bnx2x_main.c 320 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003
  1. /* bnx2x_main.c: Broadcom Everest network driver.
  2. *
  3. * Copyright (c) 2007-2012 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Maintained by: Eilon Greenstein <eilong@broadcom.com>
  10. * Written by: Eliezer Tamir
  11. * Based on code from Michael Chan's bnx2 driver
  12. * UDP CSUM errata workaround by Arik Gendelman
  13. * Slowpath and fastpath rework by Vladislav Zolotarov
  14. * Statistics and Link management by Yitchak Gertner
  15. *
  16. */
  17. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18. #include <linux/module.h>
  19. #include <linux/moduleparam.h>
  20. #include <linux/kernel.h>
  21. #include <linux/device.h> /* for dev_info() */
  22. #include <linux/timer.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/slab.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/pci.h>
  28. #include <linux/init.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/skbuff.h>
  32. #include <linux/dma-mapping.h>
  33. #include <linux/bitops.h>
  34. #include <linux/irq.h>
  35. #include <linux/delay.h>
  36. #include <asm/byteorder.h>
  37. #include <linux/time.h>
  38. #include <linux/ethtool.h>
  39. #include <linux/mii.h>
  40. #include <linux/if.h>
  41. #include <linux/if_vlan.h>
  42. #include <net/ip.h>
  43. #include <net/ipv6.h>
  44. #include <net/tcp.h>
  45. #include <net/checksum.h>
  46. #include <net/ip6_checksum.h>
  47. #include <linux/workqueue.h>
  48. #include <linux/crc32.h>
  49. #include <linux/crc32c.h>
  50. #include <linux/prefetch.h>
  51. #include <linux/zlib.h>
  52. #include <linux/io.h>
  53. #include <linux/stringify.h>
  54. #include <linux/vmalloc.h>
  55. #include "bnx2x.h"
  56. #include "bnx2x_init.h"
  57. #include "bnx2x_init_ops.h"
  58. #include "bnx2x_cmn.h"
  59. #include "bnx2x_dcb.h"
  60. #include "bnx2x_sp.h"
  61. #include <linux/firmware.h>
  62. #include "bnx2x_fw_file_hdr.h"
  63. /* FW files */
  64. #define FW_FILE_VERSION \
  65. __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
  66. __stringify(BCM_5710_FW_MINOR_VERSION) "." \
  67. __stringify(BCM_5710_FW_REVISION_VERSION) "." \
  68. __stringify(BCM_5710_FW_ENGINEERING_VERSION)
  69. #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
  70. #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
  71. #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
  72. /* Time in jiffies before concluding the transmitter is hung */
  73. #define TX_TIMEOUT (5*HZ)
  74. static char version[] __devinitdata =
  75. "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
  76. DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  77. MODULE_AUTHOR("Eliezer Tamir");
  78. MODULE_DESCRIPTION("Broadcom NetXtreme II "
  79. "BCM57710/57711/57711E/"
  80. "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
  81. "57840/57840_MF Driver");
  82. MODULE_LICENSE("GPL");
  83. MODULE_VERSION(DRV_MODULE_VERSION);
  84. MODULE_FIRMWARE(FW_FILE_NAME_E1);
  85. MODULE_FIRMWARE(FW_FILE_NAME_E1H);
  86. MODULE_FIRMWARE(FW_FILE_NAME_E2);
  87. static int multi_mode = 1;
  88. module_param(multi_mode, int, 0);
  89. MODULE_PARM_DESC(multi_mode, " Multi queue mode "
  90. "(0 Disable; 1 Enable (default))");
  91. int num_queues;
  92. module_param(num_queues, int, 0);
  93. MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
  94. " (default is as a number of CPUs)");
  95. static int disable_tpa;
  96. module_param(disable_tpa, int, 0);
  97. MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
  98. #define INT_MODE_INTx 1
  99. #define INT_MODE_MSI 2
  100. static int int_mode;
  101. module_param(int_mode, int, 0);
  102. MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
  103. "(1 INT#x; 2 MSI)");
  104. static int dropless_fc;
  105. module_param(dropless_fc, int, 0);
  106. MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
  107. static int mrrs = -1;
  108. module_param(mrrs, int, 0);
  109. MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
  110. static int debug;
  111. module_param(debug, int, 0);
  112. MODULE_PARM_DESC(debug, " Default debug msglevel");
  113. struct workqueue_struct *bnx2x_wq;
  114. enum bnx2x_board_type {
  115. BCM57710 = 0,
  116. BCM57711,
  117. BCM57711E,
  118. BCM57712,
  119. BCM57712_MF,
  120. BCM57800,
  121. BCM57800_MF,
  122. BCM57810,
  123. BCM57810_MF,
  124. BCM57840,
  125. BCM57840_MF
  126. };
  127. /* indexed by board_type, above */
  128. static struct {
  129. char *name;
  130. } board_info[] __devinitdata = {
  131. { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
  132. { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
  133. { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
  134. { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
  135. { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
  136. { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
  137. { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
  138. { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
  139. { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
  140. { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
  141. { "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
