hw.c 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620
  1. /*
  2. * Copyright (c) 2008-2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <asm/unaligned.h>
  19. #include "hw.h"
  20. #include "hw-ops.h"
  21. #include "rc.h"
  22. #include "ar9003_mac.h"
  23. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  24. MODULE_AUTHOR("Atheros Communications");
  25. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  26. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  27. MODULE_LICENSE("Dual BSD/GPL");
  28. static int __init ath9k_init(void)
  29. {
  30. return 0;
  31. }
  32. module_init(ath9k_init);
  33. static void __exit ath9k_exit(void)
  34. {
  35. return;
  36. }
  37. module_exit(ath9k_exit);
  38. /* Private hardware callbacks */
  39. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  40. {
  41. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  42. }
  43. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  46. }
  47. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  48. struct ath9k_channel *chan)
  49. {
  50. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  51. }
  52. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  53. {
  54. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  55. return;
  56. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  57. }
  58. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  59. {
  60. /* You will not have this callback if using the old ANI */
  61. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  62. return;
  63. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  64. }
  65. /********************/
  66. /* Helper Functions */
  67. /********************/
  68. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  69. {
  70. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  71. struct ath_common *common = ath9k_hw_common(ah);
  72. unsigned int clockrate;
  73. if (!ah->curchan) /* should really check for CCK instead */
  74. clockrate = ATH9K_CLOCK_RATE_CCK;
  75. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  76. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  77. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  78. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  79. else
  80. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  81. if (conf_is_ht40(conf))
  82. clockrate *= 2;
  83. common->clockrate = clockrate;
  84. }
  85. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  86. {
  87. struct ath_common *common = ath9k_hw_common(ah);
  88. return usecs * common->clockrate;
  89. }
  90. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  91. {
  92. int i;
  93. BUG_ON(timeout < AH_TIME_QUANTUM);
  94. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  95. if ((REG_READ(ah, reg) & mask) == val)
  96. return true;
  97. udelay(AH_TIME_QUANTUM);
  98. }
  99. ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
  100. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  101. timeout, reg, REG_READ(ah, reg), mask, val);
  102. return false;
  103. }
  104. EXPORT_SYMBOL(ath9k_hw_wait);
  105. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  106. {
  107. u32 retval;
  108. int i;
  109. for (i = 0, retval = 0; i < n; i++) {
  110. retval = (retval << 1) | (val & 1);
  111. val >>= 1;
  112. }
  113. return retval;
  114. }
  115. bool ath9k_get_channel_edges(struct ath_hw *ah,
  116. u16 flags, u16 *low,
  117. u16 *high)
  118. {
  119. struct ath9k_hw_capabilities *pCap = &ah->caps;
  120. if (flags & CHANNEL_5GHZ) {
  121. *low = pCap->low_5ghz_chan;
  122. *high = pCap->high_5ghz_chan;
  123. return true;
  124. }
  125. if ((flags & CHANNEL_2GHZ)) {
  126. *low = pCap->low_2ghz_chan;
  127. *high = pCap->high_2ghz_chan;
  128. return true;
  129. }
  130. return false;
  131. }
  132. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  133. u8 phy, int kbps,
  134. u32 frameLen, u16 rateix,
  135. bool shortPreamble)
  136. {
  137. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  138. if (kbps == 0)
  139. return 0;
  140. switch (phy) {
  141. case WLAN_RC_PHY_CCK:
  142. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  143. if (shortPreamble)
  144. phyTime >>= 1;
  145. numBits = frameLen << 3;
  146. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  147. break;
  148. case WLAN_RC_PHY_OFDM:
  149. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  150. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  151. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  152. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  153. txTime = OFDM_SIFS_TIME_QUARTER
  154. + OFDM_PREAMBLE_TIME_QUARTER
  155. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  156. } else if (ah->curchan &&
  157. IS_CHAN_HALF_RATE(ah->curchan)) {
  158. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  159. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  160. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  161. txTime = OFDM_SIFS_TIME_HALF +
  162. OFDM_PREAMBLE_TIME_HALF
  163. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  164. } else {
  165. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  166. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  167. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  168. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  169. + (numSymbols * OFDM_SYMBOL_TIME);
  170. }
  171. break;
  172. default:
  173. ath_err(ath9k_hw_common(ah),
  174. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  175. txTime = 0;
  176. break;
  177. }
  178. return txTime;
  179. }
  180. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  181. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  182. struct ath9k_channel *chan,
  183. struct chan_centers *centers)
  184. {
  185. int8_t extoff;
  186. if (!IS_CHAN_HT40(chan)) {
  187. centers->ctl_center = centers->ext_center =
  188. centers->synth_center = chan->channel;
  189. return;
  190. }
  191. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  192. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  193. centers->synth_center =
  194. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  195. extoff = 1;
  196. } else {
  197. centers->synth_center =
  198. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  199. extoff = -1;
  200. }
  201. centers->ctl_center =
  202. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  203. /* 25 MHz spacing is supported by hw but not on upper layers */
  204. centers->ext_center =
  205. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  206. }
  207. /******************/
  208. /* Chip Revisions */
  209. /******************/
  210. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  211. {
  212. u32 val;
  213. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  214. if (val == 0xFF) {
  215. val = REG_READ(ah, AR_SREV);
  216. ah->hw_version.macVersion =
  217. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  218. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  219. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  220. } else {
  221. if (!AR_SREV_9100(ah))
  222. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  223. ah->hw_version.macRev = val & AR_SREV_REVISION;
  224. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  225. ah->is_pciexpress = true;
  226. }
  227. }
  228. /************************************/
  229. /* HW Attach, Detach, Init Routines */
  230. /************************************/
  231. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  232. {
  233. if (!AR_SREV_5416(ah))
  234. return;
  235. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  236. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  237. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  238. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  239. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  240. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  241. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  242. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  243. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  244. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  245. }
  246. /* This should work for all families including legacy */
  247. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  248. {
  249. struct ath_common *common = ath9k_hw_common(ah);
  250. u32 regAddr[2] = { AR_STA_ID0 };
  251. u32 regHold[2];
  252. static const u32 patternData[4] = {
  253. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  254. };
  255. int i, j, loop_max;
  256. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  257. loop_max = 2;
  258. regAddr[1] = AR_PHY_BASE + (8 << 2);
  259. } else
  260. loop_max = 1;
  261. for (i = 0; i < loop_max; i++) {
  262. u32 addr = regAddr[i];
  263. u32 wrData, rdData;
  264. regHold[i] = REG_READ(ah, addr);
  265. for (j = 0; j < 0x100; j++) {
  266. wrData = (j << 16) | j;
  267. REG_WRITE(ah, addr, wrData);
  268. rdData = REG_READ(ah, addr);
  269. if (rdData != wrData) {
  270. ath_err(common,
  271. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  272. addr, wrData, rdData);
  273. return false;
  274. }
  275. }
  276. for (j = 0; j < 4; j++) {
  277. wrData = patternData[j];
  278. REG_WRITE(ah, addr, wrData);
  279. rdData = REG_READ(ah, addr);
  280. if (wrData != rdData) {
  281. ath_err(common,
  282. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  283. addr, wrData, rdData);
  284. return false;
  285. }
  286. }
  287. REG_WRITE(ah, regAddr[i], regHold[i]);
  288. }
  289. udelay(100);
  290. return true;
  291. }
  292. static void ath9k_hw_init_config(struct ath_hw *ah)
  293. {
  294. int i;
  295. ah->config.dma_beacon_response_time = 2;
  296. ah->config.sw_beacon_response_time = 10;
  297. ah->config.additional_swba_backoff = 0;
  298. ah->config.ack_6mb = 0x0;
  299. ah->config.cwm_ignore_extcca = 0;
  300. ah->config.pcie_powersave_enable = 0;
  301. ah->config.pcie_clock_req = 0;
  302. ah->config.pcie_waen = 0;
  303. ah->config.analog_shiftreg = 1;
  304. ah->config.enable_ani = true;
  305. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  306. ah->config.spurchans[i][0] = AR_NO_SPUR;
  307. ah->config.spurchans[i][1] = AR_NO_SPUR;
  308. }
  309. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  310. ah->config.ht_enable = 1;
  311. else
  312. ah->config.ht_enable = 0;
  313. /* PAPRD needs some more work to be enabled */
  314. ah->config.paprd_disable = 1;
  315. ah->config.rx_intr_mitigation = true;
  316. ah->config.pcieSerDesWrite = true;
  317. /*
  318. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  319. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  320. * This means we use it for all AR5416 devices, and the few
  321. * minor PCI AR9280 devices out there.
