rmap.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_mutex
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  34. * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
  35. * sb_lock (within inode_lock in fs/fs-writeback.c)
  36. * mapping->tree_lock (widely used, in set_page_dirty,
  37. * in arch-dependent flush_dcache_mmap_lock,
  38. * within inode_wb_list_lock in __sync_single_inode)
  39. *
  40. * (code doesn't rely on that order so it could be switched around)
  41. * ->tasklist_lock
  42. * anon_vma->lock (memory_failure, collect_procs_anon)
  43. * pte map lock
  44. */
  45. #include <linux/mm.h>
  46. #include <linux/pagemap.h>
  47. #include <linux/swap.h>
  48. #include <linux/swapops.h>
  49. #include <linux/slab.h>
  50. #include <linux/init.h>
  51. #include <linux/ksm.h>
  52. #include <linux/rmap.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/module.h>
  55. #include <linux/memcontrol.h>
  56. #include <linux/mmu_notifier.h>
  57. #include <linux/migrate.h>
  58. #include <linux/hugetlb.h>
  59. #include <asm/tlbflush.h>
  60. #include "internal.h"
  61. static struct kmem_cache *anon_vma_cachep;
  62. static struct kmem_cache *anon_vma_chain_cachep;
  63. static inline struct anon_vma *anon_vma_alloc(void)
  64. {
  65. struct anon_vma *anon_vma;
  66. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  67. if (anon_vma) {
  68. atomic_set(&anon_vma->refcount, 1);
  69. /*
  70. * Initialise the anon_vma root to point to itself. If called
  71. * from fork, the root will be reset to the parents anon_vma.
  72. */
  73. anon_vma->root = anon_vma;
  74. }
  75. return anon_vma;
  76. }
  77. static inline void anon_vma_free(struct anon_vma *anon_vma)
  78. {
  79. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  80. kmem_cache_free(anon_vma_cachep, anon_vma);
  81. }
  82. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  83. {
  84. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  85. }
  86. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  87. {
  88. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  89. }
  90. /**
  91. * anon_vma_prepare - attach an anon_vma to a memory region
  92. * @vma: the memory region in question
  93. *
  94. * This makes sure the memory mapping described by 'vma' has
  95. * an 'anon_vma' attached to it, so that we can associate the
  96. * anonymous pages mapped into it with that anon_vma.
  97. *
  98. * The common case will be that we already have one, but if
  99. * not we either need to find an adjacent mapping that we
  100. * can re-use the anon_vma from (very common when the only
  101. * reason for splitting a vma has been mprotect()), or we
  102. * allocate a new one.
  103. *
  104. * Anon-vma allocations are very subtle, because we may have
  105. * optimistically looked up an anon_vma in page_lock_anon_vma()
  106. * and that may actually touch the spinlock even in the newly
  107. * allocated vma (it depends on RCU to make sure that the
  108. * anon_vma isn't actually destroyed).
  109. *
  110. * As a result, we need to do proper anon_vma locking even
  111. * for the new allocation. At the same time, we do not want
  112. * to do any locking for the common case of already having
  113. * an anon_vma.
  114. *
  115. * This must be called with the mmap_sem held for reading.
  116. */
  117. int anon_vma_prepare(struct vm_area_struct *vma)
  118. {
  119. struct anon_vma *anon_vma = vma->anon_vma;
  120. struct anon_vma_chain *avc;
  121. might_sleep();
  122. if (unlikely(!anon_vma)) {
  123. struct mm_struct *mm = vma->vm_mm;
  124. struct anon_vma *allocated;
  125. avc = anon_vma_chain_alloc();
  126. if (!avc)
  127. goto out_enomem;
  128. anon_vma = find_mergeable_anon_vma(vma);
  129. allocated = NULL;
  130. if (!anon_vma) {
  131. anon_vma = anon_vma_alloc();
  132. if (unlikely(!anon_vma))
  133. goto out_enomem_free_avc;
  134. allocated = anon_vma;
  135. }
  136. anon_vma_lock(anon_vma);
  137. /* page_table_lock to protect against threads */
  138. spin_lock(&mm->page_table_lock);
  139. if (likely(!vma->anon_vma)) {
  140. vma->anon_vma = anon_vma;
  141. avc->anon_vma = anon_vma;
  142. avc->vma = vma;
  143. list_add(&avc->same_vma, &vma->anon_vma_chain);
  144. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  145. allocated = NULL;
  146. avc = NULL;
  147. }
  148. spin_unlock(&mm->page_table_lock);
  149. anon_vma_unlock(anon_vma);
  150. if (unlikely(allocated))
  151. put_anon_vma(allocated);
  152. if (unlikely(avc))
  153. anon_vma_chain_free(avc);
  154. }
  155. return 0;
  156. out_enomem_free_avc:
  157. anon_vma_chain_free(avc);
  158. out_enomem:
  159. return -ENOMEM;
  160. }
  161. static void anon_vma_chain_link(struct vm_area_struct *vma,
  162. struct anon_vma_chain *avc,
  163. struct anon_vma *anon_vma)
  164. {
  165. avc->vma = vma;
  166. avc->anon_vma = anon_vma;
  167. list_add(&avc->same_vma, &vma->anon_vma_chain);
  168. anon_vma_lock(anon_vma);
  169. /*
  170. * It's critical to add new vmas to the tail of the anon_vma,
  171. * see comment in huge_memory.c:__split_huge_page().
  172. */
  173. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  174. anon_vma_unlock(anon_vma);
  175. }
  176. /*
  177. * Attach the anon_vmas from src to dst.
  178. * Returns 0 on success, -ENOMEM on failure.
  179. */
  180. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  181. {
  182. struct anon_vma_chain *avc, *pavc;
  183. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  184. avc = anon_vma_chain_alloc();
  185. if (!avc)
  186. goto enomem_failure;
  187. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  188. }
  189. return 0;
  190. enomem_failure:
  191. unlink_anon_vmas(dst);
  192. return -ENOMEM;
  193. }
  194. /*
  195. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  196. * the corresponding VMA in the parent process is attached to.
  197. * Returns 0 on success, non-zero on failure.
  198. */
  199. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  200. {
  201. struct anon_vma_chain *avc;
  202. struct anon_vma *anon_vma;
  203. /* Don't bother if the parent process has no anon_vma here. */
  204. if (!pvma->anon_vma)
  205. return 0;
  206. /*
  207. * First, attach the new VMA to the parent VMA's anon_vmas,
  208. * so rmap can find non-COWed pages in child processes.
