efuse.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2010 Realtek Corporation.
  4. *
  5. * Tmis program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * Tmis program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * tmis program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * Tme full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "wifi.h"
  30. #include "efuse.h"
  31. static const u8 MAX_PGPKT_SIZE = 9;
  32. static const u8 PGPKT_DATA_SIZE = 8;
  33. static const int EFUSE_MAX_SIZE = 512;
  34. static const u8 EFUSE_OOB_PROTECT_BYTES = 15;
  35. static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
  36. {0, 0, 0, 2},
  37. {0, 1, 0, 2},
  38. {0, 2, 0, 2},
  39. {1, 0, 0, 1},
  40. {1, 0, 1, 1},
  41. {1, 1, 0, 1},
  42. {1, 1, 1, 3},
  43. {1, 3, 0, 17},
  44. {3, 3, 1, 48},
  45. {10, 0, 0, 6},
  46. {10, 3, 0, 1},
  47. {10, 3, 1, 1},
  48. {11, 0, 0, 28}
  49. };
  50. static void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset,
  51. u8 *pbuf);
  52. static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
  53. u8 *value);
  54. static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
  55. u16 *value);
  56. static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
  57. u32 *value);
  58. static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
  59. u8 value);
  60. static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
  61. u16 value);
  62. static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
  63. u32 value);
  64. static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
  65. u8 *data);
  66. static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
  67. u8 data);
  68. static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
  69. static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
  70. u8 *data);
  71. static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
  72. u8 word_en, u8 *data);
  73. static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
  74. u8 *targetdata);
  75. static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
  76. u16 efuse_addr, u8 word_en, u8 *data);
  77. static void efuse_power_switch(struct ieee80211_hw *hw, u8 bwrite,
  78. u8 pwrstate);
  79. static u16 efuse_get_current_size(struct ieee80211_hw *hw);
  80. static u8 efuse_calculate_word_cnts(u8 word_en);
  81. void efuse_initialize(struct ieee80211_hw *hw)
  82. {
  83. struct rtl_priv *rtlpriv = rtl_priv(hw);
  84. u8 bytetemp;
  85. u8 temp;
  86. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
  87. temp = bytetemp | 0x20;
  88. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
  89. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
  90. temp = bytetemp & 0xFE;
  91. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
  92. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
  93. temp = bytetemp | 0x80;
  94. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
  95. rtl_write_byte(rtlpriv, 0x2F8, 0x3);
  96. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
  97. }
  98. u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
  99. {
  100. struct rtl_priv *rtlpriv = rtl_priv(hw);
  101. u8 data;
  102. u8 bytetemp;
  103. u8 temp;
  104. u32 k = 0;
  105. if (address < EFUSE_REAL_CONTENT_LEN) {
  106. temp = address & 0xFF;
  107. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  108. temp);
  109. bytetemp = rtl_read_byte(rtlpriv,
  110. rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  111. temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
  112. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  113. temp);
  114. bytetemp = rtl_read_byte(rtlpriv,
  115. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  116. temp = bytetemp & 0x7F;
  117. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
  118. temp);
  119. bytetemp = rtl_read_byte(rtlpriv,
  120. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  121. while (!(bytetemp & 0x80)) {
  122. bytetemp = rtl_read_byte(rtlpriv,
  123. rtlpriv->cfg->
  124. maps[EFUSE_CTRL] + 3);
  125. k++;
  126. if (k == 1000) {
  127. k = 0;
  128. break;
  129. }
  130. }
  131. data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  132. return data;
  133. } else
  134. return 0xFF;
  135. }
  136. EXPORT_SYMBOL(efuse_read_1byte);
  137. void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
  138. {
  139. struct rtl_priv *rtlpriv = rtl_priv(hw);
  140. u8 bytetemp;
  141. u8 temp;
  142. u32 k = 0;
