niu.c 230 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  6. #include <linux/module.h>
  7. #include <linux/init.h>
  8. #include <linux/pci.h>
  9. #include <linux/dma-mapping.h>
  10. #include <linux/netdevice.h>
  11. #include <linux/ethtool.h>
  12. #include <linux/etherdevice.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/delay.h>
  15. #include <linux/bitops.h>
  16. #include <linux/mii.h>
  17. #include <linux/if_ether.h>
  18. #include <linux/if_vlan.h>
  19. #include <linux/ip.h>
  20. #include <linux/in.h>
  21. #include <linux/ipv6.h>
  22. #include <linux/log2.h>
  23. #include <linux/jiffies.h>
  24. #include <linux/crc32.h>
  25. #include <linux/list.h>
  26. #include <linux/slab.h>
  27. #include <linux/io.h>
  28. #include <linux/of_device.h>
  29. #include "niu.h"
  30. #define DRV_MODULE_NAME "niu"
  31. #define DRV_MODULE_VERSION "1.1"
  32. #define DRV_MODULE_RELDATE "Apr 22, 2010"
  33. static char version[] __devinitdata =
  34. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  35. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  36. MODULE_DESCRIPTION("NIU ethernet driver");
  37. MODULE_LICENSE("GPL");
  38. MODULE_VERSION(DRV_MODULE_VERSION);
  39. #ifndef readq
  40. static u64 readq(void __iomem *reg)
  41. {
  42. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  43. }
  44. static void writeq(u64 val, void __iomem *reg)
  45. {
  46. writel(val & 0xffffffff, reg);
  47. writel(val >> 32, reg + 0x4UL);
  48. }
  49. #endif
  50. static DEFINE_PCI_DEVICE_TABLE(niu_pci_tbl) = {
  51. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  52. {}
  53. };
  54. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  55. #define NIU_TX_TIMEOUT (5 * HZ)
  56. #define nr64(reg) readq(np->regs + (reg))
  57. #define nw64(reg, val) writeq((val), np->regs + (reg))
  58. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  59. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  60. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  61. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  62. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  63. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  64. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  65. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  66. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  67. static int niu_debug;
  68. static int debug = -1;
  69. module_param(debug, int, 0);
  70. MODULE_PARM_DESC(debug, "NIU debug level");
  71. #define niu_lock_parent(np, flags) \
  72. spin_lock_irqsave(&np->parent->lock, flags)
  73. #define niu_unlock_parent(np, flags) \
  74. spin_unlock_irqrestore(&np->parent->lock, flags)
  75. static int serdes_init_10g_serdes(struct niu *np);
  76. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  77. u64 bits, int limit, int delay)
  78. {
  79. while (--limit >= 0) {
  80. u64 val = nr64_mac(reg);
  81. if (!(val & bits))
  82. break;
  83. udelay(delay);
  84. }
  85. if (limit < 0)
  86. return -ENODEV;
  87. return 0;
  88. }
  89. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  90. u64 bits, int limit, int delay,
  91. const char *reg_name)
  92. {
  93. int err;
  94. nw64_mac(reg, bits);
  95. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  96. if (err)
  97. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  98. (unsigned long long)bits, reg_name,
  99. (unsigned long long)nr64_mac(reg));
  100. return err;
  101. }
  102. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  103. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  104. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  105. })
  106. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  107. u64 bits, int limit, int delay)
  108. {
  109. while (--limit >= 0) {
  110. u64 val = nr64_ipp(reg);
  111. if (!(val & bits))
  112. break;
  113. udelay(delay);
  114. }
  115. if (limit < 0)
  116. return -ENODEV;
  117. return 0;
  118. }
  119. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  120. u64 bits, int limit, int delay,
  121. const char *reg_name)
  122. {
  123. int err;
  124. u64 val;
  125. val = nr64_ipp(reg);
  126. val |= bits;
  127. nw64_ipp(reg, val);
  128. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  129. if (err)
  130. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  131. (unsigned long long)bits, reg_name,
  132. (unsigned long long)nr64_ipp(reg));
  133. return err;
  134. }
  135. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  136. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  137. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  138. })
  139. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  140. u64 bits, int limit, int delay)
  141. {
  142. while (--limit >= 0) {
  143. u64 val = nr64(reg);
  144. if (!(val & bits))
  145. break;
  146. udelay(delay);
  147. }
  148. if (limit < 0)
  149. return -ENODEV;
  150. return 0;
  151. }
  152. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  153. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  154. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  155. })
  156. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  157. u64 bits, int limit, int delay,
  158. const char *reg_name)
  159. {
  160. int err;
  161. nw64(reg, bits);
  162. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  163. if (err)
  164. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  165. (unsigned long long)bits, reg_name,
  166. (unsigned long long)nr64(reg));
  167. return err;
  168. }
  169. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  170. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  171. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  172. })
  173. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  174. {
  175. u64 val = (u64) lp->timer;
  176. if (on)
  177. val |= LDG_IMGMT_ARM;
  178. nw64(LDG_IMGMT(lp->ldg_num), val);
  179. }
  180. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  181. {
  182. unsigned long mask_reg, bits;
  183. u64 val;
  184. if (ldn < 0 || ldn > LDN_MAX)
  185. return -EINVAL;
  186. if (ldn < 64) {
  187. mask_reg = LD_IM0(ldn);
  188. bits = LD_IM0_MASK;
  189. } else {
  190. mask_reg = LD_IM1(ldn - 64);
  191. bits = LD_IM1_MASK;
  192. }
  193. val = nr64(mask_reg);
  194. if (on)
  195. val &= ~bits;
  196. else
  197. val |= bits;
  198. nw64(mask_reg, val);
  199. return 0;
  200. }
  201. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  202. {
  203. struct niu_parent *parent = np->parent;
  204. int i;
  205. for (i = 0; i <= LDN_MAX; i++) {
  206. int err;
  207. if (parent->ldg_map[i] != lp->ldg_num)
  208. continue;
  209. err = niu_ldn_irq_enable(np, i, on);
  210. if (err)
  211. return err;
  212. }
  213. return 0;
  214. }
  215. static int niu_enable_interrupts(struct niu *np, int on)
  216. {
  217. int i;
  218. for (i = 0; i < np->num_ldg; i++) {
  219. struct niu_ldg *lp = &np->ldg[i];
  220. int err;
  221. err = niu_enable_ldn_in_ldg(np, lp, on);
  222. if (err)
  223. return err;
  224. }
  225. for (i = 0; i < np->num_ldg; i++)
  226. niu_ldg_rearm(np, &np->ldg[i], on);
  227. return 0;
  228. }
  229. static u32 phy_encode(u32 type, int port)
  230. {
  231. return type << (port * 2);
  232. }
  233. static u32 phy_decode(u32 val, int port)
  234. {
  235. return (val >> (port * 2)) & PORT_TYPE_MASK;
  236. }
  237. static int mdio_wait(struct niu *np)
  238. {
  239. int limit = 1000;
  240. u64 val;
  241. while (--limit > 0) {
  242. val = nr64(MIF_FRAME_OUTPUT);
  243. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  244. return val & MIF_FRAME_OUTPUT_DATA;
  245. udelay(10);
  246. }
  247. return -ENODEV;
  248. }
  249. static int mdio_read(struct niu *np, int port, int dev, int reg)
  250. {
  251. int err;
  252. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  253. err = mdio_wait(np);
  254. if (err < 0)
  255. return err;
  256. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  257. return mdio_wait(np);
  258. }
  259. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  260. {
  261. int err;
  262. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  263. err = mdio_wait(np);
  264. if (err < 0)
  265. return err;
  266. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  267. err = mdio_wait(np);
  268. if (err < 0)
  269. return err;
  270. return 0;
  271. }
  272. static int mii_read(struct niu *np, int port, int reg)
  273. {
  274. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  275. return mdio_wait(np);
  276. }
  277. static int mii_write(struct niu *np, int port, int reg, int data)
  278. {
  279. int err;
  280. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  281. err = mdio_wait(np);
  282. if (err < 0)
  283. return err;
  284. return 0;
  285. }
  286. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  287. {
  288. int err;
  289. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  290. ESR2_TI_PLL_TX_CFG_L(channel),
  291. val & 0xffff);
  292. if (!err)
  293. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  294. ESR2_TI_PLL_TX_CFG_H(channel),
  295. val >> 16);
  296. return err;
  297. }
  298. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  299. {
  300. int err;
  301. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  302. ESR2_TI_PLL_RX_CFG_L(channel),
  303. val & 0xffff);
  304. if (!err)
  305. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  306. ESR2_TI_PLL_RX_CFG_H(channel),
  307. val >> 16);
  308. return err;
  309. }
  310. /* Mode is always 10G fiber. */
  311. static int serdes_init_niu_10g_fiber(struct niu *np)
  312. {
  313. struct niu_link_config *lp = &np->link_config;
  314. u32 tx_cfg, rx_cfg;
  315. unsigned long i;
  316. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  317. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  318. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  319. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  320. if (lp->loopback_mode == LOOPBACK_PHY) {
  321. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  322. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  323. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  324. tx_cfg |= PLL_TX_CFG_ENTEST;
  325. rx_cfg |= PLL_RX_CFG_ENTEST;
  326. }
  327. /* Initialize all 4 lanes of the SERDES. */
  328. for (i = 0; i < 4; i++) {
  329. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  330. if (err)
  331. return err;
  332. }
  333. for (i = 0; i < 4; i++) {
  334. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  335. if (err)
  336. return err;
  337. }
  338. return 0;
  339. }
  340. static int serdes_init_niu_1g_serdes(struct niu *np)
  341. {
  342. struct niu_link_config *lp = &np->link_config;
  343. u16 pll_cfg, pll_sts;
  344. int max_retry = 100;
  345. u64 uninitialized_var(sig), mask, val;
  346. u32 tx_cfg, rx_cfg;
  347. unsigned long i;
  348. int err;
  349. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  350. PLL_TX_CFG_RATE_HALF);
  351. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  352. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  353. PLL_RX_CFG_RATE_HALF);
  354. if (np->port == 0)
  355. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  356. if (lp->loopback_mode == LOOPBACK_PHY) {
  357. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  358. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  359. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  360. tx_cfg |= PLL_TX_CFG_ENTEST;
  361. rx_cfg |= PLL_RX_CFG_ENTEST;
  362. }
  363. /* Initialize PLL for 1G */
  364. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  365. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  366. ESR2_TI_PLL_CFG_L, pll_cfg);
  367. if (err) {
  368. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  369. np->port, __func__);
  370. return err;
  371. }
  372. pll_sts = PLL_CFG_ENPLL;
  373. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  374. ESR2_TI_PLL_STS_L, pll_sts);
  375. if (err) {
  376. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  377. np->port, __func__);
  378. return err;
  379. }
  380. udelay(200);
  381. /* Initialize all 4 lanes of the SERDES. */
  382. for (i = 0; i < 4; i++) {
  383. err = esr2_set_tx_cfg(np, i, tx_cfg);
  384. if (err)
  385. return err;
  386. }
  387. for (i = 0; i < 4; i++) {
  388. err = esr2_set_rx_cfg(np, i, rx_cfg);
  389. if (err)
  390. return err;
  391. }
  392. switch (np->port) {
  393. case 0:
  394. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  395. mask = val;
  396. break;
  397. case 1:
  398. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  399. mask = val;
  400. break;
  401. default:
  402. return -EINVAL;
  403. }
  404. while (max_retry--) {
  405. sig = nr64(ESR_INT_SIGNALS);
  406. if ((sig & mask) == val)
  407. break;
  408. mdelay(500);
  409. }
  410. if ((sig & mask) != val) {
  411. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  412. np->port, (int)(sig & mask), (int)val);
  413. return -ENODEV;
  414. }
  415. return 0;
  416. }
  417. static int serdes_init_niu_10g_serdes(struct niu *np)
  418. {
  419. struct niu_link_config *lp = &np->link_config;
  420. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  421. int max_retry = 100;
  422. u64 uninitialized_var(sig), mask, val;
  423. unsigned long i;
  424. int err;
  425. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  426. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  427. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  428. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  429. if (lp->loopback_mode == LOOPBACK_PHY) {
  430. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  431. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  432. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  433. tx_cfg |= PLL_TX_CFG_ENTEST;
  434. rx_cfg |= PLL_RX_CFG_ENTEST;
  435. }
  436. /* Initialize PLL for 10G */
  437. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  438. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  439. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  440. if (err) {
  441. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  442. np->port, __func__);
  443. return err;
  444. }
  445. pll_sts = PLL_CFG_ENPLL;
  446. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  447. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  448. if (err) {
  449. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  450. np->port, __func__);
  451. return err;
  452. }
  453. udelay(200);
  454. /* Initialize all 4 lanes of the SERDES. */
  455. for (i = 0; i < 4; i++) {
  456. err = esr2_set_tx_cfg(np, i, tx_cfg);
  457. if (err)
  458. return err;
  459. }
  460. for (i = 0; i < 4; i++) {
  461. err = esr2_set_rx_cfg(np, i, rx_cfg);
  462. if (err)
  463. return err;
  464. }
  465. /* check if serdes is ready */
  466. switch (np->port) {
  467. case 0:
  468. mask = ESR_INT_SIGNALS_P0_BITS;
  469. val = (ESR_INT_SRDY0_P0 |
  470. ESR_INT_DET0_P0 |
  471. ESR_INT_XSRDY_P0 |
  472. ESR_INT_XDP_P0_CH3 |
  473. ESR_INT_XDP_P0_CH2 |
  474. ESR_INT_XDP_P0_CH1 |
  475. ESR_INT_XDP_P0_CH0);
  476. break;
  477. case 1:
  478. mask = ESR_INT_SIGNALS_P1_BITS;
  479. val = (ESR_INT_SRDY0_P1 |
  480. ESR_INT_DET0_P1 |
  481. ESR_INT_XSRDY_P1 |
  482. ESR_INT_XDP_P1_CH3 |
  483. ESR_INT_XDP_P1_CH2 |
  484. ESR_INT_XDP_P1_CH1 |
  485. ESR_INT_XDP_P1_CH0);
  486. break;
  487. default:
  488. return -EINVAL;
  489. }
  490. while (max_retry--) {
  491. sig = nr64(ESR_INT_SIGNALS);
  492. if ((sig & mask) == val)
  493. break;
  494. mdelay(500);
  495. }
  496. if ((sig & mask) != val) {
  497. pr_info("NIU Port %u signal bits [%08x] are not [%08x] for 10G...trying 1G\n",
  498. np->port, (int)(sig & mask), (int)val);
  499. /* 10G failed, try initializing at 1G */
  500. err = serdes_init_niu_1g_serdes(np);
  501. if (!err) {
  502. np->flags &= ~NIU_FLAGS_10G;
  503. np->mac_xcvr = MAC_XCVR_PCS;
  504. } else {
  505. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  506. np->port);
  507. return -ENODEV;
  508. }
  509. }
  510. return 0;
  511. }
  512. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  513. {
  514. int err;
  515. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  516. if (err >= 0) {
  517. *val = (err & 0xffff);
  518. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  519. ESR_RXTX_CTRL_H(chan));
  520. if (err >= 0)
  521. *val |= ((err & 0xffff) << 16);
  522. err = 0;
  523. }
  524. return err;
  525. }
  526. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  527. {
  528. int err;
  529. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  530. ESR_GLUE_CTRL0_L(chan));
  531. if (err >= 0) {
  532. *val = (err & 0xffff);
  533. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  534. ESR_GLUE_CTRL0_H(chan));
  535. if (err >= 0) {
  536. *val |= ((err & 0xffff) << 16);
  537. err = 0;
  538. }
  539. }
  540. return err;
  541. }
  542. static int esr_read_reset(struct niu *np, u32 *val)
  543. {
  544. int err;
  545. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  546. ESR_RXTX_RESET_CTRL_L);
  547. if (err >= 0) {
  548. *val = (err & 0xffff);
  549. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  550. ESR_RXTX_RESET_CTRL_H);
  551. if (err >= 0) {
  552. *val |= ((err & 0xffff) << 16);
  553. err = 0;
  554. }
  555. }
  556. return err;
  557. }
  558. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  559. {
  560. int err;
  561. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  562. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  563. if (!err)
  564. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  565. ESR_RXTX_CTRL_H(chan), (val >> 16));
  566. return err;
  567. }
  568. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  569. {
  570. int err;
  571. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  572. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  573. if (!err)
  574. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  575. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  576. return err;
  577. }
  578. static int esr_reset(struct niu *np)
  579. {
  580. u32 uninitialized_var(reset);
  581. int err;
  582. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  583. ESR_RXTX_RESET_CTRL_L, 0x0000);
  584. if (err)
  585. return err;
  586. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  587. ESR_RXTX_RESET_CTRL_H, 0xffff);
  588. if (err)
  589. return err;
  590. udelay(200);
  591. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  592. ESR_RXTX_RESET_CTRL_L, 0xffff);
  593. if (err)
  594. return err;
  595. udelay(200);
  596. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  597. ESR_RXTX_RESET_CTRL_H, 0x0000);
  598. if (err)
  599. return err;
  600. udelay(200);
  601. err = esr_read_reset(np, &reset);
  602. if (err)
  603. return err;
  604. if (reset != 0) {
  605. netdev_err(np->dev, "Port %u ESR_RESET did not clear [%08x]\n",
  606. np->port, reset);
  607. return -ENODEV;
  608. }
  609. return 0;
  610. }
  611. static int serdes_init_10g(struct niu *np)
  612. {
  613. struct niu_link_config *lp = &np->link_config;
  614. unsigned long ctrl_reg, test_cfg_reg, i;
  615. u64 ctrl_val, test_cfg_val, sig, mask, val;
  616. int err;
  617. switch (np->port) {
  618. case 0:
  619. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  620. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  621. break;
  622. case 1:
  623. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  624. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  625. break;
  626. default:
  627. return -EINVAL;
  628. }
  629. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  630. ENET_SERDES_CTRL_SDET_1 |
  631. ENET_SERDES_CTRL_SDET_2 |
  632. ENET_SERDES_CTRL_SDET_3 |
  633. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  634. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  635. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  636. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  637. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  638. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  639. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  640. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  641. test_cfg_val = 0;
  642. if (lp->loopback_mode == LOOPBACK_PHY) {
  643. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  644. ENET_SERDES_TEST_MD_0_SHIFT) |
  645. (ENET_TEST_MD_PAD_LOOPBACK <<
  646. ENET_SERDES_TEST_MD_1_SHIFT) |
  647. (ENET_TEST_MD_PAD_LOOPBACK <<
  648. ENET_SERDES_TEST_MD_2_SHIFT) |
  649. (ENET_TEST_MD_PAD_LOOPBACK <<
  650. ENET_SERDES_TEST_MD_3_SHIFT));
  651. }
  652. nw64(ctrl_reg, ctrl_val);
  653. nw64(test_cfg_reg, test_cfg_val);
  654. /* Initialize all 4 lanes of the SERDES. */
  655. for (i = 0; i < 4; i++) {
  656. u32 rxtx_ctrl, glue0;
  657. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  658. if (err)
  659. return err;
  660. err = esr_read_glue0(np, i, &glue0);
  661. if (err)
  662. return err;
  663. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  664. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  665. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  666. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  667. ESR_GLUE_CTRL0_THCNT |
  668. ESR_GLUE_CTRL0_BLTIME);
  669. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  670. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  671. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  672. (BLTIME_300_CYCLES <<
  673. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  674. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  675. if (err)
  676. return err;
  677. err = esr_write_glue0(np, i, glue0);
  678. if (err)
  679. return err;
  680. }
  681. err = esr_reset(np);
  682. if (err)
  683. return err;
  684. sig = nr64(ESR_INT_SIGNALS);
  685. switch (np->port) {
  686. case 0:
  687. mask = ESR_INT_SIGNALS_P0_BITS;
  688. val = (ESR_INT_SRDY0_P0 |
  689. ESR_INT_DET0_P0 |
  690. ESR_INT_XSRDY_P0 |
  691. ESR_INT_XDP_P0_CH3 |
  692. ESR_INT_XDP_P0_CH2 |
  693. ESR_INT_XDP_P0_CH1 |
  694. ESR_INT_XDP_P0_CH0);
  695. break;
  696. case 1:
  697. mask = ESR_INT_SIGNALS_P1_BITS;
  698. val = (ESR_INT_SRDY0_P1 |
  699. ESR_INT_DET0_P1 |
  700. ESR_INT_XSRDY_P1 |
  701. ESR_INT_XDP_P1_CH3 |
  702. ESR_INT_XDP_P1_CH2 |
  703. ESR_INT_XDP_P1_CH1 |
  704. ESR_INT_XDP_P1_CH0);
  705. break;
  706. default:
  707. return -EINVAL;
  708. }
  709. if ((sig & mask) != val) {
  710. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  711. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  712. return 0;
  713. }
  714. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  715. np->port, (int)(sig & mask), (int)val);
  716. return -ENODEV;
  717. }
  718. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  719. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  720. return 0;
  721. }
  722. static int serdes_init_1g(struct niu *np)
  723. {
  724. u64 val;
  725. val = nr64(ENET_SERDES_1_PLL_CFG);
  726. val &= ~ENET_SERDES_PLL_FBDIV2;
  727. switch (np->port) {
  728. case 0:
  729. val |= ENET_SERDES_PLL_HRATE0;
  730. break;
  731. case 1:
  732. val |= ENET_SERDES_PLL_HRATE1;
  733. break;
  734. case 2:
  735. val |= ENET_SERDES_PLL_HRATE2;
  736. break;
  737. case 3:
  738. val |= ENET_SERDES_PLL_HRATE3;
  739. break;
  740. default:
  741. return -EINVAL;
  742. }
  743. nw64(ENET_SERDES_1_PLL_CFG, val);
  744. return 0;
  745. }
  746. static int serdes_init_1g_serdes(struct niu *np)
  747. {
  748. struct niu_link_config *lp = &np->link_config;
  749. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  750. u64 ctrl_val, test_cfg_val, sig, mask, val;
  751. int err;
  752. u64 reset_val, val_rd;
  753. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  754. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  755. ENET_SERDES_PLL_FBDIV0;
  756. switch (np->port) {
  757. case 0:
  758. reset_val = ENET_SERDES_RESET_0;
  759. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  760. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  761. pll_cfg = ENET_SERDES_0_PLL_CFG;
  762. break;
  763. case 1:
  764. reset_val = ENET_SERDES_RESET_1;
  765. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  766. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  767. pll_cfg = ENET_SERDES_1_PLL_CFG;
  768. break;
  769. default:
  770. return -EINVAL;
  771. }
  772. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  773. ENET_SERDES_CTRL_SDET_1 |
  774. ENET_SERDES_CTRL_SDET_2 |
  775. ENET_SERDES_CTRL_SDET_3 |
  776. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  777. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  778. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  779. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  780. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  781. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  782. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  783. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  784. test_cfg_val = 0;
  785. if (lp->loopback_mode == LOOPBACK_PHY) {
  786. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  787. ENET_SERDES_TEST_MD_0_SHIFT) |
  788. (ENET_TEST_MD_PAD_LOOPBACK <<
  789. ENET_SERDES_TEST_MD_1_SHIFT) |
  790. (ENET_TEST_MD_PAD_LOOPBACK <<
  791. ENET_SERDES_TEST_MD_2_SHIFT) |
  792. (ENET_TEST_MD_PAD_LOOPBACK <<
  793. ENET_SERDES_TEST_MD_3_SHIFT));
  794. }
  795. nw64(ENET_SERDES_RESET, reset_val);
  796. mdelay(20);
  797. val_rd = nr64(ENET_SERDES_RESET);
  798. val_rd &= ~reset_val;
  799. nw64(pll_cfg, val);
  800. nw64(ctrl_reg, ctrl_val);
  801. nw64(test_cfg_reg, test_cfg_val);
  802. nw64(ENET_SERDES_RESET, val_rd);
  803. mdelay(2000);
  804. /* Initialize all 4 lanes of the SERDES. */
  805. for (i = 0; i < 4; i++) {
  806. u32 rxtx_ctrl, glue0;
  807. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  808. if (err)
  809. return err;
  810. err = esr_read_glue0(np, i, &glue0);
  811. if (err)
  812. return err;
  813. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  814. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  815. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  816. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  817. ESR_GLUE_CTRL0_THCNT |
  818. ESR_GLUE_CTRL0_BLTIME);
  819. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  820. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  821. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  822. (BLTIME_300_CYCLES <<
  823. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  824. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  825. if (err)
  826. return err;
  827. err = esr_write_glue0(np, i, glue0);
  828. if (err)
  829. return err;
  830. }
  831. sig = nr64(ESR_INT_SIGNALS);
  832. switch (np->port) {
  833. case 0:
  834. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  835. mask = val;
  836. break;
  837. case 1:
  838. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  839. mask = val;
  840. break;
  841. default:
  842. return -EINVAL;
  843. }
  844. if ((sig & mask) != val) {
  845. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  846. np->port, (int)(sig & mask), (int)val);
  847. return -ENODEV;
  848. }
  849. return 0;
  850. }
  851. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  852. {
  853. struct niu_link_config *lp = &np->link_config;
  854. int link_up;
  855. u64 val;
  856. u16 current_speed;
  857. unsigned long flags;
  858. u8 current_duplex;
  859. link_up = 0;
  860. current_speed = SPEED_INVALID;
  861. current_duplex = DUPLEX_INVALID;
  862. spin_lock_irqsave(&np->lock, flags);
  863. val = nr64_pcs(PCS_MII_STAT);
  864. if (val & PCS_MII_STAT_LINK_STATUS) {
  865. link_up = 1;
  866. current_speed = SPEED_1000;
  867. current_duplex = DUPLEX_FULL;
  868. }
  869. lp->active_speed = current_speed;
  870. lp->active_duplex = current_duplex;
  871. spin_unlock_irqrestore(&np->lock, flags);
  872. *link_up_p = link_up;
  873. return 0;
  874. }
  875. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  876. {
  877. unsigned long flags;
  878. struct niu_link_config *lp = &np->link_config;
  879. int link_up = 0;
  880. int link_ok = 1;
  881. u64 val, val2;
  882. u16 current_speed;
  883. u8 current_duplex;
  884. if (!(np->flags & NIU_FLAGS_10G))
  885. return link_status_1g_serdes(np, link_up_p);
  886. current_speed = SPEED_INVALID;
  887. current_duplex = DUPLEX_INVALID;
  888. spin_lock_irqsave(&np->lock, flags);
  889. val = nr64_xpcs(XPCS_STATUS(0));
  890. val2 = nr64_mac(XMAC_INTER2);
  891. if (val2 & 0x01000000)
  892. link_ok = 0;
  893. if ((val & 0x1000ULL) && link_ok) {
  894. link_up = 1;
  895. current_speed = SPEED_10000;
  896. current_duplex = DUPLEX_FULL;
  897. }
  898. lp->active_speed = current_speed;
  899. lp->active_duplex = current_duplex;
  900. spin_unlock_irqrestore(&np->lock, flags);
  901. *link_up_p = link_up;
  902. return 0;
  903. }
  904. static int link_status_mii(struct niu *np, int *link_up_p)
  905. {
  906. struct niu_link_config *lp = &np->link_config;
  907. int err;
  908. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  909. int supported, advertising, active_speed, active_duplex;
  910. err = mii_read(np, np->phy_addr, MII_BMCR);
  911. if (unlikely(err < 0))
  912. return err;
  913. bmcr = err;
  914. err = mii_read(np, np->phy_addr, MII_BMSR);
  915. if (unlikely(err < 0))
  916. return err;
  917. bmsr = err;
  918. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  919. if (unlikely(err < 0))
  920. return err;
  921. advert = err;
  922. err = mii_read(np, np->phy_addr, MII_LPA);
  923. if (unlikely(err < 0))
  924. return err;
  925. lpa = err;
  926. if (likely(bmsr & BMSR_ESTATEN)) {
  927. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  928. if (unlikely(err < 0))
  929. return err;
  930. estatus = err;
  931. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  932. if (unlikely(err < 0))
  933. return err;
  934. ctrl1000 = err;
  935. err = mii_read(np, np->phy_addr, MII_STAT1000);
  936. if (unlikely(err < 0))
  937. return err;
  938. stat1000 = err;
  939. } else
  940. estatus = ctrl1000 = stat1000 = 0;
  941. supported = 0;
  942. if (bmsr & BMSR_ANEGCAPABLE)
  943. supported |= SUPPORTED_Autoneg;
  944. if (bmsr & BMSR_10HALF)
  945. supported |= SUPPORTED_10baseT_Half;
  946. if (bmsr & BMSR_10FULL)
  947. supported |= SUPPORTED_10baseT_Full;
  948. if (bmsr & BMSR_100HALF)
  949. supported |= SUPPORTED_100baseT_Half;
  950. if (bmsr & BMSR_100FULL)
  951. supported |= SUPPORTED_100baseT_Full;
  952. if (estatus & ESTATUS_1000_THALF)
  953. supported |= SUPPORTED_1000baseT_Half;
  954. if (estatus & ESTATUS_1000_TFULL)
  955. supported |= SUPPORTED_1000baseT_Full;
  956. lp->supported = supported;
  957. advertising = 0;
  958. if (advert & ADVERTISE_10HALF)
  959. advertising |= ADVERTISED_10baseT_Half;
  960. if (advert & ADVERTISE_10FULL)
  961. advertising |= ADVERTISED_10baseT_Full;
  962. if (advert & ADVERTISE_100HALF)
  963. advertising |= ADVERTISED_100baseT_Half;
  964. if (advert & ADVERTISE_100FULL)
  965. advertising |= ADVERTISED_100baseT_Full;
  966. if (ctrl1000 & ADVERTISE_1000HALF)
  967. advertising |= ADVERTISED_1000baseT_Half;
  968. if (ctrl1000 & ADVERTISE_1000FULL)
  969. advertising |= ADVERTISED_1000baseT_Full;
  970. if (bmcr & BMCR_ANENABLE) {
  971. int neg, neg1000;
  972. lp->active_autoneg = 1;
  973. advertising |= ADVERTISED_Autoneg;
  974. neg = advert & lpa;
  975. neg1000 = (ctrl1000 << 2) & stat1000;
  976. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  977. active_speed = SPEED_1000;
  978. else if (neg & LPA_100)
  979. active_speed = SPEED_100;
  980. else if (neg & (LPA_10HALF | LPA_10FULL))
  981. active_speed = SPEED_10;
  982. else
  983. active_speed = SPEED_INVALID;
  984. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  985. active_duplex = DUPLEX_FULL;
  986. else if (active_speed != SPEED_INVALID)
  987. active_duplex = DUPLEX_HALF;
  988. else
  989. active_duplex = DUPLEX_INVALID;
  990. } else {
  991. lp->active_autoneg = 0;
  992. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  993. active_speed = SPEED_1000;
  994. else if (bmcr & BMCR_SPEED100)
  995. active_speed = SPEED_100;
  996. else
  997. active_speed = SPEED_10;
  998. if (bmcr & BMCR_FULLDPLX)
  999. active_duplex = DUPLEX_FULL;
  1000. else
  1001. active_duplex = DUPLEX_HALF;
  1002. }
  1003. lp->active_advertising = advertising;
  1004. lp->active_speed = active_speed;
  1005. lp->active_duplex = active_duplex;
  1006. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  1007. return 0;
  1008. }
  1009. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1010. {
  1011. struct niu_link_config *lp = &np->link_config;
  1012. u16 current_speed, bmsr;
  1013. unsigned long flags;
  1014. u8 current_duplex;
  1015. int err, link_up;
  1016. link_up = 0;
  1017. current_speed = SPEED_INVALID;
  1018. current_duplex = DUPLEX_INVALID;
  1019. spin_lock_irqsave(&np->lock, flags);
  1020. err = -EINVAL;
  1021. err = mii_read(np, np->phy_addr, MII_BMSR);
  1022. if (err < 0)
  1023. goto out;
  1024. bmsr = err;
  1025. if (bmsr & BMSR_LSTATUS) {
  1026. u16 adv, lpa, common, estat;
  1027. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1028. if (err < 0)
  1029. goto out;
  1030. adv = err;
  1031. err = mii_read(np, np->phy_addr, MII_LPA);
  1032. if (err < 0)
  1033. goto out;
  1034. lpa = err;
  1035. common = adv & lpa;
  1036. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1037. if (err < 0)
  1038. goto out;
  1039. estat = err;
  1040. link_up = 1;
  1041. current_speed = SPEED_1000;
  1042. current_duplex = DUPLEX_FULL;
  1043. }
  1044. lp->active_speed = current_speed;
  1045. lp->active_duplex = current_duplex;
  1046. err = 0;
  1047. out:
  1048. spin_unlock_irqrestore(&np->lock, flags);
  1049. *link_up_p = link_up;
  1050. return err;
  1051. }
  1052. static int link_status_1g(struct niu *np, int *link_up_p)
  1053. {
  1054. struct niu_link_config *lp = &np->link_config;
  1055. unsigned long flags;
  1056. int err;
  1057. spin_lock_irqsave(&np->lock, flags);
  1058. err = link_status_mii(np, link_up_p);
  1059. lp->supported |= SUPPORTED_TP;
  1060. lp->active_advertising |= ADVERTISED_TP;
  1061. spin_unlock_irqrestore(&np->lock, flags);
  1062. return err;
  1063. }
  1064. static int bcm8704_reset(struct niu *np)
  1065. {
  1066. int err, limit;
  1067. err = mdio_read(np, np->phy_addr,
  1068. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1069. if (err < 0 || err == 0xffff)
  1070. return err;
  1071. err |= BMCR_RESET;
  1072. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1073. MII_BMCR, err);
  1074. if (err)
  1075. return err;
  1076. limit = 1000;
  1077. while (--limit >= 0) {
  1078. err = mdio_read(np, np->phy_addr,
  1079. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1080. if (err < 0)
  1081. return err;
  1082. if (!(err & BMCR_RESET))
  1083. break;
  1084. }
  1085. if (limit < 0) {
  1086. netdev_err(np->dev, "Port %u PHY will not reset (bmcr=%04x)\n",
  1087. np->port, (err & 0xffff));
  1088. return -ENODEV;
  1089. }
  1090. return 0;
  1091. }
  1092. /* When written, certain PHY registers need to be read back twice
  1093. * in order for the bits to settle properly.
