rt2800lib.c 116 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612
  1. /*
  2. Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
  3. Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
  4. Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
  5. Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>
  6. Based on the original rt2800pci.c and rt2800usb.c.
  7. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  8. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  9. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  10. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  11. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  12. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  13. <http://rt2x00.serialmonkey.com>
  14. This program is free software; you can redistribute it and/or modify
  15. it under the terms of the GNU General Public License as published by
  16. the Free Software Foundation; either version 2 of the License, or
  17. (at your option) any later version.
  18. This program is distributed in the hope that it will be useful,
  19. but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  21. GNU General Public License for more details.
  22. You should have received a copy of the GNU General Public License
  23. along with this program; if not, write to the
  24. Free Software Foundation, Inc.,
  25. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  26. */
  27. /*
  28. Module: rt2800lib
  29. Abstract: rt2800 generic device routines.
  30. */
  31. #include <linux/crc-ccitt.h>
  32. #include <linux/kernel.h>
  33. #include <linux/module.h>
  34. #include <linux/slab.h>
  35. #include "rt2x00.h"
  36. #include "rt2800lib.h"
  37. #include "rt2800.h"
  38. /*
  39. * Register access.
  40. * All access to the CSR registers will go through the methods
  41. * rt2800_register_read and rt2800_register_write.
  42. * BBP and RF register require indirect register access,
  43. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  44. * These indirect registers work with busy bits,
  45. * and we will try maximal REGISTER_BUSY_COUNT times to access
  46. * the register while taking a REGISTER_BUSY_DELAY us delay
  47. * between each attampt. When the busy bit is still set at that time,
  48. * the access attempt is considered to have failed,
  49. * and we will print an error.
  50. * The _lock versions must be used if you already hold the csr_mutex
  51. */
  52. #define WAIT_FOR_BBP(__dev, __reg) \
  53. rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
  54. #define WAIT_FOR_RFCSR(__dev, __reg) \
  55. rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
  56. #define WAIT_FOR_RF(__dev, __reg) \
  57. rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
  58. #define WAIT_FOR_MCU(__dev, __reg) \
  59. rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
  60. H2M_MAILBOX_CSR_OWNER, (__reg))
  61. static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev)
  62. {
  63. /* check for rt2872 on SoC */
  64. if (!rt2x00_is_soc(rt2x00dev) ||
  65. !rt2x00_rt(rt2x00dev, RT2872))
  66. return false;
  67. /* we know for sure that these rf chipsets are used on rt305x boards */
  68. if (rt2x00_rf(rt2x00dev, RF3020) ||
  69. rt2x00_rf(rt2x00dev, RF3021) ||
  70. rt2x00_rf(rt2x00dev, RF3022))
  71. return true;
  72. NOTICE(rt2x00dev, "Unknown RF chipset on rt305x\n");
  73. return false;
  74. }
  75. static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
  76. const unsigned int word, const u8 value)
  77. {
  78. u32 reg;
  79. mutex_lock(&rt2x00dev->csr_mutex);
  80. /*
  81. * Wait until the BBP becomes available, afterwards we
  82. * can safely write the new data into the register.
  83. */
  84. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  85. reg = 0;
  86. rt2x00_set_field32(&reg, BBP_CSR_CFG_VALUE, value);
  87. rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
  88. rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
  89. rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 0);
  90. rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
  91. rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
  92. }
  93. mutex_unlock(&rt2x00dev->csr_mutex);
  94. }
  95. static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev,
  96. const unsigned int word, u8 *value)
  97. {
  98. u32 reg;
  99. mutex_lock(&rt2x00dev->csr_mutex);
  100. /*
  101. * Wait until the BBP becomes available, afterwards we
  102. * can safely write the read request into the register.
  103. * After the data has been written, we wait until hardware
  104. * returns the correct value, if at any time the register
  105. * doesn't become available in time, reg will be 0xffffffff
  106. * which means we return 0xff to the caller.
  107. */
  108. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  109. reg = 0;
  110. rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
  111. rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
  112. rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 1);
  113. rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
  114. rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
  115. WAIT_FOR_BBP(rt2x00dev, &reg);
  116. }
  117. *value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);
  118. mutex_unlock(&rt2x00dev->csr_mutex);
  119. }
  120. static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
  121. const unsigned int word, const u8 value)
  122. {
  123. u32 reg;
  124. mutex_lock(&rt2x00dev->csr_mutex);
  125. /*
  126. * Wait until the RFCSR becomes available, afterwards we
  127. * can safely write the new data into the register.
  128. */
  129. if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
  130. reg = 0;
  131. rt2x00_set_field32(&reg, RF_CSR_CFG_DATA, value);
  132. rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
  133. rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 1);
  134. rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
  135. rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
  136. }
  137. mutex_unlock(&rt2x00dev->csr_mutex);
  138. }
  139. static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
  140. const unsigned int word, u8 *value)
  141. {
  142. u32 reg;
  143. mutex_lock(&rt2x00dev->csr_mutex);
  144. /*
  145. * Wait until the RFCSR becomes available, afterwards we
  146. * can safely write the read request into the register.
  147. * After the data has been written, we wait until hardware
  148. * returns the correct value, if at any time the register
  149. * doesn't become available in time, reg will be 0xffffffff
  150. * which means we return 0xff to the caller.
  151. */
  152. if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
  153. reg = 0;
  154. rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
  155. rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 0);
  156. rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
  157. rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
  158. WAIT_FOR_RFCSR(rt2x00dev, &reg);
  159. }
  160. *value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
  161. mutex_unlock(&rt2x00dev->csr_mutex);
  162. }
  163. static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev,
  164. const unsigned int word, const u32 value)
  165. {
  166. u32 reg;
  167. mutex_lock(&rt2x00dev->csr_mutex);
  168. /*
  169. * Wait until the RF becomes available, afterwards we
  170. * can safely write the new data into the register.
  171. */
  172. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  173. reg = 0;
  174. rt2x00_set_field32(&reg, RF_CSR_CFG0_REG_VALUE_BW, value);
  175. rt2x00_set_field32(&reg, RF_CSR_CFG0_STANDBYMODE, 0);
  176. rt2x00_set_field32(&reg, RF_CSR_CFG0_SEL, 0);
  177. rt2x00_set_field32(&reg, RF_CSR_CFG0_BUSY, 1);
  178. rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
  179. rt2x00_rf_write(rt2x00dev, word, value);
  180. }
  181. mutex_unlock(&rt2x00dev->csr_mutex);
  182. }
  183. void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
  184. const u8 command, const u8 token,
  185. const u8 arg0, const u8 arg1)
  186. {
  187. u32 reg;
  188. /*
  189. * SOC devices don't support MCU requests.
  190. */
  191. if (rt2x00_is_soc(rt2x00dev))
  192. return;
  193. mutex_lock(&rt2x00dev->csr_mutex);
  194. /*
  195. * Wait until the MCU becomes available, afterwards we
  196. * can safely write the new data into the register.
  197. */
  198. if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
  199. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
  200. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
  201. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
  202. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
  203. rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);
  204. reg = 0;
  205. rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
  206. rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
  207. }
  208. mutex_unlock(&rt2x00dev->csr_mutex);
  209. }
  210. EXPORT_SYMBOL_GPL(rt2800_mcu_request);
  211. int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev)
  212. {
  213. unsigned int i = 0;
  214. u32 reg;
  215. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  216. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  217. if (reg && reg != ~0)
  218. return 0;
  219. msleep(1);
  220. }
  221. ERROR(rt2x00dev, "Unstable hardware.\n");
  222. return -EBUSY;
  223. }
  224. EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready);
  225. int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
  226. {
  227. unsigned int i;
  228. u32 reg;
  229. /*
  230. * Some devices are really slow to respond here. Wait a whole second
  231. * before timing out.
  232. */
  233. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  234. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  235. if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
  236. !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
  237. return 0;
  238. msleep(10);
  239. }
  240. ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
  241. return -EACCES;
  242. }
  243. EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready);
  244. static bool rt2800_check_firmware_crc(const u8 *data, const size_t len)
  245. {
  246. u16 fw_crc;
  247. u16 crc;
  248. /*
  249. * The last 2 bytes in the firmware array are the crc checksum itself,
  250. * this means that we should never pass those 2 bytes to the crc
  251. * algorithm.
  252. */
  253. fw_crc = (data[len - 2] << 8 | data[len - 1]);
  254. /*
  255. * Use the crc ccitt algorithm.
  256. * This will return the same value as the legacy driver which
  257. * used bit ordering reversion on the both the firmware bytes
  258. * before input input as well as on the final output.
  259. * Obviously using crc ccitt directly is much more efficient.
  260. */
  261. crc = crc_ccitt(~0, data, len - 2);
  262. /*
  263. * There is a small difference between the crc-itu-t + bitrev and
  264. * the crc-ccitt crc calculation. In the latter method the 2 bytes
  265. * will be swapped, use swab16 to convert the crc to the correct
  266. * value.
  267. */
  268. crc = swab16(crc);
  269. return fw_crc == crc;
  270. }
  271. int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev,
  272. const u8 *data, const size_t len)
  273. {
  274. size_t offset = 0;
  275. size_t fw_len;
  276. bool multiple;
  277. /*
  278. * PCI(e) & SOC devices require firmware with a length
  279. * of 8kb. USB devices require firmware files with a length
  280. * of 4kb. Certain USB chipsets however require different firmware,
  281. * which Ralink only provides attached to the original firmware
  282. * file. Thus for USB devices, firmware files have a length
  283. * which is a multiple of 4kb.
  284. */
  285. if (rt2x00_is_usb(rt2x00dev)) {
  286. fw_len = 4096;
  287. multiple = true;
  288. } else {
  289. fw_len = 8192;
  290. multiple = true;
  291. }
  292. /*
  293. * Validate the firmware length
  294. */
  295. if (len != fw_len && (!multiple || (len % fw_len) != 0))
  296. return FW_BAD_LENGTH;
  297. /*
  298. * Check if the chipset requires one of the upper parts
  299. * of the firmware.
  300. */
  301. if (rt2x00_is_usb(rt2x00dev) &&
  302. !rt2x00_rt(rt2x00dev, RT2860) &&
  303. !rt2x00_rt(rt2x00dev, RT2872) &&
  304. !rt2x00_rt(rt2x00dev, RT3070) &&
  305. ((len / fw_len) == 1))
  306. return FW_BAD_VERSION;
  307. /*
  308. * 8kb firmware files must be checked as if it were
  309. * 2 separate firmware files.
  310. */
  311. while (offset < len) {
  312. if (!rt2800_check_firmware_crc(data + offset, fw_len))
  313. return FW_BAD_CRC;
  314. offset += fw_len;
  315. }
  316. return FW_OK;
  317. }
  318. EXPORT_SYMBOL_GPL(rt2800_check_firmware);
  319. int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev,
  320. const u8 *data, const size_t len)
  321. {
  322. unsigned int i;
  323. u32 reg;
  324. /*
  325. * If driver doesn't wake up firmware here,
  326. * rt2800_load_firmware will hang forever when interface is up again.
  327. */
  328. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
  329. /*
  330. * Wait for stable hardware.
  331. */
  332. if (rt2800_wait_csr_ready(rt2x00dev))
  333. return -EBUSY;
  334. if (rt2x00_is_pci(rt2x00dev))
  335. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
  336. /*
  337. * Disable DMA, will be reenabled later when enabling
  338. * the radio.
  339. */
  340. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  341. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  342. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  343. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  344. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  345. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  346. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  347. /*
  348. * Write firmware to the device.
  349. */
  350. rt2800_drv_write_firmware(rt2x00dev, data, len);
  351. /*
  352. * Wait for device to stabilize.
  353. */
  354. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  355. rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
  356. if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
  357. break;
  358. msleep(1);
  359. }
  360. if (i == REGISTER_BUSY_COUNT) {
  361. ERROR(rt2x00dev, "PBF system register not ready.\n");
  362. return -EBUSY;
  363. }
  364. /*
  365. * Initialize firmware.
  366. */
  367. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  368. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  369. msleep(1);
  370. return 0;
  371. }
  372. EXPORT_SYMBOL_GPL(rt2800_load_firmware);
  373. void rt2800_write_tx_data(struct queue_entry *entry,
  374. struct txentry_desc *txdesc)
  375. {
  376. __le32 *txwi = rt2800_drv_get_txwi(entry);
  377. u32 word;
  378. /*
  379. * Initialize TX Info descriptor
  380. */
  381. rt2x00_desc_read(txwi, 0, &word);
  382. rt2x00_set_field32(&word, TXWI_W0_FRAG,
  383. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  384. rt2x00_set_field32(&word, TXWI_W0_MIMO_PS,
  385. test_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags));
  386. rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
  387. rt2x00_set_field32(&word, TXWI_W0_TS,
  388. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  389. rt2x00_set_field32(&word, TXWI_W0_AMPDU,
  390. test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
  391. rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
  392. rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->txop);
  393. rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
  394. rt2x00_set_field32(&word, TXWI_W0_BW,
  395. test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
  396. rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
  397. test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
  398. rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
  399. rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
  400. rt2x00_desc_write(txwi, 0, word);
  401. rt2x00_desc_read(txwi, 1, &word);
  402. rt2x00_set_field32(&word, TXWI_W1_ACK,
  403. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  404. rt2x00_set_field32(&word, TXWI_W1_NSEQ,
  405. test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
  406. rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
  407. rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
  408. test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
  409. txdesc->key_idx : 0xff);
  410. rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
  411. txdesc->length);
  412. rt2x00_set_field32(&word, TXWI_W1_PACKETID_QUEUE, entry->queue->qid);
  413. rt2x00_set_field32(&word, TXWI_W1_PACKETID_ENTRY, (entry->entry_idx % 3) + 1);
  414. rt2x00_desc_write(txwi, 1, word);
  415. /*
  416. * Always write 0 to IV/EIV fields, hardware will insert the IV
  417. * from the IVEIV register when TXD_W3_WIV is set to 0.
  418. * When TXD_W3_WIV is set to 1 it will use the IV data
  419. * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
  420. * crypto entry in the registers should be used to encrypt the frame.
  421. */
  422. _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
  423. _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
  424. }
  425. EXPORT_SYMBOL_GPL(rt2800_write_tx_data);
  426. static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, u32 rxwi_w2)
  427. {
  428. int rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0);
  429. int rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1);
  430. int rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2);
  431. u16 eeprom;
  432. u8 offset0;
  433. u8 offset1;
  434. u8 offset2;
  435. if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
  436. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &eeprom);
  437. offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0);
  438. offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1);
  439. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
  440. offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2);
  441. } else {
  442. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &eeprom);
  443. offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0);
  444. offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1);
  445. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
  446. offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2);
  447. }
  448. /*
  449. * Convert the value from the descriptor into the RSSI value
  450. * If the value in the descriptor is 0, it is considered invalid
  451. * and the default (extremely low) rssi value is assumed
  452. */
  453. rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128;
  454. rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128;
  455. rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128;
  456. /*
  457. * mac80211 only accepts a single RSSI value. Calculating the
  458. * average doesn't deliver a fair answer either since -60:-60 would
  459. * be considered equally good as -50:-70 while the second is the one
  460. * which gives less energy...
