bnx2.c 208 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2010 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <linux/module.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/kernel.h>
  15. #include <linux/timer.h>
  16. #include <linux/errno.h>
  17. #include <linux/ioport.h>
  18. #include <linux/slab.h>
  19. #include <linux/vmalloc.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pci.h>
  22. #include <linux/init.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/bitops.h>
  28. #include <asm/io.h>
  29. #include <asm/irq.h>
  30. #include <linux/delay.h>
  31. #include <asm/byteorder.h>
  32. #include <asm/page.h>
  33. #include <linux/time.h>
  34. #include <linux/ethtool.h>
  35. #include <linux/mii.h>
  36. #include <linux/if_vlan.h>
  37. #include <net/ip.h>
  38. #include <net/tcp.h>
  39. #include <net/checksum.h>
  40. #include <linux/workqueue.h>
  41. #include <linux/crc32.h>
  42. #include <linux/prefetch.h>
  43. #include <linux/cache.h>
  44. #include <linux/firmware.h>
  45. #include <linux/log2.h>
  46. #include <linux/aer.h>
  47. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  48. #define BCM_CNIC 1
  49. #include "cnic_if.h"
  50. #endif
  51. #include "bnx2.h"
  52. #include "bnx2_fw.h"
  53. #define DRV_MODULE_NAME "bnx2"
  54. #define DRV_MODULE_VERSION "2.0.21"
  55. #define DRV_MODULE_RELDATE "Dec 23, 2010"
  56. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.1.fw"
  57. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
  58. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1.fw"
  59. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
  60. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
  61. #define RUN_AT(x) (jiffies + (x))
  62. /* Time in jiffies before concluding the transmitter is hung. */
  63. #define TX_TIMEOUT (5*HZ)
  64. static char version[] __devinitdata =
  65. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  66. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  67. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  68. MODULE_LICENSE("GPL");
  69. MODULE_VERSION(DRV_MODULE_VERSION);
  70. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  71. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  72. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  73. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  74. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  75. static int disable_msi = 0;
  76. module_param(disable_msi, int, 0);
  77. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  78. typedef enum {
  79. BCM5706 = 0,
  80. NC370T,
  81. NC370I,
  82. BCM5706S,
  83. NC370F,
  84. BCM5708,
  85. BCM5708S,
  86. BCM5709,
  87. BCM5709S,
  88. BCM5716,
  89. BCM5716S,
  90. } board_t;
  91. /* indexed by board_t, above */
  92. static struct {
  93. char *name;
  94. } board_info[] __devinitdata = {
  95. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  96. { "HP NC370T Multifunction Gigabit Server Adapter" },
  97. { "HP NC370i Multifunction Gigabit Server Adapter" },
  98. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  99. { "HP NC370F Multifunction Gigabit Server Adapter" },
  100. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  101. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  102. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  103. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  104. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  105. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  106. };
  107. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  108. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  109. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  110. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  111. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  112. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  113. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  114. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  115. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  116. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  117. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  118. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  119. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  120. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  121. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  122. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  123. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  124. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  125. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  126. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  127. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  128. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  129. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  130. { 0, }
  131. };
  132. static const struct flash_spec flash_table[] =
  133. {
  134. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  135. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  136. /* Slow EEPROM */
  137. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  138. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  139. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  140. "EEPROM - slow"},
  141. /* Expansion entry 0001 */
  142. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  143. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  144. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  145. "Entry 0001"},
  146. /* Saifun SA25F010 (non-buffered flash) */
  147. /* strap, cfg1, & write1 need updates */
  148. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  149. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  150. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  151. "Non-buffered flash (128kB)"},
  152. /* Saifun SA25F020 (non-buffered flash) */
  153. /* strap, cfg1, & write1 need updates */
  154. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  155. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  156. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  157. "Non-buffered flash (256kB)"},
  158. /* Expansion entry 0100 */
  159. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  160. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  161. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  162. "Entry 0100"},
  163. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  164. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  165. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  166. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  167. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  168. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  169. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  170. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  171. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  172. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  173. /* Saifun SA25F005 (non-buffered flash) */
  174. /* strap, cfg1, & write1 need updates */
  175. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  176. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  177. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  178. "Non-buffered flash (64kB)"},
  179. /* Fast EEPROM */
  180. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  181. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  182. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  183. "EEPROM - fast"},
  184. /* Expansion entry 1001 */
  185. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  186. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  187. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  188. "Entry 1001"},
  189. /* Expansion entry 1010 */
  190. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  191. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  192. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  193. "Entry 1010"},
  194. /* ATMEL AT45DB011B (buffered flash) */
  195. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  196. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  197. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  198. "Buffered flash (128kB)"},
  199. /* Expansion entry 1100 */
  200. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  201. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  202. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  203. "Entry 1100"},
  204. /* Expansion entry 1101 */
  205. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  206. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  207. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  208. "Entry 1101"},
  209. /* Ateml Expansion entry 1110 */
  210. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  211. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  212. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  213. "Entry 1110 (Atmel)"},
  214. /* ATMEL AT45DB021B (buffered flash) */
  215. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  216. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  217. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  218. "Buffered flash (256kB)"},
  219. };
  220. static const struct flash_spec flash_5709 = {
  221. .flags = BNX2_NV_BUFFERED,
  222. .page_bits = BCM5709_FLASH_PAGE_BITS,
  223. .page_size = BCM5709_FLASH_PAGE_SIZE,
  224. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  225. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  226. .name = "5709 Buffered flash (256kB)",
  227. };
  228. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  229. static void bnx2_init_napi(struct bnx2 *bp);
  230. static void bnx2_del_napi(struct bnx2 *bp);
  231. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  232. {
  233. u32 diff;
  234. /* Tell compiler to fetch tx_prod and tx_cons from memory. */
  235. barrier();
  236. /* The ring uses 256 indices for 255 entries, one of them
  237. * needs to be skipped.
  238. */
  239. diff = txr->tx_prod - txr->tx_cons;
  240. if (unlikely(diff >= TX_DESC_CNT)) {
  241. diff &= 0xffff;
  242. if (diff == TX_DESC_CNT)
  243. diff = MAX_TX_DESC_CNT;
  244. }
  245. return bp->tx_ring_size - diff;
  246. }
  247. static u32
  248. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  249. {
  250. u32 val;
  251. spin_lock_bh(&bp->indirect_lock);
  252. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  253. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  254. spin_unlock_bh(&bp->indirect_lock);
  255. return val;
  256. }
  257. static void
  258. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  259. {
  260. spin_lock_bh(&bp->indirect_lock);
  261. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  262. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  263. spin_unlock_bh(&bp->indirect_lock);
  264. }
  265. static void
  266. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  267. {
  268. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  269. }
  270. static u32
  271. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  272. {
  273. return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
  274. }
  275. static void
  276. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  277. {
  278. offset += cid_addr;
  279. spin_lock_bh(&bp->indirect_lock);
  280. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  281. int i;
  282. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  283. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  284. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  285. for (i = 0; i < 5; i++) {
  286. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  287. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  288. break;
  289. udelay(5);
  290. }
  291. } else {
  292. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  293. REG_WR(bp, BNX2_CTX_DATA, val);
  294. }
  295. spin_unlock_bh(&bp->indirect_lock);
  296. }
  297. #ifdef BCM_CNIC
  298. static int
  299. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  300. {
  301. struct bnx2 *bp = netdev_priv(dev);
  302. struct drv_ctl_io *io = &info->data.io;
  303. switch (info->cmd) {
  304. case DRV_CTL_IO_WR_CMD:
  305. bnx2_reg_wr_ind(bp, io->offset, io->data);
  306. break;
  307. case DRV_CTL_IO_RD_CMD:
  308. io->data = bnx2_reg_rd_ind(bp, io->offset);
  309. break;
  310. case DRV_CTL_CTX_WR_CMD:
  311. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  312. break;
  313. default:
  314. return -EINVAL;
  315. }
  316. return 0;
  317. }
  318. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  319. {
  320. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  321. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  322. int sb_id;
  323. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  324. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  325. bnapi->cnic_present = 0;
  326. sb_id = bp->irq_nvecs;
  327. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  328. } else {
  329. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  330. bnapi->cnic_tag = bnapi->last_status_idx;
  331. bnapi->cnic_present = 1;
  332. sb_id = 0;
  333. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  334. }
  335. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  336. cp->irq_arr[0].status_blk = (void *)
  337. ((unsigned long) bnapi->status_blk.msi +
  338. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  339. cp->irq_arr[0].status_blk_num = sb_id;
  340. cp->num_irq = 1;
  341. }
  342. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  343. void *data)
  344. {
  345. struct bnx2 *bp = netdev_priv(dev);
  346. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  347. if (ops == NULL)
  348. return -EINVAL;
  349. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  350. return -EBUSY;
  351. bp->cnic_data = data;
  352. rcu_assign_pointer(bp->cnic_ops, ops);
  353. cp->num_irq = 0;
  354. cp->drv_state = CNIC_DRV_STATE_REGD;
  355. bnx2_setup_cnic_irq_info(bp);
  356. return 0;
  357. }
  358. static int bnx2_unregister_cnic(struct net_device *dev)
  359. {
  360. struct bnx2 *bp = netdev_priv(dev);
  361. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  362. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  363. mutex_lock(&bp->cnic_lock);
  364. cp->drv_state = 0;
  365. bnapi->cnic_present = 0;
  366. rcu_assign_pointer(bp->cnic_ops, NULL);
  367. mutex_unlock(&bp->cnic_lock);
  368. synchronize_rcu();
  369. return 0;
  370. }
  371. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  372. {
  373. struct bnx2 *bp = netdev_priv(dev);
  374. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  375. cp->drv_owner = THIS_MODULE;
  376. cp->chip_id = bp->chip_id;
  377. cp->pdev = bp->pdev;
  378. cp->io_base = bp->regview;
  379. cp->drv_ctl = bnx2_drv_ctl;
  380. cp->drv_register_cnic = bnx2_register_cnic;
  381. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  382. return cp;
  383. }
  384. EXPORT_SYMBOL(bnx2_cnic_probe);
  385. static void
  386. bnx2_cnic_stop(struct bnx2 *bp)
  387. {
  388. struct cnic_ops *c_ops;
  389. struct cnic_ctl_info info;
  390. mutex_lock(&bp->cnic_lock);
  391. c_ops = bp->cnic_ops;
  392. if (c_ops) {
  393. info.cmd = CNIC_CTL_STOP_CMD;
  394. c_ops->cnic_ctl(bp->cnic_data, &info);
  395. }
  396. mutex_unlock(&bp->cnic_lock);
  397. }
  398. static void
  399. bnx2_cnic_start(struct bnx2 *bp)
  400. {
  401. struct cnic_ops *c_ops;
  402. struct cnic_ctl_info info;
  403. mutex_lock(&bp->cnic_lock);
  404. c_ops = bp->cnic_ops;
  405. if (c_ops) {
  406. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  407. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  408. bnapi->cnic_tag = bnapi->last_status_idx;
  409. }
  410. info.cmd = CNIC_CTL_START_CMD;
  411. c_ops->cnic_ctl(bp->cnic_data, &info);
  412. }
  413. mutex_unlock(&bp->cnic_lock);
  414. }
  415. #else
  416. static void
  417. bnx2_cnic_stop(struct bnx2 *bp)
  418. {
  419. }
  420. static void
  421. bnx2_cnic_start(struct bnx2 *bp)
  422. {
  423. }
  424. #endif
  425. static int
  426. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  427. {
  428. u32 val1;
  429. int i, ret;
  430. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  431. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  432. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  433. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  434. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  435. udelay(40);
  436. }
  437. val1 = (bp->phy_addr << 21) | (reg << 16) |
  438. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  439. BNX2_EMAC_MDIO_COMM_START_BUSY;
  440. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  441. for (i = 0; i < 50; i++) {
  442. udelay(10);
  443. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  444. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  445. udelay(5);
  446. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  447. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  448. break;
  449. }
  450. }
  451. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  452. *val = 0x0;
  453. ret = -EBUSY;
  454. }
  455. else {
  456. *val = val1;
  457. ret = 0;
  458. }
  459. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  460. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  461. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  462. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  463. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  464. udelay(40);
  465. }
  466. return ret;
  467. }
  468. static int
  469. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  470. {
  471. u32 val1;
  472. int i, ret;
  473. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  474. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  475. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  476. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  477. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  478. udelay(40);
  479. }
  480. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  481. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  482. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  483. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  484. for (i = 0; i < 50; i++) {
  485. udelay(10);
  486. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  487. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  488. udelay(5);
  489. break;
  490. }
  491. }
  492. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  493. ret = -EBUSY;
  494. else
  495. ret = 0;
  496. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  497. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  498. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  499. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  500. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  501. udelay(40);
  502. }
  503. return ret;
  504. }
  505. static void
  506. bnx2_disable_int(struct bnx2 *bp)
  507. {
  508. int i;
  509. struct bnx2_napi *bnapi;
  510. for (i = 0; i < bp->irq_nvecs; i++) {
  511. bnapi = &bp->bnx2_napi[i];
  512. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  513. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  514. }
  515. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  516. }
  517. static void
  518. bnx2_enable_int(struct bnx2 *bp)
  519. {
  520. int i;
  521. struct bnx2_napi *bnapi;
  522. for (i = 0; i < bp->irq_nvecs; i++) {
  523. bnapi = &bp->bnx2_napi[i];
  524. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  525. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  526. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  527. bnapi->last_status_idx);
  528. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  529. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  530. bnapi->last_status_idx);
  531. }
  532. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  533. }
  534. static void
  535. bnx2_disable_int_sync(struct bnx2 *bp)
  536. {
  537. int i;
  538. atomic_inc(&bp->intr_sem);
  539. if (!netif_running(bp->dev))
  540. return;
  541. bnx2_disable_int(bp);
  542. for (i = 0; i < bp->irq_nvecs; i++)
  543. synchronize_irq(bp->irq_tbl[i].vector);
  544. }
  545. static void
  546. bnx2_napi_disable(struct bnx2 *bp)
  547. {
  548. int i;
  549. for (i = 0; i < bp->irq_nvecs; i++)
  550. napi_disable(&bp->bnx2_napi[i].napi);
  551. }
  552. static void
  553. bnx2_napi_enable(struct bnx2 *bp)
  554. {
  555. int i;
  556. for (i = 0; i < bp->irq_nvecs; i++)
  557. napi_enable(&bp->bnx2_napi[i].napi);
  558. }
  559. static void
  560. bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
  561. {
  562. if (stop_cnic)
  563. bnx2_cnic_stop(bp);
  564. if (netif_running(bp->dev)) {
  565. bnx2_napi_disable(bp);
  566. netif_tx_disable(bp->dev);
  567. }
  568. bnx2_disable_int_sync(bp);
  569. netif_carrier_off(bp->dev); /* prevent tx timeout */
  570. }
  571. static void
  572. bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
  573. {
  574. if (atomic_dec_and_test(&bp->intr_sem)) {
  575. if (netif_running(bp->dev)) {
  576. netif_tx_wake_all_queues(bp->dev);
  577. spin_lock_bh(&bp->phy_lock);
  578. if (bp->link_up)
  579. netif_carrier_on(bp->dev);
  580. spin_unlock_bh(&bp->phy_lock);
  581. bnx2_napi_enable(bp);
  582. bnx2_enable_int(bp);
  583. if (start_cnic)
  584. bnx2_cnic_start(bp);
  585. }
  586. }
  587. }
  588. static void
  589. bnx2_free_tx_mem(struct bnx2 *bp)
  590. {
  591. int i;
  592. for (i = 0; i < bp->num_tx_rings; i++) {
  593. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  594. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  595. if (txr->tx_desc_ring) {
  596. dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  597. txr->tx_desc_ring,
  598. txr->tx_desc_mapping);
  599. txr->tx_desc_ring = NULL;
  600. }
  601. kfree(txr->tx_buf_ring);
  602. txr->tx_buf_ring = NULL;
  603. }
  604. }
  605. static void
  606. bnx2_free_rx_mem(struct bnx2 *bp)
  607. {
  608. int i;
  609. for (i = 0; i < bp->num_rx_rings; i++) {
  610. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  611. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  612. int j;
  613. for (j = 0; j < bp->rx_max_ring; j++) {
  614. if (rxr->rx_desc_ring[j])
  615. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  616. rxr->rx_desc_ring[j],
  617. rxr->rx_desc_mapping[j]);
  618. rxr->rx_desc_ring[j] = NULL;
  619. }
  620. vfree(rxr->rx_buf_ring);
  621. rxr->rx_buf_ring = NULL;
  622. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  623. if (rxr->rx_pg_desc_ring[j])
  624. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  625. rxr->rx_pg_desc_ring[j],
  626. rxr->rx_pg_desc_mapping[j]);
  627. rxr->rx_pg_desc_ring[j] = NULL;
  628. }
  629. vfree(rxr->rx_pg_ring);
  630. rxr->rx_pg_ring = NULL;
  631. }
  632. }
  633. static int
  634. bnx2_alloc_tx_mem(struct bnx2 *bp)
  635. {
  636. int i;
  637. for (i = 0; i < bp->num_tx_rings; i++) {
  638. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  639. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  640. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  641. if (txr->tx_buf_ring == NULL)
  642. return -ENOMEM;
  643. txr->tx_desc_ring =
  644. dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  645. &txr->tx_desc_mapping, GFP_KERNEL);
  646. if (txr->tx_desc_ring == NULL)
  647. return -ENOMEM;
  648. }
  649. return 0;
  650. }
  651. static int
  652. bnx2_alloc_rx_mem(struct bnx2 *bp)
  653. {
  654. int i;
  655. for (i = 0; i < bp->num_rx_rings; i++) {
  656. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  657. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  658. int j;
  659. rxr->rx_buf_ring =
  660. vzalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  661. if (rxr->rx_buf_ring == NULL)
  662. return -ENOMEM;
  663. for (j = 0; j < bp->rx_max_ring; j++) {
  664. rxr->rx_desc_ring[j] =
  665. dma_alloc_coherent(&bp->pdev->dev,
  666. RXBD_RING_SIZE,
  667. &rxr->rx_desc_mapping[j],
  668. GFP_KERNEL);
  669. if (rxr->rx_desc_ring[j] == NULL)
  670. return -ENOMEM;
  671. }
  672. if (bp->rx_pg_ring_size) {
  673. rxr->rx_pg_ring = vzalloc(SW_RXPG_RING_SIZE *
  674. bp->rx_max_pg_ring);
  675. if (rxr->rx_pg_ring == NULL)
  676. return -ENOMEM;
  677. }
  678. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  679. rxr->rx_pg_desc_ring[j] =
  680. dma_alloc_coherent(&bp->pdev->dev,
  681. RXBD_RING_SIZE,
  682. &rxr->rx_pg_desc_mapping[j],
  683. GFP_KERNEL);
  684. if (rxr->rx_pg_desc_ring[j] == NULL)
  685. return -ENOMEM;
  686. }
  687. }
  688. return 0;
  689. }
  690. static void
  691. bnx2_free_mem(struct bnx2 *bp)
  692. {
  693. int i;
  694. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  695. bnx2_free_tx_mem(bp);
  696. bnx2_free_rx_mem(bp);
  697. for (i = 0; i < bp->ctx_pages; i++) {
  698. if (bp->ctx_blk[i]) {
  699. dma_free_coherent(&bp->pdev->dev, BCM_PAGE_SIZE,
  700. bp->ctx_blk[i],
  701. bp->ctx_blk_mapping[i]);
  702. bp->ctx_blk[i] = NULL;
  703. }
  704. }
  705. if (bnapi->status_blk.msi) {
  706. dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
  707. bnapi->status_blk.msi,
  708. bp->status_blk_mapping);
  709. bnapi->status_blk.msi = NULL;
  710. bp->stats_blk = NULL;
  711. }
  712. }
  713. static int
  714. bnx2_alloc_mem(struct bnx2 *bp)
  715. {
  716. int i, status_blk_size, err;
  717. struct bnx2_napi *bnapi;
  718. void *status_blk;
  719. /* Combine status and statistics blocks into one allocation. */
  720. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  721. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  722. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  723. BNX2_SBLK_MSIX_ALIGN_SIZE);
  724. bp->status_stats_size = status_blk_size +
  725. sizeof(struct statistics_block);
  726. status_blk = dma_alloc_coherent(&bp->pdev->dev, bp->status_stats_size,
  727. &bp->status_blk_mapping, GFP_KERNEL);
  728. if (status_blk == NULL)
  729. goto alloc_mem_err;
  730. memset(status_blk, 0, bp->status_stats_size);
  731. bnapi = &bp->bnx2_napi[0];
  732. bnapi->status_blk.msi = status_blk;
  733. bnapi->hw_tx_cons_ptr =
  734. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  735. bnapi->hw_rx_cons_ptr =
  736. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  737. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  738. for (i = 1; i < bp->irq_nvecs; i++) {
  739. struct status_block_msix *sblk;
  740. bnapi = &bp->bnx2_napi[i];
  741. sblk = (void *) (status_blk +
  742. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  743. bnapi->status_blk.msix = sblk;
  744. bnapi->hw_tx_cons_ptr =
  745. &sblk->status_tx_quick_consumer_index;
  746. bnapi->hw_rx_cons_ptr =
  747. &sblk->status_rx_quick_consumer_index;
  748. bnapi->int_num = i << 24;
  749. }
  750. }
  751. bp->stats_blk = status_blk + status_blk_size;
  752. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  753. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  754. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  755. if (bp->ctx_pages == 0)
  756. bp->ctx_pages = 1;
  757. for (i = 0; i < bp->ctx_pages; i++) {
  758. bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
  759. BCM_PAGE_SIZE,
  760. &bp->ctx_blk_mapping[i],
  761. GFP_KERNEL);
  762. if (bp->ctx_blk[i] == NULL)
  763. goto alloc_mem_err;
  764. }
  765. }
  766. err = bnx2_alloc_rx_mem(bp);
  767. if (err)
  768. goto alloc_mem_err;
  769. err = bnx2_alloc_tx_mem(bp);
  770. if (err)
  771. goto alloc_mem_err;
  772. return 0;
  773. alloc_mem_err:
  774. bnx2_free_mem(bp);
  775. return -ENOMEM;
  776. }
  777. static void
  778. bnx2_report_fw_link(struct bnx2 *bp)
  779. {
  780. u32 fw_link_status = 0;
  781. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  782. return;
  783. if (bp->link_up) {
  784. u32 bmsr;
  785. switch (bp->line_speed) {
  786. case SPEED_10:
  787. if (bp->duplex == DUPLEX_HALF)
  788. fw_link_status = BNX2_LINK_STATUS_10HALF;
  789. else
  790. fw_link_status = BNX2_LINK_STATUS_10FULL;
  791. break;
  792. case SPEED_100:
  793. if (bp->duplex == DUPLEX_HALF)
  794. fw_link_status = BNX2_LINK_STATUS_100HALF;
  795. else
  796. fw_link_status = BNX2_LINK_STATUS_100FULL;
  797. break;
  798. case SPEED_1000:
  799. if (bp->duplex == DUPLEX_HALF)
  800. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  801. else
  802. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  803. break;
  804. case SPEED_2500:
  805. if (bp->duplex == DUPLEX_HALF)
  806. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  807. else
  808. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  809. break;
  810. }
  811. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  812. if (bp->autoneg) {
  813. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  814. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  815. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  816. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  817. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  818. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  819. else
  820. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  821. }
  822. }
  823. else
  824. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  825. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  826. }
  827. static char *
  828. bnx2_xceiver_str(struct bnx2 *bp)
  829. {
  830. return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
  831. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  832. "Copper");
  833. }
  834. static void
  835. bnx2_report_link(struct bnx2 *bp)
  836. {
  837. if (bp->link_up) {
  838. netif_carrier_on(bp->dev);
  839. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  840. bnx2_xceiver_str(bp),
  841. bp->line_speed,
  842. bp->duplex == DUPLEX_FULL ? "full" : "half");
  843. if (bp->flow_ctrl) {
  844. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  845. pr_cont(", receive ");
  846. if (bp->flow_ctrl & FLOW_CTRL_TX)
  847. pr_cont("& transmit ");
  848. }
  849. else {
  850. pr_cont(", transmit ");
  851. }
  852. pr_cont("flow control ON");
  853. }
  854. pr_cont("\n");
  855. } else {
  856. netif_carrier_off(bp->dev);
  857. netdev_err(bp->dev, "NIC %s Link is Down\n",
  858. bnx2_xceiver_str(bp));
  859. }
  860. bnx2_report_fw_link(bp);
  861. }
  862. static void
  863. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  864. {
  865. u32 local_adv, remote_adv;
  866. bp->flow_ctrl = 0;
  867. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  868. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  869. if (bp->duplex == DUPLEX_FULL) {
  870. bp->flow_ctrl = bp->req_flow_ctrl;
  871. }
  872. return;
  873. }
  874. if (bp->duplex != DUPLEX_FULL) {
  875. return;
  876. }
  877. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  878. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  879. u32 val;
  880. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  881. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  882. bp->flow_ctrl |= FLOW_CTRL_TX;
  883. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  884. bp->flow_ctrl |= FLOW_CTRL_RX;
  885. return;
  886. }
  887. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  888. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  889. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  890. u32 new_local_adv = 0;
  891. u32 new_remote_adv = 0;
  892. if (local_adv & ADVERTISE_1000XPAUSE)
  893. new_local_adv |= ADVERTISE_PAUSE_CAP;
  894. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  895. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  896. if (remote_adv & ADVERTISE_1000XPAUSE)
  897. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  898. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  899. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  900. local_adv = new_local_adv;
  901. remote_adv = new_remote_adv;
  902. }
  903. /* See Table 28B-3 of 802.3ab-1999 spec. */
  904. if (local_adv & ADVERTISE_PAUSE_CAP) {