  209. */
  210. if (anon_vma_clone(vma, pvma))
  211. return -ENOMEM;
  212. /* Then add our own anon_vma. */
  213. anon_vma = anon_vma_alloc();
  214. if (!anon_vma)
  215. goto out_error;
  216. avc = anon_vma_chain_alloc();
  217. if (!avc)
  218. goto out_error_free_anon_vma;
  219. /*
  220. * The root anon_vma's spinlock is the lock actually used when we
  221. * lock any of the anon_vmas in this anon_vma tree.
  222. */
  223. anon_vma->root = pvma->anon_vma->root;
  224. /*
  225. * With refcounts, an anon_vma can stay around longer than the
  226. * process it belongs to. The root anon_vma needs to be pinned until
  227. * this anon_vma is freed, because the lock lives in the root.
  228. */
  229. get_anon_vma(anon_vma->root);
  230. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  231. vma->anon_vma = anon_vma;
  232. anon_vma_chain_link(vma, avc, anon_vma);
  233. return 0;
  234. out_error_free_anon_vma:
  235. put_anon_vma(anon_vma);
  236. out_error:
  237. unlink_anon_vmas(vma);
  238. return -ENOMEM;
  239. }
  240. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  241. {
  242. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  243. int empty;
  244. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  245. if (!anon_vma)
  246. return;
  247. anon_vma_lock(anon_vma);
  248. list_del(&anon_vma_chain->same_anon_vma);
  249. /* We must garbage collect the anon_vma if it's empty */
  250. empty = list_empty(&anon_vma->head);
  251. anon_vma_unlock(anon_vma);
  252. if (empty)
  253. put_anon_vma(anon_vma);
  254. }
  255. void unlink_anon_vmas(struct vm_area_struct *vma)
  256. {
  257. struct anon_vma_chain *avc, *next;
  258. /*
  259. * Unlink each anon_vma chained to the VMA. This list is ordered
  260. * from newest to oldest, ensuring the root anon_vma gets freed last.
  261. */
  262. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  263. anon_vma_unlink(avc);
  264. list_del(&avc->same_vma);
  265. anon_vma_chain_free(avc);
  266. }
  267. }
  268. static void anon_vma_ctor(void *data)
  269. {
  270. struct anon_vma *anon_vma = data;
  271. spin_lock_init(&anon_vma->lock);
  272. atomic_set(&anon_vma->refcount, 0);
  273. INIT_LIST_HEAD(&anon_vma->head);
  274. }
  275. void __init anon_vma_init(void)
  276. {
  277. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  278. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  279. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  280. }
  281. /*
  282. * Getting a lock on a stable anon_vma from a page off the LRU is
  283. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  284. */
  285. struct anon_vma *page_lock_anon_vma(struct page *page)
  286. {
  287. struct anon_vma *anon_vma, *root_anon_vma;
  288. unsigned long anon_mapping;
  289. rcu_read_lock();
  290. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  291. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  292. goto out;
  293. if (!page_mapped(page))
  294. goto out;
  295. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  296. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  297. spin_lock(&root_anon_vma->lock);
  298. /*
  299. * If this page is still mapped, then its anon_vma cannot have been
  300. * freed. But if it has been unmapped, we have no security against
  301. * the anon_vma structure being freed and reused (for another anon_vma:
  302. * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
  303. * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
  304. * anon_vma->root before page_unlock_anon_vma() is called to unlock.
  305. */
  306. if (page_mapped(page))
  307. return anon_vma;
  308. spin_unlock(&root_anon_vma->lock);
  309. out:
  310. rcu_read_unlock();
  311. return NULL;
  312. }
  313. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  314. {
  315. anon_vma_unlock(anon_vma);
  316. rcu_read_unlock();
  317. }
  318. /*
  319. * At what user virtual address is page expected in @vma?
  320. * Returns virtual address or -EFAULT if page's index/offset is not
  321. * within the range mapped the @vma.
  322. */
  323. inline unsigned long
  324. vma_address(struct page *page, struct vm_area_struct *vma)
  325. {
  326. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  327. unsigned long address;
  328. if (unlikely(is_vm_hugetlb_page(vma)))
  329. pgoff = page->index << huge_page_order(page_hstate(page));
  330. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  331. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  332. /* page should be within @vma mapping range */
  333. return -EFAULT;
  334. }
  335. return address;
  336. }
  337. /*
  338. * At what user virtual address is page expected in vma?
  339. * Caller should check the page is actually part of the vma.
  340. */
  341. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  342. {
  343. if (PageAnon(page)) {
  344. struct anon_vma *page__anon_vma = page_anon_vma(page);
  345. /*
  346. * Note: swapoff's unuse_vma() is more efficient with this
  347. * check, and needs it to match anon_vma when KSM is active.
  348. */
  349. if (!vma->anon_vma || !page__anon_vma ||
  350. vma->anon_vma->root != page__anon_vma->root)
  351. return -EFAULT;
  352. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  353. if (!vma->vm_file ||
  354. vma->vm_file->f_mapping != page->mapping)
  355. return -EFAULT;
  356. } else
  357. return -EFAULT;
  358. return vma_address(page, vma);
  359. }
  360. /*
  361. * Check that @page is mapped at @address into @mm.
  362. *
  363. * If @sync is false, page_check_address may perform a racy check to avoid
  364. * the page table lock when the pte is not present (helpful when reclaiming
  365. * highly shared pages).
  366. *
  367. * On success returns with pte mapped and locked.
  368. */
  369. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  370. unsigned long address, spinlock_t **ptlp, int sync)
  371. {
  372. pgd_t *pgd;
  373. pud_t *pud;
  374. pmd_t *pmd;
  375. pte_t *pte;
  376. spinlock_t *ptl;
  377. if (unlikely(PageHuge(page))) {
  378. pte = huge_pte_offset(mm, address);
  379. ptl = &mm->page_table_lock;
  380. goto check;
  381. }
  382. pgd = pgd_offset(mm, address);
  383. if (!pgd_present(*pgd))
  384. return NULL;
  385. pud = pud_offset(pgd, address);
  386. if (!pud_present(*pud))
  387. return NULL;
  388. pmd = pmd_offset(pud, address);
  389. if (!pmd_present(*pmd))
  390. return NULL;
  391. if (pmd_trans_huge(*pmd))
  392. return NULL;
  393. pte = pte_offset_map(pmd, address);
  394. /* Make a quick check before getting the lock */
  395. if (!sync && !pte_present(*pte)) {
  396. pte_unmap(pte);
  397. return NULL;
  398. }
  399. ptl = pte_lockptr(mm, pmd);
  400. check:
  401. spin_lock(ptl);
  402. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  403. *ptlp = ptl;
  404. return pte;
  405. }
  406. pte_unmap_unlock(pte, ptl);
  407. return NULL;
  408. }
  409. /**
  410. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  411. * @page: the page to test
  412. * @vma: the VMA to test
  413. *
  414. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  415. * if the page is not mapped into the page tables of this VMA. Only
  416. * valid for normal file or anonymous VMAs.