  142. "Ethernet Multi Function"}
  143. };
  144. #ifndef PCI_DEVICE_ID_NX2_57710
  145. #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
  146. #endif
  147. #ifndef PCI_DEVICE_ID_NX2_57711
  148. #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
  149. #endif
  150. #ifndef PCI_DEVICE_ID_NX2_57711E
  151. #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
  152. #endif
  153. #ifndef PCI_DEVICE_ID_NX2_57712
  154. #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
  155. #endif
  156. #ifndef PCI_DEVICE_ID_NX2_57712_MF
  157. #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
  158. #endif
  159. #ifndef PCI_DEVICE_ID_NX2_57800
  160. #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
  161. #endif
  162. #ifndef PCI_DEVICE_ID_NX2_57800_MF
  163. #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
  164. #endif
  165. #ifndef PCI_DEVICE_ID_NX2_57810
  166. #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
  167. #endif
  168. #ifndef PCI_DEVICE_ID_NX2_57810_MF
  169. #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
  170. #endif
  171. #ifndef PCI_DEVICE_ID_NX2_57840
  172. #define PCI_DEVICE_ID_NX2_57840 CHIP_NUM_57840
  173. #endif
  174. #ifndef PCI_DEVICE_ID_NX2_57840_MF
  175. #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
  176. #endif
  177. static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
  178. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
  179. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
  180. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
  181. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
  182. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
  183. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
  184. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
  185. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
  186. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
  187. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
  188. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
  189. { 0 }
  190. };
  191. MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
  192. /****************************************************************************
  193. * General service functions
  194. ****************************************************************************/
  195. static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
  196. u32 addr, dma_addr_t mapping)
  197. {
  198. REG_WR(bp, addr, U64_LO(mapping));
  199. REG_WR(bp, addr + 4, U64_HI(mapping));
  200. }
  201. static inline void storm_memset_spq_addr(struct bnx2x *bp,
  202. dma_addr_t mapping, u16 abs_fid)
  203. {
  204. u32 addr = XSEM_REG_FAST_MEMORY +
  205. XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
  206. __storm_memset_dma_mapping(bp, addr, mapping);
  207. }
  208. static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
  209. u16 pf_id)
  210. {
  211. REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
  212. pf_id);
  213. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
  214. pf_id);
  215. REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
  216. pf_id);
  217. REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
  218. pf_id);
  219. }
  220. static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
  221. u8 enable)
  222. {
  223. REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
  224. enable);
  225. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
  226. enable);
  227. REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
  228. enable);
  229. REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
  230. enable);
  231. }
  232. static inline void storm_memset_eq_data(struct bnx2x *bp,
  233. struct event_ring_data *eq_data,
  234. u16 pfid)
  235. {
  236. size_t size = sizeof(struct event_ring_data);
  237. u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
  238. __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
  239. }
  240. static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
  241. u16 pfid)
  242. {
  243. u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
  244. REG_WR16(bp, addr, eq_prod);
  245. }
  246. /* used only at init
  247. * locking is done by mcp
  248. */
  249. static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
  250. {
  251. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
  252. pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
  253. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
  254. PCICFG_VENDOR_ID_OFFSET);
  255. }
  256. static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
  257. {
  258. u32 val;
  259. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
  260. pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
  261. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
  262. PCICFG_VENDOR_ID_OFFSET);
  263. return val;
  264. }
  265. #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
  266. #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
  267. #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
  268. #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
  269. #define DMAE_DP_DST_NONE "dst_addr [none]"
  270. static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
  271. int msglvl)
