vxge-config.c 135 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134
  1. /******************************************************************************
  2. * This software may be used and distributed according to the terms of
  3. * the GNU General Public License (GPL), incorporated herein by reference.
  4. * Drivers based on or derived from this code fall under the GPL and must
  5. * retain the authorship, copyright and license notice. This file is not
  6. * a complete program and may only be used when the entire operating
  7. * system is licensed under the GPL.
  8. * See the file COPYING in this distribution for more information.
  9. *
  10. * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
  11. * Virtualized Server Adapter.
  12. * Copyright(c) 2002-2010 Exar Corp.
  13. ******************************************************************************/
  14. #include <linux/vmalloc.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/pci.h>
  17. #include <linux/pci_hotplug.h>
  18. #include <linux/slab.h>
  19. #include "vxge-traffic.h"
  20. #include "vxge-config.h"
  21. #include "vxge-main.h"
  22. #define VXGE_HW_VPATH_STATS_PIO_READ(offset) { \
  23. status = __vxge_hw_vpath_stats_access(vpath, \
  24. VXGE_HW_STATS_OP_READ, \
  25. offset, \
  26. &val64); \
  27. if (status != VXGE_HW_OK) \
  28. return status; \
  29. }
  30. static void
  31. vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem *vp_reg)
  32. {
  33. u64 val64;
  34. val64 = readq(&vp_reg->rxmac_vcfg0);
  35. val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
  36. writeq(val64, &vp_reg->rxmac_vcfg0);
  37. val64 = readq(&vp_reg->rxmac_vcfg0);
  38. }
  39. /*
  40. * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
  41. */
  42. int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device *hldev, u32 vp_id)
  43. {
  44. struct vxge_hw_vpath_reg __iomem *vp_reg;
  45. struct __vxge_hw_virtualpath *vpath;
  46. u64 val64, rxd_count, rxd_spat;
  47. int count = 0, total_count = 0;
  48. vpath = &hldev->virtual_paths[vp_id];
  49. vp_reg = vpath->vp_reg;
  50. vxge_hw_vpath_set_zero_rx_frm_len(vp_reg);
  51. /* Check that the ring controller for this vpath has enough free RxDs
  52. * to send frames to the host. This is done by reading the
  53. * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
  54. * RXD_SPAT value for the vpath.
  55. */
  56. val64 = readq(&vp_reg->prc_cfg6);
  57. rxd_spat = VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64) + 1;
  58. /* Use a factor of 2 when comparing rxd_count against rxd_spat for some
  59. * leg room.
  60. */
  61. rxd_spat *= 2;
  62. do {
  63. mdelay(1);
  64. rxd_count = readq(&vp_reg->prc_rxd_doorbell);
  65. /* Check that the ring controller for this vpath does
  66. * not have any frame in its pipeline.
  67. */
  68. val64 = readq(&vp_reg->frm_in_progress_cnt);
  69. if ((rxd_count <= rxd_spat) || (val64 > 0))
  70. count = 0;
  71. else
  72. count++;
  73. total_count++;
  74. } while ((count < VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT) &&
  75. (total_count < VXGE_HW_MAX_POLLING_COUNT));
  76. if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
  77. printk(KERN_ALERT "%s: Still Receiving traffic. Abort wait\n",
  78. __func__);
  79. return total_count;
  80. }
  81. /* vxge_hw_device_wait_receive_idle - This function waits until all frames
  82. * stored in the frame buffer for each vpath assigned to the given
  83. * function (hldev) have been sent to the host.
  84. */
  85. void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device *hldev)
  86. {
  87. int i, total_count = 0;
  88. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  89. if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
  90. continue;
  91. total_count += vxge_hw_vpath_wait_receive_idle(hldev, i);
  92. if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
  93. break;
  94. }
  95. }
  96. /*
  97. * __vxge_hw_device_register_poll
  98. * Will poll certain register for specified amount of time.
  99. * Will poll until masked bit is not cleared.
  100. */
  101. static enum vxge_hw_status
  102. __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
  103. {
  104. u64 val64;
  105. u32 i = 0;
  106. enum vxge_hw_status ret = VXGE_HW_FAIL;
  107. udelay(10);
  108. do {
  109. val64 = readq(reg);
  110. if (!(val64 & mask))
  111. return VXGE_HW_OK;
  112. udelay(100);
  113. } while (++i <= 9);
  114. i = 0;
  115. do {
  116. val64 = readq(reg);
  117. if (!(val64 & mask))
  118. return VXGE_HW_OK;
  119. mdelay(1);
  120. } while (++i <= max_millis);
  121. return ret;
  122. }
  123. static inline enum vxge_hw_status
  124. __vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
  125. u64 mask, u32 max_millis)
  126. {
  127. __vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
  128. wmb();
  129. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
  130. wmb();
  131. return __vxge_hw_device_register_poll(addr, mask, max_millis);
  132. }
  133. static enum vxge_hw_status
  134. vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath *vpath, u32 action,
  135. u32 fw_memo, u32 offset, u64 *data0, u64 *data1,
  136. u64 *steer_ctrl)
  137. {
  138. struct vxge_hw_vpath_reg __iomem *vp_reg;
  139. enum vxge_hw_status status;
  140. u64 val64;
  141. u32 retry = 0, max_retry = 100;
  142. vp_reg = vpath->vp_reg;
  143. if (vpath->vp_open) {
  144. max_retry = 3;
  145. spin_lock(&vpath->lock);
  146. }
  147. writeq(*data0, &vp_reg->rts_access_steer_data0);
  148. writeq(*data1, &vp_reg->rts_access_steer_data1);
  149. wmb();
  150. val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
  151. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo) |
  152. VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset) |
  153. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
  154. *steer_ctrl;
  155. status = __vxge_hw_pio_mem_write64(val64,
  156. &vp_reg->rts_access_steer_ctrl,
  157. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
  158. VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  159. /* The __vxge_hw_device_register_poll can udelay for a significant
  160. * amount of time, blocking other proccess from the CPU. If it delays
  161. * for ~5secs, a NMI error can occur. A way around this is to give up
  162. * the processor via msleep, but this is not allowed is under lock.
  163. * So, only allow it to sleep for ~4secs if open. Otherwise, delay for
  164. * 1sec and sleep for 10ms until the firmware operation has completed
  165. * or timed-out.
  166. */
  167. while ((status != VXGE_HW_OK) && retry++ < max_retry) {
  168. if (!vpath->vp_open)
  169. msleep(20);
  170. status = __vxge_hw_device_register_poll(
  171. &vp_reg->rts_access_steer_ctrl,
  172. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
  173. VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  174. }
  175. if (status != VXGE_HW_OK)
  176. goto out;
  177. val64 = readq(&vp_reg->rts_access_steer_ctrl);
  178. if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
  179. *data0 = readq(&vp_reg->rts_access_steer_data0);
  180. *data1 = readq(&vp_reg->rts_access_steer_data1);
  181. *steer_ctrl = val64;
  182. } else
  183. status = VXGE_HW_FAIL;
  184. out:
  185. if (vpath->vp_open)
  186. spin_unlock(&vpath->lock);
  187. return status;
  188. }
  189. enum vxge_hw_status
  190. vxge_hw_upgrade_read_version(struct __vxge_hw_device *hldev, u32 *major,
  191. u32 *minor, u32 *build)
  192. {
  193. u64 data0 = 0, data1 = 0, steer_ctrl = 0;
  194. struct __vxge_hw_virtualpath *vpath;
  195. enum vxge_hw_status status;
  196. vpath = &hldev->virtual_paths[hldev->first_vp_id];
  197. status = vxge_hw_vpath_fw_api(vpath,
  198. VXGE_HW_FW_UPGRADE_ACTION,
  199. VXGE_HW_FW_UPGRADE_MEMO,
  200. VXGE_HW_FW_UPGRADE_OFFSET_READ,
  201. &data0, &data1, &steer_ctrl);
  202. if (status != VXGE_HW_OK)
  203. return status;
  204. *major = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
  205. *minor = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
  206. *build = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
  207. return status;
  208. }
  209. enum vxge_hw_status vxge_hw_flash_fw(struct __vxge_hw_device *hldev)
  210. {
  211. u64 data0 = 0, data1 = 0, steer_ctrl = 0;
  212. struct __vxge_hw_virtualpath *vpath;
  213. enum vxge_hw_status status;
  214. u32 ret;
  215. vpath = &hldev->virtual_paths[hldev->first_vp_id];
  216. status = vxge_hw_vpath_fw_api(vpath,
  217. VXGE_HW_FW_UPGRADE_ACTION,
  218. VXGE_HW_FW_UPGRADE_MEMO,
  219. VXGE_HW_FW_UPGRADE_OFFSET_COMMIT,
  220. &data0, &data1, &steer_ctrl);
  221. if (status != VXGE_HW_OK) {
  222. vxge_debug_init(VXGE_ERR, "%s: FW upgrade failed", __func__);
  223. goto exit;
  224. }
  225. ret = VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl) & 0x7F;
  226. if (ret != 1) {
  227. vxge_debug_init(VXGE_ERR, "%s: FW commit failed with error %d",
  228. __func__, ret);
  229. status = VXGE_HW_FAIL;
  230. }
  231. exit:
  232. return status;
  233. }
  234. enum vxge_hw_status
  235. vxge_update_fw_image(struct __vxge_hw_device *hldev, const u8 *fwdata, int size)
  236. {
  237. u64 data0 = 0, data1 = 0, steer_ctrl = 0;
  238. struct __vxge_hw_virtualpath *vpath;
  239. enum vxge_hw_status status;
  240. int ret_code, sec_code;
  241. vpath = &hldev->virtual_paths[hldev->first_vp_id];
  242. /* send upgrade start command */
  243. status = vxge_hw_vpath_fw_api(vpath,
  244. VXGE_HW_FW_UPGRADE_ACTION,
  245. VXGE_HW_FW_UPGRADE_MEMO,
  246. VXGE_HW_FW_UPGRADE_OFFSET_START,
  247. &data0, &data1, &steer_ctrl);
  248. if (status != VXGE_HW_OK) {
  249. vxge_debug_init(VXGE_ERR, " %s: Upgrade start cmd failed",
  250. __func__);
  251. return status;
  252. }
  253. /* Transfer fw image to adapter 16 bytes at a time */
  254. for (; size > 0; size -= VXGE_HW_FW_UPGRADE_BLK_SIZE) {
  255. steer_ctrl = 0;
  256. /* The next 128bits of fwdata to be loaded onto the adapter */
  257. data0 = *((u64 *)fwdata);
  258. data1 = *((u64 *)fwdata + 1);
  259. status = vxge_hw_vpath_fw_api(vpath,
  260. VXGE_HW_FW_UPGRADE_ACTION,
  261. VXGE_HW_FW_UPGRADE_MEMO,
  262. VXGE_HW_FW_UPGRADE_OFFSET_SEND,
  263. &data0, &data1, &steer_ctrl);
  264. if (status != VXGE_HW_OK) {
  265. vxge_debug_init(VXGE_ERR, "%s: Upgrade send failed",
  266. __func__);
  267. goto out;
  268. }
  269. ret_code = VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0);
  270. switch (ret_code) {
  271. case VXGE_HW_FW_UPGRADE_OK:
  272. /* All OK, send next 16 bytes. */
  273. break;
  274. case VXGE_FW_UPGRADE_BYTES2SKIP:
  275. /* skip bytes in the stream */
  276. fwdata += (data0 >> 8) & 0xFFFFFFFF;
  277. break;
  278. case VXGE_HW_FW_UPGRADE_DONE:
  279. goto out;
  280. case VXGE_HW_FW_UPGRADE_ERR:
  281. sec_code = VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0);
  282. switch (sec_code) {
  283. case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1:
  284. case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7:
  285. printk(KERN_ERR
  286. "corrupted data from .ncf file\n");
  287. break;
  288. case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3:
  289. case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4:
  290. case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5:
  291. case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6:
  292. case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8:
  293. printk(KERN_ERR "invalid .ncf file\n");
  294. break;
  295. case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW:
  296. printk(KERN_ERR "buffer overflow\n");
  297. break;
  298. case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH:
  299. printk(KERN_ERR "failed to flash the image\n");
  300. break;
  301. case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN:
  302. printk(KERN_ERR
  303. "generic error. Unknown error type\n");
  304. break;
  305. default:
  306. printk(KERN_ERR "Unknown error of type %d\n",
  307. sec_code);
  308. break;
  309. }
  310. status = VXGE_HW_FAIL;
  311. goto out;
  312. default:
  313. printk(KERN_ERR "Unknown FW error: %d\n", ret_code);
  314. status = VXGE_HW_FAIL;
  315. goto out;
  316. }
  317. /* point to next 16 bytes */
  318. fwdata += VXGE_HW_FW_UPGRADE_BLK_SIZE;
  319. }
  320. out:
  321. return status;
  322. }
  323. enum vxge_hw_status
  324. vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device *hldev,
  325. struct eprom_image *img)
  326. {
  327. u64 data0 = 0, data1 = 0, steer_ctrl = 0;
  328. struct __vxge_hw_virtualpath *vpath;
  329. enum vxge_hw_status status;
  330. int i;
  331. vpath = &hldev->virtual_paths[hldev->first_vp_id];
  332. for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++) {
  333. data0 = VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i);
  334. data1 = steer_ctrl = 0;
  335. status = vxge_hw_vpath_fw_api(vpath,
  336. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
  337. VXGE_HW_FW_API_GET_EPROM_REV,
  338. 0, &data0, &data1, &steer_ctrl);
  339. if (status != VXGE_HW_OK)
  340. break;
  341. img[i].is_valid = VXGE_HW_GET_EPROM_IMAGE_VALID(data0);
  342. img[i].index = VXGE_HW_GET_EPROM_IMAGE_INDEX(data0);
  343. img[i].type = VXGE_HW_GET_EPROM_IMAGE_TYPE(data0);
  344. img[i].version = VXGE_HW_GET_EPROM_IMAGE_REV(data0);
  345. }
  346. return status;
  347. }
  348. /*
  349. * __vxge_hw_channel_free - Free memory allocated for channel
  350. * This function deallocates memory from the channel and various arrays
  351. * in the channel
  352. */
  353. static void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
  354. {
  355. kfree(channel->work_arr);
  356. kfree(channel->free_arr);
  357. kfree(channel->reserve_arr);
  358. kfree(channel->orig_arr);
  359. kfree(channel);
  360. }
  361. /*
  362. * __vxge_hw_channel_initialize - Initialize a channel
  363. * This function initializes a channel by properly setting the
  364. * various references
  365. */
  366. static enum vxge_hw_status
  367. __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
  368. {
  369. u32 i;
  370. struct __vxge_hw_virtualpath *vpath;
  371. vpath = channel->vph->vpath;
  372. if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
  373. for (i = 0; i < channel->length; i++)
  374. channel->orig_arr[i] = channel->reserve_arr[i];
  375. }
  376. switch (channel->type) {
  377. case VXGE_HW_CHANNEL_TYPE_FIFO:
  378. vpath->fifoh = (struct __vxge_hw_fifo *)channel;
  379. channel->stats = &((struct __vxge_hw_fifo *)
  380. channel)->stats->common_stats;
  381. break;
  382. case VXGE_HW_CHANNEL_TYPE_RING:
  383. vpath->ringh = (struct __vxge_hw_ring *)channel;
  384. channel->stats = &((struct __vxge_hw_ring *)
  385. channel)->stats->common_stats;
  386. break;
  387. default:
  388. break;
  389. }
  390. return VXGE_HW_OK;
  391. }
  392. /*
  393. * __vxge_hw_channel_reset - Resets a channel
  394. * This function resets a channel by properly setting the various references
  395. */
  396. static enum vxge_hw_status
  397. __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
  398. {
  399. u32 i;
  400. for (i = 0; i < channel->length; i++) {
  401. if (channel->reserve_arr != NULL)
  402. channel->reserve_arr[i] = channel->orig_arr[i];
  403. if (channel->free_arr != NULL)
  404. channel->free_arr[i] = NULL;
  405. if (channel->work_arr != NULL)
  406. channel->work_arr[i] = NULL;
  407. }
  408. channel->free_ptr = channel->length;
  409. channel->reserve_ptr = channel->length;
  410. channel->reserve_top = 0;
  411. channel->post_index = 0;
  412. channel->compl_index = 0;
  413. return VXGE_HW_OK;
  414. }
  415. /*
  416. * __vxge_hw_device_pci_e_init
  417. * Initialize certain PCI/PCI-X configuration registers
  418. * with recommended values. Save config space for future hw resets.
  419. */
  420. static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
  421. {
  422. u16 cmd = 0;
  423. /* Set the PErr Repconse bit and SERR in PCI command register. */
  424. pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
  425. cmd |= 0x140;
  426. pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
  427. pci_save_state(hldev->pdev);
  428. }
  429. /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
  430. * in progress
  431. * This routine checks the vpath reset in progress register is turned zero
  432. */
  433. static enum vxge_hw_status
  434. __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
  435. {
  436. enum vxge_hw_status status;
  437. status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
  438. VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
  439. VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  440. return status;
  441. }
  442. /*
  443. * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
  444. * Set the swapper bits appropriately for the lagacy section.
  445. */
  446. static enum vxge_hw_status
  447. __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
  448. {
  449. u64 val64;
  450. enum vxge_hw_status status = VXGE_HW_OK;
  451. val64 = readq(&legacy_reg->toc_swapper_fb);
  452. wmb();
  453. switch (val64) {
  454. case VXGE_HW_SWAPPER_INITIAL_VALUE:
  455. return status;
  456. case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
  457. writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
  458. &legacy_reg->pifm_rd_swap_en);
  459. writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
  460. &legacy_reg->pifm_rd_flip_en);
  461. writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
  462. &legacy_reg->pifm_wr_swap_en);
  463. writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
  464. &legacy_reg->pifm_wr_flip_en);
  465. break;
  466. case VXGE_HW_SWAPPER_BYTE_SWAPPED:
  467. writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
  468. &legacy_reg->pifm_rd_swap_en);
  469. writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
  470. &legacy_reg->pifm_wr_swap_en);
  471. break;
  472. case VXGE_HW_SWAPPER_BIT_FLIPPED:
  473. writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
  474. &legacy_reg->pifm_rd_flip_en);
  475. writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
  476. &legacy_reg->pifm_wr_flip_en);
  477. break;
  478. }
  479. wmb();
  480. val64 = readq(&legacy_reg->toc_swapper_fb);
  481. if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
  482. status = VXGE_HW_ERR_SWAPPER_CTRL;
  483. return status;
  484. }
  485. /*
  486. * __vxge_hw_device_toc_get
  487. * This routine sets the swapper and reads the toc pointer and returns the
  488. * memory mapped address of the toc
  489. */
  490. static struct vxge_hw_toc_reg __iomem *
  491. __vxge_hw_device_toc_get(void __iomem *bar0)
  492. {
  493. u64 val64;
  494. struct vxge_hw_toc_reg __iomem *toc = NULL;
  495. enum vxge_hw_status status;
  496. struct vxge_hw_legacy_reg __iomem *legacy_reg =
  497. (struct vxge_hw_legacy_reg __iomem *)bar0;
  498. status = __vxge_hw_legacy_swapper_set(legacy_reg);
  499. if (status != VXGE_HW_OK)
  500. goto exit;
  501. val64 = readq(&legacy_reg->toc_first_pointer);
  502. toc = (struct vxge_hw_toc_reg __iomem *)(bar0+val64);
  503. exit:
  504. return toc;
  505. }
  506. /*
  507. * __vxge_hw_device_reg_addr_get
  508. * This routine sets the swapper and reads the toc pointer and initializes the
  509. * register location pointers in the device object. It waits until the ric is
  510. * completed initializing registers.