  905. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  906. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  907. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  908. }
  909. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  910. bp->flow_ctrl = FLOW_CTRL_RX;
  911. }
  912. }
  913. else {
  914. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  915. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  916. }
  917. }
  918. }
  919. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  920. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  921. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  922. bp->flow_ctrl = FLOW_CTRL_TX;
  923. }
  924. }
  925. }
  926. static int
  927. bnx2_5709s_linkup(struct bnx2 *bp)
  928. {
  929. u32 val, speed;
  930. bp->link_up = 1;
  931. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  932. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  933. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  934. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  935. bp->line_speed = bp->req_line_speed;
  936. bp->duplex = bp->req_duplex;
  937. return 0;
  938. }
  939. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  940. switch (speed) {
  941. case MII_BNX2_GP_TOP_AN_SPEED_10:
  942. bp->line_speed = SPEED_10;
  943. break;
  944. case MII_BNX2_GP_TOP_AN_SPEED_100:
  945. bp->line_speed = SPEED_100;
  946. break;
  947. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  948. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  949. bp->line_speed = SPEED_1000;
  950. break;
  951. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  952. bp->line_speed = SPEED_2500;
  953. break;
  954. }
  955. if (val & MII_BNX2_GP_TOP_AN_FD)
  956. bp->duplex = DUPLEX_FULL;
  957. else
  958. bp->duplex = DUPLEX_HALF;
  959. return 0;
  960. }
  961. static int
  962. bnx2_5708s_linkup(struct bnx2 *bp)
  963. {
  964. u32 val;
  965. bp->link_up = 1;
  966. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  967. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  968. case BCM5708S_1000X_STAT1_SPEED_10:
  969. bp->line_speed = SPEED_10;
  970. break;
  971. case BCM5708S_1000X_STAT1_SPEED_100:
  972. bp->line_speed = SPEED_100;
  973. break;
  974. case BCM5708S_1000X_STAT1_SPEED_1G:
  975. bp->line_speed = SPEED_1000;
  976. break;
  977. case BCM5708S_1000X_STAT1_SPEED_2G5:
  978. bp->line_speed = SPEED_2500;
  979. break;
  980. }
  981. if (val & BCM5708S_1000X_STAT1_FD)
  982. bp->duplex = DUPLEX_FULL;
  983. else
  984. bp->duplex = DUPLEX_HALF;
  985. return 0;
  986. }
  987. static int
  988. bnx2_5706s_linkup(struct bnx2 *bp)
  989. {
  990. u32 bmcr, local_adv, remote_adv, common;
  991. bp->link_up = 1;
  992. bp->line_speed = SPEED_1000;
  993. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  994. if (bmcr & BMCR_FULLDPLX) {
  995. bp->duplex = DUPLEX_FULL;
  996. }
  997. else {
  998. bp->duplex = DUPLEX_HALF;
  999. }
  1000. if (!(bmcr & BMCR_ANENABLE)) {
  1001. return 0;
  1002. }
  1003. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1004. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1005. common = local_adv & remote_adv;
  1006. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1007. if (common & ADVERTISE_1000XFULL) {
  1008. bp->duplex = DUPLEX_FULL;
  1009. }
  1010. else {
  1011. bp->duplex = DUPLEX_HALF;
  1012. }
  1013. }
  1014. return 0;
  1015. }
  1016. static int
  1017. bnx2_copper_linkup(struct bnx2 *bp)
  1018. {
  1019. u32 bmcr;
  1020. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1021. if (bmcr & BMCR_ANENABLE) {
  1022. u32 local_adv, remote_adv, common;
  1023. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1024. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1025. common = local_adv & (remote_adv >> 2);
  1026. if (common & ADVERTISE_1000FULL) {
  1027. bp->line_speed = SPEED_1000;
  1028. bp->duplex = DUPLEX_FULL;
  1029. }
  1030. else if (common & ADVERTISE_1000HALF) {
  1031. bp->line_speed = SPEED_1000;
  1032. bp->duplex = DUPLEX_HALF;
  1033. }
  1034. else {
  1035. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1036. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1037. common = local_adv & remote_adv;
  1038. if (common & ADVERTISE_100FULL) {
  1039. bp->line_speed = SPEED_100;
  1040. bp->duplex = DUPLEX_FULL;
  1041. }
  1042. else if (common & ADVERTISE_100HALF) {
  1043. bp->line_speed = SPEED_100;
  1044. bp->duplex = DUPLEX_HALF;
  1045. }
  1046. else if (common & ADVERTISE_10FULL) {
  1047. bp->line_speed = SPEED_10;
  1048. bp->duplex = DUPLEX_FULL;
  1049. }
  1050. else if (common & ADVERTISE_10HALF) {
  1051. bp->line_speed = SPEED_10;
  1052. bp->duplex = DUPLEX_HALF;
  1053. }
  1054. else {
  1055. bp->line_speed = 0;
  1056. bp->link_up = 0;
  1057. }
  1058. }
  1059. }
  1060. else {
  1061. if (bmcr & BMCR_SPEED100) {
  1062. bp->line_speed = SPEED_100;
  1063. }
  1064. else {
  1065. bp->line_speed = SPEED_10;
  1066. }
  1067. if (bmcr & BMCR_FULLDPLX) {
  1068. bp->duplex = DUPLEX_FULL;
  1069. }
  1070. else {
  1071. bp->duplex = DUPLEX_HALF;
  1072. }
  1073. }
  1074. return 0;
  1075. }
  1076. static void
  1077. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1078. {
  1079. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1080. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1081. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1082. val |= 0x02 << 8;
  1083. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1084. val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
  1085. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1086. }
  1087. static void
  1088. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1089. {
  1090. int i;
  1091. u32 cid;
  1092. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1093. if (i == 1)
  1094. cid = RX_RSS_CID;
  1095. bnx2_init_rx_context(bp, cid);
  1096. }
  1097. }
  1098. static void
  1099. bnx2_set_mac_link(struct bnx2 *bp)
  1100. {
  1101. u32 val;
  1102. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1103. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1104. (bp->duplex == DUPLEX_HALF)) {
  1105. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1106. }
  1107. /* Configure the EMAC mode register. */
  1108. val = REG_RD(bp, BNX2_EMAC_MODE);
  1109. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1110. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1111. BNX2_EMAC_MODE_25G_MODE);
  1112. if (bp->link_up) {
  1113. switch (bp->line_speed) {
  1114. case SPEED_10:
  1115. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1116. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1117. break;
  1118. }
  1119. /* fall through */
  1120. case SPEED_100:
  1121. val |= BNX2_EMAC_MODE_PORT_MII;
  1122. break;
  1123. case SPEED_2500:
  1124. val |= BNX2_EMAC_MODE_25G_MODE;
  1125. /* fall through */
  1126. case SPEED_1000:
  1127. val |= BNX2_EMAC_MODE_PORT_GMII;
  1128. break;
  1129. }
  1130. }
  1131. else {
  1132. val |= BNX2_EMAC_MODE_PORT_GMII;
  1133. }
  1134. /* Set the MAC to operate in the appropriate duplex mode. */
  1135. if (bp->duplex == DUPLEX_HALF)
  1136. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1137. REG_WR(bp, BNX2_EMAC_MODE, val);
  1138. /* Enable/disable rx PAUSE. */
  1139. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1140. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1141. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1142. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1143. /* Enable/disable tx PAUSE. */
  1144. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1145. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1146. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1147. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1148. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1149. /* Acknowledge the interrupt. */
  1150. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1151. bnx2_init_all_rx_contexts(bp);
  1152. }
  1153. static void
  1154. bnx2_enable_bmsr1(struct bnx2 *bp)
  1155. {
  1156. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1157. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1158. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1159. MII_BNX2_BLK_ADDR_GP_STATUS);
  1160. }
  1161. static void
  1162. bnx2_disable_bmsr1(struct bnx2 *bp)
  1163. {
  1164. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1165. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1166. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1167. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1168. }
  1169. static int
  1170. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1171. {
  1172. u32 up1;
  1173. int ret = 1;
  1174. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1175. return 0;
  1176. if (bp->autoneg & AUTONEG_SPEED)
  1177. bp->advertising |= ADVERTISED_2500baseX_Full;
  1178. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1179. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1180. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1181. if (!(up1 & BCM5708S_UP1_2G5)) {
  1182. up1 |= BCM5708S_UP1_2G5;
  1183. bnx2_write_phy(bp, bp->mii_up1, up1);
  1184. ret = 0;
  1185. }
  1186. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1187. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1188. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1189. return ret;
  1190. }
  1191. static int
  1192. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1193. {
  1194. u32 up1;
  1195. int ret = 0;
  1196. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1197. return 0;
  1198. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1199. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1200. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1201. if (up1 & BCM5708S_UP1_2G5) {
  1202. up1 &= ~BCM5708S_UP1_2G5;
  1203. bnx2_write_phy(bp, bp->mii_up1, up1);
  1204. ret = 1;
  1205. }
  1206. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1207. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1208. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1209. return ret;
  1210. }
  1211. static void
  1212. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1213. {
  1214. u32 uninitialized_var(bmcr);
  1215. int err;
  1216. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1217. return;
  1218. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1219. u32 val;
  1220. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1221. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1222. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1223. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1224. val |= MII_BNX2_SD_MISC1_FORCE |
  1225. MII_BNX2_SD_MISC1_FORCE_2_5G;
  1226. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1227. }
  1228. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1229. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1230. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1231. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1232. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1233. if (!err)
  1234. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1235. } else {
  1236. return;
  1237. }
  1238. if (err)
  1239. return;
  1240. if (bp->autoneg & AUTONEG_SPEED) {
  1241. bmcr &= ~BMCR_ANENABLE;
  1242. if (bp->req_duplex == DUPLEX_FULL)
  1243. bmcr |= BMCR_FULLDPLX;
  1244. }
  1245. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1246. }
  1247. static void
  1248. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1249. {
  1250. u32 uninitialized_var(bmcr);
  1251. int err;
  1252. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1253. return;
  1254. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1255. u32 val;
  1256. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1257. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1258. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1259. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1260. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1261. }
  1262. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1263. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1264. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1265. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1266. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1267. if (!err)
  1268. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1269. } else {
  1270. return;
  1271. }
  1272. if (err)
  1273. return;
  1274. if (bp->autoneg & AUTONEG_SPEED)
  1275. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1276. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1277. }
  1278. static void
  1279. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1280. {
  1281. u32 val;
  1282. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1283. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1284. if (start)
  1285. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1286. else
  1287. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1288. }
  1289. static int
  1290. bnx2_set_link(struct bnx2 *bp)
  1291. {
  1292. u32 bmsr;
  1293. u8 link_up;
  1294. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1295. bp->link_up = 1;
  1296. return 0;
  1297. }
  1298. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1299. return 0;
  1300. link_up = bp->link_up;
  1301. bnx2_enable_bmsr1(bp);
  1302. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1303. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1304. bnx2_disable_bmsr1(bp);
  1305. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1306. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1307. u32 val, an_dbg;
  1308. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1309. bnx2_5706s_force_link_dn(bp, 0);
  1310. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1311. }
  1312. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1313. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1314. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1315. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1316. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1317. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1318. bmsr |= BMSR_LSTATUS;
  1319. else
  1320. bmsr &= ~BMSR_LSTATUS;
  1321. }
  1322. if (bmsr & BMSR_LSTATUS) {
  1323. bp->link_up = 1;
  1324. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1325. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1326. bnx2_5706s_linkup(bp);
  1327. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1328. bnx2_5708s_linkup(bp);
  1329. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1330. bnx2_5709s_linkup(bp);
  1331. }
  1332. else {
  1333. bnx2_copper_linkup(bp);
  1334. }
  1335. bnx2_resolve_flow_ctrl(bp);
  1336. }
  1337. else {
  1338. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1339. (bp->autoneg & AUTONEG_SPEED))
  1340. bnx2_disable_forced_2g5(bp);
  1341. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1342. u32 bmcr;
  1343. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1344. bmcr |= BMCR_ANENABLE;
  1345. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1346. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1347. }
  1348. bp->link_up = 0;
  1349. }
  1350. if (bp->link_up != link_up) {
  1351. bnx2_report_link(bp);
  1352. }
  1353. bnx2_set_mac_link(bp);
  1354. return 0;
  1355. }
  1356. static int
  1357. bnx2_reset_phy(struct bnx2 *bp)
  1358. {
  1359. int i;
  1360. u32 reg;
  1361. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1362. #define PHY_RESET_MAX_WAIT 100
  1363. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1364. udelay(10);
  1365. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1366. if (!(reg & BMCR_RESET)) {
  1367. udelay(20);
  1368. break;
  1369. }
  1370. }
  1371. if (i == PHY_RESET_MAX_WAIT) {
  1372. return -EBUSY;
  1373. }
  1374. return 0;
  1375. }
  1376. static u32
  1377. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1378. {
  1379. u32 adv = 0;
  1380. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1381. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1382. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1383. adv = ADVERTISE_1000XPAUSE;
  1384. }
  1385. else {
  1386. adv = ADVERTISE_PAUSE_CAP;
  1387. }
  1388. }
  1389. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1390. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1391. adv = ADVERTISE_1000XPSE_ASYM;
  1392. }
  1393. else {
  1394. adv = ADVERTISE_PAUSE_ASYM;
  1395. }
  1396. }
  1397. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1398. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1399. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1400. }
  1401. else {
  1402. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1403. }
  1404. }
  1405. return adv;
  1406. }
  1407. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1408. static int
  1409. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1410. __releases(&bp->phy_lock)
  1411. __acquires(&bp->phy_lock)
  1412. {
  1413. u32 speed_arg = 0, pause_adv;
  1414. pause_adv = bnx2_phy_get_pause_adv(bp);
  1415. if (bp->autoneg & AUTONEG_SPEED) {
  1416. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1417. if (bp->advertising & ADVERTISED_10baseT_Half)
  1418. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1419. if (bp->advertising & ADVERTISED_10baseT_Full)
  1420. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1421. if (bp->advertising & ADVERTISED_100baseT_Half)
  1422. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1423. if (bp->advertising & ADVERTISED_100baseT_Full)
  1424. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1425. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1426. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1427. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1428. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1429. } else {
  1430. if (bp->req_line_speed == SPEED_2500)
  1431. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1432. else if (bp->req_line_speed == SPEED_1000)
  1433. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1434. else if (bp->req_line_speed == SPEED_100) {
  1435. if (bp->req_duplex == DUPLEX_FULL)
  1436. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1437. else
  1438. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1439. } else if (bp->req_line_speed == SPEED_10) {
  1440. if (bp->req_duplex == DUPLEX_FULL)
  1441. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1442. else
  1443. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1444. }
  1445. }
  1446. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1447. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1448. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1449. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1450. if (port == PORT_TP)
  1451. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1452. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1453. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1454. spin_unlock_bh(&bp->phy_lock);
  1455. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1456. spin_lock_bh(&bp->phy_lock);
  1457. return 0;
  1458. }
  1459. static int
  1460. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1461. __releases(&bp->phy_lock)
  1462. __acquires(&bp->phy_lock)
  1463. {
  1464. u32 adv, bmcr;
  1465. u32 new_adv = 0;
  1466. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1467. return bnx2_setup_remote_phy(bp, port);
  1468. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1469. u32 new_bmcr;
  1470. int force_link_down = 0;
  1471. if (bp->req_line_speed == SPEED_2500) {
  1472. if (!bnx2_test_and_enable_2g5(bp))
  1473. force_link_down = 1;
  1474. } else if (bp->req_line_speed == SPEED_1000) {
  1475. if (bnx2_test_and_disable_2g5(bp))
  1476. force_link_down = 1;
  1477. }
  1478. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1479. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1480. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1481. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1482. new_bmcr |= BMCR_SPEED1000;
  1483. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1484. if (bp->req_line_speed == SPEED_2500)
  1485. bnx2_enable_forced_2g5(bp);
  1486. else if (bp->req_line_speed == SPEED_1000) {
  1487. bnx2_disable_forced_2g5(bp);
  1488. new_bmcr &= ~0x2000;
  1489. }
  1490. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1491. if (bp->req_line_speed == SPEED_2500)
  1492. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1493. else
  1494. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1495. }
  1496. if (bp->req_duplex == DUPLEX_FULL) {
  1497. adv |= ADVERTISE_1000XFULL;
  1498. new_bmcr |= BMCR_FULLDPLX;
  1499. }
  1500. else {
  1501. adv |= ADVERTISE_1000XHALF;
  1502. new_bmcr &= ~BMCR_FULLDPLX;
  1503. }
  1504. if ((new_bmcr != bmcr) || (force_link_down)) {
  1505. /* Force a link down visible on the other side */
  1506. if (bp->link_up) {
  1507. bnx2_write_phy(bp, bp->mii_adv, adv &
  1508. ~(ADVERTISE_1000XFULL |
  1509. ADVERTISE_1000XHALF));
  1510. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1511. BMCR_ANRESTART | BMCR_ANENABLE);
  1512. bp->link_up = 0;
  1513. netif_carrier_off(bp->dev);
  1514. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1515. bnx2_report_link(bp);
  1516. }
  1517. bnx2_write_phy(bp, bp->mii_adv, adv);
  1518. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1519. } else {
  1520. bnx2_resolve_flow_ctrl(bp);
  1521. bnx2_set_mac_link(bp);
  1522. }
  1523. return 0;
  1524. }
  1525. bnx2_test_and_enable_2g5(bp);
  1526. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1527. new_adv |= ADVERTISE_1000XFULL;
  1528. new_adv |= bnx2_phy_get_pause_adv(bp);
  1529. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1530. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1531. bp->serdes_an_pending = 0;
  1532. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1533. /* Force a link down visible on the other side */
  1534. if (bp->link_up) {
  1535. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1536. spin_unlock_bh(&bp->phy_lock);
  1537. msleep(20);
  1538. spin_lock_bh(&bp->phy_lock);
  1539. }
  1540. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1541. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1542. BMCR_ANENABLE);
  1543. /* Speed up link-up time when the link partner
  1544. * does not autonegotiate which is very common
  1545. * in blade servers. Some blade servers use
  1546. * IPMI for kerboard input and it's important
  1547. * to minimize link disruptions. Autoneg. involves
  1548. * exchanging base pages plus 3 next pages and
  1549. * normally completes in about 120 msec.
  1550. */
  1551. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1552. bp->serdes_an_pending = 1;
  1553. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1554. } else {
  1555. bnx2_resolve_flow_ctrl(bp);
  1556. bnx2_set_mac_link(bp);
  1557. }
  1558. return 0;
  1559. }
  1560. #define ETHTOOL_ALL_FIBRE_SPEED \
  1561. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1562. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1563. (ADVERTISED_1000baseT_Full)
  1564. #define ETHTOOL_ALL_COPPER_SPEED \
  1565. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1566. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1567. ADVERTISED_1000baseT_Full)
  1568. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1569. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1570. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1571. static void
  1572. bnx2_set_default_remote_link(struct bnx2 *bp)
  1573. {
  1574. u32 link;
  1575. if (bp->phy_port == PORT_TP)
  1576. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1577. else
  1578. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1579. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1580. bp->req_line_speed = 0;
  1581. bp->autoneg |= AUTONEG_SPEED;
  1582. bp->advertising = ADVERTISED_Autoneg;
  1583. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1584. bp->advertising |= ADVERTISED_10baseT_Half;
  1585. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1586. bp->advertising |= ADVERTISED_10baseT_Full;
  1587. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1588. bp->advertising |= ADVERTISED_100baseT_Half;
  1589. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1590. bp->advertising |= ADVERTISED_100baseT_Full;
  1591. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1592. bp->advertising |= ADVERTISED_1000baseT_Full;
  1593. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1594. bp->advertising |= ADVERTISED_2500baseX_Full;
  1595. } else {
  1596. bp->autoneg = 0;
  1597. bp->advertising = 0;
  1598. bp->req_duplex = DUPLEX_FULL;
  1599. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1600. bp->req_line_speed = SPEED_10;
  1601. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1602. bp->req_duplex = DUPLEX_HALF;
  1603. }
  1604. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1605. bp->req_line_speed = SPEED_100;
  1606. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1607. bp->req_duplex = DUPLEX_HALF;
  1608. }
  1609. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1610. bp->req_line_speed = SPEED_1000;
  1611. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1612. bp->req_line_speed = SPEED_2500;
  1613. }
  1614. }
  1615. static void
  1616. bnx2_set_default_link(struct bnx2 *bp)
  1617. {
  1618. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1619. bnx2_set_default_remote_link(bp);
  1620. return;
  1621. }
  1622. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1623. bp->req_line_speed = 0;
  1624. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1625. u32 reg;
  1626. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1627. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1628. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1629. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1630. bp->autoneg = 0;
  1631. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1632. bp->req_duplex = DUPLEX_FULL;
  1633. }
  1634. } else
  1635. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1636. }
  1637. static void
  1638. bnx2_send_heart_beat(struct bnx2 *bp)
  1639. {
  1640. u32 msg;
  1641. u32 addr;
  1642. spin_lock(&bp->indirect_lock);
  1643. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1644. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1645. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1646. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1647. spin_unlock(&bp->indirect_lock);
  1648. }
  1649. static void
  1650. bnx2_remote_phy_event(struct bnx2 *bp)
  1651. {
  1652. u32 msg;
  1653. u8 link_up = bp->link_up;
  1654. u8 old_port;
  1655. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1656. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1657. bnx2_send_heart_beat(bp);
  1658. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1659. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1660. bp->link_up = 0;
  1661. else {
  1662. u32 speed;
  1663. bp->link_up = 1;
  1664. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1665. bp->duplex = DUPLEX_FULL;
  1666. switch (speed) {
  1667. case BNX2_LINK_STATUS_10HALF:
  1668. bp->duplex = DUPLEX_HALF;
  1669. case BNX2_LINK_STATUS_10FULL:
  1670. bp->line_speed = SPEED_10;
  1671. break;
  1672. case BNX2_LINK_STATUS_100HALF:
  1673. bp->duplex = DUPLEX_HALF;
  1674. case BNX2_LINK_STATUS_100BASE_T4:
  1675. case BNX2_LINK_STATUS_100FULL:
  1676. bp->line_speed = SPEED_100;
  1677. break;
  1678. case BNX2_LINK_STATUS_1000HALF:
  1679. bp->duplex = DUPLEX_HALF;
  1680. case BNX2_LINK_STATUS_1000FULL:
  1681. bp->line_speed = SPEED_1000;
  1682. break;
  1683. case BNX2_LINK_STATUS_2500HALF:
  1684. bp->duplex = DUPLEX_HALF;
  1685. case BNX2_LINK_STATUS_2500FULL:
  1686. bp->line_speed = SPEED_2500;
  1687. break;
  1688. default:
  1689. bp->line_speed = 0;
  1690. break;
  1691. }
  1692. bp->flow_ctrl = 0;
  1693. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1694. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1695. if (bp->duplex == DUPLEX_FULL)
  1696. bp->flow_ctrl = bp->req_flow_ctrl;
  1697. } else {
  1698. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1699. bp->flow_ctrl |= FLOW_CTRL_TX;
  1700. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1701. bp->flow_ctrl |= FLOW_CTRL_RX;
  1702. }
  1703. old_port = bp->phy_port;
  1704. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1705. bp->phy_port = PORT_FIBRE;
  1706. else
  1707. bp->phy_port = PORT_TP;
  1708. if (old_port != bp->phy_port)
  1709. bnx2_set_default_link(bp);
  1710. }
  1711. if (bp->link_up != link_up)
  1712. bnx2_report_link(bp);
  1713. bnx2_set_mac_link(bp);
  1714. }
  1715. static int
  1716. bnx2_set_remote_link(struct bnx2 *bp)
  1717. {
  1718. u32 evt_code;
  1719. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1720. switch (evt_code) {
  1721. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1722. bnx2_remote_phy_event(bp);
  1723. break;
  1724. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1725. default:
  1726. bnx2_send_heart_beat(bp);
  1727. break;
  1728. }
  1729. return 0;
  1730. }
  1731. static int
  1732. bnx2_setup_copper_phy(struct bnx2 *bp)
  1733. __releases(&bp->phy_lock)
  1734. __acquires(&bp->phy_lock)
  1735. {
  1736. u32 bmcr;
  1737. u32 new_bmcr;
  1738. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1739. if (bp->autoneg & AUTONEG_SPEED) {
  1740. u32 adv_reg, adv1000_reg;
  1741. u32 new_adv_reg = 0;
  1742. u32 new_adv1000_reg = 0;
  1743. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1744. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1745. ADVERTISE_PAUSE_ASYM);
  1746. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1747. adv1000_reg &= PHY_ALL_1000_SPEED;
  1748. if (bp->advertising & ADVERTISED_10baseT_Half)
  1749. new_adv_reg |= ADVERTISE_10HALF;
  1750. if (bp->advertising & ADVERTISED_10baseT_Full)
  1751. new_adv_reg |= ADVERTISE_10FULL;
  1752. if (bp->advertising & ADVERTISED_100baseT_Half)
  1753. new_adv_reg |= ADVERTISE_100HALF;
  1754. if (bp->advertising & ADVERTISED_100baseT_Full)
  1755. new_adv_reg |= ADVERTISE_100FULL;
  1756. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1757. new_adv1000_reg |= ADVERTISE_1000FULL;
  1758. new_adv_reg |= ADVERTISE_CSMA;
  1759. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1760. if ((adv1000_reg != new_adv1000_reg) ||
  1761. (adv_reg != new_adv_reg) ||
  1762. ((bmcr & BMCR_ANENABLE) == 0)) {
  1763. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1764. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1765. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1766. BMCR_ANENABLE);
  1767. }
  1768. else if (bp->link_up) {
  1769. /* Flow ctrl may have changed from auto to forced */
  1770. /* or vice-versa. */
  1771. bnx2_resolve_flow_ctrl(bp);
  1772. bnx2_set_mac_link(bp);
  1773. }
  1774. return 0;
  1775. }
  1776. new_bmcr = 0;
  1777. if (bp->req_line_speed == SPEED_100) {
  1778. new_bmcr |= BMCR_SPEED100;
  1779. }
  1780. if (bp->req_duplex == DUPLEX_FULL) {
  1781. new_bmcr |= BMCR_FULLDPLX;
  1782. }
  1783. if (new_bmcr != bmcr) {
  1784. u32 bmsr;
  1785. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1786. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1787. if (bmsr & BMSR_LSTATUS) {
  1788. /* Force link down */
  1789. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1790. spin_unlock_bh(&bp->phy_lock);
  1791. msleep(50);
  1792. spin_lock_bh(&bp->phy_lock);
  1793. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1794. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1795. }
  1796. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1797. /* Normally, the new speed is setup after the link has
  1798. * gone down and up again. In some cases, link will not go
  1799. * down so we need to set up the new speed here.