  1094. */
  1095. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1096. {
  1097. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1098. if (err < 0)
  1099. return err;
  1100. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1101. if (err < 0)
  1102. return err;
  1103. return 0;
  1104. }
  1105. static int bcm8706_init_user_dev3(struct niu *np)
  1106. {
  1107. int err;
  1108. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1109. BCM8704_USER_OPT_DIGITAL_CTRL);
  1110. if (err < 0)
  1111. return err;
  1112. err &= ~USER_ODIG_CTRL_GPIOS;
  1113. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1114. err |= USER_ODIG_CTRL_RESV2;
  1115. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1116. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1117. if (err)
  1118. return err;
  1119. mdelay(1000);
  1120. return 0;
  1121. }
  1122. static int bcm8704_init_user_dev3(struct niu *np)
  1123. {
  1124. int err;
  1125. err = mdio_write(np, np->phy_addr,
  1126. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1127. (USER_CONTROL_OPTXRST_LVL |
  1128. USER_CONTROL_OPBIASFLT_LVL |
  1129. USER_CONTROL_OBTMPFLT_LVL |
  1130. USER_CONTROL_OPPRFLT_LVL |
  1131. USER_CONTROL_OPTXFLT_LVL |
  1132. USER_CONTROL_OPRXLOS_LVL |
  1133. USER_CONTROL_OPRXFLT_LVL |
  1134. USER_CONTROL_OPTXON_LVL |
  1135. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1136. if (err)
  1137. return err;
  1138. err = mdio_write(np, np->phy_addr,
  1139. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1140. (USER_PMD_TX_CTL_XFP_CLKEN |
  1141. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1142. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1143. USER_PMD_TX_CTL_TSCK_LPWREN));
  1144. if (err)
  1145. return err;
  1146. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1147. if (err)
  1148. return err;
  1149. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1150. if (err)
  1151. return err;
  1152. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1153. BCM8704_USER_OPT_DIGITAL_CTRL);
  1154. if (err < 0)
  1155. return err;
  1156. err &= ~USER_ODIG_CTRL_GPIOS;
  1157. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1158. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1159. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1160. if (err)
  1161. return err;
  1162. mdelay(1000);
  1163. return 0;
  1164. }
  1165. static int mrvl88x2011_act_led(struct niu *np, int val)
  1166. {
  1167. int err;
  1168. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1169. MRVL88X2011_LED_8_TO_11_CTL);
  1170. if (err < 0)
  1171. return err;
  1172. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1173. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1174. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1175. MRVL88X2011_LED_8_TO_11_CTL, err);
  1176. }
  1177. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1178. {
  1179. int err;
  1180. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1181. MRVL88X2011_LED_BLINK_CTL);
  1182. if (err >= 0) {
  1183. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1184. err |= (rate << 4);
  1185. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1186. MRVL88X2011_LED_BLINK_CTL, err);
  1187. }
  1188. return err;
  1189. }
  1190. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1191. {
  1192. int err;
  1193. /* Set LED functions */
  1194. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1195. if (err)
  1196. return err;
  1197. /* led activity */
  1198. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1199. if (err)
  1200. return err;
  1201. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1202. MRVL88X2011_GENERAL_CTL);
  1203. if (err < 0)
  1204. return err;
  1205. err |= MRVL88X2011_ENA_XFPREFCLK;
  1206. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1207. MRVL88X2011_GENERAL_CTL, err);
  1208. if (err < 0)
  1209. return err;
  1210. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1211. MRVL88X2011_PMA_PMD_CTL_1);
  1212. if (err < 0)
  1213. return err;
  1214. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1215. err |= MRVL88X2011_LOOPBACK;
  1216. else
  1217. err &= ~MRVL88X2011_LOOPBACK;
  1218. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1219. MRVL88X2011_PMA_PMD_CTL_1, err);
  1220. if (err < 0)
  1221. return err;
  1222. /* Enable PMD */
  1223. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1224. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1225. }
  1226. static int xcvr_diag_bcm870x(struct niu *np)
  1227. {
  1228. u16 analog_stat0, tx_alarm_status;
  1229. int err = 0;
  1230. #if 1
  1231. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1232. MII_STAT1000);
  1233. if (err < 0)
  1234. return err;
  1235. pr_info("Port %u PMA_PMD(MII_STAT1000) [%04x]\n", np->port, err);
  1236. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1237. if (err < 0)
  1238. return err;
  1239. pr_info("Port %u USER_DEV3(0x20) [%04x]\n", np->port, err);
  1240. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1241. MII_NWAYTEST);
  1242. if (err < 0)
  1243. return err;
  1244. pr_info("Port %u PHYXS(MII_NWAYTEST) [%04x]\n", np->port, err);
  1245. #endif
  1246. /* XXX dig this out it might not be so useful XXX */
  1247. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1248. BCM8704_USER_ANALOG_STATUS0);
  1249. if (err < 0)
  1250. return err;
  1251. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1252. BCM8704_USER_ANALOG_STATUS0);
  1253. if (err < 0)
  1254. return err;
  1255. analog_stat0 = err;
  1256. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1257. BCM8704_USER_TX_ALARM_STATUS);
  1258. if (err < 0)
  1259. return err;
  1260. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1261. BCM8704_USER_TX_ALARM_STATUS);
  1262. if (err < 0)
  1263. return err;
  1264. tx_alarm_status = err;
  1265. if (analog_stat0 != 0x03fc) {
  1266. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1267. pr_info("Port %u cable not connected or bad cable\n",
  1268. np->port);
  1269. } else if (analog_stat0 == 0x639c) {
  1270. pr_info("Port %u optical module is bad or missing\n",
  1271. np->port);
  1272. }
  1273. }
  1274. return 0;
  1275. }
  1276. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1277. {
  1278. struct niu_link_config *lp = &np->link_config;
  1279. int err;
  1280. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1281. MII_BMCR);
  1282. if (err < 0)
  1283. return err;
  1284. err &= ~BMCR_LOOPBACK;
  1285. if (lp->loopback_mode == LOOPBACK_MAC)
  1286. err |= BMCR_LOOPBACK;
  1287. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1288. MII_BMCR, err);
  1289. if (err)
  1290. return err;
  1291. return 0;
  1292. }
  1293. static int xcvr_init_10g_bcm8706(struct niu *np)
  1294. {
  1295. int err = 0;
  1296. u64 val;
  1297. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1298. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1299. return err;
  1300. val = nr64_mac(XMAC_CONFIG);
  1301. val &= ~XMAC_CONFIG_LED_POLARITY;
  1302. val |= XMAC_CONFIG_FORCE_LED_ON;
  1303. nw64_mac(XMAC_CONFIG, val);
  1304. val = nr64(MIF_CONFIG);
  1305. val |= MIF_CONFIG_INDIRECT_MODE;
  1306. nw64(MIF_CONFIG, val);
  1307. err = bcm8704_reset(np);
  1308. if (err)
  1309. return err;
  1310. err = xcvr_10g_set_lb_bcm870x(np);
  1311. if (err)
  1312. return err;
  1313. err = bcm8706_init_user_dev3(np);
  1314. if (err)
  1315. return err;
  1316. err = xcvr_diag_bcm870x(np);
  1317. if (err)
  1318. return err;
  1319. return 0;
  1320. }
  1321. static int xcvr_init_10g_bcm8704(struct niu *np)
  1322. {
  1323. int err;
  1324. err = bcm8704_reset(np);
  1325. if (err)
  1326. return err;
  1327. err = bcm8704_init_user_dev3(np);
  1328. if (err)
  1329. return err;
  1330. err = xcvr_10g_set_lb_bcm870x(np);
  1331. if (err)
  1332. return err;
  1333. err = xcvr_diag_bcm870x(np);
  1334. if (err)
  1335. return err;
  1336. return 0;
  1337. }
  1338. static int xcvr_init_10g(struct niu *np)
  1339. {
  1340. int phy_id, err;
  1341. u64 val;
  1342. val = nr64_mac(XMAC_CONFIG);
  1343. val &= ~XMAC_CONFIG_LED_POLARITY;
  1344. val |= XMAC_CONFIG_FORCE_LED_ON;
  1345. nw64_mac(XMAC_CONFIG, val);
  1346. /* XXX shared resource, lock parent XXX */
  1347. val = nr64(MIF_CONFIG);
  1348. val |= MIF_CONFIG_INDIRECT_MODE;
  1349. nw64(MIF_CONFIG, val);
  1350. phy_id = phy_decode(np->parent->port_phy, np->port);
  1351. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1352. /* handle different phy types */
  1353. switch (phy_id & NIU_PHY_ID_MASK) {
  1354. case NIU_PHY_ID_MRVL88X2011:
  1355. err = xcvr_init_10g_mrvl88x2011(np);
  1356. break;
  1357. default: /* bcom 8704 */
  1358. err = xcvr_init_10g_bcm8704(np);
  1359. break;
  1360. }
  1361. return 0;
  1362. }
  1363. static int mii_reset(struct niu *np)
  1364. {
  1365. int limit, err;
  1366. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1367. if (err)
  1368. return err;
  1369. limit = 1000;
  1370. while (--limit >= 0) {
  1371. udelay(500);
  1372. err = mii_read(np, np->phy_addr, MII_BMCR);
  1373. if (err < 0)
  1374. return err;
  1375. if (!(err & BMCR_RESET))
  1376. break;
  1377. }
  1378. if (limit < 0) {
  1379. netdev_err(np->dev, "Port %u MII would not reset, bmcr[%04x]\n",
  1380. np->port, err);
  1381. return -ENODEV;
  1382. }
  1383. return 0;
  1384. }
  1385. static int xcvr_init_1g_rgmii(struct niu *np)
  1386. {
  1387. int err;
  1388. u64 val;
  1389. u16 bmcr, bmsr, estat;
  1390. val = nr64(MIF_CONFIG);
  1391. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1392. nw64(MIF_CONFIG, val);
  1393. err = mii_reset(np);
  1394. if (err)
  1395. return err;
  1396. err = mii_read(np, np->phy_addr, MII_BMSR);
  1397. if (err < 0)
  1398. return err;
  1399. bmsr = err;
  1400. estat = 0;
  1401. if (bmsr & BMSR_ESTATEN) {
  1402. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1403. if (err < 0)
  1404. return err;
  1405. estat = err;
  1406. }
  1407. bmcr = 0;
  1408. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1409. if (err)
  1410. return err;
  1411. if (bmsr & BMSR_ESTATEN) {
  1412. u16 ctrl1000 = 0;
  1413. if (estat & ESTATUS_1000_TFULL)
  1414. ctrl1000 |= ADVERTISE_1000FULL;
  1415. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1416. if (err)
  1417. return err;
  1418. }
  1419. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1420. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1421. if (err)
  1422. return err;
  1423. err = mii_read(np, np->phy_addr, MII_BMCR);
  1424. if (err < 0)
  1425. return err;
  1426. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1427. err = mii_read(np, np->phy_addr, MII_BMSR);
  1428. if (err < 0)
  1429. return err;
  1430. return 0;
  1431. }
  1432. static int mii_init_common(struct niu *np)
  1433. {
  1434. struct niu_link_config *lp = &np->link_config;
  1435. u16 bmcr, bmsr, adv, estat;
  1436. int err;
  1437. err = mii_reset(np);
  1438. if (err)
  1439. return err;
  1440. err = mii_read(np, np->phy_addr, MII_BMSR);
  1441. if (err < 0)
  1442. return err;
  1443. bmsr = err;
  1444. estat = 0;
  1445. if (bmsr & BMSR_ESTATEN) {
  1446. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1447. if (err < 0)
  1448. return err;
  1449. estat = err;
  1450. }
  1451. bmcr = 0;
  1452. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1453. if (err)
  1454. return err;
  1455. if (lp->loopback_mode == LOOPBACK_MAC) {
  1456. bmcr |= BMCR_LOOPBACK;
  1457. if (lp->active_speed == SPEED_1000)
  1458. bmcr |= BMCR_SPEED1000;
  1459. if (lp->active_duplex == DUPLEX_FULL)
  1460. bmcr |= BMCR_FULLDPLX;
  1461. }
  1462. if (lp->loopback_mode == LOOPBACK_PHY) {
  1463. u16 aux;
  1464. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1465. BCM5464R_AUX_CTL_WRITE_1);
  1466. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1467. if (err)
  1468. return err;
  1469. }
  1470. if (lp->autoneg) {
  1471. u16 ctrl1000;
  1472. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1473. if ((bmsr & BMSR_10HALF) &&
  1474. (lp->advertising & ADVERTISED_10baseT_Half))
  1475. adv |= ADVERTISE_10HALF;
  1476. if ((bmsr & BMSR_10FULL) &&
  1477. (lp->advertising & ADVERTISED_10baseT_Full))
  1478. adv |= ADVERTISE_10FULL;
  1479. if ((bmsr & BMSR_100HALF) &&
  1480. (lp->advertising & ADVERTISED_100baseT_Half))
  1481. adv |= ADVERTISE_100HALF;
  1482. if ((bmsr & BMSR_100FULL) &&
  1483. (lp->advertising & ADVERTISED_100baseT_Full))
  1484. adv |= ADVERTISE_100FULL;
  1485. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1486. if (err)
  1487. return err;
  1488. if (likely(bmsr & BMSR_ESTATEN)) {
  1489. ctrl1000 = 0;
  1490. if ((estat & ESTATUS_1000_THALF) &&
  1491. (lp->advertising & ADVERTISED_1000baseT_Half))
  1492. ctrl1000 |= ADVERTISE_1000HALF;
  1493. if ((estat & ESTATUS_1000_TFULL) &&
  1494. (lp->advertising & ADVERTISED_1000baseT_Full))
  1495. ctrl1000 |= ADVERTISE_1000FULL;
  1496. err = mii_write(np, np->phy_addr,
  1497. MII_CTRL1000, ctrl1000);
  1498. if (err)
  1499. return err;
  1500. }
  1501. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1502. } else {
  1503. /* !lp->autoneg */
  1504. int fulldpx;
  1505. if (lp->duplex == DUPLEX_FULL) {
  1506. bmcr |= BMCR_FULLDPLX;
  1507. fulldpx = 1;
  1508. } else if (lp->duplex == DUPLEX_HALF)
  1509. fulldpx = 0;
  1510. else
  1511. return -EINVAL;
  1512. if (lp->speed == SPEED_1000) {
  1513. /* if X-full requested while not supported, or
  1514. X-half requested while not supported... */
  1515. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1516. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1517. return -EINVAL;
  1518. bmcr |= BMCR_SPEED1000;
  1519. } else if (lp->speed == SPEED_100) {
  1520. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1521. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1522. return -EINVAL;
  1523. bmcr |= BMCR_SPEED100;
  1524. } else if (lp->speed == SPEED_10) {
  1525. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1526. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1527. return -EINVAL;
  1528. } else
  1529. return -EINVAL;
  1530. }
  1531. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1532. if (err)
  1533. return err;
  1534. #if 0
  1535. err = mii_read(np, np->phy_addr, MII_BMCR);
  1536. if (err < 0)
  1537. return err;
  1538. bmcr = err;
  1539. err = mii_read(np, np->phy_addr, MII_BMSR);
  1540. if (err < 0)
  1541. return err;
  1542. bmsr = err;
  1543. pr_info("Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1544. np->port, bmcr, bmsr);
  1545. #endif
  1546. return 0;
  1547. }
  1548. static int xcvr_init_1g(struct niu *np)
  1549. {
  1550. u64 val;
  1551. /* XXX shared resource, lock parent XXX */
  1552. val = nr64(MIF_CONFIG);
  1553. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1554. nw64(MIF_CONFIG, val);
  1555. return mii_init_common(np);
  1556. }
  1557. static int niu_xcvr_init(struct niu *np)
  1558. {
  1559. const struct niu_phy_ops *ops = np->phy_ops;
  1560. int err;
  1561. err = 0;
  1562. if (ops->xcvr_init)
  1563. err = ops->xcvr_init(np);
  1564. return err;
  1565. }
  1566. static int niu_serdes_init(struct niu *np)
  1567. {
  1568. const struct niu_phy_ops *ops = np->phy_ops;
  1569. int err;
  1570. err = 0;
  1571. if (ops->serdes_init)
  1572. err = ops->serdes_init(np);
  1573. return err;
  1574. }
  1575. static void niu_init_xif(struct niu *);
  1576. static void niu_handle_led(struct niu *, int status);
  1577. static int niu_link_status_common(struct niu *np, int link_up)
  1578. {
  1579. struct niu_link_config *lp = &np->link_config;
  1580. struct net_device *dev = np->dev;
  1581. unsigned long flags;
  1582. if (!netif_carrier_ok(dev) && link_up) {
  1583. netif_info(np, link, dev, "Link is up at %s, %s duplex\n",
  1584. lp->active_speed == SPEED_10000 ? "10Gb/sec" :
  1585. lp->active_speed == SPEED_1000 ? "1Gb/sec" :
  1586. lp->active_speed == SPEED_100 ? "100Mbit/sec" :
  1587. "10Mbit/sec",
  1588. lp->active_duplex == DUPLEX_FULL ? "full" : "half");
  1589. spin_lock_irqsave(&np->lock, flags);
  1590. niu_init_xif(np);
  1591. niu_handle_led(np, 1);
  1592. spin_unlock_irqrestore(&np->lock, flags);
  1593. netif_carrier_on(dev);
  1594. } else if (netif_carrier_ok(dev) && !link_up) {
  1595. netif_warn(np, link, dev, "Link is down\n");
  1596. spin_lock_irqsave(&np->lock, flags);
  1597. niu_handle_led(np, 0);
  1598. spin_unlock_irqrestore(&np->lock, flags);
  1599. netif_carrier_off(dev);
  1600. }
  1601. return 0;
  1602. }
  1603. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1604. {
  1605. int err, link_up, pma_status, pcs_status;
  1606. link_up = 0;
  1607. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1608. MRVL88X2011_10G_PMD_STATUS_2);
  1609. if (err < 0)
  1610. goto out;
  1611. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1612. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1613. MRVL88X2011_PMA_PMD_STATUS_1);
  1614. if (err < 0)
  1615. goto out;
  1616. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1617. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1618. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1619. MRVL88X2011_PMA_PMD_STATUS_1);
  1620. if (err < 0)
  1621. goto out;
  1622. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1623. MRVL88X2011_PMA_PMD_STATUS_1);
  1624. if (err < 0)
  1625. goto out;
  1626. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1627. /* Check XGXS Register : 4.0018.[0-3,12] */
  1628. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1629. MRVL88X2011_10G_XGXS_LANE_STAT);
  1630. if (err < 0)
  1631. goto out;
  1632. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1633. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1634. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1635. 0x800))
  1636. link_up = (pma_status && pcs_status) ? 1 : 0;
  1637. np->link_config.active_speed = SPEED_10000;
  1638. np->link_config.active_duplex = DUPLEX_FULL;
  1639. err = 0;
  1640. out:
  1641. mrvl88x2011_act_led(np, (link_up ?
  1642. MRVL88X2011_LED_CTL_PCS_ACT :
  1643. MRVL88X2011_LED_CTL_OFF));
  1644. *link_up_p = link_up;
  1645. return err;
  1646. }
  1647. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1648. {
  1649. int err, link_up;
  1650. link_up = 0;
  1651. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1652. BCM8704_PMD_RCV_SIGDET);
  1653. if (err < 0 || err == 0xffff)
  1654. goto out;
  1655. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1656. err = 0;
  1657. goto out;
  1658. }
  1659. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1660. BCM8704_PCS_10G_R_STATUS);
  1661. if (err < 0)
  1662. goto out;
  1663. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1664. err = 0;
  1665. goto out;
  1666. }
  1667. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1668. BCM8704_PHYXS_XGXS_LANE_STAT);
  1669. if (err < 0)
  1670. goto out;
  1671. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1672. PHYXS_XGXS_LANE_STAT_MAGIC |
  1673. PHYXS_XGXS_LANE_STAT_PATTEST |
  1674. PHYXS_XGXS_LANE_STAT_LANE3 |
  1675. PHYXS_XGXS_LANE_STAT_LANE2 |
  1676. PHYXS_XGXS_LANE_STAT_LANE1 |
  1677. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1678. err = 0;
  1679. np->link_config.active_speed = SPEED_INVALID;
  1680. np->link_config.active_duplex = DUPLEX_INVALID;
  1681. goto out;
  1682. }
  1683. link_up = 1;
  1684. np->link_config.active_speed = SPEED_10000;
  1685. np->link_config.active_duplex = DUPLEX_FULL;
  1686. err = 0;
  1687. out:
  1688. *link_up_p = link_up;
  1689. return err;
  1690. }
  1691. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1692. {
  1693. int err, link_up;
  1694. link_up = 0;
  1695. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1696. BCM8704_PMD_RCV_SIGDET);
  1697. if (err < 0)
  1698. goto out;
  1699. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1700. err = 0;
  1701. goto out;
  1702. }
  1703. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1704. BCM8704_PCS_10G_R_STATUS);
  1705. if (err < 0)
  1706. goto out;
  1707. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1708. err = 0;
  1709. goto out;
  1710. }
  1711. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1712. BCM8704_PHYXS_XGXS_LANE_STAT);
  1713. if (err < 0)
  1714. goto out;
  1715. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1716. PHYXS_XGXS_LANE_STAT_MAGIC |
  1717. PHYXS_XGXS_LANE_STAT_LANE3 |
  1718. PHYXS_XGXS_LANE_STAT_LANE2 |
  1719. PHYXS_XGXS_LANE_STAT_LANE1 |
  1720. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1721. err = 0;
  1722. goto out;
  1723. }
  1724. link_up = 1;
  1725. np->link_config.active_speed = SPEED_10000;
  1726. np->link_config.active_duplex = DUPLEX_FULL;
  1727. err = 0;
  1728. out:
  1729. *link_up_p = link_up;
  1730. return err;
  1731. }
  1732. static int link_status_10g(struct niu *np, int *link_up_p)
  1733. {
  1734. unsigned long flags;
  1735. int err = -EINVAL;
  1736. spin_lock_irqsave(&np->lock, flags);
  1737. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1738. int phy_id;
  1739. phy_id = phy_decode(np->parent->port_phy, np->port);
  1740. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1741. /* handle different phy types */
  1742. switch (phy_id & NIU_PHY_ID_MASK) {
  1743. case NIU_PHY_ID_MRVL88X2011:
  1744. err = link_status_10g_mrvl(np, link_up_p);
  1745. break;
  1746. default: /* bcom 8704 */
  1747. err = link_status_10g_bcom(np, link_up_p);
  1748. break;
  1749. }
  1750. }
  1751. spin_unlock_irqrestore(&np->lock, flags);
  1752. return err;
  1753. }
  1754. static int niu_10g_phy_present(struct niu *np)
  1755. {
  1756. u64 sig, mask, val;
  1757. sig = nr64(ESR_INT_SIGNALS);
  1758. switch (np->port) {
  1759. case 0:
  1760. mask = ESR_INT_SIGNALS_P0_BITS;
  1761. val = (ESR_INT_SRDY0_P0 |
  1762. ESR_INT_DET0_P0 |
  1763. ESR_INT_XSRDY_P0 |
  1764. ESR_INT_XDP_P0_CH3 |
  1765. ESR_INT_XDP_P0_CH2 |
  1766. ESR_INT_XDP_P0_CH1 |
  1767. ESR_INT_XDP_P0_CH0);
  1768. break;
  1769. case 1:
  1770. mask = ESR_INT_SIGNALS_P1_BITS;
  1771. val = (ESR_INT_SRDY0_P1 |
  1772. ESR_INT_DET0_P1 |
  1773. ESR_INT_XSRDY_P1 |
  1774. ESR_INT_XDP_P1_CH3 |
  1775. ESR_INT_XDP_P1_CH2 |
  1776. ESR_INT_XDP_P1_CH1 |
  1777. ESR_INT_XDP_P1_CH0);
  1778. break;
  1779. default:
  1780. return 0;
  1781. }
  1782. if ((sig & mask) != val)
  1783. return 0;
  1784. return 1;
  1785. }
  1786. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1787. {
  1788. unsigned long flags;
  1789. int err = 0;
  1790. int phy_present;
  1791. int phy_present_prev;
  1792. spin_lock_irqsave(&np->lock, flags);
  1793. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1794. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1795. 1 : 0;
  1796. phy_present = niu_10g_phy_present(np);
  1797. if (phy_present != phy_present_prev) {
  1798. /* state change */
  1799. if (phy_present) {
  1800. /* A NEM was just plugged in */
  1801. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1802. if (np->phy_ops->xcvr_init)
  1803. err = np->phy_ops->xcvr_init(np);
  1804. if (err) {
  1805. err = mdio_read(np, np->phy_addr,
  1806. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1807. if (err == 0xffff) {
  1808. /* No mdio, back-to-back XAUI */
  1809. goto out;
  1810. }
  1811. /* debounce */
  1812. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1813. }
  1814. } else {
  1815. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1816. *link_up_p = 0;
  1817. netif_warn(np, link, np->dev,
  1818. "Hotplug PHY Removed\n");
  1819. }
  1820. }
  1821. out:
  1822. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) {
  1823. err = link_status_10g_bcm8706(np, link_up_p);
  1824. if (err == 0xffff) {
  1825. /* No mdio, back-to-back XAUI: it is C10NEM */
  1826. *link_up_p = 1;
  1827. np->link_config.active_speed = SPEED_10000;
  1828. np->link_config.active_duplex = DUPLEX_FULL;
  1829. }
  1830. }
  1831. }
  1832. spin_unlock_irqrestore(&np->lock, flags);
  1833. return 0;
  1834. }
  1835. static int niu_link_status(struct niu *np, int *link_up_p)
  1836. {
  1837. const struct niu_phy_ops *ops = np->phy_ops;
  1838. int err;
  1839. err = 0;
  1840. if (ops->link_status)
  1841. err = ops->link_status(np, link_up_p);
  1842. return err;
  1843. }
  1844. static void niu_timer(unsigned long __opaque)
  1845. {
  1846. struct niu *np = (struct niu *) __opaque;
  1847. unsigned long off;
  1848. int err, link_up;
  1849. err = niu_link_status(np, &link_up);
  1850. if (!err)
  1851. niu_link_status_common(np, link_up);
  1852. if (netif_carrier_ok(np->dev))
  1853. off = 5 * HZ;
  1854. else
  1855. off = 1 * HZ;
  1856. np->timer.expires = jiffies + off;
  1857. add_timer(&np->timer);
  1858. }
  1859. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1860. .serdes_init = serdes_init_10g_serdes,
  1861. .link_status = link_status_10g_serdes,
  1862. };
  1863. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1864. .serdes_init = serdes_init_niu_10g_serdes,
  1865. .link_status = link_status_10g_serdes,
  1866. };
  1867. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1868. .serdes_init = serdes_init_niu_1g_serdes,
  1869. .link_status = link_status_1g_serdes,
  1870. };
  1871. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1872. .xcvr_init = xcvr_init_1g_rgmii,
  1873. .link_status = link_status_1g_rgmii,
  1874. };
  1875. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1876. .serdes_init = serdes_init_niu_10g_fiber,
  1877. .xcvr_init = xcvr_init_10g,
  1878. .link_status = link_status_10g,
  1879. };
  1880. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1881. .serdes_init = serdes_init_10g,
  1882. .xcvr_init = xcvr_init_10g,
  1883. .link_status = link_status_10g,
  1884. };
  1885. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1886. .serdes_init = serdes_init_10g,
  1887. .xcvr_init = xcvr_init_10g_bcm8706,
  1888. .link_status = link_status_10g_hotplug,
  1889. };
  1890. static const struct niu_phy_ops phy_ops_niu_10g_hotplug = {
  1891. .serdes_init = serdes_init_niu_10g_fiber,
  1892. .xcvr_init = xcvr_init_10g_bcm8706,
  1893. .link_status = link_status_10g_hotplug,
  1894. };
  1895. static const struct niu_phy_ops phy_ops_10g_copper = {
  1896. .serdes_init = serdes_init_10g,
  1897. .link_status = link_status_10g, /* XXX */
  1898. };
  1899. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1900. .serdes_init = serdes_init_1g,
  1901. .xcvr_init = xcvr_init_1g,
  1902. .link_status = link_status_1g,
  1903. };
  1904. static const struct niu_phy_ops phy_ops_1g_copper = {
  1905. .xcvr_init = xcvr_init_1g,
  1906. .link_status = link_status_1g,
  1907. };
  1908. struct niu_phy_template {
  1909. const struct niu_phy_ops *ops;
  1910. u32 phy_addr_base;
  1911. };
  1912. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1913. .ops = &phy_ops_10g_fiber_niu,
  1914. .phy_addr_base = 16,
  1915. };
  1916. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1917. .ops = &phy_ops_10g_serdes_niu,
  1918. .phy_addr_base = 0,
  1919. };
  1920. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1921. .ops = &phy_ops_1g_serdes_niu,
  1922. .phy_addr_base = 0,
  1923. };
  1924. static const struct niu_phy_template phy_template_10g_fiber = {
  1925. .ops = &phy_ops_10g_fiber,
  1926. .phy_addr_base = 8,
  1927. };
  1928. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1929. .ops = &phy_ops_10g_fiber_hotplug,
  1930. .phy_addr_base = 8,
  1931. };
  1932. static const struct niu_phy_template phy_template_niu_10g_hotplug = {
  1933. .ops = &phy_ops_niu_10g_hotplug,
  1934. .phy_addr_base = 8,
  1935. };
  1936. static const struct niu_phy_template phy_template_10g_copper = {
  1937. .ops = &phy_ops_10g_copper,
  1938. .phy_addr_base = 10,
  1939. };
  1940. static const struct niu_phy_template phy_template_1g_fiber = {
  1941. .ops = &phy_ops_1g_fiber,
  1942. .phy_addr_base = 0,
  1943. };
  1944. static const struct niu_phy_template phy_template_1g_copper = {
  1945. .ops = &phy_ops_1g_copper,
  1946. .phy_addr_base = 0,
  1947. };
  1948. static const struct niu_phy_template phy_template_1g_rgmii = {
  1949. .ops = &phy_ops_1g_rgmii,
  1950. .phy_addr_base = 0,
  1951. };
  1952. static const struct niu_phy_template phy_template_10g_serdes = {
  1953. .ops = &phy_ops_10g_serdes,
  1954. .phy_addr_base = 0,
  1955. };
  1956. static int niu_atca_port_num[4] = {
  1957. 0, 0, 11, 10
  1958. };
  1959. static int serdes_init_10g_serdes(struct niu *np)
  1960. {
  1961. struct niu_link_config *lp = &np->link_config;
  1962. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1963. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1964. u64 reset_val;
  1965. switch (np->port) {
  1966. case 0:
  1967. reset_val = ENET_SERDES_RESET_0;
  1968. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1969. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1970. pll_cfg = ENET_SERDES_0_PLL_CFG;
  1971. break;
  1972. case 1:
  1973. reset_val = ENET_SERDES_RESET_1;
  1974. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  1975. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  1976. pll_cfg = ENET_SERDES_1_PLL_CFG;
  1977. break;
  1978. default:
  1979. return -EINVAL;
  1980. }
  1981. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  1982. ENET_SERDES_CTRL_SDET_1 |
  1983. ENET_SERDES_CTRL_SDET_2 |
  1984. ENET_SERDES_CTRL_SDET_3 |
  1985. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  1986. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  1987. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  1988. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  1989. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  1990. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  1991. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  1992. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  1993. test_cfg_val = 0;
  1994. if (lp->loopback_mode == LOOPBACK_PHY) {
  1995. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  1996. ENET_SERDES_TEST_MD_0_SHIFT) |
  1997. (ENET_TEST_MD_PAD_LOOPBACK <<
  1998. ENET_SERDES_TEST_MD_1_SHIFT) |
  1999. (ENET_TEST_MD_PAD_LOOPBACK <<
  2000. ENET_SERDES_TEST_MD_2_SHIFT) |
  2001. (ENET_TEST_MD_PAD_LOOPBACK <<
  2002. ENET_SERDES_TEST_MD_3_SHIFT));
  2003. }
  2004. esr_reset(np);
  2005. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  2006. nw64(ctrl_reg, ctrl_val);
  2007. nw64(test_cfg_reg, test_cfg_val);
  2008. /* Initialize all 4 lanes of the SERDES. */
  2009. for (i = 0; i < 4; i++) {
  2010. u32 rxtx_ctrl, glue0;
  2011. int err;
  2012. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  2013. if (err)
  2014. return err;
  2015. err = esr_read_glue0(np, i, &glue0);
  2016. if (err)
  2017. return err;
  2018. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  2019. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  2020. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  2021. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  2022. ESR_GLUE_CTRL0_THCNT |
  2023. ESR_GLUE_CTRL0_BLTIME);
  2024. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2025. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2026. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2027. (BLTIME_300_CYCLES <<
  2028. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2029. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2030. if (err)
  2031. return err;
  2032. err = esr_write_glue0(np, i, glue0);
  2033. if (err)
  2034. return err;
  2035. }
  2036. sig = nr64(ESR_INT_SIGNALS);
  2037. switch (np->port) {
  2038. case 0:
  2039. mask = ESR_INT_SIGNALS_P0_BITS;
  2040. val = (ESR_INT_SRDY0_P0 |
  2041. ESR_INT_DET0_P0 |
  2042. ESR_INT_XSRDY_P0 |
  2043. ESR_INT_XDP_P0_CH3 |
  2044. ESR_INT_XDP_P0_CH2 |
  2045. ESR_INT_XDP_P0_CH1 |
  2046. ESR_INT_XDP_P0_CH0);
  2047. break;
  2048. case 1:
  2049. mask = ESR_INT_SIGNALS_P1_BITS;
  2050. val = (ESR_INT_SRDY0_P1 |
  2051. ESR_INT_DET0_P1 |
  2052. ESR_INT_XSRDY_P1 |
  2053. ESR_INT_XDP_P1_CH3 |
  2054. ESR_INT_XDP_P1_CH2 |