  461. */
  462. rssi0 = max(rssi0, rssi1);
  463. return max(rssi0, rssi2);
  464. }
  465. void rt2800_process_rxwi(struct queue_entry *entry,
  466. struct rxdone_entry_desc *rxdesc)
  467. {
  468. __le32 *rxwi = (__le32 *) entry->skb->data;
  469. u32 word;
  470. rt2x00_desc_read(rxwi, 0, &word);
  471. rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF);
  472. rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
  473. rt2x00_desc_read(rxwi, 1, &word);
  474. if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI))
  475. rxdesc->flags |= RX_FLAG_SHORT_GI;
  476. if (rt2x00_get_field32(word, RXWI_W1_BW))
  477. rxdesc->flags |= RX_FLAG_40MHZ;
  478. /*
  479. * Detect RX rate, always use MCS as signal type.
  480. */
  481. rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
  482. rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS);
  483. rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE);
  484. /*
  485. * Mask of 0x8 bit to remove the short preamble flag.
  486. */
  487. if (rxdesc->rate_mode == RATE_MODE_CCK)
  488. rxdesc->signal &= ~0x8;
  489. rt2x00_desc_read(rxwi, 2, &word);
  490. /*
  491. * Convert descriptor AGC value to RSSI value.
  492. */
  493. rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word);
  494. /*
  495. * Remove RXWI descriptor from start of buffer.
  496. */
  497. skb_pull(entry->skb, RXWI_DESC_SIZE);
  498. }
  499. EXPORT_SYMBOL_GPL(rt2800_process_rxwi);
  500. static bool rt2800_txdone_entry_check(struct queue_entry *entry, u32 reg)
  501. {
  502. __le32 *txwi;
  503. u32 word;
  504. int wcid, ack, pid;
  505. int tx_wcid, tx_ack, tx_pid;
  506. wcid = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
  507. ack = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
  508. pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
  509. /*
  510. * This frames has returned with an IO error,
  511. * so the status report is not intended for this
  512. * frame.
  513. */
  514. if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) {
  515. rt2x00lib_txdone_noinfo(entry, TXDONE_FAILURE);
  516. return false;
  517. }
  518. /*
  519. * Validate if this TX status report is intended for
  520. * this entry by comparing the WCID/ACK/PID fields.
  521. */
  522. txwi = rt2800_drv_get_txwi(entry);
  523. rt2x00_desc_read(txwi, 1, &word);
  524. tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
  525. tx_ack = rt2x00_get_field32(word, TXWI_W1_ACK);
  526. tx_pid = rt2x00_get_field32(word, TXWI_W1_PACKETID);
  527. if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid)) {
  528. WARNING(entry->queue->rt2x00dev,
  529. "TX status report missed for queue %d entry %d\n",
  530. entry->queue->qid, entry->entry_idx);
  531. rt2x00lib_txdone_noinfo(entry, TXDONE_UNKNOWN);
  532. return false;
  533. }
  534. return true;
  535. }
  536. void rt2800_txdone_entry(struct queue_entry *entry, u32 status)
  537. {
  538. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  539. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  540. struct txdone_entry_desc txdesc;
  541. u32 word;
  542. u16 mcs, real_mcs;
  543. int aggr, ampdu;
  544. __le32 *txwi;
  545. /*
  546. * Obtain the status about this packet.
  547. */
  548. txdesc.flags = 0;
  549. txwi = rt2800_drv_get_txwi(entry);
  550. rt2x00_desc_read(txwi, 0, &word);
  551. mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
  552. ampdu = rt2x00_get_field32(word, TXWI_W0_AMPDU);
  553. real_mcs = rt2x00_get_field32(status, TX_STA_FIFO_MCS);
  554. aggr = rt2x00_get_field32(status, TX_STA_FIFO_TX_AGGRE);
  555. /*
  556. * If a frame was meant to be sent as a single non-aggregated MPDU
  557. * but ended up in an aggregate the used tx rate doesn't correlate
  558. * with the one specified in the TXWI as the whole aggregate is sent
  559. * with the same rate.
  560. *
  561. * For example: two frames are sent to rt2x00, the first one sets
  562. * AMPDU=1 and requests MCS7 whereas the second frame sets AMDPU=0
  563. * and requests MCS15. If the hw aggregates both frames into one
  564. * AMDPU the tx status for both frames will contain MCS7 although
  565. * the frame was sent successfully.
  566. *
  567. * Hence, replace the requested rate with the real tx rate to not
  568. * confuse the rate control algortihm by providing clearly wrong
  569. * data.
  570. */
  571. if (aggr == 1 && ampdu == 0 && real_mcs != mcs) {
  572. skbdesc->tx_rate_idx = real_mcs;
  573. mcs = real_mcs;
  574. }
  575. /*
  576. * Ralink has a retry mechanism using a global fallback
  577. * table. We setup this fallback table to try the immediate
  578. * lower rate for all rates. In the TX_STA_FIFO, the MCS field
  579. * always contains the MCS used for the last transmission, be
  580. * it successful or not.
  581. */
  582. if (rt2x00_get_field32(status, TX_STA_FIFO_TX_SUCCESS)) {
  583. /*
  584. * Transmission succeeded. The number of retries is
  585. * mcs - real_mcs
  586. */
  587. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  588. txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
  589. } else {
  590. /*
  591. * Transmission failed. The number of retries is
  592. * always 7 in this case (for a total number of 8
  593. * frames sent).
  594. */
  595. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  596. txdesc.retry = rt2x00dev->long_retry;
  597. }
  598. /*
  599. * the frame was retried at least once
  600. * -> hw used fallback rates
  601. */
  602. if (txdesc.retry)
  603. __set_bit(TXDONE_FALLBACK, &txdesc.flags);
  604. rt2x00lib_txdone(entry, &txdesc);
  605. }
  606. EXPORT_SYMBOL_GPL(rt2800_txdone_entry);
  607. void rt2800_txdone(struct rt2x00_dev *rt2x00dev)
  608. {
  609. struct data_queue *queue;
  610. struct queue_entry *entry;
  611. u32 reg;
  612. u8 pid;
  613. int i;
  614. /*
  615. * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
  616. * at most X times and also stop processing once the TX_STA_FIFO_VALID
  617. * flag is not set anymore.
  618. *
  619. * The legacy drivers use X=TX_RING_SIZE but state in a comment
  620. * that the TX_STA_FIFO stack has a size of 16. We stick to our
  621. * tx ring size for now.
  622. */
  623. for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
  624. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
  625. if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
  626. break;
  627. /*
  628. * Skip this entry when it contains an invalid
  629. * queue identication number.
  630. */
  631. pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_QUEUE);
  632. if (pid >= QID_RX)
  633. continue;
  634. queue = rt2x00queue_get_queue(rt2x00dev, pid);
  635. if (unlikely(!queue))
  636. continue;
  637. /*
  638. * Inside each queue, we process each entry in a chronological
  639. * order. We first check that the queue is not empty.
  640. */
  641. entry = NULL;
  642. while (!rt2x00queue_empty(queue)) {
  643. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  644. if (rt2800_txdone_entry_check(entry, reg))
  645. break;
  646. }
  647. if (!entry || rt2x00queue_empty(queue))
  648. break;
  649. rt2800_txdone_entry(entry, reg);
  650. }
  651. }
  652. EXPORT_SYMBOL_GPL(rt2800_txdone);
  653. void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc)
  654. {
  655. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  656. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  657. unsigned int beacon_base;
  658. unsigned int padding_len;
  659. u32 reg;
  660. /*
  661. * Disable beaconing while we are reloading the beacon data,
  662. * otherwise we might be sending out invalid data.
  663. */
  664. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  665. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  666. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  667. /*
  668. * Add space for the TXWI in front of the skb.
  669. */
  670. skb_push(entry->skb, TXWI_DESC_SIZE);
  671. memset(entry->skb, 0, TXWI_DESC_SIZE);
  672. /*
  673. * Register descriptor details in skb frame descriptor.
  674. */
  675. skbdesc->flags |= SKBDESC_DESC_IN_SKB;
  676. skbdesc->desc = entry->skb->data;
  677. skbdesc->desc_len = TXWI_DESC_SIZE;
  678. /*
  679. * Add the TXWI for the beacon to the skb.
  680. */
  681. rt2800_write_tx_data(entry, txdesc);
  682. /*
  683. * Dump beacon to userspace through debugfs.
  684. */
  685. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
  686. /*
  687. * Write entire beacon with TXWI and padding to register.
  688. */
  689. padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
  690. skb_pad(entry->skb, padding_len);
  691. beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
  692. rt2800_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
  693. entry->skb->len + padding_len);
  694. /*
  695. * Enable beaconing again.
  696. */
  697. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  698. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  699. /*
  700. * Clean up beacon skb.
  701. */
  702. dev_kfree_skb_any(entry->skb);
  703. entry->skb = NULL;
  704. }
  705. EXPORT_SYMBOL_GPL(rt2800_write_beacon);
  706. static inline void rt2800_clear_beacon_register(struct rt2x00_dev *rt2x00dev,
  707. unsigned int beacon_base)
  708. {
  709. int i;
  710. /*
  711. * For the Beacon base registers we only need to clear
  712. * the whole TXWI which (when set to 0) will invalidate
  713. * the entire beacon.
  714. */
  715. for (i = 0; i < TXWI_DESC_SIZE; i += sizeof(__le32))
  716. rt2800_register_write(rt2x00dev, beacon_base + i, 0);
  717. }
  718. void rt2800_clear_beacon(struct queue_entry *entry)
  719. {
  720. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  721. u32 reg;
  722. /*
  723. * Disable beaconing while we are reloading the beacon data,
  724. * otherwise we might be sending out invalid data.
  725. */
  726. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  727. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  728. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  729. /*
  730. * Clear beacon.
  731. */
  732. rt2800_clear_beacon_register(rt2x00dev,
  733. HW_BEACON_OFFSET(entry->entry_idx));
  734. /*
  735. * Enabled beaconing again.
  736. */
  737. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  738. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  739. }
  740. EXPORT_SYMBOL_GPL(rt2800_clear_beacon);
  741. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  742. const struct rt2x00debug rt2800_rt2x00debug = {
  743. .owner = THIS_MODULE,
  744. .csr = {
  745. .read = rt2800_register_read,
  746. .write = rt2800_register_write,
  747. .flags = RT2X00DEBUGFS_OFFSET,
  748. .word_base = CSR_REG_BASE,
  749. .word_size = sizeof(u32),
  750. .word_count = CSR_REG_SIZE / sizeof(u32),
  751. },
  752. .eeprom = {
  753. .read = rt2x00_eeprom_read,
  754. .write = rt2x00_eeprom_write,
  755. .word_base = EEPROM_BASE,
  756. .word_size = sizeof(u16),
  757. .word_count = EEPROM_SIZE / sizeof(u16),
  758. },
  759. .bbp = {
  760. .read = rt2800_bbp_read,
  761. .write = rt2800_bbp_write,
  762. .word_base = BBP_BASE,
  763. .word_size = sizeof(u8),
  764. .word_count = BBP_SIZE / sizeof(u8),
  765. },
  766. .rf = {
  767. .read = rt2x00_rf_read,
  768. .write = rt2800_rf_write,
  769. .word_base = RF_BASE,
  770. .word_size = sizeof(u32),
  771. .word_count = RF_SIZE / sizeof(u32),
  772. },
  773. };
  774. EXPORT_SYMBOL_GPL(rt2800_rt2x00debug);
  775. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  776. int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  777. {
  778. u32 reg;
  779. rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
  780. return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2);
  781. }
  782. EXPORT_SYMBOL_GPL(rt2800_rfkill_poll);
  783. #ifdef CONFIG_RT2X00_LIB_LEDS
  784. static void rt2800_brightness_set(struct led_classdev *led_cdev,
  785. enum led_brightness brightness)
  786. {
  787. struct rt2x00_led *led =
  788. container_of(led_cdev, struct rt2x00_led, led_dev);
  789. unsigned int enabled = brightness != LED_OFF;
  790. unsigned int bg_mode =
  791. (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
  792. unsigned int polarity =
  793. rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
  794. EEPROM_FREQ_LED_POLARITY);
  795. unsigned int ledmode =
  796. rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
  797. EEPROM_FREQ_LED_MODE);
  798. if (led->type == LED_TYPE_RADIO) {
  799. rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
  800. enabled ? 0x20 : 0);
  801. } else if (led->type == LED_TYPE_ASSOC) {
  802. rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
  803. enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
  804. } else if (led->type == LED_TYPE_QUALITY) {
  805. /*
  806. * The brightness is divided into 6 levels (0 - 5),
  807. * The specs tell us the following levels:
  808. * 0, 1 ,3, 7, 15, 31
  809. * to determine the level in a simple way we can simply
  810. * work with bitshifting:
  811. * (1 << level) - 1
  812. */
  813. rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
  814. (1 << brightness / (LED_FULL / 6)) - 1,
  815. polarity);
  816. }
  817. }
  818. static int rt2800_blink_set(struct led_classdev *led_cdev,
  819. unsigned long *delay_on, unsigned long *delay_off)
  820. {
  821. struct rt2x00_led *led =
  822. container_of(led_cdev, struct rt2x00_led, led_dev);
  823. u32 reg;
  824. rt2800_register_read(led->rt2x00dev, LED_CFG, &reg);
  825. rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, *delay_on);
  826. rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, *delay_off);
  827. rt2800_register_write(led->rt2x00dev, LED_CFG, reg);
  828. return 0;
  829. }
  830. static void rt2800_init_led(struct rt2x00_dev *rt2x00dev,
  831. struct rt2x00_led *led, enum led_type type)
  832. {
  833. led->rt2x00dev = rt2x00dev;
  834. led->type = type;
  835. led->led_dev.brightness_set = rt2800_brightness_set;
  836. led->led_dev.blink_set = rt2800_blink_set;
  837. led->flags = LED_INITIALIZED;
  838. }
  839. #endif /* CONFIG_RT2X00_LIB_LEDS */
  840. /*
  841. * Configuration handlers.
  842. */
  843. static void rt2800_config_wcid_attr(struct rt2x00_dev *rt2x00dev,
  844. struct rt2x00lib_crypto *crypto,
  845. struct ieee80211_key_conf *key)
  846. {
  847. struct mac_wcid_entry wcid_entry;
  848. struct mac_iveiv_entry iveiv_entry;
  849. u32 offset;
  850. u32 reg;
  851. offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);
  852. if (crypto->cmd == SET_KEY) {
  853. rt2800_register_read(rt2x00dev, offset, &reg);
  854. rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB,
  855. !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
  856. /*
  857. * Both the cipher as the BSS Idx numbers are split in a main
  858. * value of 3 bits, and a extended field for adding one additional
  859. * bit to the value.