  143. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  144. ("Addr=%x Data =%x\n", address, value));
  145. if (address < EFUSE_REAL_CONTENT_LEN) {
  146. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
  147. temp = address & 0xFF;
  148. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  149. temp);
  150. bytetemp = rtl_read_byte(rtlpriv,
  151. rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  152. temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
  153. rtl_write_byte(rtlpriv,
  154. rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
  155. bytetemp = rtl_read_byte(rtlpriv,
  156. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  157. temp = bytetemp | 0x80;
  158. rtl_write_byte(rtlpriv,
  159. rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
  160. bytetemp = rtl_read_byte(rtlpriv,
  161. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  162. while (bytetemp & 0x80) {
  163. bytetemp = rtl_read_byte(rtlpriv,
  164. rtlpriv->cfg->
  165. maps[EFUSE_CTRL] + 3);
  166. k++;
  167. if (k == 100) {
  168. k = 0;
  169. break;
  170. }
  171. }
  172. }
  173. }
  174. static void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
  175. {
  176. struct rtl_priv *rtlpriv = rtl_priv(hw);
  177. u32 value32;
  178. u8 readbyte;
  179. u16 retry;
  180. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  181. (_offset & 0xff));
  182. readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  183. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  184. ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
  185. readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  186. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
  187. (readbyte & 0x7f));
  188. retry = 0;
  189. value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  190. while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
  191. value32 = rtl_read_dword(rtlpriv,
  192. rtlpriv->cfg->maps[EFUSE_CTRL]);
  193. retry++;
  194. }
  195. udelay(50);
  196. value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  197. *pbuf = (u8) (value32 & 0xff);
  198. }
  199. void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
  200. {
  201. struct rtl_priv *rtlpriv = rtl_priv(hw);
  202. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  203. u8 efuse_tbl[EFUSE_MAP_LEN];
  204. u8 rtemp8[1];
  205. u16 efuse_addr = 0;
  206. u8 offset, wren;
  207. u16 i;
  208. u16 j;
  209. u16 efuse_word[EFUSE_MAX_SECTION][EFUSE_MAX_WORD_UNIT];
  210. u16 efuse_utilized = 0;
  211. u8 efuse_usage;
  212. if ((_offset + _size_byte) > EFUSE_MAP_LEN) {
  213. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  214. ("read_efuse(): Invalid offset(%#x) with read "
  215. "bytes(%#x)!!\n", _offset, _size_byte));
  216. return;
  217. }
  218. for (i = 0; i < EFUSE_MAX_SECTION; i++)
  219. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
  220. efuse_word[i][j] = 0xFFFF;
  221. read_efuse_byte(hw, efuse_addr, rtemp8);
  222. if (*rtemp8 != 0xFF) {
  223. efuse_utilized++;
  224. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  225. ("Addr=%d\n", efuse_addr));
  226. efuse_addr++;
  227. }
  228. while ((*rtemp8 != 0xFF) && (efuse_addr < EFUSE_REAL_CONTENT_LEN)) {
  229. offset = ((*rtemp8 >> 4) & 0x0f);
  230. if (offset < EFUSE_MAX_SECTION) {
  231. wren = (*rtemp8 & 0x0f);
  232. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  233. ("offset-%d Worden=%x\n", offset, wren));
  234. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  235. if (!(wren & 0x01)) {
  236. RTPRINT(rtlpriv, FEEPROM,
  237. EFUSE_READ_ALL, ("Addr=%d\n",
  238. efuse_addr));
  239. read_efuse_byte(hw, efuse_addr, rtemp8);
  240. efuse_addr++;
  241. efuse_utilized++;
  242. efuse_word[offset][i] = (*rtemp8 & 0xff);
  243. if (efuse_addr >= EFUSE_REAL_CONTENT_LEN)
  244. break;
  245. RTPRINT(rtlpriv, FEEPROM,
  246. EFUSE_READ_ALL, ("Addr=%d\n",
  247. efuse_addr));
  248. read_efuse_byte(hw, efuse_addr, rtemp8);
  249. efuse_addr++;
  250. efuse_utilized++;
  251. efuse_word[offset][i] |=
  252. (((u16)*rtemp8 << 8) & 0xff00);
  253. if (efuse_addr >= EFUSE_REAL_CONTENT_LEN)
  254. break;
  255. }
  256. wren >>= 1;
  257. }
  258. }
  259. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  260. ("Addr=%d\n", efuse_addr));
  261. read_efuse_byte(hw, efuse_addr, rtemp8);
  262. if (*rtemp8 != 0xFF && (efuse_addr < 512)) {
  263. efuse_utilized++;
  264. efuse_addr++;
  265. }
  266. }