  511. */
  512. static enum vxge_hw_status
  513. __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
  514. {
  515. u64 val64;
  516. u32 i;
  517. enum vxge_hw_status status = VXGE_HW_OK;
  518. hldev->legacy_reg = (struct vxge_hw_legacy_reg __iomem *)hldev->bar0;
  519. hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
  520. if (hldev->toc_reg == NULL) {
  521. status = VXGE_HW_FAIL;
  522. goto exit;
  523. }
  524. val64 = readq(&hldev->toc_reg->toc_common_pointer);
  525. hldev->common_reg =
  526. (struct vxge_hw_common_reg __iomem *)(hldev->bar0 + val64);
  527. val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
  528. hldev->mrpcim_reg =
  529. (struct vxge_hw_mrpcim_reg __iomem *)(hldev->bar0 + val64);
  530. for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
  531. val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
  532. hldev->srpcim_reg[i] =
  533. (struct vxge_hw_srpcim_reg __iomem *)
  534. (hldev->bar0 + val64);
  535. }
  536. for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
  537. val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
  538. hldev->vpmgmt_reg[i] =
  539. (struct vxge_hw_vpmgmt_reg __iomem *)(hldev->bar0 + val64);
  540. }
  541. for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
  542. val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
  543. hldev->vpath_reg[i] =
  544. (struct vxge_hw_vpath_reg __iomem *)
  545. (hldev->bar0 + val64);
  546. }
  547. val64 = readq(&hldev->toc_reg->toc_kdfc);
  548. switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
  549. case 0:
  550. hldev->kdfc = (u8 __iomem *)(hldev->bar0 +
  551. VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64));
  552. break;
  553. default:
  554. break;
  555. }
  556. status = __vxge_hw_device_vpath_reset_in_prog_check(
  557. (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
  558. exit:
  559. return status;
  560. }
  561. /*
  562. * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
  563. * This routine returns the Access Rights of the driver
  564. */
  565. static u32
  566. __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
  567. {
  568. u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
  569. switch (host_type) {
  570. case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
  571. if (func_id == 0) {
  572. access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
  573. VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
  574. }
  575. break;
  576. case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
  577. access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
  578. VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
  579. break;
  580. case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
  581. access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
  582. VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
  583. break;
  584. case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
  585. case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
  586. case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
  587. break;
  588. case VXGE_HW_SR_VH_FUNCTION0:
  589. case VXGE_HW_VH_NORMAL_FUNCTION:
  590. access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
  591. break;
  592. }
  593. return access_rights;
  594. }
  595. /*
  596. * __vxge_hw_device_is_privilaged
  597. * This routine checks if the device function is privilaged or not
  598. */
  599. enum vxge_hw_status
  600. __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
  601. {
  602. if (__vxge_hw_device_access_rights_get(host_type,
  603. func_id) &
  604. VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
  605. return VXGE_HW_OK;
  606. else
  607. return VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  608. }
  609. /*
  610. * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
  611. * Returns the function number of the vpath.
  612. */
  613. static u32
  614. __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
  615. {
  616. u64 val64;
  617. val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
  618. return
  619. (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
  620. }
  621. /*
  622. * __vxge_hw_device_host_info_get
  623. * This routine returns the host type assignments
  624. */
  625. static void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
  626. {
  627. u64 val64;
  628. u32 i;
  629. val64 = readq(&hldev->common_reg->host_type_assignments);
  630. hldev->host_type =
  631. (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
  632. hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
  633. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  634. if (!(hldev->vpath_assignments & vxge_mBIT(i)))
  635. continue;
  636. hldev->func_id =
  637. __vxge_hw_vpath_func_id_get(hldev->vpmgmt_reg[i]);
  638. hldev->access_rights = __vxge_hw_device_access_rights_get(
  639. hldev->host_type, hldev->func_id);
  640. hldev->virtual_paths[i].vp_open = VXGE_HW_VP_NOT_OPEN;
  641. hldev->virtual_paths[i].vp_reg = hldev->vpath_reg[i];
  642. hldev->first_vp_id = i;
  643. break;
  644. }
  645. }
  646. /*
  647. * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
  648. * link width and signalling rate.
  649. */
  650. static enum vxge_hw_status
  651. __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
  652. {
  653. int exp_cap;
  654. u16 lnk;
  655. /* Get the negotiated link width and speed from PCI config space */
  656. exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
  657. pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
  658. if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
  659. return VXGE_HW_ERR_INVALID_PCI_INFO;
  660. switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
  661. case PCIE_LNK_WIDTH_RESRV:
  662. case PCIE_LNK_X1:
  663. case PCIE_LNK_X2:
  664. case PCIE_LNK_X4:
  665. case PCIE_LNK_X8:
  666. break;
  667. default:
  668. return VXGE_HW_ERR_INVALID_PCI_INFO;
  669. }
  670. return VXGE_HW_OK;
  671. }
  672. /*
  673. * __vxge_hw_device_initialize
  674. * Initialize Titan-V hardware.
  675. */
  676. static enum vxge_hw_status
  677. __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
  678. {
  679. enum vxge_hw_status status = VXGE_HW_OK;
  680. if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
  681. hldev->func_id)) {
  682. /* Validate the pci-e link width and speed */
  683. status = __vxge_hw_verify_pci_e_info(hldev);
  684. if (status != VXGE_HW_OK)
  685. goto exit;
  686. }
  687. exit:
  688. return status;
  689. }
  690. /*
  691. * __vxge_hw_vpath_fw_ver_get - Get the fw version
  692. * Returns FW Version
  693. */
  694. static enum vxge_hw_status
  695. __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath *vpath,
  696. struct vxge_hw_device_hw_info *hw_info)
  697. {
  698. struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
  699. struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
  700. struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
  701. struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
  702. u64 data0, data1 = 0, steer_ctrl = 0;
  703. enum vxge_hw_status status;
  704. status = vxge_hw_vpath_fw_api(vpath,
  705. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
  706. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
  707. 0, &data0, &data1, &steer_ctrl);
  708. if (status != VXGE_HW_OK)
  709. goto exit;
  710. fw_date->day =
  711. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0);
  712. fw_date->month =
  713. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0);
  714. fw_date->year =
  715. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0);
  716. snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
  717. fw_date->month, fw_date->day, fw_date->year);
  718. fw_version->major =
  719. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
  720. fw_version->minor =
  721. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
  722. fw_version->build =
  723. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
  724. snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
  725. fw_version->major, fw_version->minor, fw_version->build);
  726. flash_date->day =
  727. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1);
  728. flash_date->month =
  729. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1);
  730. flash_date->year =
  731. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1);
  732. snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
  733. flash_date->month, flash_date->day, flash_date->year);
  734. flash_version->major =
  735. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1);
  736. flash_version->minor =
  737. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1);
  738. flash_version->build =
  739. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1);
  740. snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
  741. flash_version->major, flash_version->minor,
  742. flash_version->build);
  743. exit:
  744. return status;
  745. }
  746. /*
  747. * __vxge_hw_vpath_card_info_get - Get the serial numbers,
  748. * part number and product description.
  749. */
  750. static enum vxge_hw_status
  751. __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath *vpath,
  752. struct vxge_hw_device_hw_info *hw_info)
  753. {
  754. enum vxge_hw_status status;
  755. u64 data0, data1 = 0, steer_ctrl = 0;
  756. u8 *serial_number = hw_info->serial_number;
  757. u8 *part_number = hw_info->part_number;
  758. u8 *product_desc = hw_info->product_desc;
  759. u32 i, j = 0;
  760. data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER;
  761. status = vxge_hw_vpath_fw_api(vpath,
  762. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
  763. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
  764. 0, &data0, &data1, &steer_ctrl);
  765. if (status != VXGE_HW_OK)
  766. return status;
  767. ((u64 *)serial_number)[0] = be64_to_cpu(data0);
  768. ((u64 *)serial_number)[1] = be64_to_cpu(data1);
  769. data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER;
  770. data1 = steer_ctrl = 0;
  771. status = vxge_hw_vpath_fw_api(vpath,
  772. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
  773. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
  774. 0, &data0, &data1, &steer_ctrl);
  775. if (status != VXGE_HW_OK)
  776. return status;
  777. ((u64 *)part_number)[0] = be64_to_cpu(data0);
  778. ((u64 *)part_number)[1] = be64_to_cpu(data1);
  779. for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
  780. i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
  781. data0 = i;
  782. data1 = steer_ctrl = 0;
  783. status = vxge_hw_vpath_fw_api(vpath,
  784. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
  785. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
  786. 0, &data0, &data1, &steer_ctrl);
  787. if (status != VXGE_HW_OK)
  788. return status;
  789. ((u64 *)product_desc)[j++] = be64_to_cpu(data0);
  790. ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
  791. }
  792. return status;
  793. }
  794. /*
  795. * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
  796. * Returns pci function mode
  797. */
  798. static enum vxge_hw_status
  799. __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath *vpath,
  800. struct vxge_hw_device_hw_info *hw_info)
  801. {
  802. u64 data0, data1 = 0, steer_ctrl = 0;
  803. enum vxge_hw_status status;
  804. data0 = 0;
  805. status = vxge_hw_vpath_fw_api(vpath,
  806. VXGE_HW_FW_API_GET_FUNC_MODE,
  807. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
  808. 0, &data0, &data1, &steer_ctrl);
  809. if (status != VXGE_HW_OK)
  810. return status;
  811. hw_info->function_mode = VXGE_HW_GET_FUNC_MODE_VAL(data0);
  812. return status;
  813. }
  814. /*
  815. * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
  816. * from MAC address table.
  817. */
  818. static enum vxge_hw_status
  819. __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath *vpath,
  820. u8 *macaddr, u8 *macaddr_mask)
  821. {
  822. u64 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
  823. data0 = 0, data1 = 0, steer_ctrl = 0;
  824. enum vxge_hw_status status;
  825. int i;
  826. do {
  827. status = vxge_hw_vpath_fw_api(vpath, action,
  828. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
  829. 0, &data0, &data1, &steer_ctrl);
  830. if (status != VXGE_HW_OK)
  831. goto exit;
  832. data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0);
  833. data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
  834. data1);
  835. for (i = ETH_ALEN; i > 0; i--) {
  836. macaddr[i - 1] = (u8) (data0 & 0xFF);
  837. data0 >>= 8;
  838. macaddr_mask[i - 1] = (u8) (data1 & 0xFF);
  839. data1 >>= 8;
  840. }
  841. action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY;
  842. data0 = 0, data1 = 0, steer_ctrl = 0;
  843. } while (!is_valid_ether_addr(macaddr));
  844. exit:
  845. return status;
  846. }
  847. /**
  848. * vxge_hw_device_hw_info_get - Get the hw information
  849. * Returns the vpath mask that has the bits set for each vpath allocated
  850. * for the driver, FW version information and the first mac addresse for
  851. * each vpath
  852. */
  853. enum vxge_hw_status __devinit
  854. vxge_hw_device_hw_info_get(void __iomem *bar0,
  855. struct vxge_hw_device_hw_info *hw_info)
  856. {
  857. u32 i;
  858. u64 val64;
  859. struct vxge_hw_toc_reg __iomem *toc;
  860. struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
  861. struct vxge_hw_common_reg __iomem *common_reg;
  862. struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
  863. enum vxge_hw_status status;
  864. struct __vxge_hw_virtualpath vpath;
  865. memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
  866. toc = __vxge_hw_device_toc_get(bar0);
  867. if (toc == NULL) {
  868. status = VXGE_HW_ERR_CRITICAL;
  869. goto exit;
  870. }
  871. val64 = readq(&toc->toc_common_pointer);
  872. common_reg = (struct vxge_hw_common_reg __iomem *)(bar0 + val64);
  873. status = __vxge_hw_device_vpath_reset_in_prog_check(
  874. (u64 __iomem *)&common_reg->vpath_rst_in_prog);
  875. if (status != VXGE_HW_OK)
  876. goto exit;
  877. hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
  878. val64 = readq(&common_reg->host_type_assignments);
  879. hw_info->host_type =
  880. (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
  881. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  882. if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
  883. continue;
  884. val64 = readq(&toc->toc_vpmgmt_pointer[i]);
  885. vpmgmt_reg = (struct vxge_hw_vpmgmt_reg __iomem *)
  886. (bar0 + val64);
  887. hw_info->func_id = __vxge_hw_vpath_func_id_get(vpmgmt_reg);
  888. if (__vxge_hw_device_access_rights_get(hw_info->host_type,
  889. hw_info->func_id) &
  890. VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
  891. val64 = readq(&toc->toc_mrpcim_pointer);
  892. mrpcim_reg = (struct vxge_hw_mrpcim_reg __iomem *)
  893. (bar0 + val64);
  894. writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
  895. wmb();
  896. }
  897. val64 = readq(&toc->toc_vpath_pointer[i]);
  898. vpath.vp_reg = (struct vxge_hw_vpath_reg __iomem *)
  899. (bar0 + val64);
  900. vpath.vp_open = 0;
  901. status = __vxge_hw_vpath_pci_func_mode_get(&vpath, hw_info);
  902. if (status != VXGE_HW_OK)
  903. goto exit;
  904. status = __vxge_hw_vpath_fw_ver_get(&vpath, hw_info);
  905. if (status != VXGE_HW_OK)
  906. goto exit;
  907. status = __vxge_hw_vpath_card_info_get(&vpath, hw_info);
  908. if (status != VXGE_HW_OK)
  909. goto exit;
  910. break;
  911. }
  912. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  913. if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
  914. continue;
  915. val64 = readq(&toc->toc_vpath_pointer[i]);
  916. vpath.vp_reg = (struct vxge_hw_vpath_reg __iomem *)
  917. (bar0 + val64);
  918. vpath.vp_open = 0;
  919. status = __vxge_hw_vpath_addr_get(&vpath,
  920. hw_info->mac_addrs[i],
  921. hw_info->mac_addr_masks[i]);
  922. if (status != VXGE_HW_OK)
  923. goto exit;
  924. }
  925. exit:
  926. return status;
  927. }
  928. /*
  929. * __vxge_hw_blockpool_destroy - Deallocates the block pool
  930. */
  931. static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
  932. {
  933. struct __vxge_hw_device *hldev;
  934. struct list_head *p, *n;
  935. u16 ret;
  936. if (blockpool == NULL) {
  937. ret = 1;
  938. goto exit;
  939. }
  940. hldev = blockpool->hldev;
  941. list_for_each_safe(p, n, &blockpool->free_block_list) {
  942. pci_unmap_single(hldev->pdev,
  943. ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
  944. ((struct __vxge_hw_blockpool_entry *)p)->length,
  945. PCI_DMA_BIDIRECTIONAL);
  946. vxge_os_dma_free(hldev->pdev,
  947. ((struct __vxge_hw_blockpool_entry *)p)->memblock,
  948. &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
  949. list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
  950. kfree(p);
  951. blockpool->pool_size--;
  952. }
  953. list_for_each_safe(p, n, &blockpool->free_entry_list) {
  954. list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
  955. kfree((void *)p);
  956. }
  957. ret = 0;
  958. exit:
  959. return;
  960. }
  961. /*
  962. * __vxge_hw_blockpool_create - Create block pool
  963. */
  964. static enum vxge_hw_status
  965. __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
  966. struct __vxge_hw_blockpool *blockpool,
  967. u32 pool_size,
  968. u32 pool_max)
  969. {
  970. u32 i;
  971. struct __vxge_hw_blockpool_entry *entry = NULL;
  972. void *memblock;
  973. dma_addr_t dma_addr;
  974. struct pci_dev *dma_handle;
  975. struct pci_dev *acc_handle;
  976. enum vxge_hw_status status = VXGE_HW_OK;
  977. if (blockpool == NULL) {
  978. status = VXGE_HW_FAIL;
  979. goto blockpool_create_exit;
  980. }
  981. blockpool->hldev = hldev;
  982. blockpool->block_size = VXGE_HW_BLOCK_SIZE;
  983. blockpool->pool_size = 0;
  984. blockpool->pool_max = pool_max;
  985. blockpool->req_out = 0;
  986. INIT_LIST_HEAD(&blockpool->free_block_list);
  987. INIT_LIST_HEAD(&blockpool->free_entry_list);
  988. for (i = 0; i < pool_size + pool_max; i++) {
  989. entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
  990. GFP_KERNEL);
  991. if (entry == NULL) {
  992. __vxge_hw_blockpool_destroy(blockpool);
  993. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  994. goto blockpool_create_exit;
  995. }
  996. list_add(&entry->item, &blockpool->free_entry_list);
  997. }
  998. for (i = 0; i < pool_size; i++) {
  999. memblock = vxge_os_dma_malloc(
  1000. hldev->pdev,
  1001. VXGE_HW_BLOCK_SIZE,
  1002. &dma_handle,
  1003. &acc_handle);
  1004. if (memblock == NULL) {
  1005. __vxge_hw_blockpool_destroy(blockpool);
  1006. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1007. goto blockpool_create_exit;
  1008. }
  1009. dma_addr = pci_map_single(hldev->pdev, memblock,
  1010. VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
  1011. if (unlikely(pci_dma_mapping_error(hldev->pdev,
  1012. dma_addr))) {
  1013. vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
  1014. __vxge_hw_blockpool_destroy(blockpool);
  1015. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1016. goto blockpool_create_exit;
  1017. }
  1018. if (!list_empty(&blockpool->free_entry_list))
  1019. entry = (struct __vxge_hw_blockpool_entry *)
  1020. list_first_entry(&blockpool->free_entry_list,
  1021. struct __vxge_hw_blockpool_entry,
  1022. item);
  1023. if (entry == NULL)
  1024. entry =
  1025. kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
  1026. GFP_KERNEL);
  1027. if (entry != NULL) {
  1028. list_del(&entry->item);
  1029. entry->length = VXGE_HW_BLOCK_SIZE;
  1030. entry->memblock = memblock;
  1031. entry->dma_addr = dma_addr;
  1032. entry->acc_handle = acc_handle;
  1033. entry->dma_handle = dma_handle;
  1034. list_add(&entry->item,
  1035. &blockpool->free_block_list);
  1036. blockpool->pool_size++;
  1037. } else {
  1038. __vxge_hw_blockpool_destroy(blockpool);
  1039. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1040. goto blockpool_create_exit;
  1041. }
  1042. }
  1043. blockpool_create_exit:
  1044. return status;
  1045. }
  1046. /*
  1047. * __vxge_hw_device_fifo_config_check - Check fifo configuration.