  860. */
  861. rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER,
  862. (crypto->cipher & 0x7));
  863. rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT,
  864. (crypto->cipher & 0x8) >> 3);
  865. rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX,
  866. (crypto->bssidx & 0x7));
  867. rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT,
  868. (crypto->bssidx & 0x8) >> 3);
  869. rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
  870. rt2800_register_write(rt2x00dev, offset, reg);
  871. } else {
  872. rt2800_register_write(rt2x00dev, offset, 0);
  873. }
  874. offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
  875. memset(&iveiv_entry, 0, sizeof(iveiv_entry));
  876. if ((crypto->cipher == CIPHER_TKIP) ||
  877. (crypto->cipher == CIPHER_TKIP_NO_MIC) ||
  878. (crypto->cipher == CIPHER_AES))
  879. iveiv_entry.iv[3] |= 0x20;
  880. iveiv_entry.iv[3] |= key->keyidx << 6;
  881. rt2800_register_multiwrite(rt2x00dev, offset,
  882. &iveiv_entry, sizeof(iveiv_entry));
  883. offset = MAC_WCID_ENTRY(key->hw_key_idx);
  884. memset(&wcid_entry, 0, sizeof(wcid_entry));
  885. if (crypto->cmd == SET_KEY)
  886. memcpy(wcid_entry.mac, crypto->address, ETH_ALEN);
  887. rt2800_register_multiwrite(rt2x00dev, offset,
  888. &wcid_entry, sizeof(wcid_entry));
  889. }
  890. int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
  891. struct rt2x00lib_crypto *crypto,
  892. struct ieee80211_key_conf *key)
  893. {
  894. struct hw_key_entry key_entry;
  895. struct rt2x00_field32 field;
  896. u32 offset;
  897. u32 reg;
  898. if (crypto->cmd == SET_KEY) {
  899. key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;
  900. memcpy(key_entry.key, crypto->key,
  901. sizeof(key_entry.key));
  902. memcpy(key_entry.tx_mic, crypto->tx_mic,
  903. sizeof(key_entry.tx_mic));
  904. memcpy(key_entry.rx_mic, crypto->rx_mic,
  905. sizeof(key_entry.rx_mic));
  906. offset = SHARED_KEY_ENTRY(key->hw_key_idx);
  907. rt2800_register_multiwrite(rt2x00dev, offset,
  908. &key_entry, sizeof(key_entry));
  909. }
  910. /*
  911. * The cipher types are stored over multiple registers
  912. * starting with SHARED_KEY_MODE_BASE each word will have
  913. * 32 bits and contains the cipher types for 2 bssidx each.
  914. * Using the correct defines correctly will cause overhead,
  915. * so just calculate the correct offset.
  916. */
  917. field.bit_offset = 4 * (key->hw_key_idx % 8);
  918. field.bit_mask = 0x7 << field.bit_offset;
  919. offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);
  920. rt2800_register_read(rt2x00dev, offset, &reg);
  921. rt2x00_set_field32(&reg, field,
  922. (crypto->cmd == SET_KEY) * crypto->cipher);
  923. rt2800_register_write(rt2x00dev, offset, reg);
  924. /*
  925. * Update WCID information
  926. */
  927. rt2800_config_wcid_attr(rt2x00dev, crypto, key);
  928. return 0;
  929. }
  930. EXPORT_SYMBOL_GPL(rt2800_config_shared_key);
  931. int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
  932. struct rt2x00lib_crypto *crypto,
  933. struct ieee80211_key_conf *key)
  934. {
  935. struct hw_key_entry key_entry;
  936. u32 offset;
  937. if (crypto->cmd == SET_KEY) {
  938. /*
  939. * 1 pairwise key is possible per AID, this means that the AID
  940. * equals our hw_key_idx. Make sure the WCID starts _after_ the
  941. * last possible shared key entry.
  942. *
  943. * Since parts of the pairwise key table might be shared with
  944. * the beacon frame buffers 6 & 7 we should only write into the
  945. * first 222 entries.
  946. */
  947. if (crypto->aid > (222 - 32))
  948. return -ENOSPC;
  949. key->hw_key_idx = 32 + crypto->aid;
  950. memcpy(key_entry.key, crypto->key,
  951. sizeof(key_entry.key));
  952. memcpy(key_entry.tx_mic, crypto->tx_mic,
  953. sizeof(key_entry.tx_mic));
  954. memcpy(key_entry.rx_mic, crypto->rx_mic,
  955. sizeof(key_entry.rx_mic));
  956. offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
  957. rt2800_register_multiwrite(rt2x00dev, offset,
  958. &key_entry, sizeof(key_entry));
  959. }
  960. /*
  961. * Update WCID information
  962. */
  963. rt2800_config_wcid_attr(rt2x00dev, crypto, key);
  964. return 0;
  965. }
  966. EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key);
  967. void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
  968. const unsigned int filter_flags)
  969. {
  970. u32 reg;
  971. /*
  972. * Start configuration steps.
  973. * Note that the version error will always be dropped
  974. * and broadcast frames will always be accepted since
  975. * there is no filter for it at this time.
  976. */
  977. rt2800_register_read(rt2x00dev, RX_FILTER_CFG, &reg);
  978. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CRC_ERROR,
  979. !(filter_flags & FIF_FCSFAIL));
  980. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PHY_ERROR,
  981. !(filter_flags & FIF_PLCPFAIL));
  982. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_TO_ME,
  983. !(filter_flags & FIF_PROMISC_IN_BSS));
  984. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
  985. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_VER_ERROR, 1);
  986. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_MULTICAST,
  987. !(filter_flags & FIF_ALLMULTI));
  988. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BROADCAST, 0);
  989. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_DUPLICATE, 1);
  990. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END_ACK,
  991. !(filter_flags & FIF_CONTROL));
  992. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END,
  993. !(filter_flags & FIF_CONTROL));
  994. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_ACK,
  995. !(filter_flags & FIF_CONTROL));
  996. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CTS,
  997. !(filter_flags & FIF_CONTROL));
  998. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_RTS,
  999. !(filter_flags & FIF_CONTROL));
  1000. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PSPOLL,
  1001. !(filter_flags & FIF_PSPOLL));
  1002. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BA, 1);
  1003. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BAR, 0);
  1004. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CNTL,
  1005. !(filter_flags & FIF_CONTROL));
  1006. rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
  1007. }
  1008. EXPORT_SYMBOL_GPL(rt2800_config_filter);
  1009. void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
  1010. struct rt2x00intf_conf *conf, const unsigned int flags)
  1011. {
  1012. u32 reg;
  1013. bool update_bssid = false;
  1014. if (flags & CONFIG_UPDATE_TYPE) {
  1015. /*
  1016. * Enable synchronisation.
  1017. */
  1018. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  1019. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, conf->sync);
  1020. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  1021. }
  1022. if (flags & CONFIG_UPDATE_MAC) {
  1023. if (flags & CONFIG_UPDATE_TYPE &&
  1024. conf->sync == TSF_SYNC_AP_NONE) {
  1025. /*
  1026. * The BSSID register has to be set to our own mac
  1027. * address in AP mode.
  1028. */
  1029. memcpy(conf->bssid, conf->mac, sizeof(conf->mac));
  1030. update_bssid = true;
  1031. }
  1032. if (!is_zero_ether_addr((const u8 *)conf->mac)) {
  1033. reg = le32_to_cpu(conf->mac[1]);
  1034. rt2x00_set_field32(&reg, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
  1035. conf->mac[1] = cpu_to_le32(reg);
  1036. }
  1037. rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
  1038. conf->mac, sizeof(conf->mac));
  1039. }
  1040. if ((flags & CONFIG_UPDATE_BSSID) || update_bssid) {
  1041. if (!is_zero_ether_addr((const u8 *)conf->bssid)) {
  1042. reg = le32_to_cpu(conf->bssid[1]);
  1043. rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_ID_MASK, 3);
  1044. rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_BCN_NUM, 7);
  1045. conf->bssid[1] = cpu_to_le32(reg);
  1046. }
  1047. rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
  1048. conf->bssid, sizeof(conf->bssid));
  1049. }
  1050. }
  1051. EXPORT_SYMBOL_GPL(rt2800_config_intf);
  1052. static void rt2800_config_ht_opmode(struct rt2x00_dev *rt2x00dev,
  1053. struct rt2x00lib_erp *erp)
  1054. {
  1055. bool any_sta_nongf = !!(erp->ht_opmode &
  1056. IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
  1057. u8 protection = erp->ht_opmode & IEEE80211_HT_OP_MODE_PROTECTION;
  1058. u8 mm20_mode, mm40_mode, gf20_mode, gf40_mode;
  1059. u16 mm20_rate, mm40_rate, gf20_rate, gf40_rate;
  1060. u32 reg;
  1061. /* default protection rate for HT20: OFDM 24M */
  1062. mm20_rate = gf20_rate = 0x4004;
  1063. /* default protection rate for HT40: duplicate OFDM 24M */
  1064. mm40_rate = gf40_rate = 0x4084;
  1065. switch (protection) {
  1066. case IEEE80211_HT_OP_MODE_PROTECTION_NONE:
  1067. /*
  1068. * All STAs in this BSS are HT20/40 but there might be
  1069. * STAs not supporting greenfield mode.
  1070. * => Disable protection for HT transmissions.
  1071. */
  1072. mm20_mode = mm40_mode = gf20_mode = gf40_mode = 0;
  1073. break;
  1074. case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
  1075. /*
  1076. * All STAs in this BSS are HT20 or HT20/40 but there
  1077. * might be STAs not supporting greenfield mode.
  1078. * => Protect all HT40 transmissions.
  1079. */
  1080. mm20_mode = gf20_mode = 0;
  1081. mm40_mode = gf40_mode = 2;
  1082. break;
  1083. case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
  1084. /*
  1085. * Nonmember protection:
  1086. * According to 802.11n we _should_ protect all
  1087. * HT transmissions (but we don't have to).
  1088. *
  1089. * But if cts_protection is enabled we _shall_ protect
  1090. * all HT transmissions using a CCK rate.
  1091. *
  1092. * And if any station is non GF we _shall_ protect
  1093. * GF transmissions.
  1094. *
  1095. * We decide to protect everything
  1096. * -> fall through to mixed mode.
  1097. */
  1098. case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
  1099. /*
  1100. * Legacy STAs are present
  1101. * => Protect all HT transmissions.
  1102. */
  1103. mm20_mode = mm40_mode = gf20_mode = gf40_mode = 2;
  1104. /*
  1105. * If erp protection is needed we have to protect HT
  1106. * transmissions with CCK 11M long preamble.
  1107. */
  1108. if (erp->cts_protection) {
  1109. /* don't duplicate RTS/CTS in CCK mode */
  1110. mm20_rate = mm40_rate = 0x0003;
  1111. gf20_rate = gf40_rate = 0x0003;
  1112. }
  1113. break;
  1114. };
  1115. /* check for STAs not supporting greenfield mode */
  1116. if (any_sta_nongf)
  1117. gf20_mode = gf40_mode = 2;
  1118. /* Update HT protection config */
  1119. rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
  1120. rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, mm20_rate);
  1121. rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, mm20_mode);
  1122. rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
  1123. rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
  1124. rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, mm40_rate);
  1125. rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, mm40_mode);
  1126. rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
  1127. rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
  1128. rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, gf20_rate);
  1129. rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, gf20_mode);
  1130. rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
  1131. rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
  1132. rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, gf40_rate);
  1133. rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, gf40_mode);
  1134. rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
  1135. }
  1136. void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp,
  1137. u32 changed)
  1138. {
  1139. u32 reg;
  1140. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  1141. rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
  1142. rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY,
  1143. !!erp->short_preamble);
  1144. rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE,
  1145. !!erp->short_preamble);
  1146. rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
  1147. }
  1148. if (changed & BSS_CHANGED_ERP_CTS_PROT) {
  1149. rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
  1150. rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL,
  1151. erp->cts_protection ? 2 : 0);
  1152. rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
  1153. }
  1154. if (changed & BSS_CHANGED_BASIC_RATES) {
  1155. rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
  1156. erp->basic_rates);
  1157. rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
  1158. }
  1159. if (changed & BSS_CHANGED_ERP_SLOT) {
  1160. rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
  1161. rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME,
  1162. erp->slot_time);
  1163. rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
  1164. rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
  1165. rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, erp->eifs);
  1166. rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
  1167. }
  1168. if (changed & BSS_CHANGED_BEACON_INT) {
  1169. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  1170. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
  1171. erp->beacon_int * 16);
  1172. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  1173. }
  1174. if (changed & BSS_CHANGED_HT)
  1175. rt2800_config_ht_opmode(rt2x00dev, erp);
  1176. }
  1177. EXPORT_SYMBOL_GPL(rt2800_config_erp);
  1178. void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant)
  1179. {
  1180. u8 r1;
  1181. u8 r3;
  1182. rt2800_bbp_read(rt2x00dev, 1, &r1);
  1183. rt2800_bbp_read(rt2x00dev, 3, &r3);
  1184. /*
  1185. * Configure the TX antenna.
  1186. */
  1187. switch ((int)ant->tx) {
  1188. case 1:
  1189. rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
  1190. break;
  1191. case 2:
  1192. rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
  1193. break;
  1194. case 3:
  1195. rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
  1196. break;
  1197. }
  1198. /*
  1199. * Configure the RX antenna.
  1200. */
  1201. switch ((int)ant->rx) {
  1202. case 1:
  1203. rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
  1204. break;
  1205. case 2:
  1206. rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
  1207. break;
  1208. case 3:
  1209. rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
  1210. break;
  1211. }
  1212. rt2800_bbp_write(rt2x00dev, 3, r3);
  1213. rt2800_bbp_write(rt2x00dev, 1, r1);
  1214. }
  1215. EXPORT_SYMBOL_GPL(rt2800_config_ant);
  1216. static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev,
  1217. struct rt2x00lib_conf *libconf)
  1218. {
  1219. u16 eeprom;
  1220. short lna_gain;
  1221. if (libconf->rf.channel <= 14) {
  1222. rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
  1223. lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
  1224. } else if (libconf->rf.channel <= 64) {
  1225. rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
  1226. lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
  1227. } else if (libconf->rf.channel <= 128) {
  1228. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
  1229. lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1);
  1230. } else {
  1231. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
  1232. lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2);
  1233. }
  1234. rt2x00dev->lna_gain = lna_gain;
  1235. }
  1236. static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev,
  1237. struct ieee80211_conf *conf,
  1238. struct rf_channel *rf,
  1239. struct channel_info *info)
  1240. {
  1241. rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
  1242. if (rt2x00dev->default_ant.tx == 1)
  1243. rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);
  1244. if (rt2x00dev->default_ant.rx == 1) {
  1245. rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
  1246. rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
  1247. } else if (rt2x00dev->default_ant.rx == 2)
  1248. rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
  1249. if (rf->channel > 14) {
  1250. /*
  1251. * When TX power is below 0, we should increase it by 7 to
  1252. * make it a positive value (Minumum value is -7).
  1253. * However this means that values between 0 and 7 have
  1254. * double meaning, and we should set a 7DBm boost flag.