  322. *
  323. * Serialization is required because these devices do not handle
  324. * well the case of two concurrent reads/writes due to the latency
  325. * involved. During one read/write another read/write can be issued
  326. * on another CPU while the previous read/write may still be working
  327. * on our hardware, if we hit this case the hardware poops in a loop.
  328. * We prevent this by serializing reads and writes.
  329. *
  330. * This issue is not present on PCI-Express devices or pre-AR5416
  331. * devices (legacy, 802.11abg).
  332. */
  333. if (num_possible_cpus() > 1)
  334. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  335. }
  336. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  337. {
  338. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  339. regulatory->country_code = CTRY_DEFAULT;
  340. regulatory->power_limit = MAX_RATE_POWER;
  341. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  342. ah->hw_version.magic = AR5416_MAGIC;
  343. ah->hw_version.subvendorid = 0;
  344. ah->atim_window = 0;
  345. ah->sta_id1_defaults =
  346. AR_STA_ID1_CRPT_MIC_ENABLE |
  347. AR_STA_ID1_MCAST_KSRCH;
  348. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  349. ah->slottime = 20;
  350. ah->globaltxtimeout = (u32) -1;
  351. ah->power_mode = ATH9K_PM_UNDEFINED;
  352. }
  353. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  354. {
  355. struct ath_common *common = ath9k_hw_common(ah);
  356. u32 sum;
  357. int i;
  358. u16 eeval;
  359. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  360. sum = 0;
  361. for (i = 0; i < 3; i++) {
  362. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  363. sum += eeval;
  364. common->macaddr[2 * i] = eeval >> 8;
  365. common->macaddr[2 * i + 1] = eeval & 0xff;
  366. }
  367. if (sum == 0 || sum == 0xffff * 3)
  368. return -EADDRNOTAVAIL;
  369. return 0;
  370. }
  371. static int ath9k_hw_post_init(struct ath_hw *ah)
  372. {
  373. struct ath_common *common = ath9k_hw_common(ah);
  374. int ecode;
  375. if (common->bus_ops->ath_bus_type != ATH_USB) {
  376. if (!ath9k_hw_chip_test(ah))
  377. return -ENODEV;
  378. }
  379. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  380. ecode = ar9002_hw_rf_claim(ah);
  381. if (ecode != 0)
  382. return ecode;
  383. }
  384. ecode = ath9k_hw_eeprom_init(ah);
  385. if (ecode != 0)
  386. return ecode;
  387. ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  388. "Eeprom VER: %d, REV: %d\n",
  389. ah->eep_ops->get_eeprom_ver(ah),
  390. ah->eep_ops->get_eeprom_rev(ah));
  391. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  392. if (ecode) {
  393. ath_err(ath9k_hw_common(ah),
  394. "Failed allocating banks for external radio\n");
  395. ath9k_hw_rf_free_ext_banks(ah);
  396. return ecode;
  397. }
  398. if (!AR_SREV_9100(ah)) {
  399. ath9k_hw_ani_setup(ah);
  400. ath9k_hw_ani_init(ah);
  401. }
  402. return 0;
  403. }
  404. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  405. {
  406. if (AR_SREV_9300_20_OR_LATER(ah))
  407. ar9003_hw_attach_ops(ah);
  408. else
  409. ar9002_hw_attach_ops(ah);
  410. }
  411. /* Called for all hardware families */
  412. static int __ath9k_hw_init(struct ath_hw *ah)
  413. {
  414. struct ath_common *common = ath9k_hw_common(ah);
  415. int r = 0;
  416. if (ah->hw_version.devid == AR5416_AR9100_DEVID)
  417. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  418. ath9k_hw_read_revisions(ah);
  419. /*
  420. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  421. * We need to do this to avoid RMW of this register. We cannot
  422. * read the reg when chip is asleep.
  423. */
  424. ah->WARegVal = REG_READ(ah, AR_WA);
  425. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  426. AR_WA_ASPM_TIMER_BASED_DISABLE);
  427. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  428. ath_err(common, "Couldn't reset chip\n");
  429. return -EIO;
  430. }
  431. ath9k_hw_init_defaults(ah);
  432. ath9k_hw_init_config(ah);
  433. ath9k_hw_attach_ops(ah);
  434. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  435. ath_err(common, "Couldn't wakeup chip\n");
  436. return -EIO;
  437. }
  438. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  439. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  440. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  441. !ah->is_pciexpress)) {
  442. ah->config.serialize_regmode =
  443. SER_REG_MODE_ON;
  444. } else {
  445. ah->config.serialize_regmode =
  446. SER_REG_MODE_OFF;
  447. }
  448. }
  449. ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  450. ah->config.serialize_regmode);
  451. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  452. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  453. else
  454. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  455. switch (ah->hw_version.macVersion) {
  456. case AR_SREV_VERSION_5416_PCI:
  457. case AR_SREV_VERSION_5416_PCIE:
  458. case AR_SREV_VERSION_9160:
  459. case AR_SREV_VERSION_9100:
  460. case AR_SREV_VERSION_9280:
  461. case AR_SREV_VERSION_9285:
  462. case AR_SREV_VERSION_9287:
  463. case AR_SREV_VERSION_9271:
  464. case AR_SREV_VERSION_9300:
  465. case AR_SREV_VERSION_9485:
  466. break;
  467. default:
  468. ath_err(common,
  469. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  470. ah->hw_version.macVersion, ah->hw_version.macRev);
  471. return -EOPNOTSUPP;
  472. }
  473. if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
  474. ah->is_pciexpress = false;
  475. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  476. ath9k_hw_init_cal_settings(ah);
  477. ah->ani_function = ATH9K_ANI_ALL;
  478. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  479. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  480. if (!AR_SREV_9300_20_OR_LATER(ah))
  481. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  482. ath9k_hw_init_mode_regs(ah);
  483. if (ah->is_pciexpress)
  484. ath9k_hw_configpcipowersave(ah, 0, 0);
  485. else
  486. ath9k_hw_disablepcie(ah);
  487. if (!AR_SREV_9300_20_OR_LATER(ah))
  488. ar9002_hw_cck_chan14_spread(ah);
  489. r = ath9k_hw_post_init(ah);
  490. if (r)
  491. return r;
  492. ath9k_hw_init_mode_gain_regs(ah);
  493. r = ath9k_hw_fill_cap_info(ah);
  494. if (r)
  495. return r;
  496. r = ath9k_hw_init_macaddr(ah);
  497. if (r) {
  498. ath_err(common, "Failed to initialize MAC address\n");
  499. return r;
  500. }
  501. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  502. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  503. else
  504. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  505. ah->bb_watchdog_timeout_ms = 25;
  506. common->state = ATH_HW_INITIALIZED;
  507. return 0;
  508. }
  509. int ath9k_hw_init(struct ath_hw *ah)
  510. {
  511. int ret;
  512. struct ath_common *common = ath9k_hw_common(ah);
  513. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  514. switch (ah->hw_version.devid) {
  515. case AR5416_DEVID_PCI:
  516. case AR5416_DEVID_PCIE:
  517. case AR5416_AR9100_DEVID:
  518. case AR9160_DEVID_PCI:
  519. case AR9280_DEVID_PCI:
  520. case AR9280_DEVID_PCIE:
  521. case AR9285_DEVID_PCIE:
  522. case AR9287_DEVID_PCI:
  523. case AR9287_DEVID_PCIE:
  524. case AR2427_DEVID_PCIE:
  525. case AR9300_DEVID_PCIE:
  526. case AR9300_DEVID_AR9485_PCIE:
  527. break;
  528. default:
  529. if (common->bus_ops->ath_bus_type == ATH_USB)
  530. break;
  531. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  532. ah->hw_version.devid);
  533. return -EOPNOTSUPP;
  534. }
  535. ret = __ath9k_hw_init(ah);
  536. if (ret) {
  537. ath_err(common,
  538. "Unable to initialize hardware; initialization status: %d\n",
  539. ret);
  540. return ret;
  541. }
  542. return 0;
  543. }
  544. EXPORT_SYMBOL(ath9k_hw_init);
  545. static void ath9k_hw_init_qos(struct ath_hw *ah)
  546. {
  547. ENABLE_REGWRITE_BUFFER(ah);
  548. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  549. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  550. REG_WRITE(ah, AR_QOS_NO_ACK,
  551. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  552. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  553. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  554. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  555. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  556. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  557. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  558. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  559. REGWRITE_BUFFER_FLUSH(ah);
  560. }