  1048. * Check the fifo configuration
  1049. */
  1050. static enum vxge_hw_status
  1051. __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
  1052. {
  1053. if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
  1054. (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
  1055. return VXGE_HW_BADCFG_FIFO_BLOCKS;
  1056. return VXGE_HW_OK;
  1057. }
  1058. /*
  1059. * __vxge_hw_device_vpath_config_check - Check vpath configuration.
  1060. * Check the vpath configuration
  1061. */
  1062. static enum vxge_hw_status
  1063. __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
  1064. {
  1065. enum vxge_hw_status status;
  1066. if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
  1067. (vp_config->min_bandwidth > VXGE_HW_VPATH_BANDWIDTH_MAX))
  1068. return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
  1069. status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
  1070. if (status != VXGE_HW_OK)
  1071. return status;
  1072. if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
  1073. ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
  1074. (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
  1075. return VXGE_HW_BADCFG_VPATH_MTU;
  1076. if ((vp_config->rpa_strip_vlan_tag !=
  1077. VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
  1078. (vp_config->rpa_strip_vlan_tag !=
  1079. VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
  1080. (vp_config->rpa_strip_vlan_tag !=
  1081. VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
  1082. return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
  1083. return VXGE_HW_OK;
  1084. }
  1085. /*
  1086. * __vxge_hw_device_config_check - Check device configuration.
  1087. * Check the device configuration
  1088. */
  1089. static enum vxge_hw_status
  1090. __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
  1091. {
  1092. u32 i;
  1093. enum vxge_hw_status status;
  1094. if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
  1095. (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
  1096. (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
  1097. (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
  1098. return VXGE_HW_BADCFG_INTR_MODE;
  1099. if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
  1100. (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
  1101. return VXGE_HW_BADCFG_RTS_MAC_EN;
  1102. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  1103. status = __vxge_hw_device_vpath_config_check(
  1104. &new_config->vp_config[i]);
  1105. if (status != VXGE_HW_OK)
  1106. return status;
  1107. }
  1108. return VXGE_HW_OK;
  1109. }
  1110. /*
  1111. * vxge_hw_device_initialize - Initialize Titan device.
  1112. * Initialize Titan device. Note that all the arguments of this public API
  1113. * are 'IN', including @hldev. Driver cooperates with
  1114. * OS to find new Titan device, locate its PCI and memory spaces.
  1115. *
  1116. * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
  1117. * to enable the latter to perform Titan hardware initialization.
  1118. */
  1119. enum vxge_hw_status __devinit
  1120. vxge_hw_device_initialize(
  1121. struct __vxge_hw_device **devh,
  1122. struct vxge_hw_device_attr *attr,
  1123. struct vxge_hw_device_config *device_config)
  1124. {
  1125. u32 i;
  1126. u32 nblocks = 0;
  1127. struct __vxge_hw_device *hldev = NULL;
  1128. enum vxge_hw_status status = VXGE_HW_OK;
  1129. status = __vxge_hw_device_config_check(device_config);
  1130. if (status != VXGE_HW_OK)
  1131. goto exit;
  1132. hldev = vzalloc(sizeof(struct __vxge_hw_device));
  1133. if (hldev == NULL) {
  1134. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1135. goto exit;
  1136. }
  1137. hldev->magic = VXGE_HW_DEVICE_MAGIC;
  1138. vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
  1139. /* apply config */
  1140. memcpy(&hldev->config, device_config,
  1141. sizeof(struct vxge_hw_device_config));
  1142. hldev->bar0 = attr->bar0;
  1143. hldev->pdev = attr->pdev;
  1144. hldev->uld_callbacks.link_up = attr->uld_callbacks.link_up;
  1145. hldev->uld_callbacks.link_down = attr->uld_callbacks.link_down;
  1146. hldev->uld_callbacks.crit_err = attr->uld_callbacks.crit_err;
  1147. __vxge_hw_device_pci_e_init(hldev);
  1148. status = __vxge_hw_device_reg_addr_get(hldev);
  1149. if (status != VXGE_HW_OK) {
  1150. vfree(hldev);
  1151. goto exit;
  1152. }
  1153. __vxge_hw_device_host_info_get(hldev);
  1154. /* Incrementing for stats blocks */
  1155. nblocks++;
  1156. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  1157. if (!(hldev->vpath_assignments & vxge_mBIT(i)))
  1158. continue;
  1159. if (device_config->vp_config[i].ring.enable ==
  1160. VXGE_HW_RING_ENABLE)
  1161. nblocks += device_config->vp_config[i].ring.ring_blocks;
  1162. if (device_config->vp_config[i].fifo.enable ==
  1163. VXGE_HW_FIFO_ENABLE)
  1164. nblocks += device_config->vp_config[i].fifo.fifo_blocks;
  1165. nblocks++;
  1166. }
  1167. if (__vxge_hw_blockpool_create(hldev,
  1168. &hldev->block_pool,
  1169. device_config->dma_blockpool_initial + nblocks,
  1170. device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
  1171. vxge_hw_device_terminate(hldev);
  1172. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1173. goto exit;
  1174. }
  1175. status = __vxge_hw_device_initialize(hldev);
  1176. if (status != VXGE_HW_OK) {
  1177. vxge_hw_device_terminate(hldev);
  1178. goto exit;
  1179. }
  1180. *devh = hldev;
  1181. exit:
  1182. return status;
  1183. }
  1184. /*
  1185. * vxge_hw_device_terminate - Terminate Titan device.
  1186. * Terminate HW device.
  1187. */
  1188. void
  1189. vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
  1190. {
  1191. vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
  1192. hldev->magic = VXGE_HW_DEVICE_DEAD;
  1193. __vxge_hw_blockpool_destroy(&hldev->block_pool);
  1194. vfree(hldev);
  1195. }
  1196. /*
  1197. * __vxge_hw_vpath_stats_access - Get the statistics from the given location
  1198. * and offset and perform an operation
  1199. */
  1200. static enum vxge_hw_status
  1201. __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
  1202. u32 operation, u32 offset, u64 *stat)
  1203. {
  1204. u64 val64;
  1205. enum vxge_hw_status status = VXGE_HW_OK;
  1206. struct vxge_hw_vpath_reg __iomem *vp_reg;
  1207. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  1208. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  1209. goto vpath_stats_access_exit;
  1210. }
  1211. vp_reg = vpath->vp_reg;
  1212. val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
  1213. VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
  1214. VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
  1215. status = __vxge_hw_pio_mem_write64(val64,
  1216. &vp_reg->xmac_stats_access_cmd,
  1217. VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
  1218. vpath->hldev->config.device_poll_millis);
  1219. if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
  1220. *stat = readq(&vp_reg->xmac_stats_access_data);
  1221. else
  1222. *stat = 0;
  1223. vpath_stats_access_exit:
  1224. return status;
  1225. }
  1226. /*
  1227. * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
  1228. */
  1229. static enum vxge_hw_status
  1230. __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath,
  1231. struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
  1232. {
  1233. u64 *val64;
  1234. int i;
  1235. u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
  1236. enum vxge_hw_status status = VXGE_HW_OK;
  1237. val64 = (u64 *)vpath_tx_stats;
  1238. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  1239. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  1240. goto exit;
  1241. }
  1242. for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
  1243. status = __vxge_hw_vpath_stats_access(vpath,
  1244. VXGE_HW_STATS_OP_READ,
  1245. offset, val64);
  1246. if (status != VXGE_HW_OK)
  1247. goto exit;
  1248. offset++;
  1249. val64++;
  1250. }
  1251. exit:
  1252. return status;
  1253. }
  1254. /*
  1255. * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
  1256. */
  1257. static enum vxge_hw_status
  1258. __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
  1259. struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
  1260. {
  1261. u64 *val64;
  1262. enum vxge_hw_status status = VXGE_HW_OK;
  1263. int i;
  1264. u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
  1265. val64 = (u64 *) vpath_rx_stats;
  1266. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  1267. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  1268. goto exit;
  1269. }
  1270. for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
  1271. status = __vxge_hw_vpath_stats_access(vpath,
  1272. VXGE_HW_STATS_OP_READ,
  1273. offset >> 3, val64);
  1274. if (status != VXGE_HW_OK)
  1275. goto exit;
  1276. offset += 8;
  1277. val64++;
  1278. }
  1279. exit:
  1280. return status;
  1281. }
  1282. /*
  1283. * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
  1284. */
  1285. static enum vxge_hw_status
  1286. __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
  1287. struct vxge_hw_vpath_stats_hw_info *hw_stats)
  1288. {
  1289. u64 val64;
  1290. enum vxge_hw_status status = VXGE_HW_OK;
  1291. struct vxge_hw_vpath_reg __iomem *vp_reg;
  1292. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  1293. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  1294. goto exit;
  1295. }
  1296. vp_reg = vpath->vp_reg;
  1297. val64 = readq(&vp_reg->vpath_debug_stats0);
  1298. hw_stats->ini_num_mwr_sent =
  1299. (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
  1300. val64 = readq(&vp_reg->vpath_debug_stats1);
  1301. hw_stats->ini_num_mrd_sent =
  1302. (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
  1303. val64 = readq(&vp_reg->vpath_debug_stats2);
  1304. hw_stats->ini_num_cpl_rcvd =
  1305. (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
  1306. val64 = readq(&vp_reg->vpath_debug_stats3);
  1307. hw_stats->ini_num_mwr_byte_sent =
  1308. VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
  1309. val64 = readq(&vp_reg->vpath_debug_stats4);
  1310. hw_stats->ini_num_cpl_byte_rcvd =
  1311. VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
  1312. val64 = readq(&vp_reg->vpath_debug_stats5);
  1313. hw_stats->wrcrdtarb_xoff =
  1314. (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
  1315. val64 = readq(&vp_reg->vpath_debug_stats6);
  1316. hw_stats->rdcrdtarb_xoff =
  1317. (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
  1318. val64 = readq(&vp_reg->vpath_genstats_count01);
  1319. hw_stats->vpath_genstats_count0 =
  1320. (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
  1321. val64);
  1322. val64 = readq(&vp_reg->vpath_genstats_count01);
  1323. hw_stats->vpath_genstats_count1 =
  1324. (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
  1325. val64);
  1326. val64 = readq(&vp_reg->vpath_genstats_count23);
  1327. hw_stats->vpath_genstats_count2 =
  1328. (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
  1329. val64);
  1330. val64 = readq(&vp_reg->vpath_genstats_count01);
  1331. hw_stats->vpath_genstats_count3 =
  1332. (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
  1333. val64);
  1334. val64 = readq(&vp_reg->vpath_genstats_count4);
  1335. hw_stats->vpath_genstats_count4 =
  1336. (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
  1337. val64);
  1338. val64 = readq(&vp_reg->vpath_genstats_count5);
  1339. hw_stats->vpath_genstats_count5 =
  1340. (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
  1341. val64);
  1342. status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
  1343. if (status != VXGE_HW_OK)
  1344. goto exit;
  1345. status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
  1346. if (status != VXGE_HW_OK)
  1347. goto exit;
  1348. VXGE_HW_VPATH_STATS_PIO_READ(
  1349. VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
  1350. hw_stats->prog_event_vnum0 =
  1351. (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
  1352. hw_stats->prog_event_vnum1 =
  1353. (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
  1354. VXGE_HW_VPATH_STATS_PIO_READ(
  1355. VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
  1356. hw_stats->prog_event_vnum2 =
  1357. (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
  1358. hw_stats->prog_event_vnum3 =
  1359. (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
  1360. val64 = readq(&vp_reg->rx_multi_cast_stats);
  1361. hw_stats->rx_multi_cast_frame_discard =
  1362. (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
  1363. val64 = readq(&vp_reg->rx_frm_transferred);
  1364. hw_stats->rx_frm_transferred =
  1365. (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
  1366. val64 = readq(&vp_reg->rxd_returned);
  1367. hw_stats->rxd_returned =
  1368. (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
  1369. val64 = readq(&vp_reg->dbg_stats_rx_mpa);
  1370. hw_stats->rx_mpa_len_fail_frms =
  1371. (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
  1372. hw_stats->rx_mpa_mrk_fail_frms =
  1373. (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
  1374. hw_stats->rx_mpa_crc_fail_frms =
  1375. (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
  1376. val64 = readq(&vp_reg->dbg_stats_rx_fau);
  1377. hw_stats->rx_permitted_frms =
  1378. (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
  1379. hw_stats->rx_vp_reset_discarded_frms =
  1380. (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
  1381. hw_stats->rx_wol_frms =
  1382. (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
  1383. val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
  1384. hw_stats->tx_vp_reset_discarded_frms =
  1385. (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
  1386. val64);
  1387. exit:
  1388. return status;
  1389. }
  1390. /*
  1391. * vxge_hw_device_stats_get - Get the device hw statistics.
  1392. * Returns the vpath h/w stats for the device.
  1393. */
  1394. enum vxge_hw_status
  1395. vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
  1396. struct vxge_hw_device_stats_hw_info *hw_stats)
  1397. {
  1398. u32 i;
  1399. enum vxge_hw_status status = VXGE_HW_OK;
  1400. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  1401. if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
  1402. (hldev->virtual_paths[i].vp_open ==
  1403. VXGE_HW_VP_NOT_OPEN))
  1404. continue;
  1405. memcpy(hldev->virtual_paths[i].hw_stats_sav,
  1406. hldev->virtual_paths[i].hw_stats,
  1407. sizeof(struct vxge_hw_vpath_stats_hw_info));
  1408. status = __vxge_hw_vpath_stats_get(
  1409. &hldev->virtual_paths[i],
  1410. hldev->virtual_paths[i].hw_stats);
  1411. }
  1412. memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
  1413. sizeof(struct vxge_hw_device_stats_hw_info));
  1414. return status;
  1415. }
  1416. /*
  1417. * vxge_hw_driver_stats_get - Get the device sw statistics.
  1418. * Returns the vpath s/w stats for the device.
  1419. */
  1420. enum vxge_hw_status vxge_hw_driver_stats_get(
  1421. struct __vxge_hw_device *hldev,
  1422. struct vxge_hw_device_stats_sw_info *sw_stats)
  1423. {
  1424. enum vxge_hw_status status = VXGE_HW_OK;
  1425. memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
  1426. sizeof(struct vxge_hw_device_stats_sw_info));
  1427. return status;
  1428. }
  1429. /*
  1430. * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
  1431. * and offset and perform an operation
  1432. * Get the statistics from the given location and offset.
  1433. */
  1434. enum vxge_hw_status
  1435. vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
  1436. u32 operation, u32 location, u32 offset, u64 *stat)
  1437. {
  1438. u64 val64;
  1439. enum vxge_hw_status status = VXGE_HW_OK;
  1440. status = __vxge_hw_device_is_privilaged(hldev->host_type,
  1441. hldev->func_id);
  1442. if (status != VXGE_HW_OK)
  1443. goto exit;
  1444. val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
  1445. VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
  1446. VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
  1447. VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
  1448. status = __vxge_hw_pio_mem_write64(val64,
  1449. &hldev->mrpcim_reg->xmac_stats_sys_cmd,
  1450. VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
  1451. hldev->config.device_poll_millis);
  1452. if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
  1453. *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
  1454. else
  1455. *stat = 0;
  1456. exit:
  1457. return status;
  1458. }
  1459. /*
  1460. * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
  1461. * Get the Statistics on aggregate port
  1462. */
  1463. static enum vxge_hw_status
  1464. vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
  1465. struct vxge_hw_xmac_aggr_stats *aggr_stats)
  1466. {
  1467. u64 *val64;
  1468. int i;
  1469. u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
  1470. enum vxge_hw_status status = VXGE_HW_OK;
  1471. val64 = (u64 *)aggr_stats;
  1472. status = __vxge_hw_device_is_privilaged(hldev->host_type,
  1473. hldev->func_id);
  1474. if (status != VXGE_HW_OK)
  1475. goto exit;
  1476. for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
  1477. status = vxge_hw_mrpcim_stats_access(hldev,
  1478. VXGE_HW_STATS_OP_READ,
  1479. VXGE_HW_STATS_LOC_AGGR,
  1480. ((offset + (104 * port)) >> 3), val64);
  1481. if (status != VXGE_HW_OK)
  1482. goto exit;
  1483. offset += 8;
  1484. val64++;
  1485. }
  1486. exit:
  1487. return status;
  1488. }
  1489. /*
  1490. * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
  1491. * Get the Statistics on port
  1492. */
  1493. static enum vxge_hw_status
  1494. vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
  1495. struct vxge_hw_xmac_port_stats *port_stats)
  1496. {
  1497. u64 *val64;
  1498. enum vxge_hw_status status = VXGE_HW_OK;
  1499. int i;
  1500. u32 offset = 0x0;
  1501. val64 = (u64 *) port_stats;
  1502. status = __vxge_hw_device_is_privilaged(hldev->host_type,
  1503. hldev->func_id);
  1504. if (status != VXGE_HW_OK)
  1505. goto exit;
  1506. for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
  1507. status = vxge_hw_mrpcim_stats_access(hldev,
  1508. VXGE_HW_STATS_OP_READ,
  1509. VXGE_HW_STATS_LOC_AGGR,
  1510. ((offset + (608 * port)) >> 3), val64);
  1511. if (status != VXGE_HW_OK)
  1512. goto exit;
  1513. offset += 8;
  1514. val64++;
  1515. }
  1516. exit:
  1517. return status;
  1518. }
  1519. /*
  1520. * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
  1521. * Get the XMAC Statistics
  1522. */
  1523. enum vxge_hw_status
  1524. vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
  1525. struct vxge_hw_xmac_stats *xmac_stats)
  1526. {
  1527. enum vxge_hw_status status = VXGE_HW_OK;
  1528. u32 i;
  1529. status = vxge_hw_device_xmac_aggr_stats_get(hldev,
  1530. 0, &xmac_stats->aggr_stats[0]);
  1531. if (status != VXGE_HW_OK)
  1532. goto exit;
  1533. status = vxge_hw_device_xmac_aggr_stats_get(hldev,
  1534. 1, &xmac_stats->aggr_stats[1]);
  1535. if (status != VXGE_HW_OK)
  1536. goto exit;
  1537. for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
  1538. status = vxge_hw_device_xmac_port_stats_get(hldev,
  1539. i, &xmac_stats->port_stats[i]);
  1540. if (status != VXGE_HW_OK)
  1541. goto exit;
  1542. }
  1543. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  1544. if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
  1545. continue;
  1546. status = __vxge_hw_vpath_xmac_tx_stats_get(
  1547. &hldev->virtual_paths[i],
  1548. &xmac_stats->vpath_tx_stats[i]);
  1549. if (status != VXGE_HW_OK)
  1550. goto exit;
  1551. status = __vxge_hw_vpath_xmac_rx_stats_get(
  1552. &hldev->virtual_paths[i],
  1553. &xmac_stats->vpath_rx_stats[i]);
  1554. if (status != VXGE_HW_OK)
  1555. goto exit;
  1556. }
  1557. exit:
  1558. return status;
  1559. }
  1560. /*
  1561. * vxge_hw_device_debug_set - Set the debug module, level and timestamp
  1562. * This routine is used to dynamically change the debug output
  1563. */
  1564. void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
  1565. enum vxge_debug_level level, u32 mask)
  1566. {
  1567. if (hldev == NULL)
  1568. return;
  1569. #if defined(VXGE_DEBUG_TRACE_MASK) || \
  1570. defined(VXGE_DEBUG_ERR_MASK)
  1571. hldev->debug_module_mask = mask;
  1572. hldev->debug_level = level;
  1573. #endif
  1574. #if defined(VXGE_DEBUG_ERR_MASK)
  1575. hldev->level_err = level & VXGE_ERR;
  1576. #endif
  1577. #if defined(VXGE_DEBUG_TRACE_MASK)
  1578. hldev->level_trace = level & VXGE_TRACE;
  1579. #endif
  1580. }
  1581. /*
  1582. * vxge_hw_device_error_level_get - Get the error level
  1583. * This routine returns the current error level set
  1584. */
  1585. u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
  1586. {
  1587. #if defined(VXGE_DEBUG_ERR_MASK)
  1588. if (hldev == NULL)
  1589. return VXGE_ERR;
  1590. else
  1591. return hldev->level_err;
  1592. #else
  1593. return 0;
  1594. #endif
  1595. }
  1596. /*
  1597. * vxge_hw_device_trace_level_get - Get the trace level
  1598. * This routine returns the current trace level set
  1599. */
  1600. u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
  1601. {
  1602. #if defined(VXGE_DEBUG_TRACE_MASK)
  1603. if (hldev == NULL)
  1604. return VXGE_TRACE;
  1605. else
  1606. return hldev->level_trace;
  1607. #else
  1608. return 0;
  1609. #endif
  1610. }
  1611. /*
  1612. * vxge_hw_getpause_data -Pause frame frame generation and reception.