  417. */
  418. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  419. {
  420. unsigned long address;
  421. pte_t *pte;
  422. spinlock_t *ptl;
  423. address = vma_address(page, vma);
  424. if (address == -EFAULT) /* out of vma range */
  425. return 0;
  426. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  427. if (!pte) /* the page is not in this mm */
  428. return 0;
  429. pte_unmap_unlock(pte, ptl);
  430. return 1;
  431. }
  432. /*
  433. * Subfunctions of page_referenced: page_referenced_one called
  434. * repeatedly from either page_referenced_anon or page_referenced_file.
  435. */
  436. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  437. unsigned long address, unsigned int *mapcount,
  438. unsigned long *vm_flags)
  439. {
  440. struct mm_struct *mm = vma->vm_mm;
  441. int referenced = 0;
  442. if (unlikely(PageTransHuge(page))) {
  443. pmd_t *pmd;
  444. spin_lock(&mm->page_table_lock);
  445. /*
  446. * rmap might return false positives; we must filter
  447. * these out using page_check_address_pmd().
  448. */
  449. pmd = page_check_address_pmd(page, mm, address,
  450. PAGE_CHECK_ADDRESS_PMD_FLAG);
  451. if (!pmd) {
  452. spin_unlock(&mm->page_table_lock);
  453. goto out;
  454. }
  455. if (vma->vm_flags & VM_LOCKED) {
  456. spin_unlock(&mm->page_table_lock);
  457. *mapcount = 0; /* break early from loop */
  458. *vm_flags |= VM_LOCKED;
  459. goto out;
  460. }
  461. /* go ahead even if the pmd is pmd_trans_splitting() */
  462. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  463. referenced++;
  464. spin_unlock(&mm->page_table_lock);
  465. } else {
  466. pte_t *pte;
  467. spinlock_t *ptl;
  468. /*
  469. * rmap might return false positives; we must filter
  470. * these out using page_check_address().
  471. */
  472. pte = page_check_address(page, mm, address, &ptl, 0);
  473. if (!pte)
  474. goto out;
  475. if (vma->vm_flags & VM_LOCKED) {
  476. pte_unmap_unlock(pte, ptl);
  477. *mapcount = 0; /* break early from loop */
  478. *vm_flags |= VM_LOCKED;
  479. goto out;
  480. }
  481. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  482. /*
  483. * Don't treat a reference through a sequentially read
  484. * mapping as such. If the page has been used in
  485. * another mapping, we will catch it; if this other
  486. * mapping is already gone, the unmap path will have
  487. * set PG_referenced or activated the page.
  488. */
  489. if (likely(!VM_SequentialReadHint(vma)))
  490. referenced++;
  491. }
  492. pte_unmap_unlock(pte, ptl);
  493. }
  494. /* Pretend the page is referenced if the task has the
  495. swap token and is in the middle of a page fault. */
  496. if (mm != current->mm && has_swap_token(mm) &&
  497. rwsem_is_locked(&mm->mmap_sem))
  498. referenced++;
  499. (*mapcount)--;
  500. if (referenced)
  501. *vm_flags |= vma->vm_flags;
  502. out:
  503. return referenced;
  504. }
  505. static int page_referenced_anon(struct page *page,
  506. struct mem_cgroup *mem_cont,
  507. unsigned long *vm_flags)
  508. {
  509. unsigned int mapcount;
  510. struct anon_vma *anon_vma;
  511. struct anon_vma_chain *avc;
  512. int referenced = 0;
  513. anon_vma = page_lock_anon_vma(page);
  514. if (!anon_vma)
  515. return referenced;
  516. mapcount = page_mapcount(page);
  517. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  518. struct vm_area_struct *vma = avc->vma;
  519. unsigned long address = vma_address(page, vma);
  520. if (address == -EFAULT)
  521. continue;
  522. /*
  523. * If we are reclaiming on behalf of a cgroup, skip
  524. * counting on behalf of references from different
  525. * cgroups
  526. */
  527. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  528. continue;
  529. referenced += page_referenced_one(page, vma, address,
  530. &mapcount, vm_flags);
  531. if (!mapcount)
  532. break;
  533. }
  534. page_unlock_anon_vma(anon_vma);
  535. return referenced;
  536. }
  537. /**
  538. * page_referenced_file - referenced check for object-based rmap
  539. * @page: the page we're checking references on.
  540. * @mem_cont: target memory controller
  541. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  542. *
  543. * For an object-based mapped page, find all the places it is mapped and
  544. * check/clear the referenced flag. This is done by following the page->mapping
  545. * pointer, then walking the chain of vmas it holds. It returns the number
  546. * of references it found.
  547. *
  548. * This function is only called from page_referenced for object-based pages.
  549. */
  550. static int page_referenced_file(struct page *page,
  551. struct mem_cgroup *mem_cont,
  552. unsigned long *vm_flags)
  553. {
  554. unsigned int mapcount;
  555. struct address_space *mapping = page->mapping;
  556. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  557. struct vm_area_struct *vma;
  558. struct prio_tree_iter iter;
  559. int referenced = 0;
  560. /*
  561. * The caller's checks on page->mapping and !PageAnon have made
  562. * sure that this is a file page: the check for page->mapping
  563. * excludes the case just before it gets set on an anon page.
  564. */
  565. BUG_ON(PageAnon(page));
  566. /*
  567. * The page lock not only makes sure that page->mapping cannot
  568. * suddenly be NULLified by truncation, it makes sure that the
  569. * structure at mapping cannot be freed and reused yet,
  570. * so we can safely take mapping->i_mmap_mutex.
  571. */
  572. BUG_ON(!PageLocked(page));
  573. mutex_lock(&mapping->i_mmap_mutex);
  574. /*
  575. * i_mmap_mutex does not stabilize mapcount at all, but mapcount
  576. * is more likely to be accurate if we note it after spinning.