  561. unsigned long ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  562. {
  563. REG_WRITE(ah, PLL3, (REG_READ(ah, PLL3) & ~(PLL3_DO_MEAS_MASK)));
  564. udelay(100);
  565. REG_WRITE(ah, PLL3, (REG_READ(ah, PLL3) | PLL3_DO_MEAS_MASK));
  566. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
  567. udelay(100);
  568. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  569. }
  570. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  571. #define DPLL2_KD_VAL 0x3D
  572. #define DPLL2_KI_VAL 0x06
  573. #define DPLL3_PHASE_SHIFT_VAL 0x1
  574. static void ath9k_hw_init_pll(struct ath_hw *ah,
  575. struct ath9k_channel *chan)
  576. {
  577. u32 pll;
  578. if (AR_SREV_9485(ah)) {
  579. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
  580. REG_WRITE(ah, AR_CH0_DDR_DPLL2, 0x19e82f01);
  581. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  582. AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
  583. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  584. udelay(100);
  585. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
  586. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  587. AR_CH0_DPLL2_KD, DPLL2_KD_VAL);
  588. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  589. AR_CH0_DPLL2_KI, DPLL2_KI_VAL);
  590. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  591. AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
  592. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c);
  593. udelay(110);
  594. }
  595. pll = ath9k_hw_compute_pll_control(ah, chan);
  596. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  597. /* Switch the core clock for ar9271 to 117Mhz */
  598. if (AR_SREV_9271(ah)) {
  599. udelay(500);
  600. REG_WRITE(ah, 0x50040, 0x304);
  601. }
  602. udelay(RTC_PLL_SETTLE_DELAY);
  603. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  604. }
  605. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  606. enum nl80211_iftype opmode)
  607. {
  608. u32 imr_reg = AR_IMR_TXERR |
  609. AR_IMR_TXURN |
  610. AR_IMR_RXERR |
  611. AR_IMR_RXORN |
  612. AR_IMR_BCNMISC;
  613. if (AR_SREV_9300_20_OR_LATER(ah)) {
  614. imr_reg |= AR_IMR_RXOK_HP;
  615. if (ah->config.rx_intr_mitigation)
  616. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  617. else
  618. imr_reg |= AR_IMR_RXOK_LP;
  619. } else {
  620. if (ah->config.rx_intr_mitigation)
  621. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  622. else
  623. imr_reg |= AR_IMR_RXOK;
  624. }
  625. if (ah->config.tx_intr_mitigation)
  626. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  627. else
  628. imr_reg |= AR_IMR_TXOK;
  629. if (opmode == NL80211_IFTYPE_AP)
  630. imr_reg |= AR_IMR_MIB;
  631. ENABLE_REGWRITE_BUFFER(ah);
  632. REG_WRITE(ah, AR_IMR, imr_reg);
  633. ah->imrs2_reg |= AR_IMR_S2_GTT;
  634. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  635. if (!AR_SREV_9100(ah)) {
  636. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  637. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  638. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  639. }
  640. REGWRITE_BUFFER_FLUSH(ah);
  641. if (AR_SREV_9300_20_OR_LATER(ah)) {
  642. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  643. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  644. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  645. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  646. }
  647. }
  648. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  649. {
  650. u32 val = ath9k_hw_mac_to_clks(ah, us);
  651. val = min(val, (u32) 0xFFFF);
  652. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  653. }
  654. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  655. {
  656. u32 val = ath9k_hw_mac_to_clks(ah, us);
  657. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  658. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  659. }
  660. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  661. {
  662. u32 val = ath9k_hw_mac_to_clks(ah, us);
  663. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  664. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  665. }
  666. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  667. {
  668. if (tu > 0xFFFF) {
  669. ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
  670. "bad global tx timeout %u\n", tu);
  671. ah->globaltxtimeout = (u32) -1;
  672. return false;
  673. } else {
  674. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  675. ah->globaltxtimeout = tu;
  676. return true;
  677. }
  678. }
  679. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  680. {
  681. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  682. int acktimeout;
  683. int slottime;
  684. int sifstime;
  685. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  686. ah->misc_mode);
  687. if (ah->misc_mode != 0)
  688. REG_WRITE(ah, AR_PCU_MISC,
  689. REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
  690. if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
  691. sifstime = 16;
  692. else
  693. sifstime = 10;
  694. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  695. slottime = ah->slottime + 3 * ah->coverage_class;
  696. acktimeout = slottime + sifstime;
  697. /*
  698. * Workaround for early ACK timeouts, add an offset to match the
  699. * initval's 64us ack timeout value.
  700. * This was initially only meant to work around an issue with delayed
  701. * BA frames in some implementations, but it has been found to fix ACK
  702. * timeout issues in other cases as well.
  703. */
  704. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
  705. acktimeout += 64 - sifstime - ah->slottime;
  706. ath9k_hw_setslottime(ah, ah->slottime);
  707. ath9k_hw_set_ack_timeout(ah, acktimeout);
  708. ath9k_hw_set_cts_timeout(ah, acktimeout);
  709. if (ah->globaltxtimeout != (u32) -1)
  710. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  711. }
  712. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  713. void ath9k_hw_deinit(struct ath_hw *ah)
  714. {
  715. struct ath_common *common = ath9k_hw_common(ah);
  716. if (common->state < ATH_HW_INITIALIZED)
  717. goto free_hw;
  718. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  719. free_hw:
  720. ath9k_hw_rf_free_ext_banks(ah);
  721. }
  722. EXPORT_SYMBOL(ath9k_hw_deinit);
  723. /*******/
  724. /* INI */
  725. /*******/
  726. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  727. {
  728. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  729. if (IS_CHAN_B(chan))
  730. ctl |= CTL_11B;
  731. else if (IS_CHAN_G(chan))
  732. ctl |= CTL_11G;
  733. else
  734. ctl |= CTL_11A;
  735. return ctl;
  736. }
  737. /****************************************/
  738. /* Reset and Channel Switching Routines */
  739. /****************************************/
  740. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  741. {
  742. struct ath_common *common = ath9k_hw_common(ah);
  743. u32 regval;
  744. ENABLE_REGWRITE_BUFFER(ah);
  745. /*
  746. * set AHB_MODE not to do cacheline prefetches
  747. */
  748. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  749. regval = REG_READ(ah, AR_AHB_MODE);
  750. REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
  751. }
  752. /*
  753. * let mac dma reads be in 128 byte chunks
  754. */
  755. regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
  756. REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
  757. REGWRITE_BUFFER_FLUSH(ah);
  758. /*
  759. * Restore TX Trigger Level to its pre-reset value.
  760. * The initial value depends on whether aggregation is enabled, and is
  761. * adjusted whenever underruns are detected.
  762. */
  763. if (!AR_SREV_9300_20_OR_LATER(ah))
  764. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  765. ENABLE_REGWRITE_BUFFER(ah);
  766. /*
  767. * let mac dma writes be in 128 byte chunks
  768. */
  769. regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
  770. REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
  771. /*
  772. * Setup receive FIFO threshold to hold off TX activities
  773. */
  774. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  775. if (AR_SREV_9300_20_OR_LATER(ah)) {
  776. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  777. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  778. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  779. ah->caps.rx_status_len);
  780. }
  781. /*
  782. * reduce the number of usable entries in PCU TXBUF to avoid
  783. * wrap around issues.
  784. */
  785. if (AR_SREV_9285(ah)) {
  786. /* For AR9285 the number of Fifos are reduced to half.
