) {
  72. walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
  73. root = *walker->ptep;
  74. if (!(root & PT_PRESENT_MASK))
  75. return;
  76. --walker->level;
  77. }
  78. #endif
  79. walker->table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  80. slot = gfn_to_memslot(vcpu->kvm, walker->table_gfn);
  81. hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
  82. walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
  83. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  84. (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
  85. walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
  86. for (;;) {
  87. int index = PT_INDEX(addr, walker->level);
  88. hpa_t paddr;
  89. ptep = &walker->table[index];
  90. ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
  91. ((unsigned long)ptep & PAGE_MASK));
  92. if (is_present_pte(*ptep) && !(*ptep & PT_ACCESSED_MASK))
  93. *ptep |= PT_ACCESSED_MASK;
  94. if (!is_present_pte(*ptep) ||
  95. walker->level == PT_PAGE_TABLE_LEVEL ||
  96. (walker->level == PT_DIRECTORY_LEVEL &&
  97. (*ptep & PT_PAGE_SIZE_MASK) &&
  98. (PTTYPE == 64 || is_pse(vcpu))))
  99. break;
  100. if (walker->level != 3 || is_long_mode(vcpu))
  101. walker->inherited_ar &= walker->table[index];
  102. walker->table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  103. paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
  104. kunmap_atomic(walker->table, KM_USER0);
  105. walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
  106. KM_USER0);
  107. --walker->level;
  108. }
  109. walker->ptep = ptep;
  110. }
  111. static void FNAME(release_walker)(struct guest_walker *walker)
  112. {
  113. if (walker->table)
  114. kunmap_atomic(walker->table, KM_USER0);
  115. }
  116. static void FNAME(set_pte)(struct kvm_vcpu *vcpu, u64 guest_pte,
  117. u64 *shadow_pte, u64 access_bits)
  118. {
  119. ASSERT(*shadow_pte == 0);
  120. access_bits &= guest_pte;
  121. *shadow_pte = (guest_pte & PT_PTE_COPY_MASK);
  122. set_pte_common(vcpu, shadow_pte, guest_pte & PT_BASE_ADDR_MASK,
  123. guest_pte & PT_DIRTY_MASK, access_bits);
  124. }
  125. static void FNAME(set_pde)(struct kvm_vcpu *vcpu, u64 guest_pde,
  126. u64 *shadow_pte, u64 access_bits,
  127. int index)
  128. {
  129. gpa_t gaddr;
  130. ASSERT(*shadow_pte == 0);
  131. access_bits &= guest_pde;
  132. gaddr = (guest_pde & PT_DIR_BASE_ADDR_MASK) + PAGE_SIZE * index;
  133. if (PTTYPE == 32 && is_cpuid_PSE36())
  134. gaddr |= (guest_pde & PT32_DIR_PSE36_MASK) <<
  135. (32 - PT32_DIR_PSE36_SHIFT);
  136. *shadow_pte = guest_pde & PT_PTE_COPY_MASK;
  137. set_pte_common(vcpu, shadow_pte, gaddr,
  138. guest_pde & PT_DIRTY_MASK, access_bits);
  139. }
  140. /*
  141. * Fetch a shadow pte for a specific level in the paging hierarchy.
  142. */
  143. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  144. struct guest_walker *walker)
  145. {
  146. hpa_t shadow_addr;
  147. int level;
  148. u64 *prev_shadow_ent = NULL;
  149. pt_element_t *guest_ent = walker->ptep;
  150. if (!is_present_pte(*guest_ent))
  151. return NULL;
  152. shadow_addr = vcpu->mmu.root_hpa;
  153. level = vcpu->mmu.shadow_root_level;
  154. if (level == PT32E_ROOT_LEVEL) {
  155. shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
  156. shadow_addr &= PT64_BASE_ADDR_MASK;
  157. --level;
  158. }
  159. for (; ; level--) {
  160. u32 index = SHADOW_PT_INDEX(addr, level);
  161. u64 *shadow_ent = ((u64 *)__va(shadow_addr)) + index;
  162. struct kvm_mmu_page *shadow_page;
  163. u64 shadow_pte;
  164. if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
  165. if (level == PT_PAGE_TABLE_LEVEL)
  166. return shadow_ent;
  167. shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
  168. prev_shadow_ent = shadow_ent;
  169. continue;
  170. }
  171. if (level == PT_PAGE_TABLE_LEVEL) {
  172. if (walker->level == PT_DIRECTORY_LEVEL) {
  173. if (prev_shadow_ent)
  174. *prev_shadow_ent |= PT_SHADOW_PS_MARK;
  175. FNAME(set_pde)(vcpu, *guest_ent, shadow_ent,
  176. walker->inherited_ar,
  177. PT_INDEX(addr, PT_PAGE_TABLE_LEVEL));
  178. } else {
  179. ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
  180. FNAME(set_pte)(vcpu, *guest_ent, shadow_ent, walker->inherited_ar);
  181. }
  182. return shadow_ent;
  183. }
  184. shadow_page = kvm_mmu_alloc_page(vcpu, shadow_ent);
  185. if (!shadow_page)
  186. return ERR_PTR(-ENOMEM);
  187. shadow_addr = shadow_page->page_hpa;
  188. shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
  189. | PT_WRITABLE_MASK | PT_USER_MASK;
  190. *shadow_ent = shadow_pte;
  191. prev_shadow_ent = shadow_ent;
  192. }
  193. }
  194. /*
  195. * The guest faulted for write. We need to
  196. *
  197. * - check write permissions
  198. * - update the guest pte dirty bit
  199. * - update our own dirty page tracking structures
  200. */
  201. static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu,
  202. u64 *shadow_ent,
  203. struct guest_walker *walker,
  204. gva_t addr,
  205. int user)
  206. {
  207. pt_element_t *guest_ent;
  208. int writable_shadow;
  209. gfn_t gfn;
  210. if (is_writeble_pte(*shadow_ent))
  211. return 0;
  212. writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK;
  213. if (user) {
  214. /*
  215. * User mode access. Fail if it's a kernel page or a read-only
  216. * page.