  1255. */
  1256. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
  1257. (info->default_power1 >= 0));
  1258. if (info->default_power1 < 0)
  1259. info->default_power1 += 7;
  1260. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, info->default_power1);
  1261. rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
  1262. (info->default_power2 >= 0));
  1263. if (info->default_power2 < 0)
  1264. info->default_power2 += 7;
  1265. rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, info->default_power2);
  1266. } else {
  1267. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, info->default_power1);
  1268. rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, info->default_power2);
  1269. }
  1270. rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));
  1271. rt2800_rf_write(rt2x00dev, 1, rf->rf1);
  1272. rt2800_rf_write(rt2x00dev, 2, rf->rf2);
  1273. rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
  1274. rt2800_rf_write(rt2x00dev, 4, rf->rf4);
  1275. udelay(200);
  1276. rt2800_rf_write(rt2x00dev, 1, rf->rf1);
  1277. rt2800_rf_write(rt2x00dev, 2, rf->rf2);
  1278. rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
  1279. rt2800_rf_write(rt2x00dev, 4, rf->rf4);
  1280. udelay(200);
  1281. rt2800_rf_write(rt2x00dev, 1, rf->rf1);
  1282. rt2800_rf_write(rt2x00dev, 2, rf->rf2);
  1283. rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
  1284. rt2800_rf_write(rt2x00dev, 4, rf->rf4);
  1285. }
  1286. static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev,
  1287. struct ieee80211_conf *conf,
  1288. struct rf_channel *rf,
  1289. struct channel_info *info)
  1290. {
  1291. u8 rfcsr;
  1292. rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
  1293. rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3);
  1294. rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
  1295. rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
  1296. rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
  1297. rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
  1298. rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, info->default_power1);
  1299. rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
  1300. rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
  1301. rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, info->default_power2);
  1302. rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
  1303. rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
  1304. rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
  1305. rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
  1306. rt2800_rfcsr_write(rt2x00dev, 24,
  1307. rt2x00dev->calibration[conf_is_ht40(conf)]);
  1308. rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
  1309. rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
  1310. rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
  1311. }
  1312. static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev,
  1313. struct ieee80211_conf *conf,
  1314. struct rf_channel *rf,
  1315. struct channel_info *info)
  1316. {
  1317. u32 reg;
  1318. unsigned int tx_pin;
  1319. u8 bbp;
  1320. if (rf->channel <= 14) {
  1321. info->default_power1 = TXPOWER_G_TO_DEV(info->default_power1);
  1322. info->default_power2 = TXPOWER_G_TO_DEV(info->default_power2);
  1323. } else {
  1324. info->default_power1 = TXPOWER_A_TO_DEV(info->default_power1);
  1325. info->default_power2 = TXPOWER_A_TO_DEV(info->default_power2);
  1326. }
  1327. if (rt2x00_rf(rt2x00dev, RF2020) ||
  1328. rt2x00_rf(rt2x00dev, RF3020) ||
  1329. rt2x00_rf(rt2x00dev, RF3021) ||
  1330. rt2x00_rf(rt2x00dev, RF3022) ||
  1331. rt2x00_rf(rt2x00dev, RF3052) ||
  1332. rt2x00_rf(rt2x00dev, RF3320))
  1333. rt2800_config_channel_rf3xxx(rt2x00dev, conf, rf, info);
  1334. else
  1335. rt2800_config_channel_rf2xxx(rt2x00dev, conf, rf, info);
  1336. /*
  1337. * Change BBP settings
  1338. */
  1339. rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
  1340. rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
  1341. rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
  1342. rt2800_bbp_write(rt2x00dev, 86, 0);
  1343. if (rf->channel <= 14) {
  1344. if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
  1345. rt2800_bbp_write(rt2x00dev, 82, 0x62);
  1346. rt2800_bbp_write(rt2x00dev, 75, 0x46);
  1347. } else {
  1348. rt2800_bbp_write(rt2x00dev, 82, 0x84);
  1349. rt2800_bbp_write(rt2x00dev, 75, 0x50);
  1350. }
  1351. } else {
  1352. rt2800_bbp_write(rt2x00dev, 82, 0xf2);
  1353. if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
  1354. rt2800_bbp_write(rt2x00dev, 75, 0x46);
  1355. else
  1356. rt2800_bbp_write(rt2x00dev, 75, 0x50);
  1357. }
  1358. rt2800_register_read(rt2x00dev, TX_BAND_CFG, &reg);
  1359. rt2x00_set_field32(&reg, TX_BAND_CFG_HT40_MINUS, conf_is_ht40_minus(conf));
  1360. rt2x00_set_field32(&reg, TX_BAND_CFG_A, rf->channel > 14);
  1361. rt2x00_set_field32(&reg, TX_BAND_CFG_BG, rf->channel <= 14);
  1362. rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg);
  1363. tx_pin = 0;
  1364. /* Turn on unused PA or LNA when not using 1T or 1R */
  1365. if (rt2x00dev->default_ant.tx != 1) {
  1366. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
  1367. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
  1368. }
  1369. /* Turn on unused PA or LNA when not using 1T or 1R */
  1370. if (rt2x00dev->default_ant.rx != 1) {
  1371. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
  1372. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
  1373. }
  1374. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
  1375. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
  1376. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
  1377. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
  1378. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, rf->channel <= 14);
  1379. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14);
  1380. rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
  1381. rt2800_bbp_read(rt2x00dev, 4, &bbp);
  1382. rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
  1383. rt2800_bbp_write(rt2x00dev, 4, bbp);
  1384. rt2800_bbp_read(rt2x00dev, 3, &bbp);
  1385. rt2x00_set_field8(&bbp, BBP3_HT40_MINUS, conf_is_ht40_minus(conf));
  1386. rt2800_bbp_write(rt2x00dev, 3, bbp);
  1387. if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
  1388. if (conf_is_ht40(conf)) {
  1389. rt2800_bbp_write(rt2x00dev, 69, 0x1a);
  1390. rt2800_bbp_write(rt2x00dev, 70, 0x0a);
  1391. rt2800_bbp_write(rt2x00dev, 73, 0x16);
  1392. } else {
  1393. rt2800_bbp_write(rt2x00dev, 69, 0x16);
  1394. rt2800_bbp_write(rt2x00dev, 70, 0x08);
  1395. rt2800_bbp_write(rt2x00dev, 73, 0x11);
  1396. }
  1397. }
  1398. msleep(1);
  1399. /*
  1400. * Clear channel statistic counters
  1401. */
  1402. rt2800_register_read(rt2x00dev, CH_IDLE_STA, &reg);
  1403. rt2800_register_read(rt2x00dev, CH_BUSY_STA, &reg);
  1404. rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &reg);
  1405. }
  1406. static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev,
  1407. const int max_txpower)
  1408. {
  1409. u8 txpower;
  1410. u8 max_value = (u8)max_txpower;
  1411. u16 eeprom;
  1412. int i;
  1413. u32 reg;
  1414. u8 r1;
  1415. u32 offset;
  1416. /*
  1417. * set to normal tx power mode: +/- 0dBm
  1418. */
  1419. rt2800_bbp_read(rt2x00dev, 1, &r1);
  1420. rt2x00_set_field8(&r1, BBP1_TX_POWER, 0);
  1421. rt2800_bbp_write(rt2x00dev, 1, r1);
  1422. /*
  1423. * The eeprom contains the tx power values for each rate. These
  1424. * values map to 100% tx power. Each 16bit word contains four tx
  1425. * power values and the order is the same as used in the TX_PWR_CFG
  1426. * registers.
  1427. */
  1428. offset = TX_PWR_CFG_0;
  1429. for (i = 0; i < EEPROM_TXPOWER_BYRATE_SIZE; i += 2) {
  1430. /* just to be safe */
  1431. if (offset > TX_PWR_CFG_4)
  1432. break;
  1433. rt2800_register_read(rt2x00dev, offset, &reg);
  1434. /* read the next four txpower values */
  1435. rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i,
  1436. &eeprom);
  1437. /* TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS,
  1438. * TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12,
  1439. * TX_PWR_CFG_4: unknown */
  1440. txpower = rt2x00_get_field16(eeprom,
  1441. EEPROM_TXPOWER_BYRATE_RATE0);
  1442. rt2x00_set_field32(&reg, TX_PWR_CFG_RATE0,
  1443. min(txpower, max_value));
  1444. /* TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS,
  1445. * TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13,
  1446. * TX_PWR_CFG_4: unknown */
  1447. txpower = rt2x00_get_field16(eeprom,
  1448. EEPROM_TXPOWER_BYRATE_RATE1);
  1449. rt2x00_set_field32(&reg, TX_PWR_CFG_RATE1,
  1450. min(txpower, max_value));
  1451. /* TX_PWR_CFG_0: 55MBS, TX_PWR_CFG_1: 48MBS,
  1452. * TX_PWR_CFG_2: MCS6, TX_PWR_CFG_3: MCS14,
  1453. * TX_PWR_CFG_4: unknown */
  1454. txpower = rt2x00_get_field16(eeprom,
  1455. EEPROM_TXPOWER_BYRATE_RATE2);
  1456. rt2x00_set_field32(&reg, TX_PWR_CFG_RATE2,
  1457. min(txpower, max_value));
  1458. /* TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS,
  1459. * TX_PWR_CFG_2: MCS7, TX_PWR_CFG_3: MCS15,
  1460. * TX_PWR_CFG_4: unknown */
  1461. txpower = rt2x00_get_field16(eeprom,
  1462. EEPROM_TXPOWER_BYRATE_RATE3);
  1463. rt2x00_set_field32(&reg, TX_PWR_CFG_RATE3,
  1464. min(txpower, max_value));
  1465. /* read the next four txpower values */
  1466. rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i + 1,
  1467. &eeprom);
  1468. /* TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0,
  1469. * TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown,
  1470. * TX_PWR_CFG_4: unknown */
  1471. txpower = rt2x00_get_field16(eeprom,
  1472. EEPROM_TXPOWER_BYRATE_RATE0);
  1473. rt2x00_set_field32(&reg, TX_PWR_CFG_RATE4,
  1474. min(txpower, max_value));
  1475. /* TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1,
  1476. * TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown,
  1477. * TX_PWR_CFG_4: unknown */
  1478. txpower = rt2x00_get_field16(eeprom,
  1479. EEPROM_TXPOWER_BYRATE_RATE1);
  1480. rt2x00_set_field32(&reg, TX_PWR_CFG_RATE5,
  1481. min(txpower, max_value));
  1482. /* TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2,
  1483. * TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown,
  1484. * TX_PWR_CFG_4: unknown */
  1485. txpower = rt2x00_get_field16(eeprom,
  1486. EEPROM_TXPOWER_BYRATE_RATE2);
  1487. rt2x00_set_field32(&reg, TX_PWR_CFG_RATE6,
  1488. min(txpower, max_value));
  1489. /* TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3,
  1490. * TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown,
  1491. * TX_PWR_CFG_4: unknown */
  1492. txpower = rt2x00_get_field16(eeprom,
  1493. EEPROM_TXPOWER_BYRATE_RATE3);
  1494. rt2x00_set_field32(&reg, TX_PWR_CFG_RATE7,
  1495. min(txpower, max_value));
  1496. rt2800_register_write(rt2x00dev, offset, reg);
  1497. /* next TX_PWR_CFG register */
  1498. offset += 4;
  1499. }
  1500. }
  1501. static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  1502. struct rt2x00lib_conf *libconf)
  1503. {
  1504. u32 reg;
  1505. rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
  1506. rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT,
  1507. libconf->conf->short_frame_max_tx_count);
  1508. rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT,
  1509. libconf->conf->long_frame_max_tx_count);
  1510. rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
  1511. }
  1512. static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev,
  1513. struct rt2x00lib_conf *libconf)
  1514. {
  1515. enum dev_state state =
  1516. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  1517. STATE_SLEEP : STATE_AWAKE;
  1518. u32 reg;
  1519. if (state == STATE_SLEEP) {
  1520. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
  1521. rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
  1522. rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5);
  1523. rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE,
  1524. libconf->conf->listen_interval - 1);
  1525. rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 1);
  1526. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
  1527. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  1528. } else {
  1529. rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
  1530. rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
  1531. rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0);
  1532. rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 0);
  1533. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
  1534. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  1535. }
  1536. }
  1537. void rt2800_config(struct rt2x00_dev *rt2x00dev,
  1538. struct rt2x00lib_conf *libconf,
  1539. const unsigned int flags)
  1540. {
  1541. /* Always recalculate LNA gain before changing configuration */
  1542. rt2800_config_lna_gain(rt2x00dev, libconf);
  1543. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  1544. rt2800_config_channel(rt2x00dev, libconf->conf,
  1545. &libconf->rf, &libconf->channel);
  1546. if (flags & IEEE80211_CONF_CHANGE_POWER)
  1547. rt2800_config_txpower(rt2x00dev, libconf->conf->power_level);
  1548. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  1549. rt2800_config_retry_limit(rt2x00dev, libconf);
  1550. if (flags & IEEE80211_CONF_CHANGE_PS)
  1551. rt2800_config_ps(rt2x00dev, libconf);
  1552. }
  1553. EXPORT_SYMBOL_GPL(rt2800_config);
  1554. /*
  1555. * Link tuning
  1556. */
  1557. void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
  1558. {
  1559. u32 reg;
  1560. /*
  1561. * Update FCS error count from register.
  1562. */
  1563. rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
  1564. qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
  1565. }
  1566. EXPORT_SYMBOL_GPL(rt2800_link_stats);
  1567. static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev)
  1568. {
  1569. if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
  1570. if (rt2x00_rt(rt2x00dev, RT3070) ||
  1571. rt2x00_rt(rt2x00dev, RT3071) ||
  1572. rt2x00_rt(rt2x00dev, RT3090) ||
  1573. rt2x00_rt(rt2x00dev, RT3390))
  1574. return 0x1c + (2 * rt2x00dev->lna_gain);
  1575. else
  1576. return 0x2e + rt2x00dev->lna_gain;
  1577. }
  1578. if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
  1579. return 0x32 + (rt2x00dev->lna_gain * 5) / 3;
  1580. else
  1581. return 0x3a + (rt2x00dev->lna_gain * 5) / 3;
  1582. }
  1583. static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev,
  1584. struct link_qual *qual, u8 vgc_level)
  1585. {
  1586. if (qual->vgc_level != vgc_level) {
  1587. rt2800_bbp_write(rt2x00dev, 66, vgc_level);
  1588. qual->vgc_level = vgc_level;
  1589. qual->vgc_level_reg = vgc_level;
  1590. }
  1591. }
  1592. void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
  1593. {
  1594. rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev));
  1595. }
  1596. EXPORT_SYMBOL_GPL(rt2800_reset_tuner);
  1597. void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual,
  1598. const u32 count)
  1599. {
  1600. if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C))
  1601. return;
  1602. /*
  1603. * When RSSI is better then -80 increase VGC level with 0x10
  1604. */
  1605. rt2800_set_vgc(rt2x00dev, qual,
  1606. rt2800_get_default_vgc(rt2x00dev) +
  1607. ((qual->rssi > -80) * 0x10));
  1608. }
  1609. EXPORT_SYMBOL_GPL(rt2800_link_tuner);
  1610. /*
  1611. * Initialization functions.