  787. * So set the usable tx buf size also to half to
  788. * avoid data/delimiter underruns
  789. */
  790. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  791. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  792. } else if (!AR_SREV_9271(ah)) {
  793. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  794. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  795. }
  796. REGWRITE_BUFFER_FLUSH(ah);
  797. if (AR_SREV_9300_20_OR_LATER(ah))
  798. ath9k_hw_reset_txstatus_ring(ah);
  799. }
  800. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  801. {
  802. u32 val;
  803. val = REG_READ(ah, AR_STA_ID1);
  804. val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
  805. switch (opmode) {
  806. case NL80211_IFTYPE_AP:
  807. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
  808. | AR_STA_ID1_KSRCH_MODE);
  809. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  810. break;
  811. case NL80211_IFTYPE_ADHOC:
  812. case NL80211_IFTYPE_MESH_POINT:
  813. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
  814. | AR_STA_ID1_KSRCH_MODE);
  815. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  816. break;
  817. case NL80211_IFTYPE_STATION:
  818. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  819. break;
  820. default:
  821. if (ah->is_monitoring)
  822. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  823. break;
  824. }
  825. }
  826. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  827. u32 *coef_mantissa, u32 *coef_exponent)
  828. {
  829. u32 coef_exp, coef_man;
  830. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  831. if ((coef_scaled >> coef_exp) & 0x1)
  832. break;
  833. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  834. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  835. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  836. *coef_exponent = coef_exp - 16;
  837. }
  838. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  839. {
  840. u32 rst_flags;
  841. u32 tmpReg;
  842. if (AR_SREV_9100(ah)) {
  843. u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
  844. val &= ~AR_RTC_DERIVED_CLK_PERIOD;
  845. val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
  846. REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
  847. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  848. }
  849. ENABLE_REGWRITE_BUFFER(ah);
  850. if (AR_SREV_9300_20_OR_LATER(ah)) {
  851. REG_WRITE(ah, AR_WA, ah->WARegVal);
  852. udelay(10);
  853. }
  854. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  855. AR_RTC_FORCE_WAKE_ON_INT);
  856. if (AR_SREV_9100(ah)) {
  857. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  858. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  859. } else {
  860. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  861. if (tmpReg &
  862. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  863. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  864. u32 val;
  865. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  866. val = AR_RC_HOSTIF;
  867. if (!AR_SREV_9300_20_OR_LATER(ah))
  868. val |= AR_RC_AHB;
  869. REG_WRITE(ah, AR_RC, val);
  870. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  871. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  872. rst_flags = AR_RTC_RC_MAC_WARM;
  873. if (type == ATH9K_RESET_COLD)
  874. rst_flags |= AR_RTC_RC_MAC_COLD;
  875. }
  876. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  877. REGWRITE_BUFFER_FLUSH(ah);
  878. udelay(50);
  879. REG_WRITE(ah, AR_RTC_RC, 0);
  880. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  881. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  882. "RTC stuck in MAC reset\n");
  883. return false;
  884. }
  885. if (!AR_SREV_9100(ah))
  886. REG_WRITE(ah, AR_RC, 0);
  887. if (AR_SREV_9100(ah))
  888. udelay(50);
  889. return true;
  890. }
  891. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  892. {
  893. ENABLE_REGWRITE_BUFFER(ah);
  894. if (AR_SREV_9300_20_OR_LATER(ah)) {
  895. REG_WRITE(ah, AR_WA, ah->WARegVal);
  896. udelay(10);
  897. }
  898. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  899. AR_RTC_FORCE_WAKE_ON_INT);
  900. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  901. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  902. REG_WRITE(ah, AR_RTC_RESET, 0);
  903. udelay(2);
  904. REGWRITE_BUFFER_FLUSH(ah);
  905. if (!AR_SREV_9300_20_OR_LATER(ah))
  906. udelay(2);
  907. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  908. REG_WRITE(ah, AR_RC, 0);
  909. REG_WRITE(ah, AR_RTC_RESET, 1);
  910. if (!ath9k_hw_wait(ah,
  911. AR_RTC_STATUS,
  912. AR_RTC_STATUS_M,
  913. AR_RTC_STATUS_ON,
  914. AH_WAIT_TIMEOUT)) {
  915. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  916. "RTC not waking up\n");
  917. return false;
  918. }
  919. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  920. }
  921. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  922. {
  923. if (AR_SREV_9300_20_OR_LATER(ah)) {
  924. REG_WRITE(ah, AR_WA, ah->WARegVal);
  925. udelay(10);
  926. }
  927. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  928. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  929. switch (type) {
  930. case ATH9K_RESET_POWER_ON:
  931. return ath9k_hw_set_reset_power_on(ah);
  932. case ATH9K_RESET_WARM:
  933. case ATH9K_RESET_COLD:
  934. return ath9k_hw_set_reset(ah, type);
  935. default:
  936. return false;
  937. }
  938. }
  939. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  940. struct ath9k_channel *chan)
  941. {
  942. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  943. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  944. return false;
  945. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  946. return false;
  947. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  948. return false;
  949. ah->chip_fullsleep = false;
  950. ath9k_hw_init_pll(ah, chan);
  951. ath9k_hw_set_rfmode(ah, chan);
  952. return true;
  953. }
  954. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  955. struct ath9k_channel *chan)
  956. {
  957. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  958. struct ath_common *common = ath9k_hw_common(ah);
  959. struct ieee80211_channel *channel = chan->chan;
  960. u32 qnum;
  961. int r;
  962. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  963. if (ath9k_hw_numtxpending(ah, qnum)) {
  964. ath_dbg(common, ATH_DBG_QUEUE,
  965. "Transmit frames pending on queue %d\n", qnum);
  966. return false;
  967. }
  968. }
  969. if (!ath9k_hw_rfbus_req(ah)) {
  970. ath_err(common, "Could not kill baseband RX\n");
  971. return false;
  972. }
  973. ath9k_hw_set_channel_regs(ah, chan);
  974. r = ath9k_hw_rf_set_freq(ah, chan);
  975. if (r) {
  976. ath_err(common, "Failed to set channel\n");
  977. return false;
  978. }
  979. ath9k_hw_set_clockrate(ah);
  980. ah->eep_ops->set_txpower(ah, chan,
  981. ath9k_regd_get_ctl(regulatory, chan),
  982. channel->max_antenna_gain * 2,
  983. channel->max_power * 2,
  984. min((u32) MAX_RATE_POWER,
  985. (u32) regulatory->power_limit), false);
  986. ath9k_hw_rfbus_done(ah);
  987. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  988. ath9k_hw_set_delta_slope(ah, chan);
  989. ath9k_hw_spur_mitigate_freq(ah, chan);
  990. return true;
  991. }
  992. bool ath9k_hw_check_alive(struct ath_hw *ah)
  993. {
  994. int count = 50;
  995. u32 reg;
  996. if (AR_SREV_9285_12_OR_LATER(ah))
  997. return true;
  998. do {
  999. reg = REG_READ(ah, AR_OBS_BUS_1);
  1000. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1001. continue;
  1002. switch (reg & 0x7E000B00) {
  1003. case 0x1E000000:
  1004. case 0x52000B00:
  1005. case 0x18000B00:
  1006. continue;
  1007. default:
  1008. return true;
  1009. }
  1010. } while (count-- > 0);
  1011. return false;
  1012. }
  1013. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1014. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1015. struct ath9k_hw_cal_data *caldata, bool bChannelChange)
  1016. {
  1017. struct ath_common *common = ath9k_hw_common(ah);
  1018. u32 saveLedState;
  1019. struct ath9k_channel *curchan = ah->curchan;
  1020. u32 saveDefAntenna;
  1021. u32 macStaId1;
  1022. u64 tsf = 0;
  1023. int i, r;
  1024. ah->txchainmask = common->tx_chainmask;
  1025. ah->rxchainmask = common->rx_chainmask;
  1026. if ((common->bus_ops->ath_bus_type != ATH_USB) && !ah->chip_fullsleep) {
  1027. ath9k_hw_abortpcurecv(ah);
  1028. if (!ath9k_hw_stopdmarecv(ah)) {
  1029. ath_dbg(common, ATH_DBG_XMIT,
  1030. "Failed to stop receive dma\n");
  1031. bChannelChange = false;
  1032. }
  1033. }
  1034. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1035. return -EIO;
  1036. if (curchan && !ah->chip_fullsleep)
  1037. ath9k_hw_getnf(ah, curchan);
  1038. ah->caldata = caldata;
  1039. if (caldata &&
  1040. (chan->channel != caldata->channel ||
  1041. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1042. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1043. /* Operating channel changed, reset channel calibration data */
  1044. memset(caldata, 0, sizeof(*caldata));
  1045. ath9k_init_nfcal_hist_buffer(ah, chan);
  1046. }
  1047. if (bChannelChange &&
  1048. (ah->chip_fullsleep != true) &&
  1049. (ah->curchan != NULL) &&
  1050. (chan->channel != ah->curchan->channel) &&
  1051. ((chan->channelFlags & CHANNEL_ALL) ==
  1052. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1053. (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
  1054. if (ath9k_hw_channel_change(ah, chan)) {
  1055. ath9k_hw_loadnf(ah, ah->curchan);
  1056. ath9k_hw_start_nfcal(ah, true);
  1057. if (AR_SREV_9271(ah))
  1058. ar9002_hw_load_ani_reg(ah, chan);
  1059. return 0;
  1060. }
  1061. }
  1062. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1063. if (saveDefAntenna == 0)
  1064. saveDefAntenna = 1;
  1065. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1066. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1067. if (AR_SREV_9100(ah) ||
  1068. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1069. tsf = ath9k_hw_gettsf64(ah);
  1070. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1071. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1072. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1073. ath9k_hw_mark_phy_inactive(ah);
  1074. ah->paprd_table_write_done = false;
  1075. /* Only required on the first reset */
  1076. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1077. REG_WRITE(ah,
  1078. AR9271_RESET_POWER_DOWN_CONTROL,
  1079. AR9271_RADIO_RF_RST);
  1080. udelay(50);
  1081. }
  1082. if (!ath9k_hw_chip_reset(ah, chan)) {
  1083. ath_err(common, "Chip reset failed\n");
  1084. return -EINVAL;
  1085. }
  1086. /* Only required on the first reset */
  1087. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1088. ah->htc_reset_init = false;
  1089. REG_WRITE(ah,
  1090. AR9271_RESET_POWER_DOWN_CONTROL,
  1091. AR9271_GATE_MAC_CTL);
  1092. udelay(50);
  1093. }
  1094. /* Restore TSF */
  1095. if (tsf)
  1096. ath9k_hw_settsf64(ah, tsf);
  1097. if (AR_SREV_9280_20_OR_LATER(ah))
  1098. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1099. if (!AR_SREV_9300_20_OR_LATER(ah))
  1100. ar9002_hw_enable_async_fifo(ah);
  1101. r = ath9k_hw_process_ini(ah, chan);
  1102. if (r)
  1103. return r;
  1104. /*
  1105. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1106. * right after the chip reset. When that happens, write a new
  1107. * value after the initvals have been applied, with an offset
  1108. * based on measured time difference
  1109. */
  1110. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1111. tsf += 1500;
  1112. ath9k_hw_settsf64(ah, tsf);
  1113. }
  1114. /* Setup MFP options for CCMP */
  1115. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1116. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1117. * frames when constructing CCMP AAD. */
  1118. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1119. 0xc7ff);
  1120. ah->sw_mgmt_crypto = false;
  1121. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1122. /* Disable hardware crypto for management frames */
  1123. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1124. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1125. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1126. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1127. ah->sw_mgmt_crypto = true;
  1128. } else
  1129. ah->sw_mgmt_crypto = true;
  1130. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1131. ath9k_hw_set_delta_slope(ah, chan);
  1132. ath9k_hw_spur_mitigate_freq(ah, chan);
  1133. ah->eep_ops->set_board_values(ah, chan);
  1134. ENABLE_REGWRITE_BUFFER(ah);
  1135. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1136. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1137. | macStaId1
  1138. | AR_STA_ID1_RTS_USE_DEF
  1139. | (ah->config.