  1800. */
  1801. if (bmsr & BMSR_LSTATUS) {
  1802. bp->line_speed = bp->req_line_speed;
  1803. bp->duplex = bp->req_duplex;
  1804. bnx2_resolve_flow_ctrl(bp);
  1805. bnx2_set_mac_link(bp);
  1806. }
  1807. } else {
  1808. bnx2_resolve_flow_ctrl(bp);
  1809. bnx2_set_mac_link(bp);
  1810. }
  1811. return 0;
  1812. }
  1813. static int
  1814. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1815. __releases(&bp->phy_lock)
  1816. __acquires(&bp->phy_lock)
  1817. {
  1818. if (bp->loopback == MAC_LOOPBACK)
  1819. return 0;
  1820. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1821. return bnx2_setup_serdes_phy(bp, port);
  1822. }
  1823. else {
  1824. return bnx2_setup_copper_phy(bp);
  1825. }
  1826. }
  1827. static int
  1828. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1829. {
  1830. u32 val;
  1831. bp->mii_bmcr = MII_BMCR + 0x10;
  1832. bp->mii_bmsr = MII_BMSR + 0x10;
  1833. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1834. bp->mii_adv = MII_ADVERTISE + 0x10;
  1835. bp->mii_lpa = MII_LPA + 0x10;
  1836. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1837. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1838. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1839. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1840. if (reset_phy)
  1841. bnx2_reset_phy(bp);
  1842. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1843. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1844. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1845. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1846. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1847. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1848. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1849. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1850. val |= BCM5708S_UP1_2G5;
  1851. else
  1852. val &= ~BCM5708S_UP1_2G5;
  1853. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1854. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1855. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1856. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1857. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1858. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1859. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1860. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1861. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1862. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1863. return 0;
  1864. }
  1865. static int
  1866. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1867. {
  1868. u32 val;
  1869. if (reset_phy)
  1870. bnx2_reset_phy(bp);
  1871. bp->mii_up1 = BCM5708S_UP1;
  1872. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1873. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1874. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1875. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1876. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1877. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1878. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1879. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1880. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1881. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1882. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1883. val |= BCM5708S_UP1_2G5;
  1884. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1885. }
  1886. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1887. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1888. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1889. /* increase tx signal amplitude */
  1890. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1891. BCM5708S_BLK_ADDR_TX_MISC);
  1892. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1893. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1894. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1895. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1896. }
  1897. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1898. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1899. if (val) {
  1900. u32 is_backplane;
  1901. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1902. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1903. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1904. BCM5708S_BLK_ADDR_TX_MISC);
  1905. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1906. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1907. BCM5708S_BLK_ADDR_DIG);
  1908. }
  1909. }
  1910. return 0;
  1911. }
  1912. static int
  1913. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1914. {
  1915. if (reset_phy)
  1916. bnx2_reset_phy(bp);
  1917. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1918. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1919. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1920. if (bp->dev->mtu > 1500) {
  1921. u32 val;
  1922. /* Set extended packet length bit */
  1923. bnx2_write_phy(bp, 0x18, 0x7);
  1924. bnx2_read_phy(bp, 0x18, &val);
  1925. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1926. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1927. bnx2_read_phy(bp, 0x1c, &val);
  1928. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1929. }
  1930. else {
  1931. u32 val;
  1932. bnx2_write_phy(bp, 0x18, 0x7);
  1933. bnx2_read_phy(bp, 0x18, &val);
  1934. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1935. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1936. bnx2_read_phy(bp, 0x1c, &val);
  1937. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1938. }
  1939. return 0;
  1940. }
  1941. static int
  1942. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1943. {
  1944. u32 val;
  1945. if (reset_phy)
  1946. bnx2_reset_phy(bp);
  1947. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1948. bnx2_write_phy(bp, 0x18, 0x0c00);
  1949. bnx2_write_phy(bp, 0x17, 0x000a);
  1950. bnx2_write_phy(bp, 0x15, 0x310b);
  1951. bnx2_write_phy(bp, 0x17, 0x201f);
  1952. bnx2_write_phy(bp, 0x15, 0x9506);
  1953. bnx2_write_phy(bp, 0x17, 0x401f);
  1954. bnx2_write_phy(bp, 0x15, 0x14e2);
  1955. bnx2_write_phy(bp, 0x18, 0x0400);
  1956. }
  1957. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1958. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1959. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1960. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1961. val &= ~(1 << 8);
  1962. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1963. }
  1964. if (bp->dev->mtu > 1500) {
  1965. /* Set extended packet length bit */
  1966. bnx2_write_phy(bp, 0x18, 0x7);
  1967. bnx2_read_phy(bp, 0x18, &val);
  1968. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1969. bnx2_read_phy(bp, 0x10, &val);
  1970. bnx2_write_phy(bp, 0x10, val | 0x1);
  1971. }
  1972. else {
  1973. bnx2_write_phy(bp, 0x18, 0x7);
  1974. bnx2_read_phy(bp, 0x18, &val);
  1975. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1976. bnx2_read_phy(bp, 0x10, &val);
  1977. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1978. }
  1979. /* ethernet@wirespeed */
  1980. bnx2_write_phy(bp, 0x18, 0x7007);
  1981. bnx2_read_phy(bp, 0x18, &val);
  1982. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1983. return 0;
  1984. }
  1985. static int
  1986. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1987. __releases(&bp->phy_lock)
  1988. __acquires(&bp->phy_lock)
  1989. {
  1990. u32 val;
  1991. int rc = 0;
  1992. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  1993. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  1994. bp->mii_bmcr = MII_BMCR;
  1995. bp->mii_bmsr = MII_BMSR;
  1996. bp->mii_bmsr1 = MII_BMSR;
  1997. bp->mii_adv = MII_ADVERTISE;
  1998. bp->mii_lpa = MII_LPA;
  1999. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2000. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2001. goto setup_phy;
  2002. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2003. bp->phy_id = val << 16;
  2004. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2005. bp->phy_id |= val & 0xffff;
  2006. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2007. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2008. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2009. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2010. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2011. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2012. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2013. }
  2014. else {
  2015. rc = bnx2_init_copper_phy(bp, reset_phy);
  2016. }
  2017. setup_phy:
  2018. if (!rc)
  2019. rc = bnx2_setup_phy(bp, bp->phy_port);
  2020. return rc;
  2021. }
  2022. static int
  2023. bnx2_set_mac_loopback(struct bnx2 *bp)
  2024. {
  2025. u32 mac_mode;
  2026. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2027. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2028. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2029. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2030. bp->link_up = 1;
  2031. return 0;
  2032. }
  2033. static int bnx2_test_link(struct bnx2 *);
  2034. static int
  2035. bnx2_set_phy_loopback(struct bnx2 *bp)
  2036. {
  2037. u32 mac_mode;
  2038. int rc, i;
  2039. spin_lock_bh(&bp->phy_lock);
  2040. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2041. BMCR_SPEED1000);
  2042. spin_unlock_bh(&bp->phy_lock);
  2043. if (rc)
  2044. return rc;
  2045. for (i = 0; i < 10; i++) {
  2046. if (bnx2_test_link(bp) == 0)
  2047. break;
  2048. msleep(100);
  2049. }
  2050. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2051. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2052. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2053. BNX2_EMAC_MODE_25G_MODE);
  2054. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2055. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2056. bp->link_up = 1;
  2057. return 0;
  2058. }
  2059. static int
  2060. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2061. {
  2062. int i;
  2063. u32 val;
  2064. bp->fw_wr_seq++;
  2065. msg_data |= bp->fw_wr_seq;
  2066. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2067. if (!ack)
  2068. return 0;
  2069. /* wait for an acknowledgement. */
  2070. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2071. msleep(10);
  2072. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2073. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2074. break;
  2075. }
  2076. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2077. return 0;
  2078. /* If we timed out, inform the firmware that this is the case. */
  2079. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2080. if (!silent)
  2081. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2082. msg_data &= ~BNX2_DRV_MSG_CODE;
  2083. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2084. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2085. return -EBUSY;
  2086. }
  2087. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2088. return -EIO;
  2089. return 0;
  2090. }
  2091. static int
  2092. bnx2_init_5709_context(struct bnx2 *bp)
  2093. {
  2094. int i, ret = 0;
  2095. u32 val;
  2096. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2097. val |= (BCM_PAGE_BITS - 8) << 16;
  2098. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2099. for (i = 0; i < 10; i++) {
  2100. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2101. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2102. break;
  2103. udelay(2);
  2104. }
  2105. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2106. return -EBUSY;
  2107. for (i = 0; i < bp->ctx_pages; i++) {
  2108. int j;
  2109. if (bp->ctx_blk[i])
  2110. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2111. else
  2112. return -ENOMEM;
  2113. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2114. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2115. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2116. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2117. (u64) bp->ctx_blk_mapping[i] >> 32);
  2118. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2119. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2120. for (j = 0; j < 10; j++) {
  2121. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2122. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2123. break;
  2124. udelay(5);
  2125. }
  2126. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2127. ret = -EBUSY;
  2128. break;
  2129. }
  2130. }
  2131. return ret;
  2132. }
  2133. static void
  2134. bnx2_init_context(struct bnx2 *bp)
  2135. {
  2136. u32 vcid;
  2137. vcid = 96;
  2138. while (vcid) {
  2139. u32 vcid_addr, pcid_addr, offset;
  2140. int i;
  2141. vcid--;
  2142. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2143. u32 new_vcid;
  2144. vcid_addr = GET_PCID_ADDR(vcid);
  2145. if (vcid & 0x8) {
  2146. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2147. }
  2148. else {
  2149. new_vcid = vcid;
  2150. }
  2151. pcid_addr = GET_PCID_ADDR(new_vcid);
  2152. }
  2153. else {
  2154. vcid_addr = GET_CID_ADDR(vcid);
  2155. pcid_addr = vcid_addr;
  2156. }
  2157. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2158. vcid_addr += (i << PHY_CTX_SHIFT);
  2159. pcid_addr += (i << PHY_CTX_SHIFT);
  2160. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2161. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2162. /* Zero out the context. */
  2163. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2164. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2165. }
  2166. }
  2167. }
  2168. static int
  2169. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2170. {
  2171. u16 *good_mbuf;
  2172. u32 good_mbuf_cnt;
  2173. u32 val;
  2174. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2175. if (good_mbuf == NULL) {
  2176. pr_err("Failed to allocate memory in %s\n", __func__);
  2177. return -ENOMEM;
  2178. }
  2179. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2180. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2181. good_mbuf_cnt = 0;
  2182. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2183. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2184. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2185. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2186. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2187. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2188. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2189. /* The addresses with Bit 9 set are bad memory blocks. */
  2190. if (!(val & (1 << 9))) {
  2191. good_mbuf[good_mbuf_cnt] = (u16) val;
  2192. good_mbuf_cnt++;
  2193. }
  2194. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2195. }
  2196. /* Free the good ones back to the mbuf pool thus discarding
  2197. * all the bad ones. */
  2198. while (good_mbuf_cnt) {
  2199. good_mbuf_cnt--;
  2200. val = good_mbuf[good_mbuf_cnt];
  2201. val = (val << 9) | val | 1;
  2202. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2203. }
  2204. kfree(good_mbuf);
  2205. return 0;
  2206. }
  2207. static void
  2208. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2209. {
  2210. u32 val;
  2211. val = (mac_addr[0] << 8) | mac_addr[1];
  2212. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2213. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2214. (mac_addr[4] << 8) | mac_addr[5];
  2215. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2216. }
  2217. static inline int
  2218. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2219. {
  2220. dma_addr_t mapping;
  2221. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2222. struct rx_bd *rxbd =
  2223. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2224. struct page *page = alloc_page(gfp);
  2225. if (!page)
  2226. return -ENOMEM;
  2227. mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
  2228. PCI_DMA_FROMDEVICE);
  2229. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2230. __free_page(page);
  2231. return -EIO;
  2232. }
  2233. rx_pg->page = page;
  2234. dma_unmap_addr_set(rx_pg, mapping, mapping);
  2235. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2236. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2237. return 0;
  2238. }
  2239. static void
  2240. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2241. {
  2242. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2243. struct page *page = rx_pg->page;
  2244. if (!page)
  2245. return;
  2246. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
  2247. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2248. __free_page(page);
  2249. rx_pg->page = NULL;
  2250. }
  2251. static inline int
  2252. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2253. {
  2254. struct sk_buff *skb;
  2255. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2256. dma_addr_t mapping;
  2257. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2258. unsigned long align;
  2259. skb = __netdev_alloc_skb(bp->dev, bp->rx_buf_size, gfp);
  2260. if (skb == NULL) {
  2261. return -ENOMEM;
  2262. }
  2263. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2264. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2265. mapping = dma_map_single(&bp->pdev->dev, skb->data, bp->rx_buf_use_size,
  2266. PCI_DMA_FROMDEVICE);
  2267. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2268. dev_kfree_skb(skb);
  2269. return -EIO;
  2270. }
  2271. rx_buf->skb = skb;
  2272. rx_buf->desc = (struct l2_fhdr *) skb->data;
  2273. dma_unmap_addr_set(rx_buf, mapping, mapping);
  2274. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2275. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2276. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2277. return 0;
  2278. }
  2279. static int
  2280. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2281. {
  2282. struct status_block *sblk = bnapi->status_blk.msi;
  2283. u32 new_link_state, old_link_state;
  2284. int is_set = 1;
  2285. new_link_state = sblk->status_attn_bits & event;
  2286. old_link_state = sblk->status_attn_bits_ack & event;
  2287. if (new_link_state != old_link_state) {
  2288. if (new_link_state)
  2289. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2290. else
  2291. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2292. } else
  2293. is_set = 0;
  2294. return is_set;
  2295. }
  2296. static void
  2297. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2298. {
  2299. spin_lock(&bp->phy_lock);
  2300. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2301. bnx2_set_link(bp);
  2302. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2303. bnx2_set_remote_link(bp);
  2304. spin_unlock(&bp->phy_lock);
  2305. }
  2306. static inline u16
  2307. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2308. {
  2309. u16 cons;
  2310. /* Tell compiler that status block fields can change. */
  2311. barrier();
  2312. cons = *bnapi->hw_tx_cons_ptr;
  2313. barrier();
  2314. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2315. cons++;
  2316. return cons;
  2317. }
  2318. static int
  2319. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2320. {
  2321. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2322. u16 hw_cons, sw_cons, sw_ring_cons;
  2323. int tx_pkt = 0, index;
  2324. struct netdev_queue *txq;
  2325. index = (bnapi - bp->bnx2_napi);
  2326. txq = netdev_get_tx_queue(bp->dev, index);
  2327. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2328. sw_cons = txr->tx_cons;
  2329. while (sw_cons != hw_cons) {
  2330. struct sw_tx_bd *tx_buf;
  2331. struct sk_buff *skb;
  2332. int i, last;
  2333. sw_ring_cons = TX_RING_IDX(sw_cons);
  2334. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2335. skb = tx_buf->skb;
  2336. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2337. prefetch(&skb->end);
  2338. /* partial BD completions possible with TSO packets */
  2339. if (tx_buf->is_gso) {
  2340. u16 last_idx, last_ring_idx;
  2341. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2342. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2343. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2344. last_idx++;
  2345. }
  2346. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2347. break;
  2348. }
  2349. }
  2350. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  2351. skb_headlen(skb), PCI_DMA_TODEVICE);
  2352. tx_buf->skb = NULL;
  2353. last = tx_buf->nr_frags;
  2354. for (i = 0; i < last; i++) {
  2355. sw_cons = NEXT_TX_BD(sw_cons);
  2356. dma_unmap_page(&bp->pdev->dev,
  2357. dma_unmap_addr(
  2358. &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
  2359. mapping),
  2360. skb_shinfo(skb)->frags[i].size,
  2361. PCI_DMA_TODEVICE);
  2362. }
  2363. sw_cons = NEXT_TX_BD(sw_cons);
  2364. dev_kfree_skb(skb);
  2365. tx_pkt++;
  2366. if (tx_pkt == budget)
  2367. break;
  2368. if (hw_cons == sw_cons)
  2369. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2370. }
  2371. txr->hw_tx_cons = hw_cons;
  2372. txr->tx_cons = sw_cons;
  2373. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2374. * before checking for netif_tx_queue_stopped(). Without the
  2375. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2376. * will miss it and cause the queue to be stopped forever.
  2377. */
  2378. smp_mb();
  2379. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2380. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2381. __netif_tx_lock(txq, smp_processor_id());
  2382. if ((netif_tx_queue_stopped(txq)) &&
  2383. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2384. netif_tx_wake_queue(txq);
  2385. __netif_tx_unlock(txq);
  2386. }
  2387. return tx_pkt;
  2388. }
  2389. static void
  2390. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2391. struct sk_buff *skb, int count)
  2392. {
  2393. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2394. struct rx_bd *cons_bd, *prod_bd;
  2395. int i;
  2396. u16 hw_prod, prod;
  2397. u16 cons = rxr->rx_pg_cons;
  2398. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2399. /* The caller was unable to allocate a new page to replace the
  2400. * last one in the frags array, so we need to recycle that page
  2401. * and then free the skb.
  2402. */
  2403. if (skb) {
  2404. struct page *page;
  2405. struct skb_shared_info *shinfo;
  2406. shinfo = skb_shinfo(skb);
  2407. shinfo->nr_frags--;
  2408. page = shinfo->frags[shinfo->nr_frags].page;
  2409. shinfo->frags[shinfo->nr_frags].page = NULL;
  2410. cons_rx_pg->page = page;
  2411. dev_kfree_skb(skb);
  2412. }
  2413. hw_prod = rxr->rx_pg_prod;
  2414. for (i = 0; i < count; i++) {
  2415. prod = RX_PG_RING_IDX(hw_prod);
  2416. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2417. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2418. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2419. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2420. if (prod != cons) {
  2421. prod_rx_pg->page = cons_rx_pg->page;
  2422. cons_rx_pg->page = NULL;
  2423. dma_unmap_addr_set(prod_rx_pg, mapping,
  2424. dma_unmap_addr(cons_rx_pg, mapping));
  2425. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2426. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2427. }
  2428. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2429. hw_prod = NEXT_RX_BD(hw_prod);
  2430. }
  2431. rxr->rx_pg_prod = hw_prod;
  2432. rxr->rx_pg_cons = cons;
  2433. }
  2434. static inline void
  2435. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2436. struct sk_buff *skb, u16 cons, u16 prod)
  2437. {
  2438. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2439. struct rx_bd *cons_bd, *prod_bd;
  2440. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2441. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2442. dma_sync_single_for_device(&bp->pdev->dev,
  2443. dma_unmap_addr(cons_rx_buf, mapping),
  2444. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2445. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2446. prod_rx_buf->skb = skb;
  2447. prod_rx_buf->desc = (struct l2_fhdr *) skb->data;
  2448. if (cons == prod)
  2449. return;
  2450. dma_unmap_addr_set(prod_rx_buf, mapping,
  2451. dma_unmap_addr(cons_rx_buf, mapping));
  2452. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2453. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2454. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2455. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2456. }
  2457. static int
  2458. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2459. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2460. u32 ring_idx)
  2461. {
  2462. int err;
  2463. u16 prod = ring_idx & 0xffff;
  2464. err = bnx2_alloc_rx_skb(bp, rxr, prod, GFP_ATOMIC);
  2465. if (unlikely(err)) {
  2466. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2467. if (hdr_len) {
  2468. unsigned int raw_len = len + 4;
  2469. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2470. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2471. }
  2472. return err;
  2473. }
  2474. skb_reserve(skb, BNX2_RX_OFFSET);
  2475. dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
  2476. PCI_DMA_FROMDEVICE);
  2477. if (hdr_len == 0) {
  2478. skb_put(skb, len);
  2479. return 0;
  2480. } else {
  2481. unsigned int i, frag_len, frag_size, pages;
  2482. struct sw_pg *rx_pg;
  2483. u16 pg_cons = rxr->rx_pg_cons;
  2484. u16 pg_prod = rxr->rx_pg_prod;
  2485. frag_size = len + 4 - hdr_len;
  2486. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2487. skb_put(skb, hdr_len);
  2488. for (i = 0; i < pages; i++) {
  2489. dma_addr_t mapping_old;
  2490. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2491. if (unlikely(frag_len <= 4)) {
  2492. unsigned int tail = 4 - frag_len;
  2493. rxr->rx_pg_cons = pg_cons;
  2494. rxr->rx_pg_prod = pg_prod;
  2495. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2496. pages - i);
  2497. skb->len -= tail;
  2498. if (i == 0) {
  2499. skb->tail -= tail;
  2500. } else {
  2501. skb_frag_t *frag =
  2502. &skb_shinfo(skb)->frags[i - 1];
  2503. frag->size -= tail;
  2504. skb->data_len -= tail;
  2505. skb->truesize -= tail;
  2506. }
  2507. return 0;
  2508. }
  2509. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2510. /* Don't unmap yet. If we're unable to allocate a new
  2511. * page, we need to recycle the page and the DMA addr.
  2512. */
  2513. mapping_old = dma_unmap_addr(rx_pg, mapping);
  2514. if (i == pages - 1)
  2515. frag_len -= 4;
  2516. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2517. rx_pg->page = NULL;
  2518. err = bnx2_alloc_rx_page(bp, rxr,
  2519. RX_PG_RING_IDX(pg_prod),
  2520. GFP_ATOMIC);
  2521. if (unlikely(err)) {
  2522. rxr->rx_pg_cons = pg_cons;
  2523. rxr->rx_pg_prod = pg_prod;
  2524. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2525. pages - i);
  2526. return err;
  2527. }
  2528. dma_unmap_page(&bp->pdev->dev, mapping_old,
  2529. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2530. frag_size -= frag_len;
  2531. skb->data_len += frag_len;
  2532. skb->truesize += frag_len;
  2533. skb->len += frag_len;
  2534. pg_prod = NEXT_RX_BD(pg_prod);
  2535. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2536. }
  2537. rxr->rx_pg_prod = pg_prod;
  2538. rxr->rx_pg_cons = pg_cons;
  2539. }
  2540. return 0;
  2541. }
  2542. static inline u16
  2543. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2544. {
  2545. u16 cons;
  2546. /* Tell compiler that status block fields can change. */
  2547. barrier();
  2548. cons = *bnapi->hw_rx_cons_ptr;
  2549. barrier();
  2550. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2551. cons++;
  2552. return cons;
  2553. }
  2554. static int
  2555. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2556. {
  2557. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2558. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2559. struct l2_fhdr *rx_hdr;
  2560. int rx_pkt = 0, pg_ring_used = 0;
  2561. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2562. sw_cons = rxr->rx_cons;
  2563. sw_prod = rxr->rx_prod;
  2564. /* Memory barrier necessary as speculative reads of the rx
  2565. * buffer can be ahead of the index in the status block
  2566. */
  2567. rmb();
  2568. while (sw_cons != hw_cons) {
  2569. unsigned int len, hdr_len;
  2570. u32 status;
  2571. struct sw_bd *rx_buf, *next_rx_buf;
  2572. struct sk_buff *skb;
  2573. dma_addr_t dma_addr;
  2574. sw_ring_cons = RX_RING_IDX(sw_cons);
  2575. sw_ring_prod = RX_RING_IDX(sw_prod);
  2576. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2577. skb = rx_buf->skb;
  2578. prefetchw(skb);
  2579. next_rx_buf =
  2580. &rxr->rx_buf_ring[RX_RING_IDX(NEXT_RX_BD(sw_cons))];
  2581. prefetch(next_rx_buf->desc);
  2582. rx_buf->skb = NULL;
  2583. dma_addr = dma_unmap_addr(rx_buf, mapping);
  2584. dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
  2585. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2586. PCI_DMA_FROMDEVICE);
  2587. rx_hdr = rx_buf->desc;
  2588. len = rx_hdr->l2_fhdr_pkt_len;
  2589. status = rx_hdr->l2_fhdr_status;
  2590. hdr_len = 0;
  2591. if (status & L2_FHDR_STATUS_SPLIT) {
  2592. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2593. pg_ring_used = 1;
  2594. } else if (len > bp->rx_jumbo_thresh) {
  2595. hdr_len = bp->rx_jumbo_thresh;
  2596. pg_ring_used = 1;
  2597. }
  2598. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2599. L2_FHDR_ERRORS_PHY_DECODE |
  2600. L2_FHDR_ERRORS_ALIGNMENT |
  2601. L2_FHDR_ERRORS_TOO_SHORT |
  2602. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2603. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2604. sw_ring_prod);
  2605. if (pg_ring_used) {
  2606. int pages;
  2607. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2608. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2609. }
  2610. goto next_rx;
  2611. }
  2612. len -= 4;
  2613. if (len <= bp->rx_copy_thresh) {
  2614. struct sk_buff *new_skb;
  2615. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2616. if (new_skb == NULL) {
  2617. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2618. sw_ring_prod);
  2619. goto next_rx;
  2620. }
  2621. /* aligned copy */
  2622. skb_copy_from_linear_data_offset(skb,
  2623. BNX2_RX_OFFSET - 6,
  2624. new_skb->data, len + 6);
  2625. skb_reserve(new_skb, 6);
  2626. skb_put(new_skb, len);
  2627. bnx2_reuse_rx_skb(bp, rxr, skb,
  2628. sw_ring_cons, sw_ring_prod);
  2629. skb = new_skb;
  2630. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2631. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2632. goto next_rx;
  2633. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2634. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG))
  2635. __vlan_hwaccel_put_tag(skb, rx_hdr->l2_fhdr_vlan_tag);
  2636. skb->protocol = eth_type_trans(skb, bp->dev);
  2637. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2638. (ntohs(skb->protocol) != 0x8100)) {
  2639. dev_kfree_skb(skb);
  2640. goto next_rx;
  2641. }
  2642. skb_checksum_none_assert(skb);
  2643. if (bp->rx_csum &&
  2644. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2645. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2646. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2647. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2648. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2649. }
  2650. if ((bp->dev->features & NETIF_F_RXHASH) &&
  2651. ((status & L2_FHDR_STATUS_USE_RXHASH) ==
  2652. L2_FHDR_STATUS_USE_RXHASH))
  2653. skb->rxhash = rx_hdr->l2_fhdr_hash;
  2654. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2655. napi_gro_receive(&bnapi->napi, skb);
  2656. rx_pkt++;
  2657. next_rx:
  2658. sw_cons = NEXT_RX_BD(sw_cons);
  2659. sw_prod = NEXT_RX_BD(sw_prod);
  2660. if ((rx_pkt == budget))
  2661. break;
  2662. /* Refresh hw_cons to see if there is new work */
  2663. if (sw_cons == hw_cons) {
  2664. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2665. rmb();
  2666. }
  2667. }
  2668. rxr->rx_cons = sw_cons;
  2669. rxr->rx_prod = sw_prod;
  2670. if (pg_ring_used)
  2671. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2672. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2673. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2674. mmiowb();
  2675. return rx_pkt;
  2676. }
  2677. /* MSI ISR - The only difference between this and the INTx ISR
  2678. * is that the MSI interrupt is always serviced.
  2679. */
  2680. static irqreturn_t
  2681. bnx2_msi(int irq, void *dev_instance)
  2682. {
  2683. struct bnx2_napi *bnapi = dev_instance;
  2684. struct bnx2 *bp = bnapi->bp;
  2685. prefetch(bnapi->status_blk.msi);
  2686. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2687. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2688. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2689. /* Return here if interrupt is disabled. */
  2690. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2691. return IRQ_HANDLED;
  2692. napi_schedule(&bnapi->napi);
  2693. return IRQ_HANDLED;
  2694. }
  2695. static irqreturn_t
  2696. bnx2_msi_1shot(int irq, void *dev_instance)
  2697. {
  2698. struct bnx2_napi *bnapi = dev_instance;
  2699. struct bnx2 *bp = bnapi->bp;
  2700. prefetch(bnapi->status_blk.msi);
  2701. /* Return here if interrupt is disabled. */
  2702. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2703. return IRQ_HANDLED;
  2704. napi_schedule(&bnapi->napi);
  2705. return IRQ_HANDLED;
  2706. }
  2707. static irqreturn_t
  2708. bnx2_interrupt(int irq, void *dev_instance)
  2709. {
  2710. struct bnx2_napi *bnapi = dev_instance;
  2711. struct bnx2 *bp = bnapi->bp;
  2712. struct status_block *sblk = bnapi->status_blk.msi;
  2713. /* When using INTx, it is possible for the interrupt to arrive
  2714. * at the CPU before the status block posted prior to the
  2715. * interrupt. Reading a register will flush the status block.
  2716. * When using MSI, the MSI message will always complete after
  2717. * the status block write.