  272. {
  273. u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
  274. switch (dmae->opcode & DMAE_COMMAND_DST) {
  275. case DMAE_CMD_DST_PCI:
  276. if (src_type == DMAE_CMD_SRC_PCI)
  277. DP(msglvl, "DMAE: opcode 0x%08x\n"
  278. "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
  279. "comp_addr [%x:%08x], comp_val 0x%08x\n",
  280. dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
  281. dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
  282. dmae->comp_addr_hi, dmae->comp_addr_lo,
  283. dmae->comp_val);
  284. else
  285. DP(msglvl, "DMAE: opcode 0x%08x\n"
  286. "src [%08x], len [%d*4], dst [%x:%08x]\n"
  287. "comp_addr [%x:%08x], comp_val 0x%08x\n",
  288. dmae->opcode, dmae->src_addr_lo >> 2,
  289. dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
  290. dmae->comp_addr_hi, dmae->comp_addr_lo,
  291. dmae->comp_val);
  292. break;
  293. case DMAE_CMD_DST_GRC:
  294. if (src_type == DMAE_CMD_SRC_PCI)
  295. DP(msglvl, "DMAE: opcode 0x%08x\n"
  296. "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
  297. "comp_addr [%x:%08x], comp_val 0x%08x\n",
  298. dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
  299. dmae->len, dmae->dst_addr_lo >> 2,
  300. dmae->comp_addr_hi, dmae->comp_addr_lo,
  301. dmae->comp_val);
  302. else
  303. DP(msglvl, "DMAE: opcode 0x%08x\n"
  304. "src [%08x], len [%d*4], dst [%08x]\n"
  305. "comp_addr [%x:%08x], comp_val 0x%08x\n",
  306. dmae->opcode, dmae->src_addr_lo >> 2,
  307. dmae->len, dmae->dst_addr_lo >> 2,
  308. dmae->comp_addr_hi, dmae->comp_addr_lo,
  309. dmae->comp_val);
  310. break;
  311. default:
  312. if (src_type == DMAE_CMD_SRC_PCI)
  313. DP(msglvl, "DMAE: opcode 0x%08x\n"
  314. "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
  315. "comp_addr [%x:%08x] comp_val 0x%08x\n",
  316. dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
  317. dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
  318. dmae->comp_val);
  319. else
  320. DP(msglvl, "DMAE: opcode 0x%08x\n"
  321. "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
  322. "comp_addr [%x:%08x] comp_val 0x%08x\n",
  323. dmae->opcode, dmae->src_addr_lo >> 2,
  324. dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
  325. dmae->comp_val);
  326. break;
  327. }
  328. }
  329. /* copy command into DMAE command memory and set DMAE command go */
  330. void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
  331. {
  332. u32 cmd_offset;
  333. int i;
  334. cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
  335. for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
  336. REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
  337. DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
  338. idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
  339. }
  340. REG_WR(bp, dmae_reg_go_c[idx], 1);
  341. }
  342. u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
  343. {
  344. return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
  345. DMAE_CMD_C_ENABLE);
  346. }
  347. u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
  348. {
  349. return opcode & ~DMAE_CMD_SRC_RESET;
  350. }
  351. u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
  352. bool with_comp, u8 comp_type)
  353. {
  354. u32 opcode = 0;
  355. opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
  356. (dst_type << DMAE_COMMAND_DST_SHIFT));
  357. opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
  358. opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
  359. opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
  360. (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
  361. opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
  362. #ifdef __BIG_ENDIAN
  363. opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
  364. #else
  365. opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
  366. #endif
  367. if (with_comp)
  368. opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
  369. return opcode;
  370. }
  371. static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
  372. struct dmae_command *dmae,
  373. u8 src_type, u8 dst_type)
  374. {
  375. memset(dmae, 0, sizeof(struct dmae_command));
  376. /* set the opcode */
  377. dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
  378. true, DMAE_COMP_PCI);
  379. /* fill in the completion parameters */
  380. dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
  381. dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
  382. dmae->comp_val = DMAE_COMP_VAL;
  383. }
  384. /* issue a dmae command over the init-channel and wailt for completion */
  385. static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
  386. struct dmae_command *dmae)
  387. {
  388. u32 *wb_comp = bnx2x_sp(bp, wb_comp);
  389. int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
  390. int rc = 0;
  391. DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
  392. bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
  393. bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
  394. /*
  395. * Lock the dmae channel. Disable BHs to prevent a dead-lock
  396. * as long as this code is called both from syscall context and
  397. * from ndo_set_rx_mode() flow that may be called from BH.