  2055. ESR_INT_XDP_P1_CH1 |
  2056. ESR_INT_XDP_P1_CH0);
  2057. break;
  2058. default:
  2059. return -EINVAL;
  2060. }
  2061. if ((sig & mask) != val) {
  2062. int err;
  2063. err = serdes_init_1g_serdes(np);
  2064. if (!err) {
  2065. np->flags &= ~NIU_FLAGS_10G;
  2066. np->mac_xcvr = MAC_XCVR_PCS;
  2067. } else {
  2068. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  2069. np->port);
  2070. return -ENODEV;
  2071. }
  2072. }
  2073. return 0;
  2074. }
  2075. static int niu_determine_phy_disposition(struct niu *np)
  2076. {
  2077. struct niu_parent *parent = np->parent;
  2078. u8 plat_type = parent->plat_type;
  2079. const struct niu_phy_template *tp;
  2080. u32 phy_addr_off = 0;
  2081. if (plat_type == PLAT_TYPE_NIU) {
  2082. switch (np->flags &
  2083. (NIU_FLAGS_10G |
  2084. NIU_FLAGS_FIBER |
  2085. NIU_FLAGS_XCVR_SERDES)) {
  2086. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2087. /* 10G Serdes */
  2088. tp = &phy_template_niu_10g_serdes;
  2089. break;
  2090. case NIU_FLAGS_XCVR_SERDES:
  2091. /* 1G Serdes */
  2092. tp = &phy_template_niu_1g_serdes;
  2093. break;
  2094. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2095. /* 10G Fiber */
  2096. default:
  2097. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2098. tp = &phy_template_niu_10g_hotplug;
  2099. if (np->port == 0)
  2100. phy_addr_off = 8;
  2101. if (np->port == 1)
  2102. phy_addr_off = 12;
  2103. } else {
  2104. tp = &phy_template_niu_10g_fiber;
  2105. phy_addr_off += np->port;
  2106. }
  2107. break;
  2108. }
  2109. } else {
  2110. switch (np->flags &
  2111. (NIU_FLAGS_10G |
  2112. NIU_FLAGS_FIBER |
  2113. NIU_FLAGS_XCVR_SERDES)) {
  2114. case 0:
  2115. /* 1G copper */
  2116. tp = &phy_template_1g_copper;
  2117. if (plat_type == PLAT_TYPE_VF_P0)
  2118. phy_addr_off = 10;
  2119. else if (plat_type == PLAT_TYPE_VF_P1)
  2120. phy_addr_off = 26;
  2121. phy_addr_off += (np->port ^ 0x3);
  2122. break;
  2123. case NIU_FLAGS_10G:
  2124. /* 10G copper */
  2125. tp = &phy_template_10g_copper;
  2126. break;
  2127. case NIU_FLAGS_FIBER:
  2128. /* 1G fiber */
  2129. tp = &phy_template_1g_fiber;
  2130. break;
  2131. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2132. /* 10G fiber */
  2133. tp = &phy_template_10g_fiber;
  2134. if (plat_type == PLAT_TYPE_VF_P0 ||
  2135. plat_type == PLAT_TYPE_VF_P1)
  2136. phy_addr_off = 8;
  2137. phy_addr_off += np->port;
  2138. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2139. tp = &phy_template_10g_fiber_hotplug;
  2140. if (np->port == 0)
  2141. phy_addr_off = 8;
  2142. if (np->port == 1)
  2143. phy_addr_off = 12;
  2144. }
  2145. break;
  2146. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2147. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2148. case NIU_FLAGS_XCVR_SERDES:
  2149. switch(np->port) {
  2150. case 0:
  2151. case 1:
  2152. tp = &phy_template_10g_serdes;
  2153. break;
  2154. case 2:
  2155. case 3:
  2156. tp = &phy_template_1g_rgmii;
  2157. break;
  2158. default:
  2159. return -EINVAL;
  2160. break;
  2161. }
  2162. phy_addr_off = niu_atca_port_num[np->port];
  2163. break;
  2164. default:
  2165. return -EINVAL;
  2166. }
  2167. }
  2168. np->phy_ops = tp->ops;
  2169. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2170. return 0;
  2171. }
  2172. static int niu_init_link(struct niu *np)
  2173. {
  2174. struct niu_parent *parent = np->parent;
  2175. int err, ignore;
  2176. if (parent->plat_type == PLAT_TYPE_NIU) {
  2177. err = niu_xcvr_init(np);
  2178. if (err)
  2179. return err;
  2180. msleep(200);
  2181. }
  2182. err = niu_serdes_init(np);
  2183. if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2184. return err;
  2185. msleep(200);
  2186. err = niu_xcvr_init(np);
  2187. if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2188. niu_link_status(np, &ignore);
  2189. return 0;
  2190. }
  2191. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2192. {
  2193. u16 reg0 = addr[4] << 8 | addr[5];
  2194. u16 reg1 = addr[2] << 8 | addr[3];
  2195. u16 reg2 = addr[0] << 8 | addr[1];
  2196. if (np->flags & NIU_FLAGS_XMAC) {
  2197. nw64_mac(XMAC_ADDR0, reg0);
  2198. nw64_mac(XMAC_ADDR1, reg1);
  2199. nw64_mac(XMAC_ADDR2, reg2);
  2200. } else {
  2201. nw64_mac(BMAC_ADDR0, reg0);
  2202. nw64_mac(BMAC_ADDR1, reg1);
  2203. nw64_mac(BMAC_ADDR2, reg2);
  2204. }
  2205. }
  2206. static int niu_num_alt_addr(struct niu *np)
  2207. {
  2208. if (np->flags & NIU_FLAGS_XMAC)
  2209. return XMAC_NUM_ALT_ADDR;
  2210. else
  2211. return BMAC_NUM_ALT_ADDR;
  2212. }
  2213. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2214. {
  2215. u16 reg0 = addr[4] << 8 | addr[5];
  2216. u16 reg1 = addr[2] << 8 | addr[3];
  2217. u16 reg2 = addr[0] << 8 | addr[1];
  2218. if (index >= niu_num_alt_addr(np))
  2219. return -EINVAL;
  2220. if (np->flags & NIU_FLAGS_XMAC) {
  2221. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2222. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2223. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2224. } else {
  2225. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2226. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2227. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2228. }
  2229. return 0;
  2230. }
  2231. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2232. {
  2233. unsigned long reg;
  2234. u64 val, mask;
  2235. if (index >= niu_num_alt_addr(np))
  2236. return -EINVAL;
  2237. if (np->flags & NIU_FLAGS_XMAC) {
  2238. reg = XMAC_ADDR_CMPEN;
  2239. mask = 1 << index;
  2240. } else {
  2241. reg = BMAC_ADDR_CMPEN;
  2242. mask = 1 << (index + 1);
  2243. }
  2244. val = nr64_mac(reg);
  2245. if (on)
  2246. val |= mask;
  2247. else
  2248. val &= ~mask;
  2249. nw64_mac(reg, val);
  2250. return 0;
  2251. }
  2252. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2253. int num, int mac_pref)
  2254. {
  2255. u64 val = nr64_mac(reg);
  2256. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2257. val |= num;
  2258. if (mac_pref)
  2259. val |= HOST_INFO_MPR;
  2260. nw64_mac(reg, val);
  2261. }
  2262. static int __set_rdc_table_num(struct niu *np,
  2263. int xmac_index, int bmac_index,
  2264. int rdc_table_num, int mac_pref)
  2265. {
  2266. unsigned long reg;
  2267. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2268. return -EINVAL;
  2269. if (np->flags & NIU_FLAGS_XMAC)
  2270. reg = XMAC_HOST_INFO(xmac_index);
  2271. else
  2272. reg = BMAC_HOST_INFO(bmac_index);
  2273. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2274. return 0;
  2275. }
  2276. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2277. int mac_pref)
  2278. {
  2279. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2280. }
  2281. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2282. int mac_pref)
  2283. {
  2284. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2285. }
  2286. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2287. int table_num, int mac_pref)
  2288. {
  2289. if (idx >= niu_num_alt_addr(np))
  2290. return -EINVAL;
  2291. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2292. }
  2293. static u64 vlan_entry_set_parity(u64 reg_val)
  2294. {
  2295. u64 port01_mask;
  2296. u64 port23_mask;
  2297. port01_mask = 0x00ff;
  2298. port23_mask = 0xff00;
  2299. if (hweight64(reg_val & port01_mask) & 1)
  2300. reg_val |= ENET_VLAN_TBL_PARITY0;
  2301. else
  2302. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2303. if (hweight64(reg_val & port23_mask) & 1)
  2304. reg_val |= ENET_VLAN_TBL_PARITY1;
  2305. else
  2306. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2307. return reg_val;
  2308. }
  2309. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2310. int port, int vpr, int rdc_table)
  2311. {
  2312. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2313. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2314. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2315. ENET_VLAN_TBL_SHIFT(port));
  2316. if (vpr)
  2317. reg_val |= (ENET_VLAN_TBL_VPR <<
  2318. ENET_VLAN_TBL_SHIFT(port));
  2319. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2320. reg_val = vlan_entry_set_parity(reg_val);
  2321. nw64(ENET_VLAN_TBL(index), reg_val);
  2322. }
  2323. static void vlan_tbl_clear(struct niu *np)
  2324. {
  2325. int i;
  2326. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2327. nw64(ENET_VLAN_TBL(i), 0);
  2328. }
  2329. static int tcam_wait_bit(struct niu *np, u64 bit)
  2330. {
  2331. int limit = 1000;
  2332. while (--limit > 0) {
  2333. if (nr64(TCAM_CTL) & bit)
  2334. break;
  2335. udelay(1);
  2336. }
  2337. if (limit <= 0)
  2338. return -ENODEV;
  2339. return 0;
  2340. }
  2341. static int tcam_flush(struct niu *np, int index)
  2342. {
  2343. nw64(TCAM_KEY_0, 0x00);
  2344. nw64(TCAM_KEY_MASK_0, 0xff);
  2345. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2346. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2347. }
  2348. #if 0
  2349. static int tcam_read(struct niu *np, int index,
  2350. u64 *key, u64 *mask)
  2351. {
  2352. int err;
  2353. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2354. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2355. if (!err) {
  2356. key[0] = nr64(TCAM_KEY_0);
  2357. key[1] = nr64(TCAM_KEY_1);
  2358. key[2] = nr64(TCAM_KEY_2);
  2359. key[3] = nr64(TCAM_KEY_3);
  2360. mask[0] = nr64(TCAM_KEY_MASK_0);
  2361. mask[1] = nr64(TCAM_KEY_MASK_1);
  2362. mask[2] = nr64(TCAM_KEY_MASK_2);
  2363. mask[3] = nr64(TCAM_KEY_MASK_3);
  2364. }
  2365. return err;
  2366. }
  2367. #endif
  2368. static int tcam_write(struct niu *np, int index,
  2369. u64 *key, u64 *mask)
  2370. {
  2371. nw64(TCAM_KEY_0, key[0]);
  2372. nw64(TCAM_KEY_1, key[1]);
  2373. nw64(TCAM_KEY_2, key[2]);
  2374. nw64(TCAM_KEY_3, key[3]);
  2375. nw64(TCAM_KEY_MASK_0, mask[0]);
  2376. nw64(TCAM_KEY_MASK_1, mask[1]);
  2377. nw64(TCAM_KEY_MASK_2, mask[2]);
  2378. nw64(TCAM_KEY_MASK_3, mask[3]);
  2379. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2380. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2381. }
  2382. #if 0
  2383. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2384. {
  2385. int err;
  2386. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2387. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2388. if (!err)
  2389. *data = nr64(TCAM_KEY_1);
  2390. return err;
  2391. }
  2392. #endif
  2393. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2394. {
  2395. nw64(TCAM_KEY_1, assoc_data);
  2396. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2397. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2398. }
  2399. static void tcam_enable(struct niu *np, int on)
  2400. {
  2401. u64 val = nr64(FFLP_CFG_1);
  2402. if (on)
  2403. val &= ~FFLP_CFG_1_TCAM_DIS;
  2404. else
  2405. val |= FFLP_CFG_1_TCAM_DIS;
  2406. nw64(FFLP_CFG_1, val);
  2407. }
  2408. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2409. {
  2410. u64 val = nr64(FFLP_CFG_1);
  2411. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2412. FFLP_CFG_1_CAMLAT |
  2413. FFLP_CFG_1_CAMRATIO);
  2414. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2415. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2416. nw64(FFLP_CFG_1, val);
  2417. val = nr64(FFLP_CFG_1);
  2418. val |= FFLP_CFG_1_FFLPINITDONE;
  2419. nw64(FFLP_CFG_1, val);
  2420. }
  2421. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2422. int on)
  2423. {
  2424. unsigned long reg;
  2425. u64 val;
  2426. if (class < CLASS_CODE_ETHERTYPE1 ||
  2427. class > CLASS_CODE_ETHERTYPE2)
  2428. return -EINVAL;
  2429. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2430. val = nr64(reg);
  2431. if (on)
  2432. val |= L2_CLS_VLD;
  2433. else
  2434. val &= ~L2_CLS_VLD;
  2435. nw64(reg, val);
  2436. return 0;
  2437. }
  2438. #if 0
  2439. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2440. u64 ether_type)
  2441. {
  2442. unsigned long reg;
  2443. u64 val;
  2444. if (class < CLASS_CODE_ETHERTYPE1 ||
  2445. class > CLASS_CODE_ETHERTYPE2 ||
  2446. (ether_type & ~(u64)0xffff) != 0)
  2447. return -EINVAL;
  2448. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2449. val = nr64(reg);
  2450. val &= ~L2_CLS_ETYPE;
  2451. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2452. nw64(reg, val);
  2453. return 0;
  2454. }
  2455. #endif
  2456. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2457. int on)
  2458. {
  2459. unsigned long reg;
  2460. u64 val;
  2461. if (class < CLASS_CODE_USER_PROG1 ||
  2462. class > CLASS_CODE_USER_PROG4)
  2463. return -EINVAL;
  2464. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2465. val = nr64(reg);
  2466. if (on)
  2467. val |= L3_CLS_VALID;
  2468. else
  2469. val &= ~L3_CLS_VALID;
  2470. nw64(reg, val);
  2471. return 0;
  2472. }
  2473. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2474. int ipv6, u64 protocol_id,
  2475. u64 tos_mask, u64 tos_val)
  2476. {
  2477. unsigned long reg;
  2478. u64 val;
  2479. if (class < CLASS_CODE_USER_PROG1 ||
  2480. class > CLASS_CODE_USER_PROG4 ||
  2481. (protocol_id & ~(u64)0xff) != 0 ||
  2482. (tos_mask & ~(u64)0xff) != 0 ||
  2483. (tos_val & ~(u64)0xff) != 0)
  2484. return -EINVAL;
  2485. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2486. val = nr64(reg);
  2487. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2488. L3_CLS_TOSMASK | L3_CLS_TOS);
  2489. if (ipv6)
  2490. val |= L3_CLS_IPVER;
  2491. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2492. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2493. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2494. nw64(reg, val);
  2495. return 0;
  2496. }
  2497. static int tcam_early_init(struct niu *np)
  2498. {
  2499. unsigned long i;
  2500. int err;
  2501. tcam_enable(np, 0);
  2502. tcam_set_lat_and_ratio(np,
  2503. DEFAULT_TCAM_LATENCY,
  2504. DEFAULT_TCAM_ACCESS_RATIO);
  2505. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2506. err = tcam_user_eth_class_enable(np, i, 0);
  2507. if (err)
  2508. return err;
  2509. }
  2510. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2511. err = tcam_user_ip_class_enable(np, i, 0);
  2512. if (err)
  2513. return err;
  2514. }
  2515. return 0;
  2516. }
  2517. static int tcam_flush_all(struct niu *np)
  2518. {
  2519. unsigned long i;
  2520. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2521. int err = tcam_flush(np, i);
  2522. if (err)
  2523. return err;
  2524. }
  2525. return 0;
  2526. }
  2527. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2528. {
  2529. return (u64)index | (num_entries == 1 ? HASH_TBL_ADDR_AUTOINC : 0);
  2530. }
  2531. #if 0
  2532. static int hash_read(struct niu *np, unsigned long partition,
  2533. unsigned long index, unsigned long num_entries,
  2534. u64 *data)
  2535. {
  2536. u64 val = hash_addr_regval(index, num_entries);
  2537. unsigned long i;
  2538. if (partition >= FCRAM_NUM_PARTITIONS ||
  2539. index + num_entries > FCRAM_SIZE)
  2540. return -EINVAL;
  2541. nw64(HASH_TBL_ADDR(partition), val);
  2542. for (i = 0; i < num_entries; i++)
  2543. data[i] = nr64(HASH_TBL_DATA(partition));
  2544. return 0;
  2545. }
  2546. #endif
  2547. static int hash_write(struct niu *np, unsigned long partition,
  2548. unsigned long index, unsigned long num_entries,
  2549. u64 *data)
  2550. {
  2551. u64 val = hash_addr_regval(index, num_entries);
  2552. unsigned long i;
  2553. if (partition >= FCRAM_NUM_PARTITIONS ||
  2554. index + (num_entries * 8) > FCRAM_SIZE)
  2555. return -EINVAL;
  2556. nw64(HASH_TBL_ADDR(partition), val);
  2557. for (i = 0; i < num_entries; i++)
  2558. nw64(HASH_TBL_DATA(partition), data[i]);
  2559. return 0;
  2560. }
  2561. static void fflp_reset(struct niu *np)
  2562. {
  2563. u64 val;
  2564. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2565. udelay(10);
  2566. nw64(FFLP_CFG_1, 0);
  2567. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2568. nw64(FFLP_CFG_1, val);
  2569. }
  2570. static void fflp_set_timings(struct niu *np)
  2571. {
  2572. u64 val = nr64(FFLP_CFG_1);
  2573. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2574. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2575. nw64(FFLP_CFG_1, val);
  2576. val = nr64(FFLP_CFG_1);
  2577. val |= FFLP_CFG_1_FFLPINITDONE;
  2578. nw64(FFLP_CFG_1, val);
  2579. val = nr64(FCRAM_REF_TMR);
  2580. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2581. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2582. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2583. nw64(FCRAM_REF_TMR, val);
  2584. }
  2585. static int fflp_set_partition(struct niu *np, u64 partition,
  2586. u64 mask, u64 base, int enable)
  2587. {
  2588. unsigned long reg;
  2589. u64 val;
  2590. if (partition >= FCRAM_NUM_PARTITIONS ||
  2591. (mask & ~(u64)0x1f) != 0 ||
  2592. (base & ~(u64)0x1f) != 0)
  2593. return -EINVAL;
  2594. reg = FLW_PRT_SEL(partition);
  2595. val = nr64(reg);
  2596. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2597. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2598. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2599. if (enable)
  2600. val |= FLW_PRT_SEL_EXT;
  2601. nw64(reg, val);
  2602. return 0;
  2603. }
  2604. static int fflp_disable_all_partitions(struct niu *np)
  2605. {
  2606. unsigned long i;
  2607. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2608. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2609. if (err)
  2610. return err;
  2611. }
  2612. return 0;
  2613. }
  2614. static void fflp_llcsnap_enable(struct niu *np, int on)
  2615. {
  2616. u64 val = nr64(FFLP_CFG_1);
  2617. if (on)
  2618. val |= FFLP_CFG_1_LLCSNAP;
  2619. else
  2620. val &= ~FFLP_CFG_1_LLCSNAP;
  2621. nw64(FFLP_CFG_1, val);
  2622. }
  2623. static void fflp_errors_enable(struct niu *np, int on)
  2624. {
  2625. u64 val = nr64(FFLP_CFG_1);
  2626. if (on)
  2627. val &= ~FFLP_CFG_1_ERRORDIS;
  2628. else
  2629. val |= FFLP_CFG_1_ERRORDIS;
  2630. nw64(FFLP_CFG_1, val);
  2631. }
  2632. static int fflp_hash_clear(struct niu *np)
  2633. {
  2634. struct fcram_hash_ipv4 ent;
  2635. unsigned long i;
  2636. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2637. memset(&ent, 0, sizeof(ent));
  2638. ent.header = HASH_HEADER_EXT;
  2639. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2640. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2641. if (err)
  2642. return err;
  2643. }
  2644. return 0;
  2645. }
  2646. static int fflp_early_init(struct niu *np)
  2647. {
  2648. struct niu_parent *parent;
  2649. unsigned long flags;
  2650. int err;
  2651. niu_lock_parent(np, flags);
  2652. parent = np->parent;
  2653. err = 0;
  2654. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2655. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2656. fflp_reset(np);
  2657. fflp_set_timings(np);
  2658. err = fflp_disable_all_partitions(np);
  2659. if (err) {
  2660. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2661. "fflp_disable_all_partitions failed, err=%d\n",
  2662. err);
  2663. goto out;
  2664. }
  2665. }
  2666. err = tcam_early_init(np);
  2667. if (err) {
  2668. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2669. "tcam_early_init failed, err=%d\n", err);
  2670. goto out;
  2671. }
  2672. fflp_llcsnap_enable(np, 1);
  2673. fflp_errors_enable(np, 0);
  2674. nw64(H1POLY, 0);
  2675. nw64(H2POLY, 0);
  2676. err = tcam_flush_all(np);
  2677. if (err) {
  2678. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2679. "tcam_flush_all failed, err=%d\n", err);
  2680. goto out;
  2681. }
  2682. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2683. err = fflp_hash_clear(np);
  2684. if (err) {
  2685. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2686. "fflp_hash_clear failed, err=%d\n",
  2687. err);
  2688. goto out;
  2689. }
  2690. }
  2691. vlan_tbl_clear(np);
  2692. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2693. }
  2694. out:
  2695. niu_unlock_parent(np, flags);
  2696. return err;
  2697. }
  2698. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2699. {
  2700. if (class_code < CLASS_CODE_USER_PROG1 ||
  2701. class_code > CLASS_CODE_SCTP_IPV6)
  2702. return -EINVAL;
  2703. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2704. return 0;
  2705. }
  2706. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2707. {
  2708. if (class_code < CLASS_CODE_USER_PROG1 ||
  2709. class_code > CLASS_CODE_SCTP_IPV6)
  2710. return -EINVAL;
  2711. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2712. return 0;
  2713. }
  2714. /* Entries for the ports are interleaved in the TCAM */
  2715. static u16 tcam_get_index(struct niu *np, u16 idx)
  2716. {
  2717. /* One entry reserved for IP fragment rule */
  2718. if (idx >= (np->clas.tcam_sz - 1))
  2719. idx = 0;
  2720. return np->clas.tcam_top + ((idx+1) * np->parent->num_ports);
  2721. }
  2722. static u16 tcam_get_size(struct niu *np)
  2723. {
  2724. /* One entry reserved for IP fragment rule */
  2725. return np->clas.tcam_sz - 1;
  2726. }
  2727. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2728. {
  2729. /* One entry reserved for IP fragment rule */
  2730. return np->clas.tcam_valid_entries - 1;
  2731. }
  2732. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2733. u32 offset, u32 size)
  2734. {
  2735. int i = skb_shinfo(skb)->nr_frags;
  2736. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2737. frag->page = page;
  2738. frag->page_offset = offset;
  2739. frag->size = size;
  2740. skb->len += size;
  2741. skb->data_len += size;
  2742. skb->truesize += size;
  2743. skb_shinfo(skb)->nr_frags = i + 1;
  2744. }
  2745. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2746. {
  2747. a >>= PAGE_SHIFT;
  2748. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2749. return a & (MAX_RBR_RING_SIZE - 1);
  2750. }
  2751. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2752. struct page ***link)
  2753. {
  2754. unsigned int h = niu_hash_rxaddr(rp, addr);
  2755. struct page *p, **pp;
  2756. addr &= PAGE_MASK;
  2757. pp = &rp->rxhash[h];
  2758. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2759. if (p->index == addr) {
  2760. *link = pp;
  2761. goto found;
  2762. }
  2763. }
  2764. BUG();
  2765. found:
  2766. return p;
  2767. }
  2768. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2769. {
  2770. unsigned int h = niu_hash_rxaddr(rp, base);
  2771. page->index = base;
  2772. page->mapping = (struct address_space *) rp->rxhash[h];
  2773. rp->rxhash[h] = page;
  2774. }
  2775. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2776. gfp_t mask, int start_index)
  2777. {
  2778. struct page *page;
  2779. u64 addr;
  2780. int i;
  2781. page = alloc_page(mask);
  2782. if (!page)
  2783. return -ENOMEM;
  2784. addr = np->ops->map_page(np->device, page, 0,
  2785. PAGE_SIZE, DMA_FROM_DEVICE);
  2786. niu_hash_page(rp, page, addr);
  2787. if (rp->rbr_blocks_per_page > 1)
  2788. atomic_add(rp->rbr_blocks_per_page - 1,
  2789. &compound_head(page)->_count);
  2790. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2791. __le32 *rbr = &rp->rbr[start_index + i];
  2792. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2793. addr += rp->rbr_block_size;
  2794. }
  2795. return 0;
  2796. }
  2797. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2798. {
  2799. int index = rp->rbr_index;
  2800. rp->rbr_pending++;
  2801. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2802. int err = niu_rbr_add_page(np, rp, mask, index);
  2803. if (unlikely(err)) {
  2804. rp->rbr_pending--;
  2805. return;
  2806. }
  2807. rp->rbr_index += rp->rbr_blocks_per_page;
  2808. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2809. if (rp->rbr_index == rp->rbr_table_size)
  2810. rp->rbr_index = 0;
  2811. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2812. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2813. rp->rbr_pending = 0;
  2814. }
  2815. }
  2816. }
  2817. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2818. {
  2819. unsigned int index = rp->rcr_index;
  2820. int num_rcr = 0;
  2821. rp->rx_dropped++;
  2822. while (1) {
  2823. struct page *page, **link;
  2824. u64 addr, val;
  2825. u32 rcr_size;
  2826. num_rcr++;
  2827. val = le64_to_cpup(&rp->rcr[index]);
  2828. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2829. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2830. page = niu_find_rxpage(rp, addr, &link);
  2831. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2832. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2833. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2834. *link = (struct page *) page->mapping;
  2835. np->ops->unmap_page(np->device, page->index,
  2836. PAGE_SIZE, DMA_FROM_DEVICE);
  2837. page->index = 0;
  2838. page->mapping = NULL;
  2839. __free_page(page);
  2840. rp->rbr_refill_pending++;
  2841. }
  2842. index = NEXT_RCR(rp, index);
  2843. if (!(val & RCR_ENTRY_MULTI))
  2844. break;
  2845. }
  2846. rp->rcr_index = index;
  2847. return num_rcr;
  2848. }
  2849. static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
  2850. struct rx_ring_info *rp)
  2851. {
  2852. unsigned int index = rp->rcr_index;
  2853. struct rx_pkt_hdr1 *rh;
  2854. struct sk_buff *skb;
  2855. int len, num_rcr;
  2856. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2857. if (unlikely(!skb))
  2858. return niu_rx_pkt_ignore(np, rp);
  2859. num_rcr = 0;
  2860. while (1) {
  2861. struct page *page, **link;
  2862. u32 rcr_size, append_size;
  2863. u64 addr, val, off;
  2864. num_rcr++;
  2865. val = le64_to_cpup(&rp->rcr[index]);
  2866. len = (val & RCR_ENTRY_L2_LEN) >>
  2867. RCR_ENTRY_L2_LEN_SHIFT;
  2868. len -= ETH_FCS_LEN;
  2869. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2870. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2871. page = niu_find_rxpage(rp, addr, &link);
  2872. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2873. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2874. off = addr & ~PAGE_MASK;
  2875. append_size = rcr_size;
  2876. if (num_rcr == 1) {
  2877. int ptype;
  2878. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2879. if ((ptype == RCR_PKT_TYPE_TCP ||
  2880. ptype == RCR_PKT_TYPE_UDP) &&
  2881. !(val & (RCR_ENTRY_NOPORT |
  2882. RCR_ENTRY_ERROR)))
  2883. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2884. else
  2885. skb_checksum_none_assert(skb);
  2886. } else if (!(val & RCR_ENTRY_MULTI))
  2887. append_size = len - skb->len;
  2888. niu_rx_skb_append(skb, page, off, append_size);
  2889. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2890. *link = (struct page *) page->mapping;
  2891. np->ops->unmap_page(np->device, page->index,
  2892. PAGE_SIZE, DMA_FROM_DEVICE);
  2893. page->index = 0;
  2894. page->mapping = NULL;
  2895. rp->rbr_refill_pending++;
  2896. } else
  2897. get_page(page);
  2898. index = NEXT_RCR(rp, index);
  2899. if (!(val & RCR_ENTRY_MULTI))
  2900. break;
  2901. }
  2902. rp->rcr_index = index;
  2903. len += sizeof(*rh);
  2904. len = min_t(int, len, sizeof(*rh) + VLAN_ETH_HLEN);
  2905. __pskb_pull_tail(skb, len);
  2906. rh = (struct rx_pkt_hdr1 *) skb->data;
  2907. if (np->dev->features & NETIF_F_RXHASH)
  2908. skb->rxhash = ((u32)rh->hashval2_0 << 24 |
  2909. (u32)rh->hashval2_1 << 16 |
  2910. (u32)rh->hashval1_1 << 8 |
  2911. (u32)rh->hashval1_2 << 0);
  2912. skb_pull(skb, sizeof(*rh));
  2913. rp->rx_packets++;
  2914. rp->rx_bytes += skb->len;
  2915. skb->protocol = eth_type_trans(skb, np->dev);
  2916. skb_record_rx_queue(skb, rp->rx_channel);
  2917. napi_gro_receive(napi, skb);
  2918. return num_rcr;
  2919. }
  2920. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2921. {
  2922. int blocks_per_page = rp->rbr_blocks_per_page;
  2923. int err, index = rp->rbr_index;
  2924. err = 0;
  2925. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2926. err = niu_rbr_add_page(np, rp, mask, index);
  2927. if (err)
  2928. break;
  2929. index += blocks_per_page;
  2930. }
  2931. rp->rbr_index = index;
  2932. return err;
  2933. }
  2934. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2935. {
  2936. int i;
  2937. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2938. struct page *page;
  2939. page = rp->rxhash[i];
  2940. while (page) {
  2941. struct page *next = (struct page *) page->mapping;
  2942. u64 base = page->index;
  2943. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2944. DMA_FROM_DEVICE);
  2945. page->index = 0;
  2946. page->mapping = NULL;
  2947. __free_page(page);
  2948. page = next;
  2949. }
  2950. }
  2951. for (i = 0; i < rp->rbr_table_size; i++)
  2952. rp->rbr[i] = cpu_to_le32(0);
  2953. rp->rbr_index = 0;
  2954. }
  2955. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2956. {
  2957. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2958. struct sk_buff *skb = tb->skb;
  2959. struct tx_pkt_hdr *tp;
  2960. u64 tx_flags;
  2961. int i, len;
  2962. tp = (struct tx_pkt_hdr *) skb->data;
  2963. tx_flags = le64_to_cpup(&tp->flags);
  2964. rp->tx_packets++;
  2965. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2966. ((tx_flags & TXHDR_PAD) / 2));
  2967. len = skb_headlen(skb);
  2968. np->ops->unmap_single(np->device, tb->mapping,
  2969. len, DMA_TO_DEVICE);
  2970. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2971. rp->mark_pending--;
  2972. tb->skb = NULL;
  2973. do {
  2974. idx = NEXT_TX(rp, idx);
  2975. len -= MAX_TX_DESC_LEN;
  2976. } while (len > 0);
  2977. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2978. tb = &rp->tx_buffs[idx];
  2979. BUG_ON(tb->skb != NULL);
  2980. np->ops->unmap_page(np->device, tb->mapping,
  2981. skb_shinfo(skb)->frags[i].size,
  2982. DMA_TO_DEVICE);
  2983. idx = NEXT_TX(rp, idx);
  2984. }
  2985. dev_kfree_skb(skb);
  2986. return idx;
  2987. }
  2988. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2989. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2990. {
  2991. struct netdev_queue *txq;
  2992. u16 pkt_cnt, tmp;
  2993. int cons, index;
  2994. u64 cs;
  2995. index = (rp - np->tx_rings);
  2996. txq = netdev_get_tx_queue(np->dev, index);
  2997. cs = rp->tx_cs;
  2998. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2999. goto out;
  3000. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  3001. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  3002. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  3003. rp->last_pkt_cnt = tmp;
  3004. cons = rp->cons;
  3005. netif_printk(np, tx_done, KERN_DEBUG, np->dev,
  3006. "%s() pkt_cnt[%u] cons[%d]\n", __func__, pkt_cnt, cons);
  3007. while (pkt_cnt--)
  3008. cons = release_tx_packet(np, rp, cons);
  3009. rp->cons = cons;
  3010. smp_mb();
  3011. out:
  3012. if (unlikely(netif_tx_queue_stopped(txq) &&
  3013. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  3014. __netif_tx_lock(txq, smp_processor_id());
  3015. if (netif_tx_queue_stopped(txq) &&
  3016. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  3017. netif_tx_wake_queue(txq);
  3018. __netif_tx_unlock(txq);
  3019. }
  3020. }
  3021. static inline void niu_sync_rx_discard_stats(struct niu *np,
  3022. struct rx_ring_info *rp,
  3023. const int limit)
  3024. {
  3025. /* This elaborate scheme is needed for reading the RX discard
  3026. * counters, as they are only 16-bit and can overflow quickly,
  3027. * and because the overflow indication bit is not usable as
  3028. * the counter value does not wrap, but remains at max value
  3029. * 0xFFFF.
  3030. *
  3031. * In theory and in practice counters can be lost in between
  3032. * reading nr64() and clearing the counter nw64(). For this
  3033. * reason, the number of counter clearings nw64() is
  3034. * limited/reduced though the limit parameter.
  3035. */
  3036. int rx_channel = rp->rx_channel;
  3037. u32 misc, wred;
  3038. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3039. * following discard events: IPP (Input Port Process),
  3040. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3041. * Block Ring) prefetch buffer is empty.