  1140. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1141. | ah->sta_id1_defaults);
  1142. ath_hw_setbssidmask(common);
  1143. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1144. ath9k_hw_write_associd(ah);
  1145. REG_WRITE(ah, AR_ISR, ~0);
  1146. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1147. REGWRITE_BUFFER_FLUSH(ah);
  1148. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1149. r = ath9k_hw_rf_set_freq(ah, chan);
  1150. if (r)
  1151. return r;
  1152. ath9k_hw_set_clockrate(ah);
  1153. ENABLE_REGWRITE_BUFFER(ah);
  1154. for (i = 0; i < AR_NUM_DCU; i++)
  1155. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1156. REGWRITE_BUFFER_FLUSH(ah);
  1157. ah->intr_txqs = 0;
  1158. for (i = 0; i < ah->caps.total_queues; i++)
  1159. ath9k_hw_resettxqueue(ah, i);
  1160. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1161. ath9k_hw_ani_cache_ini_regs(ah);
  1162. ath9k_hw_init_qos(ah);
  1163. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1164. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1165. ath9k_hw_init_global_settings(ah);
  1166. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  1167. ar9002_hw_update_async_fifo(ah);
  1168. ar9002_hw_enable_wep_aggregation(ah);
  1169. }
  1170. REG_WRITE(ah, AR_STA_ID1,
  1171. REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  1172. ath9k_hw_set_dma(ah);
  1173. REG_WRITE(ah, AR_OBS, 8);
  1174. if (ah->config.rx_intr_mitigation) {
  1175. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1176. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1177. }
  1178. if (ah->config.tx_intr_mitigation) {
  1179. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1180. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1181. }
  1182. ath9k_hw_init_bb(ah, chan);
  1183. if (!ath9k_hw_init_cal(ah, chan))
  1184. return -EIO;
  1185. ENABLE_REGWRITE_BUFFER(ah);
  1186. ath9k_hw_restore_chainmask(ah);
  1187. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1188. REGWRITE_BUFFER_FLUSH(ah);
  1189. /*
  1190. * For big endian systems turn on swapping for descriptors
  1191. */
  1192. if (AR_SREV_9100(ah)) {
  1193. u32 mask;
  1194. mask = REG_READ(ah, AR_CFG);
  1195. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1196. ath_dbg(common, ATH_DBG_RESET,
  1197. "CFG Byte Swap Set 0x%x\n", mask);
  1198. } else {
  1199. mask =
  1200. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1201. REG_WRITE(ah, AR_CFG, mask);
  1202. ath_dbg(common, ATH_DBG_RESET,
  1203. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1204. }
  1205. } else {
  1206. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1207. /* Configure AR9271 target WLAN */
  1208. if (AR_SREV_9271(ah))
  1209. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1210. else
  1211. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1212. }
  1213. #ifdef __BIG_ENDIAN
  1214. else
  1215. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1216. #endif
  1217. }
  1218. if (ah->btcoex_hw.enabled)
  1219. ath9k_hw_btcoex_enable(ah);
  1220. if (AR_SREV_9300_20_OR_LATER(ah))
  1221. ar9003_hw_bb_watchdog_config(ah);
  1222. return 0;
  1223. }
  1224. EXPORT_SYMBOL(ath9k_hw_reset);
  1225. /******************************/
  1226. /* Power Management (Chipset) */
  1227. /******************************/
  1228. /*
  1229. * Notify Power Mgt is disabled in self-generated frames.
  1230. * If requested, force chip to sleep.
  1231. */
  1232. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1233. {
  1234. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1235. if (setChip) {
  1236. /*
  1237. * Clear the RTC force wake bit to allow the
  1238. * mac to go to sleep.
  1239. */
  1240. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1241. AR_RTC_FORCE_WAKE_EN);
  1242. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1243. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1244. /* Shutdown chip. Active low */
  1245. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
  1246. REG_CLR_BIT(ah, (AR_RTC_RESET),
  1247. AR_RTC_RESET_EN);
  1248. }
  1249. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1250. if (AR_SREV_9300_20_OR_LATER(ah))
  1251. REG_WRITE(ah, AR_WA,
  1252. ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1253. }
  1254. /*
  1255. * Notify Power Management is enabled in self-generating
  1256. * frames. If request, set power mode of chip to
  1257. * auto/normal. Duration in units of 128us (1/8 TU).
  1258. */
  1259. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1260. {
  1261. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1262. if (setChip) {
  1263. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1264. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1265. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1266. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1267. AR_RTC_FORCE_WAKE_ON_INT);
  1268. } else {
  1269. /*
  1270. * Clear the RTC force wake bit to allow the
  1271. * mac to go to sleep.
  1272. */
  1273. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1274. AR_RTC_FORCE_WAKE_EN);
  1275. }
  1276. }
  1277. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1278. if (AR_SREV_9300_20_OR_LATER(ah))
  1279. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1280. }
  1281. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1282. {
  1283. u32 val;
  1284. int i;
  1285. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1286. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1287. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1288. udelay(10);
  1289. }
  1290. if (setChip) {
  1291. if ((REG_READ(ah, AR_RTC_STATUS) &
  1292. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1293. if (ath9k_hw_set_reset_reg(ah,
  1294. ATH9K_RESET_POWER_ON) != true) {
  1295. return false;
  1296. }
  1297. if (!AR_SREV_9300_20_OR_LATER(ah))
  1298. ath9k_hw_init_pll(ah, NULL);
  1299. }
  1300. if (AR_SREV_9100(ah))
  1301. REG_SET_BIT(ah, AR_RTC_RESET,
  1302. AR_RTC_RESET_EN);
  1303. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1304. AR_RTC_FORCE_WAKE_EN);
  1305. udelay(50);
  1306. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1307. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1308. if (val == AR_RTC_STATUS_ON)
  1309. break;
  1310. udelay(50);
  1311. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1312. AR_RTC_FORCE_WAKE_EN);
  1313. }
  1314. if (i == 0) {
  1315. ath_err(ath9k_hw_common(ah),
  1316. "Failed to wakeup in %uus\n",
  1317. POWER_UP_TIME / 20);
  1318. return false;
  1319. }
  1320. }
  1321. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1322. return true;
  1323. }
  1324. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1325. {
  1326. struct ath_common *common = ath9k_hw_common(ah);
  1327. int status = true, setChip = true;
  1328. static const char *modes[] = {
  1329. "AWAKE",
  1330. "FULL-SLEEP",
  1331. "NETWORK SLEEP",
  1332. "UNDEFINED"
  1333. };
  1334. if (ah->power_mode == mode)
  1335. return status;
  1336. ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
  1337. modes[ah->power_mode], modes[mode]);
  1338. switch (mode) {
  1339. case ATH9K_PM_AWAKE:
  1340. status = ath9k_hw_set_power_awake(ah, setChip);
  1341. break;
  1342. case ATH9K_PM_FULL_SLEEP:
  1343. ath9k_set_power_sleep(ah, setChip);
  1344. ah->chip_fullsleep = true;
  1345. break;
  1346. case ATH9K_PM_NETWORK_SLEEP:
  1347. ath9k_set_power_network_sleep(ah, setChip);
  1348. break;
  1349. default:
  1350. ath_err(common, "Unknown power mode %u\n", mode);
  1351. return false;
  1352. }
  1353. ah->power_mode = mode;
  1354. /*
  1355. * XXX: If this warning never comes up after a while then
  1356. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1357. * ath9k_hw_setpower() return type void.