  398. */
  399. spin_lock_bh(&bp->dmae_lock);
  400. /* reset completion */
  401. *wb_comp = 0;
  402. /* post the command on the channel used for initializations */
  403. bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
  404. /* wait for completion */
  405. udelay(5);
  406. while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
  407. DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
  408. if (!cnt ||
  409. (bp->recovery_state != BNX2X_RECOVERY_DONE &&
  410. bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
  411. BNX2X_ERR("DMAE timeout!\n");
  412. rc = DMAE_TIMEOUT;
  413. goto unlock;
  414. }
  415. cnt--;
  416. udelay(50);
  417. }
  418. if (*wb_comp & DMAE_PCI_ERR_FLAG) {
  419. BNX2X_ERR("DMAE PCI error!\n");
  420. rc = DMAE_PCI_ERROR;
  421. }
  422. DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
  423. bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
  424. bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
  425. unlock:
  426. spin_unlock_bh(&bp->dmae_lock);
  427. return rc;
  428. }
  429. void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
  430. u32 len32)
  431. {
  432. struct dmae_command dmae;
  433. if (!bp->dmae_ready) {
  434. u32 *data = bnx2x_sp(bp, wb_data[0]);
  435. DP(BNX2X_MSG_OFF,
  436. "DMAE is not ready (dst_addr %08x len32 %d) using indirect\n",
  437. dst_addr, len32);
  438. if (CHIP_IS_E1(bp))
  439. bnx2x_init_ind_wr(bp, dst_addr, data, len32);
  440. else
  441. bnx2x_init_str_wr(bp, dst_addr, data, len32);
  442. return;
  443. }
  444. /* set opcode and fixed command fields */
  445. bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
  446. /* fill in addresses and len */
  447. dmae.src_addr_lo = U64_LO(dma_addr);
  448. dmae.src_addr_hi = U64_HI(dma_addr);
  449. dmae.dst_addr_lo = dst_addr >> 2;
  450. dmae.dst_addr_hi = 0;
  451. dmae.len = len32;
  452. bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
  453. /* issue the command and wait for completion */
  454. bnx2x_issue_dmae_with_comp(bp, &dmae);
  455. }
  456. void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
  457. {
  458. struct dmae_command dmae;
  459. if (!bp->dmae_ready) {
  460. u32 *data = bnx2x_sp(bp, wb_data[0]);
  461. int i;
  462. if (CHIP_IS_E1(bp)) {
  463. DP(BNX2X_MSG_OFF,
  464. "DMAE is not ready (src_addr %08x len32 %d) using indirect\n",
  465. src_addr, len32);
  466. for (i = 0; i < len32; i++)
  467. data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
  468. } else
  469. for (i = 0; i < len32; i++)
  470. data[i] = REG_RD(bp, src_addr + i*4);
  471. return;
  472. }
  473. /* set opcode and fixed command fields */
  474. bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
  475. /* fill in addresses and len */
  476. dmae.src_addr_lo = src_addr >> 2;
  477. dmae.src_addr_hi = 0;
  478. dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
  479. dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
  480. dmae.len = len32;
  481. bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
  482. /* issue the command and wait for completion */
  483. bnx2x_issue_dmae_with_comp(bp, &dmae);
  484. }
  485. static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
  486. u32 addr, u32 len)
  487. {
  488. int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
  489. int offset = 0;
  490. while (len > dmae_wr_max) {
  491. bnx2x_write_dmae(bp, phys_addr + offset,
  492. addr + offset, dmae_wr_max);
  493. offset += dmae_wr_max * 4;
  494. len -= dmae_wr_max;
  495. }
  496. bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
  497. }
  498. /* used only for slowpath so not inlined */
  499. static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
  500. {
  501. u32 wb_write[2];
  502. wb_write[0] = val_hi;
  503. wb_write[1] = val_lo;
  504. REG_WR_DMAE(bp, reg, wb_write, 2);
  505. }
  506. #ifdef USE_WB_RD
  507. static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
  508. {
  509. u32 wb_data[2];
  510. REG_RD_DMAE(bp, reg, wb_data, 2);
  511. return HILO_U64(wb_data[0], wb_data[1]);