  577. */
  578. mapcount = page_mapcount(page);
  579. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  580. unsigned long address = vma_address(page, vma);
  581. if (address == -EFAULT)
  582. continue;
  583. /*
  584. * If we are reclaiming on behalf of a cgroup, skip
  585. * counting on behalf of references from different
  586. * cgroups
  587. */
  588. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  589. continue;
  590. referenced += page_referenced_one(page, vma, address,
  591. &mapcount, vm_flags);
  592. if (!mapcount)
  593. break;
  594. }
  595. mutex_unlock(&mapping->i_mmap_mutex);
  596. return referenced;
  597. }
  598. /**
  599. * page_referenced - test if the page was referenced
  600. * @page: the page to test
  601. * @is_locked: caller holds lock on the page
  602. * @mem_cont: target memory controller
  603. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  604. *
  605. * Quick test_and_clear_referenced for all mappings to a page,
  606. * returns the number of ptes which referenced the page.
  607. */
  608. int page_referenced(struct page *page,
  609. int is_locked,
  610. struct mem_cgroup *mem_cont,
  611. unsigned long *vm_flags)
  612. {
  613. int referenced = 0;
  614. int we_locked = 0;
  615. *vm_flags = 0;
  616. if (page_mapped(page) && page_rmapping(page)) {
  617. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  618. we_locked = trylock_page(page);
  619. if (!we_locked) {
  620. referenced++;
  621. goto out;
  622. }
  623. }
  624. if (unlikely(PageKsm(page)))
  625. referenced += page_referenced_ksm(page, mem_cont,
  626. vm_flags);
  627. else if (PageAnon(page))
  628. referenced += page_referenced_anon(page, mem_cont,
  629. vm_flags);
  630. else if (page->mapping)
  631. referenced += page_referenced_file(page, mem_cont,
  632. vm_flags);
  633. if (we_locked)
  634. unlock_page(page);
  635. }
  636. out:
  637. if (page_test_and_clear_young(page_to_pfn(page)))
  638. referenced++;
  639. return referenced;
  640. }
  641. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  642. unsigned long address)
  643. {
  644. struct mm_struct *mm = vma->vm_mm;
  645. pte_t *pte;
  646. spinlock_t *ptl;
  647. int ret = 0;
  648. pte = page_check_address(page, mm, address, &ptl, 1);
  649. if (!pte)
  650. goto out;
  651. if (pte_dirty(*pte) || pte_write(*pte)) {
  652. pte_t entry;
  653. flush_cache_page(vma, address, pte_pfn(*pte));
  654. entry = ptep_clear_flush_notify(vma, address, pte);
  655. entry = pte_wrprotect(entry);
  656. entry = pte_mkclean(entry);
  657. set_pte_at(mm, address, pte, entry);
  658. ret = 1;
  659. }
  660. pte_unmap_unlock(pte, ptl);
  661. out:
  662. return ret;
  663. }
  664. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  665. {
  666. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  667. struct vm_area_struct *vma;
  668. struct prio_tree_iter iter;
  669. int ret = 0;
  670. BUG_ON(PageAnon(page));
  671. mutex_lock(&mapping->i_mmap_mutex);
  672. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  673. if (vma->vm_flags & VM_SHARED) {
  674. unsigned long address = vma_address(page, vma);
  675. if (address == -EFAULT)
  676. continue;
  677. ret += page_mkclean_one(page, vma, address);
  678. }
  679. }
  680. mutex_unlock(&mapping->i_mmap_mutex);
  681. return ret;
  682. }
  683. int page_mkclean(struct page *page)
  684. {
  685. int ret = 0;
  686. BUG_ON(!PageLocked(page));
  687. if (page_mapped(page)) {
  688. struct address_space *mapping = page_mapping(page);
  689. if (mapping) {
  690. ret = page_mkclean_file(mapping, page);
  691. if (page_test_and_clear_dirty(page_to_pfn(page), 1))
  692. ret = 1;
  693. }
  694. }
  695. return ret;
  696. }
  697. EXPORT_SYMBOL_GPL(page_mkclean);
  698. /**
  699. * page_move_anon_rmap - move a page to our anon_vma
  700. * @page: the page to move to our anon_vma
  701. * @vma: the vma the page belongs to
  702. * @address: the user virtual address mapped
  703. *
  704. * When a page belongs exclusively to one process after a COW event,
  705. * that page can be moved into the anon_vma that belongs to just that
  706. * process, so the rmap code will not search the parent or sibling
  707. * processes.
  708. */
  709. void page_move_anon_rmap(struct page *page,
  710. struct vm_area_struct *vma, unsigned long address)
  711. {
  712. struct anon_vma *anon_vma = vma->anon_vma;
  713. VM_BUG_ON(!PageLocked(page));
  714. VM_BUG_ON(!anon_vma);
  715. VM_BUG_ON(page->index != linear_page_index(vma, address));
  716. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  717. page->mapping = (struct address_space *) anon_vma;
  718. }
  719. /**
  720. * __page_set_anon_rmap - set up new anonymous rmap
  721. * @page: Page to add to rmap
  722. * @vma: VM area to add page to.
  723. * @address: User virtual address of the mapping
  724. * @exclusive: the page is exclusively owned by the current process
  725. */
  726. static void __page_set_anon_rmap(struct page *page,
  727. struct vm_area_struct *vma, unsigned long address, int exclusive)
  728. {
  729. struct anon_vma *anon_vma = vma->anon_vma;
  730. BUG_ON(!anon_vma);
  731. if (PageAnon(page))
  732. return;
  733. /*
  734. * If the page isn't exclusively mapped into this vma,
  735. * we must use the _oldest_ possible anon_vma for the
  736. * page mapping!
  737. */
  738. if (!exclusive)
  739. anon_vma = anon_vma->root;
  740. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  741. page->mapping = (struct address_space *) anon_vma;
  742. page->index = linear_page_index(vma, address);
  743. }
  744. /**
  745. * __page_check_anon_rmap - sanity check anonymous rmap addition
  746. * @page: the page to add the mapping to
  747. * @vma: the vm area in which the mapping is added
  748. * @address: the user virtual address mapped
  749. */
  750. static void __page_check_anon_rmap(struct page *page,
  751. struct vm_area_struct *vma, unsigned long address)
  752. {
  753. #ifdef CONFIG_DEBUG_VM
  754. /*
  755. * The page's anon-rmap details (mapping and index) are guaranteed to
  756. * be set up correctly at this point.