  3042. */
  3043. misc = nr64(RXMISC(rx_channel));
  3044. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3045. nw64(RXMISC(rx_channel), 0);
  3046. rp->rx_errors += misc & RXMISC_COUNT;
  3047. if (unlikely(misc & RXMISC_OFLOW))
  3048. dev_err(np->device, "rx-%d: Counter overflow RXMISC discard\n",
  3049. rx_channel);
  3050. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3051. "rx-%d: MISC drop=%u over=%u\n",
  3052. rx_channel, misc, misc-limit);
  3053. }
  3054. /* WRED (Weighted Random Early Discard) by hardware */
  3055. wred = nr64(RED_DIS_CNT(rx_channel));
  3056. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3057. nw64(RED_DIS_CNT(rx_channel), 0);
  3058. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3059. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3060. dev_err(np->device, "rx-%d: Counter overflow WRED discard\n", rx_channel);
  3061. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3062. "rx-%d: WRED drop=%u over=%u\n",
  3063. rx_channel, wred, wred-limit);
  3064. }
  3065. }
  3066. static int niu_rx_work(struct napi_struct *napi, struct niu *np,
  3067. struct rx_ring_info *rp, int budget)
  3068. {
  3069. int qlen, rcr_done = 0, work_done = 0;
  3070. struct rxdma_mailbox *mbox = rp->mbox;
  3071. u64 stat;
  3072. #if 1
  3073. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3074. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3075. #else
  3076. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3077. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3078. #endif
  3079. mbox->rx_dma_ctl_stat = 0;
  3080. mbox->rcrstat_a = 0;
  3081. netif_printk(np, rx_status, KERN_DEBUG, np->dev,
  3082. "%s(chan[%d]), stat[%llx] qlen=%d\n",
  3083. __func__, rp->rx_channel, (unsigned long long)stat, qlen);
  3084. rcr_done = work_done = 0;
  3085. qlen = min(qlen, budget);
  3086. while (work_done < qlen) {
  3087. rcr_done += niu_process_rx_pkt(napi, np, rp);
  3088. work_done++;
  3089. }
  3090. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3091. unsigned int i;
  3092. for (i = 0; i < rp->rbr_refill_pending; i++)
  3093. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3094. rp->rbr_refill_pending = 0;
  3095. }
  3096. stat = (RX_DMA_CTL_STAT_MEX |
  3097. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3098. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3099. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3100. /* Only sync discards stats when qlen indicate potential for drops */
  3101. if (qlen > 10)
  3102. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3103. return work_done;
  3104. }
  3105. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3106. {
  3107. u64 v0 = lp->v0;
  3108. u32 tx_vec = (v0 >> 32);
  3109. u32 rx_vec = (v0 & 0xffffffff);
  3110. int i, work_done = 0;
  3111. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3112. "%s() v0[%016llx]\n", __func__, (unsigned long long)v0);
  3113. for (i = 0; i < np->num_tx_rings; i++) {
  3114. struct tx_ring_info *rp = &np->tx_rings[i];
  3115. if (tx_vec & (1 << rp->tx_channel))
  3116. niu_tx_work(np, rp);
  3117. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3118. }
  3119. for (i = 0; i < np->num_rx_rings; i++) {
  3120. struct rx_ring_info *rp = &np->rx_rings[i];
  3121. if (rx_vec & (1 << rp->rx_channel)) {
  3122. int this_work_done;
  3123. this_work_done = niu_rx_work(&lp->napi, np, rp,
  3124. budget);
  3125. budget -= this_work_done;
  3126. work_done += this_work_done;
  3127. }
  3128. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3129. }
  3130. return work_done;
  3131. }
  3132. static int niu_poll(struct napi_struct *napi, int budget)
  3133. {
  3134. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3135. struct niu *np = lp->np;
  3136. int work_done;
  3137. work_done = niu_poll_core(np, lp, budget);
  3138. if (work_done < budget) {
  3139. napi_complete(napi);
  3140. niu_ldg_rearm(np, lp, 1);
  3141. }
  3142. return work_done;
  3143. }
  3144. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3145. u64 stat)
  3146. {
  3147. netdev_err(np->dev, "RX channel %u errors ( ", rp->rx_channel);
  3148. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3149. pr_cont("RBR_TMOUT ");
  3150. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3151. pr_cont("RSP_CNT ");
  3152. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3153. pr_cont("BYTE_EN_BUS ");
  3154. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3155. pr_cont("RSP_DAT ");
  3156. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3157. pr_cont("RCR_ACK ");
  3158. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3159. pr_cont("RCR_SHA_PAR ");
  3160. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3161. pr_cont("RBR_PRE_PAR ");
  3162. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3163. pr_cont("CONFIG ");
  3164. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3165. pr_cont("RCRINCON ");
  3166. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3167. pr_cont("RCRFULL ");
  3168. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3169. pr_cont("RBRFULL ");
  3170. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3171. pr_cont("RBRLOGPAGE ");
  3172. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3173. pr_cont("CFIGLOGPAGE ");
  3174. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3175. pr_cont("DC_FIDO ");
  3176. pr_cont(")\n");
  3177. }
  3178. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3179. {
  3180. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3181. int err = 0;
  3182. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3183. RX_DMA_CTL_STAT_PORT_FATAL))
  3184. err = -EINVAL;
  3185. if (err) {
  3186. netdev_err(np->dev, "RX channel %u error, stat[%llx]\n",
  3187. rp->rx_channel,
  3188. (unsigned long long) stat);
  3189. niu_log_rxchan_errors(np, rp, stat);
  3190. }
  3191. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3192. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3193. return err;
  3194. }
  3195. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3196. u64 cs)
  3197. {
  3198. netdev_err(np->dev, "TX channel %u errors ( ", rp->tx_channel);
  3199. if (cs & TX_CS_MBOX_ERR)
  3200. pr_cont("MBOX ");
  3201. if (cs & TX_CS_PKT_SIZE_ERR)
  3202. pr_cont("PKT_SIZE ");
  3203. if (cs & TX_CS_TX_RING_OFLOW)
  3204. pr_cont("TX_RING_OFLOW ");
  3205. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3206. pr_cont("PREF_BUF_PAR ");
  3207. if (cs & TX_CS_NACK_PREF)
  3208. pr_cont("NACK_PREF ");
  3209. if (cs & TX_CS_NACK_PKT_RD)
  3210. pr_cont("NACK_PKT_RD ");
  3211. if (cs & TX_CS_CONF_PART_ERR)
  3212. pr_cont("CONF_PART ");
  3213. if (cs & TX_CS_PKT_PRT_ERR)
  3214. pr_cont("PKT_PTR ");
  3215. pr_cont(")\n");
  3216. }
  3217. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3218. {
  3219. u64 cs, logh, logl;
  3220. cs = nr64(TX_CS(rp->tx_channel));
  3221. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3222. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3223. netdev_err(np->dev, "TX channel %u error, cs[%llx] logh[%llx] logl[%llx]\n",
  3224. rp->tx_channel,
  3225. (unsigned long long)cs,
  3226. (unsigned long long)logh,
  3227. (unsigned long long)logl);
  3228. niu_log_txchan_errors(np, rp, cs);
  3229. return -ENODEV;
  3230. }
  3231. static int niu_mif_interrupt(struct niu *np)
  3232. {
  3233. u64 mif_status = nr64(MIF_STATUS);
  3234. int phy_mdint = 0;
  3235. if (np->flags & NIU_FLAGS_XMAC) {
  3236. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3237. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3238. phy_mdint = 1;
  3239. }
  3240. netdev_err(np->dev, "MIF interrupt, stat[%llx] phy_mdint(%d)\n",
  3241. (unsigned long long)mif_status, phy_mdint);
  3242. return -ENODEV;
  3243. }
  3244. static void niu_xmac_interrupt(struct niu *np)
  3245. {
  3246. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3247. u64 val;
  3248. val = nr64_mac(XTXMAC_STATUS);
  3249. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3250. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3251. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3252. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3253. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3254. mp->tx_fifo_errors++;
  3255. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3256. mp->tx_overflow_errors++;
  3257. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3258. mp->tx_max_pkt_size_errors++;
  3259. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3260. mp->tx_underflow_errors++;
  3261. val = nr64_mac(XRXMAC_STATUS);
  3262. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3263. mp->rx_local_faults++;
  3264. if (val & XRXMAC_STATUS_RFLT_DET)
  3265. mp->rx_remote_faults++;
  3266. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3267. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3268. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3269. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3270. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3271. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3272. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3273. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3274. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3275. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3276. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3277. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3278. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3279. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3280. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3281. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3282. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3283. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3284. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3285. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3286. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3287. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3288. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3289. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3290. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3291. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3292. if (val & XRXMAC_STATUS_RXOCTET_CNT_EXP)
  3293. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3294. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3295. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3296. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3297. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3298. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3299. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3300. if (val & XRXMAC_STATUS_RXUFLOW)
  3301. mp->rx_underflows++;
  3302. if (val & XRXMAC_STATUS_RXOFLOW)
  3303. mp->rx_overflows++;
  3304. val = nr64_mac(XMAC_FC_STAT);
  3305. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3306. mp->pause_off_state++;
  3307. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3308. mp->pause_on_state++;
  3309. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3310. mp->pause_received++;
  3311. }
  3312. static void niu_bmac_interrupt(struct niu *np)
  3313. {
  3314. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3315. u64 val;
  3316. val = nr64_mac(BTXMAC_STATUS);
  3317. if (val & BTXMAC_STATUS_UNDERRUN)
  3318. mp->tx_underflow_errors++;
  3319. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3320. mp->tx_max_pkt_size_errors++;
  3321. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3322. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3323. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3324. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3325. val = nr64_mac(BRXMAC_STATUS);
  3326. if (val & BRXMAC_STATUS_OVERFLOW)
  3327. mp->rx_overflows++;
  3328. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3329. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3330. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3331. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3332. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3333. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3334. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3335. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3336. val = nr64_mac(BMAC_CTRL_STATUS);
  3337. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3338. mp->pause_off_state++;
  3339. if (val & BMAC_CTRL_STATUS_PAUSE)
  3340. mp->pause_on_state++;
  3341. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3342. mp->pause_received++;
  3343. }
  3344. static int niu_mac_interrupt(struct niu *np)
  3345. {
  3346. if (np->flags & NIU_FLAGS_XMAC)
  3347. niu_xmac_interrupt(np);
  3348. else
  3349. niu_bmac_interrupt(np);
  3350. return 0;
  3351. }
  3352. static void niu_log_device_error(struct niu *np, u64 stat)
  3353. {
  3354. netdev_err(np->dev, "Core device errors ( ");
  3355. if (stat & SYS_ERR_MASK_META2)
  3356. pr_cont("META2 ");
  3357. if (stat & SYS_ERR_MASK_META1)
  3358. pr_cont("META1 ");
  3359. if (stat & SYS_ERR_MASK_PEU)
  3360. pr_cont("PEU ");
  3361. if (stat & SYS_ERR_MASK_TXC)
  3362. pr_cont("TXC ");
  3363. if (stat & SYS_ERR_MASK_RDMC)
  3364. pr_cont("RDMC ");
  3365. if (stat & SYS_ERR_MASK_TDMC)
  3366. pr_cont("TDMC ");
  3367. if (stat & SYS_ERR_MASK_ZCP)
  3368. pr_cont("ZCP ");
  3369. if (stat & SYS_ERR_MASK_FFLP)
  3370. pr_cont("FFLP ");
  3371. if (stat & SYS_ERR_MASK_IPP)
  3372. pr_cont("IPP ");
  3373. if (stat & SYS_ERR_MASK_MAC)
  3374. pr_cont("MAC ");
  3375. if (stat & SYS_ERR_MASK_SMX)
  3376. pr_cont("SMX ");
  3377. pr_cont(")\n");
  3378. }
  3379. static int niu_device_error(struct niu *np)
  3380. {
  3381. u64 stat = nr64(SYS_ERR_STAT);
  3382. netdev_err(np->dev, "Core device error, stat[%llx]\n",
  3383. (unsigned long long)stat);
  3384. niu_log_device_error(np, stat);
  3385. return -ENODEV;
  3386. }
  3387. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3388. u64 v0, u64 v1, u64 v2)
  3389. {
  3390. int i, err = 0;
  3391. lp->v0 = v0;
  3392. lp->v1 = v1;
  3393. lp->v2 = v2;
  3394. if (v1 & 0x00000000ffffffffULL) {
  3395. u32 rx_vec = (v1 & 0xffffffff);
  3396. for (i = 0; i < np->num_rx_rings; i++) {
  3397. struct rx_ring_info *rp = &np->rx_rings[i];
  3398. if (rx_vec & (1 << rp->rx_channel)) {
  3399. int r = niu_rx_error(np, rp);
  3400. if (r) {
  3401. err = r;
  3402. } else {
  3403. if (!v0)
  3404. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3405. RX_DMA_CTL_STAT_MEX);
  3406. }
  3407. }
  3408. }
  3409. }
  3410. if (v1 & 0x7fffffff00000000ULL) {
  3411. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3412. for (i = 0; i < np->num_tx_rings; i++) {
  3413. struct tx_ring_info *rp = &np->tx_rings[i];
  3414. if (tx_vec & (1 << rp->tx_channel)) {
  3415. int r = niu_tx_error(np, rp);
  3416. if (r)
  3417. err = r;
  3418. }
  3419. }
  3420. }
  3421. if ((v0 | v1) & 0x8000000000000000ULL) {
  3422. int r = niu_mif_interrupt(np);
  3423. if (r)
  3424. err = r;
  3425. }
  3426. if (v2) {
  3427. if (v2 & 0x01ef) {
  3428. int r = niu_mac_interrupt(np);
  3429. if (r)
  3430. err = r;
  3431. }
  3432. if (v2 & 0x0210) {
  3433. int r = niu_device_error(np);
  3434. if (r)
  3435. err = r;
  3436. }
  3437. }
  3438. if (err)
  3439. niu_enable_interrupts(np, 0);
  3440. return err;
  3441. }
  3442. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3443. int ldn)
  3444. {
  3445. struct rxdma_mailbox *mbox = rp->mbox;
  3446. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3447. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3448. RX_DMA_CTL_STAT_RCRTO);
  3449. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3450. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3451. "%s() stat[%llx]\n", __func__, (unsigned long long)stat);
  3452. }
  3453. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3454. int ldn)
  3455. {
  3456. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3457. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3458. "%s() cs[%llx]\n", __func__, (unsigned long long)rp->tx_cs);
  3459. }
  3460. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3461. {
  3462. struct niu_parent *parent = np->parent;
  3463. u32 rx_vec, tx_vec;
  3464. int i;
  3465. tx_vec = (v0 >> 32);
  3466. rx_vec = (v0 & 0xffffffff);
  3467. for (i = 0; i < np->num_rx_rings; i++) {
  3468. struct rx_ring_info *rp = &np->rx_rings[i];
  3469. int ldn = LDN_RXDMA(rp->rx_channel);
  3470. if (parent->ldg_map[ldn] != ldg)
  3471. continue;
  3472. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3473. if (rx_vec & (1 << rp->rx_channel))
  3474. niu_rxchan_intr(np, rp, ldn);
  3475. }
  3476. for (i = 0; i < np->num_tx_rings; i++) {
  3477. struct tx_ring_info *rp = &np->tx_rings[i];
  3478. int ldn = LDN_TXDMA(rp->tx_channel);
  3479. if (parent->ldg_map[ldn] != ldg)
  3480. continue;
  3481. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3482. if (tx_vec & (1 << rp->tx_channel))
  3483. niu_txchan_intr(np, rp, ldn);
  3484. }
  3485. }
  3486. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3487. u64 v0, u64 v1, u64 v2)
  3488. {
  3489. if (likely(napi_schedule_prep(&lp->napi))) {
  3490. lp->v0 = v0;
  3491. lp->v1 = v1;
  3492. lp->v2 = v2;
  3493. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3494. __napi_schedule(&lp->napi);
  3495. }
  3496. }
  3497. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3498. {
  3499. struct niu_ldg *lp = dev_id;
  3500. struct niu *np = lp->np;
  3501. int ldg = lp->ldg_num;
  3502. unsigned long flags;
  3503. u64 v0, v1, v2;
  3504. if (netif_msg_intr(np))
  3505. printk(KERN_DEBUG KBUILD_MODNAME ": " "%s() ldg[%p](%d)",
  3506. __func__, lp, ldg);
  3507. spin_lock_irqsave(&np->lock, flags);
  3508. v0 = nr64(LDSV0(ldg));
  3509. v1 = nr64(LDSV1(ldg));
  3510. v2 = nr64(LDSV2(ldg));
  3511. if (netif_msg_intr(np))
  3512. pr_cont(" v0[%llx] v1[%llx] v2[%llx]\n",
  3513. (unsigned long long) v0,
  3514. (unsigned long long) v1,
  3515. (unsigned long long) v2);
  3516. if (unlikely(!v0 && !v1 && !v2)) {
  3517. spin_unlock_irqrestore(&np->lock, flags);
  3518. return IRQ_NONE;
  3519. }
  3520. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3521. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3522. if (err)
  3523. goto out;
  3524. }
  3525. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3526. niu_schedule_napi(np, lp, v0, v1, v2);
  3527. else
  3528. niu_ldg_rearm(np, lp, 1);
  3529. out:
  3530. spin_unlock_irqrestore(&np->lock, flags);
  3531. return IRQ_HANDLED;
  3532. }
  3533. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3534. {
  3535. if (rp->mbox) {
  3536. np->ops->free_coherent(np->device,
  3537. sizeof(struct rxdma_mailbox),
  3538. rp->mbox, rp->mbox_dma);
  3539. rp->mbox = NULL;
  3540. }
  3541. if (rp->rcr) {
  3542. np->ops->free_coherent(np->device,
  3543. MAX_RCR_RING_SIZE * sizeof(__le64),
  3544. rp->rcr, rp->rcr_dma);
  3545. rp->rcr = NULL;
  3546. rp->rcr_table_size = 0;
  3547. rp->rcr_index = 0;
  3548. }
  3549. if (rp->rbr) {
  3550. niu_rbr_free(np, rp);
  3551. np->ops->free_coherent(np->device,
  3552. MAX_RBR_RING_SIZE * sizeof(__le32),
  3553. rp->rbr, rp->rbr_dma);
  3554. rp->rbr = NULL;
  3555. rp->rbr_table_size = 0;
  3556. rp->rbr_index = 0;
  3557. }
  3558. kfree(rp->rxhash);
  3559. rp->rxhash = NULL;
  3560. }
  3561. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3562. {
  3563. if (rp->mbox) {
  3564. np->ops->free_coherent(np->device,
  3565. sizeof(struct txdma_mailbox),
  3566. rp->mbox, rp->mbox_dma);
  3567. rp->mbox = NULL;
  3568. }
  3569. if (rp->descr) {
  3570. int i;
  3571. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3572. if (rp->tx_buffs[i].skb)
  3573. (void) release_tx_packet(np, rp, i);
  3574. }
  3575. np->ops->free_coherent(np->device,
  3576. MAX_TX_RING_SIZE * sizeof(__le64),
  3577. rp->descr, rp->descr_dma);
  3578. rp->descr = NULL;
  3579. rp->pending = 0;
  3580. rp->prod = 0;
  3581. rp->cons = 0;
  3582. rp->wrap_bit = 0;
  3583. }
  3584. }
  3585. static void niu_free_channels(struct niu *np)
  3586. {
  3587. int i;
  3588. if (np->rx_rings) {
  3589. for (i = 0; i < np->num_rx_rings; i++) {
  3590. struct rx_ring_info *rp = &np->rx_rings[i];
  3591. niu_free_rx_ring_info(np, rp);
  3592. }
  3593. kfree(np->rx_rings);
  3594. np->rx_rings = NULL;
  3595. np->num_rx_rings = 0;
  3596. }
  3597. if (np->tx_rings) {
  3598. for (i = 0; i < np->num_tx_rings; i++) {
  3599. struct tx_ring_info *rp = &np->tx_rings[i];
  3600. niu_free_tx_ring_info(np, rp);
  3601. }
  3602. kfree(np->tx_rings);
  3603. np->tx_rings = NULL;
  3604. np->num_tx_rings = 0;
  3605. }
  3606. }
  3607. static int niu_alloc_rx_ring_info(struct niu *np,
  3608. struct rx_ring_info *rp)
  3609. {
  3610. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3611. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  3612. GFP_KERNEL);
  3613. if (!rp->rxhash)
  3614. return -ENOMEM;
  3615. rp->mbox = np->ops->alloc_coherent(np->device,
  3616. sizeof(struct rxdma_mailbox),
  3617. &rp->mbox_dma, GFP_KERNEL);
  3618. if (!rp->mbox)
  3619. return -ENOMEM;
  3620. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3621. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA mailbox %p\n",
  3622. rp->mbox);
  3623. return -EINVAL;
  3624. }
  3625. rp->rcr = np->ops->alloc_coherent(np->device,
  3626. MAX_RCR_RING_SIZE * sizeof(__le64),
  3627. &rp->rcr_dma, GFP_KERNEL);
  3628. if (!rp->rcr)
  3629. return -ENOMEM;
  3630. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3631. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RCR table %p\n",
  3632. rp->rcr);
  3633. return -EINVAL;
  3634. }
  3635. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3636. rp->rcr_index = 0;
  3637. rp->rbr = np->ops->alloc_coherent(np->device,
  3638. MAX_RBR_RING_SIZE * sizeof(__le32),
  3639. &rp->rbr_dma, GFP_KERNEL);
  3640. if (!rp->rbr)
  3641. return -ENOMEM;
  3642. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3643. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RBR table %p\n",
  3644. rp->rbr);
  3645. return -EINVAL;
  3646. }
  3647. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3648. rp->rbr_index = 0;
  3649. rp->rbr_pending = 0;
  3650. return 0;
  3651. }
  3652. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3653. {
  3654. int mtu = np->dev->mtu;
  3655. /* These values are recommended by the HW designers for fair
  3656. * utilization of DRR amongst the rings.
  3657. */
  3658. rp->max_burst = mtu + 32;
  3659. if (rp->max_burst > 4096)
  3660. rp->max_burst = 4096;
  3661. }
  3662. static int niu_alloc_tx_ring_info(struct niu *np,
  3663. struct tx_ring_info *rp)
  3664. {
  3665. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3666. rp->mbox = np->ops->alloc_coherent(np->device,
  3667. sizeof(struct txdma_mailbox),
  3668. &rp->mbox_dma, GFP_KERNEL);
  3669. if (!rp->mbox)
  3670. return -ENOMEM;
  3671. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3672. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA mailbox %p\n",
  3673. rp->mbox);
  3674. return -EINVAL;
  3675. }
  3676. rp->descr = np->ops->alloc_coherent(np->device,
  3677. MAX_TX_RING_SIZE * sizeof(__le64),
  3678. &rp->descr_dma, GFP_KERNEL);
  3679. if (!rp->descr)
  3680. return -ENOMEM;
  3681. if ((unsigned long)rp->descr & (64UL - 1)) {
  3682. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA descr table %p\n",
  3683. rp->descr);
  3684. return -EINVAL;
  3685. }
  3686. rp->pending = MAX_TX_RING_SIZE;
  3687. rp->prod = 0;
  3688. rp->cons = 0;
  3689. rp->wrap_bit = 0;
  3690. /* XXX make these configurable... XXX */
  3691. rp->mark_freq = rp->pending / 4;
  3692. niu_set_max_burst(np, rp);
  3693. return 0;
  3694. }
  3695. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3696. {
  3697. u16 bss;
  3698. bss = min(PAGE_SHIFT, 15);
  3699. rp->rbr_block_size = 1 << bss;
  3700. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3701. rp->rbr_sizes[0] = 256;
  3702. rp->rbr_sizes[1] = 1024;
  3703. if (np->dev->mtu > ETH_DATA_LEN) {
  3704. switch (PAGE_SIZE) {
  3705. case 4 * 1024:
  3706. rp->rbr_sizes[2] = 4096;
  3707. break;
  3708. default:
  3709. rp->rbr_sizes[2] = 8192;
  3710. break;
  3711. }
  3712. } else {
  3713. rp->rbr_sizes[2] = 2048;
  3714. }
  3715. rp->rbr_sizes[3] = rp->rbr_block_size;
  3716. }
  3717. static int niu_alloc_channels(struct niu *np)
  3718. {
  3719. struct niu_parent *parent = np->parent;
  3720. int first_rx_channel, first_tx_channel;
  3721. int i, port, err;
  3722. port = np->port;
  3723. first_rx_channel = first_tx_channel = 0;
  3724. for (i = 0; i < port; i++) {
  3725. first_rx_channel += parent->rxchan_per_port[i];
  3726. first_tx_channel += parent->txchan_per_port[i];
  3727. }
  3728. np->num_rx_rings = parent->rxchan_per_port[port];
  3729. np->num_tx_rings = parent->txchan_per_port[port];
  3730. netif_set_real_num_rx_queues(np->dev, np->num_rx_rings);
  3731. netif_set_real_num_tx_queues(np->dev, np->num_tx_rings);
  3732. np->rx_rings = kcalloc(np->num_rx_rings, sizeof(struct rx_ring_info),
  3733. GFP_KERNEL);
  3734. err = -ENOMEM;
  3735. if (!np->rx_rings)
  3736. goto out_err;
  3737. for (i = 0; i < np->num_rx_rings; i++) {
  3738. struct rx_ring_info *rp = &np->rx_rings[i];
  3739. rp->np = np;
  3740. rp->rx_channel = first_rx_channel + i;
  3741. err = niu_alloc_rx_ring_info(np, rp);
  3742. if (err)
  3743. goto out_err;
  3744. niu_size_rbr(np, rp);
  3745. /* XXX better defaults, configurable, etc... XXX */
  3746. rp->nonsyn_window = 64;
  3747. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3748. rp->syn_window = 64;
  3749. rp->syn_threshold = rp->rcr_table_size - 64;
  3750. rp->rcr_pkt_threshold = 16;
  3751. rp->rcr_timeout = 8;
  3752. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3753. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3754. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3755. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3756. if (err)
  3757. return err;
  3758. }
  3759. np->tx_rings = kcalloc(np->num_tx_rings, sizeof(struct tx_ring_info),
  3760. GFP_KERNEL);
  3761. err = -ENOMEM;
  3762. if (!np->tx_rings)
  3763. goto out_err;
  3764. for (i = 0; i < np->num_tx_rings; i++) {
  3765. struct tx_ring_info *rp = &np->tx_rings[i];
  3766. rp->np = np;
  3767. rp->tx_channel = first_tx_channel + i;
  3768. err = niu_alloc_tx_ring_info(np, rp);
  3769. if (err)
  3770. goto out_err;
  3771. }
  3772. return 0;
  3773. out_err:
  3774. niu_free_channels(np);
  3775. return err;
  3776. }
  3777. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3778. {
  3779. int limit = 1000;
  3780. while (--limit > 0) {
  3781. u64 val = nr64(TX_CS(channel));
  3782. if (val & TX_CS_SNG_STATE)
  3783. return 0;
  3784. }
  3785. return -ENODEV;
  3786. }
  3787. static int niu_tx_channel_stop(struct niu *np, int channel)
  3788. {
  3789. u64 val = nr64(TX_CS(channel));
  3790. val |= TX_CS_STOP_N_GO;
  3791. nw64(TX_CS(channel), val);
  3792. return niu_tx_cs_sng_poll(np, channel);
  3793. }
  3794. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3795. {
  3796. int limit = 1000;
  3797. while (--limit > 0) {
  3798. u64 val = nr64(TX_CS(channel));
  3799. if (!(val & TX_CS_RST))
  3800. return 0;
  3801. }
  3802. return -ENODEV;
  3803. }
  3804. static int niu_tx_channel_reset(struct niu *np, int channel)
  3805. {
  3806. u64 val = nr64(TX_CS(channel));
  3807. int err;
  3808. val |= TX_CS_RST;
  3809. nw64(TX_CS(channel), val);
  3810. err = niu_tx_cs_reset_poll(np, channel);
  3811. if (!err)
  3812. nw64(TX_RING_KICK(channel), 0);
  3813. return err;
  3814. }
  3815. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3816. {
  3817. u64 val;
  3818. nw64(TX_LOG_MASK1(channel), 0);
  3819. nw64(TX_LOG_VAL1(channel), 0);
  3820. nw64(TX_LOG_MASK2(channel), 0);
  3821. nw64(TX_LOG_VAL2(channel), 0);
  3822. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3823. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3824. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3825. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3826. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3827. nw64(TX_LOG_PAGE_VLD(channel), val);
  3828. /* XXX TXDMA 32bit mode? XXX */
  3829. return 0;
  3830. }
  3831. static void niu_txc_enable_port(struct niu *np, int on)
  3832. {
  3833. unsigned long flags;
  3834. u64 val, mask;
  3835. niu_lock_parent(np, flags);
  3836. val = nr64(TXC_CONTROL);
  3837. mask = (u64)1 << np->port;
  3838. if (on) {
  3839. val |= TXC_CONTROL_ENABLE | mask;
  3840. } else {
  3841. val &= ~mask;
  3842. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3843. val &= ~TXC_CONTROL_ENABLE;
  3844. }
  3845. nw64(TXC_CONTROL, val);
  3846. niu_unlock_parent(np, flags);
  3847. }
  3848. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3849. {
  3850. unsigned long flags;
  3851. u64 val;
  3852. niu_lock_parent(np, flags);
  3853. val = nr64(TXC_INT_MASK);
  3854. val &= ~TXC_INT_MASK_VAL(np->port);
  3855. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3856. niu_unlock_parent(np, flags);
  3857. }
  3858. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3859. {
  3860. u64 val = 0;
  3861. if (on) {
  3862. int i;
  3863. for (i = 0; i < np->num_tx_rings; i++)
  3864. val |= (1 << np->tx_rings[i].tx_channel);
  3865. }
  3866. nw64(TXC_PORT_DMA(np->port), val);
  3867. }
  3868. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3869. {
  3870. int err, channel = rp->tx_channel;
  3871. u64 val, ring_len;
  3872. err = niu_tx_channel_stop(np, channel);
  3873. if (err)
  3874. return err;
  3875. err = niu_tx_channel_reset(np, channel);
  3876. if (err)
  3877. return err;
  3878. err = niu_tx_channel_lpage_init(np, channel);
  3879. if (err)
  3880. return err;
  3881. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3882. nw64(TX_ENT_MSK(channel), 0);
  3883. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3884. TX_RNG_CFIG_STADDR)) {
  3885. netdev_err(np->dev, "TX ring channel %d DMA addr (%llx) is not aligned\n",
  3886. channel, (unsigned long long)rp->descr_dma);
  3887. return -EINVAL;
  3888. }
  3889. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3890. * blocks. rp->pending is the number of TX descriptors in
  3891. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3892. * to get the proper value the chip wants.
  3893. */
  3894. ring_len = (rp->pending / 8);
  3895. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3896. rp->descr_dma);
  3897. nw64(TX_RNG_CFIG(channel), val);
  3898. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3899. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3900. netdev_err(np->dev, "TX ring channel %d MBOX addr (%llx) has invalid bits\n",
  3901. channel, (unsigned long long)rp->mbox_dma);
  3902. return -EINVAL;
  3903. }
  3904. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3905. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3906. nw64(TX_CS(channel), 0);
  3907. rp->last_pkt_cnt = 0;
  3908. return 0;
  3909. }
  3910. static void niu_init_rdc_groups(struct niu *np)
  3911. {
  3912. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3913. int i, first_table_num = tp->first_table_num;
  3914. for (i = 0; i < tp->num_tables; i++) {
  3915. struct rdc_table *tbl = &tp->tables[i];
  3916. int this_table = first_table_num + i;
  3917. int slot;
  3918. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3919. nw64(RDC_TBL(this_table, slot),
  3920. tbl->rxdma_channel[slot]);
  3921. }
  3922. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3923. }
  3924. static void niu_init_drr_weight(struct niu *np)
  3925. {
  3926. int type = phy_decode(np->parent->port_phy, np->port);
  3927. u64 val;
  3928. switch (type) {
  3929. case PORT_TYPE_10G:
  3930. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3931. break;
  3932. case PORT_TYPE_1G:
  3933. default:
  3934. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3935. break;
  3936. }
  3937. nw64(PT_DRR_WT(np->port), val);
  3938. }
  3939. static int niu_init_hostinfo(struct niu *np)
  3940. {
  3941. struct niu_parent *parent = np->parent;
  3942. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3943. int i, err, num_alt = niu_num_alt_addr(np);
  3944. int first_rdc_table = tp->first_table_num;
  3945. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3946. if (err)
  3947. return err;
  3948. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3949. if (err)
  3950. return err;
  3951. for (i = 0; i < num_alt; i++) {
  3952. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3953. if (err)
  3954. return err;
  3955. }
  3956. return 0;
  3957. }
  3958. static int niu_rx_channel_reset(struct niu *np, int channel)
  3959. {
  3960. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3961. RXDMA_CFIG1_RST, 1000, 10,
  3962. "RXDMA_CFIG1");
  3963. }
  3964. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3965. {
  3966. u64 val;
  3967. nw64(RX_LOG_MASK1(channel), 0);
  3968. nw64(RX_LOG_VAL1(channel), 0);
  3969. nw64(RX_LOG_MASK2(channel), 0);
  3970. nw64(RX_LOG_VAL2(channel), 0);
  3971. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  3972. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  3973. nw64(RX_LOG_PAGE_HDL(channel), 0);
  3974. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3975. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3976. nw64(RX_LOG_PAGE_VLD(channel), val);
  3977. return 0;
  3978. }
  3979. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3980. {
  3981. u64 val;
  3982. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3983. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3984. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3985. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3986. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3987. }
  3988. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3989. {
  3990. u64 val = 0;
  3991. *ret = 0;
  3992. switch (rp->rbr_block_size) {
  3993. case 4 * 1024:
  3994. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3995. break;
  3996. case 8 * 1024:
  3997. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3998. break;
  3999. case 16 * 1024:
  4000. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4001. break;
  4002. case 32 * 1024:
  4003. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4004. break;
  4005. default:
  4006. return -EINVAL;
  4007. }
  4008. val |= RBR_CFIG_B_VLD2;
  4009. switch (rp->rbr_sizes[2]) {
  4010. case 2 * 1024:
  4011. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4012. break;
  4013. case 4 * 1024:
  4014. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4015. break;
  4016. case 8 * 1024:
  4017. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4018. break;
  4019. case 16 * 1024:
  4020. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4021. break;
  4022. default:
  4023. return -EINVAL;
  4024. }
  4025. val |= RBR_CFIG_B_VLD1;
  4026. switch (rp->rbr_sizes[1]) {
  4027. case 1 * 1024:
  4028. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4029. break;
  4030. case 2 * 1024:
  4031. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4032. break;
  4033. case 4 * 1024:
  4034. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4035. break;
  4036. case 8 * 1024:
  4037. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4038. break;
  4039. default:
  4040. return -EINVAL;
  4041. }
  4042. val |= RBR_CFIG_B_VLD0;
  4043. switch (rp->rbr_sizes[0]) {
  4044. case 256:
  4045. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4046. break;
  4047. case 512:
  4048. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4049. break;
  4050. case 1 * 1024:
  4051. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4052. break;
  4053. case 2 * 1024:
  4054. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4055. break;
  4056. default:
  4057. return -EINVAL;
  4058. }
  4059. *ret = val;
  4060. return 0;
  4061. }
  4062. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4063. {
  4064. u64 val = nr64(RXDMA_CFIG1(channel));
  4065. int limit;
  4066. if (on)
  4067. val |= RXDMA_CFIG1_EN;
  4068. else
  4069. val &= ~RXDMA_CFIG1_EN;
  4070. nw64(RXDMA_CFIG1(channel), val);
  4071. limit = 1000;
  4072. while (--limit > 0) {
  4073. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4074. break;
  4075. udelay(10);
  4076. }
  4077. if (limit <= 0)
  4078. return -ENODEV;
  4079. return 0;
  4080. }
  4081. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4082. {
  4083. int err, channel = rp->rx_channel;
  4084. u64 val;
  4085. err = niu_rx_channel_reset(np, channel);
  4086. if (err)
  4087. return err;
  4088. err = niu_rx_channel_lpage_init(np, channel);
  4089. if (err)
  4090. return err;
  4091. niu_rx_channel_wred_init(np, rp);
  4092. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4093. nw64(RX_DMA_CTL_STAT(channel),
  4094. (RX_DMA_CTL_STAT_MEX |
  4095. RX_DMA_CTL_STAT_RCRTHRES |
  4096. RX_DMA_CTL_STAT_RCRTO |
  4097. RX_DMA_CTL_STAT_RBR_EMPTY));
  4098. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4099. nw64(RXDMA_CFIG2(channel),
  4100. ((rp->mbox_dma & RXDMA_CFIG2_MBADDR_L) |
  4101. RXDMA_CFIG2_FULL_HDR));
  4102. nw64(RBR_CFIG_A(channel),
  4103. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4104. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4105. err = niu_compute_rbr_cfig_b(rp, &val);
  4106. if (err)
  4107. return err;
  4108. nw64(RBR_CFIG_B(channel), val);
  4109. nw64(RCRCFIG_A(channel),
  4110. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4111. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4112. nw64(RCRCFIG_B(channel),
  4113. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4114. RCRCFIG_B_ENTOUT |
  4115. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4116. err = niu_enable_rx_channel(np, channel, 1);
  4117. if (err)
  4118. return err;
  4119. nw64(RBR_KICK(channel), rp->rbr_index);
  4120. val = nr64(RX_DMA_CTL_STAT(channel));
  4121. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4122. nw64(RX_DMA_CTL_STAT(channel), val);
  4123. return 0;
  4124. }
  4125. static int niu_init_rx_channels(struct niu *np)
  4126. {
  4127. unsigned long flags;
  4128. u64 seed = jiffies_64;
  4129. int err, i;
  4130. niu_lock_parent(np, flags);
  4131. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4132. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4133. niu_unlock_parent(np, flags);
  4134. /* XXX RXDMA 32bit mode? XXX */
  4135. niu_init_rdc_groups(np);
  4136. niu_init_drr_weight(np);
  4137. err = niu_init_hostinfo(np);
  4138. if (err)
  4139. return err;
  4140. for (i = 0; i < np->num_rx_rings; i++) {
  4141. struct rx_ring_info *rp = &np->rx_rings[i];
  4142. err = niu_init_one_rx_channel(np, rp);
  4143. if (err)
  4144. return err;
  4145. }
  4146. return 0;
  4147. }
  4148. static int niu_set_ip_frag_rule(struct niu *np)
  4149. {
  4150. struct niu_parent *parent = np->parent;
  4151. struct niu_classifier *cp = &np->clas;
  4152. struct niu_tcam_entry *tp;
  4153. int index, err;
  4154. index = cp->tcam_top;
  4155. tp = &parent->tcam[index];
  4156. /* Note that the noport bit is the same in both ipv4 and
  4157. * ipv6 format TCAM entries.
  4158. */
  4159. memset(tp, 0, sizeof(*tp));
  4160. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4161. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4162. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4163. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4164. err = tcam_write(np, index, tp->key, tp->key_mask);
  4165. if (err)
  4166. return err;
  4167. err = tcam_assoc_write(np, index, tp->assoc_data);
  4168. if (err)
  4169. return err;
  4170. tp->valid = 1;
  4171. cp->tcam_valid_entries++;
  4172. return 0;
  4173. }
  4174. static int niu_init_classifier_hw(struct niu *np)
  4175. {
  4176. struct niu_parent *parent = np->parent;
  4177. struct niu_classifier *cp = &np->clas;
  4178. int i, err;
  4179. nw64(H1POLY, cp->h1_init);
  4180. nw64(H2POLY, cp->h2_init);
  4181. err = niu_init_hostinfo(np);
  4182. if (err)
  4183. return err;
  4184. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4185. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4186. vlan_tbl_write(np, i, np->port,
  4187. vp->vlan_pref, vp->rdc_num);
  4188. }
  4189. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4190. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4191. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4192. ap->rdc_num, ap->mac_pref);
  4193. if (err)
  4194. return err;
  4195. }
  4196. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4197. int index = i - CLASS_CODE_USER_PROG1;
  4198. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4199. if (err)
  4200. return err;
  4201. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4202. if (err)
  4203. return err;
  4204. }
  4205. err = niu_set_ip_frag_rule(np);
  4206. if (err)
  4207. return err;
  4208. tcam_enable(np, 1);
  4209. return 0;
  4210. }
  4211. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4212. {
  4213. nw64(ZCP_RAM_DATA0, data[0]);
  4214. nw64(ZCP_RAM_DATA1, data[1]);
  4215. nw64(ZCP_RAM_DATA2, data[2]);
  4216. nw64(ZCP_RAM_DATA3, data[3]);
  4217. nw64(ZCP_RAM_DATA4, data[4]);
  4218. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4219. nw64(ZCP_RAM_ACC,
  4220. (ZCP_RAM_ACC_WRITE |
  4221. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4222. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4223. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4224. 1000, 100);
  4225. }
  4226. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4227. {
  4228. int err;
  4229. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4230. 1000, 100);
  4231. if (err) {
  4232. netdev_err(np->dev, "ZCP read busy won't clear, ZCP_RAM_ACC[%llx]\n",
  4233. (unsigned long long)nr64(ZCP_RAM_ACC));
  4234. return err;
  4235. }
  4236. nw64(ZCP_RAM_ACC,
  4237. (ZCP_RAM_ACC_READ |
  4238. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4239. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4240. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4241. 1000, 100);
  4242. if (err) {
  4243. netdev_err(np->dev, "ZCP read busy2 won't clear, ZCP_RAM_ACC[%llx]\n",
  4244. (unsigned long long)nr64(ZCP_RAM_ACC));
  4245. return err;
  4246. }
  4247. data[0] = nr64(ZCP_RAM_DATA0);
  4248. data[1] = nr64(ZCP_RAM_DATA1);
  4249. data[2] = nr64(ZCP_RAM_DATA2);
  4250. data[3] = nr64(ZCP_RAM_DATA3);
  4251. data[4] = nr64(ZCP_RAM_DATA4);
  4252. return 0;
  4253. }
  4254. static void niu_zcp_cfifo_reset(struct niu *np)
  4255. {
  4256. u64 val = nr64(RESET_CFIFO);
  4257. val |= RESET_CFIFO_RST(np->port);
  4258. nw64(RESET_CFIFO, val);
  4259. udelay(10);
  4260. val &= ~RESET_CFIFO_RST(np->port);
  4261. nw64(RESET_CFIFO, val);
  4262. }
  4263. static int niu_init_zcp(struct niu *np)
  4264. {
  4265. u64 data[5], rbuf[5];
  4266. int i, max, err;
  4267. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4268. if (np->port == 0 || np->port == 1)
  4269. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4270. else
  4271. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4272. } else
  4273. max = NIU_CFIFO_ENTRIES;
  4274. data[0] = 0;
  4275. data[1] = 0;
  4276. data[2] = 0;
  4277. data[3] = 0;
  4278. data[4] = 0;
  4279. for (i = 0; i < max; i++) {
  4280. err = niu_zcp_write(np, i, data);
  4281. if (err)
  4282. return err;
  4283. err = niu_zcp_read(np, i, rbuf);
  4284. if (err)
  4285. return err;
  4286. }
  4287. niu_zcp_cfifo_reset(np);
  4288. nw64(CFIFO_ECC(np->port), 0);
  4289. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4290. (void) nr64(ZCP_INT_STAT);
  4291. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4292. return 0;
  4293. }
  4294. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4295. {
  4296. u64 val = nr64_ipp(IPP_CFIG);
  4297. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4298. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4299. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4300. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4301. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4302. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4303. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4304. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4305. }
  4306. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4307. {
  4308. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4309. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4310. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4311. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4312. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4313. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4314. }
  4315. static int niu_ipp_reset(struct niu *np)
  4316. {
  4317. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4318. 1000, 100, "IPP_CFIG");
  4319. }
  4320. static int niu_init_ipp(struct niu *np)
  4321. {
  4322. u64 data[5], rbuf[5], val;
  4323. int i, max, err;
  4324. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4325. if (np->port == 0 || np->port == 1)
  4326. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4327. else
  4328. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4329. } else
  4330. max = NIU_DFIFO_ENTRIES;
  4331. data[0] = 0;
  4332. data[1] = 0;
  4333. data[2] = 0;
  4334. data[3] = 0;
  4335. data[4] = 0;
  4336. for (i = 0; i < max; i++) {
  4337. niu_ipp_write(np, i, data);
  4338. niu_ipp_read(np, i, rbuf);
  4339. }
  4340. (void) nr64_ipp(IPP_INT_STAT);
  4341. (void) nr64_ipp(IPP_INT_STAT);
  4342. err = niu_ipp_reset(np);
  4343. if (err)
  4344. return err;
  4345. (void) nr64_ipp(IPP_PKT_DIS);
  4346. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4347. (void) nr64_ipp(IPP_ECC);
  4348. (void) nr64_ipp(IPP_INT_STAT);
  4349. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4350. val = nr64_ipp(IPP_CFIG);
  4351. val &= ~IPP_CFIG_IP_MAX_PKT;
  4352. val |= (IPP_CFIG_IPP_ENABLE |
  4353. IPP_CFIG_DFIFO_ECC_EN |
  4354. IPP_CFIG_DROP_BAD_CRC |
  4355. IPP_CFIG_CKSUM_EN |
  4356. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4357. nw64_ipp(IPP_CFIG, val);
  4358. return 0;
  4359. }
  4360. static void niu_handle_led(struct niu *np, int status)
  4361. {
  4362. u64 val;
  4363. val = nr64_mac(XMAC_CONFIG);
  4364. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4365. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4366. if (status) {
  4367. val |= XMAC_CONFIG_LED_POLARITY;
  4368. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4369. } else {
  4370. val |= XMAC_CONFIG_FORCE_LED_ON;
  4371. val &= ~XMAC_CONFIG_LED_POLARITY;
  4372. }
  4373. }
  4374. nw64_mac(XMAC_CONFIG, val);
  4375. }
  4376. static void niu_init_xif_xmac(struct niu *np)
  4377. {
  4378. struct niu_link_config *lp = &np->link_config;
  4379. u64 val;
  4380. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4381. val = nr64(MIF_CONFIG);
  4382. val |= MIF_CONFIG_ATCA_GE;
  4383. nw64(MIF_CONFIG, val);
  4384. }
  4385. val = nr64_mac(XMAC_CONFIG);
  4386. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4387. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4388. if (lp->loopback_mode == LOOPBACK_MAC) {
  4389. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4390. val |= XMAC_CONFIG_LOOPBACK;
  4391. } else {
  4392. val &= ~XMAC_CONFIG_LOOPBACK;
  4393. }
  4394. if (np->flags & NIU_FLAGS_10G) {
  4395. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4396. } else {
  4397. val |= XMAC_CONFIG_LFS_DISABLE;
  4398. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4399. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4400. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4401. else
  4402. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4403. }
  4404. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4405. if (lp->active_speed == SPEED_100)
  4406. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4407. else
  4408. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4409. nw64_mac(XMAC_CONFIG, val);
  4410. val = nr64_mac(XMAC_CONFIG);
  4411. val &= ~XMAC_CONFIG_MODE_MASK;
  4412. if (np->flags & NIU_FLAGS_10G) {
  4413. val |= XMAC_CONFIG_MODE_XGMII;
  4414. } else {
  4415. if (lp->active_speed == SPEED_1000)
  4416. val |= XMAC_CONFIG_MODE_GMII;
  4417. else
  4418. val |= XMAC_CONFIG_MODE_MII;
  4419. }
  4420. nw64_mac(XMAC_CONFIG, val);
  4421. }
  4422. static void niu_init_xif_bmac(struct niu *np)
  4423. {
  4424. struct niu_link_config *lp = &np->link_config;
  4425. u64 val;
  4426. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4427. if (lp->loopback_mode == LOOPBACK_MAC)
  4428. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4429. else
  4430. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4431. if (lp->active_speed == SPEED_1000)
  4432. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4433. else
  4434. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4435. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4436. BMAC_XIF_CONFIG_LED_POLARITY);
  4437. if (!(np->flags & NIU_FLAGS_10G) &&
  4438. !(np->flags & NIU_FLAGS_FIBER) &&
  4439. lp->active_speed == SPEED_100)
  4440. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4441. else
  4442. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4443. nw64_mac(BMAC_XIF_CONFIG, val);
  4444. }
  4445. static void niu_init_xif(struct niu *np)
  4446. {
  4447. if (np->flags & NIU_FLAGS_XMAC)
  4448. niu_init_xif_xmac(np);
  4449. else
  4450. niu_init_xif_bmac(np);
  4451. }
  4452. static void niu_pcs_mii_reset(struct niu *np)
  4453. {
  4454. int limit = 1000;
  4455. u64 val = nr64_pcs(PCS_MII_CTL);
  4456. val |= PCS_MII_CTL_RST;
  4457. nw64_pcs(PCS_MII_CTL, val);
  4458. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4459. udelay(100);
  4460. val = nr64_pcs(PCS_MII_CTL);
  4461. }
  4462. }
  4463. static void niu_xpcs_reset(struct niu *np)
  4464. {
  4465. int limit = 1000;
  4466. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4467. val |= XPCS_CONTROL1_RESET;
  4468. nw64_xpcs(XPCS_CONTROL1, val);
  4469. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4470. udelay(100);
  4471. val = nr64_xpcs(XPCS_CONTROL1);
  4472. }
  4473. }
  4474. static int niu_init_pcs(struct niu *np)
  4475. {
  4476. struct niu_link_config *lp = &np->link_config;
  4477. u64 val;
  4478. switch (np->flags & (NIU_FLAGS_10G |
  4479. NIU_FLAGS_FIBER |
  4480. NIU_FLAGS_XCVR_SERDES)) {
  4481. case NIU_FLAGS_FIBER:
  4482. /* 1G fiber */
  4483. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4484. nw64_pcs(PCS_DPATH_MODE, 0);
  4485. niu_pcs_mii_reset(np);
  4486. break;
  4487. case NIU_FLAGS_10G:
  4488. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4489. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4490. /* 10G SERDES */
  4491. if (!(np->flags & NIU_FLAGS_XMAC))
  4492. return -EINVAL;
  4493. /* 10G copper or fiber */
  4494. val = nr64_mac(XMAC_CONFIG);
  4495. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4496. nw64_mac(XMAC_CONFIG, val);
  4497. niu_xpcs_reset(np);
  4498. val = nr64_xpcs(XPCS_CONTROL1);
  4499. if (lp->loopback_mode == LOOPBACK_PHY)
  4500. val |= XPCS_CONTROL1_LOOPBACK;
  4501. else
  4502. val &= ~XPCS_CONTROL1_LOOPBACK;
  4503. nw64_xpcs(XPCS_CONTROL1, val);
  4504. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4505. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4506. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4507. break;
  4508. case NIU_FLAGS_XCVR_SERDES:
  4509. /* 1G SERDES */
  4510. niu_pcs_mii_reset(np);
  4511. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4512. nw64_pcs(PCS_DPATH_MODE, 0);
  4513. break;
  4514. case 0:
  4515. /* 1G copper */
  4516. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4517. /* 1G RGMII FIBER */
  4518. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4519. niu_pcs_mii_reset(np);
  4520. break;
  4521. default:
  4522. return -EINVAL;
  4523. }
  4524. return 0;
  4525. }
  4526. static int niu_reset_tx_xmac(struct niu *np)
  4527. {
  4528. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4529. (XTXMAC_SW_RST_REG_RS |
  4530. XTXMAC_SW_RST_SOFT_RST),
  4531. 1000, 100, "XTXMAC_SW_RST");
  4532. }
  4533. static int niu_reset_tx_bmac(struct niu *np)
  4534. {
  4535. int limit;
  4536. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4537. limit = 1000;
  4538. while (--limit >= 0) {
  4539. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4540. break;
  4541. udelay(100);
  4542. }
  4543. if (limit < 0) {
  4544. dev_err(np->device, "Port %u TX BMAC would not reset, BTXMAC_SW_RST[%llx]\n",
  4545. np->port,
  4546. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4547. return -ENODEV;
  4548. }
  4549. return 0;
  4550. }
  4551. static int niu_reset_tx_mac(struct niu *np)
  4552. {
  4553. if (np->flags & NIU_FLAGS_XMAC)
  4554. return niu_reset_tx_xmac(np);
  4555. else
  4556. return niu_reset_tx_bmac(np);
  4557. }
  4558. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4559. {
  4560. u64 val;
  4561. val = nr64_mac(XMAC_MIN);
  4562. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4563. XMAC_MIN_RX_MIN_PKT_SIZE);
  4564. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4565. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4566. nw64_mac(XMAC_MIN, val);
  4567. nw64_mac(XMAC_MAX, max);
  4568. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4569. val = nr64_mac(XMAC_IPG);
  4570. if (np->flags & NIU_FLAGS_10G) {
  4571. val &= ~XMAC_IPG_IPG_XGMII;
  4572. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4573. } else {
  4574. val &= ~XMAC_IPG_IPG_MII_GMII;
  4575. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4576. }
  4577. nw64_mac(XMAC_IPG, val);
  4578. val = nr64_mac(XMAC_CONFIG);
  4579. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4580. XMAC_CONFIG_STRETCH_MODE |
  4581. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4582. XMAC_CONFIG_TX_ENABLE);
  4583. nw64_mac(XMAC_CONFIG, val);
  4584. nw64_mac(TXMAC_FRM_CNT, 0);
  4585. nw64_mac(TXMAC_BYTE_CNT, 0);
  4586. }
  4587. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4588. {
  4589. u64 val;
  4590. nw64_mac(BMAC_MIN_FRAME, min);
  4591. nw64_mac(BMAC_MAX_FRAME, max);
  4592. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4593. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4594. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4595. val = nr64_mac(BTXMAC_CONFIG);
  4596. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4597. BTXMAC_CONFIG_ENABLE);
  4598. nw64_mac(BTXMAC_CONFIG, val);
  4599. }
  4600. static void niu_init_tx_mac(struct niu *np)
  4601. {
  4602. u64 min, max;
  4603. min = 64;
  4604. if (np->dev->mtu > ETH_DATA_LEN)
  4605. max = 9216;
  4606. else
  4607. max = 1522;
  4608. /* The XMAC_MIN register only accepts values for TX min which
  4609. * have the low 3 bits cleared.