  1612. */
  1613. static int rt2800_init_registers(struct rt2x00_dev *rt2x00dev)
  1614. {
  1615. u32 reg;
  1616. u16 eeprom;
  1617. unsigned int i;
  1618. int ret;
  1619. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  1620. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  1621. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  1622. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  1623. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  1624. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  1625. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  1626. ret = rt2800_drv_init_registers(rt2x00dev);
  1627. if (ret)
  1628. return ret;
  1629. rt2800_register_read(rt2x00dev, BCN_OFFSET0, &reg);
  1630. rt2x00_set_field32(&reg, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */
  1631. rt2x00_set_field32(&reg, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */
  1632. rt2x00_set_field32(&reg, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */
  1633. rt2x00_set_field32(&reg, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */
  1634. rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg);
  1635. rt2800_register_read(rt2x00dev, BCN_OFFSET1, &reg);
  1636. rt2x00_set_field32(&reg, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */
  1637. rt2x00_set_field32(&reg, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */
  1638. rt2x00_set_field32(&reg, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */
  1639. rt2x00_set_field32(&reg, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */
  1640. rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg);
  1641. rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
  1642. rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
  1643. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  1644. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  1645. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL, 1600);
  1646. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
  1647. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, 0);
  1648. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
  1649. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  1650. rt2x00_set_field32(&reg, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
  1651. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  1652. rt2800_config_filter(rt2x00dev, FIF_ALLMULTI);
  1653. rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
  1654. rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME, 9);
  1655. rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2);
  1656. rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
  1657. if (rt2x00_rt(rt2x00dev, RT3071) ||
  1658. rt2x00_rt(rt2x00dev, RT3090) ||
  1659. rt2x00_rt(rt2x00dev, RT3390)) {
  1660. rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
  1661. rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
  1662. if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
  1663. rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
  1664. rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
  1665. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
  1666. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
  1667. rt2800_register_write(rt2x00dev, TX_SW_CFG2,
  1668. 0x0000002c);
  1669. else
  1670. rt2800_register_write(rt2x00dev, TX_SW_CFG2,
  1671. 0x0000000f);
  1672. } else {
  1673. rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
  1674. }
  1675. } else if (rt2x00_rt(rt2x00dev, RT3070)) {
  1676. rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
  1677. if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
  1678. rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
  1679. rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000002c);
  1680. } else {
  1681. rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
  1682. rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
  1683. }
  1684. } else if (rt2800_is_305x_soc(rt2x00dev)) {
  1685. rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
  1686. rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
  1687. rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000001f);
  1688. } else {
  1689. rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
  1690. rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
  1691. }
  1692. rt2800_register_read(rt2x00dev, TX_LINK_CFG, &reg);
  1693. rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
  1694. rt2x00_set_field32(&reg, TX_LINK_CFG_MFB_ENABLE, 0);
  1695. rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
  1696. rt2x00_set_field32(&reg, TX_LINK_CFG_TX_MRQ_EN, 0);
  1697. rt2x00_set_field32(&reg, TX_LINK_CFG_TX_RDG_EN, 0);
  1698. rt2x00_set_field32(&reg, TX_LINK_CFG_TX_CF_ACK_EN, 1);
  1699. rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB, 0);
  1700. rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFS, 0);
  1701. rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg);
  1702. rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, &reg);
  1703. rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
  1704. rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 32);
  1705. rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
  1706. rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
  1707. rt2800_register_read(rt2x00dev, MAX_LEN_CFG, &reg);
  1708. rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
  1709. if (rt2x00_rt_rev_gte(rt2x00dev, RT2872, REV_RT2872E) ||
  1710. rt2x00_rt(rt2x00dev, RT2883) ||
  1711. rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070E))
  1712. rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 2);
  1713. else
  1714. rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 1);
  1715. rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_PSDU, 0);
  1716. rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_MPDU, 0);
  1717. rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
  1718. rt2800_register_read(rt2x00dev, LED_CFG, &reg);
  1719. rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, 70);
  1720. rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, 30);
  1721. rt2x00_set_field32(&reg, LED_CFG_SLOW_BLINK_PERIOD, 3);
  1722. rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, 3);
  1723. rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, 3);
  1724. rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE, 3);
  1725. rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, 1);
  1726. rt2800_register_write(rt2x00dev, LED_CFG, reg);
  1727. rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);
  1728. rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
  1729. rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT, 15);
  1730. rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT, 31);
  1731. rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_THRE, 2000);
  1732. rt2x00_set_field32(&reg, TX_RTY_CFG_NON_AGG_RTY_MODE, 0);
  1733. rt2x00_set_field32(&reg, TX_RTY_CFG_AGG_RTY_MODE, 0);
  1734. rt2x00_set_field32(&reg, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1);
  1735. rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
  1736. rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
  1737. rt2x00_set_field32(&reg, AUTO_RSP_CFG_AUTORESPONDER, 1);
  1738. rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY, 1);
  1739. rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MMODE, 0);
  1740. rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MREF, 0);
  1741. rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE, 1);
  1742. rt2x00_set_field32(&reg, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
  1743. rt2x00_set_field32(&reg, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
  1744. rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
  1745. rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
  1746. rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_RATE, 3);
  1747. rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_CTRL, 0);
  1748. rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_NAV, 1);
  1749. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  1750. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  1751. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  1752. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 0);
  1753. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  1754. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 0);
  1755. rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, 1);
  1756. rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
  1757. rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
  1758. rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_RATE, 3);
  1759. rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL, 0);
  1760. rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_NAV, 1);
  1761. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  1762. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  1763. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  1764. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 0);
  1765. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  1766. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 0);
  1767. rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, 1);
  1768. rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
  1769. rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
  1770. rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
  1771. rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, 0);
  1772. rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_NAV, 1);
  1773. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  1774. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  1775. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  1776. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
  1777. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  1778. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
  1779. rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, 0);
  1780. rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
  1781. rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
  1782. rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
  1783. rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, 0);
  1784. rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_NAV, 1);
  1785. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  1786. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  1787. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  1788. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
  1789. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  1790. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
  1791. rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, 0);
  1792. rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
  1793. rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
  1794. rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
  1795. rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, 0);
  1796. rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_NAV, 1);
  1797. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  1798. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  1799. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  1800. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
  1801. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  1802. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
  1803. rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, 0);
  1804. rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
  1805. rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
  1806. rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
  1807. rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, 0);
  1808. rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_NAV, 1);
  1809. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  1810. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  1811. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  1812. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
  1813. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  1814. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
  1815. rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, 0);
  1816. rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
  1817. if (rt2x00_is_usb(rt2x00dev)) {
  1818. rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006);
  1819. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  1820. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  1821. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  1822. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  1823. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  1824. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3);
  1825. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0);
  1826. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_BIG_ENDIAN, 0);
  1827. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0);
  1828. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_HDR_SEG_LEN, 0);
  1829. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  1830. }
  1831. /*
  1832. * The legacy driver also sets TXOP_CTRL_CFG_RESERVED_TRUN_EN to 1
  1833. * although it is reserved.
  1834. */
  1835. rt2800_register_read(rt2x00dev, TXOP_CTRL_CFG, &reg);
  1836. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TIMEOUT_TRUN_EN, 1);
  1837. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_AC_TRUN_EN, 1);
  1838. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TXRATEGRP_TRUN_EN, 1);
  1839. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_USER_MODE_TRUN_EN, 1);
  1840. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_MIMO_PS_TRUN_EN, 1);
  1841. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_RESERVED_TRUN_EN, 1);
  1842. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_LSIG_TXOP_EN, 0);
  1843. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_EN, 0);
  1844. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_DLY, 88);
  1845. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CWMIN, 0);
  1846. rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, reg);
  1847. rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002);
  1848. rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
  1849. rt2x00_set_field32(&reg, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
  1850. rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES,
  1851. IEEE80211_MAX_RTS_THRESHOLD);
  1852. rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_FBK_EN, 0);
  1853. rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
  1854. rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
  1855. /*
  1856. * Usually the CCK SIFS time should be set to 10 and the OFDM SIFS
  1857. * time should be set to 16. However, the original Ralink driver uses
  1858. * 16 for both and indeed using a value of 10 for CCK SIFS results in
  1859. * connection problems with 11g + CTS protection. Hence, use the same
  1860. * defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS.
  1861. */
  1862. rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
  1863. rt2x00_set_field32(&reg, XIFS_TIME_CFG_CCKM_SIFS_TIME, 16);
  1864. rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_SIFS_TIME, 16);
  1865. rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4);
  1866. rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, 314);
  1867. rt2x00_set_field32(&reg, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1);
  1868. rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
  1869. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  1870. /*
  1871. * ASIC will keep garbage value after boot, clear encryption keys.
  1872. */
  1873. for (i = 0; i < 4; i++)
  1874. rt2800_register_write(rt2x00dev,
  1875. SHARED_KEY_MODE_ENTRY(i), 0);
  1876. for (i = 0; i < 256; i++) {
  1877. static const u32 wcid[2] = { 0xffffffff, 0x00ffffff };
  1878. rt2800_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i),
  1879. wcid, sizeof(wcid));
  1880. rt2800_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 1);
  1881. rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
  1882. }
  1883. /*
  1884. * Clear all beacons
  1885. */
  1886. rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE0);
  1887. rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE1);
  1888. rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE2);
  1889. rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE3);
  1890. rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE4);
  1891. rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE5);
  1892. rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE6);
  1893. rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE7);
  1894. if (rt2x00_is_usb(rt2x00dev)) {
  1895. rt2800_register_read(rt2x00dev, US_CYC_CNT, &reg);
  1896. rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 30);
  1897. rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
  1898. } else if (rt2x00_is_pcie(rt2x00dev)) {
  1899. rt2800_register_read(rt2x00dev, US_CYC_CNT, &reg);
  1900. rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 125);
  1901. rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
  1902. }
  1903. rt2800_register_read(rt2x00dev, HT_FBK_CFG0, &reg);
  1904. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS0FBK, 0);
  1905. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS1FBK, 0);
  1906. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS2FBK, 1);
  1907. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS3FBK, 2);
  1908. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS4FBK, 3);
  1909. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS5FBK, 4);
  1910. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS6FBK, 5);
  1911. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS7FBK, 6);
  1912. rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg);
  1913. rt2800_register_read(rt2x00dev, HT_FBK_CFG1, &reg);
  1914. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS8FBK, 8);
  1915. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS9FBK, 8);
  1916. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS10FBK, 9);
  1917. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS11FBK, 10);
  1918. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS12FBK, 11);
  1919. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS13FBK, 12);
  1920. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS14FBK, 13);
  1921. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS15FBK, 14);
  1922. rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg);
  1923. rt2800_register_read(rt2x00dev, LG_FBK_CFG0, &reg);
  1924. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS0FBK, 8);
  1925. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS1FBK, 8);
  1926. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS2FBK, 9);
  1927. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS3FBK, 10);
  1928. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS4FBK, 11);
  1929. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS5FBK, 12);
  1930. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS6FBK, 13);
  1931. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS7FBK, 14);
  1932. rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg);
  1933. rt2800_register_read(rt2x00dev, LG_FBK_CFG1, &reg);
  1934. rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS0FBK, 0);
  1935. rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS1FBK, 0);
  1936. rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS2FBK, 1);
  1937. rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS3FBK, 2);
  1938. rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg);
  1939. /*
  1940. * Do not force the BA window size, we use the TXWI to set it
  1941. */
  1942. rt2800_register_read(rt2x00dev, AMPDU_BA_WINSIZE, &reg);
  1943. rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE, 0);
  1944. rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE, 0);
  1945. rt2800_register_write(rt2x00dev, AMPDU_BA_WINSIZE, reg);
  1946. /*
  1947. * We must clear the error counters.
  1948. * These registers are cleared on read,
  1949. * so we may pass a useless variable to store the value.
  1950. */
  1951. rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
  1952. rt2800_register_read(rt2x00dev, RX_STA_CNT1, &reg);
  1953. rt2800_register_read(rt2x00dev, RX_STA_CNT2, &reg);
  1954. rt2800_register_read(rt2x00dev, TX_STA_CNT0, &reg);
  1955. rt2800_register_read(rt2x00dev, TX_STA_CNT1, &reg);
  1956. rt2800_register_read(rt2x00dev, TX_STA_CNT2, &reg);
  1957. /*
  1958. * Setup leadtime for pre tbtt interrupt to 6ms
  1959. */
  1960. rt2800_register_read(rt2x00dev, INT_TIMER_CFG, &reg);
  1961. rt2x00_set_field32(&reg, INT_TIMER_CFG_PRE_TBTT_TIMER, 6 << 4);
  1962. rt2800_register_write(rt2x00dev, INT_TIMER_CFG, reg);
  1963. /*
  1964. * Set up channel statistics timer
  1965. */
  1966. rt2800_register_read(rt2x00dev, CH_TIME_CFG, &reg);
  1967. rt2x00_set_field32(&reg, CH_TIME_CFG_EIFS_BUSY, 1);
  1968. rt2x00_set_field32(&reg, CH_TIME_CFG_NAV_BUSY, 1);
  1969. rt2x00_set_field32(&reg, CH_TIME_CFG_RX_BUSY, 1);
  1970. rt2x00_set_field32(&reg, CH_TIME_CFG_TX_BUSY, 1);
  1971. rt2x00_set_field32(&reg, CH_TIME_CFG_TMR_EN, 1);
  1972. rt2800_register_write(rt2x00dev, CH_TIME_CFG, reg);
  1973. return 0;
  1974. }
  1975. static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev)
  1976. {
  1977. unsigned int i;
  1978. u32 reg;
  1979. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1980. rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, &reg);
  1981. if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY))
  1982. return 0;
  1983. udelay(REGISTER_BUSY_DELAY);
  1984. }
  1985. ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n");
  1986. return -EACCES;
  1987. }
  1988. static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  1989. {
  1990. unsigned int i;
  1991. u8 value;
  1992. /*
  1993. * BBP was enabled after firmware was loaded,
  1994. * but we need to reactivate it now.