  1613. * Returns the Pause frame generation and reception capability of the NIC.
  1614. */
  1615. enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
  1616. u32 port, u32 *tx, u32 *rx)
  1617. {
  1618. u64 val64;
  1619. enum vxge_hw_status status = VXGE_HW_OK;
  1620. if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
  1621. status = VXGE_HW_ERR_INVALID_DEVICE;
  1622. goto exit;
  1623. }
  1624. if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
  1625. status = VXGE_HW_ERR_INVALID_PORT;
  1626. goto exit;
  1627. }
  1628. if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
  1629. status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  1630. goto exit;
  1631. }
  1632. val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
  1633. if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
  1634. *tx = 1;
  1635. if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
  1636. *rx = 1;
  1637. exit:
  1638. return status;
  1639. }
  1640. /*
  1641. * vxge_hw_device_setpause_data - set/reset pause frame generation.
  1642. * It can be used to set or reset Pause frame generation or reception
  1643. * support of the NIC.
  1644. */
  1645. enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
  1646. u32 port, u32 tx, u32 rx)
  1647. {
  1648. u64 val64;
  1649. enum vxge_hw_status status = VXGE_HW_OK;
  1650. if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
  1651. status = VXGE_HW_ERR_INVALID_DEVICE;
  1652. goto exit;
  1653. }
  1654. if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
  1655. status = VXGE_HW_ERR_INVALID_PORT;
  1656. goto exit;
  1657. }
  1658. status = __vxge_hw_device_is_privilaged(hldev->host_type,
  1659. hldev->func_id);
  1660. if (status != VXGE_HW_OK)
  1661. goto exit;
  1662. val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
  1663. if (tx)
  1664. val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
  1665. else
  1666. val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
  1667. if (rx)
  1668. val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
  1669. else
  1670. val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
  1671. writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
  1672. exit:
  1673. return status;
  1674. }
  1675. u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
  1676. {
  1677. int link_width, exp_cap;
  1678. u16 lnk;
  1679. exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
  1680. pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
  1681. link_width = (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
  1682. return link_width;
  1683. }
  1684. /*
  1685. * __vxge_hw_ring_block_memblock_idx - Return the memblock index
  1686. * This function returns the index of memory block
  1687. */
  1688. static inline u32
  1689. __vxge_hw_ring_block_memblock_idx(u8 *block)
  1690. {
  1691. return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
  1692. }
  1693. /*
  1694. * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
  1695. * This function sets index to a memory block
  1696. */
  1697. static inline void
  1698. __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
  1699. {
  1700. *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
  1701. }
  1702. /*
  1703. * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
  1704. * in RxD block
  1705. * Sets the next block pointer in RxD block
  1706. */
  1707. static inline void
  1708. __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
  1709. {
  1710. *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
  1711. }
  1712. /*
  1713. * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
  1714. * first block
  1715. * Returns the dma address of the first RxD block
  1716. */
  1717. static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
  1718. {
  1719. struct vxge_hw_mempool_dma *dma_object;
  1720. dma_object = ring->mempool->memblocks_dma_arr;
  1721. vxge_assert(dma_object != NULL);
  1722. return dma_object->addr;
  1723. }
  1724. /*
  1725. * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
  1726. * This function returns the dma address of a given item
  1727. */
  1728. static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
  1729. void *item)
  1730. {
  1731. u32 memblock_idx;
  1732. void *memblock;
  1733. struct vxge_hw_mempool_dma *memblock_dma_object;
  1734. ptrdiff_t dma_item_offset;
  1735. /* get owner memblock index */
  1736. memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
  1737. /* get owner memblock by memblock index */
  1738. memblock = mempoolh->memblocks_arr[memblock_idx];
  1739. /* get memblock DMA object by memblock index */
  1740. memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
  1741. /* calculate offset in the memblock of this item */
  1742. dma_item_offset = (u8 *)item - (u8 *)memblock;
  1743. return memblock_dma_object->addr + dma_item_offset;
  1744. }
  1745. /*
  1746. * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
  1747. * This function returns the dma address of a given item
  1748. */
  1749. static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
  1750. struct __vxge_hw_ring *ring, u32 from,
  1751. u32 to)
  1752. {
  1753. u8 *to_item , *from_item;
  1754. dma_addr_t to_dma;
  1755. /* get "from" RxD block */
  1756. from_item = mempoolh->items_arr[from];
  1757. vxge_assert(from_item);
  1758. /* get "to" RxD block */
  1759. to_item = mempoolh->items_arr[to];
  1760. vxge_assert(to_item);
  1761. /* return address of the beginning of previous RxD block */
  1762. to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
  1763. /* set next pointer for this RxD block to point on
  1764. * previous item's DMA start address */
  1765. __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
  1766. }
  1767. /*
  1768. * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
  1769. * block callback
  1770. * This function is callback passed to __vxge_hw_mempool_create to create memory
  1771. * pool for RxD block
  1772. */
  1773. static void
  1774. __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
  1775. u32 memblock_index,
  1776. struct vxge_hw_mempool_dma *dma_object,
  1777. u32 index, u32 is_last)
  1778. {
  1779. u32 i;
  1780. void *item = mempoolh->items_arr[index];
  1781. struct __vxge_hw_ring *ring =
  1782. (struct __vxge_hw_ring *)mempoolh->userdata;
  1783. /* format rxds array */
  1784. for (i = 0; i < ring->rxds_per_block; i++) {
  1785. void *rxdblock_priv;
  1786. void *uld_priv;
  1787. struct vxge_hw_ring_rxd_1 *rxdp;
  1788. u32 reserve_index = ring->channel.reserve_ptr -
  1789. (index * ring->rxds_per_block + i + 1);
  1790. u32 memblock_item_idx;
  1791. ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
  1792. i * ring->rxd_size;
  1793. /* Note: memblock_item_idx is index of the item within
  1794. * the memblock. For instance, in case of three RxD-blocks
  1795. * per memblock this value can be 0, 1 or 2. */
  1796. rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
  1797. memblock_index, item,
  1798. &memblock_item_idx);
  1799. rxdp = (struct vxge_hw_ring_rxd_1 *)
  1800. ring->channel.reserve_arr[reserve_index];
  1801. uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
  1802. /* pre-format Host_Control */
  1803. rxdp->host_control = (u64)(size_t)uld_priv;
  1804. }
  1805. __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
  1806. if (is_last) {
  1807. /* link last one with first one */
  1808. __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
  1809. }
  1810. if (index > 0) {
  1811. /* link this RxD block with previous one */
  1812. __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
  1813. }
  1814. }
  1815. /*
  1816. * __vxge_hw_ring_replenish - Initial replenish of RxDs
  1817. * This function replenishes the RxDs from reserve array to work array
  1818. */
  1819. enum vxge_hw_status
  1820. vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
  1821. {
  1822. void *rxd;
  1823. struct __vxge_hw_channel *channel;
  1824. enum vxge_hw_status status = VXGE_HW_OK;
  1825. channel = &ring->channel;
  1826. while (vxge_hw_channel_dtr_count(channel) > 0) {
  1827. status = vxge_hw_ring_rxd_reserve(ring, &rxd);
  1828. vxge_assert(status == VXGE_HW_OK);
  1829. if (ring->rxd_init) {
  1830. status = ring->rxd_init(rxd, channel->userdata);
  1831. if (status != VXGE_HW_OK) {
  1832. vxge_hw_ring_rxd_free(ring, rxd);
  1833. goto exit;
  1834. }
  1835. }
  1836. vxge_hw_ring_rxd_post(ring, rxd);
  1837. }
  1838. status = VXGE_HW_OK;
  1839. exit:
  1840. return status;
  1841. }
  1842. /*
  1843. * __vxge_hw_channel_allocate - Allocate memory for channel
  1844. * This function allocates required memory for the channel and various arrays
  1845. * in the channel
  1846. */
  1847. static struct __vxge_hw_channel *
  1848. __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
  1849. enum __vxge_hw_channel_type type,
  1850. u32 length, u32 per_dtr_space,
  1851. void *userdata)
  1852. {
  1853. struct __vxge_hw_channel *channel;
  1854. struct __vxge_hw_device *hldev;
  1855. int size = 0;
  1856. u32 vp_id;
  1857. hldev = vph->vpath->hldev;
  1858. vp_id = vph->vpath->vp_id;
  1859. switch (type) {
  1860. case VXGE_HW_CHANNEL_TYPE_FIFO:
  1861. size = sizeof(struct __vxge_hw_fifo);
  1862. break;
  1863. case VXGE_HW_CHANNEL_TYPE_RING:
  1864. size = sizeof(struct __vxge_hw_ring);
  1865. break;
  1866. default:
  1867. break;
  1868. }
  1869. channel = kzalloc(size, GFP_KERNEL);
  1870. if (channel == NULL)
  1871. goto exit0;
  1872. INIT_LIST_HEAD(&channel->item);
  1873. channel->common_reg = hldev->common_reg;
  1874. channel->first_vp_id = hldev->first_vp_id;
  1875. channel->type = type;
  1876. channel->devh = hldev;
  1877. channel->vph = vph;
  1878. channel->userdata = userdata;
  1879. channel->per_dtr_space = per_dtr_space;
  1880. channel->length = length;
  1881. channel->vp_id = vp_id;
  1882. channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
  1883. if (channel->work_arr == NULL)
  1884. goto exit1;
  1885. channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
  1886. if (channel->free_arr == NULL)
  1887. goto exit1;
  1888. channel->free_ptr = length;
  1889. channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
  1890. if (channel->reserve_arr == NULL)
  1891. goto exit1;
  1892. channel->reserve_ptr = length;
  1893. channel->reserve_top = 0;
  1894. channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
  1895. if (channel->orig_arr == NULL)
  1896. goto exit1;
  1897. return channel;
  1898. exit1:
  1899. __vxge_hw_channel_free(channel);
  1900. exit0:
  1901. return NULL;
  1902. }
  1903. /*
  1904. * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
  1905. * Adds a block to block pool
  1906. */
  1907. static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
  1908. void *block_addr,
  1909. u32 length,
  1910. struct pci_dev *dma_h,
  1911. struct pci_dev *acc_handle)
  1912. {
  1913. struct __vxge_hw_blockpool *blockpool;
  1914. struct __vxge_hw_blockpool_entry *entry = NULL;
  1915. dma_addr_t dma_addr;
  1916. enum vxge_hw_status status = VXGE_HW_OK;
  1917. u32 req_out;
  1918. blockpool = &devh->block_pool;
  1919. if (block_addr == NULL) {
  1920. blockpool->req_out--;
  1921. status = VXGE_HW_FAIL;
  1922. goto exit;
  1923. }
  1924. dma_addr = pci_map_single(devh->pdev, block_addr, length,
  1925. PCI_DMA_BIDIRECTIONAL);
  1926. if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
  1927. vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
  1928. blockpool->req_out--;
  1929. status = VXGE_HW_FAIL;
  1930. goto exit;
  1931. }
  1932. if (!list_empty(&blockpool->free_entry_list))
  1933. entry = (struct __vxge_hw_blockpool_entry *)
  1934. list_first_entry(&blockpool->free_entry_list,
  1935. struct __vxge_hw_blockpool_entry,
  1936. item);
  1937. if (entry == NULL)
  1938. entry = vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
  1939. else
  1940. list_del(&entry->item);
  1941. if (entry != NULL) {
  1942. entry->length = length;
  1943. entry->memblock = block_addr;
  1944. entry->dma_addr = dma_addr;
  1945. entry->acc_handle = acc_handle;
  1946. entry->dma_handle = dma_h;
  1947. list_add(&entry->item, &blockpool->free_block_list);
  1948. blockpool->pool_size++;
  1949. status = VXGE_HW_OK;
  1950. } else
  1951. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1952. blockpool->req_out--;
  1953. req_out = blockpool->req_out;
  1954. exit:
  1955. return;
  1956. }
  1957. static inline void
  1958. vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh, unsigned long size)
  1959. {
  1960. gfp_t flags;
  1961. void *vaddr;
  1962. if (in_interrupt())
  1963. flags = GFP_ATOMIC | GFP_DMA;
  1964. else
  1965. flags = GFP_KERNEL | GFP_DMA;
  1966. vaddr = kmalloc((size), flags);
  1967. vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
  1968. }
  1969. /*
  1970. * __vxge_hw_blockpool_blocks_add - Request additional blocks
  1971. */
  1972. static
  1973. void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
  1974. {
  1975. u32 nreq = 0, i;
  1976. if ((blockpool->pool_size + blockpool->req_out) <
  1977. VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
  1978. nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
  1979. blockpool->req_out += nreq;
  1980. }
  1981. for (i = 0; i < nreq; i++)
  1982. vxge_os_dma_malloc_async(
  1983. ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
  1984. blockpool->hldev, VXGE_HW_BLOCK_SIZE);
  1985. }
  1986. /*
  1987. * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
  1988. * Allocates a block of memory of given size, either from block pool
  1989. * or by calling vxge_os_dma_malloc()
  1990. */
  1991. static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
  1992. struct vxge_hw_mempool_dma *dma_object)
  1993. {
  1994. struct __vxge_hw_blockpool_entry *entry = NULL;
  1995. struct __vxge_hw_blockpool *blockpool;
  1996. void *memblock = NULL;
  1997. enum vxge_hw_status status = VXGE_HW_OK;
  1998. blockpool = &devh->block_pool;
  1999. if (size != blockpool->block_size) {
  2000. memblock = vxge_os_dma_malloc(devh->pdev, size,
  2001. &dma_object->handle,
  2002. &dma_object->acc_handle);
  2003. if (memblock == NULL) {
  2004. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2005. goto exit;
  2006. }
  2007. dma_object->addr = pci_map_single(devh->pdev, memblock, size,
  2008. PCI_DMA_BIDIRECTIONAL);
  2009. if (unlikely(pci_dma_mapping_error(devh->pdev,
  2010. dma_object->addr))) {
  2011. vxge_os_dma_free(devh->pdev, memblock,
  2012. &dma_object->acc_handle);
  2013. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2014. goto exit;
  2015. }
  2016. } else {
  2017. if (!list_empty(&blockpool->free_block_list))
  2018. entry = (struct __vxge_hw_blockpool_entry *)
  2019. list_first_entry(&blockpool->free_block_list,
  2020. struct __vxge_hw_blockpool_entry,
  2021. item);
  2022. if (entry != NULL) {
  2023. list_del(&entry->item);
  2024. dma_object->addr = entry->dma_addr;
  2025. dma_object->handle = entry->dma_handle;
  2026. dma_object->acc_handle = entry->acc_handle;
  2027. memblock = entry->memblock;
  2028. list_add(&entry->item,
  2029. &blockpool->free_entry_list);
  2030. blockpool->pool_size--;
  2031. }
  2032. if (memblock != NULL)
  2033. __vxge_hw_blockpool_blocks_add(blockpool);
  2034. }
  2035. exit:
  2036. return memblock;
  2037. }
  2038. /*
  2039. * __vxge_hw_blockpool_blocks_remove - Free additional blocks
  2040. */
  2041. static void
  2042. __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
  2043. {
  2044. struct list_head *p, *n;
  2045. list_for_each_safe(p, n, &blockpool->free_block_list) {
  2046. if (blockpool->pool_size < blockpool->pool_max)
  2047. break;
  2048. pci_unmap_single(
  2049. ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
  2050. ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
  2051. ((struct __vxge_hw_blockpool_entry *)p)->length,
  2052. PCI_DMA_BIDIRECTIONAL);
  2053. vxge_os_dma_free(
  2054. ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
  2055. ((struct __vxge_hw_blockpool_entry *)p)->memblock,
  2056. &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
  2057. list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
  2058. list_add(p, &blockpool->free_entry_list);
  2059. blockpool->pool_size--;
  2060. }
  2061. }
  2062. /*
  2063. * __vxge_hw_blockpool_free - Frees the memory allcoated with
  2064. * __vxge_hw_blockpool_malloc
  2065. */
  2066. static void __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
  2067. void *memblock, u32 size,
  2068. struct vxge_hw_mempool_dma *dma_object)
  2069. {
  2070. struct __vxge_hw_blockpool_entry *entry = NULL;
  2071. struct __vxge_hw_blockpool *blockpool;
  2072. enum vxge_hw_status status = VXGE_HW_OK;
  2073. blockpool = &devh->block_pool;
  2074. if (size != blockpool->block_size) {
  2075. pci_unmap_single(devh->pdev, dma_object->addr, size,
  2076. PCI_DMA_BIDIRECTIONAL);
  2077. vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
  2078. } else {
  2079. if (!list_empty(&blockpool->free_entry_list))
  2080. entry = (struct __vxge_hw_blockpool_entry *)
  2081. list_first_entry(&blockpool->free_entry_list,
  2082. struct __vxge_hw_blockpool_entry,
  2083. item);
  2084. if (entry == NULL)
  2085. entry = vmalloc(sizeof(
  2086. struct __vxge_hw_blockpool_entry));
  2087. else
  2088. list_del(&entry->item);
  2089. if (entry != NULL) {
  2090. entry->length = size;
  2091. entry->memblock = memblock;
  2092. entry->dma_addr = dma_object->addr;
  2093. entry->acc_handle = dma_object->acc_handle;
  2094. entry->dma_handle = dma_object->handle;
  2095. list_add(&entry->item,
  2096. &blockpool->free_block_list);
  2097. blockpool->pool_size++;
  2098. status = VXGE_HW_OK;
  2099. } else
  2100. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2101. if (status == VXGE_HW_OK)
  2102. __vxge_hw_blockpool_blocks_remove(blockpool);
  2103. }
  2104. }
  2105. /*
  2106. * vxge_hw_mempool_destroy
  2107. */
  2108. static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
  2109. {
  2110. u32 i, j;
  2111. struct __vxge_hw_device *devh = mempool->devh;
  2112. for (i = 0; i < mempool->memblocks_allocated; i++) {
  2113. struct vxge_hw_mempool_dma *dma_object;
  2114. vxge_assert(mempool->memblocks_arr[i]);
  2115. vxge_assert(mempool->memblocks_dma_arr + i);
  2116. dma_object = mempool->memblocks_dma_arr + i;
  2117. for (j = 0; j < mempool->items_per_memblock; j++) {
  2118. u32 index = i * mempool->items_per_memblock + j;
  2119. /* to skip last partially filled(if any) memblock */
  2120. if (index >= mempool->items_current)
  2121. break;
  2122. }
  2123. vfree(mempool->memblocks_priv_arr[i]);
  2124. __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
  2125. mempool->memblock_size, dma_object);
  2126. }
  2127. vfree(mempool->items_arr);
  2128. vfree(mempool->memblocks_dma_arr);
  2129. vfree(mempool->memblocks_priv_arr);
  2130. vfree(mempool->memblocks_arr);
  2131. vfree(mempool);
  2132. }
  2133. /*
  2134. * __vxge_hw_mempool_grow
  2135. * Will resize mempool up to %num_allocate value.