  4610. */
  4611. BUG_ON(min & 0x7);
  4612. if (np->flags & NIU_FLAGS_XMAC)
  4613. niu_init_tx_xmac(np, min, max);
  4614. else
  4615. niu_init_tx_bmac(np, min, max);
  4616. }
  4617. static int niu_reset_rx_xmac(struct niu *np)
  4618. {
  4619. int limit;
  4620. nw64_mac(XRXMAC_SW_RST,
  4621. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4622. limit = 1000;
  4623. while (--limit >= 0) {
  4624. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4625. XRXMAC_SW_RST_SOFT_RST)))
  4626. break;
  4627. udelay(100);
  4628. }
  4629. if (limit < 0) {
  4630. dev_err(np->device, "Port %u RX XMAC would not reset, XRXMAC_SW_RST[%llx]\n",
  4631. np->port,
  4632. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4633. return -ENODEV;
  4634. }
  4635. return 0;
  4636. }
  4637. static int niu_reset_rx_bmac(struct niu *np)
  4638. {
  4639. int limit;
  4640. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4641. limit = 1000;
  4642. while (--limit >= 0) {
  4643. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4644. break;
  4645. udelay(100);
  4646. }
  4647. if (limit < 0) {
  4648. dev_err(np->device, "Port %u RX BMAC would not reset, BRXMAC_SW_RST[%llx]\n",
  4649. np->port,
  4650. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4651. return -ENODEV;
  4652. }
  4653. return 0;
  4654. }
  4655. static int niu_reset_rx_mac(struct niu *np)
  4656. {
  4657. if (np->flags & NIU_FLAGS_XMAC)
  4658. return niu_reset_rx_xmac(np);
  4659. else
  4660. return niu_reset_rx_bmac(np);
  4661. }
  4662. static void niu_init_rx_xmac(struct niu *np)
  4663. {
  4664. struct niu_parent *parent = np->parent;
  4665. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4666. int first_rdc_table = tp->first_table_num;
  4667. unsigned long i;
  4668. u64 val;
  4669. nw64_mac(XMAC_ADD_FILT0, 0);
  4670. nw64_mac(XMAC_ADD_FILT1, 0);
  4671. nw64_mac(XMAC_ADD_FILT2, 0);
  4672. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4673. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4674. for (i = 0; i < MAC_NUM_HASH; i++)
  4675. nw64_mac(XMAC_HASH_TBL(i), 0);
  4676. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4677. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4678. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4679. val = nr64_mac(XMAC_CONFIG);
  4680. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4681. XMAC_CONFIG_PROMISCUOUS |
  4682. XMAC_CONFIG_PROMISC_GROUP |
  4683. XMAC_CONFIG_ERR_CHK_DIS |
  4684. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4685. XMAC_CONFIG_RESERVED_MULTICAST |
  4686. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4687. XMAC_CONFIG_ADDR_FILTER_EN |
  4688. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4689. XMAC_CONFIG_STRIP_CRC |
  4690. XMAC_CONFIG_PASS_FLOW_CTRL |
  4691. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4692. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4693. nw64_mac(XMAC_CONFIG, val);
  4694. nw64_mac(RXMAC_BT_CNT, 0);
  4695. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4696. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4697. nw64_mac(RXMAC_FRAG_CNT, 0);
  4698. nw64_mac(RXMAC_HIST_CNT1, 0);
  4699. nw64_mac(RXMAC_HIST_CNT2, 0);
  4700. nw64_mac(RXMAC_HIST_CNT3, 0);
  4701. nw64_mac(RXMAC_HIST_CNT4, 0);
  4702. nw64_mac(RXMAC_HIST_CNT5, 0);
  4703. nw64_mac(RXMAC_HIST_CNT6, 0);
  4704. nw64_mac(RXMAC_HIST_CNT7, 0);
  4705. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4706. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4707. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4708. nw64_mac(LINK_FAULT_CNT, 0);
  4709. }
  4710. static void niu_init_rx_bmac(struct niu *np)
  4711. {
  4712. struct niu_parent *parent = np->parent;
  4713. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4714. int first_rdc_table = tp->first_table_num;
  4715. unsigned long i;
  4716. u64 val;
  4717. nw64_mac(BMAC_ADD_FILT0, 0);
  4718. nw64_mac(BMAC_ADD_FILT1, 0);
  4719. nw64_mac(BMAC_ADD_FILT2, 0);
  4720. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4721. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4722. for (i = 0; i < MAC_NUM_HASH; i++)
  4723. nw64_mac(BMAC_HASH_TBL(i), 0);
  4724. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4725. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4726. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4727. val = nr64_mac(BRXMAC_CONFIG);
  4728. val &= ~(BRXMAC_CONFIG_ENABLE |
  4729. BRXMAC_CONFIG_STRIP_PAD |
  4730. BRXMAC_CONFIG_STRIP_FCS |
  4731. BRXMAC_CONFIG_PROMISC |
  4732. BRXMAC_CONFIG_PROMISC_GRP |
  4733. BRXMAC_CONFIG_ADDR_FILT_EN |
  4734. BRXMAC_CONFIG_DISCARD_DIS);
  4735. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4736. nw64_mac(BRXMAC_CONFIG, val);
  4737. val = nr64_mac(BMAC_ADDR_CMPEN);
  4738. val |= BMAC_ADDR_CMPEN_EN0;
  4739. nw64_mac(BMAC_ADDR_CMPEN, val);
  4740. }
  4741. static void niu_init_rx_mac(struct niu *np)
  4742. {
  4743. niu_set_primary_mac(np, np->dev->dev_addr);
  4744. if (np->flags & NIU_FLAGS_XMAC)
  4745. niu_init_rx_xmac(np);
  4746. else
  4747. niu_init_rx_bmac(np);
  4748. }
  4749. static void niu_enable_tx_xmac(struct niu *np, int on)
  4750. {
  4751. u64 val = nr64_mac(XMAC_CONFIG);
  4752. if (on)
  4753. val |= XMAC_CONFIG_TX_ENABLE;
  4754. else
  4755. val &= ~XMAC_CONFIG_TX_ENABLE;
  4756. nw64_mac(XMAC_CONFIG, val);
  4757. }
  4758. static void niu_enable_tx_bmac(struct niu *np, int on)
  4759. {
  4760. u64 val = nr64_mac(BTXMAC_CONFIG);
  4761. if (on)
  4762. val |= BTXMAC_CONFIG_ENABLE;
  4763. else
  4764. val &= ~BTXMAC_CONFIG_ENABLE;
  4765. nw64_mac(BTXMAC_CONFIG, val);
  4766. }
  4767. static void niu_enable_tx_mac(struct niu *np, int on)
  4768. {
  4769. if (np->flags & NIU_FLAGS_XMAC)
  4770. niu_enable_tx_xmac(np, on);
  4771. else
  4772. niu_enable_tx_bmac(np, on);
  4773. }
  4774. static void niu_enable_rx_xmac(struct niu *np, int on)
  4775. {
  4776. u64 val = nr64_mac(XMAC_CONFIG);
  4777. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4778. XMAC_CONFIG_PROMISCUOUS);
  4779. if (np->flags & NIU_FLAGS_MCAST)
  4780. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4781. if (np->flags & NIU_FLAGS_PROMISC)
  4782. val |= XMAC_CONFIG_PROMISCUOUS;
  4783. if (on)
  4784. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4785. else
  4786. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4787. nw64_mac(XMAC_CONFIG, val);
  4788. }
  4789. static void niu_enable_rx_bmac(struct niu *np, int on)
  4790. {
  4791. u64 val = nr64_mac(BRXMAC_CONFIG);
  4792. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4793. BRXMAC_CONFIG_PROMISC);
  4794. if (np->flags & NIU_FLAGS_MCAST)
  4795. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4796. if (np->flags & NIU_FLAGS_PROMISC)
  4797. val |= BRXMAC_CONFIG_PROMISC;
  4798. if (on)
  4799. val |= BRXMAC_CONFIG_ENABLE;
  4800. else
  4801. val &= ~BRXMAC_CONFIG_ENABLE;
  4802. nw64_mac(BRXMAC_CONFIG, val);
  4803. }
  4804. static void niu_enable_rx_mac(struct niu *np, int on)
  4805. {
  4806. if (np->flags & NIU_FLAGS_XMAC)
  4807. niu_enable_rx_xmac(np, on);
  4808. else
  4809. niu_enable_rx_bmac(np, on);
  4810. }
  4811. static int niu_init_mac(struct niu *np)
  4812. {
  4813. int err;
  4814. niu_init_xif(np);
  4815. err = niu_init_pcs(np);
  4816. if (err)
  4817. return err;
  4818. err = niu_reset_tx_mac(np);
  4819. if (err)
  4820. return err;
  4821. niu_init_tx_mac(np);
  4822. err = niu_reset_rx_mac(np);
  4823. if (err)
  4824. return err;
  4825. niu_init_rx_mac(np);
  4826. /* This looks hookey but the RX MAC reset we just did will
  4827. * undo some of the state we setup in niu_init_tx_mac() so we
  4828. * have to call it again. In particular, the RX MAC reset will
  4829. * set the XMAC_MAX register back to it's default value.
  4830. */
  4831. niu_init_tx_mac(np);
  4832. niu_enable_tx_mac(np, 1);
  4833. niu_enable_rx_mac(np, 1);
  4834. return 0;
  4835. }
  4836. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4837. {
  4838. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4839. }
  4840. static void niu_stop_tx_channels(struct niu *np)
  4841. {
  4842. int i;
  4843. for (i = 0; i < np->num_tx_rings; i++) {
  4844. struct tx_ring_info *rp = &np->tx_rings[i];
  4845. niu_stop_one_tx_channel(np, rp);
  4846. }
  4847. }
  4848. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4849. {
  4850. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4851. }
  4852. static void niu_reset_tx_channels(struct niu *np)
  4853. {
  4854. int i;
  4855. for (i = 0; i < np->num_tx_rings; i++) {
  4856. struct tx_ring_info *rp = &np->tx_rings[i];
  4857. niu_reset_one_tx_channel(np, rp);
  4858. }
  4859. }
  4860. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4861. {
  4862. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4863. }
  4864. static void niu_stop_rx_channels(struct niu *np)
  4865. {
  4866. int i;
  4867. for (i = 0; i < np->num_rx_rings; i++) {
  4868. struct rx_ring_info *rp = &np->rx_rings[i];
  4869. niu_stop_one_rx_channel(np, rp);
  4870. }
  4871. }
  4872. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4873. {
  4874. int channel = rp->rx_channel;
  4875. (void) niu_rx_channel_reset(np, channel);
  4876. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4877. nw64(RX_DMA_CTL_STAT(channel), 0);
  4878. (void) niu_enable_rx_channel(np, channel, 0);
  4879. }
  4880. static void niu_reset_rx_channels(struct niu *np)
  4881. {
  4882. int i;
  4883. for (i = 0; i < np->num_rx_rings; i++) {
  4884. struct rx_ring_info *rp = &np->rx_rings[i];
  4885. niu_reset_one_rx_channel(np, rp);
  4886. }
  4887. }
  4888. static void niu_disable_ipp(struct niu *np)
  4889. {
  4890. u64 rd, wr, val;
  4891. int limit;
  4892. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4893. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4894. limit = 100;
  4895. while (--limit >= 0 && (rd != wr)) {
  4896. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4897. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4898. }
  4899. if (limit < 0 &&
  4900. (rd != 0 && wr != 1)) {
  4901. netdev_err(np->dev, "IPP would not quiesce, rd_ptr[%llx] wr_ptr[%llx]\n",
  4902. (unsigned long long)nr64_ipp(IPP_DFIFO_RD_PTR),
  4903. (unsigned long long)nr64_ipp(IPP_DFIFO_WR_PTR));
  4904. }
  4905. val = nr64_ipp(IPP_CFIG);
  4906. val &= ~(IPP_CFIG_IPP_ENABLE |
  4907. IPP_CFIG_DFIFO_ECC_EN |
  4908. IPP_CFIG_DROP_BAD_CRC |
  4909. IPP_CFIG_CKSUM_EN);
  4910. nw64_ipp(IPP_CFIG, val);
  4911. (void) niu_ipp_reset(np);
  4912. }
  4913. static int niu_init_hw(struct niu *np)
  4914. {
  4915. int i, err;
  4916. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TXC\n");
  4917. niu_txc_enable_port(np, 1);
  4918. niu_txc_port_dma_enable(np, 1);
  4919. niu_txc_set_imask(np, 0);
  4920. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TX channels\n");
  4921. for (i = 0; i < np->num_tx_rings; i++) {
  4922. struct tx_ring_info *rp = &np->tx_rings[i];
  4923. err = niu_init_one_tx_channel(np, rp);
  4924. if (err)
  4925. return err;
  4926. }
  4927. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize RX channels\n");
  4928. err = niu_init_rx_channels(np);
  4929. if (err)
  4930. goto out_uninit_tx_channels;
  4931. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize classifier\n");
  4932. err = niu_init_classifier_hw(np);
  4933. if (err)
  4934. goto out_uninit_rx_channels;
  4935. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize ZCP\n");
  4936. err = niu_init_zcp(np);
  4937. if (err)
  4938. goto out_uninit_rx_channels;
  4939. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize IPP\n");
  4940. err = niu_init_ipp(np);
  4941. if (err)
  4942. goto out_uninit_rx_channels;
  4943. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize MAC\n");
  4944. err = niu_init_mac(np);
  4945. if (err)
  4946. goto out_uninit_ipp;
  4947. return 0;
  4948. out_uninit_ipp:
  4949. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit IPP\n");
  4950. niu_disable_ipp(np);
  4951. out_uninit_rx_channels:
  4952. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit RX channels\n");
  4953. niu_stop_rx_channels(np);
  4954. niu_reset_rx_channels(np);
  4955. out_uninit_tx_channels:
  4956. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit TX channels\n");
  4957. niu_stop_tx_channels(np);
  4958. niu_reset_tx_channels(np);
  4959. return err;
  4960. }
  4961. static void niu_stop_hw(struct niu *np)
  4962. {
  4963. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable interrupts\n");
  4964. niu_enable_interrupts(np, 0);
  4965. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable RX MAC\n");
  4966. niu_enable_rx_mac(np, 0);
  4967. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable IPP\n");
  4968. niu_disable_ipp(np);
  4969. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop TX channels\n");
  4970. niu_stop_tx_channels(np);
  4971. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop RX channels\n");
  4972. niu_stop_rx_channels(np);
  4973. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset TX channels\n");
  4974. niu_reset_tx_channels(np);
  4975. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset RX channels\n");
  4976. niu_reset_rx_channels(np);
  4977. }
  4978. static void niu_set_irq_name(struct niu *np)
  4979. {
  4980. int port = np->port;
  4981. int i, j = 1;
  4982. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  4983. if (port == 0) {
  4984. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  4985. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  4986. j = 3;
  4987. }
  4988. for (i = 0; i < np->num_ldg - j; i++) {
  4989. if (i < np->num_rx_rings)
  4990. sprintf(np->irq_name[i+j], "%s-rx-%d",
  4991. np->dev->name, i);
  4992. else if (i < np->num_tx_rings + np->num_rx_rings)
  4993. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  4994. i - np->num_rx_rings);
  4995. }
  4996. }
  4997. static int niu_request_irq(struct niu *np)
  4998. {
  4999. int i, j, err;
  5000. niu_set_irq_name(np);
  5001. err = 0;
  5002. for (i = 0; i < np->num_ldg; i++) {
  5003. struct niu_ldg *lp = &np->ldg[i];
  5004. err = request_irq(lp->irq, niu_interrupt,
  5005. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  5006. np->irq_name[i], lp);
  5007. if (err)
  5008. goto out_free_irqs;
  5009. }
  5010. return 0;
  5011. out_free_irqs:
  5012. for (j = 0; j < i; j++) {
  5013. struct niu_ldg *lp = &np->ldg[j];
  5014. free_irq(lp->irq, lp);
  5015. }
  5016. return err;
  5017. }
  5018. static void niu_free_irq(struct niu *np)
  5019. {
  5020. int i;
  5021. for (i = 0; i < np->num_ldg; i++) {
  5022. struct niu_ldg *lp = &np->ldg[i];
  5023. free_irq(lp->irq, lp);
  5024. }
  5025. }
  5026. static void niu_enable_napi(struct niu *np)
  5027. {
  5028. int i;
  5029. for (i = 0; i < np->num_ldg; i++)
  5030. napi_enable(&np->ldg[i].napi);
  5031. }
  5032. static void niu_disable_napi(struct niu *np)
  5033. {
  5034. int i;
  5035. for (i = 0; i < np->num_ldg; i++)
  5036. napi_disable(&np->ldg[i].napi);
  5037. }
  5038. static int niu_open(struct net_device *dev)
  5039. {
  5040. struct niu *np = netdev_priv(dev);
  5041. int err;
  5042. netif_carrier_off(dev);
  5043. err = niu_alloc_channels(np);
  5044. if (err)
  5045. goto out_err;
  5046. err = niu_enable_interrupts(np, 0);
  5047. if (err)
  5048. goto out_free_channels;
  5049. err = niu_request_irq(np);
  5050. if (err)
  5051. goto out_free_channels;
  5052. niu_enable_napi(np);
  5053. spin_lock_irq(&np->lock);
  5054. err = niu_init_hw(np);
  5055. if (!err) {
  5056. init_timer(&np->timer);
  5057. np->timer.expires = jiffies + HZ;
  5058. np->timer.data = (unsigned long) np;
  5059. np->timer.function = niu_timer;
  5060. err = niu_enable_interrupts(np, 1);
  5061. if (err)
  5062. niu_stop_hw(np);
  5063. }
  5064. spin_unlock_irq(&np->lock);
  5065. if (err) {
  5066. niu_disable_napi(np);
  5067. goto out_free_irq;
  5068. }
  5069. netif_tx_start_all_queues(dev);
  5070. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5071. netif_carrier_on(dev);
  5072. add_timer(&np->timer);
  5073. return 0;
  5074. out_free_irq:
  5075. niu_free_irq(np);
  5076. out_free_channels:
  5077. niu_free_channels(np);
  5078. out_err:
  5079. return err;
  5080. }
  5081. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5082. {
  5083. cancel_work_sync(&np->reset_task);
  5084. niu_disable_napi(np);
  5085. netif_tx_stop_all_queues(dev);
  5086. del_timer_sync(&np->timer);
  5087. spin_lock_irq(&np->lock);
  5088. niu_stop_hw(np);
  5089. spin_unlock_irq(&np->lock);
  5090. }
  5091. static int niu_close(struct net_device *dev)
  5092. {
  5093. struct niu *np = netdev_priv(dev);
  5094. niu_full_shutdown(np, dev);
  5095. niu_free_irq(np);
  5096. niu_free_channels(np);
  5097. niu_handle_led(np, 0);
  5098. return 0;
  5099. }
  5100. static void niu_sync_xmac_stats(struct niu *np)
  5101. {
  5102. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5103. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5104. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5105. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5106. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5107. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5108. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5109. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5110. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5111. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5112. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5113. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5114. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5115. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5116. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5117. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5118. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5119. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5120. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5121. }
  5122. static void niu_sync_bmac_stats(struct niu *np)
  5123. {
  5124. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5125. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5126. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5127. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5128. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5129. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5130. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5131. }
  5132. static void niu_sync_mac_stats(struct niu *np)
  5133. {
  5134. if (np->flags & NIU_FLAGS_XMAC)
  5135. niu_sync_xmac_stats(np);
  5136. else
  5137. niu_sync_bmac_stats(np);
  5138. }
  5139. static void niu_get_rx_stats(struct niu *np)
  5140. {
  5141. unsigned long pkts, dropped, errors, bytes;
  5142. int i;
  5143. pkts = dropped = errors = bytes = 0;
  5144. for (i = 0; i < np->num_rx_rings; i++) {
  5145. struct rx_ring_info *rp = &np->rx_rings[i];
  5146. niu_sync_rx_discard_stats(np, rp, 0);
  5147. pkts += rp->rx_packets;
  5148. bytes += rp->rx_bytes;
  5149. dropped += rp->rx_dropped;
  5150. errors += rp->rx_errors;
  5151. }
  5152. np->dev->stats.rx_packets = pkts;
  5153. np->dev->stats.rx_bytes = bytes;
  5154. np->dev->stats.rx_dropped = dropped;
  5155. np->dev->stats.rx_errors = errors;
  5156. }
  5157. static void niu_get_tx_stats(struct niu *np)
  5158. {
  5159. unsigned long pkts, errors, bytes;
  5160. int i;
  5161. pkts = errors = bytes = 0;
  5162. for (i = 0; i < np->num_tx_rings; i++) {
  5163. struct tx_ring_info *rp = &np->tx_rings[i];
  5164. pkts += rp->tx_packets;
  5165. bytes += rp->tx_bytes;
  5166. errors += rp->tx_errors;
  5167. }
  5168. np->dev->stats.tx_packets = pkts;
  5169. np->dev->stats.tx_bytes = bytes;
  5170. np->dev->stats.tx_errors = errors;
  5171. }
  5172. static struct net_device_stats *niu_get_stats(struct net_device *dev)
  5173. {
  5174. struct niu *np = netdev_priv(dev);
  5175. niu_get_rx_stats(np);
  5176. niu_get_tx_stats(np);
  5177. return &dev->stats;
  5178. }
  5179. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5180. {
  5181. int i;
  5182. for (i = 0; i < 16; i++)
  5183. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5184. }
  5185. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5186. {
  5187. int i;
  5188. for (i = 0; i < 16; i++)
  5189. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5190. }
  5191. static void niu_load_hash(struct niu *np, u16 *hash)
  5192. {
  5193. if (np->flags & NIU_FLAGS_XMAC)
  5194. niu_load_hash_xmac(np, hash);
  5195. else
  5196. niu_load_hash_bmac(np, hash);
  5197. }
  5198. static void niu_set_rx_mode(struct net_device *dev)
  5199. {
  5200. struct niu *np = netdev_priv(dev);
  5201. int i, alt_cnt, err;
  5202. struct netdev_hw_addr *ha;
  5203. unsigned long flags;
  5204. u16 hash[16] = { 0, };
  5205. spin_lock_irqsave(&np->lock, flags);
  5206. niu_enable_rx_mac(np, 0);
  5207. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5208. if (dev->flags & IFF_PROMISC)
  5209. np->flags |= NIU_FLAGS_PROMISC;
  5210. if ((dev->flags & IFF_ALLMULTI) || (!netdev_mc_empty(dev)))
  5211. np->flags |= NIU_FLAGS_MCAST;
  5212. alt_cnt = netdev_uc_count(dev);
  5213. if (alt_cnt > niu_num_alt_addr(np)) {
  5214. alt_cnt = 0;
  5215. np->flags |= NIU_FLAGS_PROMISC;
  5216. }
  5217. if (alt_cnt) {
  5218. int index = 0;
  5219. netdev_for_each_uc_addr(ha, dev) {
  5220. err = niu_set_alt_mac(np, index, ha->addr);
  5221. if (err)
  5222. netdev_warn(dev, "Error %d adding alt mac %d\n",
  5223. err, index);
  5224. err = niu_enable_alt_mac(np, index, 1);
  5225. if (err)
  5226. netdev_warn(dev, "Error %d enabling alt mac %d\n",
  5227. err, index);
  5228. index++;
  5229. }
  5230. } else {
  5231. int alt_start;
  5232. if (np->flags & NIU_FLAGS_XMAC)
  5233. alt_start = 0;
  5234. else
  5235. alt_start = 1;
  5236. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5237. err = niu_enable_alt_mac(np, i, 0);
  5238. if (err)
  5239. netdev_warn(dev, "Error %d disabling alt mac %d\n",
  5240. err, i);
  5241. }
  5242. }
  5243. if (dev->flags & IFF_ALLMULTI) {
  5244. for (i = 0; i < 16; i++)
  5245. hash[i] = 0xffff;
  5246. } else if (!netdev_mc_empty(dev)) {
  5247. netdev_for_each_mc_addr(ha, dev) {
  5248. u32 crc = ether_crc_le(ETH_ALEN, ha->addr);
  5249. crc >>= 24;
  5250. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5251. }
  5252. }
  5253. if (np->flags & NIU_FLAGS_MCAST)
  5254. niu_load_hash(np, hash);
  5255. niu_enable_rx_mac(np, 1);
  5256. spin_unlock_irqrestore(&np->lock, flags);
  5257. }
  5258. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5259. {
  5260. struct niu *np = netdev_priv(dev);
  5261. struct sockaddr *addr = p;
  5262. unsigned long flags;
  5263. if (!is_valid_ether_addr(addr->sa_data))
  5264. return -EINVAL;
  5265. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5266. if (!netif_running(dev))
  5267. return 0;
  5268. spin_lock_irqsave(&np->lock, flags);
  5269. niu_enable_rx_mac(np, 0);
  5270. niu_set_primary_mac(np, dev->dev_addr);
  5271. niu_enable_rx_mac(np, 1);
  5272. spin_unlock_irqrestore(&np->lock, flags);
  5273. return 0;
  5274. }
  5275. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5276. {
  5277. return -EOPNOTSUPP;
  5278. }
  5279. static void niu_netif_stop(struct niu *np)
  5280. {
  5281. np->dev->trans_start = jiffies; /* prevent tx timeout */
  5282. niu_disable_napi(np);
  5283. netif_tx_disable(np->dev);
  5284. }
  5285. static void niu_netif_start(struct niu *np)
  5286. {
  5287. /* NOTE: unconditional netif_wake_queue is only appropriate
  5288. * so long as all callers are assured to have free tx slots
  5289. * (such as after niu_init_hw).
  5290. */
  5291. netif_tx_wake_all_queues(np->dev);
  5292. niu_enable_napi(np);
  5293. niu_enable_interrupts(np, 1);
  5294. }
  5295. static void niu_reset_buffers(struct niu *np)
  5296. {
  5297. int i, j, k, err;
  5298. if (np->rx_rings) {
  5299. for (i = 0; i < np->num_rx_rings; i++) {
  5300. struct rx_ring_info *rp = &np->rx_rings[i];
  5301. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5302. struct page *page;
  5303. page = rp->rxhash[j];
  5304. while (page) {
  5305. struct page *next =
  5306. (struct page *) page->mapping;
  5307. u64 base = page->index;
  5308. base = base >> RBR_DESCR_ADDR_SHIFT;
  5309. rp->rbr[k++] = cpu_to_le32(base);
  5310. page = next;
  5311. }
  5312. }
  5313. for (; k < MAX_RBR_RING_SIZE; k++) {
  5314. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5315. if (unlikely(err))
  5316. break;
  5317. }
  5318. rp->rbr_index = rp->rbr_table_size - 1;
  5319. rp->rcr_index = 0;
  5320. rp->rbr_pending = 0;
  5321. rp->rbr_refill_pending = 0;
  5322. }
  5323. }
  5324. if (np->tx_rings) {
  5325. for (i = 0; i < np->num_tx_rings; i++) {
  5326. struct tx_ring_info *rp = &np->tx_rings[i];
  5327. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5328. if (rp->tx_buffs[j].skb)
  5329. (void) release_tx_packet(np, rp, j);
  5330. }
  5331. rp->pending = MAX_TX_RING_SIZE;
  5332. rp->prod = 0;
  5333. rp->cons = 0;
  5334. rp->wrap_bit = 0;
  5335. }
  5336. }
  5337. }
  5338. static void niu_reset_task(struct work_struct *work)
  5339. {
  5340. struct niu *np = container_of(work, struct niu, reset_task);
  5341. unsigned long flags;
  5342. int err;
  5343. spin_lock_irqsave(&np->lock, flags);
  5344. if (!netif_running(np->dev)) {
  5345. spin_unlock_irqrestore(&np->lock, flags);
  5346. return;
  5347. }
  5348. spin_unlock_irqrestore(&np->lock, flags);
  5349. del_timer_sync(&np->timer);
  5350. niu_netif_stop(np);
  5351. spin_lock_irqsave(&np->lock, flags);
  5352. niu_stop_hw(np);
  5353. spin_unlock_irqrestore(&np->lock, flags);
  5354. niu_reset_buffers(np);
  5355. spin_lock_irqsave(&np->lock, flags);
  5356. err = niu_init_hw(np);
  5357. if (!err) {
  5358. np->timer.expires = jiffies + HZ;
  5359. add_timer(&np->timer);
  5360. niu_netif_start(np);
  5361. }
  5362. spin_unlock_irqrestore(&np->lock, flags);
  5363. }
  5364. static void niu_tx_timeout(struct net_device *dev)
  5365. {
  5366. struct niu *np = netdev_priv(dev);
  5367. dev_err(np->device, "%s: Transmit timed out, resetting\n",
  5368. dev->name);
  5369. schedule_work(&np->reset_task);
  5370. }
  5371. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5372. u64 mapping, u64 len, u64 mark,
  5373. u64 n_frags)
  5374. {
  5375. __le64 *desc = &rp->descr[index];
  5376. *desc = cpu_to_le64(mark |
  5377. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5378. (len << TX_DESC_TR_LEN_SHIFT) |
  5379. (mapping & TX_DESC_SAD));
  5380. }
  5381. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5382. u64 pad_bytes, u64 len)
  5383. {
  5384. u16 eth_proto, eth_proto_inner;
  5385. u64 csum_bits, l3off, ihl, ret;
  5386. u8 ip_proto;
  5387. int ipv6;
  5388. eth_proto = be16_to_cpu(ehdr->h_proto);
  5389. eth_proto_inner = eth_proto;
  5390. if (eth_proto == ETH_P_8021Q) {
  5391. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5392. __be16 val = vp->h_vlan_encapsulated_proto;
  5393. eth_proto_inner = be16_to_cpu(val);
  5394. }
  5395. ipv6 = ihl = 0;
  5396. switch (skb->protocol) {
  5397. case cpu_to_be16(ETH_P_IP):
  5398. ip_proto = ip_hdr(skb)->protocol;
  5399. ihl = ip_hdr(skb)->ihl;
  5400. break;
  5401. case cpu_to_be16(ETH_P_IPV6):
  5402. ip_proto = ipv6_hdr(skb)->nexthdr;
  5403. ihl = (40 >> 2);
  5404. ipv6 = 1;
  5405. break;
  5406. default:
  5407. ip_proto = ihl = 0;
  5408. break;
  5409. }
  5410. csum_bits = TXHDR_CSUM_NONE;
  5411. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5412. u64 start, stuff;
  5413. csum_bits = (ip_proto == IPPROTO_TCP ?