  2718. */
  2719. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2720. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2721. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2722. return IRQ_NONE;
  2723. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2724. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2725. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2726. /* Read back to deassert IRQ immediately to avoid too many
  2727. * spurious interrupts.
  2728. */
  2729. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2730. /* Return here if interrupt is shared and is disabled. */
  2731. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2732. return IRQ_HANDLED;
  2733. if (napi_schedule_prep(&bnapi->napi)) {
  2734. bnapi->last_status_idx = sblk->status_idx;
  2735. __napi_schedule(&bnapi->napi);
  2736. }
  2737. return IRQ_HANDLED;
  2738. }
  2739. static inline int
  2740. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2741. {
  2742. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2743. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2744. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2745. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2746. return 1;
  2747. return 0;
  2748. }
  2749. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2750. STATUS_ATTN_BITS_TIMER_ABORT)
  2751. static inline int
  2752. bnx2_has_work(struct bnx2_napi *bnapi)
  2753. {
  2754. struct status_block *sblk = bnapi->status_blk.msi;
  2755. if (bnx2_has_fast_work(bnapi))
  2756. return 1;
  2757. #ifdef BCM_CNIC
  2758. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2759. return 1;
  2760. #endif
  2761. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2762. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2763. return 1;
  2764. return 0;
  2765. }
  2766. static void
  2767. bnx2_chk_missed_msi(struct bnx2 *bp)
  2768. {
  2769. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2770. u32 msi_ctrl;
  2771. if (bnx2_has_work(bnapi)) {
  2772. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2773. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2774. return;
  2775. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2776. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2777. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2778. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2779. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2780. }
  2781. }
  2782. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2783. }
  2784. #ifdef BCM_CNIC
  2785. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2786. {
  2787. struct cnic_ops *c_ops;
  2788. if (!bnapi->cnic_present)
  2789. return;
  2790. rcu_read_lock();
  2791. c_ops = rcu_dereference(bp->cnic_ops);
  2792. if (c_ops)
  2793. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2794. bnapi->status_blk.msi);
  2795. rcu_read_unlock();
  2796. }
  2797. #endif
  2798. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2799. {
  2800. struct status_block *sblk = bnapi->status_blk.msi;
  2801. u32 status_attn_bits = sblk->status_attn_bits;
  2802. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2803. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2804. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2805. bnx2_phy_int(bp, bnapi);
  2806. /* This is needed to take care of transient status
  2807. * during link changes.
  2808. */
  2809. REG_WR(bp, BNX2_HC_COMMAND,
  2810. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2811. REG_RD(bp, BNX2_HC_COMMAND);
  2812. }
  2813. }
  2814. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2815. int work_done, int budget)
  2816. {
  2817. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2818. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2819. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2820. bnx2_tx_int(bp, bnapi, 0);
  2821. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2822. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2823. return work_done;
  2824. }
  2825. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2826. {
  2827. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2828. struct bnx2 *bp = bnapi->bp;
  2829. int work_done = 0;
  2830. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2831. while (1) {
  2832. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2833. if (unlikely(work_done >= budget))
  2834. break;
  2835. bnapi->last_status_idx = sblk->status_idx;
  2836. /* status idx must be read before checking for more work. */
  2837. rmb();
  2838. if (likely(!bnx2_has_fast_work(bnapi))) {
  2839. napi_complete(napi);
  2840. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2841. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2842. bnapi->last_status_idx);
  2843. break;
  2844. }
  2845. }
  2846. return work_done;
  2847. }
  2848. static int bnx2_poll(struct napi_struct *napi, int budget)
  2849. {
  2850. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2851. struct bnx2 *bp = bnapi->bp;
  2852. int work_done = 0;
  2853. struct status_block *sblk = bnapi->status_blk.msi;
  2854. while (1) {
  2855. bnx2_poll_link(bp, bnapi);
  2856. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2857. #ifdef BCM_CNIC
  2858. bnx2_poll_cnic(bp, bnapi);
  2859. #endif
  2860. /* bnapi->last_status_idx is used below to tell the hw how
  2861. * much work has been processed, so we must read it before
  2862. * checking for more work.
  2863. */
  2864. bnapi->last_status_idx = sblk->status_idx;
  2865. if (unlikely(work_done >= budget))
  2866. break;
  2867. rmb();
  2868. if (likely(!bnx2_has_work(bnapi))) {
  2869. napi_complete(napi);
  2870. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2871. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2872. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2873. bnapi->last_status_idx);
  2874. break;
  2875. }
  2876. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2877. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2878. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2879. bnapi->last_status_idx);
  2880. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2881. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2882. bnapi->last_status_idx);
  2883. break;
  2884. }
  2885. }
  2886. return work_done;
  2887. }
  2888. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2889. * from set_multicast.
  2890. */
  2891. static void
  2892. bnx2_set_rx_mode(struct net_device *dev)
  2893. {
  2894. struct bnx2 *bp = netdev_priv(dev);
  2895. u32 rx_mode, sort_mode;
  2896. struct netdev_hw_addr *ha;
  2897. int i;
  2898. if (!netif_running(dev))
  2899. return;
  2900. spin_lock_bh(&bp->phy_lock);
  2901. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2902. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2903. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2904. if (!(dev->features & NETIF_F_HW_VLAN_RX) &&
  2905. (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2906. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2907. if (dev->flags & IFF_PROMISC) {
  2908. /* Promiscuous mode. */
  2909. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2910. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2911. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2912. }
  2913. else if (dev->flags & IFF_ALLMULTI) {
  2914. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2915. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2916. 0xffffffff);
  2917. }
  2918. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2919. }
  2920. else {
  2921. /* Accept one or more multicast(s). */
  2922. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2923. u32 regidx;
  2924. u32 bit;
  2925. u32 crc;
  2926. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2927. netdev_for_each_mc_addr(ha, dev) {
  2928. crc = ether_crc_le(ETH_ALEN, ha->addr);
  2929. bit = crc & 0xff;
  2930. regidx = (bit & 0xe0) >> 5;
  2931. bit &= 0x1f;
  2932. mc_filter[regidx] |= (1 << bit);
  2933. }
  2934. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2935. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2936. mc_filter[i]);
  2937. }
  2938. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2939. }
  2940. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  2941. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2942. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2943. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2944. } else if (!(dev->flags & IFF_PROMISC)) {
  2945. /* Add all entries into to the match filter list */
  2946. i = 0;
  2947. netdev_for_each_uc_addr(ha, dev) {
  2948. bnx2_set_mac_addr(bp, ha->addr,
  2949. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2950. sort_mode |= (1 <<
  2951. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2952. i++;
  2953. }
  2954. }
  2955. if (rx_mode != bp->rx_mode) {
  2956. bp->rx_mode = rx_mode;
  2957. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2958. }
  2959. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2960. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2961. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2962. spin_unlock_bh(&bp->phy_lock);
  2963. }
  2964. static int __devinit
  2965. check_fw_section(const struct firmware *fw,
  2966. const struct bnx2_fw_file_section *section,
  2967. u32 alignment, bool non_empty)
  2968. {
  2969. u32 offset = be32_to_cpu(section->offset);
  2970. u32 len = be32_to_cpu(section->len);
  2971. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  2972. return -EINVAL;
  2973. if ((non_empty && len == 0) || len > fw->size - offset ||
  2974. len & (alignment - 1))
  2975. return -EINVAL;
  2976. return 0;
  2977. }
  2978. static int __devinit
  2979. check_mips_fw_entry(const struct firmware *fw,
  2980. const struct bnx2_mips_fw_file_entry *entry)
  2981. {
  2982. if (check_fw_section(fw, &entry->text, 4, true) ||
  2983. check_fw_section(fw, &entry->data, 4, false) ||
  2984. check_fw_section(fw, &entry->rodata, 4, false))
  2985. return -EINVAL;
  2986. return 0;
  2987. }
  2988. static int __devinit
  2989. bnx2_request_firmware(struct bnx2 *bp)
  2990. {
  2991. const char *mips_fw_file, *rv2p_fw_file;
  2992. const struct bnx2_mips_fw_file *mips_fw;
  2993. const struct bnx2_rv2p_fw_file *rv2p_fw;
  2994. int rc;
  2995. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2996. mips_fw_file = FW_MIPS_FILE_09;
  2997. if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
  2998. (CHIP_ID(bp) == CHIP_ID_5709_A1))
  2999. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3000. else
  3001. rv2p_fw_file = FW_RV2P_FILE_09;
  3002. } else {
  3003. mips_fw_file = FW_MIPS_FILE_06;
  3004. rv2p_fw_file = FW_RV2P_FILE_06;
  3005. }
  3006. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3007. if (rc) {
  3008. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3009. return rc;
  3010. }
  3011. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3012. if (rc) {
  3013. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3014. return rc;
  3015. }
  3016. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3017. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3018. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3019. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3020. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3021. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3022. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3023. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3024. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3025. return -EINVAL;
  3026. }
  3027. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3028. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3029. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3030. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3031. return -EINVAL;
  3032. }
  3033. return 0;
  3034. }
  3035. static u32
  3036. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3037. {
  3038. switch (idx) {
  3039. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3040. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3041. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3042. break;
  3043. }
  3044. return rv2p_code;
  3045. }
  3046. static int
  3047. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3048. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3049. {
  3050. u32 rv2p_code_len, file_offset;
  3051. __be32 *rv2p_code;
  3052. int i;
  3053. u32 val, cmd, addr;
  3054. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3055. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3056. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3057. if (rv2p_proc == RV2P_PROC1) {
  3058. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3059. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3060. } else {
  3061. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3062. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3063. }
  3064. for (i = 0; i < rv2p_code_len; i += 8) {
  3065. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3066. rv2p_code++;
  3067. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3068. rv2p_code++;
  3069. val = (i / 8) | cmd;
  3070. REG_WR(bp, addr, val);
  3071. }
  3072. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3073. for (i = 0; i < 8; i++) {
  3074. u32 loc, code;
  3075. loc = be32_to_cpu(fw_entry->fixup[i]);
  3076. if (loc && ((loc * 4) < rv2p_code_len)) {
  3077. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3078. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3079. code = be32_to_cpu(*(rv2p_code + loc));
  3080. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3081. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3082. val = (loc / 2) | cmd;
  3083. REG_WR(bp, addr, val);
  3084. }
  3085. }
  3086. /* Reset the processor, un-stall is done later. */
  3087. if (rv2p_proc == RV2P_PROC1) {
  3088. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3089. }
  3090. else {
  3091. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3092. }
  3093. return 0;
  3094. }
  3095. static int
  3096. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3097. const struct bnx2_mips_fw_file_entry *fw_entry)
  3098. {
  3099. u32 addr, len, file_offset;
  3100. __be32 *data;
  3101. u32 offset;
  3102. u32 val;
  3103. /* Halt the CPU. */
  3104. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3105. val |= cpu_reg->mode_value_halt;
  3106. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3107. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3108. /* Load the Text area. */
  3109. addr = be32_to_cpu(fw_entry->text.addr);
  3110. len = be32_to_cpu(fw_entry->text.len);
  3111. file_offset = be32_to_cpu(fw_entry->text.offset);
  3112. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3113. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3114. if (len) {
  3115. int j;
  3116. for (j = 0; j < (len / 4); j++, offset += 4)
  3117. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3118. }
  3119. /* Load the Data area. */
  3120. addr = be32_to_cpu(fw_entry->data.addr);
  3121. len = be32_to_cpu(fw_entry->data.len);
  3122. file_offset = be32_to_cpu(fw_entry->data.offset);
  3123. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3124. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3125. if (len) {
  3126. int j;
  3127. for (j = 0; j < (len / 4); j++, offset += 4)
  3128. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3129. }
  3130. /* Load the Read-Only area. */
  3131. addr = be32_to_cpu(fw_entry->rodata.addr);
  3132. len = be32_to_cpu(fw_entry->rodata.len);
  3133. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3134. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3135. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3136. if (len) {
  3137. int j;
  3138. for (j = 0; j < (len / 4); j++, offset += 4)
  3139. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3140. }
  3141. /* Clear the pre-fetch instruction. */
  3142. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3143. val = be32_to_cpu(fw_entry->start_addr);
  3144. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3145. /* Start the CPU. */
  3146. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3147. val &= ~cpu_reg->mode_value_halt;
  3148. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3149. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3150. return 0;
  3151. }
  3152. static int
  3153. bnx2_init_cpus(struct bnx2 *bp)
  3154. {
  3155. const struct bnx2_mips_fw_file *mips_fw =
  3156. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3157. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3158. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3159. int rc;
  3160. /* Initialize the RV2P processor. */
  3161. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3162. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3163. /* Initialize the RX Processor. */
  3164. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3165. if (rc)
  3166. goto init_cpu_err;
  3167. /* Initialize the TX Processor. */
  3168. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3169. if (rc)
  3170. goto init_cpu_err;
  3171. /* Initialize the TX Patch-up Processor. */
  3172. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3173. if (rc)
  3174. goto init_cpu_err;
  3175. /* Initialize the Completion Processor. */
  3176. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3177. if (rc)
  3178. goto init_cpu_err;
  3179. /* Initialize the Command Processor. */
  3180. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3181. init_cpu_err:
  3182. return rc;
  3183. }
  3184. static int
  3185. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3186. {
  3187. u16 pmcsr;
  3188. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3189. switch (state) {
  3190. case PCI_D0: {
  3191. u32 val;
  3192. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3193. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3194. PCI_PM_CTRL_PME_STATUS);
  3195. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3196. /* delay required during transition out of D3hot */
  3197. msleep(20);
  3198. val = REG_RD(bp, BNX2_EMAC_MODE);
  3199. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3200. val &= ~BNX2_EMAC_MODE_MPKT;
  3201. REG_WR(bp, BNX2_EMAC_MODE, val);
  3202. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3203. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3204. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3205. break;
  3206. }
  3207. case PCI_D3hot: {
  3208. int i;
  3209. u32 val, wol_msg;
  3210. if (bp->wol) {
  3211. u32 advertising;
  3212. u8 autoneg;
  3213. autoneg = bp->autoneg;
  3214. advertising = bp->advertising;
  3215. if (bp->phy_port == PORT_TP) {
  3216. bp->autoneg = AUTONEG_SPEED;
  3217. bp->advertising = ADVERTISED_10baseT_Half |
  3218. ADVERTISED_10baseT_Full |
  3219. ADVERTISED_100baseT_Half |
  3220. ADVERTISED_100baseT_Full |
  3221. ADVERTISED_Autoneg;
  3222. }
  3223. spin_lock_bh(&bp->phy_lock);
  3224. bnx2_setup_phy(bp, bp->phy_port);
  3225. spin_unlock_bh(&bp->phy_lock);
  3226. bp->autoneg = autoneg;
  3227. bp->advertising = advertising;
  3228. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3229. val = REG_RD(bp, BNX2_EMAC_MODE);
  3230. /* Enable port mode. */
  3231. val &= ~BNX2_EMAC_MODE_PORT;
  3232. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3233. BNX2_EMAC_MODE_ACPI_RCVD |
  3234. BNX2_EMAC_MODE_MPKT;
  3235. if (bp->phy_port == PORT_TP)
  3236. val |= BNX2_EMAC_MODE_PORT_MII;
  3237. else {
  3238. val |= BNX2_EMAC_MODE_PORT_GMII;
  3239. if (bp->line_speed == SPEED_2500)
  3240. val |= BNX2_EMAC_MODE_25G_MODE;
  3241. }
  3242. REG_WR(bp, BNX2_EMAC_MODE, val);
  3243. /* receive all multicast */
  3244. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3245. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3246. 0xffffffff);
  3247. }
  3248. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3249. BNX2_EMAC_RX_MODE_SORT_MODE);
  3250. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3251. BNX2_RPM_SORT_USER0_MC_EN;
  3252. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3253. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3254. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3255. BNX2_RPM_SORT_USER0_ENA);
  3256. /* Need to enable EMAC and RPM for WOL. */
  3257. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3258. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3259. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3260. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3261. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3262. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3263. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3264. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3265. }
  3266. else {
  3267. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3268. }
  3269. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3270. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3271. 1, 0);
  3272. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3273. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3274. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3275. if (bp->wol)
  3276. pmcsr |= 3;
  3277. }
  3278. else {
  3279. pmcsr |= 3;
  3280. }
  3281. if (bp->wol) {
  3282. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3283. }
  3284. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3285. pmcsr);
  3286. /* No more memory access after this point until
  3287. * device is brought back to D0.
  3288. */
  3289. udelay(50);
  3290. break;
  3291. }
  3292. default:
  3293. return -EINVAL;
  3294. }
  3295. return 0;
  3296. }
  3297. static int
  3298. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3299. {
  3300. u32 val;
  3301. int j;
  3302. /* Request access to the flash interface. */
  3303. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3304. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3305. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3306. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3307. break;
  3308. udelay(5);
  3309. }
  3310. if (j >= NVRAM_TIMEOUT_COUNT)
  3311. return -EBUSY;
  3312. return 0;
  3313. }
  3314. static int
  3315. bnx2_release_nvram_lock(struct bnx2 *bp)
  3316. {
  3317. int j;
  3318. u32 val;
  3319. /* Relinquish nvram interface. */
  3320. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3321. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3322. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3323. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3324. break;
  3325. udelay(5);
  3326. }
  3327. if (j >= NVRAM_TIMEOUT_COUNT)
  3328. return -EBUSY;
  3329. return 0;
  3330. }
  3331. static int
  3332. bnx2_enable_nvram_write(struct bnx2 *bp)
  3333. {
  3334. u32 val;
  3335. val = REG_RD(bp, BNX2_MISC_CFG);
  3336. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3337. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3338. int j;
  3339. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3340. REG_WR(bp, BNX2_NVM_COMMAND,
  3341. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3342. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3343. udelay(5);
  3344. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3345. if (val & BNX2_NVM_COMMAND_DONE)
  3346. break;
  3347. }
  3348. if (j >= NVRAM_TIMEOUT_COUNT)
  3349. return -EBUSY;
  3350. }
  3351. return 0;
  3352. }
  3353. static void
  3354. bnx2_disable_nvram_write(struct bnx2 *bp)
  3355. {
  3356. u32 val;
  3357. val = REG_RD(bp, BNX2_MISC_CFG);
  3358. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3359. }
  3360. static void
  3361. bnx2_enable_nvram_access(struct bnx2 *bp)
  3362. {
  3363. u32 val;
  3364. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3365. /* Enable both bits, even on read. */
  3366. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3367. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3368. }
  3369. static void
  3370. bnx2_disable_nvram_access(struct bnx2 *bp)
  3371. {
  3372. u32 val;
  3373. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3374. /* Disable both bits, even after read. */
  3375. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3376. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3377. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3378. }
  3379. static int
  3380. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3381. {
  3382. u32 cmd;
  3383. int j;
  3384. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3385. /* Buffered flash, no erase needed */
  3386. return 0;
  3387. /* Build an erase command */
  3388. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3389. BNX2_NVM_COMMAND_DOIT;
  3390. /* Need to clear DONE bit separately. */
  3391. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3392. /* Address of the NVRAM to read from. */
  3393. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3394. /* Issue an erase command. */
  3395. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3396. /* Wait for completion. */
  3397. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3398. u32 val;
  3399. udelay(5);
  3400. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3401. if (val & BNX2_NVM_COMMAND_DONE)
  3402. break;
  3403. }
  3404. if (j >= NVRAM_TIMEOUT_COUNT)
  3405. return -EBUSY;
  3406. return 0;
  3407. }
  3408. static int
  3409. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3410. {
  3411. u32 cmd;
  3412. int j;
  3413. /* Build the command word. */
  3414. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3415. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3416. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3417. offset = ((offset / bp->flash_info->page_size) <<
  3418. bp->flash_info->page_bits) +
  3419. (offset % bp->flash_info->page_size);
  3420. }
  3421. /* Need to clear DONE bit separately. */
  3422. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3423. /* Address of the NVRAM to read from. */
  3424. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3425. /* Issue a read command. */
  3426. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3427. /* Wait for completion. */
  3428. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3429. u32 val;
  3430. udelay(5);
  3431. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3432. if (val & BNX2_NVM_COMMAND_DONE) {
  3433. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3434. memcpy(ret_val, &v, 4);
  3435. break;
  3436. }
  3437. }
  3438. if (j >= NVRAM_TIMEOUT_COUNT)
  3439. return -EBUSY;
  3440. return 0;
  3441. }
  3442. static int
  3443. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3444. {
  3445. u32 cmd;
  3446. __be32 val32;
  3447. int j;
  3448. /* Build the command word. */
  3449. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3450. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3451. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3452. offset = ((offset / bp->flash_info->page_size) <<
  3453. bp->flash_info->page_bits) +
  3454. (offset % bp->flash_info->page_size);
  3455. }
  3456. /* Need to clear DONE bit separately. */
  3457. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3458. memcpy(&val32, val, 4);
  3459. /* Write the data. */
  3460. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3461. /* Address of the NVRAM to write to. */
  3462. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3463. /* Issue the write command. */
  3464. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3465. /* Wait for completion. */
  3466. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3467. udelay(5);
  3468. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3469. break;
  3470. }
  3471. if (j >= NVRAM_TIMEOUT_COUNT)
  3472. return -EBUSY;
  3473. return 0;
  3474. }
  3475. static int
  3476. bnx2_init_nvram(struct bnx2 *bp)
  3477. {
  3478. u32 val;
  3479. int j, entry_count, rc = 0;
  3480. const struct flash_spec *flash;
  3481. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3482. bp->flash_info = &flash_5709;
  3483. goto get_flash_size;
  3484. }
  3485. /* Determine the selected interface. */
  3486. val = REG_RD(bp, BNX2_NVM_CFG1);
  3487. entry_count = ARRAY_SIZE(flash_table);
  3488. if (val & 0x40000000) {
  3489. /* Flash interface has been reconfigured */
  3490. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3491. j++, flash++) {
  3492. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3493. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3494. bp->flash_info = flash;
  3495. break;
  3496. }
  3497. }
  3498. }
  3499. else {
  3500. u32 mask;
  3501. /* Not yet been reconfigured */
  3502. if (val & (1 << 23))
  3503. mask = FLASH_BACKUP_STRAP_MASK;
  3504. else
  3505. mask = FLASH_STRAP_MASK;
  3506. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3507. j++, flash++) {
  3508. if ((val & mask) == (flash->strapping & mask)) {
  3509. bp->flash_info = flash;
  3510. /* Request access to the flash interface. */
  3511. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3512. return rc;
  3513. /* Enable access to flash interface */
  3514. bnx2_enable_nvram_access(bp);
  3515. /* Reconfigure the flash interface */
  3516. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3517. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3518. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3519. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3520. /* Disable access to flash interface */
  3521. bnx2_disable_nvram_access(bp);
  3522. bnx2_release_nvram_lock(bp);
  3523. break;
  3524. }
  3525. }
  3526. } /* if (val & 0x40000000) */
  3527. if (j == entry_count) {
  3528. bp->flash_info = NULL;
  3529. pr_alert("Unknown flash/EEPROM type\n");
  3530. return -ENODEV;
  3531. }
  3532. get_flash_size:
  3533. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3534. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3535. if (val)
  3536. bp->flash_size = val;
  3537. else
  3538. bp->flash_size = bp->flash_info->total_size;
  3539. return rc;
  3540. }
  3541. static int
  3542. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3543. int buf_size)
  3544. {
  3545. int rc = 0;
  3546. u32 cmd_flags, offset32, len32, extra;
  3547. if (buf_size == 0)
  3548. return 0;
  3549. /* Request access to the flash interface. */
  3550. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3551. return rc;
  3552. /* Enable access to flash interface */
  3553. bnx2_enable_nvram_access(bp);
  3554. len32 = buf_size;
  3555. offset32 = offset;
  3556. extra = 0;
  3557. cmd_flags = 0;
  3558. if (offset32 & 3) {
  3559. u8 buf[4];
  3560. u32 pre_len;
  3561. offset32 &= ~3;
  3562. pre_len = 4 - (offset & 3);
  3563. if (pre_len >= len32) {
  3564. pre_len = len32;
  3565. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3566. BNX2_NVM_COMMAND_LAST;
  3567. }
  3568. else {
  3569. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3570. }
  3571. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3572. if (rc)
  3573. return rc;
  3574. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3575. offset32 += 4;
  3576. ret_buf += pre_len;
  3577. len32 -= pre_len;
  3578. }
  3579. if (len32 & 3) {
  3580. extra = 4 - (len32 & 3);
  3581. len32 = (len32 + 4) & ~3;
  3582. }
  3583. if (len32 == 4) {
  3584. u8 buf[4];
  3585. if (cmd_flags)
  3586. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3587. else
  3588. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3589. BNX2_NVM_COMMAND_LAST;
  3590. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3591. memcpy(ret_buf, buf, 4 - extra);
  3592. }
  3593. else if (len32 > 0) {
  3594. u8 buf[4];
  3595. /* Read the first word. */
  3596. if (cmd_flags)
  3597. cmd_flags = 0;
  3598. else
  3599. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3600. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3601. /* Advance to the next dword. */
  3602. offset32 += 4;
  3603. ret_buf += 4;
  3604. len32 -= 4;
  3605. while (len32 > 4 && rc == 0) {
  3606. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3607. /* Advance to the next dword. */
  3608. offset32 += 4;
  3609. ret_buf += 4;
  3610. len32 -= 4;
  3611. }
  3612. if (rc)
  3613. return rc;
  3614. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3615. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3616. memcpy(ret_buf, buf, 4 - extra);
  3617. }
  3618. /* Disable access to flash interface */
  3619. bnx2_disable_nvram_access(bp);
  3620. bnx2_release_nvram_lock(bp);
  3621. return rc;
  3622. }
  3623. static int
  3624. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3625. int buf_size)
  3626. {
  3627. u32 written, offset32, len32;
  3628. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3629. int rc = 0;
  3630. int align_start, align_end;
  3631. buf = data_buf;
  3632. offset32 = offset;
  3633. len32 = buf_size;
  3634. align_start = align_end = 0;
  3635. if ((align_start = (offset32 & 3))) {
  3636. offset32 &= ~3;
  3637. len32 += align_start;
  3638. if (len32 < 4)
  3639. len32 = 4;
  3640. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3641. return rc;
  3642. }
  3643. if (len32 & 3) {
  3644. align_end = 4 - (len32 & 3);
  3645. len32 += align_end;
  3646. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3647. return rc;
  3648. }
  3649. if (align_start || align_end) {
  3650. align_buf = kmalloc(len32, GFP_KERNEL);
  3651. if (align_buf == NULL)
  3652. return -ENOMEM;
  3653. if (align_start) {
  3654. memcpy(align_buf, start, 4);
  3655. }
  3656. if (align_end) {
  3657. memcpy(align_buf + len32 - 4, end, 4);
  3658. }
  3659. memcpy(align_buf + align_start, data_buf, buf_size);
  3660. buf = align_buf;
  3661. }
  3662. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3663. flash_buffer = kmalloc(264, GFP_KERNEL);
  3664. if (flash_buffer == NULL) {
  3665. rc = -ENOMEM;
  3666. goto nvram_write_end;
  3667. }
  3668. }
  3669. written = 0;
  3670. while ((written < len32) && (rc == 0)) {
  3671. u32 page_start, page_end, data_start, data_end;
  3672. u32 addr, cmd_flags;
  3673. int i;
  3674. /* Find the page_start addr */
  3675. page_start = offset32 + written;
  3676. page_start -= (page_start % bp->flash_info->page_size);
  3677. /* Find the page_end addr */
  3678. page_end = page_start + bp->flash_info->page_size;
  3679. /* Find the data_start addr */
  3680. data_start = (written == 0) ? offset32 : page_start;
  3681. /* Find the data_end addr */
  3682. data_end = (page_end > offset32 + len32) ?