  267. for (i = 0; i < EFUSE_MAX_SECTION; i++) {
  268. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
  269. efuse_tbl[(i * 8) + (j * 2)] =
  270. (efuse_word[i][j] & 0xff);
  271. efuse_tbl[(i * 8) + ((j * 2) + 1)] =
  272. ((efuse_word[i][j] >> 8) & 0xff);
  273. }
  274. }
  275. for (i = 0; i < _size_byte; i++)
  276. pbuf[i] = efuse_tbl[_offset + i];
  277. rtlefuse->efuse_usedbytes = efuse_utilized;
  278. efuse_usage = (u8)((efuse_utilized * 100) / EFUSE_REAL_CONTENT_LEN);
  279. rtlefuse->efuse_usedpercentage = efuse_usage;
  280. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
  281. (u8 *)&efuse_utilized);
  282. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
  283. (u8 *)&efuse_usage);
  284. }
  285. bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
  286. {
  287. struct rtl_priv *rtlpriv = rtl_priv(hw);
  288. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  289. u8 section_idx, i, Base;
  290. u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
  291. bool bwordchanged, bresult = true;
  292. for (section_idx = 0; section_idx < 16; section_idx++) {
  293. Base = section_idx * 8;
  294. bwordchanged = false;
  295. for (i = 0; i < 8; i = i + 2) {
  296. if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
  297. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
  298. (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
  299. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
  300. 1])) {
  301. words_need++;
  302. bwordchanged = true;
  303. }
  304. }
  305. if (bwordchanged == true)
  306. hdr_num++;
  307. }
  308. totalbytes = hdr_num + words_need * 2;
  309. efuse_used = rtlefuse->efuse_usedbytes;
  310. if ((totalbytes + efuse_used) >=
  311. (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))
  312. bresult = false;
  313. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  314. ("efuse_shadow_update_chk(): totalbytes(%#x), "
  315. "hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
  316. totalbytes, hdr_num, words_need, efuse_used));
  317. return bresult;
  318. }
  319. void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
  320. u16 offset, u32 *value)
  321. {
  322. if (type == 1)
  323. efuse_shadow_read_1byte(hw, offset, (u8 *) value);
  324. else if (type == 2)
  325. efuse_shadow_read_2byte(hw, offset, (u16 *) value);
  326. else if (type == 4)
  327. efuse_shadow_read_4byte(hw, offset, (u32 *) value);
  328. }
  329. void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
  330. u32 value)
  331. {
  332. if (type == 1)
  333. efuse_shadow_write_1byte(hw, offset, (u8) value);
  334. else if (type == 2)
  335. efuse_shadow_write_2byte(hw, offset, (u16) value);
  336. else if (type == 4)
  337. efuse_shadow_write_4byte(hw, offset, (u32) value);
  338. }
  339. bool efuse_shadow_update(struct ieee80211_hw *hw)
  340. {
  341. struct rtl_priv *rtlpriv = rtl_priv(hw);
  342. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  343. u16 i, offset, base;
  344. u8 word_en = 0x0F;
  345. u8 first_pg = false;
  346. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("--->\n"));
  347. if (!efuse_shadow_update_chk(hw)) {
  348. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  349. memcpy((void *)&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  350. (void *)&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  351. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  352. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  353. ("<---efuse out of capacity!!\n"));
  354. return false;
  355. }
  356. efuse_power_switch(hw, true, true);
  357. for (offset = 0; offset < 16; offset++) {
  358. word_en = 0x0F;
  359. base = offset * 8;
  360. for (i = 0; i < 8; i++) {
  361. if (first_pg == true) {
  362. word_en &= ~(BIT(i / 2));
  363. rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
  364. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
  365. } else {
  366. if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
  367. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
  368. word_en &= ~(BIT(i / 2));
  369. rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
  370. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
  371. }
  372. }
  373. }
  374. if (word_en != 0x0F) {
  375. u8 tmpdata[8];
  376. memcpy((void *)tmpdata,
  377. (void *)(&rtlefuse->
  378. efuse_map[EFUSE_MODIFY_MAP][base]), 8);
  379. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
  380. ("U-efuse\n"), tmpdata, 8);