  1995. */
  1996. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  1997. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  1998. msleep(1);
  1999. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  2000. rt2800_bbp_read(rt2x00dev, 0, &value);
  2001. if ((value != 0xff) && (value != 0x00))
  2002. return 0;
  2003. udelay(REGISTER_BUSY_DELAY);
  2004. }
  2005. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  2006. return -EACCES;
  2007. }
  2008. static int rt2800_init_bbp(struct rt2x00_dev *rt2x00dev)
  2009. {
  2010. unsigned int i;
  2011. u16 eeprom;
  2012. u8 reg_id;
  2013. u8 value;
  2014. if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev) ||
  2015. rt2800_wait_bbp_ready(rt2x00dev)))
  2016. return -EACCES;
  2017. if (rt2800_is_305x_soc(rt2x00dev))
  2018. rt2800_bbp_write(rt2x00dev, 31, 0x08);
  2019. rt2800_bbp_write(rt2x00dev, 65, 0x2c);
  2020. rt2800_bbp_write(rt2x00dev, 66, 0x38);
  2021. if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
  2022. rt2800_bbp_write(rt2x00dev, 69, 0x16);
  2023. rt2800_bbp_write(rt2x00dev, 73, 0x12);
  2024. } else {
  2025. rt2800_bbp_write(rt2x00dev, 69, 0x12);
  2026. rt2800_bbp_write(rt2x00dev, 73, 0x10);
  2027. }
  2028. rt2800_bbp_write(rt2x00dev, 70, 0x0a);
  2029. if (rt2x00_rt(rt2x00dev, RT3070) ||
  2030. rt2x00_rt(rt2x00dev, RT3071) ||
  2031. rt2x00_rt(rt2x00dev, RT3090) ||
  2032. rt2x00_rt(rt2x00dev, RT3390)) {
  2033. rt2800_bbp_write(rt2x00dev, 79, 0x13);
  2034. rt2800_bbp_write(rt2x00dev, 80, 0x05);
  2035. rt2800_bbp_write(rt2x00dev, 81, 0x33);
  2036. } else if (rt2800_is_305x_soc(rt2x00dev)) {
  2037. rt2800_bbp_write(rt2x00dev, 78, 0x0e);
  2038. rt2800_bbp_write(rt2x00dev, 80, 0x08);
  2039. } else {
  2040. rt2800_bbp_write(rt2x00dev, 81, 0x37);
  2041. }
  2042. rt2800_bbp_write(rt2x00dev, 82, 0x62);
  2043. rt2800_bbp_write(rt2x00dev, 83, 0x6a);
  2044. if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860D))
  2045. rt2800_bbp_write(rt2x00dev, 84, 0x19);
  2046. else
  2047. rt2800_bbp_write(rt2x00dev, 84, 0x99);
  2048. rt2800_bbp_write(rt2x00dev, 86, 0x00);
  2049. rt2800_bbp_write(rt2x00dev, 91, 0x04);
  2050. rt2800_bbp_write(rt2x00dev, 92, 0x00);
  2051. if (rt2x00_rt_rev_gte(rt2x00dev, RT3070, REV_RT3070F) ||
  2052. rt2x00_rt_rev_gte(rt2x00dev, RT3071, REV_RT3071E) ||
  2053. rt2x00_rt_rev_gte(rt2x00dev, RT3090, REV_RT3090E) ||
  2054. rt2x00_rt_rev_gte(rt2x00dev, RT3390, REV_RT3390E) ||
  2055. rt2800_is_305x_soc(rt2x00dev))
  2056. rt2800_bbp_write(rt2x00dev, 103, 0xc0);
  2057. else
  2058. rt2800_bbp_write(rt2x00dev, 103, 0x00);
  2059. if (rt2800_is_305x_soc(rt2x00dev))
  2060. rt2800_bbp_write(rt2x00dev, 105, 0x01);
  2061. else
  2062. rt2800_bbp_write(rt2x00dev, 105, 0x05);
  2063. rt2800_bbp_write(rt2x00dev, 106, 0x35);
  2064. if (rt2x00_rt(rt2x00dev, RT3071) ||
  2065. rt2x00_rt(rt2x00dev, RT3090) ||
  2066. rt2x00_rt(rt2x00dev, RT3390)) {
  2067. rt2800_bbp_read(rt2x00dev, 138, &value);
  2068. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
  2069. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
  2070. value |= 0x20;
  2071. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
  2072. value &= ~0x02;
  2073. rt2800_bbp_write(rt2x00dev, 138, value);
  2074. }
  2075. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  2076. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  2077. if (eeprom != 0xffff && eeprom != 0x0000) {
  2078. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  2079. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  2080. rt2800_bbp_write(rt2x00dev, reg_id, value);
  2081. }
  2082. }
  2083. return 0;
  2084. }
  2085. static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev,
  2086. bool bw40, u8 rfcsr24, u8 filter_target)
  2087. {
  2088. unsigned int i;
  2089. u8 bbp;
  2090. u8 rfcsr;
  2091. u8 passband;
  2092. u8 stopband;
  2093. u8 overtuned = 0;
  2094. rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
  2095. rt2800_bbp_read(rt2x00dev, 4, &bbp);
  2096. rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
  2097. rt2800_bbp_write(rt2x00dev, 4, bbp);
  2098. rt2800_rfcsr_read(rt2x00dev, 31, &rfcsr);
  2099. rt2x00_set_field8(&rfcsr, RFCSR31_RX_H20M, bw40);
  2100. rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
  2101. rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
  2102. rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
  2103. rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
  2104. /*
  2105. * Set power & frequency of passband test tone
  2106. */
  2107. rt2800_bbp_write(rt2x00dev, 24, 0);
  2108. for (i = 0; i < 100; i++) {
  2109. rt2800_bbp_write(rt2x00dev, 25, 0x90);
  2110. msleep(1);
  2111. rt2800_bbp_read(rt2x00dev, 55, &passband);
  2112. if (passband)
  2113. break;
  2114. }
  2115. /*
  2116. * Set power & frequency of stopband test tone
  2117. */
  2118. rt2800_bbp_write(rt2x00dev, 24, 0x06);
  2119. for (i = 0; i < 100; i++) {
  2120. rt2800_bbp_write(rt2x00dev, 25, 0x90);
  2121. msleep(1);
  2122. rt2800_bbp_read(rt2x00dev, 55, &stopband);
  2123. if ((passband - stopband) <= filter_target) {
  2124. rfcsr24++;
  2125. overtuned += ((passband - stopband) == filter_target);
  2126. } else
  2127. break;
  2128. rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
  2129. }
  2130. rfcsr24 -= !!overtuned;
  2131. rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
  2132. return rfcsr24;
  2133. }
  2134. static int rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev)
  2135. {
  2136. u8 rfcsr;
  2137. u8 bbp;
  2138. u32 reg;
  2139. u16 eeprom;
  2140. if (!rt2x00_rt(rt2x00dev, RT3070) &&
  2141. !rt2x00_rt(rt2x00dev, RT3071) &&
  2142. !rt2x00_rt(rt2x00dev, RT3090) &&
  2143. !rt2x00_rt(rt2x00dev, RT3390) &&
  2144. !rt2800_is_305x_soc(rt2x00dev))
  2145. return 0;
  2146. /*
  2147. * Init RF calibration.
  2148. */
  2149. rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
  2150. rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
  2151. rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
  2152. msleep(1);
  2153. rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
  2154. rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
  2155. if (rt2x00_rt(rt2x00dev, RT3070) ||
  2156. rt2x00_rt(rt2x00dev, RT3071) ||
  2157. rt2x00_rt(rt2x00dev, RT3090)) {
  2158. rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
  2159. rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
  2160. rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
  2161. rt2800_rfcsr_write(rt2x00dev, 7, 0x60);
  2162. rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
  2163. rt2800_rfcsr_write(rt2x00dev, 10, 0x41);
  2164. rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
  2165. rt2800_rfcsr_write(rt2x00dev, 12, 0x7b);
  2166. rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
  2167. rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
  2168. rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
  2169. rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
  2170. rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
  2171. rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
  2172. rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
  2173. rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
  2174. rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
  2175. rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
  2176. rt2800_rfcsr_write(rt2x00dev, 29, 0x1f);
  2177. } else if (rt2x00_rt(rt2x00dev, RT3390)) {
  2178. rt2800_rfcsr_write(rt2x00dev, 0, 0xa0);
  2179. rt2800_rfcsr_write(rt2x00dev, 1, 0xe1);
  2180. rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
  2181. rt2800_rfcsr_write(rt2x00dev, 3, 0x62);
  2182. rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
  2183. rt2800_rfcsr_write(rt2x00dev, 5, 0x8b);
  2184. rt2800_rfcsr_write(rt2x00dev, 6, 0x42);
  2185. rt2800_rfcsr_write(rt2x00dev, 7, 0x34);
  2186. rt2800_rfcsr_write(rt2x00dev, 8, 0x00);
  2187. rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
  2188. rt2800_rfcsr_write(rt2x00dev, 10, 0x61);
  2189. rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
  2190. rt2800_rfcsr_write(rt2x00dev, 12, 0x3b);
  2191. rt2800_rfcsr_write(rt2x00dev, 13, 0xe0);
  2192. rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
  2193. rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
  2194. rt2800_rfcsr_write(rt2x00dev, 16, 0xe0);
  2195. rt2800_rfcsr_write(rt2x00dev, 17, 0x94);
  2196. rt2800_rfcsr_write(rt2x00dev, 18, 0x5c);
  2197. rt2800_rfcsr_write(rt2x00dev, 19, 0x4a);
  2198. rt2800_rfcsr_write(rt2x00dev, 20, 0xb2);
  2199. rt2800_rfcsr_write(rt2x00dev, 21, 0xf6);
  2200. rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
  2201. rt2800_rfcsr_write(rt2x00dev, 23, 0x14);
  2202. rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
  2203. rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
  2204. rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
  2205. rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
  2206. rt2800_rfcsr_write(rt2x00dev, 28, 0x41);
  2207. rt2800_rfcsr_write(rt2x00dev, 29, 0x8f);
  2208. rt2800_rfcsr_write(rt2x00dev, 30, 0x20);
  2209. rt2800_rfcsr_write(rt2x00dev, 31, 0x0f);
  2210. } else if (rt2800_is_305x_soc(rt2x00dev)) {
  2211. rt2800_rfcsr_write(rt2x00dev, 0, 0x50);
  2212. rt2800_rfcsr_write(rt2x00dev, 1, 0x01);
  2213. rt2800_rfcsr_write(rt2x00dev, 2, 0xf7);
  2214. rt2800_rfcsr_write(rt2x00dev, 3, 0x75);
  2215. rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
  2216. rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
  2217. rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
  2218. rt2800_rfcsr_write(rt2x00dev, 7, 0x50);
  2219. rt2800_rfcsr_write(rt2x00dev, 8, 0x39);
  2220. rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
  2221. rt2800_rfcsr_write(rt2x00dev, 10, 0x60);
  2222. rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
  2223. rt2800_rfcsr_write(rt2x00dev, 12, 0x75);
  2224. rt2800_rfcsr_write(rt2x00dev, 13, 0x75);
  2225. rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
  2226. rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
  2227. rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
  2228. rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
  2229. rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
  2230. rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
  2231. rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
  2232. rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
  2233. rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
  2234. rt2800_rfcsr_write(rt2x00dev, 23, 0x31);
  2235. rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
  2236. rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
  2237. rt2800_rfcsr_write(rt2x00dev, 26, 0x25);
  2238. rt2800_rfcsr_write(rt2x00dev, 27, 0x23);
  2239. rt2800_rfcsr_write(rt2x00dev, 28, 0x13);
  2240. rt2800_rfcsr_write(rt2x00dev, 29, 0x83);
  2241. rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
  2242. rt2800_rfcsr_write(rt2x00dev, 31, 0x00);
  2243. return 0;
  2244. }
  2245. if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
  2246. rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
  2247. rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
  2248. rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
  2249. rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
  2250. } else if (rt2x00_rt(rt2x00dev, RT3071) ||
  2251. rt2x00_rt(rt2x00dev, RT3090)) {
  2252. rt2800_rfcsr_write(rt2x00dev, 31, 0x14);
  2253. rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
  2254. rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
  2255. rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
  2256. rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
  2257. rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
  2258. if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
  2259. rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E)) {
  2260. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
  2261. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
  2262. rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
  2263. else
  2264. rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 0);
  2265. }
  2266. rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
  2267. rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
  2268. rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
  2269. rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
  2270. } else if (rt2x00_rt(rt2x00dev, RT3390)) {
  2271. rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
  2272. rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
  2273. rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
  2274. }
  2275. /*
  2276. * Set RX Filter calibration for 20MHz and 40MHz
  2277. */
  2278. if (rt2x00_rt(rt2x00dev, RT3070)) {
  2279. rt2x00dev->calibration[0] =
  2280. rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x16);
  2281. rt2x00dev->calibration[1] =
  2282. rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x19);
  2283. } else if (rt2x00_rt(rt2x00dev, RT3071) ||
  2284. rt2x00_rt(rt2x00dev, RT3090) ||
  2285. rt2x00_rt(rt2x00dev, RT3390)) {
  2286. rt2x00dev->calibration[0] =
  2287. rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x13);
  2288. rt2x00dev->calibration[1] =
  2289. rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x15);
  2290. }
  2291. /*
  2292. * Set back to initial state
  2293. */
  2294. rt2800_bbp_write(rt2x00dev, 24, 0);
  2295. rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
  2296. rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
  2297. rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
  2298. /*
  2299. * set BBP back to BW20
  2300. */
  2301. rt2800_bbp_read(rt2x00dev, 4, &bbp);
  2302. rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
  2303. rt2800_bbp_write(rt2x00dev, 4, bbp);
  2304. if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) ||
  2305. rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
  2306. rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
  2307. rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E))
  2308. rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
  2309. rt2800_register_read(rt2x00dev, OPT_14_CSR, &reg);
  2310. rt2x00_set_field32(&reg, OPT_14_CSR_BIT0, 1);
  2311. rt2800_register_write(rt2x00dev, OPT_14_CSR, reg);
  2312. rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
  2313. rt2x00_set_field8(&rfcsr, RFCSR17_TX_LO1_EN, 0);
  2314. if (rt2x00_rt(rt2x00dev, RT3070) ||
  2315. rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
  2316. rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
  2317. rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
  2318. if (!test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
  2319. rt2x00_set_field8(&rfcsr, RFCSR17_R, 1);
  2320. }
  2321. rt2x00_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_BG, &eeprom);
  2322. if (rt2x00_get_field16(eeprom, EEPROM_TXMIXER_GAIN_BG_VAL) >= 1)
  2323. rt2x00_set_field8(&rfcsr, RFCSR17_TXMIXER_GAIN,
  2324. rt2x00_get_field16(eeprom,
  2325. EEPROM_TXMIXER_GAIN_BG_VAL));
  2326. rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
  2327. if (rt2x00_rt(rt2x00dev, RT3090)) {
  2328. rt2800_bbp_read(rt2x00dev, 138, &bbp);
  2329. /* Turn off unused DAC1 and ADC1 to reduce power consumption */
  2330. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
  2331. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
  2332. rt2x00_set_field8(&bbp, BBP138_RX_ADC1, 0);
  2333. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
  2334. rt2x00_set_field8(&bbp, BBP138_TX_DAC1, 1);
  2335. rt2800_bbp_write(rt2x00dev, 138, bbp);
  2336. }
  2337. if (rt2x00_rt(rt2x00dev, RT3071) ||
  2338. rt2x00_rt(rt2x00dev, RT3090) ||
  2339. rt2x00_rt(rt2x00dev, RT3390)) {
  2340. rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
  2341. rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
  2342. rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
  2343. rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
  2344. rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
  2345. rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
  2346. rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
  2347. rt2800_rfcsr_read(rt2x00dev, 15, &rfcsr);
  2348. rt2x00_set_field8(&rfcsr, RFCSR15_TX_LO2_EN, 0);
  2349. rt2800_rfcsr_write(rt2x00dev, 15, rfcsr);
  2350. rt2800_rfcsr_read(rt2x00dev, 20, &rfcsr);
  2351. rt2x00_set_field8(&rfcsr, RFCSR20_RX_LO1_EN, 0);
  2352. rt2800_rfcsr_write(rt2x00dev, 20, rfcsr);
  2353. rt2800_rfcsr_read(rt2x00dev, 21, &rfcsr);
  2354. rt2x00_set_field8(&rfcsr, RFCSR21_RX_LO2_EN, 0);
  2355. rt2800_rfcsr_write(rt2x00dev, 21, rfcsr);
  2356. }
  2357. if (rt2x00_rt(rt2x00dev, RT3070)) {
  2358. rt2800_rfcsr_read(rt2x00dev, 27, &rfcsr);
  2359. if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F))
  2360. rt2x00_set_field8(&rfcsr, RFCSR27_R1, 3);
  2361. else
  2362. rt2x00_set_field8(&rfcsr, RFCSR27_R1, 0);
  2363. rt2x00_set_field8(&rfcsr, RFCSR27_R2, 0);
  2364. rt2x00_set_field8(&rfcsr, RFCSR27_R3, 0);
  2365. rt2x00_set_field8(&rfcsr, RFCSR27_R4, 0);
  2366. rt2800_rfcsr_write(rt2x00dev, 27, rfcsr);
  2367. }
  2368. return 0;
  2369. }
  2370. int rt2800_enable_radio(struct rt2x00_dev *rt2x00dev)
  2371. {
  2372. u32 reg;
  2373. u16 word;
  2374. /*
  2375. * Initialize all registers.