  5414. TXHDR_CSUM_TCP :
  5415. (ip_proto == IPPROTO_UDP ?
  5416. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5417. start = skb_checksum_start_offset(skb) -
  5418. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5419. stuff = start + skb->csum_offset;
  5420. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5421. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5422. }
  5423. l3off = skb_network_offset(skb) -
  5424. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5425. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5426. (len << TXHDR_LEN_SHIFT) |
  5427. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5428. (ihl << TXHDR_IHL_SHIFT) |
  5429. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  5430. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5431. (ipv6 ? TXHDR_IP_VER : 0) |
  5432. csum_bits);
  5433. return ret;
  5434. }
  5435. static netdev_tx_t niu_start_xmit(struct sk_buff *skb,
  5436. struct net_device *dev)
  5437. {
  5438. struct niu *np = netdev_priv(dev);
  5439. unsigned long align, headroom;
  5440. struct netdev_queue *txq;
  5441. struct tx_ring_info *rp;
  5442. struct tx_pkt_hdr *tp;
  5443. unsigned int len, nfg;
  5444. struct ethhdr *ehdr;
  5445. int prod, i, tlen;
  5446. u64 mapping, mrk;
  5447. i = skb_get_queue_mapping(skb);
  5448. rp = &np->tx_rings[i];
  5449. txq = netdev_get_tx_queue(dev, i);
  5450. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5451. netif_tx_stop_queue(txq);
  5452. dev_err(np->device, "%s: BUG! Tx ring full when queue awake!\n", dev->name);
  5453. rp->tx_errors++;
  5454. return NETDEV_TX_BUSY;
  5455. }
  5456. if (skb->len < ETH_ZLEN) {
  5457. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  5458. if (skb_pad(skb, pad_bytes))
  5459. goto out;
  5460. skb_put(skb, pad_bytes);
  5461. }
  5462. len = sizeof(struct tx_pkt_hdr) + 15;
  5463. if (skb_headroom(skb) < len) {
  5464. struct sk_buff *skb_new;
  5465. skb_new = skb_realloc_headroom(skb, len);
  5466. if (!skb_new) {
  5467. rp->tx_errors++;
  5468. goto out_drop;
  5469. }
  5470. kfree_skb(skb);
  5471. skb = skb_new;
  5472. } else
  5473. skb_orphan(skb);
  5474. align = ((unsigned long) skb->data & (16 - 1));
  5475. headroom = align + sizeof(struct tx_pkt_hdr);
  5476. ehdr = (struct ethhdr *) skb->data;
  5477. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  5478. len = skb->len - sizeof(struct tx_pkt_hdr);
  5479. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5480. tp->resv = 0;
  5481. len = skb_headlen(skb);
  5482. mapping = np->ops->map_single(np->device, skb->data,
  5483. len, DMA_TO_DEVICE);
  5484. prod = rp->prod;
  5485. rp->tx_buffs[prod].skb = skb;
  5486. rp->tx_buffs[prod].mapping = mapping;
  5487. mrk = TX_DESC_SOP;
  5488. if (++rp->mark_counter == rp->mark_freq) {
  5489. rp->mark_counter = 0;
  5490. mrk |= TX_DESC_MARK;
  5491. rp->mark_pending++;
  5492. }
  5493. tlen = len;
  5494. nfg = skb_shinfo(skb)->nr_frags;
  5495. while (tlen > 0) {
  5496. tlen -= MAX_TX_DESC_LEN;
  5497. nfg++;
  5498. }
  5499. while (len > 0) {
  5500. unsigned int this_len = len;
  5501. if (this_len > MAX_TX_DESC_LEN)
  5502. this_len = MAX_TX_DESC_LEN;
  5503. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5504. mrk = nfg = 0;
  5505. prod = NEXT_TX(rp, prod);
  5506. mapping += this_len;
  5507. len -= this_len;
  5508. }
  5509. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5510. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5511. len = frag->size;
  5512. mapping = np->ops->map_page(np->device, frag->page,
  5513. frag->page_offset, len,
  5514. DMA_TO_DEVICE);
  5515. rp->tx_buffs[prod].skb = NULL;
  5516. rp->tx_buffs[prod].mapping = mapping;
  5517. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5518. prod = NEXT_TX(rp, prod);
  5519. }
  5520. if (prod < rp->prod)
  5521. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5522. rp->prod = prod;
  5523. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5524. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5525. netif_tx_stop_queue(txq);
  5526. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5527. netif_tx_wake_queue(txq);
  5528. }
  5529. out:
  5530. return NETDEV_TX_OK;
  5531. out_drop:
  5532. rp->tx_errors++;
  5533. kfree_skb(skb);
  5534. goto out;
  5535. }
  5536. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5537. {
  5538. struct niu *np = netdev_priv(dev);
  5539. int err, orig_jumbo, new_jumbo;
  5540. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  5541. return -EINVAL;
  5542. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5543. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5544. dev->mtu = new_mtu;
  5545. if (!netif_running(dev) ||
  5546. (orig_jumbo == new_jumbo))
  5547. return 0;
  5548. niu_full_shutdown(np, dev);
  5549. niu_free_channels(np);
  5550. niu_enable_napi(np);
  5551. err = niu_alloc_channels(np);
  5552. if (err)
  5553. return err;
  5554. spin_lock_irq(&np->lock);
  5555. err = niu_init_hw(np);
  5556. if (!err) {
  5557. init_timer(&np->timer);
  5558. np->timer.expires = jiffies + HZ;
  5559. np->timer.data = (unsigned long) np;
  5560. np->timer.function = niu_timer;
  5561. err = niu_enable_interrupts(np, 1);
  5562. if (err)
  5563. niu_stop_hw(np);
  5564. }
  5565. spin_unlock_irq(&np->lock);
  5566. if (!err) {
  5567. netif_tx_start_all_queues(dev);
  5568. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5569. netif_carrier_on(dev);
  5570. add_timer(&np->timer);
  5571. }
  5572. return err;
  5573. }
  5574. static void niu_get_drvinfo(struct net_device *dev,
  5575. struct ethtool_drvinfo *info)
  5576. {
  5577. struct niu *np = netdev_priv(dev);
  5578. struct niu_vpd *vpd = &np->vpd;
  5579. strcpy(info->driver, DRV_MODULE_NAME);
  5580. strcpy(info->version, DRV_MODULE_VERSION);
  5581. sprintf(info->fw_version, "%d.%d",
  5582. vpd->fcode_major, vpd->fcode_minor);
  5583. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5584. strcpy(info->bus_info, pci_name(np->pdev));
  5585. }
  5586. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5587. {
  5588. struct niu *np = netdev_priv(dev);
  5589. struct niu_link_config *lp;
  5590. lp = &np->link_config;
  5591. memset(cmd, 0, sizeof(*cmd));
  5592. cmd->phy_address = np->phy_addr;
  5593. cmd->supported = lp->supported;
  5594. cmd->advertising = lp->active_advertising;
  5595. cmd->autoneg = lp->active_autoneg;
  5596. cmd->speed = lp->active_speed;
  5597. cmd->duplex = lp->active_duplex;
  5598. cmd->port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5599. cmd->transceiver = (np->flags & NIU_FLAGS_XCVR_SERDES) ?
  5600. XCVR_EXTERNAL : XCVR_INTERNAL;
  5601. return 0;
  5602. }
  5603. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5604. {
  5605. struct niu *np = netdev_priv(dev);
  5606. struct niu_link_config *lp = &np->link_config;
  5607. lp->advertising = cmd->advertising;
  5608. lp->speed = cmd->speed;
  5609. lp->duplex = cmd->duplex;
  5610. lp->autoneg = cmd->autoneg;
  5611. return niu_init_link(np);
  5612. }
  5613. static u32 niu_get_msglevel(struct net_device *dev)
  5614. {
  5615. struct niu *np = netdev_priv(dev);
  5616. return np->msg_enable;
  5617. }
  5618. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5619. {
  5620. struct niu *np = netdev_priv(dev);
  5621. np->msg_enable = value;
  5622. }
  5623. static int niu_nway_reset(struct net_device *dev)
  5624. {
  5625. struct niu *np = netdev_priv(dev);
  5626. if (np->link_config.autoneg)
  5627. return niu_init_link(np);
  5628. return 0;
  5629. }
  5630. static int niu_get_eeprom_len(struct net_device *dev)
  5631. {
  5632. struct niu *np = netdev_priv(dev);
  5633. return np->eeprom_len;
  5634. }
  5635. static int niu_get_eeprom(struct net_device *dev,
  5636. struct ethtool_eeprom *eeprom, u8 *data)
  5637. {
  5638. struct niu *np = netdev_priv(dev);
  5639. u32 offset, len, val;
  5640. offset = eeprom->offset;
  5641. len = eeprom->len;
  5642. if (offset + len < offset)
  5643. return -EINVAL;
  5644. if (offset >= np->eeprom_len)
  5645. return -EINVAL;
  5646. if (offset + len > np->eeprom_len)
  5647. len = eeprom->len = np->eeprom_len - offset;
  5648. if (offset & 3) {
  5649. u32 b_offset, b_count;
  5650. b_offset = offset & 3;
  5651. b_count = 4 - b_offset;
  5652. if (b_count > len)
  5653. b_count = len;
  5654. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5655. memcpy(data, ((char *)&val) + b_offset, b_count);
  5656. data += b_count;
  5657. len -= b_count;
  5658. offset += b_count;
  5659. }
  5660. while (len >= 4) {
  5661. val = nr64(ESPC_NCR(offset / 4));
  5662. memcpy(data, &val, 4);
  5663. data += 4;
  5664. len -= 4;
  5665. offset += 4;
  5666. }
  5667. if (len) {
  5668. val = nr64(ESPC_NCR(offset / 4));
  5669. memcpy(data, &val, len);
  5670. }
  5671. return 0;
  5672. }
  5673. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5674. {
  5675. switch (flow_type) {
  5676. case TCP_V4_FLOW:
  5677. case TCP_V6_FLOW:
  5678. *pid = IPPROTO_TCP;
  5679. break;
  5680. case UDP_V4_FLOW:
  5681. case UDP_V6_FLOW:
  5682. *pid = IPPROTO_UDP;
  5683. break;
  5684. case SCTP_V4_FLOW:
  5685. case SCTP_V6_FLOW:
  5686. *pid = IPPROTO_SCTP;
  5687. break;
  5688. case AH_V4_FLOW:
  5689. case AH_V6_FLOW:
  5690. *pid = IPPROTO_AH;
  5691. break;
  5692. case ESP_V4_FLOW:
  5693. case ESP_V6_FLOW:
  5694. *pid = IPPROTO_ESP;
  5695. break;
  5696. default:
  5697. *pid = 0;
  5698. break;
  5699. }
  5700. }
  5701. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5702. {
  5703. switch (class) {
  5704. case CLASS_CODE_TCP_IPV4:
  5705. *flow_type = TCP_V4_FLOW;
  5706. break;
  5707. case CLASS_CODE_UDP_IPV4:
  5708. *flow_type = UDP_V4_FLOW;
  5709. break;
  5710. case CLASS_CODE_AH_ESP_IPV4:
  5711. *flow_type = AH_V4_FLOW;
  5712. break;
  5713. case CLASS_CODE_SCTP_IPV4:
  5714. *flow_type = SCTP_V4_FLOW;
  5715. break;
  5716. case CLASS_CODE_TCP_IPV6:
  5717. *flow_type = TCP_V6_FLOW;
  5718. break;
  5719. case CLASS_CODE_UDP_IPV6:
  5720. *flow_type = UDP_V6_FLOW;
  5721. break;
  5722. case CLASS_CODE_AH_ESP_IPV6:
  5723. *flow_type = AH_V6_FLOW;
  5724. break;
  5725. case CLASS_CODE_SCTP_IPV6:
  5726. *flow_type = SCTP_V6_FLOW;
  5727. break;
  5728. case CLASS_CODE_USER_PROG1:
  5729. case CLASS_CODE_USER_PROG2:
  5730. case CLASS_CODE_USER_PROG3:
  5731. case CLASS_CODE_USER_PROG4:
  5732. *flow_type = IP_USER_FLOW;
  5733. break;
  5734. default:
  5735. return 0;
  5736. }
  5737. return 1;
  5738. }
  5739. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5740. {
  5741. switch (flow_type) {
  5742. case TCP_V4_FLOW:
  5743. *class = CLASS_CODE_TCP_IPV4;
  5744. break;
  5745. case UDP_V4_FLOW:
  5746. *class = CLASS_CODE_UDP_IPV4;
  5747. break;
  5748. case AH_V4_FLOW:
  5749. case ESP_V4_FLOW:
  5750. *class = CLASS_CODE_AH_ESP_IPV4;
  5751. break;
  5752. case SCTP_V4_FLOW:
  5753. *class = CLASS_CODE_SCTP_IPV4;
  5754. break;
  5755. case TCP_V6_FLOW:
  5756. *class = CLASS_CODE_TCP_IPV6;
  5757. break;
  5758. case UDP_V6_FLOW:
  5759. *class = CLASS_CODE_UDP_IPV6;
  5760. break;
  5761. case AH_V6_FLOW:
  5762. case ESP_V6_FLOW:
  5763. *class = CLASS_CODE_AH_ESP_IPV6;
  5764. break;
  5765. case SCTP_V6_FLOW:
  5766. *class = CLASS_CODE_SCTP_IPV6;
  5767. break;
  5768. default:
  5769. return 0;
  5770. }
  5771. return 1;
  5772. }
  5773. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5774. {
  5775. u64 ethflow = 0;
  5776. if (flow_key & FLOW_KEY_L2DA)
  5777. ethflow |= RXH_L2DA;
  5778. if (flow_key & FLOW_KEY_VLAN)
  5779. ethflow |= RXH_VLAN;
  5780. if (flow_key & FLOW_KEY_IPSA)
  5781. ethflow |= RXH_IP_SRC;
  5782. if (flow_key & FLOW_KEY_IPDA)
  5783. ethflow |= RXH_IP_DST;
  5784. if (flow_key & FLOW_KEY_PROTO)
  5785. ethflow |= RXH_L3_PROTO;
  5786. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5787. ethflow |= RXH_L4_B_0_1;
  5788. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5789. ethflow |= RXH_L4_B_2_3;
  5790. return ethflow;
  5791. }
  5792. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5793. {
  5794. u64 key = 0;
  5795. if (ethflow & RXH_L2DA)
  5796. key |= FLOW_KEY_L2DA;
  5797. if (ethflow & RXH_VLAN)
  5798. key |= FLOW_KEY_VLAN;
  5799. if (ethflow & RXH_IP_SRC)
  5800. key |= FLOW_KEY_IPSA;
  5801. if (ethflow & RXH_IP_DST)
  5802. key |= FLOW_KEY_IPDA;
  5803. if (ethflow & RXH_L3_PROTO)
  5804. key |= FLOW_KEY_PROTO;
  5805. if (ethflow & RXH_L4_B_0_1)
  5806. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5807. if (ethflow & RXH_L4_B_2_3)
  5808. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5809. *flow_key = key;
  5810. return 1;
  5811. }
  5812. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5813. {
  5814. u64 class;
  5815. nfc->data = 0;
  5816. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5817. return -EINVAL;
  5818. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5819. TCAM_KEY_DISC)
  5820. nfc->data = RXH_DISCARD;
  5821. else
  5822. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5823. CLASS_CODE_USER_PROG1]);
  5824. return 0;
  5825. }
  5826. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5827. struct ethtool_rx_flow_spec *fsp)
  5828. {
  5829. u32 tmp;
  5830. u16 prt;
  5831. tmp = (tp->key[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5832. fsp->h_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5833. tmp = (tp->key[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5834. fsp->h_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5835. tmp = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5836. fsp->m_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5837. tmp = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5838. fsp->m_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5839. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5840. TCAM_V4KEY2_TOS_SHIFT;
  5841. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5842. TCAM_V4KEY2_TOS_SHIFT;
  5843. switch (fsp->flow_type) {
  5844. case TCP_V4_FLOW:
  5845. case UDP_V4_FLOW:
  5846. case SCTP_V4_FLOW:
  5847. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5848. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5849. fsp->h_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5850. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5851. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5852. fsp->h_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5853. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5854. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5855. fsp->m_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5856. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5857. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5858. fsp->m_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5859. break;
  5860. case AH_V4_FLOW:
  5861. case ESP_V4_FLOW:
  5862. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5863. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5864. fsp->h_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5865. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5866. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5867. fsp->m_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5868. break;
  5869. case IP_USER_FLOW:
  5870. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5871. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5872. fsp->h_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5873. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5874. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5875. fsp->m_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5876. fsp->h_u.usr_ip4_spec.proto =
  5877. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5878. TCAM_V4KEY2_PROTO_SHIFT;
  5879. fsp->m_u.usr_ip4_spec.proto =
  5880. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5881. TCAM_V4KEY2_PROTO_SHIFT;
  5882. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5883. break;
  5884. default:
  5885. break;
  5886. }
  5887. }
  5888. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5889. struct ethtool_rxnfc *nfc)
  5890. {
  5891. struct niu_parent *parent = np->parent;
  5892. struct niu_tcam_entry *tp;
  5893. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5894. u16 idx;
  5895. u64 class;
  5896. int ret = 0;
  5897. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5898. tp = &parent->tcam[idx];
  5899. if (!tp->valid) {
  5900. netdev_info(np->dev, "niu%d: entry [%d] invalid for idx[%d]\n",
  5901. parent->index, (u16)nfc->fs.location, idx);
  5902. return -EINVAL;
  5903. }
  5904. /* fill the flow spec entry */
  5905. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5906. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5907. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5908. if (ret < 0) {
  5909. netdev_info(np->dev, "niu%d: niu_class_to_ethflow failed\n",
  5910. parent->index);
  5911. ret = -EINVAL;
  5912. goto out;
  5913. }
  5914. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5915. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5916. TCAM_V4KEY2_PROTO_SHIFT;
  5917. if (proto == IPPROTO_ESP) {
  5918. if (fsp->flow_type == AH_V4_FLOW)
  5919. fsp->flow_type = ESP_V4_FLOW;
  5920. else
  5921. fsp->flow_type = ESP_V6_FLOW;
  5922. }
  5923. }
  5924. switch (fsp->flow_type) {
  5925. case TCP_V4_FLOW:
  5926. case UDP_V4_FLOW:
  5927. case SCTP_V4_FLOW:
  5928. case AH_V4_FLOW:
  5929. case ESP_V4_FLOW:
  5930. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5931. break;
  5932. case TCP_V6_FLOW:
  5933. case UDP_V6_FLOW:
  5934. case SCTP_V6_FLOW:
  5935. case AH_V6_FLOW:
  5936. case ESP_V6_FLOW:
  5937. /* Not yet implemented */
  5938. ret = -EINVAL;
  5939. break;
  5940. case IP_USER_FLOW:
  5941. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5942. break;
  5943. default:
  5944. ret = -EINVAL;
  5945. break;
  5946. }
  5947. if (ret < 0)
  5948. goto out;
  5949. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  5950. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  5951. else
  5952. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  5953. TCAM_ASSOCDATA_OFFSET_SHIFT;
  5954. /* put the tcam size here */
  5955. nfc->data = tcam_get_size(np);
  5956. out:
  5957. return ret;
  5958. }
  5959. static int niu_get_ethtool_tcam_all(struct niu *np,
  5960. struct ethtool_rxnfc *nfc,
  5961. u32 *rule_locs)
  5962. {
  5963. struct niu_parent *parent = np->parent;
  5964. struct niu_tcam_entry *tp;
  5965. int i, idx, cnt;
  5966. unsigned long flags;
  5967. int ret = 0;
  5968. /* put the tcam size here */
  5969. nfc->data = tcam_get_size(np);
  5970. niu_lock_parent(np, flags);
  5971. for (cnt = 0, i = 0; i < nfc->data; i++) {
  5972. idx = tcam_get_index(np, i);
  5973. tp = &parent->tcam[idx];
  5974. if (!tp->valid)
  5975. continue;
  5976. if (cnt == nfc->rule_cnt) {
  5977. ret = -EMSGSIZE;
  5978. break;
  5979. }
  5980. rule_locs[cnt] = i;
  5981. cnt++;
  5982. }
  5983. niu_unlock_parent(np, flags);
  5984. return ret;
  5985. }
  5986. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  5987. void *rule_locs)
  5988. {
  5989. struct niu *np = netdev_priv(dev);
  5990. int ret = 0;
  5991. switch (cmd->cmd) {
  5992. case ETHTOOL_GRXFH:
  5993. ret = niu_get_hash_opts(np, cmd);
  5994. break;
  5995. case ETHTOOL_GRXRINGS:
  5996. cmd->data = np->num_rx_rings;
  5997. break;
  5998. case ETHTOOL_GRXCLSRLCNT:
  5999. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  6000. break;
  6001. case ETHTOOL_GRXCLSRULE:
  6002. ret = niu_get_ethtool_tcam_entry(np, cmd);
  6003. break;
  6004. case ETHTOOL_GRXCLSRLALL:
  6005. ret = niu_get_ethtool_tcam_all(np, cmd, (u32 *)rule_locs);
  6006. break;
  6007. default:
  6008. ret = -EINVAL;
  6009. break;
  6010. }
  6011. return ret;
  6012. }
  6013. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6014. {
  6015. u64 class;
  6016. u64 flow_key = 0;
  6017. unsigned long flags;
  6018. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6019. return -EINVAL;
  6020. if (class < CLASS_CODE_USER_PROG1 ||
  6021. class > CLASS_CODE_SCTP_IPV6)
  6022. return -EINVAL;
  6023. if (nfc->data & RXH_DISCARD) {
  6024. niu_lock_parent(np, flags);
  6025. flow_key = np->parent->tcam_key[class -
  6026. CLASS_CODE_USER_PROG1];
  6027. flow_key |= TCAM_KEY_DISC;
  6028. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6029. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6030. niu_unlock_parent(np, flags);
  6031. return 0;
  6032. } else {
  6033. /* Discard was set before, but is not set now */
  6034. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6035. TCAM_KEY_DISC) {
  6036. niu_lock_parent(np, flags);
  6037. flow_key = np->parent->tcam_key[class -
  6038. CLASS_CODE_USER_PROG1];
  6039. flow_key &= ~TCAM_KEY_DISC;
  6040. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6041. flow_key);
  6042. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6043. flow_key;
  6044. niu_unlock_parent(np, flags);
  6045. }
  6046. }
  6047. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6048. return -EINVAL;
  6049. niu_lock_parent(np, flags);
  6050. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6051. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6052. niu_unlock_parent(np, flags);
  6053. return 0;
  6054. }
  6055. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6056. struct niu_tcam_entry *tp,
  6057. int l2_rdc_tab, u64 class)
  6058. {
  6059. u8 pid = 0;
  6060. u32 sip, dip, sipm, dipm, spi, spim;
  6061. u16 sport, dport, spm, dpm;
  6062. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6063. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6064. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6065. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6066. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6067. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6068. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6069. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6070. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6071. tp->key[3] |= dip;
  6072. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6073. tp->key_mask[3] |= dipm;
  6074. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6075. TCAM_V4KEY2_TOS_SHIFT);
  6076. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6077. TCAM_V4KEY2_TOS_SHIFT);
  6078. switch (fsp->flow_type) {
  6079. case TCP_V4_FLOW:
  6080. case UDP_V4_FLOW:
  6081. case SCTP_V4_FLOW:
  6082. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6083. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6084. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6085. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6086. tp->key[2] |= (((u64)sport << 16) | dport);
  6087. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6088. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6089. break;
  6090. case AH_V4_FLOW:
  6091. case ESP_V4_FLOW:
  6092. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6093. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6094. tp->key[2] |= spi;
  6095. tp->key_mask[2] |= spim;
  6096. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6097. break;
  6098. case IP_USER_FLOW:
  6099. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6100. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6101. tp->key[2] |= spi;
  6102. tp->key_mask[2] |= spim;
  6103. pid = fsp->h_u.usr_ip4_spec.proto;
  6104. break;
  6105. default:
  6106. break;
  6107. }
  6108. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6109. if (pid) {
  6110. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6111. }
  6112. }
  6113. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6114. struct ethtool_rxnfc *nfc)
  6115. {
  6116. struct niu_parent *parent = np->parent;
  6117. struct niu_tcam_entry *tp;
  6118. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6119. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6120. int l2_rdc_table = rdc_table->first_table_num;
  6121. u16 idx;
  6122. u64 class;
  6123. unsigned long flags;
  6124. int err, ret;
  6125. ret = 0;
  6126. idx = nfc->fs.location;
  6127. if (idx >= tcam_get_size(np))
  6128. return -EINVAL;
  6129. if (fsp->flow_type == IP_USER_FLOW) {
  6130. int i;
  6131. int add_usr_cls = 0;
  6132. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6133. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6134. if (uspec->ip_ver != ETH_RX_NFC_IP4)
  6135. return -EINVAL;
  6136. niu_lock_parent(np, flags);
  6137. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6138. if (parent->l3_cls[i]) {
  6139. if (uspec->proto == parent->l3_cls_pid[i]) {
  6140. class = parent->l3_cls[i];
  6141. parent->l3_cls_refcnt[i]++;
  6142. add_usr_cls = 1;
  6143. break;
  6144. }
  6145. } else {
  6146. /* Program new user IP class */
  6147. switch (i) {
  6148. case 0:
  6149. class = CLASS_CODE_USER_PROG1;
  6150. break;
  6151. case 1:
  6152. class = CLASS_CODE_USER_PROG2;
  6153. break;
  6154. case 2:
  6155. class = CLASS_CODE_USER_PROG3;
  6156. break;
  6157. case 3:
  6158. class = CLASS_CODE_USER_PROG4;
  6159. break;
  6160. default:
  6161. break;
  6162. }
  6163. ret = tcam_user_ip_class_set(np, class, 0,
  6164. uspec->proto,
  6165. uspec->tos,
  6166. umask->tos);
  6167. if (ret)
  6168. goto out;
  6169. ret = tcam_user_ip_class_enable(np, class, 1);
  6170. if (ret)
  6171. goto out;
  6172. parent->l3_cls[i] = class;
  6173. parent->l3_cls_pid[i] = uspec->proto;
  6174. parent->l3_cls_refcnt[i]++;
  6175. add_usr_cls = 1;
  6176. break;
  6177. }
  6178. }
  6179. if (!add_usr_cls) {
  6180. netdev_info(np->dev, "niu%d: %s(): Could not find/insert class for pid %d\n",
  6181. parent->index, __func__, uspec->proto);
  6182. ret = -EINVAL;
  6183. goto out;
  6184. }
  6185. niu_unlock_parent(np, flags);
  6186. } else {
  6187. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6188. return -EINVAL;
  6189. }
  6190. }
  6191. niu_lock_parent(np, flags);
  6192. idx = tcam_get_index(np, idx);
  6193. tp = &parent->tcam[idx];
  6194. memset(tp, 0, sizeof(*tp));
  6195. /* fill in the tcam key and mask */
  6196. switch (fsp->flow_type) {
  6197. case TCP_V4_FLOW:
  6198. case UDP_V4_FLOW:
  6199. case SCTP_V4_FLOW:
  6200. case AH_V4_FLOW:
  6201. case ESP_V4_FLOW:
  6202. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6203. break;
  6204. case TCP_V6_FLOW:
  6205. case UDP_V6_FLOW:
  6206. case SCTP_V6_FLOW:
  6207. case AH_V6_FLOW:
  6208. case ESP_V6_FLOW:
  6209. /* Not yet implemented */
  6210. netdev_info(np->dev, "niu%d: In %s(): flow %d for IPv6 not implemented\n",
  6211. parent->index, __func__, fsp->flow_type);
  6212. ret = -EINVAL;
  6213. goto out;
  6214. case IP_USER_FLOW:
  6215. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6216. break;
  6217. default:
  6218. netdev_info(np->dev, "niu%d: In %s(): Unknown flow type %d\n",
  6219. parent->index, __func__, fsp->flow_type);
  6220. ret = -EINVAL;
  6221. goto out;
  6222. }
  6223. /* fill in the assoc data */
  6224. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6225. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6226. } else {
  6227. if (fsp->ring_cookie >= np->num_rx_rings) {
  6228. netdev_info(np->dev, "niu%d: In %s(): Invalid RX ring %lld\n",
  6229. parent->index, __func__,
  6230. (long long)fsp->ring_cookie);
  6231. ret = -EINVAL;
  6232. goto out;
  6233. }
  6234. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6235. (fsp->ring_cookie <<
  6236. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6237. }
  6238. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6239. if (err) {
  6240. ret = -EINVAL;
  6241. goto out;
  6242. }
  6243. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6244. if (err) {
  6245. ret = -EINVAL;
  6246. goto out;
  6247. }
  6248. /* validate the entry */
  6249. tp->valid = 1;
  6250. np->clas.tcam_valid_entries++;
  6251. out:
  6252. niu_unlock_parent(np, flags);
  6253. return ret;
  6254. }
  6255. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6256. {
  6257. struct niu_parent *parent = np->parent;
  6258. struct niu_tcam_entry *tp;
  6259. u16 idx;
  6260. unsigned long flags;
  6261. u64 class;
  6262. int ret = 0;
  6263. if (loc >= tcam_get_size(np))
  6264. return -EINVAL;
  6265. niu_lock_parent(np, flags);
  6266. idx = tcam_get_index(np, loc);
  6267. tp = &parent->tcam[idx];
  6268. /* if the entry is of a user defined class, then update*/
  6269. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6270. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6271. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6272. int i;
  6273. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6274. if (parent->l3_cls[i] == class) {
  6275. parent->l3_cls_refcnt[i]--;
  6276. if (!parent->l3_cls_refcnt[i]) {
  6277. /* disable class */
  6278. ret = tcam_user_ip_class_enable(np,
  6279. class,
  6280. 0);
  6281. if (ret)
  6282. goto out;
  6283. parent->l3_cls[i] = 0;
  6284. parent->l3_cls_pid[i] = 0;
  6285. }
  6286. break;
  6287. }
  6288. }
  6289. if (i == NIU_L3_PROG_CLS) {
  6290. netdev_info(np->dev, "niu%d: In %s(): Usr class 0x%llx not found\n",
  6291. parent->index, __func__,
  6292. (unsigned long long)class);
  6293. ret = -EINVAL;
  6294. goto out;
  6295. }
  6296. }
  6297. ret = tcam_flush(np, idx);
  6298. if (ret)
  6299. goto out;
  6300. /* invalidate the entry */
  6301. tp->valid = 0;
  6302. np->clas.tcam_valid_entries--;
  6303. out:
  6304. niu_unlock_parent(np, flags);
  6305. return ret;
  6306. }
  6307. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6308. {
  6309. struct niu *np = netdev_priv(dev);
  6310. int ret = 0;
  6311. switch (cmd->cmd) {
  6312. case ETHTOOL_SRXFH:
  6313. ret = niu_set_hash_opts(np, cmd);
  6314. break;
  6315. case ETHTOOL_SRXCLSRLINS:
  6316. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6317. break;
  6318. case ETHTOOL_SRXCLSRLDEL:
  6319. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6320. break;
  6321. default:
  6322. ret = -EINVAL;
  6323. break;
  6324. }
  6325. return ret;
  6326. }
  6327. static const struct {
  6328. const char string[ETH_GSTRING_LEN];
  6329. } niu_xmac_stat_keys[] = {
  6330. { "tx_frames" },
  6331. { "tx_bytes" },
  6332. { "tx_fifo_errors" },
  6333. { "tx_overflow_errors" },
  6334. { "tx_max_pkt_size_errors" },
  6335. { "tx_underflow_errors" },
  6336. { "rx_local_faults" },
  6337. { "rx_remote_faults" },
  6338. { "rx_link_faults" },
  6339. { "rx_align_errors" },
  6340. { "rx_frags" },
  6341. { "rx_mcasts" },
  6342. { "rx_bcasts" },
  6343. { "rx_hist_cnt1" },
  6344. { "rx_hist_cnt2" },
  6345. { "rx_hist_cnt3" },
  6346. { "rx_hist_cnt4" },
  6347. { "rx_hist_cnt5" },
  6348. { "rx_hist_cnt6" },
  6349. { "rx_hist_cnt7" },
  6350. { "rx_octets" },
  6351. { "rx_code_violations" },
  6352. { "rx_len_errors" },
  6353. { "rx_crc_errors" },
  6354. { "rx_underflows" },
  6355. { "rx_overflows" },
  6356. { "pause_off_state" },
  6357. { "pause_on_state" },
  6358. { "pause_received" },
  6359. };
  6360. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6361. static const struct {
  6362. const char string[ETH_GSTRING_LEN];
  6363. } niu_bmac_stat_keys[] = {
  6364. { "tx_underflow_errors" },
  6365. { "tx_max_pkt_size_errors" },
  6366. { "tx_bytes" },
  6367. { "tx_frames" },
  6368. { "rx_overflows" },
  6369. { "rx_frames" },
  6370. { "rx_align_errors" },
  6371. { "rx_crc_errors" },
  6372. { "rx_len_errors" },
  6373. { "pause_off_state" },
  6374. { "pause_on_state" },
  6375. { "pause_received" },
  6376. };
  6377. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6378. static const struct {
  6379. const char string[ETH_GSTRING_LEN];
  6380. } niu_rxchan_stat_keys[] = {
  6381. { "rx_channel" },
  6382. { "rx_packets" },
  6383. { "rx_bytes" },
  6384. { "rx_dropped" },
  6385. { "rx_errors" },
  6386. };
  6387. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6388. static const struct {
  6389. const char string[ETH_GSTRING_LEN];
  6390. } niu_txchan_stat_keys[] = {
  6391. { "tx_channel" },
  6392. { "tx_packets" },
  6393. { "tx_bytes" },
  6394. { "tx_errors" },
  6395. };
  6396. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6397. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6398. {
  6399. struct niu *np = netdev_priv(dev);
  6400. int i;
  6401. if (stringset != ETH_SS_STATS)
  6402. return;
  6403. if (np->flags & NIU_FLAGS_XMAC) {
  6404. memcpy(data, niu_xmac_stat_keys,
  6405. sizeof(niu_xmac_stat_keys));
  6406. data += sizeof(niu_xmac_stat_keys);
  6407. } else {
  6408. memcpy(data, niu_bmac_stat_keys,
  6409. sizeof(niu_bmac_stat_keys));
  6410. data += sizeof(niu_bmac_stat_keys);
  6411. }
  6412. for (i = 0; i < np->num_rx_rings; i++) {
  6413. memcpy(data, niu_rxchan_stat_keys,
  6414. sizeof(niu_rxchan_stat_keys));
  6415. data += sizeof(niu_rxchan_stat_keys);
  6416. }
  6417. for (i = 0; i < np->num_tx_rings; i++) {
  6418. memcpy(data, niu_txchan_stat_keys,
  6419. sizeof(niu_txchan_stat_keys));
  6420. data += sizeof(niu_txchan_stat_keys);
  6421. }
  6422. }
  6423. static int niu_get_sset_count(struct net_device *dev, int stringset)
  6424. {
  6425. struct niu *np = netdev_priv(dev);
  6426. if (stringset != ETH_SS_STATS)
  6427. return -EINVAL;
  6428. return (np->flags & NIU_FLAGS_XMAC ?