  381. if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
  382. tmpdata)) {
  383. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  384. ("PG section(%#x) fail!!\n", offset));
  385. break;
  386. }
  387. }
  388. }
  389. efuse_power_switch(hw, true, false);
  390. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  391. memcpy((void *)&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  392. (void *)&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  393. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  394. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("<---\n"));
  395. return true;
  396. }
  397. void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
  398. {
  399. struct rtl_priv *rtlpriv = rtl_priv(hw);
  400. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  401. if (rtlefuse->autoload_failflag == true) {
  402. memset((void *)(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]), 128,
  403. 0xFF);
  404. } else
  405. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  406. memcpy((void *)&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  407. (void *)&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  408. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  409. }
  410. EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
  411. void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
  412. {
  413. u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
  414. efuse_power_switch(hw, true, true);
  415. efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
  416. efuse_power_switch(hw, true, false);
  417. }
  418. void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
  419. {
  420. }
  421. static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
  422. u16 offset, u8 *value)
  423. {
  424. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  425. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  426. }
  427. static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
  428. u16 offset, u16 *value)
  429. {
  430. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  431. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  432. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
  433. }
  434. static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
  435. u16 offset, u32 *value)
  436. {
  437. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  438. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  439. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
  440. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
  441. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
  442. }
  443. static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
  444. u16 offset, u8 value)
  445. {
  446. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  447. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
  448. }
  449. static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
  450. u16 offset, u16 value)
  451. {
  452. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  453. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
  454. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
  455. }
  456. static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
  457. u16 offset, u32 value)
  458. {
  459. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  460. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
  461. (u8) (value & 0x000000FF);
  462. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
  463. (u8) ((value >> 8) & 0x0000FF);
  464. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
  465. (u8) ((value >> 16) & 0x00FF);
  466. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
  467. (u8) ((value >> 24) & 0xFF);
  468. }
  469. static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
  470. {
  471. struct rtl_priv *rtlpriv = rtl_priv(hw);
  472. u8 tmpidx = 0;
  473. int bresult;
  474. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  475. (u8) (addr & 0xff));
  476. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  477. ((u8) ((addr >> 8) & 0x03)) |
  478. (rtl_read_byte(rtlpriv,
  479. rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
  480. 0xFC));
  481. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
  482. while (!(0x80 & rtl_read_byte(rtlpriv,
  483. rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
  484. && (tmpidx < 100)) {
  485. tmpidx++;
  486. }
  487. if (tmpidx < 100) {