  2136. */
  2137. static enum vxge_hw_status
  2138. __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
  2139. u32 *num_allocated)
  2140. {
  2141. u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
  2142. u32 n_items = mempool->items_per_memblock;
  2143. u32 start_block_idx = mempool->memblocks_allocated;
  2144. u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
  2145. enum vxge_hw_status status = VXGE_HW_OK;
  2146. *num_allocated = 0;
  2147. if (end_block_idx > mempool->memblocks_max) {
  2148. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2149. goto exit;
  2150. }
  2151. for (i = start_block_idx; i < end_block_idx; i++) {
  2152. u32 j;
  2153. u32 is_last = ((end_block_idx - 1) == i);
  2154. struct vxge_hw_mempool_dma *dma_object =
  2155. mempool->memblocks_dma_arr + i;
  2156. void *the_memblock;
  2157. /* allocate memblock's private part. Each DMA memblock
  2158. * has a space allocated for item's private usage upon
  2159. * mempool's user request. Each time mempool grows, it will
  2160. * allocate new memblock and its private part at once.
  2161. * This helps to minimize memory usage a lot. */
  2162. mempool->memblocks_priv_arr[i] =
  2163. vzalloc(mempool->items_priv_size * n_items);
  2164. if (mempool->memblocks_priv_arr[i] == NULL) {
  2165. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2166. goto exit;
  2167. }
  2168. /* allocate DMA-capable memblock */
  2169. mempool->memblocks_arr[i] =
  2170. __vxge_hw_blockpool_malloc(mempool->devh,
  2171. mempool->memblock_size, dma_object);
  2172. if (mempool->memblocks_arr[i] == NULL) {
  2173. vfree(mempool->memblocks_priv_arr[i]);
  2174. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2175. goto exit;
  2176. }
  2177. (*num_allocated)++;
  2178. mempool->memblocks_allocated++;
  2179. memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
  2180. the_memblock = mempool->memblocks_arr[i];
  2181. /* fill the items hash array */
  2182. for (j = 0; j < n_items; j++) {
  2183. u32 index = i * n_items + j;
  2184. if (first_time && index >= mempool->items_initial)
  2185. break;
  2186. mempool->items_arr[index] =
  2187. ((char *)the_memblock + j*mempool->item_size);
  2188. /* let caller to do more job on each item */
  2189. if (mempool->item_func_alloc != NULL)
  2190. mempool->item_func_alloc(mempool, i,
  2191. dma_object, index, is_last);
  2192. mempool->items_current = index + 1;
  2193. }
  2194. if (first_time && mempool->items_current ==
  2195. mempool->items_initial)
  2196. break;
  2197. }
  2198. exit:
  2199. return status;
  2200. }
  2201. /*
  2202. * vxge_hw_mempool_create
  2203. * This function will create memory pool object. Pool may grow but will
  2204. * never shrink. Pool consists of number of dynamically allocated blocks
  2205. * with size enough to hold %items_initial number of items. Memory is
  2206. * DMA-able but client must map/unmap before interoperating with the device.
  2207. */
  2208. static struct vxge_hw_mempool *
  2209. __vxge_hw_mempool_create(struct __vxge_hw_device *devh,
  2210. u32 memblock_size,
  2211. u32 item_size,
  2212. u32 items_priv_size,
  2213. u32 items_initial,
  2214. u32 items_max,
  2215. struct vxge_hw_mempool_cbs *mp_callback,
  2216. void *userdata)
  2217. {
  2218. enum vxge_hw_status status = VXGE_HW_OK;
  2219. u32 memblocks_to_allocate;
  2220. struct vxge_hw_mempool *mempool = NULL;
  2221. u32 allocated;
  2222. if (memblock_size < item_size) {
  2223. status = VXGE_HW_FAIL;
  2224. goto exit;
  2225. }
  2226. mempool = vzalloc(sizeof(struct vxge_hw_mempool));
  2227. if (mempool == NULL) {
  2228. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2229. goto exit;
  2230. }
  2231. mempool->devh = devh;
  2232. mempool->memblock_size = memblock_size;
  2233. mempool->items_max = items_max;
  2234. mempool->items_initial = items_initial;
  2235. mempool->item_size = item_size;
  2236. mempool->items_priv_size = items_priv_size;
  2237. mempool->item_func_alloc = mp_callback->item_func_alloc;
  2238. mempool->userdata = userdata;
  2239. mempool->memblocks_allocated = 0;
  2240. mempool->items_per_memblock = memblock_size / item_size;
  2241. mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
  2242. mempool->items_per_memblock;
  2243. /* allocate array of memblocks */
  2244. mempool->memblocks_arr =
  2245. vzalloc(sizeof(void *) * mempool->memblocks_max);
  2246. if (mempool->memblocks_arr == NULL) {
  2247. __vxge_hw_mempool_destroy(mempool);
  2248. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2249. mempool = NULL;
  2250. goto exit;
  2251. }
  2252. /* allocate array of private parts of items per memblocks */
  2253. mempool->memblocks_priv_arr =
  2254. vzalloc(sizeof(void *) * mempool->memblocks_max);
  2255. if (mempool->memblocks_priv_arr == NULL) {
  2256. __vxge_hw_mempool_destroy(mempool);
  2257. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2258. mempool = NULL;
  2259. goto exit;
  2260. }
  2261. /* allocate array of memblocks DMA objects */
  2262. mempool->memblocks_dma_arr =
  2263. vzalloc(sizeof(struct vxge_hw_mempool_dma) *
  2264. mempool->memblocks_max);
  2265. if (mempool->memblocks_dma_arr == NULL) {
  2266. __vxge_hw_mempool_destroy(mempool);
  2267. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2268. mempool = NULL;
  2269. goto exit;
  2270. }
  2271. /* allocate hash array of items */
  2272. mempool->items_arr = vzalloc(sizeof(void *) * mempool->items_max);
  2273. if (mempool->items_arr == NULL) {
  2274. __vxge_hw_mempool_destroy(mempool);
  2275. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2276. mempool = NULL;
  2277. goto exit;
  2278. }
  2279. /* calculate initial number of memblocks */
  2280. memblocks_to_allocate = (mempool->items_initial +
  2281. mempool->items_per_memblock - 1) /
  2282. mempool->items_per_memblock;
  2283. /* pre-allocate the mempool */
  2284. status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
  2285. &allocated);
  2286. if (status != VXGE_HW_OK) {
  2287. __vxge_hw_mempool_destroy(mempool);
  2288. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2289. mempool = NULL;
  2290. goto exit;
  2291. }
  2292. exit:
  2293. return mempool;
  2294. }
  2295. /*
  2296. * __vxge_hw_ring_abort - Returns the RxD
  2297. * This function terminates the RxDs of ring
  2298. */
  2299. static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
  2300. {
  2301. void *rxdh;
  2302. struct __vxge_hw_channel *channel;
  2303. channel = &ring->channel;
  2304. for (;;) {
  2305. vxge_hw_channel_dtr_try_complete(channel, &rxdh);
  2306. if (rxdh == NULL)
  2307. break;
  2308. vxge_hw_channel_dtr_complete(channel);
  2309. if (ring->rxd_term)
  2310. ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
  2311. channel->userdata);
  2312. vxge_hw_channel_dtr_free(channel, rxdh);
  2313. }
  2314. return VXGE_HW_OK;
  2315. }
  2316. /*
  2317. * __vxge_hw_ring_reset - Resets the ring
  2318. * This function resets the ring during vpath reset operation
  2319. */
  2320. static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
  2321. {
  2322. enum vxge_hw_status status = VXGE_HW_OK;
  2323. struct __vxge_hw_channel *channel;
  2324. channel = &ring->channel;
  2325. __vxge_hw_ring_abort(ring);
  2326. status = __vxge_hw_channel_reset(channel);
  2327. if (status != VXGE_HW_OK)
  2328. goto exit;
  2329. if (ring->rxd_init) {
  2330. status = vxge_hw_ring_replenish(ring);
  2331. if (status != VXGE_HW_OK)
  2332. goto exit;
  2333. }
  2334. exit:
  2335. return status;
  2336. }
  2337. /*
  2338. * __vxge_hw_ring_delete - Removes the ring
  2339. * This function freeup the memory pool and removes the ring
  2340. */
  2341. static enum vxge_hw_status
  2342. __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
  2343. {
  2344. struct __vxge_hw_ring *ring = vp->vpath->ringh;
  2345. __vxge_hw_ring_abort(ring);
  2346. if (ring->mempool)
  2347. __vxge_hw_mempool_destroy(ring->mempool);
  2348. vp->vpath->ringh = NULL;
  2349. __vxge_hw_channel_free(&ring->channel);
  2350. return VXGE_HW_OK;
  2351. }
  2352. /*
  2353. * __vxge_hw_ring_create - Create a Ring
  2354. * This function creates Ring and initializes it.
  2355. */
  2356. static enum vxge_hw_status
  2357. __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
  2358. struct vxge_hw_ring_attr *attr)
  2359. {
  2360. enum vxge_hw_status status = VXGE_HW_OK;
  2361. struct __vxge_hw_ring *ring;
  2362. u32 ring_length;
  2363. struct vxge_hw_ring_config *config;
  2364. struct __vxge_hw_device *hldev;
  2365. u32 vp_id;
  2366. struct vxge_hw_mempool_cbs ring_mp_callback;
  2367. if ((vp == NULL) || (attr == NULL)) {
  2368. status = VXGE_HW_FAIL;
  2369. goto exit;
  2370. }
  2371. hldev = vp->vpath->hldev;
  2372. vp_id = vp->vpath->vp_id;
  2373. config = &hldev->config.vp_config[vp_id].ring;
  2374. ring_length = config->ring_blocks *
  2375. vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
  2376. ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
  2377. VXGE_HW_CHANNEL_TYPE_RING,
  2378. ring_length,
  2379. attr->per_rxd_space,
  2380. attr->userdata);
  2381. if (ring == NULL) {
  2382. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2383. goto exit;
  2384. }
  2385. vp->vpath->ringh = ring;
  2386. ring->vp_id = vp_id;
  2387. ring->vp_reg = vp->vpath->vp_reg;
  2388. ring->common_reg = hldev->common_reg;
  2389. ring->stats = &vp->vpath->sw_stats->ring_stats;
  2390. ring->config = config;
  2391. ring->callback = attr->callback;
  2392. ring->rxd_init = attr->rxd_init;
  2393. ring->rxd_term = attr->rxd_term;
  2394. ring->buffer_mode = config->buffer_mode;
  2395. ring->rxds_limit = config->rxds_limit;
  2396. ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
  2397. ring->rxd_priv_size =
  2398. sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
  2399. ring->per_rxd_space = attr->per_rxd_space;
  2400. ring->rxd_priv_size =
  2401. ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
  2402. VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
  2403. /* how many RxDs can fit into one block. Depends on configured
  2404. * buffer_mode. */
  2405. ring->rxds_per_block =
  2406. vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
  2407. /* calculate actual RxD block private size */
  2408. ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
  2409. ring_mp_callback.item_func_alloc = __vxge_hw_ring_mempool_item_alloc;
  2410. ring->mempool = __vxge_hw_mempool_create(hldev,
  2411. VXGE_HW_BLOCK_SIZE,
  2412. VXGE_HW_BLOCK_SIZE,
  2413. ring->rxdblock_priv_size,
  2414. ring->config->ring_blocks,
  2415. ring->config->ring_blocks,
  2416. &ring_mp_callback,
  2417. ring);
  2418. if (ring->mempool == NULL) {
  2419. __vxge_hw_ring_delete(vp);
  2420. return VXGE_HW_ERR_OUT_OF_MEMORY;
  2421. }
  2422. status = __vxge_hw_channel_initialize(&ring->channel);
  2423. if (status != VXGE_HW_OK) {
  2424. __vxge_hw_ring_delete(vp);
  2425. goto exit;
  2426. }
  2427. /* Note:
  2428. * Specifying rxd_init callback means two things:
  2429. * 1) rxds need to be initialized by driver at channel-open time;
  2430. * 2) rxds need to be posted at channel-open time
  2431. * (that's what the initial_replenish() below does)
  2432. * Currently we don't have a case when the 1) is done without the 2).
  2433. */
  2434. if (ring->rxd_init) {
  2435. status = vxge_hw_ring_replenish(ring);
  2436. if (status != VXGE_HW_OK) {
  2437. __vxge_hw_ring_delete(vp);
  2438. goto exit;
  2439. }
  2440. }
  2441. /* initial replenish will increment the counter in its post() routine,
  2442. * we have to reset it */
  2443. ring->stats->common_stats.usage_cnt = 0;
  2444. exit:
  2445. return status;
  2446. }
  2447. /*
  2448. * vxge_hw_device_config_default_get - Initialize device config with defaults.
  2449. * Initialize Titan device config with default values.
  2450. */
  2451. enum vxge_hw_status __devinit
  2452. vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
  2453. {
  2454. u32 i;
  2455. device_config->dma_blockpool_initial =
  2456. VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
  2457. device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
  2458. device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
  2459. device_config->rth_en = VXGE_HW_RTH_DEFAULT;
  2460. device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
  2461. device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS;
  2462. device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT;
  2463. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  2464. device_config->vp_config[i].vp_id = i;
  2465. device_config->vp_config[i].min_bandwidth =
  2466. VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
  2467. device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
  2468. device_config->vp_config[i].ring.ring_blocks =
  2469. VXGE_HW_DEF_RING_BLOCKS;
  2470. device_config->vp_config[i].ring.buffer_mode =
  2471. VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
  2472. device_config->vp_config[i].ring.scatter_mode =
  2473. VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
  2474. device_config->vp_config[i].ring.rxds_limit =
  2475. VXGE_HW_DEF_RING_RXDS_LIMIT;
  2476. device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
  2477. device_config->vp_config[i].fifo.fifo_blocks =
  2478. VXGE_HW_MIN_FIFO_BLOCKS;
  2479. device_config->vp_config[i].fifo.max_frags =
  2480. VXGE_HW_MAX_FIFO_FRAGS;
  2481. device_config->vp_config[i].fifo.memblock_size =
  2482. VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
  2483. device_config->vp_config[i].fifo.alignment_size =
  2484. VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
  2485. device_config->vp_config[i].fifo.intr =
  2486. VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
  2487. device_config->vp_config[i].fifo.no_snoop_bits =
  2488. VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
  2489. device_config->vp_config[i].tti.intr_enable =
  2490. VXGE_HW_TIM_INTR_DEFAULT;
  2491. device_config->vp_config[i].tti.btimer_val =
  2492. VXGE_HW_USE_FLASH_DEFAULT;
  2493. device_config->vp_config[i].tti.timer_ac_en =
  2494. VXGE_HW_USE_FLASH_DEFAULT;
  2495. device_config->vp_config[i].tti.timer_ci_en =
  2496. VXGE_HW_USE_FLASH_DEFAULT;
  2497. device_config->vp_config[i].tti.timer_ri_en =
  2498. VXGE_HW_USE_FLASH_DEFAULT;
  2499. device_config->vp_config[i].tti.rtimer_val =
  2500. VXGE_HW_USE_FLASH_DEFAULT;
  2501. device_config->vp_config[i].tti.util_sel =
  2502. VXGE_HW_USE_FLASH_DEFAULT;
  2503. device_config->vp_config[i].tti.ltimer_val =
  2504. VXGE_HW_USE_FLASH_DEFAULT;
  2505. device_config->vp_config[i].tti.urange_a =
  2506. VXGE_HW_USE_FLASH_DEFAULT;
  2507. device_config->vp_config[i].tti.uec_a =
  2508. VXGE_HW_USE_FLASH_DEFAULT;
  2509. device_config->vp_config[i].tti.urange_b =
  2510. VXGE_HW_USE_FLASH_DEFAULT;
  2511. device_config->vp_config[i].tti.uec_b =
  2512. VXGE_HW_USE_FLASH_DEFAULT;
  2513. device_config->vp_config[i].tti.urange_c =
  2514. VXGE_HW_USE_FLASH_DEFAULT;
  2515. device_config->vp_config[i].tti.uec_c =
  2516. VXGE_HW_USE_FLASH_DEFAULT;
  2517. device_config->vp_config[i].tti.uec_d =
  2518. VXGE_HW_USE_FLASH_DEFAULT;
  2519. device_config->vp_config[i].rti.intr_enable =
  2520. VXGE_HW_TIM_INTR_DEFAULT;
  2521. device_config->vp_config[i].rti.btimer_val =
  2522. VXGE_HW_USE_FLASH_DEFAULT;
  2523. device_config->vp_config[i].rti.timer_ac_en =
  2524. VXGE_HW_USE_FLASH_DEFAULT;
  2525. device_config->vp_config[i].rti.timer_ci_en =
  2526. VXGE_HW_USE_FLASH_DEFAULT;
  2527. device_config->vp_config[i].rti.timer_ri_en =
  2528. VXGE_HW_USE_FLASH_DEFAULT;
  2529. device_config->vp_config[i].rti.rtimer_val =
  2530. VXGE_HW_USE_FLASH_DEFAULT;
  2531. device_config->vp_config[i].rti.util_sel =
  2532. VXGE_HW_USE_FLASH_DEFAULT;
  2533. device_config->vp_config[i].rti.ltimer_val =
  2534. VXGE_HW_USE_FLASH_DEFAULT;
  2535. device_config->vp_config[i].rti.urange_a =
  2536. VXGE_HW_USE_FLASH_DEFAULT;
  2537. device_config->vp_config[i].rti.uec_a =
  2538. VXGE_HW_USE_FLASH_DEFAULT;
  2539. device_config->vp_config[i].rti.urange_b =
  2540. VXGE_HW_USE_FLASH_DEFAULT;
  2541. device_config->vp_config[i].rti.uec_b =
  2542. VXGE_HW_USE_FLASH_DEFAULT;
  2543. device_config->vp_config[i].rti.urange_c =
  2544. VXGE_HW_USE_FLASH_DEFAULT;
  2545. device_config->vp_config[i].rti.uec_c =
  2546. VXGE_HW_USE_FLASH_DEFAULT;
  2547. device_config->vp_config[i].rti.uec_d =
  2548. VXGE_HW_USE_FLASH_DEFAULT;
  2549. device_config->vp_config[i].mtu =
  2550. VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
  2551. device_config->vp_config[i].rpa_strip_vlan_tag =
  2552. VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
  2553. }
  2554. return VXGE_HW_OK;
  2555. }
  2556. /*
  2557. * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
  2558. * Set the swapper bits appropriately for the vpath.