  1358. */
  1359. if (!(ah->ah_flags & AH_UNPLUGGED))
  1360. ATH_DBG_WARN_ON_ONCE(!status);
  1361. return status;
  1362. }
  1363. EXPORT_SYMBOL(ath9k_hw_setpower);
  1364. /*******************/
  1365. /* Beacon Handling */
  1366. /*******************/
  1367. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1368. {
  1369. int flags = 0;
  1370. ENABLE_REGWRITE_BUFFER(ah);
  1371. switch (ah->opmode) {
  1372. case NL80211_IFTYPE_ADHOC:
  1373. case NL80211_IFTYPE_MESH_POINT:
  1374. REG_SET_BIT(ah, AR_TXCFG,
  1375. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1376. REG_WRITE(ah, AR_NEXT_NDP_TIMER,
  1377. TU_TO_USEC(next_beacon +
  1378. (ah->atim_window ? ah->
  1379. atim_window : 1)));
  1380. flags |= AR_NDP_TIMER_EN;
  1381. case NL80211_IFTYPE_AP:
  1382. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  1383. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
  1384. TU_TO_USEC(next_beacon -
  1385. ah->config.
  1386. dma_beacon_response_time));
  1387. REG_WRITE(ah, AR_NEXT_SWBA,
  1388. TU_TO_USEC(next_beacon -
  1389. ah->config.
  1390. sw_beacon_response_time));
  1391. flags |=
  1392. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1393. break;
  1394. default:
  1395. ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
  1396. "%s: unsupported opmode: %d\n",
  1397. __func__, ah->opmode);
  1398. return;
  1399. break;
  1400. }
  1401. REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  1402. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  1403. REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
  1404. REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
  1405. REGWRITE_BUFFER_FLUSH(ah);
  1406. beacon_period &= ~ATH9K_BEACON_ENA;
  1407. if (beacon_period & ATH9K_BEACON_RESET_TSF) {
  1408. ath9k_hw_reset_tsf(ah);
  1409. }
  1410. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1411. }
  1412. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1413. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1414. const struct ath9k_beacon_state *bs)
  1415. {
  1416. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1417. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1418. struct ath_common *common = ath9k_hw_common(ah);
  1419. ENABLE_REGWRITE_BUFFER(ah);
  1420. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1421. REG_WRITE(ah, AR_BEACON_PERIOD,
  1422. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1423. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1424. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1425. REGWRITE_BUFFER_FLUSH(ah);
  1426. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1427. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1428. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  1429. if (bs->bs_sleepduration > beaconintval)
  1430. beaconintval = bs->bs_sleepduration;
  1431. dtimperiod = bs->bs_dtimperiod;
  1432. if (bs->bs_sleepduration > dtimperiod)
  1433. dtimperiod = bs->bs_sleepduration;
  1434. if (beaconintval == dtimperiod)
  1435. nextTbtt = bs->bs_nextdtim;
  1436. else
  1437. nextTbtt = bs->bs_nexttbtt;
  1438. ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1439. ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  1440. ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  1441. ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  1442. ENABLE_REGWRITE_BUFFER(ah);
  1443. REG_WRITE(ah, AR_NEXT_DTIM,
  1444. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1445. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1446. REG_WRITE(ah, AR_SLEEP1,
  1447. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1448. | AR_SLEEP1_ASSUME_DTIM);
  1449. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1450. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1451. else
  1452. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1453. REG_WRITE(ah, AR_SLEEP2,
  1454. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1455. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1456. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1457. REGWRITE_BUFFER_FLUSH(ah);
  1458. REG_SET_BIT(ah, AR_TIMER_MODE,
  1459. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1460. AR_DTIM_TIMER_EN);
  1461. /* TSF Out of Range Threshold */
  1462. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1463. }
  1464. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1465. /*******************/
  1466. /* HW Capabilities */
  1467. /*******************/
  1468. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1469. {
  1470. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1471. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1472. struct ath_common *common = ath9k_hw_common(ah);
  1473. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  1474. u16 capField = 0, eeval;
  1475. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1476. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1477. regulatory->current_rd = eeval;
  1478. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  1479. if (AR_SREV_9285_12_OR_LATER(ah))
  1480. eeval |= AR9285_RDEXT_DEFAULT;
  1481. regulatory->current_rd_ext = eeval;
  1482. capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
  1483. if (ah->opmode != NL80211_IFTYPE_AP &&
  1484. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1485. if (regulatory->current_rd == 0x64 ||
  1486. regulatory->current_rd == 0x65)
  1487. regulatory->current_rd += 5;
  1488. else if (regulatory->current_rd == 0x41)
  1489. regulatory->current_rd = 0x43;
  1490. ath_dbg(common, ATH_DBG_REGULATORY,
  1491. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  1492. }
  1493. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1494. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1495. ath_err(common,
  1496. "no band has been marked as supported in EEPROM\n");
  1497. return -EINVAL;
  1498. }
  1499. if (eeval & AR5416_OPFLAGS_11A)
  1500. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1501. if (eeval & AR5416_OPFLAGS_11G)
  1502. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1503. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1504. /*
  1505. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1506. * the EEPROM.
  1507. */
  1508. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1509. !(eeval & AR5416_OPFLAGS_11A) &&
  1510. !(AR_SREV_9271(ah)))
  1511. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1512. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1513. else
  1514. /* Use rx_chainmask from EEPROM. */
  1515. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1516. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1517. /* enable key search for every frame in an aggregate */
  1518. if (AR_SREV_9300_20_OR_LATER(ah))
  1519. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1520. pCap->low_2ghz_chan = 2312;
  1521. pCap->high_2ghz_chan = 2732;
  1522. pCap->low_5ghz_chan = 4920;
  1523. pCap->high_5ghz_chan = 6100;
  1524. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1525. if (ah->config.ht_enable)
  1526. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1527. else
  1528. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1529. if (capField & AR_EEPROM_EEPCAP_MAXQCU)
  1530. pCap->total_queues =
  1531. MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
  1532. else
  1533. pCap->total_queues = ATH9K_NUM_TX_QUEUES;
  1534. if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
  1535. pCap->keycache_size =
  1536. 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
  1537. else
  1538. pCap->keycache_size = AR_KEYTABLE_SIZE;
  1539. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  1540. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
  1541. else
  1542. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  1543. if (AR_SREV_9271(ah))
  1544. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1545. else if (AR_DEVID_7010(ah))
  1546. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1547. else if (AR_SREV_9285_12_OR_LATER(ah))
  1548. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1549. else if (AR_SREV_9280_20_OR_LATER(ah))
  1550. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1551. else
  1552. pCap->num_gpio_pins = AR_NUM_GPIO;
  1553. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  1554. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  1555. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1556. } else {
  1557. pCap->rts_aggr_limit = (8 * 1024);
  1558. }
  1559. pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
  1560. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1561. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1562. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1563. ah->rfkill_gpio =
  1564. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1565. ah->rfkill_polarity =
  1566. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1567. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1568. }
  1569. #endif
  1570. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1571. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1572. else
  1573. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1574. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1575. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1576. else
  1577. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1578. if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
  1579. pCap->reg_cap =
  1580. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  1581. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
  1582. AR_EEPROM_EEREGCAP_EN_KK_U2 |
  1583. AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
  1584. } else {
  1585. pCap->reg_cap =
  1586. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  1587. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
  1588. }
  1589. /* Advertise midband for AR5416 with FCC midband set in eeprom */
  1590. if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
  1591. AR_SREV_5416(ah))
  1592. pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
  1593. if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
  1594. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
  1595. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
  1596. if (AR_SREV_9285(ah)) {
  1597. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1598. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
  1599. } else {