  488. *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  489. bresult = true;
  490. } else {
  491. *data = 0xff;
  492. bresult = false;
  493. }
  494. return bresult;
  495. }
  496. static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
  497. {
  498. struct rtl_priv *rtlpriv = rtl_priv(hw);
  499. u8 tmpidx = 0;
  500. bool bresult;
  501. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  502. ("Addr = %x Data=%x\n", addr, data));
  503. rtl_write_byte(rtlpriv,
  504. rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
  505. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  506. (rtl_read_byte(rtlpriv,
  507. rtlpriv->cfg->maps[EFUSE_CTRL] +
  508. 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
  509. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
  510. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
  511. while ((0x80 & rtl_read_byte(rtlpriv,
  512. rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
  513. && (tmpidx < 100)) {
  514. tmpidx++;
  515. }
  516. if (tmpidx < 100)
  517. bresult = true;
  518. else
  519. bresult = false;
  520. return bresult;
  521. }
  522. static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
  523. {
  524. efuse_power_switch(hw, false, true);
  525. read_efuse(hw, 0, 128, efuse);
  526. efuse_power_switch(hw, false, false);
  527. }
  528. static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
  529. u8 efuse_data, u8 offset, u8 *tmpdata,
  530. u8 *readstate)
  531. {
  532. bool bdataempty = true;
  533. u8 hoffset;
  534. u8 tmpidx;
  535. u8 hworden;
  536. u8 word_cnts;
  537. hoffset = (efuse_data >> 4) & 0x0F;
  538. hworden = efuse_data & 0x0F;
  539. word_cnts = efuse_calculate_word_cnts(hworden);
  540. if (hoffset == offset) {
  541. for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
  542. if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
  543. &efuse_data)) {
  544. tmpdata[tmpidx] = efuse_data;
  545. if (efuse_data != 0xff)
  546. bdataempty = true;
  547. }
  548. }
  549. if (bdataempty == true)
  550. *readstate = PG_STATE_DATA;
  551. else {
  552. *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
  553. *readstate = PG_STATE_HEADER;
  554. }
  555. } else {
  556. *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
  557. *readstate = PG_STATE_HEADER;
  558. }
  559. }
  560. static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
  561. {
  562. u8 readstate = PG_STATE_HEADER;
  563. bool bcontinual = true;
  564. u8 efuse_data, word_cnts = 0;
  565. u16 efuse_addr = 0;
  566. u8 hworden;
  567. u8 tmpdata[8];
  568. if (data == NULL)
  569. return false;
  570. if (offset > 15)
  571. return false;
  572. memset((void *)data, PGPKT_DATA_SIZE * sizeof(u8), 0xff);
  573. memset((void *)tmpdata, PGPKT_DATA_SIZE * sizeof(u8), 0xff);
  574. while (bcontinual && (efuse_addr < EFUSE_MAX_SIZE)) {
  575. if (readstate & PG_STATE_HEADER) {
  576. if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
  577. && (efuse_data != 0xFF))
  578. efuse_read_data_case1(hw, &efuse_addr,
  579. efuse_data,
  580. offset, tmpdata,
  581. &readstate);
  582. else
  583. bcontinual = false;
  584. } else if (readstate & PG_STATE_DATA) {
  585. efuse_word_enable_data_read(hworden, tmpdata, data);
  586. efuse_addr = efuse_addr + (word_cnts * 2) + 1;
  587. readstate = PG_STATE_HEADER;
  588. }
  589. }
  590. if ((data[0] == 0xff) && (data[1] == 0xff) &&
  591. (data[2] == 0xff) && (data[3] == 0xff) &&
  592. (data[4] == 0xff) && (data[5] == 0xff) &&
  593. (data[6] == 0xff) && (data[7] == 0xff))
  594. return false;
  595. else
  596. return true;
  597. }
  598. static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
  599. u8 efuse_data, u8 offset, int *bcontinual,
  600. u8 *write_state, struct pgpkt_struct *target_pkt,
  601. int *repeat_times, int *bresult, u8 word_en)
  602. {
  603. struct rtl_priv *rtlpriv = rtl_priv(hw);
  604. struct pgpkt_struct tmp_pkt;
  605. int bdataempty = true;
  606. u8 originaldata[8 * sizeof(u8)];
  607. u8 badworden = 0x0F;
  608. u8 match_word_en, tmp_word_en;
  609. u8 tmpindex;
  610. u8 tmp_header = efuse_data;
  611. u8 tmp_word_cnts;
  612. tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
  613. tmp_pkt.word_en = tmp_header & 0x0F;
  614. tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
  615. if (tmp_pkt.offset != target_pkt->offset) {
  616. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  617. *write_state = PG_STATE_HEADER;