  2559. */
  2560. static enum vxge_hw_status
  2561. __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
  2562. {
  2563. #ifndef __BIG_ENDIAN
  2564. u64 val64;
  2565. val64 = readq(&vpath_reg->vpath_general_cfg1);
  2566. wmb();
  2567. val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
  2568. writeq(val64, &vpath_reg->vpath_general_cfg1);
  2569. wmb();
  2570. #endif
  2571. return VXGE_HW_OK;
  2572. }
  2573. /*
  2574. * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
  2575. * Set the swapper bits appropriately for the vpath.
  2576. */
  2577. static enum vxge_hw_status
  2578. __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg,
  2579. struct vxge_hw_vpath_reg __iomem *vpath_reg)
  2580. {
  2581. u64 val64;
  2582. val64 = readq(&legacy_reg->pifm_wr_swap_en);
  2583. if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
  2584. val64 = readq(&vpath_reg->kdfcctl_cfg0);
  2585. wmb();
  2586. val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
  2587. VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 |
  2588. VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
  2589. writeq(val64, &vpath_reg->kdfcctl_cfg0);
  2590. wmb();
  2591. }
  2592. return VXGE_HW_OK;
  2593. }
  2594. /*
  2595. * vxge_hw_mgmt_reg_read - Read Titan register.
  2596. */
  2597. enum vxge_hw_status
  2598. vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
  2599. enum vxge_hw_mgmt_reg_type type,
  2600. u32 index, u32 offset, u64 *value)
  2601. {
  2602. enum vxge_hw_status status = VXGE_HW_OK;
  2603. if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
  2604. status = VXGE_HW_ERR_INVALID_DEVICE;
  2605. goto exit;
  2606. }
  2607. switch (type) {
  2608. case vxge_hw_mgmt_reg_type_legacy:
  2609. if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
  2610. status = VXGE_HW_ERR_INVALID_OFFSET;
  2611. break;
  2612. }
  2613. *value = readq((void __iomem *)hldev->legacy_reg + offset);
  2614. break;
  2615. case vxge_hw_mgmt_reg_type_toc:
  2616. if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
  2617. status = VXGE_HW_ERR_INVALID_OFFSET;
  2618. break;
  2619. }
  2620. *value = readq((void __iomem *)hldev->toc_reg + offset);
  2621. break;
  2622. case vxge_hw_mgmt_reg_type_common:
  2623. if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
  2624. status = VXGE_HW_ERR_INVALID_OFFSET;
  2625. break;
  2626. }
  2627. *value = readq((void __iomem *)hldev->common_reg + offset);
  2628. break;
  2629. case vxge_hw_mgmt_reg_type_mrpcim:
  2630. if (!(hldev->access_rights &
  2631. VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
  2632. status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  2633. break;
  2634. }
  2635. if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
  2636. status = VXGE_HW_ERR_INVALID_OFFSET;
  2637. break;
  2638. }
  2639. *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
  2640. break;
  2641. case vxge_hw_mgmt_reg_type_srpcim:
  2642. if (!(hldev->access_rights &
  2643. VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
  2644. status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  2645. break;
  2646. }
  2647. if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
  2648. status = VXGE_HW_ERR_INVALID_INDEX;
  2649. break;
  2650. }
  2651. if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
  2652. status = VXGE_HW_ERR_INVALID_OFFSET;
  2653. break;
  2654. }
  2655. *value = readq((void __iomem *)hldev->srpcim_reg[index] +
  2656. offset);
  2657. break;
  2658. case vxge_hw_mgmt_reg_type_vpmgmt:
  2659. if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
  2660. (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
  2661. status = VXGE_HW_ERR_INVALID_INDEX;
  2662. break;
  2663. }
  2664. if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
  2665. status = VXGE_HW_ERR_INVALID_OFFSET;
  2666. break;
  2667. }
  2668. *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
  2669. offset);
  2670. break;
  2671. case vxge_hw_mgmt_reg_type_vpath:
  2672. if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
  2673. (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
  2674. status = VXGE_HW_ERR_INVALID_INDEX;
  2675. break;
  2676. }
  2677. if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
  2678. status = VXGE_HW_ERR_INVALID_INDEX;
  2679. break;
  2680. }
  2681. if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
  2682. status = VXGE_HW_ERR_INVALID_OFFSET;
  2683. break;
  2684. }
  2685. *value = readq((void __iomem *)hldev->vpath_reg[index] +
  2686. offset);
  2687. break;
  2688. default:
  2689. status = VXGE_HW_ERR_INVALID_TYPE;
  2690. break;
  2691. }
  2692. exit:
  2693. return status;
  2694. }
  2695. /*
  2696. * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
  2697. */
  2698. enum vxge_hw_status
  2699. vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
  2700. {
  2701. struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
  2702. enum vxge_hw_status status = VXGE_HW_OK;
  2703. int i = 0, j = 0;
  2704. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  2705. if (!((vpath_mask) & vxge_mBIT(i)))
  2706. continue;
  2707. vpmgmt_reg = hldev->vpmgmt_reg[i];
  2708. for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
  2709. if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
  2710. & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
  2711. return VXGE_HW_FAIL;
  2712. }
  2713. }
  2714. return status;
  2715. }
  2716. /*
  2717. * vxge_hw_mgmt_reg_Write - Write Titan register.
  2718. */
  2719. enum vxge_hw_status
  2720. vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
  2721. enum vxge_hw_mgmt_reg_type type,
  2722. u32 index, u32 offset, u64 value)
  2723. {
  2724. enum vxge_hw_status status = VXGE_HW_OK;
  2725. if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
  2726. status = VXGE_HW_ERR_INVALID_DEVICE;
  2727. goto exit;
  2728. }
  2729. switch (type) {
  2730. case vxge_hw_mgmt_reg_type_legacy:
  2731. if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
  2732. status = VXGE_HW_ERR_INVALID_OFFSET;
  2733. break;
  2734. }
  2735. writeq(value, (void __iomem *)hldev->legacy_reg + offset);
  2736. break;
  2737. case vxge_hw_mgmt_reg_type_toc:
  2738. if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
  2739. status = VXGE_HW_ERR_INVALID_OFFSET;
  2740. break;
  2741. }
  2742. writeq(value, (void __iomem *)hldev->toc_reg + offset);
  2743. break;
  2744. case vxge_hw_mgmt_reg_type_common:
  2745. if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
  2746. status = VXGE_HW_ERR_INVALID_OFFSET;
  2747. break;
  2748. }
  2749. writeq(value, (void __iomem *)hldev->common_reg + offset);
  2750. break;
  2751. case vxge_hw_mgmt_reg_type_mrpcim:
  2752. if (!(hldev->access_rights &
  2753. VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
  2754. status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  2755. break;
  2756. }
  2757. if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
  2758. status = VXGE_HW_ERR_INVALID_OFFSET;
  2759. break;
  2760. }
  2761. writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
  2762. break;
  2763. case vxge_hw_mgmt_reg_type_srpcim:
  2764. if (!(hldev->access_rights &
  2765. VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
  2766. status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  2767. break;
  2768. }
  2769. if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
  2770. status = VXGE_HW_ERR_INVALID_INDEX;
  2771. break;
  2772. }
  2773. if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
  2774. status = VXGE_HW_ERR_INVALID_OFFSET;
  2775. break;
  2776. }
  2777. writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
  2778. offset);
  2779. break;
  2780. case vxge_hw_mgmt_reg_type_vpmgmt:
  2781. if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
  2782. (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
  2783. status = VXGE_HW_ERR_INVALID_INDEX;
  2784. break;
  2785. }
  2786. if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
  2787. status = VXGE_HW_ERR_INVALID_OFFSET;
  2788. break;
  2789. }
  2790. writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
  2791. offset);
  2792. break;
  2793. case vxge_hw_mgmt_reg_type_vpath:
  2794. if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
  2795. (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
  2796. status = VXGE_HW_ERR_INVALID_INDEX;
  2797. break;
  2798. }
  2799. if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
  2800. status = VXGE_HW_ERR_INVALID_OFFSET;
  2801. break;
  2802. }
  2803. writeq(value, (void __iomem *)hldev->vpath_reg[index] +
  2804. offset);
  2805. break;
  2806. default:
  2807. status = VXGE_HW_ERR_INVALID_TYPE;
  2808. break;
  2809. }
  2810. exit:
  2811. return status;
  2812. }
  2813. /*
  2814. * __vxge_hw_fifo_abort - Returns the TxD
  2815. * This function terminates the TxDs of fifo
  2816. */
  2817. static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
  2818. {
  2819. void *txdlh;
  2820. for (;;) {
  2821. vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
  2822. if (txdlh == NULL)
  2823. break;
  2824. vxge_hw_channel_dtr_complete(&fifo->channel);
  2825. if (fifo->txdl_term) {
  2826. fifo->txdl_term(txdlh,
  2827. VXGE_HW_TXDL_STATE_POSTED,
  2828. fifo->channel.userdata);
  2829. }
  2830. vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
  2831. }
  2832. return VXGE_HW_OK;
  2833. }
  2834. /*
  2835. * __vxge_hw_fifo_reset - Resets the fifo
  2836. * This function resets the fifo during vpath reset operation
  2837. */
  2838. static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
  2839. {
  2840. enum vxge_hw_status status = VXGE_HW_OK;
  2841. __vxge_hw_fifo_abort(fifo);
  2842. status = __vxge_hw_channel_reset(&fifo->channel);
  2843. return status;
  2844. }
  2845. /*
  2846. * __vxge_hw_fifo_delete - Removes the FIFO
  2847. * This function freeup the memory pool and removes the FIFO
  2848. */
  2849. static enum vxge_hw_status
  2850. __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
  2851. {
  2852. struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
  2853. __vxge_hw_fifo_abort(fifo);
  2854. if (fifo->mempool)
  2855. __vxge_hw_mempool_destroy(fifo->mempool);
  2856. vp->vpath->fifoh = NULL;
  2857. __vxge_hw_channel_free(&fifo->channel);
  2858. return VXGE_HW_OK;
  2859. }
  2860. /*
  2861. * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
  2862. * list callback
  2863. * This function is callback passed to __vxge_hw_mempool_create to create memory
  2864. * pool for TxD list
  2865. */
  2866. static void
  2867. __vxge_hw_fifo_mempool_item_alloc(
  2868. struct vxge_hw_mempool *mempoolh,
  2869. u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
  2870. u32 index, u32 is_last)
  2871. {
  2872. u32 memblock_item_idx;
  2873. struct __vxge_hw_fifo_txdl_priv *txdl_priv;
  2874. struct vxge_hw_fifo_txd *txdp =
  2875. (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
  2876. struct __vxge_hw_fifo *fifo =
  2877. (struct __vxge_hw_fifo *)mempoolh->userdata;
  2878. void *memblock = mempoolh->memblocks_arr[memblock_index];
  2879. vxge_assert(txdp);
  2880. txdp->host_control = (u64) (size_t)
  2881. __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
  2882. &memblock_item_idx);
  2883. txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
  2884. vxge_assert(txdl_priv);
  2885. fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
  2886. /* pre-format HW's TxDL's private */
  2887. txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
  2888. txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
  2889. txdl_priv->dma_handle = dma_object->handle;
  2890. txdl_priv->memblock = memblock;
  2891. txdl_priv->first_txdp = txdp;
  2892. txdl_priv->next_txdl_priv = NULL;
  2893. txdl_priv->alloc_frags = 0;
  2894. }
  2895. /*
  2896. * __vxge_hw_fifo_create - Create a FIFO
  2897. * This function creates FIFO and initializes it.
  2898. */
  2899. static enum vxge_hw_status
  2900. __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
  2901. struct vxge_hw_fifo_attr *attr)
  2902. {
  2903. enum vxge_hw_status status = VXGE_HW_OK;
  2904. struct __vxge_hw_fifo *fifo;
  2905. struct vxge_hw_fifo_config *config;
  2906. u32 txdl_size, txdl_per_memblock;
  2907. struct vxge_hw_mempool_cbs fifo_mp_callback;
  2908. struct __vxge_hw_virtualpath *vpath;
  2909. if ((vp == NULL) || (attr == NULL)) {
  2910. status = VXGE_HW_ERR_INVALID_HANDLE;
  2911. goto exit;
  2912. }
  2913. vpath = vp->vpath;
  2914. config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
  2915. txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
  2916. txdl_per_memblock = config->memblock_size / txdl_size;
  2917. fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
  2918. VXGE_HW_CHANNEL_TYPE_FIFO,
  2919. config->fifo_blocks * txdl_per_memblock,
  2920. attr->per_txdl_space, attr->userdata);
  2921. if (fifo == NULL) {
  2922. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2923. goto exit;
  2924. }
  2925. vpath->fifoh = fifo;
  2926. fifo->nofl_db = vpath->nofl_db;
  2927. fifo->vp_id = vpath->vp_id;
  2928. fifo->vp_reg = vpath->vp_reg;
  2929. fifo->stats = &vpath->sw_stats->fifo_stats;
  2930. fifo->config = config;
  2931. /* apply "interrupts per txdl" attribute */
  2932. fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
  2933. if (fifo->config->intr)
  2934. fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
  2935. fifo->no_snoop_bits = config->no_snoop_bits;
  2936. /*
  2937. * FIFO memory management strategy:
  2938. *
  2939. * TxDL split into three independent parts:
  2940. * - set of TxD's
  2941. * - TxD HW private part
  2942. * - driver private part
  2943. *
  2944. * Adaptative memory allocation used. i.e. Memory allocated on
  2945. * demand with the size which will fit into one memory block.
  2946. * One memory block may contain more than one TxDL.
  2947. *
  2948. * During "reserve" operations more memory can be allocated on demand
  2949. * for example due to FIFO full condition.
  2950. *
  2951. * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
  2952. * routine which will essentially stop the channel and free resources.
  2953. */
  2954. /* TxDL common private size == TxDL private + driver private */
  2955. fifo->priv_size =
  2956. sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
  2957. fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) /
  2958. VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
  2959. fifo->per_txdl_space = attr->per_txdl_space;
  2960. /* recompute txdl size to be cacheline aligned */
  2961. fifo->txdl_size = txdl_size;
  2962. fifo->txdl_per_memblock = txdl_per_memblock;
  2963. fifo->txdl_term = attr->txdl_term;
  2964. fifo->callback = attr->callback;
  2965. if (fifo->txdl_per_memblock == 0) {
  2966. __vxge_hw_fifo_delete(vp);
  2967. status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
  2968. goto exit;
  2969. }
  2970. fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
  2971. fifo->mempool =
  2972. __vxge_hw_mempool_create(vpath->hldev,
  2973. fifo->config->memblock_size,
  2974. fifo->txdl_size,
  2975. fifo->priv_size,
  2976. (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
  2977. (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
  2978. &fifo_mp_callback,
  2979. fifo);
  2980. if (fifo->mempool == NULL) {
  2981. __vxge_hw_fifo_delete(vp);
  2982. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2983. goto exit;
  2984. }
  2985. status = __vxge_hw_channel_initialize(&fifo->channel);
  2986. if (status != VXGE_HW_OK) {
  2987. __vxge_hw_fifo_delete(vp);
  2988. goto exit;
  2989. }
  2990. vxge_assert(fifo->channel.reserve_ptr);
  2991. exit:
  2992. return status;
  2993. }
  2994. /*
  2995. * __vxge_hw_vpath_pci_read - Read the content of given address
  2996. * in pci config space.
  2997. * Read from the vpath pci config space.
  2998. */
  2999. static enum vxge_hw_status
  3000. __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
  3001. u32 phy_func_0, u32 offset, u32 *val)
  3002. {
  3003. u64 val64;
  3004. enum vxge_hw_status status = VXGE_HW_OK;
  3005. struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
  3006. val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
  3007. if (phy_func_0)
  3008. val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
  3009. writeq(val64, &vp_reg->pci_config_access_cfg1);
  3010. wmb();
  3011. writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
  3012. &vp_reg->pci_config_access_cfg2);
  3013. wmb();
  3014. status = __vxge_hw_device_register_poll(
  3015. &vp_reg->pci_config_access_cfg2,
  3016. VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  3017. if (status != VXGE_HW_OK)
  3018. goto exit;
  3019. val64 = readq(&vp_reg->pci_config_access_status);
  3020. if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
  3021. status = VXGE_HW_FAIL;
  3022. *val = 0;
  3023. } else
  3024. *val = (u32)vxge_bVALn(val64, 32, 32);
  3025. exit:
  3026. return status;
  3027. }
  3028. /**
  3029. * vxge_hw_device_flick_link_led - Flick (blink) link LED.
  3030. * @hldev: HW device.
  3031. * @on_off: TRUE if flickering to be on, FALSE to be off
  3032. *
  3033. * Flicker the link LED.