  6429. NUM_XMAC_STAT_KEYS :
  6430. NUM_BMAC_STAT_KEYS) +
  6431. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6432. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS);
  6433. }
  6434. static void niu_get_ethtool_stats(struct net_device *dev,
  6435. struct ethtool_stats *stats, u64 *data)
  6436. {
  6437. struct niu *np = netdev_priv(dev);
  6438. int i;
  6439. niu_sync_mac_stats(np);
  6440. if (np->flags & NIU_FLAGS_XMAC) {
  6441. memcpy(data, &np->mac_stats.xmac,
  6442. sizeof(struct niu_xmac_stats));
  6443. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6444. } else {
  6445. memcpy(data, &np->mac_stats.bmac,
  6446. sizeof(struct niu_bmac_stats));
  6447. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6448. }
  6449. for (i = 0; i < np->num_rx_rings; i++) {
  6450. struct rx_ring_info *rp = &np->rx_rings[i];
  6451. niu_sync_rx_discard_stats(np, rp, 0);
  6452. data[0] = rp->rx_channel;
  6453. data[1] = rp->rx_packets;
  6454. data[2] = rp->rx_bytes;
  6455. data[3] = rp->rx_dropped;
  6456. data[4] = rp->rx_errors;
  6457. data += 5;
  6458. }
  6459. for (i = 0; i < np->num_tx_rings; i++) {
  6460. struct tx_ring_info *rp = &np->tx_rings[i];
  6461. data[0] = rp->tx_channel;
  6462. data[1] = rp->tx_packets;
  6463. data[2] = rp->tx_bytes;
  6464. data[3] = rp->tx_errors;
  6465. data += 4;
  6466. }
  6467. }
  6468. static u64 niu_led_state_save(struct niu *np)
  6469. {
  6470. if (np->flags & NIU_FLAGS_XMAC)
  6471. return nr64_mac(XMAC_CONFIG);
  6472. else
  6473. return nr64_mac(BMAC_XIF_CONFIG);
  6474. }
  6475. static void niu_led_state_restore(struct niu *np, u64 val)
  6476. {
  6477. if (np->flags & NIU_FLAGS_XMAC)
  6478. nw64_mac(XMAC_CONFIG, val);
  6479. else
  6480. nw64_mac(BMAC_XIF_CONFIG, val);
  6481. }
  6482. static void niu_force_led(struct niu *np, int on)
  6483. {
  6484. u64 val, reg, bit;
  6485. if (np->flags & NIU_FLAGS_XMAC) {
  6486. reg = XMAC_CONFIG;
  6487. bit = XMAC_CONFIG_FORCE_LED_ON;
  6488. } else {
  6489. reg = BMAC_XIF_CONFIG;
  6490. bit = BMAC_XIF_CONFIG_LINK_LED;
  6491. }
  6492. val = nr64_mac(reg);
  6493. if (on)
  6494. val |= bit;
  6495. else
  6496. val &= ~bit;
  6497. nw64_mac(reg, val);
  6498. }
  6499. static int niu_phys_id(struct net_device *dev, u32 data)
  6500. {
  6501. struct niu *np = netdev_priv(dev);
  6502. u64 orig_led_state;
  6503. int i;
  6504. if (!netif_running(dev))
  6505. return -EAGAIN;
  6506. if (data == 0)
  6507. data = 2;
  6508. orig_led_state = niu_led_state_save(np);
  6509. for (i = 0; i < (data * 2); i++) {
  6510. int on = ((i % 2) == 0);
  6511. niu_force_led(np, on);
  6512. if (msleep_interruptible(500))
  6513. break;
  6514. }
  6515. niu_led_state_restore(np, orig_led_state);
  6516. return 0;
  6517. }
  6518. static int niu_set_flags(struct net_device *dev, u32 data)
  6519. {
  6520. return ethtool_op_set_flags(dev, data, ETH_FLAG_RXHASH);
  6521. }
  6522. static const struct ethtool_ops niu_ethtool_ops = {
  6523. .get_drvinfo = niu_get_drvinfo,
  6524. .get_link = ethtool_op_get_link,
  6525. .get_msglevel = niu_get_msglevel,
  6526. .set_msglevel = niu_set_msglevel,
  6527. .nway_reset = niu_nway_reset,
  6528. .get_eeprom_len = niu_get_eeprom_len,
  6529. .get_eeprom = niu_get_eeprom,
  6530. .get_settings = niu_get_settings,
  6531. .set_settings = niu_set_settings,
  6532. .get_strings = niu_get_strings,
  6533. .get_sset_count = niu_get_sset_count,
  6534. .get_ethtool_stats = niu_get_ethtool_stats,
  6535. .phys_id = niu_phys_id,
  6536. .get_rxnfc = niu_get_nfc,
  6537. .set_rxnfc = niu_set_nfc,
  6538. .set_flags = niu_set_flags,
  6539. .get_flags = ethtool_op_get_flags,
  6540. };
  6541. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6542. int ldg, int ldn)
  6543. {
  6544. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6545. return -EINVAL;
  6546. if (ldn < 0 || ldn > LDN_MAX)
  6547. return -EINVAL;
  6548. parent->ldg_map[ldn] = ldg;
  6549. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6550. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6551. * the firmware, and we're not supposed to change them.
  6552. * Validate the mapping, because if it's wrong we probably
  6553. * won't get any interrupts and that's painful to debug.
  6554. */
  6555. if (nr64(LDG_NUM(ldn)) != ldg) {
  6556. dev_err(np->device, "Port %u, mis-matched LDG assignment for ldn %d, should be %d is %llu\n",
  6557. np->port, ldn, ldg,
  6558. (unsigned long long) nr64(LDG_NUM(ldn)));
  6559. return -EINVAL;
  6560. }
  6561. } else
  6562. nw64(LDG_NUM(ldn), ldg);
  6563. return 0;
  6564. }
  6565. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6566. {
  6567. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6568. return -EINVAL;
  6569. nw64(LDG_TIMER_RES, res);
  6570. return 0;
  6571. }
  6572. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6573. {
  6574. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6575. (func < 0 || func > 3) ||
  6576. (vector < 0 || vector > 0x1f))
  6577. return -EINVAL;
  6578. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6579. return 0;
  6580. }
  6581. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  6582. {
  6583. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6584. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6585. int limit;
  6586. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6587. return -EINVAL;
  6588. frame = frame_base;
  6589. nw64(ESPC_PIO_STAT, frame);
  6590. limit = 64;
  6591. do {
  6592. udelay(5);
  6593. frame = nr64(ESPC_PIO_STAT);
  6594. if (frame & ESPC_PIO_STAT_READ_END)
  6595. break;
  6596. } while (limit--);
  6597. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6598. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6599. (unsigned long long) frame);
  6600. return -ENODEV;
  6601. }
  6602. frame = frame_base;
  6603. nw64(ESPC_PIO_STAT, frame);
  6604. limit = 64;
  6605. do {
  6606. udelay(5);
  6607. frame = nr64(ESPC_PIO_STAT);
  6608. if (frame & ESPC_PIO_STAT_READ_END)
  6609. break;
  6610. } while (limit--);
  6611. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6612. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6613. (unsigned long long) frame);
  6614. return -ENODEV;
  6615. }
  6616. frame = nr64(ESPC_PIO_STAT);
  6617. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6618. }
  6619. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  6620. {
  6621. int err = niu_pci_eeprom_read(np, off);
  6622. u16 val;
  6623. if (err < 0)
  6624. return err;
  6625. val = (err << 8);
  6626. err = niu_pci_eeprom_read(np, off + 1);
  6627. if (err < 0)
  6628. return err;
  6629. val |= (err & 0xff);
  6630. return val;
  6631. }
  6632. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6633. {
  6634. int err = niu_pci_eeprom_read(np, off);
  6635. u16 val;
  6636. if (err < 0)
  6637. return err;
  6638. val = (err & 0xff);
  6639. err = niu_pci_eeprom_read(np, off + 1);
  6640. if (err < 0)
  6641. return err;
  6642. val |= (err & 0xff) << 8;
  6643. return val;
  6644. }
  6645. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  6646. u32 off,
  6647. char *namebuf,
  6648. int namebuf_len)
  6649. {
  6650. int i;
  6651. for (i = 0; i < namebuf_len; i++) {
  6652. int err = niu_pci_eeprom_read(np, off + i);
  6653. if (err < 0)
  6654. return err;
  6655. *namebuf++ = err;
  6656. if (!err)
  6657. break;
  6658. }
  6659. if (i >= namebuf_len)
  6660. return -EINVAL;
  6661. return i + 1;
  6662. }
  6663. static void __devinit niu_vpd_parse_version(struct niu *np)
  6664. {
  6665. struct niu_vpd *vpd = &np->vpd;
  6666. int len = strlen(vpd->version) + 1;
  6667. const char *s = vpd->version;
  6668. int i;
  6669. for (i = 0; i < len - 5; i++) {
  6670. if (!strncmp(s + i, "FCode ", 6))
  6671. break;
  6672. }
  6673. if (i >= len - 5)
  6674. return;
  6675. s += i + 5;
  6676. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6677. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6678. "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6679. vpd->fcode_major, vpd->fcode_minor);
  6680. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6681. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6682. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6683. np->flags |= NIU_FLAGS_VPD_VALID;
  6684. }
  6685. /* ESPC_PIO_EN_ENABLE must be set */
  6686. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  6687. u32 start, u32 end)
  6688. {
  6689. unsigned int found_mask = 0;
  6690. #define FOUND_MASK_MODEL 0x00000001
  6691. #define FOUND_MASK_BMODEL 0x00000002
  6692. #define FOUND_MASK_VERS 0x00000004
  6693. #define FOUND_MASK_MAC 0x00000008
  6694. #define FOUND_MASK_NMAC 0x00000010
  6695. #define FOUND_MASK_PHY 0x00000020
  6696. #define FOUND_MASK_ALL 0x0000003f
  6697. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6698. "VPD_SCAN: start[%x] end[%x]\n", start, end);
  6699. while (start < end) {
  6700. int len, err, instance, type, prop_len;
  6701. char namebuf[64];
  6702. u8 *prop_buf;
  6703. int max_len;
  6704. if (found_mask == FOUND_MASK_ALL) {
  6705. niu_vpd_parse_version(np);
  6706. return 1;
  6707. }
  6708. err = niu_pci_eeprom_read(np, start + 2);
  6709. if (err < 0)
  6710. return err;
  6711. len = err;
  6712. start += 3;
  6713. instance = niu_pci_eeprom_read(np, start);
  6714. type = niu_pci_eeprom_read(np, start + 3);
  6715. prop_len = niu_pci_eeprom_read(np, start + 4);
  6716. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6717. if (err < 0)
  6718. return err;
  6719. prop_buf = NULL;
  6720. max_len = 0;
  6721. if (!strcmp(namebuf, "model")) {
  6722. prop_buf = np->vpd.model;
  6723. max_len = NIU_VPD_MODEL_MAX;
  6724. found_mask |= FOUND_MASK_MODEL;
  6725. } else if (!strcmp(namebuf, "board-model")) {
  6726. prop_buf = np->vpd.board_model;
  6727. max_len = NIU_VPD_BD_MODEL_MAX;
  6728. found_mask |= FOUND_MASK_BMODEL;
  6729. } else if (!strcmp(namebuf, "version")) {
  6730. prop_buf = np->vpd.version;
  6731. max_len = NIU_VPD_VERSION_MAX;
  6732. found_mask |= FOUND_MASK_VERS;
  6733. } else if (!strcmp(namebuf, "local-mac-address")) {
  6734. prop_buf = np->vpd.local_mac;
  6735. max_len = ETH_ALEN;
  6736. found_mask |= FOUND_MASK_MAC;
  6737. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6738. prop_buf = &np->vpd.mac_num;
  6739. max_len = 1;
  6740. found_mask |= FOUND_MASK_NMAC;
  6741. } else if (!strcmp(namebuf, "phy-type")) {
  6742. prop_buf = np->vpd.phy_type;
  6743. max_len = NIU_VPD_PHY_TYPE_MAX;
  6744. found_mask |= FOUND_MASK_PHY;
  6745. }
  6746. if (max_len && prop_len > max_len) {
  6747. dev_err(np->device, "Property '%s' length (%d) is too long\n", namebuf, prop_len);
  6748. return -EINVAL;
  6749. }
  6750. if (prop_buf) {
  6751. u32 off = start + 5 + err;
  6752. int i;
  6753. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6754. "VPD_SCAN: Reading in property [%s] len[%d]\n",
  6755. namebuf, prop_len);
  6756. for (i = 0; i < prop_len; i++)
  6757. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6758. }
  6759. start += len;
  6760. }
  6761. return 0;
  6762. }
  6763. /* ESPC_PIO_EN_ENABLE must be set */
  6764. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  6765. {
  6766. u32 offset;
  6767. int err;
  6768. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6769. if (err < 0)
  6770. return;
  6771. offset = err + 3;
  6772. while (start + offset < ESPC_EEPROM_SIZE) {
  6773. u32 here = start + offset;
  6774. u32 end;
  6775. err = niu_pci_eeprom_read(np, here);
  6776. if (err != 0x90)
  6777. return;
  6778. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6779. if (err < 0)
  6780. return;
  6781. here = start + offset + 3;
  6782. end = start + offset + err;
  6783. offset += err;
  6784. err = niu_pci_vpd_scan_props(np, here, end);
  6785. if (err < 0 || err == 1)
  6786. return;
  6787. }
  6788. }
  6789. /* ESPC_PIO_EN_ENABLE must be set */
  6790. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  6791. {
  6792. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6793. int err;
  6794. while (start < end) {
  6795. ret = start;
  6796. /* ROM header signature? */
  6797. err = niu_pci_eeprom_read16(np, start + 0);
  6798. if (err != 0x55aa)
  6799. return 0;
  6800. /* Apply offset to PCI data structure. */
  6801. err = niu_pci_eeprom_read16(np, start + 23);
  6802. if (err < 0)
  6803. return 0;
  6804. start += err;
  6805. /* Check for "PCIR" signature. */
  6806. err = niu_pci_eeprom_read16(np, start + 0);
  6807. if (err != 0x5043)
  6808. return 0;
  6809. err = niu_pci_eeprom_read16(np, start + 2);
  6810. if (err != 0x4952)
  6811. return 0;
  6812. /* Check for OBP image type. */
  6813. err = niu_pci_eeprom_read(np, start + 20);
  6814. if (err < 0)
  6815. return 0;
  6816. if (err != 0x01) {
  6817. err = niu_pci_eeprom_read(np, ret + 2);
  6818. if (err < 0)
  6819. return 0;
  6820. start = ret + (err * 512);
  6821. continue;
  6822. }
  6823. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6824. if (err < 0)
  6825. return err;
  6826. ret += err;
  6827. err = niu_pci_eeprom_read(np, ret + 0);
  6828. if (err != 0x82)
  6829. return 0;
  6830. return ret;
  6831. }
  6832. return 0;
  6833. }
  6834. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  6835. const char *phy_prop)
  6836. {
  6837. if (!strcmp(phy_prop, "mif")) {
  6838. /* 1G copper, MII */
  6839. np->flags &= ~(NIU_FLAGS_FIBER |
  6840. NIU_FLAGS_10G);
  6841. np->mac_xcvr = MAC_XCVR_MII;
  6842. } else if (!strcmp(phy_prop, "xgf")) {
  6843. /* 10G fiber, XPCS */
  6844. np->flags |= (NIU_FLAGS_10G |
  6845. NIU_FLAGS_FIBER);
  6846. np->mac_xcvr = MAC_XCVR_XPCS;
  6847. } else if (!strcmp(phy_prop, "pcs")) {
  6848. /* 1G fiber, PCS */
  6849. np->flags &= ~NIU_FLAGS_10G;
  6850. np->flags |= NIU_FLAGS_FIBER;
  6851. np->mac_xcvr = MAC_XCVR_PCS;
  6852. } else if (!strcmp(phy_prop, "xgc")) {
  6853. /* 10G copper, XPCS */
  6854. np->flags |= NIU_FLAGS_10G;
  6855. np->flags &= ~NIU_FLAGS_FIBER;
  6856. np->mac_xcvr = MAC_XCVR_XPCS;
  6857. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6858. /* 10G Serdes or 1G Serdes, default to 10G */
  6859. np->flags |= NIU_FLAGS_10G;
  6860. np->flags &= ~NIU_FLAGS_FIBER;
  6861. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6862. np->mac_xcvr = MAC_XCVR_XPCS;
  6863. } else {
  6864. return -EINVAL;
  6865. }
  6866. return 0;
  6867. }
  6868. static int niu_pci_vpd_get_nports(struct niu *np)
  6869. {
  6870. int ports = 0;
  6871. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6872. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6873. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6874. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6875. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6876. ports = 4;
  6877. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6878. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6879. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6880. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6881. ports = 2;
  6882. }
  6883. return ports;
  6884. }
  6885. static void __devinit niu_pci_vpd_validate(struct niu *np)
  6886. {
  6887. struct net_device *dev = np->dev;
  6888. struct niu_vpd *vpd = &np->vpd;
  6889. u8 val8;
  6890. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6891. dev_err(np->device, "VPD MAC invalid, falling back to SPROM\n");
  6892. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6893. return;
  6894. }
  6895. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6896. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6897. np->flags |= NIU_FLAGS_10G;
  6898. np->flags &= ~NIU_FLAGS_FIBER;
  6899. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6900. np->mac_xcvr = MAC_XCVR_PCS;
  6901. if (np->port > 1) {
  6902. np->flags |= NIU_FLAGS_FIBER;
  6903. np->flags &= ~NIU_FLAGS_10G;
  6904. }
  6905. if (np->flags & NIU_FLAGS_10G)
  6906. np->mac_xcvr = MAC_XCVR_XPCS;
  6907. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6908. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6909. NIU_FLAGS_HOTPLUG_PHY);
  6910. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6911. dev_err(np->device, "Illegal phy string [%s]\n",
  6912. np->vpd.phy_type);
  6913. dev_err(np->device, "Falling back to SPROM\n");
  6914. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6915. return;
  6916. }
  6917. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  6918. val8 = dev->perm_addr[5];
  6919. dev->perm_addr[5] += np->port;
  6920. if (dev->perm_addr[5] < val8)
  6921. dev->perm_addr[4]++;
  6922. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  6923. }
  6924. static int __devinit niu_pci_probe_sprom(struct niu *np)
  6925. {
  6926. struct net_device *dev = np->dev;
  6927. int len, i;
  6928. u64 val, sum;
  6929. u8 val8;
  6930. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  6931. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  6932. len = val / 4;
  6933. np->eeprom_len = len;
  6934. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6935. "SPROM: Image size %llu\n", (unsigned long long)val);
  6936. sum = 0;
  6937. for (i = 0; i < len; i++) {
  6938. val = nr64(ESPC_NCR(i));
  6939. sum += (val >> 0) & 0xff;
  6940. sum += (val >> 8) & 0xff;
  6941. sum += (val >> 16) & 0xff;
  6942. sum += (val >> 24) & 0xff;
  6943. }
  6944. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6945. "SPROM: Checksum %x\n", (int)(sum & 0xff));
  6946. if ((sum & 0xff) != 0xab) {
  6947. dev_err(np->device, "Bad SPROM checksum (%x, should be 0xab)\n", (int)(sum & 0xff));
  6948. return -EINVAL;
  6949. }
  6950. val = nr64(ESPC_PHY_TYPE);
  6951. switch (np->port) {
  6952. case 0:
  6953. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  6954. ESPC_PHY_TYPE_PORT0_SHIFT;
  6955. break;
  6956. case 1:
  6957. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  6958. ESPC_PHY_TYPE_PORT1_SHIFT;
  6959. break;
  6960. case 2:
  6961. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  6962. ESPC_PHY_TYPE_PORT2_SHIFT;
  6963. break;
  6964. case 3:
  6965. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  6966. ESPC_PHY_TYPE_PORT3_SHIFT;
  6967. break;
  6968. default:
  6969. dev_err(np->device, "Bogus port number %u\n",
  6970. np->port);
  6971. return -EINVAL;
  6972. }
  6973. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6974. "SPROM: PHY type %x\n", val8);
  6975. switch (val8) {
  6976. case ESPC_PHY_TYPE_1G_COPPER:
  6977. /* 1G copper, MII */
  6978. np->flags &= ~(NIU_FLAGS_FIBER |
  6979. NIU_FLAGS_10G);
  6980. np->mac_xcvr = MAC_XCVR_MII;
  6981. break;
  6982. case ESPC_PHY_TYPE_1G_FIBER:
  6983. /* 1G fiber, PCS */
  6984. np->flags &= ~NIU_FLAGS_10G;
  6985. np->flags |= NIU_FLAGS_FIBER;
  6986. np->mac_xcvr = MAC_XCVR_PCS;
  6987. break;
  6988. case ESPC_PHY_TYPE_10G_COPPER:
  6989. /* 10G copper, XPCS */
  6990. np->flags |= NIU_FLAGS_10G;
  6991. np->flags &= ~NIU_FLAGS_FIBER;
  6992. np->mac_xcvr = MAC_XCVR_XPCS;
  6993. break;
  6994. case ESPC_PHY_TYPE_10G_FIBER:
  6995. /* 10G fiber, XPCS */
  6996. np->flags |= (NIU_FLAGS_10G |
  6997. NIU_FLAGS_FIBER);
  6998. np->mac_xcvr = MAC_XCVR_XPCS;
  6999. break;
  7000. default:
  7001. dev_err(np->device, "Bogus SPROM phy type %u\n", val8);
  7002. return -EINVAL;
  7003. }
  7004. val = nr64(ESPC_MAC_ADDR0);
  7005. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7006. "SPROM: MAC_ADDR0[%08llx]\n", (unsigned long long)val);
  7007. dev->perm_addr[0] = (val >> 0) & 0xff;
  7008. dev->perm_addr[1] = (val >> 8) & 0xff;
  7009. dev->perm_addr[2] = (val >> 16) & 0xff;
  7010. dev->perm_addr[3] = (val >> 24) & 0xff;
  7011. val = nr64(ESPC_MAC_ADDR1);
  7012. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7013. "SPROM: MAC_ADDR1[%08llx]\n", (unsigned long long)val);
  7014. dev->perm_addr[4] = (val >> 0) & 0xff;
  7015. dev->perm_addr[5] = (val >> 8) & 0xff;
  7016. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7017. dev_err(np->device, "SPROM MAC address invalid [ %pM ]\n",
  7018. dev->perm_addr);
  7019. return -EINVAL;
  7020. }
  7021. val8 = dev->perm_addr[5];
  7022. dev->perm_addr[5] += np->port;
  7023. if (dev->perm_addr[5] < val8)
  7024. dev->perm_addr[4]++;
  7025. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7026. val = nr64(ESPC_MOD_STR_LEN);
  7027. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7028. "SPROM: MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7029. if (val >= 8 * 4)
  7030. return -EINVAL;
  7031. for (i = 0; i < val; i += 4) {
  7032. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7033. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7034. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7035. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7036. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7037. }
  7038. np->vpd.model[val] = '\0';
  7039. val = nr64(ESPC_BD_MOD_STR_LEN);
  7040. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7041. "SPROM: BD_MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7042. if (val >= 4 * 4)
  7043. return -EINVAL;
  7044. for (i = 0; i < val; i += 4) {
  7045. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7046. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7047. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7048. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7049. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7050. }
  7051. np->vpd.board_model[val] = '\0';
  7052. np->vpd.mac_num =
  7053. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7054. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7055. "SPROM: NUM_PORTS_MACS[%d]\n", np->vpd.mac_num);
  7056. return 0;
  7057. }
  7058. static int __devinit niu_get_and_validate_port(struct niu *np)
  7059. {
  7060. struct niu_parent *parent = np->parent;
  7061. if (np->port <= 1)
  7062. np->flags |= NIU_FLAGS_XMAC;
  7063. if (!parent->num_ports) {
  7064. if (parent->plat_type == PLAT_TYPE_NIU) {
  7065. parent->num_ports = 2;
  7066. } else {
  7067. parent->num_ports = niu_pci_vpd_get_nports(np);
  7068. if (!parent->num_ports) {
  7069. /* Fall back to SPROM as last resort.
  7070. * This will fail on most cards.
  7071. */
  7072. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7073. ESPC_NUM_PORTS_MACS_VAL;
  7074. /* All of the current probing methods fail on
  7075. * Maramba on-board parts.
  7076. */
  7077. if (!parent->num_ports)
  7078. parent->num_ports = 4;
  7079. }
  7080. }
  7081. }
  7082. if (np->port >= parent->num_ports)
  7083. return -ENODEV;
  7084. return 0;
  7085. }
  7086. static int __devinit phy_record(struct niu_parent *parent,
  7087. struct phy_probe_info *p,
  7088. int dev_id_1, int dev_id_2, u8 phy_port,
  7089. int type)
  7090. {
  7091. u32 id = (dev_id_1 << 16) | dev_id_2;
  7092. u8 idx;
  7093. if (dev_id_1 < 0 || dev_id_2 < 0)
  7094. return 0;
  7095. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7096. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7097. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011) &&
  7098. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8706))
  7099. return 0;
  7100. } else {
  7101. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7102. return 0;
  7103. }
  7104. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7105. parent->index, id,
  7106. type == PHY_TYPE_PMA_PMD ? "PMA/PMD" :
  7107. type == PHY_TYPE_PCS ? "PCS" : "MII",
  7108. phy_port);
  7109. if (p->cur[type] >= NIU_MAX_PORTS) {
  7110. pr_err("Too many PHY ports\n");
  7111. return -EINVAL;
  7112. }
  7113. idx = p->cur[type];
  7114. p->phy_id[type][idx] = id;
  7115. p->phy_port[type][idx] = phy_port;
  7116. p->cur[type] = idx + 1;
  7117. return 0;
  7118. }
  7119. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  7120. {
  7121. int i;
  7122. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7123. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7124. return 1;
  7125. }
  7126. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7127. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7128. return 1;
  7129. }
  7130. return 0;
  7131. }
  7132. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  7133. {
  7134. int port, cnt;
  7135. cnt = 0;
  7136. *lowest = 32;
  7137. for (port = 8; port < 32; port++) {
  7138. if (port_has_10g(p, port)) {
  7139. if (!cnt)
  7140. *lowest = port;
  7141. cnt++;
  7142. }
  7143. }
  7144. return cnt;
  7145. }
  7146. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  7147. {
  7148. *lowest = 32;
  7149. if (p->cur[PHY_TYPE_MII])
  7150. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7151. return p->cur[PHY_TYPE_MII];
  7152. }
  7153. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  7154. {
  7155. int num_ports = parent->num_ports;
  7156. int i;
  7157. for (i = 0; i < num_ports; i++) {
  7158. parent->rxchan_per_port[i] = (16 / num_ports);
  7159. parent->txchan_per_port[i] = (16 / num_ports);
  7160. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7161. parent->index, i,
  7162. parent->rxchan_per_port[i],
  7163. parent->txchan_per_port[i]);
  7164. }
  7165. }
  7166. static void __devinit niu_divide_channels(struct niu_parent *parent,
  7167. int num_10g, int num_1g)
  7168. {
  7169. int num_ports = parent->num_ports;
  7170. int rx_chans_per_10g, rx_chans_per_1g;
  7171. int tx_chans_per_10g, tx_chans_per_1g;
  7172. int i, tot_rx, tot_tx;
  7173. if (!num_10g || !num_1g) {
  7174. rx_chans_per_10g = rx_chans_per_1g =
  7175. (NIU_NUM_RXCHAN / num_ports);
  7176. tx_chans_per_10g = tx_chans_per_1g =
  7177. (NIU_NUM_TXCHAN / num_ports);
  7178. } else {
  7179. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7180. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7181. (rx_chans_per_1g * num_1g)) /
  7182. num_10g;
  7183. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7184. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7185. (tx_chans_per_1g * num_1g)) /
  7186. num_10g;
  7187. }
  7188. tot_rx = tot_tx = 0;
  7189. for (i = 0; i < num_ports; i++) {
  7190. int type = phy_decode(parent->port_phy, i);
  7191. if (type == PORT_TYPE_10G) {
  7192. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7193. parent->txchan_per_port[i] = tx_chans_per_10g;
  7194. } else {
  7195. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7196. parent->txchan_per_port[i] = tx_chans_per_1g;
  7197. }
  7198. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7199. parent->index, i,
  7200. parent->rxchan_per_port[i],
  7201. parent->txchan_per_port[i]);
  7202. tot_rx += parent->rxchan_per_port[i];
  7203. tot_tx += parent->txchan_per_port[i];
  7204. }
  7205. if (tot_rx > NIU_NUM_RXCHAN) {
  7206. pr_err("niu%d: Too many RX channels (%d), resetting to one per port\n",
  7207. parent->index, tot_rx);
  7208. for (i = 0; i < num_ports; i++)
  7209. parent->rxchan_per_port[i] = 1;
  7210. }
  7211. if (tot_tx > NIU_NUM_TXCHAN) {
  7212. pr_err("niu%d: Too many TX channels (%d), resetting to one per port\n",
  7213. parent->index, tot_tx);
  7214. for (i = 0; i < num_ports; i++)
  7215. parent->txchan_per_port[i] = 1;
  7216. }
  7217. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7218. pr_warning("niu%d: Driver bug, wasted channels, RX[%d] TX[%d]\n",
  7219. parent->index, tot_rx, tot_tx);
  7220. }
  7221. }
  7222. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  7223. int num_10g, int num_1g)
  7224. {
  7225. int i, num_ports = parent->num_ports;
  7226. int rdc_group, rdc_groups_per_port;
  7227. int rdc_channel_base;
  7228. rdc_group = 0;
  7229. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7230. rdc_channel_base = 0;
  7231. for (i = 0; i < num_ports; i++) {
  7232. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7233. int grp, num_channels = parent->rxchan_per_port[i];
  7234. int this_channel_offset;
  7235. tp->first_table_num = rdc_group;
  7236. tp->num_tables = rdc_groups_per_port;
  7237. this_channel_offset = 0;
  7238. for (grp = 0; grp < tp->num_tables; grp++) {
  7239. struct rdc_table *rt = &tp->tables[grp];
  7240. int slot;
  7241. pr_info("niu%d: Port %d RDC tbl(%d) [ ",
  7242. parent->index, i, tp->first_table_num + grp);
  7243. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7244. rt->rxdma_channel[slot] =
  7245. rdc_channel_base + this_channel_offset;
  7246. pr_cont("%d ", rt->rxdma_channel[slot]);
  7247. if (++this_channel_offset == num_channels)
  7248. this_channel_offset = 0;
  7249. }
  7250. pr_cont("]\n");
  7251. }
  7252. parent->rdc_default[i] = rdc_channel_base;
  7253. rdc_channel_base += num_channels;
  7254. rdc_group += rdc_groups_per_port;
  7255. }
  7256. }
  7257. static int __devinit fill_phy_probe_info(struct niu *np,
  7258. struct niu_parent *parent,
  7259. struct phy_probe_info *info)
  7260. {
  7261. unsigned long flags;
  7262. int port, err;
  7263. memset(info, 0, sizeof(*info));
  7264. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7265. niu_lock_parent(np, flags);
  7266. err = 0;
  7267. for (port = 8; port < 32; port++) {
  7268. int dev_id_1, dev_id_2;
  7269. dev_id_1 = mdio_read(np, port,
  7270. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7271. dev_id_2 = mdio_read(np, port,
  7272. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7273. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7274. PHY_TYPE_PMA_PMD);
  7275. if (err)
  7276. break;
  7277. dev_id_1 = mdio_read(np, port,
  7278. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7279. dev_id_2 = mdio_read(np, port,
  7280. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7281. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7282. PHY_TYPE_PCS);
  7283. if (err)
  7284. break;
  7285. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7286. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7287. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7288. PHY_TYPE_MII);
  7289. if (err)
  7290. break;
  7291. }
  7292. niu_unlock_parent(np, flags);
  7293. return err;
  7294. }
  7295. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  7296. {
  7297. struct phy_probe_info *info = &parent->phy_probe_info;
  7298. int lowest_10g, lowest_1g;
  7299. int num_10g, num_1g;
  7300. u32 val;
  7301. int err;
  7302. num_10g = num_1g = 0;
  7303. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7304. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7305. num_10g = 0;
  7306. num_1g = 2;
  7307. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7308. parent->num_ports = 4;
  7309. val = (phy_encode(PORT_TYPE_1G, 0) |
  7310. phy_encode(PORT_TYPE_1G, 1) |
  7311. phy_encode(PORT_TYPE_1G, 2) |
  7312. phy_encode(PORT_TYPE_1G, 3));
  7313. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7314. num_10g = 2;
  7315. num_1g = 0;
  7316. parent->num_ports = 2;
  7317. val = (phy_encode(PORT_TYPE_10G, 0) |
  7318. phy_encode(PORT_TYPE_10G, 1));
  7319. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7320. (parent->plat_type == PLAT_TYPE_NIU)) {
  7321. /* this is the Monza case */
  7322. if (np->flags & NIU_FLAGS_10G) {
  7323. val = (phy_encode(PORT_TYPE_10G, 0) |
  7324. phy_encode(PORT_TYPE_10G, 1));
  7325. } else {
  7326. val = (phy_encode(PORT_TYPE_1G, 0) |
  7327. phy_encode(PORT_TYPE_1G, 1));
  7328. }
  7329. } else {
  7330. err = fill_phy_probe_info(np, parent, info);
  7331. if (err)
  7332. return err;
  7333. num_10g = count_10g_ports(info, &lowest_10g);
  7334. num_1g = count_1g_ports(info, &lowest_1g);
  7335. switch ((num_10g << 4) | num_1g) {
  7336. case 0x24:
  7337. if (lowest_1g == 10)
  7338. parent->plat_type = PLAT_TYPE_VF_P0;
  7339. else if (lowest_1g == 26)
  7340. parent->plat_type = PLAT_TYPE_VF_P1;
  7341. else
  7342. goto unknown_vg_1g_port;
  7343. /* fallthru */
  7344. case 0x22:
  7345. val = (phy_encode(PORT_TYPE_10G, 0) |
  7346. phy_encode(PORT_TYPE_10G, 1) |
  7347. phy_encode(PORT_TYPE_1G, 2) |
  7348. phy_encode(PORT_TYPE_1G, 3));
  7349. break;
  7350. case 0x20:
  7351. val = (phy_encode(PORT_TYPE_10G, 0) |
  7352. phy_encode(PORT_TYPE_10G, 1));
  7353. break;
  7354. case 0x10:
  7355. val = phy_encode(PORT_TYPE_10G, np->port);
  7356. break;
  7357. case 0x14:
  7358. if (lowest_1g == 10)
  7359. parent->plat_type = PLAT_TYPE_VF_P0;
  7360. else if (lowest_1g == 26)
  7361. parent->plat_type = PLAT_TYPE_VF_P1;
  7362. else
  7363. goto unknown_vg_1g_port;
  7364. /* fallthru */
  7365. case 0x13:
  7366. if ((lowest_10g & 0x7) == 0)
  7367. val = (phy_encode(PORT_TYPE_10G, 0) |
  7368. phy_encode(PORT_TYPE_1G, 1) |
  7369. phy_encode(PORT_TYPE_1G, 2) |
  7370. phy_encode(PORT_TYPE_1G, 3));
  7371. else
  7372. val = (phy_encode(PORT_TYPE_1G, 0) |
  7373. phy_encode(PORT_TYPE_10G, 1) |
  7374. phy_encode(PORT_TYPE_1G, 2) |
  7375. phy_encode(PORT_TYPE_1G, 3));
  7376. break;
  7377. case 0x04:
  7378. if (lowest_1g == 10)
  7379. parent->plat_type = PLAT_TYPE_VF_P0;
  7380. else if (lowest_1g == 26)
  7381. parent->plat_type = PLAT_TYPE_VF_P1;
  7382. else
  7383. goto unknown_vg_1g_port;
  7384. val = (phy_encode(PORT_TYPE_1G, 0) |
  7385. phy_encode(PORT_TYPE_1G, 1) |
  7386. phy_encode(PORT_TYPE_1G, 2) |
  7387. phy_encode(PORT_TYPE_1G, 3));
  7388. break;
  7389. default:
  7390. pr_err("Unsupported port config 10G[%d] 1G[%d]\n",
  7391. num_10g, num_1g);
  7392. return -EINVAL;
  7393. }
  7394. }
  7395. parent->port_phy = val;
  7396. if (parent->plat_type == PLAT_TYPE_NIU)
  7397. niu_n2_divide_channels(parent);
  7398. else
  7399. niu_divide_channels(parent, num_10g, num_1g);
  7400. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7401. return 0;
  7402. unknown_vg_1g_port:
  7403. pr_err("Cannot identify platform type, 1gport=%d\n", lowest_1g);
  7404. return -EINVAL;
  7405. }
  7406. static int __devinit niu_probe_ports(struct niu *np)
  7407. {
  7408. struct niu_parent *parent = np->parent;
  7409. int err, i;
  7410. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7411. err = walk_phys(np, parent);
  7412. if (err)
  7413. return err;
  7414. niu_set_ldg_timer_res(np, 2);
  7415. for (i = 0; i <= LDN_MAX; i++)
  7416. niu_ldn_irq_enable(np, i, 0);
  7417. }
  7418. if (parent->port_phy == PORT_PHY_INVALID)
  7419. return -EINVAL;
  7420. return 0;
  7421. }
  7422. static int __devinit niu_classifier_swstate_init(struct niu *np)
  7423. {
  7424. struct niu_classifier *cp = &np->clas;
  7425. cp->tcam_top = (u16) np->port;
  7426. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7427. cp->h1_init = 0xffffffff;
  7428. cp->h2_init = 0xffff;
  7429. return fflp_early_init(np);
  7430. }
  7431. static void __devinit niu_link_config_init(struct niu *np)
  7432. {
  7433. struct niu_link_config *lp = &np->link_config;
  7434. lp->advertising = (ADVERTISED_10baseT_Half |
  7435. ADVERTISED_10baseT_Full |
  7436. ADVERTISED_100baseT_Half |
  7437. ADVERTISED_100baseT_Full |
  7438. ADVERTISED_1000baseT_Half |
  7439. ADVERTISED_1000baseT_Full |
  7440. ADVERTISED_10000baseT_Full |
  7441. ADVERTISED_Autoneg);
  7442. lp->speed = lp->active_speed = SPEED_INVALID;
  7443. lp->duplex = DUPLEX_FULL;
  7444. lp->active_duplex = DUPLEX_INVALID;
  7445. lp->autoneg = 1;
  7446. #if 0
  7447. lp->loopback_mode = LOOPBACK_MAC;
  7448. lp->active_speed = SPEED_10000;
  7449. lp->active_duplex = DUPLEX_FULL;
  7450. #else
  7451. lp->loopback_mode = LOOPBACK_DISABLED;
  7452. #endif
  7453. }
  7454. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  7455. {
  7456. switch (np->port) {
  7457. case 0:
  7458. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7459. np->ipp_off = 0x00000;
  7460. np->pcs_off = 0x04000;
  7461. np->xpcs_off = 0x02000;
  7462. break;
  7463. case 1:
  7464. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7465. np->ipp_off = 0x08000;
  7466. np->pcs_off = 0x0a000;
  7467. np->xpcs_off = 0x08000;
  7468. break;
  7469. case 2:
  7470. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7471. np->ipp_off = 0x04000;
  7472. np->pcs_off = 0x0e000;
  7473. np->xpcs_off = ~0UL;
  7474. break;
  7475. case 3:
  7476. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7477. np->ipp_off = 0x0c000;
  7478. np->pcs_off = 0x12000;
  7479. np->xpcs_off = ~0UL;
  7480. break;
  7481. default:
  7482. dev_err(np->device, "Port %u is invalid, cannot compute MAC block offset\n", np->port);
  7483. return -EINVAL;
  7484. }
  7485. return 0;
  7486. }
  7487. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7488. {
  7489. struct msix_entry msi_vec[NIU_NUM_LDG];
  7490. struct niu_parent *parent = np->parent;
  7491. struct pci_dev *pdev = np->pdev;
  7492. int i, num_irqs, err;
  7493. u8 first_ldg;
  7494. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7495. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7496. ldg_num_map[i] = first_ldg + i;
  7497. num_irqs = (parent->rxchan_per_port[np->port] +
  7498. parent->txchan_per_port[np->port] +
  7499. (np->port == 0 ? 3 : 1));
  7500. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7501. retry:
  7502. for (i = 0; i < num_irqs; i++) {
  7503. msi_vec[i].vector = 0;
  7504. msi_vec[i].entry = i;
  7505. }
  7506. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  7507. if (err < 0) {
  7508. np->flags &= ~NIU_FLAGS_MSIX;
  7509. return;
  7510. }
  7511. if (err > 0) {
  7512. num_irqs = err;
  7513. goto retry;
  7514. }
  7515. np->flags |= NIU_FLAGS_MSIX;
  7516. for (i = 0; i < num_irqs; i++)
  7517. np->ldg[i].irq = msi_vec[i].vector;
  7518. np->num_ldg = num_irqs;
  7519. }
  7520. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7521. {
  7522. #ifdef CONFIG_SPARC64
  7523. struct platform_device *op = np->op;
  7524. const u32 *int_prop;
  7525. int i;
  7526. int_prop = of_get_property(op->dev.of_node, "interrupts", NULL);
  7527. if (!int_prop)
  7528. return -ENODEV;
  7529. for (i = 0; i < op->archdata.num_irqs; i++) {
  7530. ldg_num_map[i] = int_prop[i];
  7531. np->ldg[i].irq = op->archdata.irqs[i];
  7532. }
  7533. np->num_ldg = op->archdata.num_irqs;
  7534. return 0;
  7535. #else
  7536. return -EINVAL;
  7537. #endif
  7538. }
  7539. static int __devinit niu_ldg_init(struct niu *np)
  7540. {
  7541. struct niu_parent *parent = np->parent;
  7542. u8 ldg_num_map[NIU_NUM_LDG];
  7543. int first_chan, num_chan;
  7544. int i, err, ldg_rotor;
  7545. u8 port;
  7546. np->num_ldg = 1;
  7547. np->ldg[0].irq = np->dev->irq;
  7548. if (parent->plat_type == PLAT_TYPE_NIU) {
  7549. err = niu_n2_irq_init(np, ldg_num_map);
  7550. if (err)
  7551. return err;
  7552. } else
  7553. niu_try_msix(np, ldg_num_map);
  7554. port = np->port;
  7555. for (i = 0; i < np->num_ldg; i++) {
  7556. struct niu_ldg *lp = &np->ldg[i];
  7557. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  7558. lp->np = np;
  7559. lp->ldg_num = ldg_num_map[i];
  7560. lp->timer = 2; /* XXX */
  7561. /* On N2 NIU the firmware has setup the SID mappings so they go
  7562. * to the correct values that will route the LDG to the proper
  7563. * interrupt in the NCU interrupt table.