  2376. */
  2377. if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
  2378. rt2800_init_registers(rt2x00dev) ||
  2379. rt2800_init_bbp(rt2x00dev) ||
  2380. rt2800_init_rfcsr(rt2x00dev)))
  2381. return -EIO;
  2382. /*
  2383. * Send signal to firmware during boot time.
  2384. */
  2385. rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
  2386. if (rt2x00_is_usb(rt2x00dev) &&
  2387. (rt2x00_rt(rt2x00dev, RT3070) ||
  2388. rt2x00_rt(rt2x00dev, RT3071) ||
  2389. rt2x00_rt(rt2x00dev, RT3572))) {
  2390. udelay(200);
  2391. rt2800_mcu_request(rt2x00dev, MCU_CURRENT, 0, 0, 0);
  2392. udelay(10);
  2393. }
  2394. /*
  2395. * Enable RX.
  2396. */
  2397. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  2398. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  2399. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  2400. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  2401. udelay(50);
  2402. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  2403. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
  2404. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
  2405. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
  2406. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  2407. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  2408. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  2409. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  2410. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  2411. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  2412. /*
  2413. * Initialize LED control
  2414. */
  2415. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_AG_CONF, &word);
  2416. rt2800_mcu_request(rt2x00dev, MCU_LED_AG_CONF, 0xff,
  2417. word & 0xff, (word >> 8) & 0xff);
  2418. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_ACT_CONF, &word);
  2419. rt2800_mcu_request(rt2x00dev, MCU_LED_ACT_CONF, 0xff,
  2420. word & 0xff, (word >> 8) & 0xff);
  2421. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_POLARITY, &word);
  2422. rt2800_mcu_request(rt2x00dev, MCU_LED_LED_POLARITY, 0xff,
  2423. word & 0xff, (word >> 8) & 0xff);
  2424. return 0;
  2425. }
  2426. EXPORT_SYMBOL_GPL(rt2800_enable_radio);
  2427. void rt2800_disable_radio(struct rt2x00_dev *rt2x00dev)
  2428. {
  2429. u32 reg;
  2430. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  2431. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  2432. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  2433. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  2434. /* Wait for DMA, ignore error */
  2435. rt2800_wait_wpdma_ready(rt2x00dev);
  2436. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  2437. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 0);
  2438. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  2439. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  2440. }
  2441. EXPORT_SYMBOL_GPL(rt2800_disable_radio);
  2442. int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev)
  2443. {
  2444. u32 reg;
  2445. rt2800_register_read(rt2x00dev, EFUSE_CTRL, &reg);
  2446. return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT);
  2447. }
  2448. EXPORT_SYMBOL_GPL(rt2800_efuse_detect);
  2449. static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i)
  2450. {
  2451. u32 reg;
  2452. mutex_lock(&rt2x00dev->csr_mutex);
  2453. rt2800_register_read_lock(rt2x00dev, EFUSE_CTRL, &reg);
  2454. rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
  2455. rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
  2456. rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
  2457. rt2800_register_write_lock(rt2x00dev, EFUSE_CTRL, reg);
  2458. /* Wait until the EEPROM has been loaded */
  2459. rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, &reg);
  2460. /* Apparently the data is read from end to start */
  2461. rt2800_register_read_lock(rt2x00dev, EFUSE_DATA3,
  2462. (u32 *)&rt2x00dev->eeprom[i]);
  2463. rt2800_register_read_lock(rt2x00dev, EFUSE_DATA2,
  2464. (u32 *)&rt2x00dev->eeprom[i + 2]);
  2465. rt2800_register_read_lock(rt2x00dev, EFUSE_DATA1,
  2466. (u32 *)&rt2x00dev->eeprom[i + 4]);
  2467. rt2800_register_read_lock(rt2x00dev, EFUSE_DATA0,
  2468. (u32 *)&rt2x00dev->eeprom[i + 6]);
  2469. mutex_unlock(&rt2x00dev->csr_mutex);
  2470. }
  2471. void rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  2472. {
  2473. unsigned int i;
  2474. for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
  2475. rt2800_efuse_read(rt2x00dev, i);
  2476. }
  2477. EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse);
  2478. int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  2479. {
  2480. u16 word;
  2481. u8 *mac;
  2482. u8 default_lna_gain;
  2483. /*
  2484. * Start validation of the data that has been read.
  2485. */
  2486. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  2487. if (!is_valid_ether_addr(mac)) {
  2488. random_ether_addr(mac);
  2489. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  2490. }
  2491. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &word);
  2492. if (word == 0xffff) {
  2493. rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
  2494. rt2x00_set_field16(&word, EEPROM_NIC_CONF0_TXPATH, 1);
  2495. rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RF_TYPE, RF2820);
  2496. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
  2497. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  2498. } else if (rt2x00_rt(rt2x00dev, RT2860) ||
  2499. rt2x00_rt(rt2x00dev, RT2872)) {
  2500. /*
  2501. * There is a max of 2 RX streams for RT28x0 series
  2502. */
  2503. if (rt2x00_get_field16(word, EEPROM_NIC_CONF0_RXPATH) > 2)
  2504. rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
  2505. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
  2506. }
  2507. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &word);
  2508. if (word == 0xffff) {
  2509. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_HW_RADIO, 0);
  2510. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC, 0);
  2511. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G, 0);
  2512. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G, 0);
  2513. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_CARDBUS_ACCEL, 0);
  2514. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_2G, 0);
  2515. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_5G, 0);
  2516. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_WPS_PBC, 0);
  2517. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_2G, 0);
  2518. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_5G, 0);
  2519. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BROADBAND_EXT_LNA, 0);
  2520. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_ANT_DIVERSITY, 0);
  2521. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_INTERNAL_TX_ALC, 0);
  2522. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BT_COEXIST, 0);
  2523. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_DAC_TEST, 0);
  2524. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF1, word);
  2525. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  2526. }
  2527. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
  2528. if ((word & 0x00ff) == 0x00ff) {
  2529. rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
  2530. rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
  2531. EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
  2532. }
  2533. if ((word & 0xff00) == 0xff00) {
  2534. rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
  2535. LED_MODE_TXRX_ACTIVITY);
  2536. rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
  2537. rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
  2538. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_AG_CONF, 0x5555);
  2539. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_ACT_CONF, 0x2221);
  2540. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_POLARITY, 0xa9f8);
  2541. EEPROM(rt2x00dev, "Led Mode: 0x%04x\n", word);
  2542. }
  2543. /*
  2544. * During the LNA validation we are going to use
  2545. * lna0 as correct value. Note that EEPROM_LNA
  2546. * is never validated.
  2547. */
  2548. rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
  2549. default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
  2550. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
  2551. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
  2552. rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
  2553. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
  2554. rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
  2555. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
  2556. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
  2557. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
  2558. rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
  2559. if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
  2560. rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
  2561. rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
  2562. default_lna_gain);
  2563. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
  2564. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
  2565. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
  2566. rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
  2567. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
  2568. rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
  2569. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
  2570. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
  2571. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
  2572. rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
  2573. if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
  2574. rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
  2575. rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
  2576. default_lna_gain);
  2577. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
  2578. rt2x00_eeprom_read(rt2x00dev, EEPROM_MAX_TX_POWER, &word);
  2579. if (rt2x00_get_field16(word, EEPROM_MAX_TX_POWER_24GHZ) == 0xff)
  2580. rt2x00_set_field16(&word, EEPROM_MAX_TX_POWER_24GHZ, MAX_G_TXPOWER);
  2581. if (rt2x00_get_field16(word, EEPROM_MAX_TX_POWER_5GHZ) == 0xff)
  2582. rt2x00_set_field16(&word, EEPROM_MAX_TX_POWER_5GHZ, MAX_A_TXPOWER);
  2583. rt2x00_eeprom_write(rt2x00dev, EEPROM_MAX_TX_POWER, word);
  2584. return 0;
  2585. }
  2586. EXPORT_SYMBOL_GPL(rt2800_validate_eeprom);
  2587. int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev)
  2588. {
  2589. u32 reg;
  2590. u16 value;
  2591. u16 eeprom;
  2592. /*
  2593. * Read EEPROM word for configuration.
  2594. */
  2595. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
  2596. /*
  2597. * Identify RF chipset.
  2598. */
  2599. value = rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RF_TYPE);
  2600. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  2601. rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
  2602. value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
  2603. if (!rt2x00_rt(rt2x00dev, RT2860) &&
  2604. !rt2x00_rt(rt2x00dev, RT2872) &&
  2605. !rt2x00_rt(rt2x00dev, RT2883) &&
  2606. !rt2x00_rt(rt2x00dev, RT3070) &&
  2607. !rt2x00_rt(rt2x00dev, RT3071) &&
  2608. !rt2x00_rt(rt2x00dev, RT3090) &&
  2609. !rt2x00_rt(rt2x00dev, RT3390) &&
  2610. !rt2x00_rt(rt2x00dev, RT3572)) {
  2611. ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
  2612. return -ENODEV;
  2613. }
  2614. if (!rt2x00_rf(rt2x00dev, RF2820) &&
  2615. !rt2x00_rf(rt2x00dev, RF2850) &&
  2616. !rt2x00_rf(rt2x00dev, RF2720) &&
  2617. !rt2x00_rf(rt2x00dev, RF2750) &&
  2618. !rt2x00_rf(rt2x00dev, RF3020) &&
  2619. !rt2x00_rf(rt2x00dev, RF2020) &&
  2620. !rt2x00_rf(rt2x00dev, RF3021) &&
  2621. !rt2x00_rf(rt2x00dev, RF3022) &&
  2622. !rt2x00_rf(rt2x00dev, RF3052) &&
  2623. !rt2x00_rf(rt2x00dev, RF3320)) {
  2624. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  2625. return -ENODEV;
  2626. }
  2627. /*
  2628. * Identify default antenna configuration.
  2629. */
  2630. rt2x00dev->default_ant.tx =
  2631. rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH);
  2632. rt2x00dev->default_ant.rx =
  2633. rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH);
  2634. /*
  2635. * Read frequency offset and RF programming sequence.
  2636. */
  2637. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
  2638. rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
  2639. /*
  2640. * Read external LNA informations.
  2641. */
  2642. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
  2643. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G))
  2644. __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
  2645. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G))
  2646. __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
  2647. /*
  2648. * Detect if this device has an hardware controlled radio.
  2649. */
  2650. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_HW_RADIO))
  2651. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  2652. /*
  2653. * Store led settings, for correct led behaviour.
  2654. */
  2655. #ifdef CONFIG_RT2X00_LIB_LEDS
  2656. rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  2657. rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
  2658. rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
  2659. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg);
  2660. #endif /* CONFIG_RT2X00_LIB_LEDS */
  2661. return 0;
  2662. }
  2663. EXPORT_SYMBOL_GPL(rt2800_init_eeprom);
  2664. /*
  2665. * RF value list for rt28xx
  2666. * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
  2667. */
  2668. static const struct rf_channel rf_vals[] = {
  2669. { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
  2670. { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
  2671. { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
  2672. { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
  2673. { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
  2674. { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
  2675. { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
  2676. { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
  2677. { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
  2678. { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
  2679. { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
  2680. { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
  2681. { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
  2682. { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
  2683. /* 802.11 UNI / HyperLan 2 */
  2684. { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
  2685. { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
  2686. { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
  2687. { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
  2688. { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
  2689. { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
  2690. { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
  2691. { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
  2692. { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
  2693. { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
  2694. { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
  2695. { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
  2696. /* 802.11 HyperLan 2 */
  2697. { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
  2698. { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
  2699. { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
  2700. { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
  2701. { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
  2702. { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
  2703. { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
  2704. { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
  2705. { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
  2706. { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
  2707. { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
  2708. { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
  2709. { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
  2710. { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
  2711. { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
  2712. { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
  2713. /* 802.11 UNII */
  2714. { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
  2715. { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
  2716. { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
  2717. { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
  2718. { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
  2719. { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
  2720. { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
  2721. { 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f },
  2722. { 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 },
  2723. { 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 },
  2724. { 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f },
  2725. /* 802.11 Japan */
  2726. { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
  2727. { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
  2728. { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
  2729. { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
  2730. { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
  2731. { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
  2732. { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
  2733. };
  2734. /*
  2735. * RF value list for rt3xxx
  2736. * Supports: 2.4 GHz (all) & 5.2 GHz (RF3052)
  2737. */
  2738. static const struct rf_channel rf_vals_3x[] = {
  2739. {1, 241, 2, 2 },
  2740. {2, 241, 2, 7 },
  2741. {3, 242, 2, 2 },
  2742. {4, 242, 2, 7 },
  2743. {5, 243, 2, 2 },
  2744. {6, 243, 2, 7 },
  2745. {7, 244, 2, 2 },
  2746. {8, 244, 2, 7 },
  2747. {9, 245, 2, 2 },
  2748. {10, 245, 2, 7 },
  2749. {11, 246, 2, 2 },
  2750. {12, 246, 2, 7 },
  2751. {13, 247, 2, 2 },
  2752. {14, 248, 2, 4 },
  2753. /* 802.11 UNI / HyperLan 2 */
  2754. {36, 0x56, 0, 4},
  2755. {38, 0x56, 0, 6},
  2756. {40, 0x56, 0, 8},
  2757. {44, 0x57, 0, 0},
  2758. {46, 0x57, 0, 2},
  2759. {48, 0x57, 0, 4},
  2760. {52, 0x57, 0, 8},
  2761. {54, 0x57, 0, 10},
  2762. {56, 0x58, 0, 0},
  2763. {60, 0x58, 0, 4},
  2764. {62, 0x58, 0, 6},
  2765. {64, 0x58, 0, 8},
  2766. /* 802.11 HyperLan 2 */
  2767. {100, 0x5b, 0, 8},
  2768. {102, 0x5b, 0, 10},
  2769. {104, 0x5c, 0, 0},
  2770. {108, 0x5c, 0, 4},
  2771. {110, 0x5c, 0, 6},
  2772. {112, 0x5c, 0, 8},
  2773. {116, 0x5d, 0, 0},
  2774. {118, 0x5d, 0, 2},
  2775. {120, 0x5d, 0, 4},
  2776. {124, 0x5d, 0, 8},
  2777. {126, 0x5d, 0, 10},
  2778. {128, 0x5e, 0, 0},
  2779. {132, 0x5e, 0, 4},
  2780. {134, 0x5e, 0, 6},
  2781. {136, 0x5e, 0, 8},
  2782. {140, 0x5f, 0, 0},
  2783. /* 802.11 UNII */
  2784. {149, 0x5f, 0, 9},
  2785. {151, 0x5f, 0, 11},
  2786. {153, 0x60, 0, 1},
  2787. {157, 0x60, 0, 5},
  2788. {159, 0x60, 0, 7},
  2789. {161, 0x60, 0, 9},
  2790. {165, 0x61, 0, 1},
  2791. {167, 0x61, 0, 3},
  2792. {169, 0x61, 0, 5},
  2793. {171, 0x61, 0, 7},
  2794. {173, 0x61, 0, 9},
  2795. };
  2796. int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  2797. {
  2798. struct hw_mode_spec *spec = &rt2x00dev->spec;
  2799. struct channel_info *info;
  2800. char *default_power1;
  2801. char *default_power2;
  2802. unsigned int i;
  2803. unsigned short max_power;
  2804. u16 eeprom;
  2805. /*
  2806. * Disable powersaving as default on PCI devices.