  757. *
  758. * We have exclusion against page_add_anon_rmap because the caller
  759. * always holds the page locked, except if called from page_dup_rmap,
  760. * in which case the page is already known to be setup.
  761. *
  762. * We have exclusion against page_add_new_anon_rmap because those pages
  763. * are initially only visible via the pagetables, and the pte is locked
  764. * over the call to page_add_new_anon_rmap.
  765. */
  766. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  767. BUG_ON(page->index != linear_page_index(vma, address));
  768. #endif
  769. }
  770. /**
  771. * page_add_anon_rmap - add pte mapping to an anonymous page
  772. * @page: the page to add the mapping to
  773. * @vma: the vm area in which the mapping is added
  774. * @address: the user virtual address mapped
  775. *
  776. * The caller needs to hold the pte lock, and the page must be locked in
  777. * the anon_vma case: to serialize mapping,index checking after setting,
  778. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  779. * (but PageKsm is never downgraded to PageAnon).
  780. */
  781. void page_add_anon_rmap(struct page *page,
  782. struct vm_area_struct *vma, unsigned long address)
  783. {
  784. do_page_add_anon_rmap(page, vma, address, 0);
  785. }
  786. /*
  787. * Special version of the above for do_swap_page, which often runs
  788. * into pages that are exclusively owned by the current process.
  789. * Everybody else should continue to use page_add_anon_rmap above.
  790. */
  791. void do_page_add_anon_rmap(struct page *page,
  792. struct vm_area_struct *vma, unsigned long address, int exclusive)
  793. {
  794. int first = atomic_inc_and_test(&page->_mapcount);
  795. if (first) {
  796. if (!PageTransHuge(page))
  797. __inc_zone_page_state(page, NR_ANON_PAGES);
  798. else
  799. __inc_zone_page_state(page,
  800. NR_ANON_TRANSPARENT_HUGEPAGES);
  801. }
  802. if (unlikely(PageKsm(page)))
  803. return;
  804. VM_BUG_ON(!PageLocked(page));
  805. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  806. if (first)
  807. __page_set_anon_rmap(page, vma, address, exclusive);
  808. else
  809. __page_check_anon_rmap(page, vma, address);
  810. }
  811. /**
  812. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  813. * @page: the page to add the mapping to
  814. * @vma: the vm area in which the mapping is added
  815. * @address: the user virtual address mapped
  816. *
  817. * Same as page_add_anon_rmap but must only be called on *new* pages.
  818. * This means the inc-and-test can be bypassed.
  819. * Page does not have to be locked.
  820. */
  821. void page_add_new_anon_rmap(struct page *page,
  822. struct vm_area_struct *vma, unsigned long address)
  823. {
  824. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  825. SetPageSwapBacked(page);
  826. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  827. if (!PageTransHuge(page))
  828. __inc_zone_page_state(page, NR_ANON_PAGES);
  829. else
  830. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  831. __page_set_anon_rmap(page, vma, address, 1);
  832. if (page_evictable(page, vma))
  833. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  834. else
  835. add_page_to_unevictable_list(page);
  836. }
  837. /**
  838. * page_add_file_rmap - add pte mapping to a file page
  839. * @page: the page to add the mapping to
  840. *
  841. * The caller needs to hold the pte lock.
  842. */
  843. void page_add_file_rmap(struct page *page)
  844. {
  845. if (atomic_inc_and_test(&page->_mapcount)) {
  846. __inc_zone_page_state(page, NR_FILE_MAPPED);
  847. mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
  848. }
  849. }
  850. /**
  851. * page_remove_rmap - take down pte mapping from a page
  852. * @page: page to remove mapping from
  853. *
  854. * The caller needs to hold the pte lock.
  855. */
  856. void page_remove_rmap(struct page *page)
  857. {
  858. /* page still mapped by someone else? */
  859. if (!atomic_add_negative(-1, &page->_mapcount))
  860. return;
  861. /*
  862. * Now that the last pte has gone, s390 must transfer dirty
  863. * flag from storage key to struct page. We can usually skip
  864. * this if the page is anon, so about to be freed; but perhaps
  865. * not if it's in swapcache - there might be another pte slot
  866. * containing the swap entry, but page not yet written to swap.
  867. */
  868. if ((!PageAnon(page) || PageSwapCache(page)) &&
  869. page_test_and_clear_dirty(page_to_pfn(page), 1))
  870. set_page_dirty(page);
  871. /*
  872. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  873. * and not charged by memcg for now.
  874. */
  875. if (unlikely(PageHuge(page)))
  876. return;
  877. if (PageAnon(page)) {
  878. mem_cgroup_uncharge_page(page);
  879. if (!PageTransHuge(page))
  880. __dec_zone_page_state(page, NR_ANON_PAGES);
  881. else
  882. __dec_zone_page_state(page,
  883. NR_ANON_TRANSPARENT_HUGEPAGES);
  884. } else {
  885. __dec_zone_page_state(page, NR_FILE_MAPPED);
  886. mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
  887. }
  888. /*
  889. * It would be tidy to reset the PageAnon mapping here,
  890. * but that might overwrite a racing page_add_anon_rmap
  891. * which increments mapcount after us but sets mapping
  892. * before us: so leave the reset to free_hot_cold_page,
  893. * and remember that it's only reliable while mapped.
  894. * Leaving it set also helps swapoff to reinstate ptes
  895. * faster for those pages still in swapcache.
  896. */
  897. }
  898. /*
  899. * Subfunctions of try_to_unmap: try_to_unmap_one called
  900. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  901. */
  902. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  903. unsigned long address, enum ttu_flags flags)
  904. {
  905. struct mm_struct *mm = vma->vm_mm;
  906. pte_t *pte;
  907. pte_t pteval;
  908. spinlock_t *ptl;
  909. int ret = SWAP_AGAIN;
  910. pte = page_check_address(page, mm, address, &ptl, 0);
  911. if (!pte)
  912. goto out;
  913. /*
  914. * If the page is mlock()d, we cannot swap it out.
  915. * If it's recently referenced (perhaps page_referenced
  916. * skipped over this mm) then we should reactivate it.