  1600. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  1601. }
  1602. } else {
  1603. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  1604. }
  1605. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1606. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  1607. if (!AR_SREV_9485(ah))
  1608. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  1609. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1610. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1611. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1612. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1613. pCap->txs_len = sizeof(struct ar9003_txs);
  1614. if (!ah->config.paprd_disable &&
  1615. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  1616. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  1617. } else {
  1618. pCap->tx_desc_len = sizeof(struct ath_desc);
  1619. if (AR_SREV_9280_20(ah) &&
  1620. ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
  1621. AR5416_EEP_MINOR_VER_16) ||
  1622. ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
  1623. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1624. }
  1625. if (AR_SREV_9300_20_OR_LATER(ah))
  1626. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1627. if (AR_SREV_9300_20_OR_LATER(ah))
  1628. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  1629. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  1630. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  1631. if (AR_SREV_9285(ah))
  1632. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  1633. ant_div_ctl1 =
  1634. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  1635. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  1636. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  1637. }
  1638. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1639. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  1640. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  1641. }
  1642. if (AR_SREV_9485_10(ah)) {
  1643. pCap->pcie_lcr_extsync_en = true;
  1644. pCap->pcie_lcr_offset = 0x80;
  1645. }
  1646. tx_chainmask = pCap->tx_chainmask;
  1647. rx_chainmask = pCap->rx_chainmask;
  1648. while (tx_chainmask || rx_chainmask) {
  1649. if (tx_chainmask & BIT(0))
  1650. pCap->max_txchains++;
  1651. if (rx_chainmask & BIT(0))
  1652. pCap->max_rxchains++;
  1653. tx_chainmask >>= 1;
  1654. rx_chainmask >>= 1;
  1655. }
  1656. return 0;
  1657. }
  1658. /****************************/
  1659. /* GPIO / RFKILL / Antennae */
  1660. /****************************/
  1661. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  1662. u32 gpio, u32 type)
  1663. {
  1664. int addr;
  1665. u32 gpio_shift, tmp;
  1666. if (gpio > 11)
  1667. addr = AR_GPIO_OUTPUT_MUX3;
  1668. else if (gpio > 5)
  1669. addr = AR_GPIO_OUTPUT_MUX2;
  1670. else
  1671. addr = AR_GPIO_OUTPUT_MUX1;
  1672. gpio_shift = (gpio % 6) * 5;
  1673. if (AR_SREV_9280_20_OR_LATER(ah)
  1674. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  1675. REG_RMW(ah, addr, (type << gpio_shift),
  1676. (0x1f << gpio_shift));
  1677. } else {
  1678. tmp = REG_READ(ah, addr);
  1679. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  1680. tmp &= ~(0x1f << gpio_shift);
  1681. tmp |= (type << gpio_shift);
  1682. REG_WRITE(ah, addr, tmp);
  1683. }
  1684. }
  1685. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  1686. {
  1687. u32 gpio_shift;
  1688. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  1689. if (AR_DEVID_7010(ah)) {
  1690. gpio_shift = gpio;
  1691. REG_RMW(ah, AR7010_GPIO_OE,
  1692. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  1693. (AR7010_GPIO_OE_MASK << gpio_shift));
  1694. return;
  1695. }
  1696. gpio_shift = gpio << 1;
  1697. REG_RMW(ah,
  1698. AR_GPIO_OE_OUT,
  1699. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  1700. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1701. }
  1702. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  1703. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  1704. {
  1705. #define MS_REG_READ(x, y) \
  1706. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  1707. if (gpio >= ah->caps.num_gpio_pins)
  1708. return 0xffffffff;
  1709. if (AR_DEVID_7010(ah)) {
  1710. u32 val;
  1711. val = REG_READ(ah, AR7010_GPIO_IN);
  1712. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  1713. } else if (AR_SREV_9300_20_OR_LATER(ah))
  1714. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  1715. AR_GPIO_BIT(gpio)) != 0;
  1716. else if (AR_SREV_9271(ah))
  1717. return MS_REG_READ(AR9271, gpio) != 0;
  1718. else if (AR_SREV_9287_11_OR_LATER(ah))
  1719. return MS_REG_READ(AR9287, gpio) != 0;
  1720. else if (AR_SREV_9285_12_OR_LATER(ah))
  1721. return MS_REG_READ(AR9285, gpio) != 0;
  1722. else if (AR_SREV_9280_20_OR_LATER(ah))
  1723. return MS_REG_READ(AR928X, gpio) != 0;
  1724. else
  1725. return MS_REG_READ(AR, gpio) != 0;
  1726. }
  1727. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  1728. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  1729. u32 ah_signal_type)
  1730. {
  1731. u32 gpio_shift;
  1732. if (AR_DEVID_7010(ah)) {
  1733. gpio_shift = gpio;
  1734. REG_RMW(ah, AR7010_GPIO_OE,
  1735. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  1736. (AR7010_GPIO_OE_MASK << gpio_shift));
  1737. return;
  1738. }
  1739. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  1740. gpio_shift = 2 * gpio;
  1741. REG_RMW(ah,
  1742. AR_GPIO_OE_OUT,
  1743. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  1744. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1745. }
  1746. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  1747. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  1748. {
  1749. if (AR_DEVID_7010(ah)) {
  1750. val = val ? 0 : 1;
  1751. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  1752. AR_GPIO_BIT(gpio));
  1753. return;
  1754. }
  1755. if (AR_SREV_9271(ah))
  1756. val = ~val;
  1757. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  1758. AR_GPIO_BIT(gpio));
  1759. }
  1760. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  1761. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  1762. {
  1763. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  1764. }
  1765. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  1766. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  1767. {
  1768. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  1769. }
  1770. EXPORT_SYMBOL(ath9k_hw_setantenna);
  1771. /*********************/
  1772. /* General Operation */
  1773. /*********************/
  1774. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  1775. {
  1776. u32 bits = REG_READ(ah, AR_RX_FILTER);
  1777. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  1778. if (phybits & AR_PHY_ERR_RADAR)
  1779. bits |= ATH9K_RX_FILTER_PHYRADAR;
  1780. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  1781. bits |= ATH9K_RX_FILTER_PHYERR;
  1782. return bits;
  1783. }
  1784. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  1785. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  1786. {
  1787. u32 phybits;
  1788. ENABLE_REGWRITE_BUFFER(ah);
  1789. REG_WRITE(ah, AR_RX_FILTER, bits);
  1790. phybits = 0;
  1791. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  1792. phybits |= AR_PHY_ERR_RADAR;
  1793. if (bits & ATH9K_RX_FILTER_PHYERR)
  1794. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  1795. REG_WRITE(ah, AR_PHY_ERR, phybits);
  1796. if (phybits)
  1797. REG_WRITE(ah, AR_RXCFG,
  1798. REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
  1799. else
  1800. REG_WRITE(ah, AR_RXCFG,
  1801. REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
  1802. REGWRITE_BUFFER_FLUSH(ah);
  1803. }
  1804. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  1805. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  1806. {
  1807. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1808. return false;
  1809. ath9k_hw_init_pll(ah, NULL);
  1810. return true;
  1811. }
  1812. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  1813. bool ath9k_hw_disable(struct ath_hw *ah)
  1814. {
  1815. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1816. return false;
  1817. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  1818. return false;
  1819. ath9k_hw_init_pll(ah, NULL);
  1820. return true;
  1821. }
  1822. EXPORT_SYMBOL(ath9k_hw_disable);
  1823. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  1824. {
  1825. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1826. struct ath9k_channel *chan = ah->curchan;
  1827. struct ieee80211_channel *channel = chan->chan;
  1828. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  1829. ah->eep_ops->set_txpower(ah, chan,
  1830. ath9k_regd_get_ctl(regulatory, chan),
  1831. channel->max_antenna_gain * 2,
  1832. channel->max_power * 2,
  1833. min((u32) MAX_RATE_POWER,
  1834. (u32) regulatory->power_limit), test);
  1835. }
  1836. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  1837. void ath9k_hw_setopmode(struct ath_hw *ah)
  1838. {
  1839. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1840. }
  1841. EXPORT_SYMBOL(ath9k_hw_setopmode);
  1842. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  1843. {
  1844. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  1845. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  1846. }
  1847. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  1848. void ath9k_hw_write_associd(struct ath_hw *ah)
  1849. {
  1850. struct ath_common *common = ath9k_hw_common(ah);
  1851. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  1852. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  1853. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  1854. }
  1855. EXPORT_SYMBOL(ath9k_hw_write_associd);
  1856. #define ATH9K_MAX_TSF_READ 10
  1857. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  1858. {
  1859. u32 tsf_lower, tsf_upper1, tsf_upper2;
  1860. int i;
  1861. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  1862. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  1863. tsf_lower = REG_READ(ah, AR_TSF_L32);
  1864. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  1865. if (tsf_upper2 == tsf_upper1)
  1866. break;
  1867. tsf_upper1 = tsf_upper2;
  1868. }
  1869. WARN_ON( i == ATH9K_MAX_TSF_READ );
  1870. return (((u64)tsf_upper1 << 32) | tsf_lower);