  512. }
  513. #endif
  514. static int bnx2x_mc_assert(struct bnx2x *bp)
  515. {
  516. char last_idx;
  517. int i, rc = 0;
  518. u32 row0, row1, row2, row3;
  519. /* XSTORM */
  520. last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
  521. XSTORM_ASSERT_LIST_INDEX_OFFSET);
  522. if (last_idx)
  523. BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
  524. /* print the asserts */
  525. for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
  526. row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
  527. XSTORM_ASSERT_LIST_OFFSET(i));
  528. row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
  529. XSTORM_ASSERT_LIST_OFFSET(i) + 4);
  530. row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
  531. XSTORM_ASSERT_LIST_OFFSET(i) + 8);
  532. row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
  533. XSTORM_ASSERT_LIST_OFFSET(i) + 12);
  534. if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
  535. BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
  536. " 0x%08x 0x%08x 0x%08x\n",
  537. i, row3, row2, row1, row0);
  538. rc++;
  539. } else {
  540. break;
  541. }
  542. }
  543. /* TSTORM */
  544. last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
  545. TSTORM_ASSERT_LIST_INDEX_OFFSET);
  546. if (last_idx)
  547. BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
  548. /* print the asserts */
  549. for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
  550. row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
  551. TSTORM_ASSERT_LIST_OFFSET(i));
  552. row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
  553. TSTORM_ASSERT_LIST_OFFSET(i) + 4);
  554. row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
  555. TSTORM_ASSERT_LIST_OFFSET(i) + 8);
  556. row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
  557. TSTORM_ASSERT_LIST_OFFSET(i) + 12);
  558. if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
  559. BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
  560. " 0x%08x 0x%08x 0x%08x\n",
  561. i, row3, row2, row1, row0);
  562. rc++;
  563. } else {
  564. break;
  565. }
  566. }
  567. /* CSTORM */
  568. last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
  569. CSTORM_ASSERT_LIST_INDEX_OFFSET);
  570. if (last_idx)
  571. BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
  572. /* print the asserts */
  573. for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
  574. row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
  575. CSTORM_ASSERT_LIST_OFFSET(i));
  576. row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
  577. CSTORM_ASSERT_LIST_OFFSET(i) + 4);
  578. row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
  579. CSTORM_ASSERT_LIST_OFFSET(i) + 8);
  580. row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
  581. CSTORM_ASSERT_LIST_OFFSET(i) + 12);
  582. if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
  583. BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
  584. " 0x%08x 0x%08x 0x%08x\n",
  585. i, row3, row2, row1, row0);
  586. rc++;
  587. } else {
  588. break;
  589. }
  590. }
  591. /* USTORM */
  592. last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
  593. USTORM_ASSERT_LIST_INDEX_OFFSET);
  594. if (last_idx)
  595. BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
  596. /* print the asserts */
  597. for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
  598. row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
  599. USTORM_ASSERT_LIST_OFFSET(i));
  600. row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
  601. USTORM_ASSERT_LIST_OFFSET(i) + 4);
  602. row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
  603. USTORM_ASSERT_LIST_OFFSET(i) + 8);
  604. row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
  605. USTORM_ASSERT_LIST_OFFSET(i) + 12);
  606. if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
  607. BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
  608. " 0x%08x 0x%08x 0x%08x\n",
  609. i, row3, row2, row1, row0);
  610. rc++;
  611. } else {
  612. break;