  618. } else {
  619. for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
  620. u16 address = *efuse_addr + 1 + tmpindex;
  621. if (efuse_one_byte_read(hw, address,
  622. &efuse_data) && (efuse_data != 0xFF))
  623. bdataempty = false;
  624. }
  625. if (bdataempty == false) {
  626. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  627. *write_state = PG_STATE_HEADER;
  628. } else {
  629. match_word_en = 0x0F;
  630. if (!((target_pkt->word_en & BIT(0)) |
  631. (tmp_pkt.word_en & BIT(0))))
  632. match_word_en &= (~BIT(0));
  633. if (!((target_pkt->word_en & BIT(1)) |
  634. (tmp_pkt.word_en & BIT(1))))
  635. match_word_en &= (~BIT(1));
  636. if (!((target_pkt->word_en & BIT(2)) |
  637. (tmp_pkt.word_en & BIT(2))))
  638. match_word_en &= (~BIT(2));
  639. if (!((target_pkt->word_en & BIT(3)) |
  640. (tmp_pkt.word_en & BIT(3))))
  641. match_word_en &= (~BIT(3));
  642. if ((match_word_en & 0x0F) != 0x0F) {
  643. badworden = efuse_word_enable_data_write(
  644. hw, *efuse_addr + 1,
  645. tmp_pkt.word_en,
  646. target_pkt->data);
  647. if (0x0F != (badworden & 0x0F)) {
  648. u8 reorg_offset = offset;
  649. u8 reorg_worden = badworden;
  650. efuse_pg_packet_write(hw, reorg_offset,
  651. reorg_worden,
  652. originaldata);
  653. }
  654. tmp_word_en = 0x0F;
  655. if ((target_pkt->word_en & BIT(0)) ^
  656. (match_word_en & BIT(0)))
  657. tmp_word_en &= (~BIT(0));
  658. if ((target_pkt->word_en & BIT(1)) ^
  659. (match_word_en & BIT(1)))
  660. tmp_word_en &= (~BIT(1));
  661. if ((target_pkt->word_en & BIT(2)) ^
  662. (match_word_en & BIT(2)))
  663. tmp_word_en &= (~BIT(2));
  664. if ((target_pkt->word_en & BIT(3)) ^
  665. (match_word_en & BIT(3)))
  666. tmp_word_en &= (~BIT(3));
  667. if ((tmp_word_en & 0x0F) != 0x0F) {
  668. *efuse_addr = efuse_get_current_size(hw);
  669. target_pkt->offset = offset;
  670. target_pkt->word_en = tmp_word_en;
  671. } else
  672. *bcontinual = false;
  673. *write_state = PG_STATE_HEADER;
  674. *repeat_times += 1;
  675. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  676. *bcontinual = false;
  677. *bresult = false;
  678. }
  679. } else {
  680. *efuse_addr += (2 * tmp_word_cnts) + 1;
  681. target_pkt->offset = offset;
  682. target_pkt->word_en = word_en;
  683. *write_state = PG_STATE_HEADER;
  684. }
  685. }
  686. }
  687. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse PG_STATE_HEADER-1\n"));
  688. }
  689. static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
  690. int *bcontinual, u8 *write_state,
  691. struct pgpkt_struct target_pkt,
  692. int *repeat_times, int *bresult)
  693. {
  694. struct rtl_priv *rtlpriv = rtl_priv(hw);
  695. struct pgpkt_struct tmp_pkt;
  696. u8 pg_header;
  697. u8 tmp_header;
  698. u8 originaldata[8 * sizeof(u8)];
  699. u8 tmp_word_cnts;
  700. u8 badworden = 0x0F;
  701. pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
  702. efuse_one_byte_write(hw, *efuse_addr, pg_header);
  703. efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
  704. if (tmp_header == pg_header)
  705. *write_state = PG_STATE_DATA;
  706. else if (tmp_header == 0xFF) {
  707. *write_state = PG_STATE_HEADER;
  708. *repeat_times += 1;
  709. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  710. *bcontinual = false;
  711. *bresult = false;
  712. }
  713. } else {
  714. tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
  715. tmp_pkt.word_en = tmp_header & 0x0F;
  716. tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
  717. memset((void *)originaldata, 8 * sizeof(u8), 0xff);
  718. if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
  719. badworden = efuse_word_enable_data_write(hw,
  720. *efuse_addr + 1, tmp_pkt.word_en,
  721. originaldata);
  722. if (0x0F != (badworden & 0x0F)) {
  723. u8 reorg_offset = tmp_pkt.offset;
  724. u8 reorg_worden = badworden;
  725. efuse_pg_packet_write(hw, reorg_offset,
  726. reorg_worden,
  727. originaldata);
  728. *efuse_addr = efuse_get_current_size(hw);
  729. } else
  730. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
  731. + 1;
  732. } else
  733. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  734. *write_state = PG_STATE_HEADER;
  735. *repeat_times += 1;
  736. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  737. *bcontinual = false;
  738. *bresult = false;
  739. }
  740. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  741. ("efuse PG_STATE_HEADER-2\n"));
  742. }