  917. */
  918. if (!(flags & TTU_IGNORE_MLOCK)) {
  919. if (vma->vm_flags & VM_LOCKED)
  920. goto out_mlock;
  921. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  922. goto out_unmap;
  923. }
  924. if (!(flags & TTU_IGNORE_ACCESS)) {
  925. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  926. ret = SWAP_FAIL;
  927. goto out_unmap;
  928. }
  929. }
  930. /* Nuke the page table entry. */
  931. flush_cache_page(vma, address, page_to_pfn(page));
  932. pteval = ptep_clear_flush_notify(vma, address, pte);
  933. /* Move the dirty bit to the physical page now the pte is gone. */
  934. if (pte_dirty(pteval))
  935. set_page_dirty(page);
  936. /* Update high watermark before we lower rss */
  937. update_hiwater_rss(mm);
  938. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  939. if (PageAnon(page))
  940. dec_mm_counter(mm, MM_ANONPAGES);
  941. else
  942. dec_mm_counter(mm, MM_FILEPAGES);
  943. set_pte_at(mm, address, pte,
  944. swp_entry_to_pte(make_hwpoison_entry(page)));
  945. } else if (PageAnon(page)) {
  946. swp_entry_t entry = { .val = page_private(page) };
  947. if (PageSwapCache(page)) {
  948. /*
  949. * Store the swap location in the pte.
  950. * See handle_pte_fault() ...
  951. */
  952. if (swap_duplicate(entry) < 0) {
  953. set_pte_at(mm, address, pte, pteval);
  954. ret = SWAP_FAIL;
  955. goto out_unmap;
  956. }
  957. if (list_empty(&mm->mmlist)) {
  958. spin_lock(&mmlist_lock);
  959. if (list_empty(&mm->mmlist))
  960. list_add(&mm->mmlist, &init_mm.mmlist);
  961. spin_unlock(&mmlist_lock);
  962. }
  963. dec_mm_counter(mm, MM_ANONPAGES);
  964. inc_mm_counter(mm, MM_SWAPENTS);
  965. } else if (PAGE_MIGRATION) {
  966. /*
  967. * Store the pfn of the page in a special migration
  968. * pte. do_swap_page() will wait until the migration
  969. * pte is removed and then restart fault handling.
  970. */
  971. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  972. entry = make_migration_entry(page, pte_write(pteval));
  973. }
  974. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  975. BUG_ON(pte_file(*pte));
  976. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  977. /* Establish migration entry for a file page */
  978. swp_entry_t entry;
  979. entry = make_migration_entry(page, pte_write(pteval));
  980. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  981. } else
  982. dec_mm_counter(mm, MM_FILEPAGES);
  983. page_remove_rmap(page);
  984. page_cache_release(page);
  985. out_unmap:
  986. pte_unmap_unlock(pte, ptl);
  987. out:
  988. return ret;
  989. out_mlock:
  990. pte_unmap_unlock(pte, ptl);
  991. /*
  992. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  993. * unstable result and race. Plus, We can't wait here because
  994. * we now hold anon_vma->lock or mapping->i_mmap_mutex.
  995. * if trylock failed, the page remain in evictable lru and later
  996. * vmscan could retry to move the page to unevictable lru if the
  997. * page is actually mlocked.
  998. */
  999. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1000. if (vma->vm_flags & VM_LOCKED) {
  1001. mlock_vma_page(page);
  1002. ret = SWAP_MLOCK;
  1003. }
  1004. up_read(&vma->vm_mm->mmap_sem);
  1005. }
  1006. return ret;
  1007. }
  1008. /*
  1009. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1010. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1011. * Consequently, given a particular page and its ->index, we cannot locate the
  1012. * ptes which are mapping that page without an exhaustive linear search.
  1013. *
  1014. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1015. * maps the file to which the target page belongs. The ->vm_private_data field
  1016. * holds the current cursor into that scan. Successive searches will circulate
  1017. * around the vma's virtual address space.
  1018. *
  1019. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1020. * more scanning pressure is placed against them as well. Eventually pages
  1021. * will become fully unmapped and are eligible for eviction.
  1022. *
  1023. * For very sparsely populated VMAs this is a little inefficient - chances are
  1024. * there there won't be many ptes located within the scan cluster. In this case
  1025. * maybe we could scan further - to the end of the pte page, perhaps.
  1026. *
  1027. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1028. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1029. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1030. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1031. */
  1032. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1033. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1034. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1035. struct vm_area_struct *vma, struct page *check_page)
  1036. {
  1037. struct mm_struct *mm = vma->vm_mm;
  1038. pgd_t *pgd;
  1039. pud_t *pud;
  1040. pmd_t *pmd;
  1041. pte_t *pte;
  1042. pte_t pteval;
  1043. spinlock_t *ptl;
  1044. struct page *page;
  1045. unsigned long address;
  1046. unsigned long end;
  1047. int ret = SWAP_AGAIN;
  1048. int locked_vma = 0;
  1049. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1050. end = address + CLUSTER_SIZE;
  1051. if (address < vma->vm_start)
  1052. address = vma->vm_start;
  1053. if (end > vma->vm_end)
  1054. end = vma->vm_end;
  1055. pgd = pgd_offset(mm, address);
  1056. if (!pgd_present(*pgd))
  1057. return ret;
  1058. pud = pud_offset(pgd, address);
  1059. if (!pud_present(*pud))
  1060. return ret;
  1061. pmd = pmd_offset(pud, address);
  1062. if (!pmd_present(*pmd))
  1063. return ret;
  1064. /*
  1065. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1066. * keep the sem while scanning the cluster for mlocking pages.
  1067. */
  1068. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1069. locked_vma = (vma->vm_flags & VM_LOCKED);
  1070. if (!locked_vma)
  1071. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1072. }
  1073. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1074. /* Update high watermark before we lower rss */
  1075. update_hiwater_rss(mm);
  1076. for (; address < end; pte++, address += PAGE_SIZE) {
  1077. if (!pte_present(*pte))
  1078. continue;
  1079. page = vm_normal_page(vma, address, *pte);
  1080. BUG_ON(!page || PageAnon(page));
  1081. if (locked_vma) {
  1082. mlock_vma_page(page); /* no-op if already mlocked */
  1083. if (page == check_page)
  1084. ret = SWAP_MLOCK;
  1085. continue; /* don't unmap */
  1086. }
  1087. if (ptep_clear_flush_young_notify(vma, address, pte))
  1088. continue;
  1089. /* Nuke the page table entry. */
  1090. flush_cache_page(vma, address, pte_pfn(*pte));
  1091. pteval = ptep_clear_flush_notify(vma, address, pte);
  1092. /* If nonlinear, store the file page offset in the pte. */
  1093. if (page->index != linear_page_index(vma, address))
  1094. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1095. /* Move the dirty bit to the physical page now the pte is gone. */
  1096. if (pte_dirty(pteval))
  1097. set_page_dirty(page);
  1098. page_remove_rmap(page);
  1099. page_cache_release(page);
  1100. dec_mm_counter(mm, MM_FILEPAGES);
  1101. (*mapcount)--;
  1102. }
  1103. pte_unmap_unlock(pte - 1, ptl);
  1104. if (locked_vma)
  1105. up_read(&vma->vm_mm->mmap_sem);
  1106. return ret;
  1107. }
  1108. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1109. {
  1110. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1111. if (!maybe_stack)
  1112. return false;
  1113. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1114. VM_STACK_INCOMPLETE_SETUP)
  1115. return true;
  1116. return false;
  1117. }
  1118. /**
  1119. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1120. * rmap method
  1121. * @page: the page to unmap/unlock
  1122. * @flags: action and flags
  1123. *
  1124. * Find all the mappings of a page using the mapping pointer and the vma chains
  1125. * contained in the anon_vma struct it points to.