  3683. (offset32 + len32) : page_end;
  3684. /* Request access to the flash interface. */
  3685. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3686. goto nvram_write_end;
  3687. /* Enable access to flash interface */
  3688. bnx2_enable_nvram_access(bp);
  3689. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3690. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3691. int j;
  3692. /* Read the whole page into the buffer
  3693. * (non-buffer flash only) */
  3694. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3695. if (j == (bp->flash_info->page_size - 4)) {
  3696. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3697. }
  3698. rc = bnx2_nvram_read_dword(bp,
  3699. page_start + j,
  3700. &flash_buffer[j],
  3701. cmd_flags);
  3702. if (rc)
  3703. goto nvram_write_end;
  3704. cmd_flags = 0;
  3705. }
  3706. }
  3707. /* Enable writes to flash interface (unlock write-protect) */
  3708. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3709. goto nvram_write_end;
  3710. /* Loop to write back the buffer data from page_start to
  3711. * data_start */
  3712. i = 0;
  3713. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3714. /* Erase the page */
  3715. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3716. goto nvram_write_end;
  3717. /* Re-enable the write again for the actual write */
  3718. bnx2_enable_nvram_write(bp);
  3719. for (addr = page_start; addr < data_start;
  3720. addr += 4, i += 4) {
  3721. rc = bnx2_nvram_write_dword(bp, addr,
  3722. &flash_buffer[i], cmd_flags);
  3723. if (rc != 0)
  3724. goto nvram_write_end;
  3725. cmd_flags = 0;
  3726. }
  3727. }
  3728. /* Loop to write the new data from data_start to data_end */
  3729. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3730. if ((addr == page_end - 4) ||
  3731. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3732. (addr == data_end - 4))) {
  3733. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3734. }
  3735. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3736. cmd_flags);
  3737. if (rc != 0)
  3738. goto nvram_write_end;
  3739. cmd_flags = 0;
  3740. buf += 4;
  3741. }
  3742. /* Loop to write back the buffer data from data_end
  3743. * to page_end */
  3744. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3745. for (addr = data_end; addr < page_end;
  3746. addr += 4, i += 4) {
  3747. if (addr == page_end-4) {
  3748. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3749. }
  3750. rc = bnx2_nvram_write_dword(bp, addr,
  3751. &flash_buffer[i], cmd_flags);
  3752. if (rc != 0)
  3753. goto nvram_write_end;
  3754. cmd_flags = 0;
  3755. }
  3756. }
  3757. /* Disable writes to flash interface (lock write-protect) */
  3758. bnx2_disable_nvram_write(bp);
  3759. /* Disable access to flash interface */
  3760. bnx2_disable_nvram_access(bp);
  3761. bnx2_release_nvram_lock(bp);
  3762. /* Increment written */
  3763. written += data_end - data_start;
  3764. }
  3765. nvram_write_end:
  3766. kfree(flash_buffer);
  3767. kfree(align_buf);
  3768. return rc;
  3769. }
  3770. static void
  3771. bnx2_init_fw_cap(struct bnx2 *bp)
  3772. {
  3773. u32 val, sig = 0;
  3774. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3775. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3776. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3777. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3778. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3779. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3780. return;
  3781. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3782. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3783. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3784. }
  3785. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3786. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3787. u32 link;
  3788. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3789. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3790. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3791. bp->phy_port = PORT_FIBRE;
  3792. else
  3793. bp->phy_port = PORT_TP;
  3794. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3795. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3796. }
  3797. if (netif_running(bp->dev) && sig)
  3798. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3799. }
  3800. static void
  3801. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3802. {
  3803. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3804. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3805. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3806. }
  3807. static int
  3808. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3809. {
  3810. u32 val;
  3811. int i, rc = 0;
  3812. u8 old_port;
  3813. /* Wait for the current PCI transaction to complete before
  3814. * issuing a reset. */
  3815. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  3816. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  3817. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3818. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3819. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3820. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3821. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3822. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3823. udelay(5);
  3824. } else { /* 5709 */
  3825. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3826. val &= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  3827. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  3828. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3829. for (i = 0; i < 100; i++) {
  3830. msleep(1);
  3831. val = REG_RD(bp, BNX2_PCICFG_DEVICE_CONTROL);
  3832. if (!(val & BNX2_PCICFG_DEVICE_STATUS_NO_PEND))
  3833. break;
  3834. }
  3835. }
  3836. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3837. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3838. /* Deposit a driver reset signature so the firmware knows that
  3839. * this is a soft reset. */
  3840. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3841. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3842. /* Do a dummy read to force the chip to complete all current transaction
  3843. * before we issue a reset. */
  3844. val = REG_RD(bp, BNX2_MISC_ID);
  3845. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3846. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3847. REG_RD(bp, BNX2_MISC_COMMAND);
  3848. udelay(5);
  3849. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3850. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3851. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3852. } else {
  3853. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3854. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3855. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3856. /* Chip reset. */
  3857. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3858. /* Reading back any register after chip reset will hang the
  3859. * bus on 5706 A0 and A1. The msleep below provides plenty
  3860. * of margin for write posting.
  3861. */
  3862. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3863. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3864. msleep(20);
  3865. /* Reset takes approximate 30 usec */
  3866. for (i = 0; i < 10; i++) {
  3867. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3868. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3869. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3870. break;
  3871. udelay(10);
  3872. }
  3873. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3874. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3875. pr_err("Chip reset did not complete\n");
  3876. return -EBUSY;
  3877. }
  3878. }
  3879. /* Make sure byte swapping is properly configured. */
  3880. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3881. if (val != 0x01020304) {
  3882. pr_err("Chip not in correct endian mode\n");
  3883. return -ENODEV;
  3884. }
  3885. /* Wait for the firmware to finish its initialization. */
  3886. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3887. if (rc)
  3888. return rc;
  3889. spin_lock_bh(&bp->phy_lock);
  3890. old_port = bp->phy_port;
  3891. bnx2_init_fw_cap(bp);
  3892. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3893. old_port != bp->phy_port)
  3894. bnx2_set_default_remote_link(bp);
  3895. spin_unlock_bh(&bp->phy_lock);
  3896. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3897. /* Adjust the voltage regular to two steps lower. The default
  3898. * of this register is 0x0000000e. */
  3899. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3900. /* Remove bad rbuf memory from the free pool. */
  3901. rc = bnx2_alloc_bad_rbuf(bp);
  3902. }
  3903. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  3904. bnx2_setup_msix_tbl(bp);
  3905. /* Prevent MSIX table reads and write from timing out */
  3906. REG_WR(bp, BNX2_MISC_ECO_HW_CTL,
  3907. BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
  3908. }
  3909. return rc;
  3910. }
  3911. static int
  3912. bnx2_init_chip(struct bnx2 *bp)
  3913. {
  3914. u32 val, mtu;
  3915. int rc, i;
  3916. /* Make sure the interrupt is not active. */
  3917. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3918. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3919. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3920. #ifdef __BIG_ENDIAN
  3921. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3922. #endif
  3923. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3924. DMA_READ_CHANS << 12 |
  3925. DMA_WRITE_CHANS << 16;
  3926. val |= (0x2 << 20) | (1 << 11);
  3927. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3928. val |= (1 << 23);
  3929. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3930. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3931. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3932. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3933. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3934. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3935. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3936. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3937. }
  3938. if (bp->flags & BNX2_FLAG_PCIX) {
  3939. u16 val16;
  3940. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3941. &val16);
  3942. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3943. val16 & ~PCI_X_CMD_ERO);
  3944. }
  3945. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3946. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3947. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3948. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3949. /* Initialize context mapping and zero out the quick contexts. The
  3950. * context block must have already been enabled. */
  3951. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3952. rc = bnx2_init_5709_context(bp);
  3953. if (rc)
  3954. return rc;
  3955. } else
  3956. bnx2_init_context(bp);
  3957. if ((rc = bnx2_init_cpus(bp)) != 0)
  3958. return rc;
  3959. bnx2_init_nvram(bp);
  3960. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3961. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3962. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3963. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3964. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3965. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  3966. if (CHIP_REV(bp) == CHIP_REV_Ax)
  3967. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3968. }
  3969. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3970. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3971. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3972. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3973. val = (BCM_PAGE_BITS - 8) << 24;
  3974. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3975. /* Configure page size. */
  3976. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3977. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3978. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3979. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3980. val = bp->mac_addr[0] +
  3981. (bp->mac_addr[1] << 8) +
  3982. (bp->mac_addr[2] << 16) +
  3983. bp->mac_addr[3] +
  3984. (bp->mac_addr[4] << 8) +
  3985. (bp->mac_addr[5] << 16);
  3986. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3987. /* Program the MTU. Also include 4 bytes for CRC32. */
  3988. mtu = bp->dev->mtu;
  3989. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  3990. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3991. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3992. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3993. if (mtu < 1500)
  3994. mtu = 1500;
  3995. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  3996. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  3997. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  3998. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  3999. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4000. bp->bnx2_napi[i].last_status_idx = 0;
  4001. bp->idle_chk_status_idx = 0xffff;
  4002. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4003. /* Set up how to generate a link change interrupt. */
  4004. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4005. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4006. (u64) bp->status_blk_mapping & 0xffffffff);
  4007. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4008. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4009. (u64) bp->stats_blk_mapping & 0xffffffff);
  4010. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4011. (u64) bp->stats_blk_mapping >> 32);
  4012. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4013. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4014. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4015. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4016. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4017. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4018. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4019. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4020. REG_WR(bp, BNX2_HC_COM_TICKS,
  4021. (bp->com_ticks_int << 16) | bp->com_ticks);
  4022. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4023. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4024. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4025. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4026. else
  4027. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4028. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4029. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4030. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4031. else {
  4032. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4033. BNX2_HC_CONFIG_COLLECT_STATS;
  4034. }
  4035. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4036. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4037. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4038. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4039. }
  4040. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4041. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4042. REG_WR(bp, BNX2_HC_CONFIG, val);
  4043. if (bp->rx_ticks < 25)
  4044. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
  4045. else
  4046. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
  4047. for (i = 1; i < bp->irq_nvecs; i++) {
  4048. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4049. BNX2_HC_SB_CONFIG_1;
  4050. REG_WR(bp, base,
  4051. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4052. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4053. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4054. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4055. (bp->tx_quick_cons_trip_int << 16) |
  4056. bp->tx_quick_cons_trip);
  4057. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4058. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4059. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4060. (bp->rx_quick_cons_trip_int << 16) |
  4061. bp->rx_quick_cons_trip);
  4062. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4063. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4064. }
  4065. /* Clear internal stats counters. */
  4066. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4067. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4068. /* Initialize the receive filter. */
  4069. bnx2_set_rx_mode(bp->dev);
  4070. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4071. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4072. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4073. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4074. }
  4075. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4076. 1, 0);
  4077. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4078. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4079. udelay(20);
  4080. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4081. return rc;
  4082. }
  4083. static void
  4084. bnx2_clear_ring_states(struct bnx2 *bp)
  4085. {
  4086. struct bnx2_napi *bnapi;
  4087. struct bnx2_tx_ring_info *txr;
  4088. struct bnx2_rx_ring_info *rxr;
  4089. int i;
  4090. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4091. bnapi = &bp->bnx2_napi[i];
  4092. txr = &bnapi->tx_ring;
  4093. rxr = &bnapi->rx_ring;
  4094. txr->tx_cons = 0;
  4095. txr->hw_tx_cons = 0;
  4096. rxr->rx_prod_bseq = 0;
  4097. rxr->rx_prod = 0;
  4098. rxr->rx_cons = 0;
  4099. rxr->rx_pg_prod = 0;
  4100. rxr->rx_pg_cons = 0;
  4101. }
  4102. }
  4103. static void
  4104. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4105. {
  4106. u32 val, offset0, offset1, offset2, offset3;
  4107. u32 cid_addr = GET_CID_ADDR(cid);
  4108. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4109. offset0 = BNX2_L2CTX_TYPE_XI;
  4110. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4111. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4112. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4113. } else {
  4114. offset0 = BNX2_L2CTX_TYPE;
  4115. offset1 = BNX2_L2CTX_CMD_TYPE;
  4116. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4117. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4118. }
  4119. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4120. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4121. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4122. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4123. val = (u64) txr->tx_desc_mapping >> 32;
  4124. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4125. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4126. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4127. }
  4128. static void
  4129. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4130. {
  4131. struct tx_bd *txbd;
  4132. u32 cid = TX_CID;
  4133. struct bnx2_napi *bnapi;
  4134. struct bnx2_tx_ring_info *txr;
  4135. bnapi = &bp->bnx2_napi[ring_num];
  4136. txr = &bnapi->tx_ring;
  4137. if (ring_num == 0)
  4138. cid = TX_CID;
  4139. else
  4140. cid = TX_TSS_CID + ring_num - 1;
  4141. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4142. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4143. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4144. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4145. txr->tx_prod = 0;
  4146. txr->tx_prod_bseq = 0;
  4147. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4148. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4149. bnx2_init_tx_context(bp, cid, txr);
  4150. }
  4151. static void
  4152. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4153. int num_rings)
  4154. {
  4155. int i;
  4156. struct rx_bd *rxbd;
  4157. for (i = 0; i < num_rings; i++) {
  4158. int j;
  4159. rxbd = &rx_ring[i][0];
  4160. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4161. rxbd->rx_bd_len = buf_size;
  4162. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4163. }
  4164. if (i == (num_rings - 1))
  4165. j = 0;
  4166. else
  4167. j = i + 1;
  4168. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4169. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4170. }
  4171. }
  4172. static void
  4173. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4174. {
  4175. int i;
  4176. u16 prod, ring_prod;
  4177. u32 cid, rx_cid_addr, val;
  4178. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4179. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4180. if (ring_num == 0)
  4181. cid = RX_CID;
  4182. else
  4183. cid = RX_RSS_CID + ring_num - 1;
  4184. rx_cid_addr = GET_CID_ADDR(cid);
  4185. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4186. bp->rx_buf_use_size, bp->rx_max_ring);
  4187. bnx2_init_rx_context(bp, cid);
  4188. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4189. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4190. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4191. }
  4192. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4193. if (bp->rx_pg_ring_size) {
  4194. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4195. rxr->rx_pg_desc_mapping,
  4196. PAGE_SIZE, bp->rx_max_pg_ring);
  4197. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4198. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4199. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4200. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4201. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4202. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4203. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4204. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4205. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4206. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4207. }
  4208. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4209. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4210. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4211. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4212. ring_prod = prod = rxr->rx_pg_prod;
  4213. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4214. if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4215. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4216. ring_num, i, bp->rx_pg_ring_size);
  4217. break;
  4218. }
  4219. prod = NEXT_RX_BD(prod);
  4220. ring_prod = RX_PG_RING_IDX(prod);
  4221. }
  4222. rxr->rx_pg_prod = prod;
  4223. ring_prod = prod = rxr->rx_prod;
  4224. for (i = 0; i < bp->rx_ring_size; i++) {
  4225. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4226. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4227. ring_num, i, bp->rx_ring_size);
  4228. break;
  4229. }
  4230. prod = NEXT_RX_BD(prod);
  4231. ring_prod = RX_RING_IDX(prod);
  4232. }
  4233. rxr->rx_prod = prod;
  4234. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4235. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4236. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4237. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4238. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4239. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4240. }
  4241. static void
  4242. bnx2_init_all_rings(struct bnx2 *bp)
  4243. {
  4244. int i;
  4245. u32 val;
  4246. bnx2_clear_ring_states(bp);
  4247. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4248. for (i = 0; i < bp->num_tx_rings; i++)
  4249. bnx2_init_tx_ring(bp, i);
  4250. if (bp->num_tx_rings > 1)
  4251. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4252. (TX_TSS_CID << 7));
  4253. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4254. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4255. for (i = 0; i < bp->num_rx_rings; i++)
  4256. bnx2_init_rx_ring(bp, i);
  4257. if (bp->num_rx_rings > 1) {
  4258. u32 tbl_32 = 0;
  4259. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4260. int shift = (i % 8) << 2;
  4261. tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
  4262. if ((i % 8) == 7) {
  4263. REG_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
  4264. REG_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
  4265. BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
  4266. BNX2_RLUP_RSS_COMMAND_WRITE |
  4267. BNX2_RLUP_RSS_COMMAND_HASH_MASK);
  4268. tbl_32 = 0;
  4269. }
  4270. }
  4271. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4272. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4273. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4274. }
  4275. }
  4276. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4277. {
  4278. u32 max, num_rings = 1;
  4279. while (ring_size > MAX_RX_DESC_CNT) {
  4280. ring_size -= MAX_RX_DESC_CNT;
  4281. num_rings++;
  4282. }
  4283. /* round to next power of 2 */
  4284. max = max_size;
  4285. while ((max & num_rings) == 0)
  4286. max >>= 1;
  4287. if (num_rings != max)
  4288. max <<= 1;
  4289. return max;
  4290. }
  4291. static void
  4292. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4293. {
  4294. u32 rx_size, rx_space, jumbo_size;
  4295. /* 8 for CRC and VLAN */
  4296. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4297. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4298. sizeof(struct skb_shared_info);
  4299. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4300. bp->rx_pg_ring_size = 0;
  4301. bp->rx_max_pg_ring = 0;
  4302. bp->rx_max_pg_ring_idx = 0;
  4303. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4304. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4305. jumbo_size = size * pages;
  4306. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4307. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4308. bp->rx_pg_ring_size = jumbo_size;
  4309. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4310. MAX_RX_PG_RINGS);
  4311. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4312. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4313. bp->rx_copy_thresh = 0;
  4314. }
  4315. bp->rx_buf_use_size = rx_size;
  4316. /* hw alignment */
  4317. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4318. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4319. bp->rx_ring_size = size;
  4320. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4321. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4322. }
  4323. static void
  4324. bnx2_free_tx_skbs(struct bnx2 *bp)
  4325. {
  4326. int i;
  4327. for (i = 0; i < bp->num_tx_rings; i++) {
  4328. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4329. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4330. int j;
  4331. if (txr->tx_buf_ring == NULL)
  4332. continue;
  4333. for (j = 0; j < TX_DESC_CNT; ) {
  4334. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4335. struct sk_buff *skb = tx_buf->skb;
  4336. int k, last;
  4337. if (skb == NULL) {
  4338. j++;
  4339. continue;
  4340. }
  4341. dma_unmap_single(&bp->pdev->dev,
  4342. dma_unmap_addr(tx_buf, mapping),
  4343. skb_headlen(skb),
  4344. PCI_DMA_TODEVICE);
  4345. tx_buf->skb = NULL;
  4346. last = tx_buf->nr_frags;
  4347. j++;
  4348. for (k = 0; k < last; k++, j++) {
  4349. tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
  4350. dma_unmap_page(&bp->pdev->dev,
  4351. dma_unmap_addr(tx_buf, mapping),
  4352. skb_shinfo(skb)->frags[k].size,
  4353. PCI_DMA_TODEVICE);
  4354. }
  4355. dev_kfree_skb(skb);
  4356. }
  4357. }
  4358. }
  4359. static void
  4360. bnx2_free_rx_skbs(struct bnx2 *bp)
  4361. {
  4362. int i;
  4363. for (i = 0; i < bp->num_rx_rings; i++) {
  4364. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4365. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4366. int j;
  4367. if (rxr->rx_buf_ring == NULL)
  4368. return;
  4369. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4370. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4371. struct sk_buff *skb = rx_buf->skb;
  4372. if (skb == NULL)
  4373. continue;
  4374. dma_unmap_single(&bp->pdev->dev,
  4375. dma_unmap_addr(rx_buf, mapping),
  4376. bp->rx_buf_use_size,
  4377. PCI_DMA_FROMDEVICE);
  4378. rx_buf->skb = NULL;
  4379. dev_kfree_skb(skb);
  4380. }
  4381. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4382. bnx2_free_rx_page(bp, rxr, j);
  4383. }
  4384. }
  4385. static void
  4386. bnx2_free_skbs(struct bnx2 *bp)
  4387. {
  4388. bnx2_free_tx_skbs(bp);
  4389. bnx2_free_rx_skbs(bp);
  4390. }
  4391. static int
  4392. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4393. {
  4394. int rc;
  4395. rc = bnx2_reset_chip(bp, reset_code);
  4396. bnx2_free_skbs(bp);
  4397. if (rc)
  4398. return rc;
  4399. if ((rc = bnx2_init_chip(bp)) != 0)
  4400. return rc;
  4401. bnx2_init_all_rings(bp);
  4402. return 0;
  4403. }
  4404. static int
  4405. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4406. {
  4407. int rc;
  4408. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4409. return rc;
  4410. spin_lock_bh(&bp->phy_lock);
  4411. bnx2_init_phy(bp, reset_phy);
  4412. bnx2_set_link(bp);
  4413. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4414. bnx2_remote_phy_event(bp);
  4415. spin_unlock_bh(&bp->phy_lock);
  4416. return 0;
  4417. }
  4418. static int
  4419. bnx2_shutdown_chip(struct bnx2 *bp)
  4420. {
  4421. u32 reset_code;
  4422. if (bp->flags & BNX2_FLAG_NO_WOL)
  4423. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4424. else if (bp->wol)
  4425. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4426. else
  4427. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4428. return bnx2_reset_chip(bp, reset_code);
  4429. }
  4430. static int
  4431. bnx2_test_registers(struct bnx2 *bp)
  4432. {
  4433. int ret;
  4434. int i, is_5709;
  4435. static const struct {
  4436. u16 offset;
  4437. u16 flags;
  4438. #define BNX2_FL_NOT_5709 1
  4439. u32 rw_mask;
  4440. u32 ro_mask;
  4441. } reg_tbl[] = {
  4442. { 0x006c, 0, 0x00000000, 0x0000003f },
  4443. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4444. { 0x0094, 0, 0x00000000, 0x00000000 },
  4445. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4446. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4447. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4448. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4449. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4450. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4451. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4452. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4453. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4454. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4455. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4456. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4457. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4458. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4459. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4460. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4461. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4462. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4463. { 0x1000, 0, 0x00000000, 0x00000001 },
  4464. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4465. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4466. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4467. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4468. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4469. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4470. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4471. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4472. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4473. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4474. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4475. { 0x1800, 0, 0x00000000, 0x00000001 },
  4476. { 0x1804, 0, 0x00000000, 0x00000003 },
  4477. { 0x2800, 0, 0x00000000, 0x00000001 },
  4478. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4479. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4480. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4481. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4482. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4483. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4484. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4485. { 0x2840, 0, 0x00000000, 0xffffffff },
  4486. { 0x2844, 0, 0x00000000, 0xffffffff },
  4487. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4488. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4489. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4490. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4491. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4492. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4493. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4494. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4495. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4496. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4497. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4498. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4499. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4500. { 0x5004, 0, 0x00000000, 0x0000007f },
  4501. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4502. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4503. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4504. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4505. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4506. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4507. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4508. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4509. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4510. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4511. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4512. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4513. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4514. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4515. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4516. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4517. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4518. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4519. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4520. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4521. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4522. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4523. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4524. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4525. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4526. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4527. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4528. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4529. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4530. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4531. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4532. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4533. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4534. { 0xffff, 0, 0x00000000, 0x00000000 },