  743. }
  744. static int efuse_pg_packet_write(struct ieee80211_hw *hw,
  745. u8 offset, u8 word_en, u8 *data)
  746. {
  747. struct rtl_priv *rtlpriv = rtl_priv(hw);
  748. struct pgpkt_struct target_pkt;
  749. u8 write_state = PG_STATE_HEADER;
  750. int bcontinual = true, bdataempty = true, bresult = true;
  751. u16 efuse_addr = 0;
  752. u8 efuse_data;
  753. u8 target_word_cnts = 0;
  754. u8 badworden = 0x0F;
  755. static int repeat_times;
  756. if (efuse_get_current_size(hw) >=
  757. (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
  758. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  759. ("efuse_pg_packet_write error\n"));
  760. return false;
  761. }
  762. target_pkt.offset = offset;
  763. target_pkt.word_en = word_en;
  764. memset((void *)target_pkt.data, 8 * sizeof(u8), 0xFF);
  765. efuse_word_enable_data_read(word_en, data, target_pkt.data);
  766. target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
  767. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse Power ON\n"));
  768. while (bcontinual && (efuse_addr <
  769. (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))) {
  770. if (write_state == PG_STATE_HEADER) {
  771. bdataempty = true;
  772. badworden = 0x0F;
  773. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  774. ("efuse PG_STATE_HEADER\n"));
  775. if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
  776. (efuse_data != 0xFF))
  777. efuse_write_data_case1(hw, &efuse_addr,
  778. efuse_data, offset,
  779. &bcontinual,
  780. &write_state, &target_pkt,
  781. &repeat_times, &bresult,
  782. word_en);
  783. else
  784. efuse_write_data_case2(hw, &efuse_addr,
  785. &bcontinual,
  786. &write_state,
  787. target_pkt,
  788. &repeat_times,
  789. &bresult);
  790. } else if (write_state == PG_STATE_DATA) {
  791. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  792. ("efuse PG_STATE_DATA\n"));
  793. badworden = 0x0f;
  794. badworden =
  795. efuse_word_enable_data_write(hw, efuse_addr + 1,
  796. target_pkt.word_en,
  797. target_pkt.data);
  798. if ((badworden & 0x0F) == 0x0F) {
  799. bcontinual = false;
  800. } else {
  801. efuse_addr =
  802. efuse_addr + (2 * target_word_cnts) + 1;
  803. target_pkt.offset = offset;
  804. target_pkt.word_en = badworden;
  805. target_word_cnts =
  806. efuse_calculate_word_cnts(target_pkt.
  807. word_en);
  808. write_state = PG_STATE_HEADER;
  809. repeat_times++;
  810. if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  811. bcontinual = false;
  812. bresult = false;
  813. }
  814. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  815. ("efuse PG_STATE_HEADER-3\n"));
  816. }
  817. }
  818. }
  819. if (efuse_addr >= (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
  820. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  821. ("efuse_addr(%#x) Out of size!!\n", efuse_addr));
  822. }
  823. return true;
  824. }
  825. static void efuse_word_enable_data_read(u8 word_en,
  826. u8 *sourdata, u8 *targetdata)
  827. {
  828. if (!(word_en & BIT(0))) {
  829. targetdata[0] = sourdata[0];
  830. targetdata[1] = sourdata[1];
  831. }
  832. if (!(word_en & BIT(1))) {
  833. targetdata[2] = sourdata[2];
  834. targetdata[3] = sourdata[3];
  835. }
  836. if (!(word_en & BIT(2))) {
  837. targetdata[4] = sourdata[4];
  838. targetdata[5] = sourdata[5];
  839. }
  840. if (!(word_en & BIT(3))) {
  841. targetdata[6] = sourdata[6];
  842. targetdata[7] = sourdata[7];
  843. }
  844. }
  845. static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
  846. u16 efuse_addr, u8 word_en, u8 *data)
  847. {
  848. struct rtl_priv *rtlpriv = rtl_priv(hw);
  849. u16 tmpaddr;
  850. u16 start_addr = efuse_addr;
  851. u8 badworden = 0x0F;
  852. u8 tmpdata[8];
  853. memset((void *)tmpdata, PGPKT_DATA_SIZE, 0xff);
  854. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  855. ("word_en = %x efuse_addr=%x\n", word_en, efuse_addr));
  856. if (!(word_en & BIT(0))) {
  857. tmpaddr = start_addr;
  858. efuse_one_byte_write(hw, start_addr++, data[0]);
  859. efuse_one_byte_write(hw, start_addr++, data[1]);
  860. efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
  861. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
  862. if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
  863. badworden &= (~BIT(0));
  864. }
  865. if (!(word_en & BIT(1))) {
  866. tmpaddr = start_addr;
  867. efuse_one_byte_write(hw, start_addr++, data[2]);