  3034. */
  3035. enum vxge_hw_status
  3036. vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev, u64 on_off)
  3037. {
  3038. struct __vxge_hw_virtualpath *vpath;
  3039. u64 data0, data1 = 0, steer_ctrl = 0;
  3040. enum vxge_hw_status status;
  3041. if (hldev == NULL) {
  3042. status = VXGE_HW_ERR_INVALID_DEVICE;
  3043. goto exit;
  3044. }
  3045. vpath = &hldev->virtual_paths[hldev->first_vp_id];
  3046. data0 = on_off;
  3047. status = vxge_hw_vpath_fw_api(vpath,
  3048. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL,
  3049. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
  3050. 0, &data0, &data1, &steer_ctrl);
  3051. exit:
  3052. return status;
  3053. }
  3054. /*
  3055. * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
  3056. */
  3057. enum vxge_hw_status
  3058. __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle *vp,
  3059. u32 action, u32 rts_table, u32 offset,
  3060. u64 *data0, u64 *data1)
  3061. {
  3062. enum vxge_hw_status status;
  3063. u64 steer_ctrl = 0;
  3064. if (vp == NULL) {
  3065. status = VXGE_HW_ERR_INVALID_HANDLE;
  3066. goto exit;
  3067. }
  3068. if ((rts_table ==
  3069. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
  3070. (rts_table ==
  3071. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
  3072. (rts_table ==
  3073. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
  3074. (rts_table ==
  3075. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
  3076. steer_ctrl = VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
  3077. }
  3078. status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
  3079. data0, data1, &steer_ctrl);
  3080. if (status != VXGE_HW_OK)
  3081. goto exit;
  3082. if ((rts_table != VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
  3083. (rts_table !=
  3084. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
  3085. *data1 = 0;
  3086. exit:
  3087. return status;
  3088. }
  3089. /*
  3090. * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
  3091. */
  3092. enum vxge_hw_status
  3093. __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle *vp, u32 action,
  3094. u32 rts_table, u32 offset, u64 steer_data0,
  3095. u64 steer_data1)
  3096. {
  3097. u64 data0, data1 = 0, steer_ctrl = 0;
  3098. enum vxge_hw_status status;
  3099. if (vp == NULL) {
  3100. status = VXGE_HW_ERR_INVALID_HANDLE;
  3101. goto exit;
  3102. }
  3103. data0 = steer_data0;
  3104. if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
  3105. (rts_table ==
  3106. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
  3107. data1 = steer_data1;
  3108. status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
  3109. &data0, &data1, &steer_ctrl);
  3110. exit:
  3111. return status;
  3112. }
  3113. /*
  3114. * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
  3115. */
  3116. enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
  3117. struct __vxge_hw_vpath_handle *vp,
  3118. enum vxge_hw_rth_algoritms algorithm,
  3119. struct vxge_hw_rth_hash_types *hash_type,
  3120. u16 bucket_size)
  3121. {
  3122. u64 data0, data1;
  3123. enum vxge_hw_status status = VXGE_HW_OK;
  3124. if (vp == NULL) {
  3125. status = VXGE_HW_ERR_INVALID_HANDLE;
  3126. goto exit;
  3127. }
  3128. status = __vxge_hw_vpath_rts_table_get(vp,
  3129. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
  3130. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
  3131. 0, &data0, &data1);
  3132. if (status != VXGE_HW_OK)
  3133. goto exit;
  3134. data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
  3135. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
  3136. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
  3137. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
  3138. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
  3139. if (hash_type->hash_type_tcpipv4_en)
  3140. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
  3141. if (hash_type->hash_type_ipv4_en)
  3142. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
  3143. if (hash_type->hash_type_tcpipv6_en)
  3144. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
  3145. if (hash_type->hash_type_ipv6_en)
  3146. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
  3147. if (hash_type->hash_type_tcpipv6ex_en)
  3148. data0 |=
  3149. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
  3150. if (hash_type->hash_type_ipv6ex_en)
  3151. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
  3152. if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
  3153. data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
  3154. else
  3155. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
  3156. status = __vxge_hw_vpath_rts_table_set(vp,
  3157. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
  3158. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
  3159. 0, data0, 0);
  3160. exit:
  3161. return status;
  3162. }
  3163. static void
  3164. vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
  3165. u16 flag, u8 *itable)
  3166. {
  3167. switch (flag) {
  3168. case 1:
  3169. *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
  3170. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
  3171. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
  3172. itable[j]);
  3173. case 2:
  3174. *data0 |=
  3175. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
  3176. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
  3177. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
  3178. itable[j]);
  3179. case 3:
  3180. *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
  3181. VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
  3182. VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
  3183. itable[j]);
  3184. case 4:
  3185. *data1 |=
  3186. VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
  3187. VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
  3188. VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
  3189. itable[j]);
  3190. default:
  3191. return;
  3192. }
  3193. }
  3194. /*
  3195. * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
  3196. */
  3197. enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
  3198. struct __vxge_hw_vpath_handle **vpath_handles,
  3199. u32 vpath_count,
  3200. u8 *mtable,
  3201. u8 *itable,
  3202. u32 itable_size)
  3203. {
  3204. u32 i, j, action, rts_table;
  3205. u64 data0;
  3206. u64 data1;
  3207. u32 max_entries;
  3208. enum vxge_hw_status status = VXGE_HW_OK;
  3209. struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
  3210. if (vp == NULL) {
  3211. status = VXGE_HW_ERR_INVALID_HANDLE;
  3212. goto exit;
  3213. }
  3214. max_entries = (((u32)1) << itable_size);
  3215. if (vp->vpath->hldev->config.rth_it_type
  3216. == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
  3217. action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
  3218. rts_table =
  3219. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
  3220. for (j = 0; j < max_entries; j++) {
  3221. data1 = 0;
  3222. data0 =
  3223. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
  3224. itable[j]);
  3225. status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
  3226. action, rts_table, j, data0, data1);
  3227. if (status != VXGE_HW_OK)
  3228. goto exit;
  3229. }
  3230. for (j = 0; j < max_entries; j++) {
  3231. data1 = 0;
  3232. data0 =
  3233. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
  3234. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
  3235. itable[j]);
  3236. status = __vxge_hw_vpath_rts_table_set(
  3237. vpath_handles[mtable[itable[j]]], action,
  3238. rts_table, j, data0, data1);
  3239. if (status != VXGE_HW_OK)
  3240. goto exit;
  3241. }
  3242. } else {
  3243. action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
  3244. rts_table =
  3245. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
  3246. for (i = 0; i < vpath_count; i++) {
  3247. for (j = 0; j < max_entries;) {
  3248. data0 = 0;
  3249. data1 = 0;
  3250. while (j < max_entries) {
  3251. if (mtable[itable[j]] != i) {
  3252. j++;
  3253. continue;
  3254. }
  3255. vxge_hw_rts_rth_data0_data1_get(j,
  3256. &data0, &data1, 1, itable);
  3257. j++;
  3258. break;
  3259. }
  3260. while (j < max_entries) {
  3261. if (mtable[itable[j]] != i) {
  3262. j++;
  3263. continue;
  3264. }
  3265. vxge_hw_rts_rth_data0_data1_get(j,
  3266. &data0, &data1, 2, itable);
  3267. j++;
  3268. break;
  3269. }
  3270. while (j < max_entries) {
  3271. if (mtable[itable[j]] != i) {
  3272. j++;
  3273. continue;
  3274. }
  3275. vxge_hw_rts_rth_data0_data1_get(j,
  3276. &data0, &data1, 3, itable);
  3277. j++;
  3278. break;
  3279. }
  3280. while (j < max_entries) {
  3281. if (mtable[itable[j]] != i) {
  3282. j++;
  3283. continue;
  3284. }
  3285. vxge_hw_rts_rth_data0_data1_get(j,
  3286. &data0, &data1, 4, itable);
  3287. j++;
  3288. break;
  3289. }
  3290. if (data0 != 0) {
  3291. status = __vxge_hw_vpath_rts_table_set(
  3292. vpath_handles[i],
  3293. action, rts_table,
  3294. 0, data0, data1);
  3295. if (status != VXGE_HW_OK)
  3296. goto exit;
  3297. }
  3298. }
  3299. }
  3300. }
  3301. exit:
  3302. return status;
  3303. }
  3304. /**
  3305. * vxge_hw_vpath_check_leak - Check for memory leak
  3306. * @ringh: Handle to the ring object used for receive
  3307. *
  3308. * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
  3309. * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
  3310. * Returns: VXGE_HW_FAIL, if leak has occurred.
  3311. *
  3312. */
  3313. enum vxge_hw_status
  3314. vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
  3315. {
  3316. enum vxge_hw_status status = VXGE_HW_OK;
  3317. u64 rxd_new_count, rxd_spat;
  3318. if (ring == NULL)
  3319. return status;
  3320. rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
  3321. rxd_spat = readq(&ring->vp_reg->prc_cfg6);
  3322. rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
  3323. if (rxd_new_count >= rxd_spat)
  3324. status = VXGE_HW_FAIL;
  3325. return status;
  3326. }
  3327. /*
  3328. * __vxge_hw_vpath_mgmt_read
  3329. * This routine reads the vpath_mgmt registers
  3330. */
  3331. static enum vxge_hw_status
  3332. __vxge_hw_vpath_mgmt_read(
  3333. struct __vxge_hw_device *hldev,
  3334. struct __vxge_hw_virtualpath *vpath)
  3335. {
  3336. u32 i, mtu = 0, max_pyld = 0;
  3337. u64 val64;
  3338. enum vxge_hw_status status = VXGE_HW_OK;
  3339. for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
  3340. val64 = readq(&vpath->vpmgmt_reg->
  3341. rxmac_cfg0_port_vpmgmt_clone[i]);
  3342. max_pyld =
  3343. (u32)
  3344. VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
  3345. (val64);
  3346. if (mtu < max_pyld)
  3347. mtu = max_pyld;
  3348. }
  3349. vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
  3350. val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
  3351. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  3352. if (val64 & vxge_mBIT(i))
  3353. vpath->vsport_number = i;
  3354. }
  3355. val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
  3356. if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
  3357. VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
  3358. else
  3359. VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
  3360. return status;
  3361. }
  3362. /*
  3363. * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
  3364. * This routine checks the vpath_rst_in_prog register to see if
  3365. * adapter completed the reset process for the vpath
  3366. */
  3367. static enum vxge_hw_status
  3368. __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
  3369. {
  3370. enum vxge_hw_status status;
  3371. status = __vxge_hw_device_register_poll(
  3372. &vpath->hldev->common_reg->vpath_rst_in_prog,
  3373. VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
  3374. 1 << (16 - vpath->vp_id)),
  3375. vpath->hldev->config.device_poll_millis);
  3376. return status;
  3377. }
  3378. /*
  3379. * __vxge_hw_vpath_reset
  3380. * This routine resets the vpath on the device
  3381. */
  3382. static enum vxge_hw_status
  3383. __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
  3384. {
  3385. u64 val64;
  3386. enum vxge_hw_status status = VXGE_HW_OK;
  3387. val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
  3388. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
  3389. &hldev->common_reg->cmn_rsthdlr_cfg0);
  3390. return status;
  3391. }
  3392. /*
  3393. * __vxge_hw_vpath_sw_reset
  3394. * This routine resets the vpath structures
  3395. */
  3396. static enum vxge_hw_status
  3397. __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
  3398. {
  3399. enum vxge_hw_status status = VXGE_HW_OK;
  3400. struct __vxge_hw_virtualpath *vpath;
  3401. vpath = (struct __vxge_hw_virtualpath *)&hldev->virtual_paths[vp_id];
  3402. if (vpath->ringh) {
  3403. status = __vxge_hw_ring_reset(vpath->ringh);
  3404. if (status != VXGE_HW_OK)
  3405. goto exit;
  3406. }
  3407. if (vpath->fifoh)
  3408. status = __vxge_hw_fifo_reset(vpath->fifoh);
  3409. exit:
  3410. return status;
  3411. }
  3412. /*
  3413. * __vxge_hw_vpath_prc_configure
  3414. * This routine configures the prc registers of virtual path using the config
  3415. * passed
  3416. */
  3417. static void
  3418. __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
  3419. {
  3420. u64 val64;
  3421. struct __vxge_hw_virtualpath *vpath;
  3422. struct vxge_hw_vp_config *vp_config;
  3423. struct vxge_hw_vpath_reg __iomem *vp_reg;
  3424. vpath = &hldev->virtual_paths[vp_id];
  3425. vp_reg = vpath->vp_reg;
  3426. vp_config = vpath->vp_config;
  3427. if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
  3428. return;
  3429. val64 = readq(&vp_reg->prc_cfg1);
  3430. val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
  3431. writeq(val64, &vp_reg->prc_cfg1);
  3432. val64 = readq(&vpath->vp_reg->prc_cfg6);
  3433. val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
  3434. writeq(val64, &vpath->vp_reg->prc_cfg6);
  3435. val64 = readq(&vp_reg->prc_cfg7);
  3436. if (vpath->vp_config->ring.scatter_mode !=
  3437. VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
  3438. val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
  3439. switch (vpath->vp_config->ring.scatter_mode) {
  3440. case VXGE_HW_RING_SCATTER_MODE_A:
  3441. val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
  3442. VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
  3443. break;
  3444. case VXGE_HW_RING_SCATTER_MODE_B:
  3445. val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
  3446. VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
  3447. break;
  3448. case VXGE_HW_RING_SCATTER_MODE_C:
  3449. val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
  3450. VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
  3451. break;
  3452. }
  3453. }
  3454. writeq(val64, &vp_reg->prc_cfg7);
  3455. writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
  3456. __vxge_hw_ring_first_block_address_get(
  3457. vpath->ringh) >> 3), &vp_reg->prc_cfg5);
  3458. val64 = readq(&vp_reg->prc_cfg4);
  3459. val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
  3460. val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
  3461. val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
  3462. VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
  3463. if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
  3464. val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
  3465. else
  3466. val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
  3467. writeq(val64, &vp_reg->prc_cfg4);
  3468. }
  3469. /*
  3470. * __vxge_hw_vpath_kdfc_configure
  3471. * This routine configures the kdfc registers of virtual path using the
  3472. * config passed
  3473. */
  3474. static enum vxge_hw_status
  3475. __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
  3476. {
  3477. u64 val64;
  3478. u64 vpath_stride;
  3479. enum vxge_hw_status status = VXGE_HW_OK;
  3480. struct __vxge_hw_virtualpath *vpath;
  3481. struct vxge_hw_vpath_reg __iomem *vp_reg;
  3482. vpath = &hldev->virtual_paths[vp_id];
  3483. vp_reg = vpath->vp_reg;
  3484. status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
  3485. if (status != VXGE_HW_OK)
  3486. goto exit;
  3487. val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
  3488. vpath->max_kdfc_db =
  3489. (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
  3490. val64+1)/2;
  3491. if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
  3492. vpath->max_nofl_db = vpath->max_kdfc_db;
  3493. if (vpath->max_nofl_db <
  3494. ((vpath->vp_config->fifo.memblock_size /
  3495. (vpath->vp_config->fifo.max_frags *
  3496. sizeof(struct vxge_hw_fifo_txd))) *
  3497. vpath->vp_config->fifo.fifo_blocks)) {
  3498. return VXGE_HW_BADCFG_FIFO_BLOCKS;
  3499. }
  3500. val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
  3501. (vpath->max_nofl_db*2)-1);
  3502. }
  3503. writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
  3504. writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
  3505. &vp_reg->kdfc_fifo_trpl_ctrl);
  3506. val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
  3507. val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
  3508. VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
  3509. val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
  3510. VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
  3511. #ifndef __BIG_ENDIAN
  3512. VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
  3513. #endif
  3514. VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
  3515. writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
  3516. writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
  3517. wmb();
  3518. vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
  3519. vpath->nofl_db =
  3520. (struct __vxge_hw_non_offload_db_wrapper __iomem *)
  3521. (hldev->kdfc + (vp_id *
  3522. VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
  3523. vpath_stride)));
  3524. exit:
  3525. return status;
  3526. }
  3527. /*
  3528. * __vxge_hw_vpath_mac_configure
  3529. * This routine configures the mac of virtual path using the config passed
  3530. */
  3531. static enum vxge_hw_status
  3532. __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
  3533. {
  3534. u64 val64;
  3535. enum vxge_hw_status status = VXGE_HW_OK;
  3536. struct __vxge_hw_virtualpath *vpath;
  3537. struct vxge_hw_vp_config *vp_config;
  3538. struct vxge_hw_vpath_reg __iomem *vp_reg;
  3539. vpath = &hldev->virtual_paths[vp_id];
  3540. vp_reg = vpath->vp_reg;
  3541. vp_config = vpath->vp_config;
  3542. writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
  3543. vpath->vsport_number), &vp_reg->xmac_vsport_choice);
  3544. if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
  3545. val64 = readq(&vp_reg->xmac_rpa_vcfg);
  3546. if (vp_config->rpa_strip_vlan_tag !=
  3547. VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
  3548. if (vp_config->rpa_strip_vlan_tag)
  3549. val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
  3550. else
  3551. val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
  3552. }
  3553. writeq(val64, &vp_reg->xmac_rpa_vcfg);
  3554. val64 = readq(&vp_reg->rxmac_vcfg0);
  3555. if (vp_config->mtu !=
  3556. VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
  3557. val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
  3558. if ((vp_config->mtu +
  3559. VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
  3560. val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
  3561. vp_config->mtu +
  3562. VXGE_HW_MAC_HEADER_MAX_SIZE);
  3563. else
  3564. val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
  3565. vpath->max_mtu);
  3566. }
  3567. writeq(val64, &vp_reg->rxmac_vcfg0);
  3568. val64 = readq(&vp_reg->rxmac_vcfg1);
  3569. val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
  3570. VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
  3571. if (hldev->config.rth_it_type ==
  3572. VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
  3573. val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
  3574. 0x2) |
  3575. VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
  3576. }
  3577. writeq(val64, &vp_reg->rxmac_vcfg1);
  3578. }
  3579. return status;
  3580. }
  3581. /*
  3582. * __vxge_hw_vpath_tim_configure
  3583. * This routine configures the tim registers of virtual path using the config
  3584. * passed
  3585. */
  3586. static enum vxge_hw_status
  3587. __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
  3588. {
  3589. u64 val64;
  3590. enum vxge_hw_status status = VXGE_HW_OK;
  3591. struct __vxge_hw_virtualpath *vpath;
  3592. struct vxge_hw_vpath_reg __iomem *vp_reg;
  3593. struct vxge_hw_vp_config *config;
  3594. vpath = &hldev->virtual_paths[vp_id];
  3595. vp_reg = vpath->vp_reg;
  3596. config = vpath->vp_config;
  3597. writeq(0, &vp_reg->tim_dest_addr);
  3598. writeq(0, &vp_reg->tim_vpath_map);
  3599. writeq(0, &vp_reg->tim_bitmap);
  3600. writeq(0, &vp_reg->tim_remap);
  3601. if (config->ring.enable == VXGE_HW_RING_ENABLE)
  3602. writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
  3603. (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
  3604. VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
  3605. val64 = readq(&vp_reg->tim_pci_cfg);
  3606. val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
  3607. writeq(val64, &vp_reg->tim_pci_cfg);
  3608. if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
  3609. val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
  3610. if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3611. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
  3612. 0x3ffffff);
  3613. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
  3614. config->tti.btimer_val);
  3615. }
  3616. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
  3617. if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3618. if (config->tti.timer_ac_en)
  3619. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
  3620. else
  3621. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
  3622. }
  3623. if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3624. if (config->tti.timer_ci_en)
  3625. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
  3626. else
  3627. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
  3628. }
  3629. if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
  3630. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
  3631. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
  3632. config->tti.urange_a);
  3633. }
  3634. if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
  3635. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
  3636. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
  3637. config->tti.urange_b);
  3638. }
  3639. if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
  3640. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
  3641. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
  3642. config->tti.urange_c);
  3643. }
  3644. writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
  3645. val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
  3646. if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
  3647. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
  3648. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
  3649. config->tti.uec_a);
  3650. }
  3651. if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
  3652. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
  3653. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
  3654. config->tti.uec_b);
  3655. }
  3656. if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
  3657. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
  3658. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
  3659. config->tti.uec_c);
  3660. }
  3661. if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
  3662. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
  3663. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
  3664. config->tti.uec_d);
  3665. }
  3666. writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
  3667. val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
  3668. if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3669. if (config->tti.timer_ri_en)
  3670. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
  3671. else
  3672. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
  3673. }
  3674. if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3675. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
  3676. 0x3ffffff);
  3677. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
  3678. config->tti.rtimer_val);
  3679. }
  3680. if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
  3681. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
  3682. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
  3683. }
  3684. if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3685. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
  3686. 0x3ffffff);
  3687. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
  3688. config->tti.ltimer_val);
  3689. }
  3690. writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
  3691. }
  3692. if (config->ring.enable == VXGE_HW_RING_ENABLE) {
  3693. val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
  3694. if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3695. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
  3696. 0x3ffffff);
  3697. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
  3698. config->rti.btimer_val);
  3699. }
  3700. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
  3701. if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3702. if (config->rti.timer_ac_en)
  3703. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
  3704. else
  3705. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
  3706. }
  3707. if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3708. if (config->rti.timer_ci_en)
  3709. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
  3710. else
  3711. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
  3712. }
  3713. if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
  3714. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
  3715. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
  3716. config->rti.urange_a);
  3717. }
  3718. if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
  3719. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
  3720. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
  3721. config->rti.urange_b);
  3722. }
  3723. if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
  3724. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
  3725. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
  3726. config->rti.urange_c);
  3727. }
  3728. writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
  3729. val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
  3730. if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
  3731. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
  3732. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
  3733. config->rti.uec_a);
  3734. }
  3735. if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
  3736. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
  3737. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
  3738. config->rti.uec_b);
  3739. }
  3740. if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
  3741. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
  3742. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
  3743. config->rti.uec_c);
  3744. }
  3745. if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
  3746. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
  3747. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
  3748. config->rti.uec_d);
  3749. }
  3750. writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
  3751. val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
  3752. if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3753. if (config->rti.timer_ri_en)
  3754. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
  3755. else
  3756. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
  3757. }
  3758. if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3759. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
  3760. 0x3ffffff);
  3761. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
  3762. config->rti.rtimer_val);
  3763. }
  3764. if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
  3765. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
  3766. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
  3767. }
  3768. if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3769. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
  3770. 0x3ffffff);
  3771. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
  3772. config->rti.ltimer_val);
  3773. }
  3774. writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
  3775. }
  3776. val64 = 0;
  3777. writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
  3778. writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
  3779. writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
  3780. writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
  3781. writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
  3782. writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
  3783. val64 = VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
  3784. val64 |= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
  3785. val64 |= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
  3786. writeq(val64, &vp_reg->tim_wrkld_clc);
  3787. return status;
  3788. }
  3789. void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_device *hldev, u32 vp_id)
  3790. {
  3791. struct __vxge_hw_virtualpath *vpath;
  3792. struct vxge_hw_vpath_reg __iomem *vp_reg;
  3793. struct vxge_hw_vp_config *config;
  3794. u64 val64;
  3795. vpath = &hldev->virtual_paths[vp_id];
  3796. vp_reg = vpath->vp_reg;
  3797. config = vpath->vp_config;
  3798. if (config->fifo.enable == VXGE_HW_FIFO_ENABLE &&
  3799. config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
  3800. config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
  3801. val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
  3802. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
  3803. writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
  3804. }
  3805. }
  3806. /*
  3807. * __vxge_hw_vpath_initialize
  3808. * This routine is the final phase of init which initializes the
  3809. * registers of the vpath using the configuration passed.