  4535. };
  4536. ret = 0;
  4537. is_5709 = 0;
  4538. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4539. is_5709 = 1;
  4540. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4541. u32 offset, rw_mask, ro_mask, save_val, val;
  4542. u16 flags = reg_tbl[i].flags;
  4543. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4544. continue;
  4545. offset = (u32) reg_tbl[i].offset;
  4546. rw_mask = reg_tbl[i].rw_mask;
  4547. ro_mask = reg_tbl[i].ro_mask;
  4548. save_val = readl(bp->regview + offset);
  4549. writel(0, bp->regview + offset);
  4550. val = readl(bp->regview + offset);
  4551. if ((val & rw_mask) != 0) {
  4552. goto reg_test_err;
  4553. }
  4554. if ((val & ro_mask) != (save_val & ro_mask)) {
  4555. goto reg_test_err;
  4556. }
  4557. writel(0xffffffff, bp->regview + offset);
  4558. val = readl(bp->regview + offset);
  4559. if ((val & rw_mask) != rw_mask) {
  4560. goto reg_test_err;
  4561. }
  4562. if ((val & ro_mask) != (save_val & ro_mask)) {
  4563. goto reg_test_err;
  4564. }
  4565. writel(save_val, bp->regview + offset);
  4566. continue;
  4567. reg_test_err:
  4568. writel(save_val, bp->regview + offset);
  4569. ret = -ENODEV;
  4570. break;
  4571. }
  4572. return ret;
  4573. }
  4574. static int
  4575. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4576. {
  4577. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4578. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4579. int i;
  4580. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4581. u32 offset;
  4582. for (offset = 0; offset < size; offset += 4) {
  4583. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4584. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4585. test_pattern[i]) {
  4586. return -ENODEV;
  4587. }
  4588. }
  4589. }
  4590. return 0;
  4591. }
  4592. static int
  4593. bnx2_test_memory(struct bnx2 *bp)
  4594. {
  4595. int ret = 0;
  4596. int i;
  4597. static struct mem_entry {
  4598. u32 offset;
  4599. u32 len;
  4600. } mem_tbl_5706[] = {
  4601. { 0x60000, 0x4000 },
  4602. { 0xa0000, 0x3000 },
  4603. { 0xe0000, 0x4000 },
  4604. { 0x120000, 0x4000 },
  4605. { 0x1a0000, 0x4000 },
  4606. { 0x160000, 0x4000 },
  4607. { 0xffffffff, 0 },
  4608. },
  4609. mem_tbl_5709[] = {
  4610. { 0x60000, 0x4000 },
  4611. { 0xa0000, 0x3000 },
  4612. { 0xe0000, 0x4000 },
  4613. { 0x120000, 0x4000 },
  4614. { 0x1a0000, 0x4000 },
  4615. { 0xffffffff, 0 },
  4616. };
  4617. struct mem_entry *mem_tbl;
  4618. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4619. mem_tbl = mem_tbl_5709;
  4620. else
  4621. mem_tbl = mem_tbl_5706;
  4622. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4623. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4624. mem_tbl[i].len)) != 0) {
  4625. return ret;
  4626. }
  4627. }
  4628. return ret;
  4629. }
  4630. #define BNX2_MAC_LOOPBACK 0
  4631. #define BNX2_PHY_LOOPBACK 1
  4632. static int
  4633. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4634. {
  4635. unsigned int pkt_size, num_pkts, i;
  4636. struct sk_buff *skb, *rx_skb;
  4637. unsigned char *packet;
  4638. u16 rx_start_idx, rx_idx;
  4639. dma_addr_t map;
  4640. struct tx_bd *txbd;
  4641. struct sw_bd *rx_buf;
  4642. struct l2_fhdr *rx_hdr;
  4643. int ret = -ENODEV;
  4644. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4645. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4646. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4647. tx_napi = bnapi;
  4648. txr = &tx_napi->tx_ring;
  4649. rxr = &bnapi->rx_ring;
  4650. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4651. bp->loopback = MAC_LOOPBACK;
  4652. bnx2_set_mac_loopback(bp);
  4653. }
  4654. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4655. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4656. return 0;
  4657. bp->loopback = PHY_LOOPBACK;
  4658. bnx2_set_phy_loopback(bp);
  4659. }
  4660. else
  4661. return -EINVAL;
  4662. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4663. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4664. if (!skb)
  4665. return -ENOMEM;
  4666. packet = skb_put(skb, pkt_size);
  4667. memcpy(packet, bp->dev->dev_addr, 6);
  4668. memset(packet + 6, 0x0, 8);
  4669. for (i = 14; i < pkt_size; i++)
  4670. packet[i] = (unsigned char) (i & 0xff);
  4671. map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
  4672. PCI_DMA_TODEVICE);
  4673. if (dma_mapping_error(&bp->pdev->dev, map)) {
  4674. dev_kfree_skb(skb);
  4675. return -EIO;
  4676. }
  4677. REG_WR(bp, BNX2_HC_COMMAND,
  4678. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4679. REG_RD(bp, BNX2_HC_COMMAND);
  4680. udelay(5);
  4681. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4682. num_pkts = 0;
  4683. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4684. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4685. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4686. txbd->tx_bd_mss_nbytes = pkt_size;
  4687. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4688. num_pkts++;
  4689. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4690. txr->tx_prod_bseq += pkt_size;
  4691. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4692. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4693. udelay(100);
  4694. REG_WR(bp, BNX2_HC_COMMAND,
  4695. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4696. REG_RD(bp, BNX2_HC_COMMAND);
  4697. udelay(5);
  4698. dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
  4699. dev_kfree_skb(skb);
  4700. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4701. goto loopback_test_done;
  4702. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4703. if (rx_idx != rx_start_idx + num_pkts) {
  4704. goto loopback_test_done;
  4705. }
  4706. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4707. rx_skb = rx_buf->skb;
  4708. rx_hdr = rx_buf->desc;
  4709. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4710. dma_sync_single_for_cpu(&bp->pdev->dev,
  4711. dma_unmap_addr(rx_buf, mapping),
  4712. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4713. if (rx_hdr->l2_fhdr_status &
  4714. (L2_FHDR_ERRORS_BAD_CRC |
  4715. L2_FHDR_ERRORS_PHY_DECODE |
  4716. L2_FHDR_ERRORS_ALIGNMENT |
  4717. L2_FHDR_ERRORS_TOO_SHORT |
  4718. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4719. goto loopback_test_done;
  4720. }
  4721. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4722. goto loopback_test_done;
  4723. }
  4724. for (i = 14; i < pkt_size; i++) {
  4725. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4726. goto loopback_test_done;
  4727. }
  4728. }
  4729. ret = 0;
  4730. loopback_test_done:
  4731. bp->loopback = 0;
  4732. return ret;
  4733. }
  4734. #define BNX2_MAC_LOOPBACK_FAILED 1
  4735. #define BNX2_PHY_LOOPBACK_FAILED 2
  4736. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4737. BNX2_PHY_LOOPBACK_FAILED)
  4738. static int
  4739. bnx2_test_loopback(struct bnx2 *bp)
  4740. {
  4741. int rc = 0;
  4742. if (!netif_running(bp->dev))
  4743. return BNX2_LOOPBACK_FAILED;
  4744. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4745. spin_lock_bh(&bp->phy_lock);
  4746. bnx2_init_phy(bp, 1);
  4747. spin_unlock_bh(&bp->phy_lock);
  4748. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4749. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4750. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4751. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4752. return rc;
  4753. }
  4754. #define NVRAM_SIZE 0x200
  4755. #define CRC32_RESIDUAL 0xdebb20e3
  4756. static int
  4757. bnx2_test_nvram(struct bnx2 *bp)
  4758. {
  4759. __be32 buf[NVRAM_SIZE / 4];
  4760. u8 *data = (u8 *) buf;
  4761. int rc = 0;
  4762. u32 magic, csum;
  4763. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4764. goto test_nvram_done;
  4765. magic = be32_to_cpu(buf[0]);
  4766. if (magic != 0x669955aa) {
  4767. rc = -ENODEV;
  4768. goto test_nvram_done;
  4769. }
  4770. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4771. goto test_nvram_done;
  4772. csum = ether_crc_le(0x100, data);
  4773. if (csum != CRC32_RESIDUAL) {
  4774. rc = -ENODEV;
  4775. goto test_nvram_done;
  4776. }
  4777. csum = ether_crc_le(0x100, data + 0x100);
  4778. if (csum != CRC32_RESIDUAL) {
  4779. rc = -ENODEV;
  4780. }
  4781. test_nvram_done:
  4782. return rc;
  4783. }
  4784. static int
  4785. bnx2_test_link(struct bnx2 *bp)
  4786. {
  4787. u32 bmsr;
  4788. if (!netif_running(bp->dev))
  4789. return -ENODEV;
  4790. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4791. if (bp->link_up)
  4792. return 0;
  4793. return -ENODEV;
  4794. }
  4795. spin_lock_bh(&bp->phy_lock);
  4796. bnx2_enable_bmsr1(bp);
  4797. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4798. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4799. bnx2_disable_bmsr1(bp);
  4800. spin_unlock_bh(&bp->phy_lock);
  4801. if (bmsr & BMSR_LSTATUS) {
  4802. return 0;
  4803. }
  4804. return -ENODEV;
  4805. }
  4806. static int
  4807. bnx2_test_intr(struct bnx2 *bp)
  4808. {
  4809. int i;
  4810. u16 status_idx;
  4811. if (!netif_running(bp->dev))
  4812. return -ENODEV;
  4813. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4814. /* This register is not touched during run-time. */
  4815. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4816. REG_RD(bp, BNX2_HC_COMMAND);
  4817. for (i = 0; i < 10; i++) {
  4818. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4819. status_idx) {
  4820. break;
  4821. }
  4822. msleep_interruptible(10);
  4823. }
  4824. if (i < 10)
  4825. return 0;
  4826. return -ENODEV;
  4827. }
  4828. /* Determining link for parallel detection. */
  4829. static int
  4830. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4831. {
  4832. u32 mode_ctl, an_dbg, exp;
  4833. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4834. return 0;
  4835. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4836. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4837. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4838. return 0;
  4839. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4840. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4841. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4842. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4843. return 0;
  4844. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4845. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4846. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4847. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4848. return 0;
  4849. return 1;
  4850. }
  4851. static void
  4852. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4853. {
  4854. int check_link = 1;
  4855. spin_lock(&bp->phy_lock);
  4856. if (bp->serdes_an_pending) {
  4857. bp->serdes_an_pending--;
  4858. check_link = 0;
  4859. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4860. u32 bmcr;
  4861. bp->current_interval = BNX2_TIMER_INTERVAL;
  4862. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4863. if (bmcr & BMCR_ANENABLE) {
  4864. if (bnx2_5706_serdes_has_link(bp)) {
  4865. bmcr &= ~BMCR_ANENABLE;
  4866. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4867. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4868. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4869. }
  4870. }
  4871. }
  4872. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4873. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4874. u32 phy2;
  4875. bnx2_write_phy(bp, 0x17, 0x0f01);
  4876. bnx2_read_phy(bp, 0x15, &phy2);
  4877. if (phy2 & 0x20) {
  4878. u32 bmcr;
  4879. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4880. bmcr |= BMCR_ANENABLE;
  4881. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4882. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4883. }
  4884. } else
  4885. bp->current_interval = BNX2_TIMER_INTERVAL;
  4886. if (check_link) {
  4887. u32 val;
  4888. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4889. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4890. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4891. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4892. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4893. bnx2_5706s_force_link_dn(bp, 1);
  4894. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4895. } else
  4896. bnx2_set_link(bp);
  4897. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4898. bnx2_set_link(bp);
  4899. }
  4900. spin_unlock(&bp->phy_lock);
  4901. }
  4902. static void
  4903. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4904. {
  4905. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4906. return;
  4907. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4908. bp->serdes_an_pending = 0;
  4909. return;
  4910. }
  4911. spin_lock(&bp->phy_lock);
  4912. if (bp->serdes_an_pending)
  4913. bp->serdes_an_pending--;
  4914. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4915. u32 bmcr;
  4916. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4917. if (bmcr & BMCR_ANENABLE) {
  4918. bnx2_enable_forced_2g5(bp);
  4919. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4920. } else {
  4921. bnx2_disable_forced_2g5(bp);
  4922. bp->serdes_an_pending = 2;
  4923. bp->current_interval = BNX2_TIMER_INTERVAL;
  4924. }
  4925. } else
  4926. bp->current_interval = BNX2_TIMER_INTERVAL;
  4927. spin_unlock(&bp->phy_lock);
  4928. }
  4929. static void
  4930. bnx2_timer(unsigned long data)
  4931. {
  4932. struct bnx2 *bp = (struct bnx2 *) data;
  4933. if (!netif_running(bp->dev))
  4934. return;
  4935. if (atomic_read(&bp->intr_sem) != 0)
  4936. goto bnx2_restart_timer;
  4937. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4938. BNX2_FLAG_USING_MSI)
  4939. bnx2_chk_missed_msi(bp);
  4940. bnx2_send_heart_beat(bp);
  4941. bp->stats_blk->stat_FwRxDrop =
  4942. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4943. /* workaround occasional corrupted counters */
  4944. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  4945. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4946. BNX2_HC_COMMAND_STATS_NOW);
  4947. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4948. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4949. bnx2_5706_serdes_timer(bp);
  4950. else
  4951. bnx2_5708_serdes_timer(bp);
  4952. }
  4953. bnx2_restart_timer:
  4954. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4955. }
  4956. static int
  4957. bnx2_request_irq(struct bnx2 *bp)
  4958. {
  4959. unsigned long flags;
  4960. struct bnx2_irq *irq;
  4961. int rc = 0, i;
  4962. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4963. flags = 0;
  4964. else
  4965. flags = IRQF_SHARED;
  4966. for (i = 0; i < bp->irq_nvecs; i++) {
  4967. irq = &bp->irq_tbl[i];
  4968. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4969. &bp->bnx2_napi[i]);
  4970. if (rc)
  4971. break;
  4972. irq->requested = 1;
  4973. }
  4974. return rc;
  4975. }
  4976. static void
  4977. __bnx2_free_irq(struct bnx2 *bp)
  4978. {
  4979. struct bnx2_irq *irq;
  4980. int i;
  4981. for (i = 0; i < bp->irq_nvecs; i++) {
  4982. irq = &bp->irq_tbl[i];
  4983. if (irq->requested)
  4984. free_irq(irq->vector, &bp->bnx2_napi[i]);
  4985. irq->requested = 0;
  4986. }
  4987. }
  4988. static void
  4989. bnx2_free_irq(struct bnx2 *bp)
  4990. {
  4991. __bnx2_free_irq(bp);
  4992. if (bp->flags & BNX2_FLAG_USING_MSI)
  4993. pci_disable_msi(bp->pdev);
  4994. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4995. pci_disable_msix(bp->pdev);
  4996. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  4997. }
  4998. static void
  4999. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  5000. {
  5001. int i, total_vecs, rc;
  5002. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  5003. struct net_device *dev = bp->dev;
  5004. const int len = sizeof(bp->irq_tbl[0].name);
  5005. bnx2_setup_msix_tbl(bp);
  5006. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  5007. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5008. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5009. /* Need to flush the previous three writes to ensure MSI-X
  5010. * is setup properly */
  5011. REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5012. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5013. msix_ent[i].entry = i;
  5014. msix_ent[i].vector = 0;
  5015. }
  5016. total_vecs = msix_vecs;
  5017. #ifdef BCM_CNIC
  5018. total_vecs++;
  5019. #endif
  5020. rc = -ENOSPC;
  5021. while (total_vecs >= BNX2_MIN_MSIX_VEC) {
  5022. rc = pci_enable_msix(bp->pdev, msix_ent, total_vecs);
  5023. if (rc <= 0)
  5024. break;
  5025. if (rc > 0)
  5026. total_vecs = rc;
  5027. }
  5028. if (rc != 0)
  5029. return;
  5030. msix_vecs = total_vecs;
  5031. #ifdef BCM_CNIC
  5032. msix_vecs--;
  5033. #endif
  5034. bp->irq_nvecs = msix_vecs;
  5035. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5036. for (i = 0; i < total_vecs; i++) {
  5037. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5038. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5039. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5040. }
  5041. }
  5042. static int
  5043. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5044. {
  5045. int cpus = num_online_cpus();
  5046. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  5047. bp->irq_tbl[0].handler = bnx2_interrupt;
  5048. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5049. bp->irq_nvecs = 1;
  5050. bp->irq_tbl[0].vector = bp->pdev->irq;
  5051. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
  5052. bnx2_enable_msix(bp, msix_vecs);
  5053. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5054. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5055. if (pci_enable_msi(bp->pdev) == 0) {
  5056. bp->flags |= BNX2_FLAG_USING_MSI;
  5057. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5058. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5059. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5060. } else
  5061. bp->irq_tbl[0].handler = bnx2_msi;
  5062. bp->irq_tbl[0].vector = bp->pdev->irq;
  5063. }
  5064. }
  5065. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5066. netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
  5067. bp->num_rx_rings = bp->irq_nvecs;
  5068. return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
  5069. }
  5070. /* Called with rtnl_lock */
  5071. static int
  5072. bnx2_open(struct net_device *dev)
  5073. {
  5074. struct bnx2 *bp = netdev_priv(dev);
  5075. int rc;
  5076. netif_carrier_off(dev);
  5077. bnx2_set_power_state(bp, PCI_D0);
  5078. bnx2_disable_int(bp);
  5079. rc = bnx2_setup_int_mode(bp, disable_msi);
  5080. if (rc)
  5081. goto open_err;
  5082. bnx2_init_napi(bp);
  5083. bnx2_napi_enable(bp);
  5084. rc = bnx2_alloc_mem(bp);
  5085. if (rc)
  5086. goto open_err;
  5087. rc = bnx2_request_irq(bp);
  5088. if (rc)
  5089. goto open_err;
  5090. rc = bnx2_init_nic(bp, 1);
  5091. if (rc)
  5092. goto open_err;
  5093. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5094. atomic_set(&bp->intr_sem, 0);
  5095. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5096. bnx2_enable_int(bp);
  5097. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5098. /* Test MSI to make sure it is working
  5099. * If MSI test fails, go back to INTx mode
  5100. */
  5101. if (bnx2_test_intr(bp) != 0) {
  5102. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5103. bnx2_disable_int(bp);
  5104. bnx2_free_irq(bp);
  5105. bnx2_setup_int_mode(bp, 1);
  5106. rc = bnx2_init_nic(bp, 0);
  5107. if (!rc)
  5108. rc = bnx2_request_irq(bp);
  5109. if (rc) {
  5110. del_timer_sync(&bp->timer);
  5111. goto open_err;
  5112. }
  5113. bnx2_enable_int(bp);
  5114. }
  5115. }
  5116. if (bp->flags & BNX2_FLAG_USING_MSI)
  5117. netdev_info(dev, "using MSI\n");
  5118. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5119. netdev_info(dev, "using MSIX\n");
  5120. netif_tx_start_all_queues(dev);
  5121. return 0;
  5122. open_err:
  5123. bnx2_napi_disable(bp);
  5124. bnx2_free_skbs(bp);
  5125. bnx2_free_irq(bp);
  5126. bnx2_free_mem(bp);
  5127. bnx2_del_napi(bp);
  5128. return rc;
  5129. }
  5130. static void
  5131. bnx2_reset_task(struct work_struct *work)
  5132. {
  5133. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5134. rtnl_lock();
  5135. if (!netif_running(bp->dev)) {
  5136. rtnl_unlock();
  5137. return;
  5138. }
  5139. bnx2_netif_stop(bp, true);
  5140. bnx2_init_nic(bp, 1);
  5141. atomic_set(&bp->intr_sem, 1);
  5142. bnx2_netif_start(bp, true);
  5143. rtnl_unlock();
  5144. }
  5145. static void
  5146. bnx2_dump_state(struct bnx2 *bp)
  5147. {
  5148. struct net_device *dev = bp->dev;
  5149. u32 mcp_p0, mcp_p1, val1, val2;
  5150. pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
  5151. netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
  5152. atomic_read(&bp->intr_sem), val1);
  5153. pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
  5154. pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
  5155. netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
  5156. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
  5157. REG_RD(bp, BNX2_EMAC_TX_STATUS),
  5158. REG_RD(bp, BNX2_EMAC_RX_STATUS));
  5159. netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
  5160. REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5161. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5162. mcp_p0 = BNX2_MCP_STATE_P0;
  5163. mcp_p1 = BNX2_MCP_STATE_P1;
  5164. } else {
  5165. mcp_p0 = BNX2_MCP_STATE_P0_5708;
  5166. mcp_p1 = BNX2_MCP_STATE_P1_5708;
  5167. }
  5168. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  5169. bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
  5170. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5171. REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5172. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5173. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5174. REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5175. }
  5176. static void
  5177. bnx2_tx_timeout(struct net_device *dev)
  5178. {
  5179. struct bnx2 *bp = netdev_priv(dev);
  5180. bnx2_dump_state(bp);
  5181. /* This allows the netif to be shutdown gracefully before resetting */
  5182. schedule_work(&bp->reset_task);
  5183. }
  5184. /* Called with netif_tx_lock.
  5185. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5186. * netif_wake_queue().
  5187. */
  5188. static netdev_tx_t
  5189. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5190. {
  5191. struct bnx2 *bp = netdev_priv(dev);
  5192. dma_addr_t mapping;
  5193. struct tx_bd *txbd;
  5194. struct sw_tx_bd *tx_buf;
  5195. u32 len, vlan_tag_flags, last_frag, mss;
  5196. u16 prod, ring_prod;
  5197. int i;
  5198. struct bnx2_napi *bnapi;
  5199. struct bnx2_tx_ring_info *txr;
  5200. struct netdev_queue *txq;
  5201. /* Determine which tx ring we will be placed on */
  5202. i = skb_get_queue_mapping(skb);
  5203. bnapi = &bp->bnx2_napi[i];
  5204. txr = &bnapi->tx_ring;
  5205. txq = netdev_get_tx_queue(dev, i);
  5206. if (unlikely(bnx2_tx_avail(bp, txr) <
  5207. (skb_shinfo(skb)->nr_frags + 1))) {
  5208. netif_tx_stop_queue(txq);
  5209. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5210. return NETDEV_TX_BUSY;
  5211. }
  5212. len = skb_headlen(skb);
  5213. prod = txr->tx_prod;
  5214. ring_prod = TX_RING_IDX(prod);
  5215. vlan_tag_flags = 0;
  5216. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5217. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5218. }
  5219. if (vlan_tx_tag_present(skb)) {
  5220. vlan_tag_flags |=
  5221. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5222. }
  5223. if ((mss = skb_shinfo(skb)->gso_size)) {
  5224. u32 tcp_opt_len;
  5225. struct iphdr *iph;
  5226. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5227. tcp_opt_len = tcp_optlen(skb);
  5228. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5229. u32 tcp_off = skb_transport_offset(skb) -
  5230. sizeof(struct ipv6hdr) - ETH_HLEN;
  5231. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5232. TX_BD_FLAGS_SW_FLAGS;
  5233. if (likely(tcp_off == 0))
  5234. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5235. else {
  5236. tcp_off >>= 3;
  5237. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5238. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5239. ((tcp_off & 0x10) <<
  5240. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5241. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5242. }
  5243. } else {
  5244. iph = ip_hdr(skb);
  5245. if (tcp_opt_len || (iph->ihl > 5)) {
  5246. vlan_tag_flags |= ((iph->ihl - 5) +
  5247. (tcp_opt_len >> 2)) << 8;
  5248. }
  5249. }
  5250. } else
  5251. mss = 0;
  5252. mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
  5253. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  5254. dev_kfree_skb(skb);
  5255. return NETDEV_TX_OK;
  5256. }
  5257. tx_buf = &txr->tx_buf_ring[ring_prod];
  5258. tx_buf->skb = skb;
  5259. dma_unmap_addr_set(tx_buf, mapping, mapping);
  5260. txbd = &txr->tx_desc_ring[ring_prod];
  5261. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5262. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5263. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5264. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5265. last_frag = skb_shinfo(skb)->nr_frags;
  5266. tx_buf->nr_frags = last_frag;
  5267. tx_buf->is_gso = skb_is_gso(skb);
  5268. for (i = 0; i < last_frag; i++) {
  5269. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5270. prod = NEXT_TX_BD(prod);
  5271. ring_prod = TX_RING_IDX(prod);
  5272. txbd = &txr->tx_desc_ring[ring_prod];
  5273. len = frag->size;
  5274. mapping = dma_map_page(&bp->pdev->dev, frag->page, frag->page_offset,
  5275. len, PCI_DMA_TODEVICE);
  5276. if (dma_mapping_error(&bp->pdev->dev, mapping))
  5277. goto dma_error;
  5278. dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5279. mapping);
  5280. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5281. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5282. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5283. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5284. }
  5285. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5286. prod = NEXT_TX_BD(prod);
  5287. txr->tx_prod_bseq += skb->len;
  5288. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5289. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5290. mmiowb();
  5291. txr->tx_prod = prod;
  5292. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5293. netif_tx_stop_queue(txq);
  5294. /* netif_tx_stop_queue() must be done before checking
  5295. * tx index in bnx2_tx_avail() below, because in
  5296. * bnx2_tx_int(), we update tx index before checking for
  5297. * netif_tx_queue_stopped().
  5298. */
  5299. smp_mb();
  5300. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5301. netif_tx_wake_queue(txq);
  5302. }
  5303. return NETDEV_TX_OK;
  5304. dma_error:
  5305. /* save value of frag that failed */
  5306. last_frag = i;
  5307. /* start back at beginning and unmap skb */
  5308. prod = txr->tx_prod;
  5309. ring_prod = TX_RING_IDX(prod);
  5310. tx_buf = &txr->tx_buf_ring[ring_prod];
  5311. tx_buf->skb = NULL;
  5312. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5313. skb_headlen(skb), PCI_DMA_TODEVICE);
  5314. /* unmap remaining mapped pages */
  5315. for (i = 0; i < last_frag; i++) {
  5316. prod = NEXT_TX_BD(prod);
  5317. ring_prod = TX_RING_IDX(prod);
  5318. tx_buf = &txr->tx_buf_ring[ring_prod];
  5319. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5320. skb_shinfo(skb)->frags[i].size,
  5321. PCI_DMA_TODEVICE);
  5322. }
  5323. dev_kfree_skb(skb);
  5324. return NETDEV_TX_OK;
  5325. }
  5326. /* Called with rtnl_lock */
  5327. static int
  5328. bnx2_close(struct net_device *dev)
  5329. {
  5330. struct bnx2 *bp = netdev_priv(dev);
  5331. cancel_work_sync(&bp->reset_task);
  5332. bnx2_disable_int_sync(bp);
  5333. bnx2_napi_disable(bp);
  5334. del_timer_sync(&bp->timer);
  5335. bnx2_shutdown_chip(bp);
  5336. bnx2_free_irq(bp);
  5337. bnx2_free_skbs(bp);
  5338. bnx2_free_mem(bp);
  5339. bnx2_del_napi(bp);
  5340. bp->link_up = 0;
  5341. netif_carrier_off(bp->dev);
  5342. bnx2_set_power_state(bp, PCI_D3hot);
  5343. return 0;
  5344. }
  5345. static void
  5346. bnx2_save_stats(struct bnx2 *bp)
  5347. {
  5348. u32 *hw_stats = (u32 *) bp->stats_blk;
  5349. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5350. int i;
  5351. /* The 1st 10 counters are 64-bit counters */
  5352. for (i = 0; i < 20; i += 2) {
  5353. u32 hi;
  5354. u64 lo;
  5355. hi = temp_stats[i] + hw_stats[i];
  5356. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5357. if (lo > 0xffffffff)
  5358. hi++;
  5359. temp_stats[i] = hi;
  5360. temp_stats[i + 1] = lo & 0xffffffff;
  5361. }
  5362. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5363. temp_stats[i] += hw_stats[i];
  5364. }
  5365. #define GET_64BIT_NET_STATS64(ctr) \
  5366. (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
  5367. #define GET_64BIT_NET_STATS(ctr) \
  5368. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5369. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5370. #define GET_32BIT_NET_STATS(ctr) \
  5371. (unsigned long) (bp->stats_blk->ctr + \
  5372. bp->temp_stats_blk->ctr)
  5373. static struct rtnl_link_stats64 *
  5374. bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
  5375. {
  5376. struct bnx2 *bp = netdev_priv(dev);
  5377. if (bp->stats_blk == NULL)
  5378. return net_stats;
  5379. net_stats->rx_packets =
  5380. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5381. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5382. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5383. net_stats->tx_packets =
  5384. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5385. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5386. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5387. net_stats->rx_bytes =
  5388. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5389. net_stats->tx_bytes =
  5390. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5391. net_stats->multicast =
  5392. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
  5393. net_stats->collisions =
  5394. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5395. net_stats->rx_length_errors =
  5396. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5397. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5398. net_stats->rx_over_errors =
  5399. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5400. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5401. net_stats->rx_frame_errors =
  5402. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5403. net_stats->rx_crc_errors =
  5404. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5405. net_stats->rx_errors = net_stats->rx_length_errors +
  5406. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5407. net_stats->rx_crc_errors;
  5408. net_stats->tx_aborted_errors =
  5409. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5410. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5411. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5412. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5413. net_stats->tx_carrier_errors = 0;
  5414. else {
  5415. net_stats->tx_carrier_errors =
  5416. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5417. }
  5418. net_stats->tx_errors =
  5419. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5420. net_stats->tx_aborted_errors +
  5421. net_stats->tx_carrier_errors;
  5422. net_stats->rx_missed_errors =
  5423. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5424. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5425. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5426. return net_stats;
  5427. }
  5428. /* All ethtool functions called with rtnl_lock */
  5429. static int
  5430. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5431. {
  5432. struct bnx2 *bp = netdev_priv(dev);
  5433. int support_serdes = 0, support_copper = 0;
  5434. cmd->supported = SUPPORTED_Autoneg;
  5435. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5436. support_serdes = 1;
  5437. support_copper = 1;
  5438. } else if (bp->phy_port == PORT_FIBRE)
  5439. support_serdes = 1;
  5440. else
  5441. support_copper = 1;
  5442. if (support_serdes) {
  5443. cmd->supported |= SUPPORTED_1000baseT_Full |
  5444. SUPPORTED_FIBRE;
  5445. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5446. cmd->supported |= SUPPORTED_2500baseX_Full;
  5447. }
  5448. if (support_copper) {
  5449. cmd->supported |= SUPPORTED_10baseT_Half |
  5450. SUPPORTED_10baseT_Full |
  5451. SUPPORTED_100baseT_Half |
  5452. SUPPORTED_100baseT_Full |
  5453. SUPPORTED_1000baseT_Full |
  5454. SUPPORTED_TP;
  5455. }
  5456. spin_lock_bh(&bp->phy_lock);
  5457. cmd->port = bp->phy_port;
  5458. cmd->advertising = bp->advertising;
  5459. if (bp->autoneg & AUTONEG_SPEED) {
  5460. cmd->autoneg = AUTONEG_ENABLE;
  5461. }
  5462. else {
  5463. cmd->autoneg = AUTONEG_DISABLE;
  5464. }
  5465. if (netif_carrier_ok(dev)) {
  5466. cmd->speed = bp->line_speed;
  5467. cmd->duplex = bp->duplex;
  5468. }
  5469. else {
  5470. cmd->speed = -1;
  5471. cmd->duplex = -1;
  5472. }
  5473. spin_unlock_bh(&bp->phy_lock);
  5474. cmd->transceiver = XCVR_INTERNAL;
  5475. cmd->phy_address = bp->phy_addr;
  5476. return 0;
  5477. }
  5478. static int
  5479. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5480. {
  5481. struct bnx2 *bp = netdev_priv(dev);
  5482. u8 autoneg = bp->autoneg;
  5483. u8 req_duplex = bp->req_duplex;
  5484. u16 req_line_speed = bp->req_line_speed;
  5485. u32 advertising = bp->advertising;
  5486. int err = -EINVAL;
  5487. spin_lock_bh(&bp->phy_lock);
  5488. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5489. goto err_out_unlock;
  5490. if (cmd->port != bp->phy_port &&
  5491. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5492. goto err_out_unlock;
  5493. /* If device is down, we can store the settings only if the user
  5494. * is setting the currently active port.