  1871. }
  1872. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  1873. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  1874. {
  1875. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  1876. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  1877. }
  1878. EXPORT_SYMBOL(ath9k_hw_settsf64);
  1879. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  1880. {
  1881. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  1882. AH_TSF_WRITE_TIMEOUT))
  1883. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  1884. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  1885. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  1886. }
  1887. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  1888. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  1889. {
  1890. if (setting)
  1891. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  1892. else
  1893. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  1894. }
  1895. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  1896. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  1897. {
  1898. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  1899. u32 macmode;
  1900. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  1901. macmode = AR_2040_JOINED_RX_CLEAR;
  1902. else
  1903. macmode = 0;
  1904. REG_WRITE(ah, AR_2040_MODE, macmode);
  1905. }
  1906. /* HW Generic timers configuration */
  1907. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  1908. {
  1909. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1910. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1911. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1912. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1913. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1914. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1915. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1916. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1917. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  1918. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  1919. AR_NDP2_TIMER_MODE, 0x0002},
  1920. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  1921. AR_NDP2_TIMER_MODE, 0x0004},
  1922. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  1923. AR_NDP2_TIMER_MODE, 0x0008},
  1924. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  1925. AR_NDP2_TIMER_MODE, 0x0010},
  1926. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  1927. AR_NDP2_TIMER_MODE, 0x0020},
  1928. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  1929. AR_NDP2_TIMER_MODE, 0x0040},
  1930. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  1931. AR_NDP2_TIMER_MODE, 0x0080}
  1932. };
  1933. /* HW generic timer primitives */
  1934. /* compute and clear index of rightmost 1 */
  1935. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  1936. {
  1937. u32 b;
  1938. b = *mask;
  1939. b &= (0-b);
  1940. *mask &= ~b;
  1941. b *= debruijn32;
  1942. b >>= 27;
  1943. return timer_table->gen_timer_index[b];
  1944. }
  1945. static u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  1946. {
  1947. return REG_READ(ah, AR_TSF_L32);
  1948. }
  1949. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  1950. void (*trigger)(void *),
  1951. void (*overflow)(void *),
  1952. void *arg,
  1953. u8 timer_index)
  1954. {
  1955. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1956. struct ath_gen_timer *timer;
  1957. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  1958. if (timer == NULL) {
  1959. ath_err(ath9k_hw_common(ah),
  1960. "Failed to allocate memory for hw timer[%d]\n",
  1961. timer_index);
  1962. return NULL;
  1963. }
  1964. /* allocate a hardware generic timer slot */
  1965. timer_table->timers[timer_index] = timer;
  1966. timer->index = timer_index;
  1967. timer->trigger = trigger;
  1968. timer->overflow = overflow;
  1969. timer->arg = arg;
  1970. return timer;
  1971. }
  1972. EXPORT_SYMBOL(ath_gen_timer_alloc);
  1973. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  1974. struct ath_gen_timer *timer,
  1975. u32 timer_next,
  1976. u32 timer_period)
  1977. {
  1978. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1979. u32 tsf;
  1980. BUG_ON(!timer_period);
  1981. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  1982. tsf = ath9k_hw_gettsf32(ah);
  1983. ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  1984. "current tsf %x period %x timer_next %x\n",
  1985. tsf, timer_period, timer_next);
  1986. /*
  1987. * Pull timer_next forward if the current TSF already passed it
  1988. * because of software latency
  1989. */
  1990. if (timer_next < tsf)
  1991. timer_next = tsf + timer_period;
  1992. /*
  1993. * Program generic timer registers
  1994. */
  1995. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  1996. timer_next);
  1997. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  1998. timer_period);
  1999. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2000. gen_tmr_configuration[timer->index].mode_mask);
  2001. /* Enable both trigger and thresh interrupt masks */
  2002. REG_SET_BIT(ah, AR_IMR_S5,
  2003. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2004. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2005. }
  2006. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2007. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2008. {
  2009. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2010. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2011. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2012. return;
  2013. }
  2014. /* Clear generic timer enable bits. */
  2015. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2016. gen_tmr_configuration[timer->index].mode_mask);
  2017. /* Disable both trigger and thresh interrupt masks */
  2018. REG_CLR_BIT(ah, AR_IMR_S5,
  2019. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2020. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2021. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2022. }
  2023. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2024. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2025. {
  2026. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2027. /* free the hardware generic timer slot */
  2028. timer_table->timers[timer->index] = NULL;
  2029. kfree(timer);
  2030. }
  2031. EXPORT_SYMBOL(ath_gen_timer_free);
  2032. /*
  2033. * Generic Timer Interrupts handling
  2034. */
  2035. void ath_gen_timer_isr(struct ath_hw *ah)
  2036. {
  2037. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2038. struct ath_gen_timer *timer;
  2039. struct ath_common *common = ath9k_hw_common(ah);
  2040. u32 trigger_mask, thresh_mask, index;
  2041. /* get hardware generic timer interrupt status */
  2042. trigger_mask = ah->intr_gen_timer_trigger;
  2043. thresh_mask = ah->intr_gen_timer_thresh;
  2044. trigger_mask &= timer_table->timer_mask.val;
  2045. thresh_mask &= timer_table->timer_mask.val;
  2046. trigger_mask &= ~thresh_mask;
  2047. while (thresh_mask) {
  2048. index = rightmost_index(timer_table, &thresh_mask);
  2049. timer = timer_table->timers[index];
  2050. BUG_ON(!timer);
  2051. ath_dbg(common, ATH_DBG_HWTIMER,
  2052. "TSF overflow for Gen timer %d\n", index);
  2053. timer->overflow(timer->arg);
  2054. }
  2055. while (trigger_mask) {
  2056. index = rightmost_index(timer_table, &trigger_mask);
  2057. timer = timer_table->timers[index];
  2058. BUG_ON(!timer);
  2059. ath_dbg(common, ATH_DBG_HWTIMER,
  2060. "Gen timer[%d] trigger\n", index);
  2061. timer->trigger(timer->arg);
  2062. }
  2063. }
  2064. EXPORT_SYMBOL(ath_gen_timer_isr);
  2065. /********/
  2066. /* HTC */
  2067. /********/
  2068. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  2069. {
  2070. ah->htc_reset_init = true;
  2071. }
  2072. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  2073. static struct {
  2074. u32 version;
  2075. const char * name;
  2076. } ath_mac_bb_names[] = {
  2077. /* Devices with external radios */
  2078. { AR_SREV_VERSION_5416_PCI, "5416" },
  2079. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2080. { AR_SREV_VERSION_9100, "9100" },
  2081. { AR_SREV_VERSION_9160, "9160" },
  2082. /* Single-chip solutions */
  2083. { AR_SREV_VERSION_9280, "9280" },
  2084. { AR_SREV_VERSION_9285, "9285" },
  2085. { AR_SREV_VERSION_9287, "9287" },
  2086. { AR_SREV_VERSION_9271, "9271" },
  2087. { AR_SREV_VERSION_9300, "9300" },
  2088. };
  2089. /* For devices with external radios */
  2090. static struct {
  2091. u16 version;
  2092. const char * name;
  2093. } ath_rf_names[] = {
  2094. { 0, "5133" },
  2095. { AR_RAD5133_SREV_MAJOR, "5133" },
  2096. { AR_RAD5122_SREV_MAJOR, "5122" },
  2097. { AR_RAD2133_SREV_MAJOR, "2133" },
  2098. { AR_RAD2122_SREV_MAJOR, "2122" }
  2099. };
  2100. /*
  2101. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2102. */
  2103. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2104. {
  2105. int i;
  2106. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2107. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2108. return ath_mac_bb_names[i].name;
  2109. }
  2110. }
  2111. return "????";
  2112. }
  2113. /*
  2114. * Return the RF name. "????" is returned if the RF is unknown.
  2115. * Used for devices with external radios.
  2116. */
  2117. static const char *ath9k_hw_rf_name(u16 rf_version)
  2118. {
  2119. int i;
  2120. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2121. if (ath_rf_names[i].version == rf_version) {
  2122. return ath_rf_names[i].name;
  2123. }
  2124. }
  2125. return "????";
  2126. }
  2127. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2128. {
  2129. int used;
  2130. /* chipsets >= AR9280 are single-chip */
  2131. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2132. used = snprintf(hw_name, len,
  2133. "Atheros AR%s Rev:%x",
  2134. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2135. ah->hw_version.macRev);
  2136. }
  2137. else {
  2138. used = snprintf(hw_name, len,
  2139. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2140. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2141. ah->hw_version.macRev,
  2142. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2143. AR_RADIO_SREV_MAJOR)),
  2144. ah->hw_version.phyRev);
  2145. }
  2146. hw_name[used] = '\0';
  2147. }
  2148. EXPORT_SYMBOL(ath9k_hw_name);