  2807. */
  2808. if (rt2x00_is_pci(rt2x00dev) || rt2x00_is_soc(rt2x00dev))
  2809. rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
  2810. /*
  2811. * Initialize all hw fields.
  2812. */
  2813. rt2x00dev->hw->flags =
  2814. IEEE80211_HW_SIGNAL_DBM |
  2815. IEEE80211_HW_SUPPORTS_PS |
  2816. IEEE80211_HW_PS_NULLFUNC_STACK |
  2817. IEEE80211_HW_AMPDU_AGGREGATION;
  2818. /*
  2819. * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING for USB devices
  2820. * unless we are capable of sending the buffered frames out after the
  2821. * DTIM transmission using rt2x00lib_beacondone. This will send out
  2822. * multicast and broadcast traffic immediately instead of buffering it
  2823. * infinitly and thus dropping it after some time.
  2824. */
  2825. if (!rt2x00_is_usb(rt2x00dev))
  2826. rt2x00dev->hw->flags |=
  2827. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  2828. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  2829. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  2830. rt2x00_eeprom_addr(rt2x00dev,
  2831. EEPROM_MAC_ADDR_0));
  2832. /*
  2833. * As rt2800 has a global fallback table we cannot specify
  2834. * more then one tx rate per frame but since the hw will
  2835. * try several rates (based on the fallback table) we should
  2836. * initialize max_report_rates to the maximum number of rates
  2837. * we are going to try. Otherwise mac80211 will truncate our
  2838. * reported tx rates and the rc algortihm will end up with
  2839. * incorrect data.
  2840. */
  2841. rt2x00dev->hw->max_rates = 1;
  2842. rt2x00dev->hw->max_report_rates = 7;
  2843. rt2x00dev->hw->max_rate_tries = 1;
  2844. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
  2845. /*
  2846. * Initialize hw_mode information.
  2847. */
  2848. spec->supported_bands = SUPPORT_BAND_2GHZ;
  2849. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  2850. if (rt2x00_rf(rt2x00dev, RF2820) ||
  2851. rt2x00_rf(rt2x00dev, RF2720)) {
  2852. spec->num_channels = 14;
  2853. spec->channels = rf_vals;
  2854. } else if (rt2x00_rf(rt2x00dev, RF2850) ||
  2855. rt2x00_rf(rt2x00dev, RF2750)) {
  2856. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  2857. spec->num_channels = ARRAY_SIZE(rf_vals);
  2858. spec->channels = rf_vals;
  2859. } else if (rt2x00_rf(rt2x00dev, RF3020) ||
  2860. rt2x00_rf(rt2x00dev, RF2020) ||
  2861. rt2x00_rf(rt2x00dev, RF3021) ||
  2862. rt2x00_rf(rt2x00dev, RF3022) ||
  2863. rt2x00_rf(rt2x00dev, RF3320)) {
  2864. spec->num_channels = 14;
  2865. spec->channels = rf_vals_3x;
  2866. } else if (rt2x00_rf(rt2x00dev, RF3052)) {
  2867. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  2868. spec->num_channels = ARRAY_SIZE(rf_vals_3x);
  2869. spec->channels = rf_vals_3x;
  2870. }
  2871. /*
  2872. * Initialize HT information.
  2873. */
  2874. if (!rt2x00_rf(rt2x00dev, RF2020))
  2875. spec->ht.ht_supported = true;
  2876. else
  2877. spec->ht.ht_supported = false;
  2878. spec->ht.cap =
  2879. IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  2880. IEEE80211_HT_CAP_GRN_FLD |
  2881. IEEE80211_HT_CAP_SGI_20 |
  2882. IEEE80211_HT_CAP_SGI_40;
  2883. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) >= 2)
  2884. spec->ht.cap |= IEEE80211_HT_CAP_TX_STBC;
  2885. spec->ht.cap |=
  2886. rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) <<
  2887. IEEE80211_HT_CAP_RX_STBC_SHIFT;
  2888. spec->ht.ampdu_factor = 3;
  2889. spec->ht.ampdu_density = 4;
  2890. spec->ht.mcs.tx_params =
  2891. IEEE80211_HT_MCS_TX_DEFINED |
  2892. IEEE80211_HT_MCS_TX_RX_DIFF |
  2893. ((rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) - 1) <<
  2894. IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
  2895. switch (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH)) {
  2896. case 3:
  2897. spec->ht.mcs.rx_mask[2] = 0xff;
  2898. case 2:
  2899. spec->ht.mcs.rx_mask[1] = 0xff;
  2900. case 1:
  2901. spec->ht.mcs.rx_mask[0] = 0xff;
  2902. spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
  2903. break;
  2904. }
  2905. /*
  2906. * Create channel information array
  2907. */
  2908. info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
  2909. if (!info)
  2910. return -ENOMEM;
  2911. spec->channels_info = info;
  2912. rt2x00_eeprom_read(rt2x00dev, EEPROM_MAX_TX_POWER, &eeprom);
  2913. max_power = rt2x00_get_field16(eeprom, EEPROM_MAX_TX_POWER_24GHZ);
  2914. default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
  2915. default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
  2916. for (i = 0; i < 14; i++) {
  2917. info[i].max_power = max_power;
  2918. info[i].default_power1 = TXPOWER_G_FROM_DEV(default_power1[i]);
  2919. info[i].default_power2 = TXPOWER_G_FROM_DEV(default_power2[i]);
  2920. }
  2921. if (spec->num_channels > 14) {
  2922. max_power = rt2x00_get_field16(eeprom, EEPROM_MAX_TX_POWER_5GHZ);
  2923. default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
  2924. default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);
  2925. for (i = 14; i < spec->num_channels; i++) {
  2926. info[i].max_power = max_power;
  2927. info[i].default_power1 = TXPOWER_A_FROM_DEV(default_power1[i]);
  2928. info[i].default_power2 = TXPOWER_A_FROM_DEV(default_power2[i]);
  2929. }
  2930. }
  2931. return 0;
  2932. }
  2933. EXPORT_SYMBOL_GPL(rt2800_probe_hw_mode);
  2934. /*
  2935. * IEEE80211 stack callback functions.
  2936. */
  2937. void rt2800_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx, u32 *iv32,
  2938. u16 *iv16)
  2939. {
  2940. struct rt2x00_dev *rt2x00dev = hw->priv;
  2941. struct mac_iveiv_entry iveiv_entry;
  2942. u32 offset;
  2943. offset = MAC_IVEIV_ENTRY(hw_key_idx);
  2944. rt2800_register_multiread(rt2x00dev, offset,
  2945. &iveiv_entry, sizeof(iveiv_entry));
  2946. memcpy(iv16, &iveiv_entry.iv[0], sizeof(*iv16));
  2947. memcpy(iv32, &iveiv_entry.iv[4], sizeof(*iv32));
  2948. }
  2949. EXPORT_SYMBOL_GPL(rt2800_get_tkip_seq);
  2950. int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
  2951. {
  2952. struct rt2x00_dev *rt2x00dev = hw->priv;
  2953. u32 reg;
  2954. bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);
  2955. rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
  2956. rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES, value);
  2957. rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
  2958. rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
  2959. rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, enabled);
  2960. rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
  2961. rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
  2962. rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, enabled);
  2963. rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
  2964. rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
  2965. rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, enabled);
  2966. rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
  2967. rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
  2968. rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, enabled);
  2969. rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
  2970. rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
  2971. rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, enabled);
  2972. rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
  2973. rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
  2974. rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, enabled);
  2975. rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
  2976. return 0;
  2977. }
  2978. EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold);
  2979. int rt2800_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
  2980. const struct ieee80211_tx_queue_params *params)
  2981. {
  2982. struct rt2x00_dev *rt2x00dev = hw->priv;
  2983. struct data_queue *queue;
  2984. struct rt2x00_field32 field;
  2985. int retval;
  2986. u32 reg;
  2987. u32 offset;
  2988. /*
  2989. * First pass the configuration through rt2x00lib, that will
  2990. * update the queue settings and validate the input. After that
  2991. * we are free to update the registers based on the value
  2992. * in the queue parameter.
  2993. */
  2994. retval = rt2x00mac_conf_tx(hw, queue_idx, params);
  2995. if (retval)
  2996. return retval;
  2997. /*
  2998. * We only need to perform additional register initialization
  2999. * for WMM queues/
  3000. */
  3001. if (queue_idx >= 4)
  3002. return 0;
  3003. queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  3004. /* Update WMM TXOP register */
  3005. offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
  3006. field.bit_offset = (queue_idx & 1) * 16;
  3007. field.bit_mask = 0xffff << field.bit_offset;
  3008. rt2800_register_read(rt2x00dev, offset, &reg);
  3009. rt2x00_set_field32(&reg, field, queue->txop);
  3010. rt2800_register_write(rt2x00dev, offset, reg);
  3011. /* Update WMM registers */
  3012. field.bit_offset = queue_idx * 4;
  3013. field.bit_mask = 0xf << field.bit_offset;
  3014. rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, &reg);
  3015. rt2x00_set_field32(&reg, field, queue->aifs);
  3016. rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);
  3017. rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, &reg);
  3018. rt2x00_set_field32(&reg, field, queue->cw_min);
  3019. rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);
  3020. rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, &reg);
  3021. rt2x00_set_field32(&reg, field, queue->cw_max);
  3022. rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);
  3023. /* Update EDCA registers */
  3024. offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);
  3025. rt2800_register_read(rt2x00dev, offset, &reg);
  3026. rt2x00_set_field32(&reg, EDCA_AC0_CFG_TX_OP, queue->txop);
  3027. rt2x00_set_field32(&reg, EDCA_AC0_CFG_AIFSN, queue->aifs);
  3028. rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMIN, queue->cw_min);
  3029. rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMAX, queue->cw_max);
  3030. rt2800_register_write(rt2x00dev, offset, reg);
  3031. return 0;
  3032. }
  3033. EXPORT_SYMBOL_GPL(rt2800_conf_tx);
  3034. u64 rt2800_get_tsf(struct ieee80211_hw *hw)
  3035. {
  3036. struct rt2x00_dev *rt2x00dev = hw->priv;
  3037. u64 tsf;
  3038. u32 reg;
  3039. rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, &reg);
  3040. tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
  3041. rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, &reg);
  3042. tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);
  3043. return tsf;
  3044. }
  3045. EXPORT_SYMBOL_GPL(rt2800_get_tsf);
  3046. int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
  3047. enum ieee80211_ampdu_mlme_action action,
  3048. struct ieee80211_sta *sta, u16 tid, u16 *ssn,
  3049. u8 buf_size)
  3050. {
  3051. int ret = 0;
  3052. switch (action) {
  3053. case IEEE80211_AMPDU_RX_START:
  3054. case IEEE80211_AMPDU_RX_STOP:
  3055. /*
  3056. * The hw itself takes care of setting up BlockAck mechanisms.
  3057. * So, we only have to allow mac80211 to nagotiate a BlockAck
  3058. * agreement. Once that is done, the hw will BlockAck incoming
  3059. * AMPDUs without further setup.
  3060. */
  3061. break;
  3062. case IEEE80211_AMPDU_TX_START:
  3063. ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
  3064. break;
  3065. case IEEE80211_AMPDU_TX_STOP:
  3066. ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
  3067. break;
  3068. case IEEE80211_AMPDU_TX_OPERATIONAL:
  3069. break;
  3070. default:
  3071. WARNING((struct rt2x00_dev *)hw->priv, "Unknown AMPDU action\n");
  3072. }
  3073. return ret;
  3074. }
  3075. EXPORT_SYMBOL_GPL(rt2800_ampdu_action);
  3076. int rt2800_get_survey(struct ieee80211_hw *hw, int idx,
  3077. struct survey_info *survey)
  3078. {
  3079. struct rt2x00_dev *rt2x00dev = hw->priv;
  3080. struct ieee80211_conf *conf = &hw->conf;
  3081. u32 idle, busy, busy_ext;
  3082. if (idx != 0)
  3083. return -ENOENT;
  3084. survey->channel = conf->channel;
  3085. rt2800_register_read(rt2x00dev, CH_IDLE_STA, &idle);
  3086. rt2800_register_read(rt2x00dev, CH_BUSY_STA, &busy);
  3087. rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &busy_ext);
  3088. if (idle || busy) {
  3089. survey->filled = SURVEY_INFO_CHANNEL_TIME |
  3090. SURVEY_INFO_CHANNEL_TIME_BUSY |
  3091. SURVEY_INFO_CHANNEL_TIME_EXT_BUSY;
  3092. survey->channel_time = (idle + busy) / 1000;
  3093. survey->channel_time_busy = busy / 1000;
  3094. survey->channel_time_ext_busy = busy_ext / 1000;
  3095. }
  3096. return 0;
  3097. }
  3098. EXPORT_SYMBOL_GPL(rt2800_get_survey);
  3099. MODULE_AUTHOR(DRV_PROJECT ", Bartlomiej Zolnierkiewicz");
  3100. MODULE_VERSION(DRV_VERSION);
  3101. MODULE_DESCRIPTION("Ralink RT2800 library");
  3102. MODULE_LICENSE("GPL");