  1126. *
  1127. * This function is only called from try_to_unmap/try_to_munlock for
  1128. * anonymous pages.
  1129. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1130. * where the page was found will be held for write. So, we won't recheck
  1131. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1132. * 'LOCKED.
  1133. */
  1134. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1135. {
  1136. struct anon_vma *anon_vma;
  1137. struct anon_vma_chain *avc;
  1138. int ret = SWAP_AGAIN;
  1139. anon_vma = page_lock_anon_vma(page);
  1140. if (!anon_vma)
  1141. return ret;
  1142. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1143. struct vm_area_struct *vma = avc->vma;
  1144. unsigned long address;
  1145. /*
  1146. * During exec, a temporary VMA is setup and later moved.
  1147. * The VMA is moved under the anon_vma lock but not the
  1148. * page tables leading to a race where migration cannot
  1149. * find the migration ptes. Rather than increasing the
  1150. * locking requirements of exec(), migration skips
  1151. * temporary VMAs until after exec() completes.
  1152. */
  1153. if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
  1154. is_vma_temporary_stack(vma))
  1155. continue;
  1156. address = vma_address(page, vma);
  1157. if (address == -EFAULT)
  1158. continue;
  1159. ret = try_to_unmap_one(page, vma, address, flags);
  1160. if (ret != SWAP_AGAIN || !page_mapped(page))
  1161. break;
  1162. }
  1163. page_unlock_anon_vma(anon_vma);
  1164. return ret;
  1165. }
  1166. /**
  1167. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1168. * @page: the page to unmap/unlock
  1169. * @flags: action and flags
  1170. *
  1171. * Find all the mappings of a page using the mapping pointer and the vma chains
  1172. * contained in the address_space struct it points to.
  1173. *
  1174. * This function is only called from try_to_unmap/try_to_munlock for
  1175. * object-based pages.
  1176. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1177. * where the page was found will be held for write. So, we won't recheck
  1178. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1179. * 'LOCKED.
  1180. */
  1181. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1182. {
  1183. struct address_space *mapping = page->mapping;
  1184. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1185. struct vm_area_struct *vma;
  1186. struct prio_tree_iter iter;
  1187. int ret = SWAP_AGAIN;
  1188. unsigned long cursor;
  1189. unsigned long max_nl_cursor = 0;
  1190. unsigned long max_nl_size = 0;
  1191. unsigned int mapcount;
  1192. mutex_lock(&mapping->i_mmap_mutex);
  1193. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1194. unsigned long address = vma_address(page, vma);
  1195. if (address == -EFAULT)
  1196. continue;
  1197. ret = try_to_unmap_one(page, vma, address, flags);
  1198. if (ret != SWAP_AGAIN || !page_mapped(page))
  1199. goto out;
  1200. }
  1201. if (list_empty(&mapping->i_mmap_nonlinear))
  1202. goto out;
  1203. /*
  1204. * We don't bother to try to find the munlocked page in nonlinears.
  1205. * It's costly. Instead, later, page reclaim logic may call
  1206. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1207. */
  1208. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1209. goto out;
  1210. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1211. shared.vm_set.list) {
  1212. cursor = (unsigned long) vma->vm_private_data;
  1213. if (cursor > max_nl_cursor)
  1214. max_nl_cursor = cursor;
  1215. cursor = vma->vm_end - vma->vm_start;
  1216. if (cursor > max_nl_size)
  1217. max_nl_size = cursor;
  1218. }
  1219. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1220. ret = SWAP_FAIL;
  1221. goto out;
  1222. }
  1223. /*
  1224. * We don't try to search for this page in the nonlinear vmas,
  1225. * and page_referenced wouldn't have found it anyway. Instead
  1226. * just walk the nonlinear vmas trying to age and unmap some.
  1227. * The mapcount of the page we came in with is irrelevant,
  1228. * but even so use it as a guide to how hard we should try?
  1229. */
  1230. mapcount = page_mapcount(page);
  1231. if (!mapcount)
  1232. goto out;
  1233. cond_resched();
  1234. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1235. if (max_nl_cursor == 0)
  1236. max_nl_cursor = CLUSTER_SIZE;
  1237. do {
  1238. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1239. shared.vm_set.list) {
  1240. cursor = (unsigned long) vma->vm_private_data;
  1241. while ( cursor < max_nl_cursor &&
  1242. cursor < vma->vm_end - vma->vm_start) {
  1243. if (try_to_unmap_cluster(cursor, &mapcount,
  1244. vma, page) == SWAP_MLOCK)
  1245. ret = SWAP_MLOCK;
  1246. cursor += CLUSTER_SIZE;
  1247. vma->vm_private_data = (void *) cursor;
  1248. if ((int)mapcount <= 0)
  1249. goto out;
  1250. }
  1251. vma->vm_private_data = (void *) max_nl_cursor;
  1252. }
  1253. cond_resched();
  1254. max_nl_cursor += CLUSTER_SIZE;
  1255. } while (max_nl_cursor <= max_nl_size);
  1256. /*
  1257. * Don't loop forever (perhaps all the remaining pages are
  1258. * in locked vmas). Reset cursor on all unreserved nonlinear
  1259. * vmas, now forgetting on which ones it had fallen behind.
  1260. */
  1261. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1262. vma->vm_private_data = NULL;
  1263. out:
  1264. mutex_unlock(&mapping->i_mmap_mutex);
  1265. return ret;
  1266. }
  1267. /**
  1268. * try_to_unmap - try to remove all page table mappings to a page
  1269. * @page: the page to get unmapped
  1270. * @flags: action and flags
  1271. *
  1272. * Tries to remove all the page table entries which are mapping this
  1273. * page, used in the pageout path. Caller must hold the page lock.