  7564. */
  7565. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7566. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7567. if (err)
  7568. return err;
  7569. }
  7570. }
  7571. /* We adopt the LDG assignment ordering used by the N2 NIU
  7572. * 'interrupt' properties because that simplifies a lot of
  7573. * things. This ordering is:
  7574. *
  7575. * MAC
  7576. * MIF (if port zero)
  7577. * SYSERR (if port zero)
  7578. * RX channels
  7579. * TX channels
  7580. */
  7581. ldg_rotor = 0;
  7582. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7583. LDN_MAC(port));
  7584. if (err)
  7585. return err;
  7586. ldg_rotor++;
  7587. if (ldg_rotor == np->num_ldg)
  7588. ldg_rotor = 0;
  7589. if (port == 0) {
  7590. err = niu_ldg_assign_ldn(np, parent,
  7591. ldg_num_map[ldg_rotor],
  7592. LDN_MIF);
  7593. if (err)
  7594. return err;
  7595. ldg_rotor++;
  7596. if (ldg_rotor == np->num_ldg)
  7597. ldg_rotor = 0;
  7598. err = niu_ldg_assign_ldn(np, parent,
  7599. ldg_num_map[ldg_rotor],
  7600. LDN_DEVICE_ERROR);
  7601. if (err)
  7602. return err;
  7603. ldg_rotor++;
  7604. if (ldg_rotor == np->num_ldg)
  7605. ldg_rotor = 0;
  7606. }
  7607. first_chan = 0;
  7608. for (i = 0; i < port; i++)
  7609. first_chan += parent->rxchan_per_port[port];
  7610. num_chan = parent->rxchan_per_port[port];
  7611. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7612. err = niu_ldg_assign_ldn(np, parent,
  7613. ldg_num_map[ldg_rotor],
  7614. LDN_RXDMA(i));
  7615. if (err)
  7616. return err;
  7617. ldg_rotor++;
  7618. if (ldg_rotor == np->num_ldg)
  7619. ldg_rotor = 0;
  7620. }
  7621. first_chan = 0;
  7622. for (i = 0; i < port; i++)
  7623. first_chan += parent->txchan_per_port[port];
  7624. num_chan = parent->txchan_per_port[port];
  7625. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7626. err = niu_ldg_assign_ldn(np, parent,
  7627. ldg_num_map[ldg_rotor],
  7628. LDN_TXDMA(i));
  7629. if (err)
  7630. return err;
  7631. ldg_rotor++;
  7632. if (ldg_rotor == np->num_ldg)
  7633. ldg_rotor = 0;
  7634. }
  7635. return 0;
  7636. }
  7637. static void __devexit niu_ldg_free(struct niu *np)
  7638. {
  7639. if (np->flags & NIU_FLAGS_MSIX)
  7640. pci_disable_msix(np->pdev);
  7641. }
  7642. static int __devinit niu_get_of_props(struct niu *np)
  7643. {
  7644. #ifdef CONFIG_SPARC64
  7645. struct net_device *dev = np->dev;
  7646. struct device_node *dp;
  7647. const char *phy_type;
  7648. const u8 *mac_addr;
  7649. const char *model;
  7650. int prop_len;
  7651. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7652. dp = np->op->dev.of_node;
  7653. else
  7654. dp = pci_device_to_OF_node(np->pdev);
  7655. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7656. if (!phy_type) {
  7657. netdev_err(dev, "%s: OF node lacks phy-type property\n",
  7658. dp->full_name);
  7659. return -EINVAL;
  7660. }
  7661. if (!strcmp(phy_type, "none"))
  7662. return -ENODEV;
  7663. strcpy(np->vpd.phy_type, phy_type);
  7664. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7665. netdev_err(dev, "%s: Illegal phy string [%s]\n",
  7666. dp->full_name, np->vpd.phy_type);
  7667. return -EINVAL;
  7668. }
  7669. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7670. if (!mac_addr) {
  7671. netdev_err(dev, "%s: OF node lacks local-mac-address property\n",
  7672. dp->full_name);
  7673. return -EINVAL;
  7674. }
  7675. if (prop_len != dev->addr_len) {
  7676. netdev_err(dev, "%s: OF MAC address prop len (%d) is wrong\n",
  7677. dp->full_name, prop_len);
  7678. }
  7679. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  7680. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7681. netdev_err(dev, "%s: OF MAC address is invalid\n",
  7682. dp->full_name);
  7683. netdev_err(dev, "%s: [ %pM ]\n", dp->full_name, dev->perm_addr);
  7684. return -EINVAL;
  7685. }
  7686. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7687. model = of_get_property(dp, "model", &prop_len);
  7688. if (model)
  7689. strcpy(np->vpd.model, model);
  7690. if (of_find_property(dp, "hot-swappable-phy", &prop_len)) {
  7691. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  7692. NIU_FLAGS_HOTPLUG_PHY);
  7693. }
  7694. return 0;
  7695. #else
  7696. return -EINVAL;
  7697. #endif
  7698. }
  7699. static int __devinit niu_get_invariants(struct niu *np)
  7700. {
  7701. int err, have_props;
  7702. u32 offset;
  7703. err = niu_get_of_props(np);
  7704. if (err == -ENODEV)
  7705. return err;
  7706. have_props = !err;
  7707. err = niu_init_mac_ipp_pcs_base(np);
  7708. if (err)
  7709. return err;
  7710. if (have_props) {
  7711. err = niu_get_and_validate_port(np);
  7712. if (err)
  7713. return err;
  7714. } else {
  7715. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7716. return -EINVAL;
  7717. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7718. offset = niu_pci_vpd_offset(np);
  7719. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7720. "%s() VPD offset [%08x]\n", __func__, offset);
  7721. if (offset)
  7722. niu_pci_vpd_fetch(np, offset);
  7723. nw64(ESPC_PIO_EN, 0);
  7724. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7725. niu_pci_vpd_validate(np);
  7726. err = niu_get_and_validate_port(np);
  7727. if (err)
  7728. return err;
  7729. }
  7730. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7731. err = niu_get_and_validate_port(np);
  7732. if (err)
  7733. return err;
  7734. err = niu_pci_probe_sprom(np);
  7735. if (err)
  7736. return err;
  7737. }
  7738. }
  7739. err = niu_probe_ports(np);
  7740. if (err)
  7741. return err;
  7742. niu_ldg_init(np);
  7743. niu_classifier_swstate_init(np);
  7744. niu_link_config_init(np);
  7745. err = niu_determine_phy_disposition(np);
  7746. if (!err)
  7747. err = niu_init_link(np);
  7748. return err;
  7749. }
  7750. static LIST_HEAD(niu_parent_list);
  7751. static DEFINE_MUTEX(niu_parent_lock);
  7752. static int niu_parent_index;
  7753. static ssize_t show_port_phy(struct device *dev,
  7754. struct device_attribute *attr, char *buf)
  7755. {
  7756. struct platform_device *plat_dev = to_platform_device(dev);
  7757. struct niu_parent *p = plat_dev->dev.platform_data;
  7758. u32 port_phy = p->port_phy;
  7759. char *orig_buf = buf;
  7760. int i;
  7761. if (port_phy == PORT_PHY_UNKNOWN ||
  7762. port_phy == PORT_PHY_INVALID)
  7763. return 0;
  7764. for (i = 0; i < p->num_ports; i++) {
  7765. const char *type_str;
  7766. int type;
  7767. type = phy_decode(port_phy, i);
  7768. if (type == PORT_TYPE_10G)
  7769. type_str = "10G";
  7770. else
  7771. type_str = "1G";
  7772. buf += sprintf(buf,
  7773. (i == 0) ? "%s" : " %s",
  7774. type_str);
  7775. }
  7776. buf += sprintf(buf, "\n");
  7777. return buf - orig_buf;
  7778. }
  7779. static ssize_t show_plat_type(struct device *dev,
  7780. struct device_attribute *attr, char *buf)
  7781. {
  7782. struct platform_device *plat_dev = to_platform_device(dev);
  7783. struct niu_parent *p = plat_dev->dev.platform_data;
  7784. const char *type_str;
  7785. switch (p->plat_type) {
  7786. case PLAT_TYPE_ATLAS:
  7787. type_str = "atlas";
  7788. break;
  7789. case PLAT_TYPE_NIU:
  7790. type_str = "niu";
  7791. break;
  7792. case PLAT_TYPE_VF_P0:
  7793. type_str = "vf_p0";
  7794. break;
  7795. case PLAT_TYPE_VF_P1:
  7796. type_str = "vf_p1";
  7797. break;
  7798. default:
  7799. type_str = "unknown";
  7800. break;
  7801. }
  7802. return sprintf(buf, "%s\n", type_str);
  7803. }
  7804. static ssize_t __show_chan_per_port(struct device *dev,
  7805. struct device_attribute *attr, char *buf,
  7806. int rx)
  7807. {
  7808. struct platform_device *plat_dev = to_platform_device(dev);
  7809. struct niu_parent *p = plat_dev->dev.platform_data;
  7810. char *orig_buf = buf;
  7811. u8 *arr;
  7812. int i;
  7813. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7814. for (i = 0; i < p->num_ports; i++) {
  7815. buf += sprintf(buf,
  7816. (i == 0) ? "%d" : " %d",
  7817. arr[i]);
  7818. }
  7819. buf += sprintf(buf, "\n");
  7820. return buf - orig_buf;
  7821. }
  7822. static ssize_t show_rxchan_per_port(struct device *dev,
  7823. struct device_attribute *attr, char *buf)
  7824. {
  7825. return __show_chan_per_port(dev, attr, buf, 1);
  7826. }
  7827. static ssize_t show_txchan_per_port(struct device *dev,
  7828. struct device_attribute *attr, char *buf)
  7829. {
  7830. return __show_chan_per_port(dev, attr, buf, 1);
  7831. }
  7832. static ssize_t show_num_ports(struct device *dev,
  7833. struct device_attribute *attr, char *buf)
  7834. {
  7835. struct platform_device *plat_dev = to_platform_device(dev);
  7836. struct niu_parent *p = plat_dev->dev.platform_data;
  7837. return sprintf(buf, "%d\n", p->num_ports);
  7838. }
  7839. static struct device_attribute niu_parent_attributes[] = {
  7840. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  7841. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  7842. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  7843. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  7844. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  7845. {}
  7846. };
  7847. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  7848. union niu_parent_id *id,
  7849. u8 ptype)
  7850. {
  7851. struct platform_device *plat_dev;
  7852. struct niu_parent *p;
  7853. int i;
  7854. plat_dev = platform_device_register_simple("niu", niu_parent_index,
  7855. NULL, 0);
  7856. if (IS_ERR(plat_dev))
  7857. return NULL;
  7858. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  7859. int err = device_create_file(&plat_dev->dev,
  7860. &niu_parent_attributes[i]);
  7861. if (err)
  7862. goto fail_unregister;
  7863. }
  7864. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7865. if (!p)
  7866. goto fail_unregister;
  7867. p->index = niu_parent_index++;
  7868. plat_dev->dev.platform_data = p;
  7869. p->plat_dev = plat_dev;
  7870. memcpy(&p->id, id, sizeof(*id));
  7871. p->plat_type = ptype;
  7872. INIT_LIST_HEAD(&p->list);
  7873. atomic_set(&p->refcnt, 0);
  7874. list_add(&p->list, &niu_parent_list);
  7875. spin_lock_init(&p->lock);
  7876. p->rxdma_clock_divider = 7500;
  7877. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7878. if (p->plat_type == PLAT_TYPE_NIU)
  7879. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7880. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7881. int index = i - CLASS_CODE_USER_PROG1;
  7882. p->tcam_key[index] = TCAM_KEY_TSEL;
  7883. p->flow_key[index] = (FLOW_KEY_IPSA |
  7884. FLOW_KEY_IPDA |
  7885. FLOW_KEY_PROTO |
  7886. (FLOW_KEY_L4_BYTE12 <<
  7887. FLOW_KEY_L4_0_SHIFT) |
  7888. (FLOW_KEY_L4_BYTE12 <<
  7889. FLOW_KEY_L4_1_SHIFT));
  7890. }
  7891. for (i = 0; i < LDN_MAX + 1; i++)
  7892. p->ldg_map[i] = LDG_INVALID;
  7893. return p;
  7894. fail_unregister:
  7895. platform_device_unregister(plat_dev);
  7896. return NULL;
  7897. }
  7898. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  7899. union niu_parent_id *id,
  7900. u8 ptype)
  7901. {
  7902. struct niu_parent *p, *tmp;
  7903. int port = np->port;
  7904. mutex_lock(&niu_parent_lock);
  7905. p = NULL;
  7906. list_for_each_entry(tmp, &niu_parent_list, list) {
  7907. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  7908. p = tmp;
  7909. break;
  7910. }
  7911. }
  7912. if (!p)
  7913. p = niu_new_parent(np, id, ptype);
  7914. if (p) {
  7915. char port_name[6];
  7916. int err;
  7917. sprintf(port_name, "port%d", port);
  7918. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  7919. &np->device->kobj,
  7920. port_name);
  7921. if (!err) {
  7922. p->ports[port] = np;
  7923. atomic_inc(&p->refcnt);
  7924. }
  7925. }
  7926. mutex_unlock(&niu_parent_lock);
  7927. return p;
  7928. }
  7929. static void niu_put_parent(struct niu *np)
  7930. {
  7931. struct niu_parent *p = np->parent;
  7932. u8 port = np->port;
  7933. char port_name[6];
  7934. BUG_ON(!p || p->ports[port] != np);
  7935. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7936. "%s() port[%u]\n", __func__, port);
  7937. sprintf(port_name, "port%d", port);
  7938. mutex_lock(&niu_parent_lock);
  7939. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  7940. p->ports[port] = NULL;
  7941. np->parent = NULL;
  7942. if (atomic_dec_and_test(&p->refcnt)) {
  7943. list_del(&p->list);
  7944. platform_device_unregister(p->plat_dev);
  7945. }
  7946. mutex_unlock(&niu_parent_lock);
  7947. }
  7948. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  7949. u64 *handle, gfp_t flag)
  7950. {
  7951. dma_addr_t dh;
  7952. void *ret;
  7953. ret = dma_alloc_coherent(dev, size, &dh, flag);
  7954. if (ret)
  7955. *handle = dh;
  7956. return ret;
  7957. }
  7958. static void niu_pci_free_coherent(struct device *dev, size_t size,
  7959. void *cpu_addr, u64 handle)
  7960. {
  7961. dma_free_coherent(dev, size, cpu_addr, handle);
  7962. }
  7963. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  7964. unsigned long offset, size_t size,
  7965. enum dma_data_direction direction)
  7966. {
  7967. return dma_map_page(dev, page, offset, size, direction);
  7968. }
  7969. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  7970. size_t size, enum dma_data_direction direction)
  7971. {
  7972. dma_unmap_page(dev, dma_address, size, direction);
  7973. }
  7974. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  7975. size_t size,
  7976. enum dma_data_direction direction)
  7977. {
  7978. return dma_map_single(dev, cpu_addr, size, direction);
  7979. }
  7980. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  7981. size_t size,
  7982. enum dma_data_direction direction)
  7983. {
  7984. dma_unmap_single(dev, dma_address, size, direction);
  7985. }
  7986. static const struct niu_ops niu_pci_ops = {
  7987. .alloc_coherent = niu_pci_alloc_coherent,
  7988. .free_coherent = niu_pci_free_coherent,
  7989. .map_page = niu_pci_map_page,
  7990. .unmap_page = niu_pci_unmap_page,
  7991. .map_single = niu_pci_map_single,
  7992. .unmap_single = niu_pci_unmap_single,
  7993. };
  7994. static void __devinit niu_driver_version(void)
  7995. {
  7996. static int niu_version_printed;
  7997. if (niu_version_printed++ == 0)
  7998. pr_info("%s", version);
  7999. }
  8000. static struct net_device * __devinit niu_alloc_and_init(
  8001. struct device *gen_dev, struct pci_dev *pdev,
  8002. struct platform_device *op, const struct niu_ops *ops,
  8003. u8 port)
  8004. {
  8005. struct net_device *dev;
  8006. struct niu *np;
  8007. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  8008. if (!dev) {
  8009. dev_err(gen_dev, "Etherdev alloc failed, aborting\n");
  8010. return NULL;
  8011. }
  8012. SET_NETDEV_DEV(dev, gen_dev);
  8013. np = netdev_priv(dev);
  8014. np->dev = dev;
  8015. np->pdev = pdev;
  8016. np->op = op;
  8017. np->device = gen_dev;
  8018. np->ops = ops;
  8019. np->msg_enable = niu_debug;
  8020. spin_lock_init(&np->lock);
  8021. INIT_WORK(&np->reset_task, niu_reset_task);
  8022. np->port = port;
  8023. return dev;
  8024. }
  8025. static const struct net_device_ops niu_netdev_ops = {
  8026. .ndo_open = niu_open,
  8027. .ndo_stop = niu_close,
  8028. .ndo_start_xmit = niu_start_xmit,
  8029. .ndo_get_stats = niu_get_stats,
  8030. .ndo_set_multicast_list = niu_set_rx_mode,
  8031. .ndo_validate_addr = eth_validate_addr,
  8032. .ndo_set_mac_address = niu_set_mac_addr,
  8033. .ndo_do_ioctl = niu_ioctl,
  8034. .ndo_tx_timeout = niu_tx_timeout,
  8035. .ndo_change_mtu = niu_change_mtu,
  8036. };
  8037. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  8038. {
  8039. dev->netdev_ops = &niu_netdev_ops;
  8040. dev->ethtool_ops = &niu_ethtool_ops;
  8041. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8042. }
  8043. static void __devinit niu_device_announce(struct niu *np)
  8044. {
  8045. struct net_device *dev = np->dev;
  8046. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8047. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8048. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8049. dev->name,
  8050. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8051. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8052. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8053. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8054. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8055. np->vpd.phy_type);
  8056. } else {
  8057. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8058. dev->name,
  8059. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8060. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8061. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8062. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8063. "COPPER")),
  8064. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8065. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8066. np->vpd.phy_type);
  8067. }
  8068. }
  8069. static void __devinit niu_set_basic_features(struct net_device *dev)
  8070. {
  8071. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM |
  8072. NETIF_F_GRO | NETIF_F_RXHASH);
  8073. }
  8074. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  8075. const struct pci_device_id *ent)
  8076. {
  8077. union niu_parent_id parent_id;
  8078. struct net_device *dev;
  8079. struct niu *np;
  8080. int err, pos;
  8081. u64 dma_mask;
  8082. u16 val16;
  8083. niu_driver_version();
  8084. err = pci_enable_device(pdev);
  8085. if (err) {
  8086. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  8087. return err;
  8088. }
  8089. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8090. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8091. dev_err(&pdev->dev, "Cannot find proper PCI device base addresses, aborting\n");
  8092. err = -ENODEV;
  8093. goto err_out_disable_pdev;
  8094. }
  8095. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8096. if (err) {
  8097. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  8098. goto err_out_disable_pdev;
  8099. }
  8100. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  8101. if (pos <= 0) {
  8102. dev_err(&pdev->dev, "Cannot find PCI Express capability, aborting\n");
  8103. goto err_out_free_res;
  8104. }
  8105. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8106. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8107. if (!dev) {
  8108. err = -ENOMEM;
  8109. goto err_out_free_res;
  8110. }
  8111. np = netdev_priv(dev);
  8112. memset(&parent_id, 0, sizeof(parent_id));
  8113. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8114. parent_id.pci.bus = pdev->bus->number;
  8115. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8116. np->parent = niu_get_parent(np, &parent_id,
  8117. PLAT_TYPE_ATLAS);
  8118. if (!np->parent) {
  8119. err = -ENOMEM;
  8120. goto err_out_free_dev;
  8121. }
  8122. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  8123. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  8124. val16 |= (PCI_EXP_DEVCTL_CERE |
  8125. PCI_EXP_DEVCTL_NFERE |
  8126. PCI_EXP_DEVCTL_FERE |
  8127. PCI_EXP_DEVCTL_URRE |
  8128. PCI_EXP_DEVCTL_RELAX_EN);
  8129. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  8130. dma_mask = DMA_BIT_MASK(44);
  8131. err = pci_set_dma_mask(pdev, dma_mask);
  8132. if (!err) {
  8133. dev->features |= NETIF_F_HIGHDMA;
  8134. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  8135. if (err) {
  8136. dev_err(&pdev->dev, "Unable to obtain 44 bit DMA for consistent allocations, aborting\n");
  8137. goto err_out_release_parent;
  8138. }
  8139. }
  8140. if (err || dma_mask == DMA_BIT_MASK(32)) {
  8141. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  8142. if (err) {
  8143. dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
  8144. goto err_out_release_parent;
  8145. }
  8146. }
  8147. niu_set_basic_features(dev);
  8148. np->regs = pci_ioremap_bar(pdev, 0);
  8149. if (!np->regs) {
  8150. dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
  8151. err = -ENOMEM;
  8152. goto err_out_release_parent;
  8153. }
  8154. pci_set_master(pdev);
  8155. pci_save_state(pdev);
  8156. dev->irq = pdev->irq;
  8157. niu_assign_netdev_ops(dev);
  8158. err = niu_get_invariants(np);
  8159. if (err) {
  8160. if (err != -ENODEV)
  8161. dev_err(&pdev->dev, "Problem fetching invariants of chip, aborting\n");
  8162. goto err_out_iounmap;
  8163. }
  8164. err = register_netdev(dev);
  8165. if (err) {
  8166. dev_err(&pdev->dev, "Cannot register net device, aborting\n");
  8167. goto err_out_iounmap;
  8168. }
  8169. pci_set_drvdata(pdev, dev);
  8170. niu_device_announce(np);
  8171. return 0;
  8172. err_out_iounmap:
  8173. if (np->regs) {
  8174. iounmap(np->regs);
  8175. np->regs = NULL;
  8176. }
  8177. err_out_release_parent:
  8178. niu_put_parent(np);
  8179. err_out_free_dev:
  8180. free_netdev(dev);
  8181. err_out_free_res:
  8182. pci_release_regions(pdev);
  8183. err_out_disable_pdev:
  8184. pci_disable_device(pdev);
  8185. pci_set_drvdata(pdev, NULL);
  8186. return err;
  8187. }
  8188. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  8189. {
  8190. struct net_device *dev = pci_get_drvdata(pdev);
  8191. if (dev) {
  8192. struct niu *np = netdev_priv(dev);
  8193. unregister_netdev(dev);
  8194. if (np->regs) {
  8195. iounmap(np->regs);
  8196. np->regs = NULL;
  8197. }
  8198. niu_ldg_free(np);
  8199. niu_put_parent(np);
  8200. free_netdev(dev);
  8201. pci_release_regions(pdev);
  8202. pci_disable_device(pdev);
  8203. pci_set_drvdata(pdev, NULL);
  8204. }
  8205. }
  8206. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  8207. {
  8208. struct net_device *dev = pci_get_drvdata(pdev);
  8209. struct niu *np = netdev_priv(dev);
  8210. unsigned long flags;
  8211. if (!netif_running(dev))
  8212. return 0;
  8213. flush_work_sync(&np->reset_task);
  8214. niu_netif_stop(np);
  8215. del_timer_sync(&np->timer);
  8216. spin_lock_irqsave(&np->lock, flags);
  8217. niu_enable_interrupts(np, 0);
  8218. spin_unlock_irqrestore(&np->lock, flags);
  8219. netif_device_detach(dev);
  8220. spin_lock_irqsave(&np->lock, flags);
  8221. niu_stop_hw(np);
  8222. spin_unlock_irqrestore(&np->lock, flags);
  8223. pci_save_state(pdev);
  8224. return 0;
  8225. }
  8226. static int niu_resume(struct pci_dev *pdev)
  8227. {
  8228. struct net_device *dev = pci_get_drvdata(pdev);
  8229. struct niu *np = netdev_priv(dev);
  8230. unsigned long flags;
  8231. int err;
  8232. if (!netif_running(dev))
  8233. return 0;
  8234. pci_restore_state(pdev);
  8235. netif_device_attach(dev);
  8236. spin_lock_irqsave(&np->lock, flags);
  8237. err = niu_init_hw(np);
  8238. if (!err) {
  8239. np->timer.expires = jiffies + HZ;
  8240. add_timer(&np->timer);
  8241. niu_netif_start(np);
  8242. }
  8243. spin_unlock_irqrestore(&np->lock, flags);
  8244. return err;
  8245. }
  8246. static struct pci_driver niu_pci_driver = {
  8247. .name = DRV_MODULE_NAME,
  8248. .id_table = niu_pci_tbl,
  8249. .probe = niu_pci_init_one,
  8250. .remove = __devexit_p(niu_pci_remove_one),
  8251. .suspend = niu_suspend,
  8252. .resume = niu_resume,
  8253. };
  8254. #ifdef CONFIG_SPARC64
  8255. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8256. u64 *dma_addr, gfp_t flag)
  8257. {
  8258. unsigned long order = get_order(size);
  8259. unsigned long page = __get_free_pages(flag, order);
  8260. if (page == 0UL)
  8261. return NULL;
  8262. memset((char *)page, 0, PAGE_SIZE << order);
  8263. *dma_addr = __pa(page);
  8264. return (void *) page;
  8265. }
  8266. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8267. void *cpu_addr, u64 handle)
  8268. {
  8269. unsigned long order = get_order(size);
  8270. free_pages((unsigned long) cpu_addr, order);
  8271. }
  8272. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8273. unsigned long offset, size_t size,
  8274. enum dma_data_direction direction)
  8275. {
  8276. return page_to_phys(page) + offset;
  8277. }
  8278. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8279. size_t size, enum dma_data_direction direction)
  8280. {
  8281. /* Nothing to do. */
  8282. }
  8283. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8284. size_t size,
  8285. enum dma_data_direction direction)
  8286. {
  8287. return __pa(cpu_addr);
  8288. }
  8289. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8290. size_t size,
  8291. enum dma_data_direction direction)
  8292. {
  8293. /* Nothing to do. */
  8294. }
  8295. static const struct niu_ops niu_phys_ops = {
  8296. .alloc_coherent = niu_phys_alloc_coherent,
  8297. .free_coherent = niu_phys_free_coherent,
  8298. .map_page = niu_phys_map_page,
  8299. .unmap_page = niu_phys_unmap_page,
  8300. .map_single = niu_phys_map_single,
  8301. .unmap_single = niu_phys_unmap_single,
  8302. };
  8303. static int __devinit niu_of_probe(struct platform_device *op,
  8304. const struct of_device_id *match)
  8305. {
  8306. union niu_parent_id parent_id;
  8307. struct net_device *dev;
  8308. struct niu *np;
  8309. const u32 *reg;
  8310. int err;
  8311. niu_driver_version();
  8312. reg = of_get_property(op->dev.of_node, "reg", NULL);
  8313. if (!reg) {
  8314. dev_err(&op->dev, "%s: No 'reg' property, aborting\n",
  8315. op->dev.of_node->full_name);
  8316. return -ENODEV;
  8317. }
  8318. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8319. &niu_phys_ops, reg[0] & 0x1);
  8320. if (!dev) {
  8321. err = -ENOMEM;
  8322. goto err_out;
  8323. }
  8324. np = netdev_priv(dev);
  8325. memset(&parent_id, 0, sizeof(parent_id));
  8326. parent_id.of = of_get_parent(op->dev.of_node);
  8327. np->parent = niu_get_parent(np, &parent_id,
  8328. PLAT_TYPE_NIU);
  8329. if (!np->parent) {
  8330. err = -ENOMEM;
  8331. goto err_out_free_dev;
  8332. }
  8333. niu_set_basic_features(dev);
  8334. np->regs = of_ioremap(&op->resource[1], 0,
  8335. resource_size(&op->resource[1]),
  8336. "niu regs");
  8337. if (!np->regs) {
  8338. dev_err(&op->dev, "Cannot map device registers, aborting\n");
  8339. err = -ENOMEM;
  8340. goto err_out_release_parent;
  8341. }
  8342. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8343. resource_size(&op->resource[2]),
  8344. "niu vregs-1");
  8345. if (!np->vir_regs_1) {
  8346. dev_err(&op->dev, "Cannot map device vir registers 1, aborting\n");
  8347. err = -ENOMEM;
  8348. goto err_out_iounmap;
  8349. }
  8350. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8351. resource_size(&op->resource[3]),
  8352. "niu vregs-2");
  8353. if (!np->vir_regs_2) {
  8354. dev_err(&op->dev, "Cannot map device vir registers 2, aborting\n");
  8355. err = -ENOMEM;
  8356. goto err_out_iounmap;
  8357. }
  8358. niu_assign_netdev_ops(dev);
  8359. err = niu_get_invariants(np);
  8360. if (err) {
  8361. if (err != -ENODEV)
  8362. dev_err(&op->dev, "Problem fetching invariants of chip, aborting\n");
  8363. goto err_out_iounmap;
  8364. }
  8365. err = register_netdev(dev);
  8366. if (err) {
  8367. dev_err(&op->dev, "Cannot register net device, aborting\n");
  8368. goto err_out_iounmap;
  8369. }
  8370. dev_set_drvdata(&op->dev, dev);
  8371. niu_device_announce(np);
  8372. return 0;
  8373. err_out_iounmap:
  8374. if (np->vir_regs_1) {
  8375. of_iounmap(&op->resource[2], np->vir_regs_1,
  8376. resource_size(&op->resource[2]));
  8377. np->vir_regs_1 = NULL;
  8378. }
  8379. if (np->vir_regs_2) {
  8380. of_iounmap(&op->resource[3], np->vir_regs_2,
  8381. resource_size(&op->resource[3]));
  8382. np->vir_regs_2 = NULL;
  8383. }
  8384. if (np->regs) {
  8385. of_iounmap(&op->resource[1], np->regs,
  8386. resource_size(&op->resource[1]));
  8387. np->regs = NULL;
  8388. }
  8389. err_out_release_parent:
  8390. niu_put_parent(np);
  8391. err_out_free_dev:
  8392. free_netdev(dev);
  8393. err_out:
  8394. return err;
  8395. }
  8396. static int __devexit niu_of_remove(struct platform_device *op)
  8397. {
  8398. struct net_device *dev = dev_get_drvdata(&op->dev);
  8399. if (dev) {
  8400. struct niu *np = netdev_priv(dev);
  8401. unregister_netdev(dev);
  8402. if (np->vir_regs_1) {
  8403. of_iounmap(&op->resource[2], np->vir_regs_1,
  8404. resource_size(&op->resource[2]));
  8405. np->vir_regs_1 = NULL;
  8406. }
  8407. if (np->vir_regs_2) {
  8408. of_iounmap(&op->resource[3], np->vir_regs_2,
  8409. resource_size(&op->resource[3]));
  8410. np->vir_regs_2 = NULL;
  8411. }
  8412. if (np->regs) {
  8413. of_iounmap(&op->resource[1], np->regs,
  8414. resource_size(&op->resource[1]));
  8415. np->regs = NULL;
  8416. }
  8417. niu_ldg_free(np);
  8418. niu_put_parent(np);
  8419. free_netdev(dev);
  8420. dev_set_drvdata(&op->dev, NULL);
  8421. }
  8422. return 0;
  8423. }
  8424. static const struct of_device_id niu_match[] = {
  8425. {
  8426. .name = "network",
  8427. .compatible = "SUNW,niusl",
  8428. },
  8429. {},
  8430. };
  8431. MODULE_DEVICE_TABLE(of, niu_match);
  8432. static struct of_platform_driver niu_of_driver = {
  8433. .driver = {
  8434. .name = "niu",
  8435. .owner = THIS_MODULE,
  8436. .of_match_table = niu_match,
  8437. },
  8438. .probe = niu_of_probe,
  8439. .remove = __devexit_p(niu_of_remove),
  8440. };
  8441. #endif /* CONFIG_SPARC64 */
  8442. static int __init niu_init(void)
  8443. {
  8444. int err = 0;
  8445. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8446. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8447. #ifdef CONFIG_SPARC64
  8448. err = of_register_platform_driver(&niu_of_driver);
  8449. #endif
  8450. if (!err) {
  8451. err = pci_register_driver(&niu_pci_driver);
  8452. #ifdef CONFIG_SPARC64
  8453. if (err)
  8454. of_unregister_platform_driver(&niu_of_driver);
  8455. #endif
  8456. }
  8457. return err;
  8458. }
  8459. static void __exit niu_exit(void)
  8460. {
  8461. pci_unregister_driver(&niu_pci_driver);
  8462. #ifdef CONFIG_SPARC64
  8463. of_unregister_platform_driver(&niu_of_driver);
  8464. #endif
  8465. }
  8466. module_init(niu_init);
  8467. module_exit(niu_exit);