  5495. */
  5496. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5497. goto err_out_unlock;
  5498. if (cmd->autoneg == AUTONEG_ENABLE) {
  5499. autoneg |= AUTONEG_SPEED;
  5500. advertising = cmd->advertising;
  5501. if (cmd->port == PORT_TP) {
  5502. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5503. if (!advertising)
  5504. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5505. } else {
  5506. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5507. if (!advertising)
  5508. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5509. }
  5510. advertising |= ADVERTISED_Autoneg;
  5511. }
  5512. else {
  5513. if (cmd->port == PORT_FIBRE) {
  5514. if ((cmd->speed != SPEED_1000 &&
  5515. cmd->speed != SPEED_2500) ||
  5516. (cmd->duplex != DUPLEX_FULL))
  5517. goto err_out_unlock;
  5518. if (cmd->speed == SPEED_2500 &&
  5519. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5520. goto err_out_unlock;
  5521. }
  5522. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5523. goto err_out_unlock;
  5524. autoneg &= ~AUTONEG_SPEED;
  5525. req_line_speed = cmd->speed;
  5526. req_duplex = cmd->duplex;
  5527. advertising = 0;
  5528. }
  5529. bp->autoneg = autoneg;
  5530. bp->advertising = advertising;
  5531. bp->req_line_speed = req_line_speed;
  5532. bp->req_duplex = req_duplex;
  5533. err = 0;
  5534. /* If device is down, the new settings will be picked up when it is
  5535. * brought up.
  5536. */
  5537. if (netif_running(dev))
  5538. err = bnx2_setup_phy(bp, cmd->port);
  5539. err_out_unlock:
  5540. spin_unlock_bh(&bp->phy_lock);
  5541. return err;
  5542. }
  5543. static void
  5544. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5545. {
  5546. struct bnx2 *bp = netdev_priv(dev);
  5547. strcpy(info->driver, DRV_MODULE_NAME);
  5548. strcpy(info->version, DRV_MODULE_VERSION);
  5549. strcpy(info->bus_info, pci_name(bp->pdev));
  5550. strcpy(info->fw_version, bp->fw_version);
  5551. }
  5552. #define BNX2_REGDUMP_LEN (32 * 1024)
  5553. static int
  5554. bnx2_get_regs_len(struct net_device *dev)
  5555. {
  5556. return BNX2_REGDUMP_LEN;
  5557. }
  5558. static void
  5559. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5560. {
  5561. u32 *p = _p, i, offset;
  5562. u8 *orig_p = _p;
  5563. struct bnx2 *bp = netdev_priv(dev);
  5564. static const u32 reg_boundaries[] = {
  5565. 0x0000, 0x0098, 0x0400, 0x045c,
  5566. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5567. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5568. 0x1040, 0x1048, 0x1080, 0x10a4,
  5569. 0x1400, 0x1490, 0x1498, 0x14f0,
  5570. 0x1500, 0x155c, 0x1580, 0x15dc,
  5571. 0x1600, 0x1658, 0x1680, 0x16d8,
  5572. 0x1800, 0x1820, 0x1840, 0x1854,
  5573. 0x1880, 0x1894, 0x1900, 0x1984,
  5574. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5575. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5576. 0x2000, 0x2030, 0x23c0, 0x2400,
  5577. 0x2800, 0x2820, 0x2830, 0x2850,
  5578. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5579. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5580. 0x4080, 0x4090, 0x43c0, 0x4458,
  5581. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5582. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5583. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5584. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5585. 0x6800, 0x6848, 0x684c, 0x6860,
  5586. 0x6888, 0x6910, 0x8000
  5587. };
  5588. regs->version = 0;
  5589. memset(p, 0, BNX2_REGDUMP_LEN);
  5590. if (!netif_running(bp->dev))
  5591. return;
  5592. i = 0;
  5593. offset = reg_boundaries[0];
  5594. p += offset;
  5595. while (offset < BNX2_REGDUMP_LEN) {
  5596. *p++ = REG_RD(bp, offset);
  5597. offset += 4;
  5598. if (offset == reg_boundaries[i + 1]) {
  5599. offset = reg_boundaries[i + 2];
  5600. p = (u32 *) (orig_p + offset);
  5601. i += 2;
  5602. }
  5603. }
  5604. }
  5605. static void
  5606. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5607. {
  5608. struct bnx2 *bp = netdev_priv(dev);
  5609. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5610. wol->supported = 0;
  5611. wol->wolopts = 0;
  5612. }
  5613. else {
  5614. wol->supported = WAKE_MAGIC;
  5615. if (bp->wol)
  5616. wol->wolopts = WAKE_MAGIC;
  5617. else
  5618. wol->wolopts = 0;
  5619. }
  5620. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5621. }
  5622. static int
  5623. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5624. {
  5625. struct bnx2 *bp = netdev_priv(dev);
  5626. if (wol->wolopts & ~WAKE_MAGIC)
  5627. return -EINVAL;
  5628. if (wol->wolopts & WAKE_MAGIC) {
  5629. if (bp->flags & BNX2_FLAG_NO_WOL)
  5630. return -EINVAL;
  5631. bp->wol = 1;
  5632. }
  5633. else {
  5634. bp->wol = 0;
  5635. }
  5636. return 0;
  5637. }
  5638. static int
  5639. bnx2_nway_reset(struct net_device *dev)
  5640. {
  5641. struct bnx2 *bp = netdev_priv(dev);
  5642. u32 bmcr;
  5643. if (!netif_running(dev))
  5644. return -EAGAIN;
  5645. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5646. return -EINVAL;
  5647. }
  5648. spin_lock_bh(&bp->phy_lock);
  5649. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5650. int rc;
  5651. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5652. spin_unlock_bh(&bp->phy_lock);
  5653. return rc;
  5654. }
  5655. /* Force a link down visible on the other side */
  5656. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5657. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5658. spin_unlock_bh(&bp->phy_lock);
  5659. msleep(20);
  5660. spin_lock_bh(&bp->phy_lock);
  5661. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5662. bp->serdes_an_pending = 1;
  5663. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5664. }
  5665. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5666. bmcr &= ~BMCR_LOOPBACK;
  5667. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5668. spin_unlock_bh(&bp->phy_lock);
  5669. return 0;
  5670. }
  5671. static u32
  5672. bnx2_get_link(struct net_device *dev)
  5673. {
  5674. struct bnx2 *bp = netdev_priv(dev);
  5675. return bp->link_up;
  5676. }
  5677. static int
  5678. bnx2_get_eeprom_len(struct net_device *dev)
  5679. {
  5680. struct bnx2 *bp = netdev_priv(dev);
  5681. if (bp->flash_info == NULL)
  5682. return 0;
  5683. return (int) bp->flash_size;
  5684. }
  5685. static int
  5686. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5687. u8 *eebuf)
  5688. {
  5689. struct bnx2 *bp = netdev_priv(dev);
  5690. int rc;
  5691. if (!netif_running(dev))
  5692. return -EAGAIN;
  5693. /* parameters already validated in ethtool_get_eeprom */
  5694. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5695. return rc;
  5696. }
  5697. static int
  5698. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5699. u8 *eebuf)
  5700. {
  5701. struct bnx2 *bp = netdev_priv(dev);
  5702. int rc;
  5703. if (!netif_running(dev))
  5704. return -EAGAIN;
  5705. /* parameters already validated in ethtool_set_eeprom */
  5706. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5707. return rc;
  5708. }
  5709. static int
  5710. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5711. {
  5712. struct bnx2 *bp = netdev_priv(dev);
  5713. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5714. coal->rx_coalesce_usecs = bp->rx_ticks;
  5715. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5716. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5717. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5718. coal->tx_coalesce_usecs = bp->tx_ticks;
  5719. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5720. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5721. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5722. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5723. return 0;
  5724. }
  5725. static int
  5726. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5727. {
  5728. struct bnx2 *bp = netdev_priv(dev);
  5729. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5730. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5731. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5732. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5733. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5734. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5735. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5736. if (bp->rx_quick_cons_trip_int > 0xff)
  5737. bp->rx_quick_cons_trip_int = 0xff;
  5738. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5739. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5740. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5741. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5742. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5743. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5744. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5745. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5746. 0xff;
  5747. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5748. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5749. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5750. bp->stats_ticks = USEC_PER_SEC;
  5751. }
  5752. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5753. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5754. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5755. if (netif_running(bp->dev)) {
  5756. bnx2_netif_stop(bp, true);
  5757. bnx2_init_nic(bp, 0);
  5758. bnx2_netif_start(bp, true);
  5759. }
  5760. return 0;
  5761. }
  5762. static void
  5763. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5764. {
  5765. struct bnx2 *bp = netdev_priv(dev);
  5766. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5767. ering->rx_mini_max_pending = 0;
  5768. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5769. ering->rx_pending = bp->rx_ring_size;
  5770. ering->rx_mini_pending = 0;
  5771. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5772. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5773. ering->tx_pending = bp->tx_ring_size;
  5774. }
  5775. static int
  5776. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5777. {
  5778. if (netif_running(bp->dev)) {
  5779. /* Reset will erase chipset stats; save them */
  5780. bnx2_save_stats(bp);
  5781. bnx2_netif_stop(bp, true);
  5782. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5783. __bnx2_free_irq(bp);
  5784. bnx2_free_skbs(bp);
  5785. bnx2_free_mem(bp);
  5786. }
  5787. bnx2_set_rx_ring_size(bp, rx);
  5788. bp->tx_ring_size = tx;
  5789. if (netif_running(bp->dev)) {
  5790. int rc;
  5791. rc = bnx2_alloc_mem(bp);
  5792. if (!rc)
  5793. rc = bnx2_request_irq(bp);
  5794. if (!rc)
  5795. rc = bnx2_init_nic(bp, 0);
  5796. if (rc) {
  5797. bnx2_napi_enable(bp);
  5798. dev_close(bp->dev);
  5799. return rc;
  5800. }
  5801. #ifdef BCM_CNIC
  5802. mutex_lock(&bp->cnic_lock);
  5803. /* Let cnic know about the new status block. */
  5804. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  5805. bnx2_setup_cnic_irq_info(bp);
  5806. mutex_unlock(&bp->cnic_lock);
  5807. #endif
  5808. bnx2_netif_start(bp, true);
  5809. }
  5810. return 0;
  5811. }
  5812. static int
  5813. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5814. {
  5815. struct bnx2 *bp = netdev_priv(dev);
  5816. int rc;
  5817. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5818. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5819. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5820. return -EINVAL;
  5821. }
  5822. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5823. return rc;
  5824. }
  5825. static void
  5826. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5827. {
  5828. struct bnx2 *bp = netdev_priv(dev);
  5829. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5830. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5831. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5832. }
  5833. static int
  5834. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5835. {
  5836. struct bnx2 *bp = netdev_priv(dev);
  5837. bp->req_flow_ctrl = 0;
  5838. if (epause->rx_pause)
  5839. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5840. if (epause->tx_pause)
  5841. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5842. if (epause->autoneg) {
  5843. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5844. }
  5845. else {
  5846. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5847. }
  5848. if (netif_running(dev)) {
  5849. spin_lock_bh(&bp->phy_lock);
  5850. bnx2_setup_phy(bp, bp->phy_port);
  5851. spin_unlock_bh(&bp->phy_lock);
  5852. }
  5853. return 0;
  5854. }
  5855. static u32
  5856. bnx2_get_rx_csum(struct net_device *dev)
  5857. {
  5858. struct bnx2 *bp = netdev_priv(dev);
  5859. return bp->rx_csum;
  5860. }
  5861. static int
  5862. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5863. {
  5864. struct bnx2 *bp = netdev_priv(dev);
  5865. bp->rx_csum = data;
  5866. return 0;
  5867. }
  5868. static int
  5869. bnx2_set_tso(struct net_device *dev, u32 data)
  5870. {
  5871. struct bnx2 *bp = netdev_priv(dev);
  5872. if (data) {
  5873. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5874. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5875. dev->features |= NETIF_F_TSO6;
  5876. } else
  5877. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5878. NETIF_F_TSO_ECN);
  5879. return 0;
  5880. }
  5881. static struct {
  5882. char string[ETH_GSTRING_LEN];
  5883. } bnx2_stats_str_arr[] = {
  5884. { "rx_bytes" },
  5885. { "rx_error_bytes" },
  5886. { "tx_bytes" },
  5887. { "tx_error_bytes" },
  5888. { "rx_ucast_packets" },
  5889. { "rx_mcast_packets" },
  5890. { "rx_bcast_packets" },
  5891. { "tx_ucast_packets" },
  5892. { "tx_mcast_packets" },
  5893. { "tx_bcast_packets" },
  5894. { "tx_mac_errors" },
  5895. { "tx_carrier_errors" },
  5896. { "rx_crc_errors" },
  5897. { "rx_align_errors" },
  5898. { "tx_single_collisions" },
  5899. { "tx_multi_collisions" },
  5900. { "tx_deferred" },
  5901. { "tx_excess_collisions" },
  5902. { "tx_late_collisions" },
  5903. { "tx_total_collisions" },
  5904. { "rx_fragments" },
  5905. { "rx_jabbers" },
  5906. { "rx_undersize_packets" },
  5907. { "rx_oversize_packets" },
  5908. { "rx_64_byte_packets" },
  5909. { "rx_65_to_127_byte_packets" },
  5910. { "rx_128_to_255_byte_packets" },
  5911. { "rx_256_to_511_byte_packets" },
  5912. { "rx_512_to_1023_byte_packets" },
  5913. { "rx_1024_to_1522_byte_packets" },
  5914. { "rx_1523_to_9022_byte_packets" },
  5915. { "tx_64_byte_packets" },
  5916. { "tx_65_to_127_byte_packets" },
  5917. { "tx_128_to_255_byte_packets" },
  5918. { "tx_256_to_511_byte_packets" },
  5919. { "tx_512_to_1023_byte_packets" },
  5920. { "tx_1024_to_1522_byte_packets" },
  5921. { "tx_1523_to_9022_byte_packets" },
  5922. { "rx_xon_frames" },
  5923. { "rx_xoff_frames" },
  5924. { "tx_xon_frames" },
  5925. { "tx_xoff_frames" },
  5926. { "rx_mac_ctrl_frames" },
  5927. { "rx_filtered_packets" },
  5928. { "rx_ftq_discards" },
  5929. { "rx_discards" },
  5930. { "rx_fw_discards" },
  5931. };
  5932. #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
  5933. sizeof(bnx2_stats_str_arr[0]))
  5934. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5935. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5936. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5937. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5938. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5939. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5940. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5941. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5942. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5943. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5944. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5945. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5946. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5947. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5948. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5949. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5950. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5951. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5952. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5953. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5954. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5955. STATS_OFFSET32(stat_EtherStatsCollisions),
  5956. STATS_OFFSET32(stat_EtherStatsFragments),
  5957. STATS_OFFSET32(stat_EtherStatsJabbers),
  5958. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5959. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5960. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5961. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5962. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5963. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5964. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5965. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5966. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5967. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5968. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5969. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5970. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5971. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5972. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5973. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5974. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5975. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5976. STATS_OFFSET32(stat_OutXonSent),
  5977. STATS_OFFSET32(stat_OutXoffSent),
  5978. STATS_OFFSET32(stat_MacControlFramesReceived),
  5979. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5980. STATS_OFFSET32(stat_IfInFTQDiscards),
  5981. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5982. STATS_OFFSET32(stat_FwRxDrop),
  5983. };
  5984. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5985. * skipped because of errata.
  5986. */
  5987. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5988. 8,0,8,8,8,8,8,8,8,8,
  5989. 4,0,4,4,4,4,4,4,4,4,
  5990. 4,4,4,4,4,4,4,4,4,4,
  5991. 4,4,4,4,4,4,4,4,4,4,
  5992. 4,4,4,4,4,4,4,
  5993. };
  5994. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  5995. 8,0,8,8,8,8,8,8,8,8,
  5996. 4,4,4,4,4,4,4,4,4,4,
  5997. 4,4,4,4,4,4,4,4,4,4,
  5998. 4,4,4,4,4,4,4,4,4,4,
  5999. 4,4,4,4,4,4,4,
  6000. };
  6001. #define BNX2_NUM_TESTS 6
  6002. static struct {
  6003. char string[ETH_GSTRING_LEN];
  6004. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  6005. { "register_test (offline)" },
  6006. { "memory_test (offline)" },
  6007. { "loopback_test (offline)" },
  6008. { "nvram_test (online)" },
  6009. { "interrupt_test (online)" },
  6010. { "link_test (online)" },
  6011. };
  6012. static int
  6013. bnx2_get_sset_count(struct net_device *dev, int sset)
  6014. {
  6015. switch (sset) {
  6016. case ETH_SS_TEST:
  6017. return BNX2_NUM_TESTS;
  6018. case ETH_SS_STATS:
  6019. return BNX2_NUM_STATS;
  6020. default:
  6021. return -EOPNOTSUPP;
  6022. }
  6023. }
  6024. static void
  6025. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6026. {
  6027. struct bnx2 *bp = netdev_priv(dev);
  6028. bnx2_set_power_state(bp, PCI_D0);
  6029. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6030. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6031. int i;
  6032. bnx2_netif_stop(bp, true);
  6033. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6034. bnx2_free_skbs(bp);
  6035. if (bnx2_test_registers(bp) != 0) {
  6036. buf[0] = 1;
  6037. etest->flags |= ETH_TEST_FL_FAILED;
  6038. }
  6039. if (bnx2_test_memory(bp) != 0) {
  6040. buf[1] = 1;
  6041. etest->flags |= ETH_TEST_FL_FAILED;
  6042. }
  6043. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6044. etest->flags |= ETH_TEST_FL_FAILED;
  6045. if (!netif_running(bp->dev))
  6046. bnx2_shutdown_chip(bp);
  6047. else {
  6048. bnx2_init_nic(bp, 1);
  6049. bnx2_netif_start(bp, true);
  6050. }
  6051. /* wait for link up */
  6052. for (i = 0; i < 7; i++) {
  6053. if (bp->link_up)
  6054. break;
  6055. msleep_interruptible(1000);
  6056. }
  6057. }
  6058. if (bnx2_test_nvram(bp) != 0) {
  6059. buf[3] = 1;
  6060. etest->flags |= ETH_TEST_FL_FAILED;
  6061. }
  6062. if (bnx2_test_intr(bp) != 0) {
  6063. buf[4] = 1;
  6064. etest->flags |= ETH_TEST_FL_FAILED;
  6065. }
  6066. if (bnx2_test_link(bp) != 0) {
  6067. buf[5] = 1;
  6068. etest->flags |= ETH_TEST_FL_FAILED;
  6069. }
  6070. if (!netif_running(bp->dev))
  6071. bnx2_set_power_state(bp, PCI_D3hot);
  6072. }
  6073. static void
  6074. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6075. {
  6076. switch (stringset) {
  6077. case ETH_SS_STATS:
  6078. memcpy(buf, bnx2_stats_str_arr,
  6079. sizeof(bnx2_stats_str_arr));
  6080. break;
  6081. case ETH_SS_TEST:
  6082. memcpy(buf, bnx2_tests_str_arr,
  6083. sizeof(bnx2_tests_str_arr));
  6084. break;
  6085. }
  6086. }
  6087. static void
  6088. bnx2_get_ethtool_stats(struct net_device *dev,
  6089. struct ethtool_stats *stats, u64 *buf)
  6090. {
  6091. struct bnx2 *bp = netdev_priv(dev);
  6092. int i;
  6093. u32 *hw_stats = (u32 *) bp->stats_blk;
  6094. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6095. u8 *stats_len_arr = NULL;
  6096. if (hw_stats == NULL) {
  6097. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6098. return;
  6099. }
  6100. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  6101. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  6102. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  6103. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  6104. stats_len_arr = bnx2_5706_stats_len_arr;
  6105. else
  6106. stats_len_arr = bnx2_5708_stats_len_arr;
  6107. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6108. unsigned long offset;
  6109. if (stats_len_arr[i] == 0) {
  6110. /* skip this counter */
  6111. buf[i] = 0;
  6112. continue;
  6113. }
  6114. offset = bnx2_stats_offset_arr[i];
  6115. if (stats_len_arr[i] == 4) {
  6116. /* 4-byte counter */
  6117. buf[i] = (u64) *(hw_stats + offset) +
  6118. *(temp_stats + offset);
  6119. continue;
  6120. }
  6121. /* 8-byte counter */
  6122. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6123. *(hw_stats + offset + 1) +
  6124. (((u64) *(temp_stats + offset)) << 32) +
  6125. *(temp_stats + offset + 1);
  6126. }
  6127. }
  6128. static int
  6129. bnx2_phys_id(struct net_device *dev, u32 data)
  6130. {
  6131. struct bnx2 *bp = netdev_priv(dev);
  6132. int i;
  6133. u32 save;
  6134. bnx2_set_power_state(bp, PCI_D0);
  6135. if (data == 0)
  6136. data = 2;
  6137. save = REG_RD(bp, BNX2_MISC_CFG);
  6138. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6139. for (i = 0; i < (data * 2); i++) {
  6140. if ((i % 2) == 0) {
  6141. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6142. }
  6143. else {
  6144. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6145. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6146. BNX2_EMAC_LED_100MB_OVERRIDE |
  6147. BNX2_EMAC_LED_10MB_OVERRIDE |
  6148. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6149. BNX2_EMAC_LED_TRAFFIC);
  6150. }
  6151. msleep_interruptible(500);
  6152. if (signal_pending(current))
  6153. break;
  6154. }
  6155. REG_WR(bp, BNX2_EMAC_LED, 0);
  6156. REG_WR(bp, BNX2_MISC_CFG, save);
  6157. if (!netif_running(dev))
  6158. bnx2_set_power_state(bp, PCI_D3hot);
  6159. return 0;
  6160. }
  6161. static int
  6162. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6163. {
  6164. struct bnx2 *bp = netdev_priv(dev);
  6165. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6166. return ethtool_op_set_tx_ipv6_csum(dev, data);
  6167. else
  6168. return ethtool_op_set_tx_csum(dev, data);
  6169. }
  6170. static int
  6171. bnx2_set_flags(struct net_device *dev, u32 data)
  6172. {
  6173. struct bnx2 *bp = netdev_priv(dev);
  6174. int rc;
  6175. if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN) &&
  6176. !(data & ETH_FLAG_RXVLAN))
  6177. return -EINVAL;
  6178. rc = ethtool_op_set_flags(dev, data, ETH_FLAG_RXHASH | ETH_FLAG_RXVLAN |
  6179. ETH_FLAG_TXVLAN);
  6180. if (rc)
  6181. return rc;
  6182. if ((!!(data & ETH_FLAG_RXVLAN) !=
  6183. !!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) &&
  6184. netif_running(dev)) {
  6185. bnx2_netif_stop(bp, false);
  6186. bnx2_set_rx_mode(dev);
  6187. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  6188. bnx2_netif_start(bp, false);
  6189. }
  6190. return 0;
  6191. }
  6192. static const struct ethtool_ops bnx2_ethtool_ops = {
  6193. .get_settings = bnx2_get_settings,
  6194. .set_settings = bnx2_set_settings,
  6195. .get_drvinfo = bnx2_get_drvinfo,
  6196. .get_regs_len = bnx2_get_regs_len,
  6197. .get_regs = bnx2_get_regs,
  6198. .get_wol = bnx2_get_wol,
  6199. .set_wol = bnx2_set_wol,
  6200. .nway_reset = bnx2_nway_reset,
  6201. .get_link = bnx2_get_link,
  6202. .get_eeprom_len = bnx2_get_eeprom_len,
  6203. .get_eeprom = bnx2_get_eeprom,
  6204. .set_eeprom = bnx2_set_eeprom,
  6205. .get_coalesce = bnx2_get_coalesce,
  6206. .set_coalesce = bnx2_set_coalesce,
  6207. .get_ringparam = bnx2_get_ringparam,
  6208. .set_ringparam = bnx2_set_ringparam,
  6209. .get_pauseparam = bnx2_get_pauseparam,
  6210. .set_pauseparam = bnx2_set_pauseparam,
  6211. .get_rx_csum = bnx2_get_rx_csum,
  6212. .set_rx_csum = bnx2_set_rx_csum,
  6213. .set_tx_csum = bnx2_set_tx_csum,
  6214. .set_sg = ethtool_op_set_sg,
  6215. .set_tso = bnx2_set_tso,
  6216. .self_test = bnx2_self_test,
  6217. .get_strings = bnx2_get_strings,
  6218. .phys_id = bnx2_phys_id,
  6219. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6220. .get_sset_count = bnx2_get_sset_count,
  6221. .set_flags = bnx2_set_flags,
  6222. .get_flags = ethtool_op_get_flags,
  6223. };
  6224. /* Called with rtnl_lock */
  6225. static int
  6226. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6227. {
  6228. struct mii_ioctl_data *data = if_mii(ifr);
  6229. struct bnx2 *bp = netdev_priv(dev);
  6230. int err;
  6231. switch(cmd) {
  6232. case SIOCGMIIPHY:
  6233. data->phy_id = bp->phy_addr;
  6234. /* fallthru */
  6235. case SIOCGMIIREG: {
  6236. u32 mii_regval;
  6237. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6238. return -EOPNOTSUPP;
  6239. if (!netif_running(dev))
  6240. return -EAGAIN;
  6241. spin_lock_bh(&bp->phy_lock);
  6242. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6243. spin_unlock_bh(&bp->phy_lock);
  6244. data->val_out = mii_regval;
  6245. return err;
  6246. }
  6247. case SIOCSMIIREG:
  6248. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6249. return -EOPNOTSUPP;
  6250. if (!netif_running(dev))
  6251. return -EAGAIN;
  6252. spin_lock_bh(&bp->phy_lock);
  6253. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6254. spin_unlock_bh(&bp->phy_lock);
  6255. return err;
  6256. default:
  6257. /* do nothing */
  6258. break;
  6259. }
  6260. return -EOPNOTSUPP;
  6261. }
  6262. /* Called with rtnl_lock */
  6263. static int
  6264. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6265. {
  6266. struct sockaddr *addr = p;
  6267. struct bnx2 *bp = netdev_priv(dev);
  6268. if (!is_valid_ether_addr(addr->sa_data))
  6269. return -EINVAL;
  6270. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6271. if (netif_running(dev))
  6272. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6273. return 0;
  6274. }
  6275. /* Called with rtnl_lock */
  6276. static int
  6277. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6278. {
  6279. struct bnx2 *bp = netdev_priv(dev);
  6280. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6281. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6282. return -EINVAL;
  6283. dev->mtu = new_mtu;
  6284. return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size);
  6285. }
  6286. #ifdef CONFIG_NET_POLL_CONTROLLER
  6287. static void
  6288. poll_bnx2(struct net_device *dev)
  6289. {
  6290. struct bnx2 *bp = netdev_priv(dev);
  6291. int i;
  6292. for (i = 0; i < bp->irq_nvecs; i++) {
  6293. struct bnx2_irq *irq = &bp->irq_tbl[i];
  6294. disable_irq(irq->vector);
  6295. irq->handler(irq->vector, &bp->bnx2_napi[i]);
  6296. enable_irq(irq->vector);
  6297. }
  6298. }
  6299. #endif
  6300. static void __devinit
  6301. bnx2_get_5709_media(struct bnx2 *bp)
  6302. {
  6303. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6304. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6305. u32 strap;
  6306. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6307. return;
  6308. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6309. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6310. return;
  6311. }
  6312. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6313. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6314. else
  6315. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6316. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6317. switch (strap) {
  6318. case 0x4:
  6319. case 0x5:
  6320. case 0x6:
  6321. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6322. return;
  6323. }
  6324. } else {
  6325. switch (strap) {
  6326. case 0x1:
  6327. case 0x2:
  6328. case 0x4:
  6329. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6330. return;
  6331. }
  6332. }
  6333. }
  6334. static void __devinit
  6335. bnx2_get_pci_speed(struct bnx2 *bp)
  6336. {
  6337. u32 reg;
  6338. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6339. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6340. u32 clkreg;
  6341. bp->flags |= BNX2_FLAG_PCIX;
  6342. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6343. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6344. switch (clkreg) {
  6345. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6346. bp->bus_speed_mhz = 133;
  6347. break;
  6348. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6349. bp->bus_speed_mhz = 100;
  6350. break;
  6351. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6352. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6353. bp->bus_speed_mhz = 66;
  6354. break;
  6355. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6356. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6357. bp->bus_speed_mhz = 50;
  6358. break;
  6359. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6360. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6361. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6362. bp->bus_speed_mhz = 33;
  6363. break;
  6364. }
  6365. }
  6366. else {
  6367. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6368. bp->bus_speed_mhz = 66;
  6369. else
  6370. bp->bus_speed_mhz = 33;
  6371. }
  6372. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6373. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6374. }
  6375. static void __devinit
  6376. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6377. {
  6378. int rc, i, j;
  6379. u8 *data;
  6380. unsigned int block_end, rosize, len;
  6381. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6382. #define BNX2_VPD_LEN 128
  6383. #define BNX2_MAX_VER_SLEN 30
  6384. data = kmalloc(256, GFP_KERNEL);
  6385. if (!data)
  6386. return;
  6387. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6388. BNX2_VPD_LEN);
  6389. if (rc)
  6390. goto vpd_done;
  6391. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6392. data[i] = data[i + BNX2_VPD_LEN + 3];
  6393. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6394. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6395. data[i + 3] = data[i + BNX2_VPD_LEN];
  6396. }
  6397. i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  6398. if (i < 0)
  6399. goto vpd_done;
  6400. rosize = pci_vpd_lrdt_size(&data[i]);
  6401. i += PCI_VPD_LRDT_TAG_SIZE;
  6402. block_end = i + rosize;
  6403. if (block_end > BNX2_VPD_LEN)
  6404. goto vpd_done;
  6405. j = pci_vpd_find_info_keyword(data, i, rosize,
  6406. PCI_VPD_RO_KEYWORD_MFR_ID);
  6407. if (j < 0)
  6408. goto vpd_done;
  6409. len = pci_vpd_info_field_size(&data[j]);
  6410. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6411. if (j + len > block_end || len != 4 ||
  6412. memcmp(&data[j], "1028", 4))
  6413. goto vpd_done;
  6414. j = pci_vpd_find_info_keyword(data, i, rosize,
  6415. PCI_VPD_RO_KEYWORD_VENDOR0);
  6416. if (j < 0)
  6417. goto vpd_done;
  6418. len = pci_vpd_info_field_size(&data[j]);
  6419. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6420. if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
  6421. goto vpd_done;
  6422. memcpy(bp->fw_version, &data[j], len);
  6423. bp->fw_version[len] = ' ';
  6424. vpd_done:
  6425. kfree(data);
  6426. }
  6427. static int __devinit
  6428. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6429. {
  6430. struct bnx2 *bp;
  6431. unsigned long mem_len;
  6432. int rc, i, j;
  6433. u32 reg;
  6434. u64 dma_mask, persist_dma_mask;
  6435. int err;
  6436. SET_NETDEV_DEV(dev, &pdev->dev);
  6437. bp = netdev_priv(dev);
  6438. bp->flags = 0;
  6439. bp->phy_flags = 0;
  6440. bp->temp_stats_blk =
  6441. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6442. if (bp->temp_stats_blk == NULL) {
  6443. rc = -ENOMEM;
  6444. goto err_out;
  6445. }
  6446. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6447. rc = pci_enable_device(pdev);
  6448. if (rc) {
  6449. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6450. goto err_out;
  6451. }
  6452. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6453. dev_err(&pdev->dev,
  6454. "Cannot find PCI device base address, aborting\n");
  6455. rc = -ENODEV;
  6456. goto err_out_disable;
  6457. }
  6458. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6459. if (rc) {
  6460. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6461. goto err_out_disable;
  6462. }
  6463. pci_set_master(pdev);
  6464. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6465. if (bp->pm_cap == 0) {
  6466. dev_err(&pdev->dev,
  6467. "Cannot find power management capability, aborting\n");
  6468. rc = -EIO;
  6469. goto err_out_release;
  6470. }
  6471. bp->dev = dev;
  6472. bp->pdev = pdev;
  6473. spin_lock_init(&bp->phy_lock);
  6474. spin_lock_init(&bp->indirect_lock);
  6475. #ifdef BCM_CNIC
  6476. mutex_init(&bp->cnic_lock);
  6477. #endif
  6478. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6479. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6480. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6481. dev->mem_end = dev->mem_start + mem_len;
  6482. dev->irq = pdev->irq;
  6483. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6484. if (!bp->regview) {
  6485. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6486. rc = -ENOMEM;
  6487. goto err_out_release;
  6488. }
  6489. bnx2_set_power_state(bp, PCI_D0);
  6490. /* Configure byte swap and enable write to the reg_window registers.