  3810. */
  3811. static enum vxge_hw_status
  3812. __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
  3813. {
  3814. u64 val64;
  3815. u32 val32;
  3816. enum vxge_hw_status status = VXGE_HW_OK;
  3817. struct __vxge_hw_virtualpath *vpath;
  3818. struct vxge_hw_vpath_reg __iomem *vp_reg;
  3819. vpath = &hldev->virtual_paths[vp_id];
  3820. if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
  3821. status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
  3822. goto exit;
  3823. }
  3824. vp_reg = vpath->vp_reg;
  3825. status = __vxge_hw_vpath_swapper_set(vpath->vp_reg);
  3826. if (status != VXGE_HW_OK)
  3827. goto exit;
  3828. status = __vxge_hw_vpath_mac_configure(hldev, vp_id);
  3829. if (status != VXGE_HW_OK)
  3830. goto exit;
  3831. status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
  3832. if (status != VXGE_HW_OK)
  3833. goto exit;
  3834. status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
  3835. if (status != VXGE_HW_OK)
  3836. goto exit;
  3837. val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
  3838. /* Get MRRS value from device control */
  3839. status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
  3840. if (status == VXGE_HW_OK) {
  3841. val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
  3842. val64 &=
  3843. ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
  3844. val64 |=
  3845. VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
  3846. val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
  3847. }
  3848. val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
  3849. val64 |=
  3850. VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
  3851. VXGE_HW_MAX_PAYLOAD_SIZE_512);
  3852. val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
  3853. writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
  3854. exit:
  3855. return status;
  3856. }
  3857. /*
  3858. * __vxge_hw_vp_terminate - Terminate Virtual Path structure
  3859. * This routine closes all channels it opened and freeup memory
  3860. */
  3861. static void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
  3862. {
  3863. struct __vxge_hw_virtualpath *vpath;
  3864. vpath = &hldev->virtual_paths[vp_id];
  3865. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
  3866. goto exit;
  3867. VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
  3868. vpath->hldev->tim_int_mask1, vpath->vp_id);
  3869. hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
  3870. memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
  3871. exit:
  3872. return;
  3873. }
  3874. /*
  3875. * __vxge_hw_vp_initialize - Initialize Virtual Path structure
  3876. * This routine is the initial phase of init which resets the vpath and
  3877. * initializes the software support structures.
  3878. */
  3879. static enum vxge_hw_status
  3880. __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
  3881. struct vxge_hw_vp_config *config)
  3882. {
  3883. struct __vxge_hw_virtualpath *vpath;
  3884. enum vxge_hw_status status = VXGE_HW_OK;
  3885. if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
  3886. status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
  3887. goto exit;
  3888. }
  3889. vpath = &hldev->virtual_paths[vp_id];
  3890. spin_lock_init(&hldev->virtual_paths[vp_id].lock);
  3891. vpath->vp_id = vp_id;
  3892. vpath->vp_open = VXGE_HW_VP_OPEN;
  3893. vpath->hldev = hldev;
  3894. vpath->vp_config = config;
  3895. vpath->vp_reg = hldev->vpath_reg[vp_id];
  3896. vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
  3897. __vxge_hw_vpath_reset(hldev, vp_id);
  3898. status = __vxge_hw_vpath_reset_check(vpath);
  3899. if (status != VXGE_HW_OK) {
  3900. memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
  3901. goto exit;
  3902. }
  3903. status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
  3904. if (status != VXGE_HW_OK) {
  3905. memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
  3906. goto exit;
  3907. }
  3908. INIT_LIST_HEAD(&vpath->vpath_handles);
  3909. vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
  3910. VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
  3911. hldev->tim_int_mask1, vp_id);
  3912. status = __vxge_hw_vpath_initialize(hldev, vp_id);
  3913. if (status != VXGE_HW_OK)
  3914. __vxge_hw_vp_terminate(hldev, vp_id);
  3915. exit:
  3916. return status;
  3917. }
  3918. /*
  3919. * vxge_hw_vpath_mtu_set - Set MTU.
  3920. * Set new MTU value. Example, to use jumbo frames:
  3921. * vxge_hw_vpath_mtu_set(my_device, 9600);
  3922. */
  3923. enum vxge_hw_status
  3924. vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
  3925. {
  3926. u64 val64;
  3927. enum vxge_hw_status status = VXGE_HW_OK;
  3928. struct __vxge_hw_virtualpath *vpath;
  3929. if (vp == NULL) {
  3930. status = VXGE_HW_ERR_INVALID_HANDLE;
  3931. goto exit;
  3932. }
  3933. vpath = vp->vpath;
  3934. new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
  3935. if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
  3936. status = VXGE_HW_ERR_INVALID_MTU_SIZE;
  3937. val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
  3938. val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
  3939. val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
  3940. writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
  3941. vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
  3942. exit:
  3943. return status;
  3944. }
  3945. /*
  3946. * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
  3947. * Enable the DMA vpath statistics. The function is to be called to re-enable
  3948. * the adapter to update stats into the host memory
  3949. */
  3950. static enum vxge_hw_status
  3951. vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
  3952. {
  3953. enum vxge_hw_status status = VXGE_HW_OK;
  3954. struct __vxge_hw_virtualpath *vpath;
  3955. vpath = vp->vpath;
  3956. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  3957. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  3958. goto exit;
  3959. }
  3960. memcpy(vpath->hw_stats_sav, vpath->hw_stats,
  3961. sizeof(struct vxge_hw_vpath_stats_hw_info));
  3962. status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
  3963. exit:
  3964. return status;
  3965. }
  3966. /*
  3967. * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
  3968. * This function allocates a block from block pool or from the system
  3969. */
  3970. static struct __vxge_hw_blockpool_entry *
  3971. __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
  3972. {
  3973. struct __vxge_hw_blockpool_entry *entry = NULL;
  3974. struct __vxge_hw_blockpool *blockpool;
  3975. blockpool = &devh->block_pool;
  3976. if (size == blockpool->block_size) {
  3977. if (!list_empty(&blockpool->free_block_list))
  3978. entry = (struct __vxge_hw_blockpool_entry *)
  3979. list_first_entry(&blockpool->free_block_list,
  3980. struct __vxge_hw_blockpool_entry,
  3981. item);
  3982. if (entry != NULL) {
  3983. list_del(&entry->item);
  3984. blockpool->pool_size--;
  3985. }
  3986. }
  3987. if (entry != NULL)
  3988. __vxge_hw_blockpool_blocks_add(blockpool);
  3989. return entry;
  3990. }
  3991. /*
  3992. * vxge_hw_vpath_open - Open a virtual path on a given adapter
  3993. * This function is used to open access to virtual path of an
  3994. * adapter for offload, GRO operations. This function returns
  3995. * synchronously.
  3996. */
  3997. enum vxge_hw_status
  3998. vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
  3999. struct vxge_hw_vpath_attr *attr,
  4000. struct __vxge_hw_vpath_handle **vpath_handle)
  4001. {
  4002. struct __vxge_hw_virtualpath *vpath;
  4003. struct __vxge_hw_vpath_handle *vp;
  4004. enum vxge_hw_status status;
  4005. vpath = &hldev->virtual_paths[attr->vp_id];
  4006. if (vpath->vp_open == VXGE_HW_VP_OPEN) {
  4007. status = VXGE_HW_ERR_INVALID_STATE;
  4008. goto vpath_open_exit1;
  4009. }
  4010. status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
  4011. &hldev->config.vp_config[attr->vp_id]);
  4012. if (status != VXGE_HW_OK)
  4013. goto vpath_open_exit1;
  4014. vp = vzalloc(sizeof(struct __vxge_hw_vpath_handle));
  4015. if (vp == NULL) {
  4016. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  4017. goto vpath_open_exit2;
  4018. }
  4019. vp->vpath = vpath;
  4020. if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
  4021. status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
  4022. if (status != VXGE_HW_OK)
  4023. goto vpath_open_exit6;
  4024. }
  4025. if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
  4026. status = __vxge_hw_ring_create(vp, &attr->ring_attr);
  4027. if (status != VXGE_HW_OK)
  4028. goto vpath_open_exit7;
  4029. __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
  4030. }
  4031. vpath->fifoh->tx_intr_num =
  4032. (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) +
  4033. VXGE_HW_VPATH_INTR_TX;
  4034. vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
  4035. VXGE_HW_BLOCK_SIZE);
  4036. if (vpath->stats_block == NULL) {
  4037. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  4038. goto vpath_open_exit8;
  4039. }
  4040. vpath->hw_stats = (struct vxge_hw_vpath_stats_hw_info *)vpath->
  4041. stats_block->memblock;
  4042. memset(vpath->hw_stats, 0,
  4043. sizeof(struct vxge_hw_vpath_stats_hw_info));
  4044. hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
  4045. vpath->hw_stats;
  4046. vpath->hw_stats_sav =
  4047. &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
  4048. memset(vpath->hw_stats_sav, 0,
  4049. sizeof(struct vxge_hw_vpath_stats_hw_info));
  4050. writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
  4051. status = vxge_hw_vpath_stats_enable(vp);
  4052. if (status != VXGE_HW_OK)
  4053. goto vpath_open_exit8;
  4054. list_add(&vp->item, &vpath->vpath_handles);
  4055. hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
  4056. *vpath_handle = vp;
  4057. attr->fifo_attr.userdata = vpath->fifoh;
  4058. attr->ring_attr.userdata = vpath->ringh;
  4059. return VXGE_HW_OK;
  4060. vpath_open_exit8:
  4061. if (vpath->ringh != NULL)
  4062. __vxge_hw_ring_delete(vp);
  4063. vpath_open_exit7:
  4064. if (vpath->fifoh != NULL)
  4065. __vxge_hw_fifo_delete(vp);
  4066. vpath_open_exit6:
  4067. vfree(vp);
  4068. vpath_open_exit2:
  4069. __vxge_hw_vp_terminate(hldev, attr->vp_id);
  4070. vpath_open_exit1:
  4071. return status;
  4072. }
  4073. /**
  4074. * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
  4075. * (vpath) open
  4076. * @vp: Handle got from previous vpath open
  4077. *
  4078. * This function is used to close access to virtual path opened
  4079. * earlier.
  4080. */
  4081. void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
  4082. {
  4083. struct __vxge_hw_virtualpath *vpath = vp->vpath;
  4084. struct __vxge_hw_ring *ring = vpath->ringh;
  4085. struct vxgedev *vdev = netdev_priv(vpath->hldev->ndev);
  4086. u64 new_count, val64, val164;
  4087. if (vdev->titan1) {
  4088. new_count = readq(&vpath->vp_reg->rxdmem_size);
  4089. new_count &= 0x1fff;
  4090. } else
  4091. new_count = ring->config->ring_blocks * VXGE_HW_BLOCK_SIZE / 8;
  4092. val164 = VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count);
  4093. writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
  4094. &vpath->vp_reg->prc_rxd_doorbell);
  4095. readl(&vpath->vp_reg->prc_rxd_doorbell);
  4096. val164 /= 2;
  4097. val64 = readq(&vpath->vp_reg->prc_cfg6);
  4098. val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
  4099. val64 &= 0x1ff;
  4100. /*
  4101. * Each RxD is of 4 qwords
  4102. */
  4103. new_count -= (val64 + 1);
  4104. val64 = min(val164, new_count) / 4;
  4105. ring->rxds_limit = min(ring->rxds_limit, val64);
  4106. if (ring->rxds_limit < 4)
  4107. ring->rxds_limit = 4;
  4108. }
  4109. /*
  4110. * __vxge_hw_blockpool_block_free - Frees a block from block pool
  4111. * @devh: Hal device
  4112. * @entry: Entry of block to be freed
  4113. *
  4114. * This function frees a block from block pool
  4115. */
  4116. static void
  4117. __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
  4118. struct __vxge_hw_blockpool_entry *entry)
  4119. {
  4120. struct __vxge_hw_blockpool *blockpool;
  4121. blockpool = &devh->block_pool;
  4122. if (entry->length == blockpool->block_size) {
  4123. list_add(&entry->item, &blockpool->free_block_list);
  4124. blockpool->pool_size++;
  4125. }
  4126. __vxge_hw_blockpool_blocks_remove(blockpool);
  4127. }
  4128. /*
  4129. * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
  4130. * This function is used to close access to virtual path opened
  4131. * earlier.
  4132. */
  4133. enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
  4134. {
  4135. struct __vxge_hw_virtualpath *vpath = NULL;
  4136. struct __vxge_hw_device *devh = NULL;
  4137. u32 vp_id = vp->vpath->vp_id;
  4138. u32 is_empty = TRUE;
  4139. enum vxge_hw_status status = VXGE_HW_OK;
  4140. vpath = vp->vpath;
  4141. devh = vpath->hldev;
  4142. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  4143. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  4144. goto vpath_close_exit;
  4145. }
  4146. list_del(&vp->item);
  4147. if (!list_empty(&vpath->vpath_handles)) {
  4148. list_add(&vp->item, &vpath->vpath_handles);
  4149. is_empty = FALSE;
  4150. }
  4151. if (!is_empty) {
  4152. status = VXGE_HW_FAIL;
  4153. goto vpath_close_exit;
  4154. }
  4155. devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
  4156. if (vpath->ringh != NULL)
  4157. __vxge_hw_ring_delete(vp);
  4158. if (vpath->fifoh != NULL)
  4159. __vxge_hw_fifo_delete(vp);
  4160. if (vpath->stats_block != NULL)
  4161. __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
  4162. vfree(vp);
  4163. __vxge_hw_vp_terminate(devh, vp_id);
  4164. spin_lock(&vpath->lock);
  4165. vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
  4166. spin_unlock(&vpath->lock);
  4167. vpath_close_exit:
  4168. return status;
  4169. }
  4170. /*
  4171. * vxge_hw_vpath_reset - Resets vpath
  4172. * This function is used to request a reset of vpath
  4173. */
  4174. enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
  4175. {
  4176. enum vxge_hw_status status;
  4177. u32 vp_id;
  4178. struct __vxge_hw_virtualpath *vpath = vp->vpath;
  4179. vp_id = vpath->vp_id;
  4180. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  4181. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  4182. goto exit;
  4183. }
  4184. status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
  4185. if (status == VXGE_HW_OK)
  4186. vpath->sw_stats->soft_reset_cnt++;
  4187. exit:
  4188. return status;
  4189. }
  4190. /*
  4191. * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
  4192. * This function poll's for the vpath reset completion and re initializes
  4193. * the vpath.
  4194. */
  4195. enum vxge_hw_status
  4196. vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
  4197. {
  4198. struct __vxge_hw_virtualpath *vpath = NULL;
  4199. enum vxge_hw_status status;
  4200. struct __vxge_hw_device *hldev;
  4201. u32 vp_id;
  4202. vp_id = vp->vpath->vp_id;
  4203. vpath = vp->vpath;
  4204. hldev = vpath->hldev;
  4205. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  4206. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  4207. goto exit;
  4208. }
  4209. status = __vxge_hw_vpath_reset_check(vpath);
  4210. if (status != VXGE_HW_OK)
  4211. goto exit;
  4212. status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
  4213. if (status != VXGE_HW_OK)
  4214. goto exit;
  4215. status = __vxge_hw_vpath_initialize(hldev, vp_id);
  4216. if (status != VXGE_HW_OK)
  4217. goto exit;
  4218. if (vpath->ringh != NULL)
  4219. __vxge_hw_vpath_prc_configure(hldev, vp_id);
  4220. memset(vpath->hw_stats, 0,
  4221. sizeof(struct vxge_hw_vpath_stats_hw_info));
  4222. memset(vpath->hw_stats_sav, 0,
  4223. sizeof(struct vxge_hw_vpath_stats_hw_info));
  4224. writeq(vpath->stats_block->dma_addr,
  4225. &vpath->vp_reg->stats_cfg);
  4226. status = vxge_hw_vpath_stats_enable(vp);
  4227. exit:
  4228. return status;
  4229. }
  4230. /*
  4231. * vxge_hw_vpath_enable - Enable vpath.
  4232. * This routine clears the vpath reset thereby enabling a vpath
  4233. * to start forwarding frames and generating interrupts.
  4234. */
  4235. void
  4236. vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
  4237. {
  4238. struct __vxge_hw_device *hldev;
  4239. u64 val64;
  4240. hldev = vp->vpath->hldev;
  4241. val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
  4242. 1 << (16 - vp->vpath->vp_id));
  4243. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
  4244. &hldev->common_reg->cmn_rsthdlr_cfg1);
  4245. }