  1274. * Return values are:
  1275. *
  1276. * SWAP_SUCCESS - we succeeded in removing all mappings
  1277. * SWAP_AGAIN - we missed a mapping, try again later
  1278. * SWAP_FAIL - the page is unswappable
  1279. * SWAP_MLOCK - page is mlocked.
  1280. */
  1281. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1282. {
  1283. int ret;
  1284. BUG_ON(!PageLocked(page));
  1285. VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
  1286. if (unlikely(PageKsm(page)))
  1287. ret = try_to_unmap_ksm(page, flags);
  1288. else if (PageAnon(page))
  1289. ret = try_to_unmap_anon(page, flags);
  1290. else
  1291. ret = try_to_unmap_file(page, flags);
  1292. if (ret != SWAP_MLOCK && !page_mapped(page))
  1293. ret = SWAP_SUCCESS;
  1294. return ret;
  1295. }
  1296. /**
  1297. * try_to_munlock - try to munlock a page
  1298. * @page: the page to be munlocked
  1299. *
  1300. * Called from munlock code. Checks all of the VMAs mapping the page
  1301. * to make sure nobody else has this page mlocked. The page will be
  1302. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1303. *
  1304. * Return values are:
  1305. *
  1306. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1307. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1308. * SWAP_FAIL - page cannot be located at present
  1309. * SWAP_MLOCK - page is now mlocked.
  1310. */
  1311. int try_to_munlock(struct page *page)
  1312. {
  1313. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1314. if (unlikely(PageKsm(page)))
  1315. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1316. else if (PageAnon(page))
  1317. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1318. else
  1319. return try_to_unmap_file(page, TTU_MUNLOCK);
  1320. }
  1321. void __put_anon_vma(struct anon_vma *anon_vma)
  1322. {
  1323. struct anon_vma *root = anon_vma->root;
  1324. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1325. anon_vma_free(root);
  1326. anon_vma_free(anon_vma);
  1327. }
  1328. #ifdef CONFIG_MIGRATION
  1329. /*
  1330. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1331. * Called by migrate.c to remove migration ptes, but might be used more later.
  1332. */
  1333. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1334. struct vm_area_struct *, unsigned long, void *), void *arg)
  1335. {
  1336. struct anon_vma *anon_vma;
  1337. struct anon_vma_chain *avc;
  1338. int ret = SWAP_AGAIN;
  1339. /*
  1340. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1341. * because that depends on page_mapped(); but not all its usages
  1342. * are holding mmap_sem. Users without mmap_sem are required to
  1343. * take a reference count to prevent the anon_vma disappearing
  1344. */
  1345. anon_vma = page_anon_vma(page);
  1346. if (!anon_vma)
  1347. return ret;
  1348. anon_vma_lock(anon_vma);
  1349. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1350. struct vm_area_struct *vma = avc->vma;
  1351. unsigned long address = vma_address(page, vma);
  1352. if (address == -EFAULT)
  1353. continue;
  1354. ret = rmap_one(page, vma, address, arg);
  1355. if (ret != SWAP_AGAIN)
  1356. break;
  1357. }
  1358. anon_vma_unlock(anon_vma);
  1359. return ret;
  1360. }
  1361. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1362. struct vm_area_struct *, unsigned long, void *), void *arg)
  1363. {
  1364. struct address_space *mapping = page->mapping;
  1365. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1366. struct vm_area_struct *vma;
  1367. struct prio_tree_iter iter;
  1368. int ret = SWAP_AGAIN;
  1369. if (!mapping)
  1370. return ret;
  1371. mutex_lock(&mapping->i_mmap_mutex);
  1372. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1373. unsigned long address = vma_address(page, vma);
  1374. if (address == -EFAULT)
  1375. continue;
  1376. ret = rmap_one(page, vma, address, arg);
  1377. if (ret != SWAP_AGAIN)
  1378. break;
  1379. }
  1380. /*
  1381. * No nonlinear handling: being always shared, nonlinear vmas
  1382. * never contain migration ptes. Decide what to do about this
  1383. * limitation to linear when we need rmap_walk() on nonlinear.
  1384. */
  1385. mutex_unlock(&mapping->i_mmap_mutex);
  1386. return ret;
  1387. }
  1388. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1389. struct vm_area_struct *, unsigned long, void *), void *arg)
  1390. {
  1391. VM_BUG_ON(!PageLocked(page));
  1392. if (unlikely(PageKsm(page)))
  1393. return rmap_walk_ksm(page, rmap_one, arg);
  1394. else if (PageAnon(page))
  1395. return rmap_walk_anon(page, rmap_one, arg);
  1396. else
  1397. return rmap_walk_file(page, rmap_one, arg);
  1398. }
  1399. #endif /* CONFIG_MIGRATION */
  1400. #ifdef CONFIG_HUGETLB_PAGE
  1401. /*
  1402. * The following three functions are for anonymous (private mapped) hugepages.
  1403. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1404. * and no lru code, because we handle hugepages differently from common pages.
  1405. */
  1406. static void __hugepage_set_anon_rmap(struct page *page,
  1407. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1408. {
  1409. struct anon_vma *anon_vma = vma->anon_vma;
  1410. BUG_ON(!anon_vma);
  1411. if (PageAnon(page))
  1412. return;
  1413. if (!exclusive)
  1414. anon_vma = anon_vma->root;
  1415. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1416. page->mapping = (struct address_space *) anon_vma;
  1417. page->index = linear_page_index(vma, address);
  1418. }
  1419. void hugepage_add_anon_rmap(struct page *page,
  1420. struct vm_area_struct *vma, unsigned long address)
  1421. {
  1422. struct anon_vma *anon_vma = vma->anon_vma;
  1423. int first;
  1424. BUG_ON(!PageLocked(page));
  1425. BUG_ON(!anon_vma);
  1426. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1427. first = atomic_inc_and_test(&page->_mapcount);
  1428. if (first)
  1429. __hugepage_set_anon_rmap(page, vma, address, 0);
  1430. }
  1431. void hugepage_add_new_anon_rmap(struct page *page,
  1432. struct vm_area_struct *vma, unsigned long address)
  1433. {
  1434. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1435. atomic_set(&page->_mapcount, 0);
  1436. __hugepage_set_anon_rmap(page, vma, address, 1);
  1437. }
  1438. #endif /* CONFIG_HUGETLB_PAGE */