  6491. * Rely on CPU to do target byte swapping on big endian systems
  6492. * The chip's target access swapping will not swap all accesses
  6493. */
  6494. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG,
  6495. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6496. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6497. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6498. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6499. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6500. dev_err(&pdev->dev,
  6501. "Cannot find PCIE capability, aborting\n");
  6502. rc = -EIO;
  6503. goto err_out_unmap;
  6504. }
  6505. bp->flags |= BNX2_FLAG_PCIE;
  6506. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6507. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6508. /* AER (Advanced Error Reporting) hooks */
  6509. err = pci_enable_pcie_error_reporting(pdev);
  6510. if (err) {
  6511. dev_err(&pdev->dev, "pci_enable_pcie_error_reporting "
  6512. "failed 0x%x\n", err);
  6513. /* non-fatal, continue */
  6514. }
  6515. } else {
  6516. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6517. if (bp->pcix_cap == 0) {
  6518. dev_err(&pdev->dev,
  6519. "Cannot find PCIX capability, aborting\n");
  6520. rc = -EIO;
  6521. goto err_out_unmap;
  6522. }
  6523. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6524. }
  6525. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6526. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6527. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6528. }
  6529. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6530. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6531. bp->flags |= BNX2_FLAG_MSI_CAP;
  6532. }
  6533. /* 5708 cannot support DMA addresses > 40-bit. */
  6534. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6535. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6536. else
  6537. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6538. /* Configure DMA attributes. */
  6539. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6540. dev->features |= NETIF_F_HIGHDMA;
  6541. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6542. if (rc) {
  6543. dev_err(&pdev->dev,
  6544. "pci_set_consistent_dma_mask failed, aborting\n");
  6545. goto err_out_unmap;
  6546. }
  6547. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6548. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6549. goto err_out_unmap;
  6550. }
  6551. if (!(bp->flags & BNX2_FLAG_PCIE))
  6552. bnx2_get_pci_speed(bp);
  6553. /* 5706A0 may falsely detect SERR and PERR. */
  6554. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6555. reg = REG_RD(bp, PCI_COMMAND);
  6556. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6557. REG_WR(bp, PCI_COMMAND, reg);
  6558. }
  6559. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6560. !(bp->flags & BNX2_FLAG_PCIX)) {
  6561. dev_err(&pdev->dev,
  6562. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6563. goto err_out_unmap;
  6564. }
  6565. bnx2_init_nvram(bp);
  6566. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6567. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6568. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6569. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6570. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6571. } else
  6572. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6573. /* Get the permanent MAC address. First we need to make sure the
  6574. * firmware is actually running.
  6575. */
  6576. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6577. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6578. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6579. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6580. rc = -ENODEV;
  6581. goto err_out_unmap;
  6582. }
  6583. bnx2_read_vpd_fw_ver(bp);
  6584. j = strlen(bp->fw_version);
  6585. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6586. for (i = 0; i < 3 && j < 24; i++) {
  6587. u8 num, k, skip0;
  6588. if (i == 0) {
  6589. bp->fw_version[j++] = 'b';
  6590. bp->fw_version[j++] = 'c';
  6591. bp->fw_version[j++] = ' ';
  6592. }
  6593. num = (u8) (reg >> (24 - (i * 8)));
  6594. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6595. if (num >= k || !skip0 || k == 1) {
  6596. bp->fw_version[j++] = (num / k) + '0';
  6597. skip0 = 0;
  6598. }
  6599. }
  6600. if (i != 2)
  6601. bp->fw_version[j++] = '.';
  6602. }
  6603. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6604. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6605. bp->wol = 1;
  6606. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6607. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6608. for (i = 0; i < 30; i++) {
  6609. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6610. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6611. break;
  6612. msleep(10);
  6613. }
  6614. }
  6615. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6616. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6617. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6618. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6619. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6620. if (j < 32)
  6621. bp->fw_version[j++] = ' ';
  6622. for (i = 0; i < 3 && j < 28; i++) {
  6623. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6624. reg = swab32(reg);
  6625. memcpy(&bp->fw_version[j], &reg, 4);
  6626. j += 4;
  6627. }
  6628. }
  6629. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6630. bp->mac_addr[0] = (u8) (reg >> 8);
  6631. bp->mac_addr[1] = (u8) reg;
  6632. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6633. bp->mac_addr[2] = (u8) (reg >> 24);
  6634. bp->mac_addr[3] = (u8) (reg >> 16);
  6635. bp->mac_addr[4] = (u8) (reg >> 8);
  6636. bp->mac_addr[5] = (u8) reg;
  6637. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6638. bnx2_set_rx_ring_size(bp, 255);
  6639. bp->rx_csum = 1;
  6640. bp->tx_quick_cons_trip_int = 2;
  6641. bp->tx_quick_cons_trip = 20;
  6642. bp->tx_ticks_int = 18;
  6643. bp->tx_ticks = 80;
  6644. bp->rx_quick_cons_trip_int = 2;
  6645. bp->rx_quick_cons_trip = 12;
  6646. bp->rx_ticks_int = 18;
  6647. bp->rx_ticks = 18;
  6648. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6649. bp->current_interval = BNX2_TIMER_INTERVAL;
  6650. bp->phy_addr = 1;
  6651. /* Disable WOL support if we are running on a SERDES chip. */
  6652. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6653. bnx2_get_5709_media(bp);
  6654. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6655. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6656. bp->phy_port = PORT_TP;
  6657. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6658. bp->phy_port = PORT_FIBRE;
  6659. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6660. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6661. bp->flags |= BNX2_FLAG_NO_WOL;
  6662. bp->wol = 0;
  6663. }
  6664. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6665. /* Don't do parallel detect on this board because of
  6666. * some board problems. The link will not go down
  6667. * if we do parallel detect.
  6668. */
  6669. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6670. pdev->subsystem_device == 0x310c)
  6671. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6672. } else {
  6673. bp->phy_addr = 2;
  6674. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6675. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6676. }
  6677. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6678. CHIP_NUM(bp) == CHIP_NUM_5708)
  6679. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6680. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6681. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6682. CHIP_REV(bp) == CHIP_REV_Bx))
  6683. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6684. bnx2_init_fw_cap(bp);
  6685. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6686. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6687. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6688. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6689. bp->flags |= BNX2_FLAG_NO_WOL;
  6690. bp->wol = 0;
  6691. }
  6692. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6693. bp->tx_quick_cons_trip_int =
  6694. bp->tx_quick_cons_trip;
  6695. bp->tx_ticks_int = bp->tx_ticks;
  6696. bp->rx_quick_cons_trip_int =
  6697. bp->rx_quick_cons_trip;
  6698. bp->rx_ticks_int = bp->rx_ticks;
  6699. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6700. bp->com_ticks_int = bp->com_ticks;
  6701. bp->cmd_ticks_int = bp->cmd_ticks;
  6702. }
  6703. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6704. *
  6705. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6706. * with byte enables disabled on the unused 32-bit word. This is legal
  6707. * but causes problems on the AMD 8132 which will eventually stop
  6708. * responding after a while.
  6709. *
  6710. * AMD believes this incompatibility is unique to the 5706, and
  6711. * prefers to locally disable MSI rather than globally disabling it.
  6712. */
  6713. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6714. struct pci_dev *amd_8132 = NULL;
  6715. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6716. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6717. amd_8132))) {
  6718. if (amd_8132->revision >= 0x10 &&
  6719. amd_8132->revision <= 0x13) {
  6720. disable_msi = 1;
  6721. pci_dev_put(amd_8132);
  6722. break;
  6723. }
  6724. }
  6725. }
  6726. bnx2_set_default_link(bp);
  6727. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6728. init_timer(&bp->timer);
  6729. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6730. bp->timer.data = (unsigned long) bp;
  6731. bp->timer.function = bnx2_timer;
  6732. pci_save_state(pdev);
  6733. return 0;
  6734. err_out_unmap:
  6735. if (bp->flags & BNX2_FLAG_PCIE)
  6736. pci_disable_pcie_error_reporting(pdev);
  6737. if (bp->regview) {
  6738. iounmap(bp->regview);
  6739. bp->regview = NULL;
  6740. }
  6741. err_out_release:
  6742. pci_release_regions(pdev);
  6743. err_out_disable:
  6744. pci_disable_device(pdev);
  6745. pci_set_drvdata(pdev, NULL);
  6746. err_out:
  6747. return rc;
  6748. }
  6749. static char * __devinit
  6750. bnx2_bus_string(struct bnx2 *bp, char *str)
  6751. {
  6752. char *s = str;
  6753. if (bp->flags & BNX2_FLAG_PCIE) {
  6754. s += sprintf(s, "PCI Express");
  6755. } else {
  6756. s += sprintf(s, "PCI");
  6757. if (bp->flags & BNX2_FLAG_PCIX)
  6758. s += sprintf(s, "-X");
  6759. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6760. s += sprintf(s, " 32-bit");
  6761. else
  6762. s += sprintf(s, " 64-bit");
  6763. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6764. }
  6765. return str;
  6766. }
  6767. static void
  6768. bnx2_del_napi(struct bnx2 *bp)
  6769. {
  6770. int i;
  6771. for (i = 0; i < bp->irq_nvecs; i++)
  6772. netif_napi_del(&bp->bnx2_napi[i].napi);
  6773. }
  6774. static void
  6775. bnx2_init_napi(struct bnx2 *bp)
  6776. {
  6777. int i;
  6778. for (i = 0; i < bp->irq_nvecs; i++) {
  6779. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6780. int (*poll)(struct napi_struct *, int);
  6781. if (i == 0)
  6782. poll = bnx2_poll;
  6783. else
  6784. poll = bnx2_poll_msix;
  6785. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6786. bnapi->bp = bp;
  6787. }
  6788. }
  6789. static const struct net_device_ops bnx2_netdev_ops = {
  6790. .ndo_open = bnx2_open,
  6791. .ndo_start_xmit = bnx2_start_xmit,
  6792. .ndo_stop = bnx2_close,
  6793. .ndo_get_stats64 = bnx2_get_stats64,
  6794. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6795. .ndo_do_ioctl = bnx2_ioctl,
  6796. .ndo_validate_addr = eth_validate_addr,
  6797. .ndo_set_mac_address = bnx2_change_mac_addr,
  6798. .ndo_change_mtu = bnx2_change_mtu,
  6799. .ndo_tx_timeout = bnx2_tx_timeout,
  6800. #ifdef CONFIG_NET_POLL_CONTROLLER
  6801. .ndo_poll_controller = poll_bnx2,
  6802. #endif
  6803. };
  6804. static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
  6805. {
  6806. dev->vlan_features |= flags;
  6807. }
  6808. static int __devinit
  6809. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6810. {
  6811. static int version_printed = 0;
  6812. struct net_device *dev = NULL;
  6813. struct bnx2 *bp;
  6814. int rc;
  6815. char str[40];
  6816. if (version_printed++ == 0)
  6817. pr_info("%s", version);
  6818. /* dev zeroed in init_etherdev */
  6819. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6820. if (!dev)
  6821. return -ENOMEM;
  6822. rc = bnx2_init_board(pdev, dev);
  6823. if (rc < 0) {
  6824. free_netdev(dev);
  6825. return rc;
  6826. }
  6827. dev->netdev_ops = &bnx2_netdev_ops;
  6828. dev->watchdog_timeo = TX_TIMEOUT;
  6829. dev->ethtool_ops = &bnx2_ethtool_ops;
  6830. bp = netdev_priv(dev);
  6831. pci_set_drvdata(pdev, dev);
  6832. rc = bnx2_request_firmware(bp);
  6833. if (rc)
  6834. goto error;
  6835. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6836. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6837. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_GRO |
  6838. NETIF_F_RXHASH;
  6839. vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
  6840. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6841. dev->features |= NETIF_F_IPV6_CSUM;
  6842. vlan_features_add(dev, NETIF_F_IPV6_CSUM);
  6843. }
  6844. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6845. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6846. vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
  6847. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6848. dev->features |= NETIF_F_TSO6;
  6849. vlan_features_add(dev, NETIF_F_TSO6);
  6850. }
  6851. if ((rc = register_netdev(dev))) {
  6852. dev_err(&pdev->dev, "Cannot register net device\n");
  6853. goto error;
  6854. }
  6855. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
  6856. board_info[ent->driver_data].name,
  6857. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6858. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6859. bnx2_bus_string(bp, str),
  6860. dev->base_addr,
  6861. bp->pdev->irq, dev->dev_addr);
  6862. return 0;
  6863. error:
  6864. if (bp->mips_firmware)
  6865. release_firmware(bp->mips_firmware);
  6866. if (bp->rv2p_firmware)
  6867. release_firmware(bp->rv2p_firmware);
  6868. if (bp->regview)
  6869. iounmap(bp->regview);
  6870. pci_release_regions(pdev);
  6871. pci_disable_device(pdev);
  6872. pci_set_drvdata(pdev, NULL);
  6873. free_netdev(dev);
  6874. return rc;
  6875. }
  6876. static void __devexit
  6877. bnx2_remove_one(struct pci_dev *pdev)
  6878. {
  6879. struct net_device *dev = pci_get_drvdata(pdev);
  6880. struct bnx2 *bp = netdev_priv(dev);
  6881. unregister_netdev(dev);
  6882. if (bp->mips_firmware)
  6883. release_firmware(bp->mips_firmware);
  6884. if (bp->rv2p_firmware)
  6885. release_firmware(bp->rv2p_firmware);
  6886. if (bp->regview)
  6887. iounmap(bp->regview);
  6888. kfree(bp->temp_stats_blk);
  6889. if (bp->flags & BNX2_FLAG_PCIE)
  6890. pci_disable_pcie_error_reporting(pdev);
  6891. free_netdev(dev);
  6892. pci_release_regions(pdev);
  6893. pci_disable_device(pdev);
  6894. pci_set_drvdata(pdev, NULL);
  6895. }
  6896. static int
  6897. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6898. {
  6899. struct net_device *dev = pci_get_drvdata(pdev);
  6900. struct bnx2 *bp = netdev_priv(dev);
  6901. /* PCI register 4 needs to be saved whether netif_running() or not.
  6902. * MSI address and data need to be saved if using MSI and
  6903. * netif_running().
  6904. */
  6905. pci_save_state(pdev);
  6906. if (!netif_running(dev))
  6907. return 0;
  6908. cancel_work_sync(&bp->reset_task);
  6909. bnx2_netif_stop(bp, true);
  6910. netif_device_detach(dev);
  6911. del_timer_sync(&bp->timer);
  6912. bnx2_shutdown_chip(bp);
  6913. bnx2_free_skbs(bp);
  6914. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6915. return 0;
  6916. }
  6917. static int
  6918. bnx2_resume(struct pci_dev *pdev)
  6919. {
  6920. struct net_device *dev = pci_get_drvdata(pdev);
  6921. struct bnx2 *bp = netdev_priv(dev);
  6922. pci_restore_state(pdev);
  6923. if (!netif_running(dev))
  6924. return 0;
  6925. bnx2_set_power_state(bp, PCI_D0);
  6926. netif_device_attach(dev);
  6927. bnx2_init_nic(bp, 1);
  6928. bnx2_netif_start(bp, true);
  6929. return 0;
  6930. }
  6931. /**
  6932. * bnx2_io_error_detected - called when PCI error is detected
  6933. * @pdev: Pointer to PCI device
  6934. * @state: The current pci connection state
  6935. *
  6936. * This function is called after a PCI bus error affecting
  6937. * this device has been detected.
  6938. */
  6939. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6940. pci_channel_state_t state)
  6941. {
  6942. struct net_device *dev = pci_get_drvdata(pdev);
  6943. struct bnx2 *bp = netdev_priv(dev);
  6944. rtnl_lock();
  6945. netif_device_detach(dev);
  6946. if (state == pci_channel_io_perm_failure) {
  6947. rtnl_unlock();
  6948. return PCI_ERS_RESULT_DISCONNECT;
  6949. }
  6950. if (netif_running(dev)) {
  6951. bnx2_netif_stop(bp, true);
  6952. del_timer_sync(&bp->timer);
  6953. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6954. }
  6955. pci_disable_device(pdev);
  6956. rtnl_unlock();
  6957. /* Request a slot slot reset. */
  6958. return PCI_ERS_RESULT_NEED_RESET;
  6959. }
  6960. /**
  6961. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6962. * @pdev: Pointer to PCI device
  6963. *
  6964. * Restart the card from scratch, as if from a cold-boot.
  6965. */
  6966. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6967. {
  6968. struct net_device *dev = pci_get_drvdata(pdev);
  6969. struct bnx2 *bp = netdev_priv(dev);
  6970. pci_ers_result_t result;
  6971. int err;
  6972. rtnl_lock();
  6973. if (pci_enable_device(pdev)) {
  6974. dev_err(&pdev->dev,
  6975. "Cannot re-enable PCI device after reset\n");
  6976. result = PCI_ERS_RESULT_DISCONNECT;
  6977. } else {
  6978. pci_set_master(pdev);
  6979. pci_restore_state(pdev);
  6980. pci_save_state(pdev);
  6981. if (netif_running(dev)) {
  6982. bnx2_set_power_state(bp, PCI_D0);
  6983. bnx2_init_nic(bp, 1);
  6984. }
  6985. result = PCI_ERS_RESULT_RECOVERED;
  6986. }
  6987. rtnl_unlock();
  6988. if (!(bp->flags & BNX2_FLAG_PCIE))
  6989. return result;
  6990. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  6991. if (err) {
  6992. dev_err(&pdev->dev,
  6993. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  6994. err); /* non-fatal, continue */
  6995. }
  6996. return result;
  6997. }
  6998. /**
  6999. * bnx2_io_resume - called when traffic can start flowing again.
  7000. * @pdev: Pointer to PCI device
  7001. *
  7002. * This callback is called when the error recovery driver tells us that
  7003. * its OK to resume normal operation.
  7004. */
  7005. static void bnx2_io_resume(struct pci_dev *pdev)
  7006. {
  7007. struct net_device *dev = pci_get_drvdata(pdev);
  7008. struct bnx2 *bp = netdev_priv(dev);
  7009. rtnl_lock();
  7010. if (netif_running(dev))
  7011. bnx2_netif_start(bp, true);
  7012. netif_device_attach(dev);
  7013. rtnl_unlock();
  7014. }
  7015. static struct pci_error_handlers bnx2_err_handler = {
  7016. .error_detected = bnx2_io_error_detected,
  7017. .slot_reset = bnx2_io_slot_reset,
  7018. .resume = bnx2_io_resume,
  7019. };
  7020. static struct pci_driver bnx2_pci_driver = {
  7021. .name = DRV_MODULE_NAME,
  7022. .id_table = bnx2_pci_tbl,
  7023. .probe = bnx2_init_one,
  7024. .remove = __devexit_p(bnx2_remove_one),
  7025. .suspend = bnx2_suspend,
  7026. .resume = bnx2_resume,
  7027. .err_handler = &bnx2_err_handler,
  7028. };
  7029. static int __init bnx2_init(void)
  7030. {
  7031. return pci_register_driver(&bnx2_pci_driver);
  7032. }
  7033. static void __exit bnx2_cleanup(void)
  7034. {
  7035. pci_unregister_driver(&bnx2_pci_driver);
  7036. }
  7037. module_init(bnx2_init);
  7038. module_exit(bnx2_cleanup);