  217. */
  218. if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow)
  219. return 0;
  220. ASSERT(*shadow_ent & PT_USER_MASK);
  221. } else
  222. /*
  223. * Kernel mode access. Fail if it's a read-only page and
  224. * supervisor write protection is enabled.
  225. */
  226. if (!writable_shadow) {
  227. if (is_write_protection(vcpu))
  228. return 0;
  229. *shadow_ent &= ~PT_USER_MASK;
  230. }
  231. guest_ent = walker->ptep;
  232. if (!is_present_pte(*guest_ent)) {
  233. *shadow_ent = 0;
  234. return 0;
  235. }
  236. gfn = (*guest_ent & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  237. mark_page_dirty(vcpu->kvm, gfn);
  238. *shadow_ent |= PT_WRITABLE_MASK;
  239. *guest_ent |= PT_DIRTY_MASK;
  240. rmap_add(vcpu->kvm, shadow_ent);
  241. return 1;
  242. }
  243. /*
  244. * Page fault handler. There are several causes for a page fault:
  245. * - there is no shadow pte for the guest pte
  246. * - write access through a shadow pte marked read only so that we can set
  247. * the dirty bit
  248. * - write access to a shadow pte marked read only so we can update the page
  249. * dirty bitmap, when userspace requests it
  250. * - mmio access; in this case we will never install a present shadow pte
  251. * - normal guest page fault due to the guest pte marked not present, not
  252. * writable, or not executable
  253. *
  254. * Returns: 1 if we need to emulate the instruction, 0 otherwise
  255. */
  256. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  257. u32 error_code)
  258. {
  259. int write_fault = error_code & PFERR_WRITE_MASK;
  260. int pte_present = error_code & PFERR_PRESENT_MASK;
  261. int user_fault = error_code & PFERR_USER_MASK;
  262. struct guest_walker walker;
  263. u64 *shadow_pte;
  264. int fixed;
  265. /*
  266. * Look up the shadow pte for the faulting address.
  267. */
  268. for (;;) {
  269. FNAME(walk_addr)(&walker, vcpu, addr);
  270. shadow_pte = FNAME(fetch)(vcpu, addr, &walker);
  271. if (IS_ERR(shadow_pte)) { /* must be -ENOMEM */
  272. nonpaging_flush(vcpu);
  273. FNAME(release_walker)(&walker);
  274. continue;
  275. }
  276. break;
  277. }
  278. /*
  279. * The page is not mapped by the guest. Let the guest handle it.
  280. */
  281. if (!shadow_pte) {
  282. inject_page_fault(vcpu, addr, error_code);
  283. FNAME(release_walker)(&walker);
  284. return 0;
  285. }
  286. /*
  287. * Update the shadow pte.
  288. */
  289. if (write_fault)
  290. fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr,
  291. user_fault);
  292. else
  293. fixed = fix_read_pf(shadow_pte);
  294. FNAME(release_walker)(&walker);
  295. /*
  296. * mmio: emulate if accessible, otherwise its a guest fault.
  297. */
  298. if (is_io_pte(*shadow_pte)) {
  299. if (may_access(*shadow_pte, write_fault, user_fault))
  300. return 1;
  301. pgprintk("%s: io work, no access\n", __FUNCTION__);
  302. inject_page_fault(vcpu, addr,
  303. error_code | PFERR_PRESENT_MASK);
  304. return 0;
  305. }
  306. /*
  307. * pte not present, guest page fault.
  308. */
  309. if (pte_present && !fixed) {
  310. inject_page_fault(vcpu, addr, error_code);
  311. return 0;
  312. }
  313. ++kvm_stat.pf_fixed;
  314. return 0;
  315. }
  316. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  317. {
  318. struct guest_walker walker;
  319. pt_element_t guest_pte;
  320. gpa_t gpa;
  321. FNAME(walk_addr)(&walker, vcpu, vaddr);
  322. guest_pte = *walker.ptep;
  323. FNAME(release_walker)(&walker);
  324. if (!is_present_pte(guest_pte))
  325. return UNMAPPED_GVA;
  326. if (walker.level == PT_DIRECTORY_LEVEL) {
  327. ASSERT((guest_pte & PT_PAGE_SIZE_MASK));
  328. ASSERT(PTTYPE == 64 || is_pse(vcpu));
  329. gpa = (guest_pte & PT_DIR_BASE_ADDR_MASK) | (vaddr &
  330. (PT_LEVEL_MASK(PT_PAGE_TABLE_LEVEL) | ~PAGE_MASK));
  331. if (PTTYPE == 32 && is_cpuid_PSE36())
  332. gpa |= (guest_pte & PT32_DIR_PSE36_MASK) <<
  333. (32 - PT32_DIR_PSE36_SHIFT);
  334. } else {
  335. gpa = (guest_pte & PT_BASE_ADDR_MASK);
  336. gpa |= (vaddr & ~PAGE_MASK);
  337. }
  338. return gpa;
  339. }
  340. #undef pt_element_t
  341. #undef guest_walker
  342. #undef FNAME
  343. #undef PT_BASE_ADDR_MASK
  344. #undef PT_INDEX
  345. #undef SHADOW_PT_INDEX
  346. #undef PT_LEVEL_MASK
  347. #undef PT_PTE_COPY_MASK
  348. #undef PT_NON_PTE_COPY_MASK
  349. #undef PT_DIR_BASE_ADDR_MASK