  868. efuse_one_byte_write(hw, start_addr++, data[3]);
  869. efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
  870. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
  871. if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
  872. badworden &= (~BIT(1));
  873. }
  874. if (!(word_en & BIT(2))) {
  875. tmpaddr = start_addr;
  876. efuse_one_byte_write(hw, start_addr++, data[4]);
  877. efuse_one_byte_write(hw, start_addr++, data[5]);
  878. efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
  879. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
  880. if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
  881. badworden &= (~BIT(2));
  882. }
  883. if (!(word_en & BIT(3))) {
  884. tmpaddr = start_addr;
  885. efuse_one_byte_write(hw, start_addr++, data[6]);
  886. efuse_one_byte_write(hw, start_addr++, data[7]);
  887. efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
  888. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
  889. if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
  890. badworden &= (~BIT(3));
  891. }
  892. return badworden;
  893. }
  894. static void efuse_power_switch(struct ieee80211_hw *hw, u8 bwrite, u8 pwrstate)
  895. {
  896. struct rtl_priv *rtlpriv = rtl_priv(hw);
  897. u8 tempval;
  898. u16 tmpV16;
  899. if (pwrstate == true) {
  900. tmpV16 = rtl_read_word(rtlpriv,
  901. rtlpriv->cfg->maps[SYS_ISO_CTRL]);
  902. if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
  903. tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
  904. rtl_write_word(rtlpriv,
  905. rtlpriv->cfg->maps[SYS_ISO_CTRL],
  906. tmpV16);
  907. }
  908. tmpV16 = rtl_read_word(rtlpriv,
  909. rtlpriv->cfg->maps[SYS_FUNC_EN]);
  910. if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
  911. tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
  912. rtl_write_word(rtlpriv,
  913. rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
  914. }
  915. tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
  916. if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
  917. (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
  918. tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
  919. rtlpriv->cfg->maps[EFUSE_ANA8M]);
  920. rtl_write_word(rtlpriv,
  921. rtlpriv->cfg->maps[SYS_CLK], tmpV16);
  922. }
  923. }
  924. if (pwrstate == true) {
  925. if (bwrite == true) {
  926. tempval = rtl_read_byte(rtlpriv,
  927. rtlpriv->cfg->maps[EFUSE_TEST] +
  928. 3);
  929. tempval &= 0x0F;
  930. tempval |= (VOLTAGE_V25 << 4);
  931. rtl_write_byte(rtlpriv,
  932. rtlpriv->cfg->maps[EFUSE_TEST] + 3,
  933. (tempval | 0x80));
  934. }
  935. } else {
  936. if (bwrite == true) {
  937. tempval = rtl_read_byte(rtlpriv,
  938. rtlpriv->cfg->maps[EFUSE_TEST] +
  939. 3);
  940. rtl_write_byte(rtlpriv,
  941. rtlpriv->cfg->maps[EFUSE_TEST] + 3,
  942. (tempval & 0x7F));
  943. }
  944. }
  945. }
  946. static u16 efuse_get_current_size(struct ieee80211_hw *hw)
  947. {
  948. int bcontinual = true;
  949. u16 efuse_addr = 0;
  950. u8 hoffset, hworden;
  951. u8 efuse_data, word_cnts;
  952. while (bcontinual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
  953. && (efuse_addr < EFUSE_MAX_SIZE)) {
  954. if (efuse_data != 0xFF) {
  955. hoffset = (efuse_data >> 4) & 0x0F;
  956. hworden = efuse_data & 0x0F;
  957. word_cnts = efuse_calculate_word_cnts(hworden);
  958. efuse_addr = efuse_addr + (word_cnts * 2) + 1;
  959. } else {
  960. bcontinual = false;
  961. }
  962. }
  963. return efuse_addr;
  964. }
  965. static u8 efuse_calculate_word_cnts(u8 word_en)
  966. {
  967. u8 word_cnts = 0;
  968. if (!(word_en & BIT(0)))
  969. word_cnts++;
  970. if (!(word_en & BIT(1)))
  971. word_cnts++;
  972. if (!(word_en & BIT(2)))
  973. word_cnts++;
  974. if (!(word_en & BIT(3)))
  975. word_cnts++;
  976. return word_cnts;
  977. }
  978. void efuse_reset_loader(struct ieee80211_hw *hw)
  979. {
  980. struct rtl_priv *rtlpriv = rtl_priv(hw);
  981. u16 tmp_u2b;
  982. tmp_u2b = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN]);
  983. rtl_write_word(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN],
  984. (tmp_u2b & ~(BIT(12))));
  985. udelay(10000);
  986. rtl_write_word(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN],
  987. (tmp_u2b | BIT(12)));
  988. udelay(10000);
  989. }
  990. bool efuse_program_map(struct ieee80211_hw *hw, char *p_filename, u8 tabletype)
  991. {
  992. return true;
  993. }