  613. }
  614. }
  615. return rc;
  616. }
  617. void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
  618. {
  619. u32 addr, val;
  620. u32 mark, offset;
  621. __be32 data[9];
  622. int word;
  623. u32 trace_shmem_base;
  624. if (BP_NOMCP(bp)) {
  625. BNX2X_ERR("NO MCP - can not dump\n");
  626. return;
  627. }
  628. netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
  629. (bp->common.bc_ver & 0xff0000) >> 16,
  630. (bp->common.bc_ver & 0xff00) >> 8,
  631. (bp->common.bc_ver & 0xff));
  632. val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
  633. if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
  634. printk("%s" "MCP PC at 0x%x\n", lvl, val);
  635. if (BP_PATH(bp) == 0)
  636. trace_shmem_base = bp->common.shmem_base;
  637. else
  638. trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
  639. addr = trace_shmem_base - 0x0800 + 4;
  640. mark = REG_RD(bp, addr);
  641. mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
  642. + ((mark + 0x3) & ~0x3) - 0x08000000;
  643. printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
  644. printk("%s", lvl);
  645. for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
  646. for (word = 0; word < 8; word++)
  647. data[word] = htonl(REG_RD(bp, offset + 4*word));
  648. data[8] = 0x0;
  649. pr_cont("%s", (char *)data);
  650. }
  651. for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
  652. for (word = 0; word < 8; word++)
  653. data[word] = htonl(REG_RD(bp, offset + 4*word));
  654. data[8] = 0x0;
  655. pr_cont("%s", (char *)data);
  656. }
  657. printk("%s" "end of fw dump\n", lvl);
  658. }
  659. static inline void bnx2x_fw_dump(struct bnx2x *bp)
  660. {
  661. bnx2x_fw_dump_lvl(bp, KERN_ERR);
  662. }
  663. void bnx2x_panic_dump(struct bnx2x *bp)
  664. {
  665. int i;
  666. u16 j;
  667. struct hc_sp_status_block_data sp_sb_data;
  668. int func = BP_FUNC(bp);
  669. #ifdef BNX2X_STOP_ON_ERROR
  670. u16 start = 0, end = 0;
  671. u8 cos;
  672. #endif
  673. bp->stats_state = STATS_STATE_DISABLED;
  674. bp->eth_stats.unrecoverable_error++;
  675. DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
  676. BNX2X_ERR("begin crash dump -----------------\n");
  677. /* Indices */
  678. /* Common */
  679. BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x)"
  680. " spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
  681. bp->def_idx, bp->def_att_idx, bp->attn_state,
  682. bp->spq_prod_idx, bp->stats_counter);
  683. BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
  684. bp->def_status_blk->atten_status_block.attn_bits,
  685. bp->def_status_blk->atten_status_block.attn_bits_ack,
  686. bp->def_status_blk->atten_status_block.status_block_id,
  687. bp->def_status_blk->atten_status_block.attn_bits_index);
  688. BNX2X_ERR(" def (");
  689. for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
  690. pr_cont("0x%x%s",
  691. bp->def_status_blk->sp_sb.index_values[i],
  692. (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
  693. for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
  694. *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
  695. CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
  696. i*sizeof(u32));
  697. pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
  698. sp_sb_data.igu_sb_id,
  699. sp_sb_data.igu_seg_id,
  700. sp_sb_data.p_func.pf_id,
  701. sp_sb_data.p_func.vnic_id,
  702. sp_sb_data.p_func.vf_id,
  703. sp_sb_data.p_func.vf_valid,
  704. sp_sb_data.state);
  705. for_each_eth_queue(bp, i) {
  706. struct bnx2x_fastpath *fp = &bp->fp[i];
  707. int loop;
  708. struct hc_status_block_data_e2 sb_data_e2;
  709. struct hc_status_block_data_e1x sb_data_e1x;
  710. struct hc_status_block_sm *hc_sm_p =
  711. CHIP_IS_E1x(bp) ?
  712. sb_data_e1x.common.state_machine :
  713. sb_data_e2.common.state_machine;
  714. struct hc_index_data *hc_index_p =
  715. CHIP_IS_E1x(bp) ?
  716. sb_data_e1x.index_data :
  717. sb_data_e2.index_data;
  718. u8 data_size, cos;
  719. u32 *sb_data_p;
  720. struct bnx2x_fp_txdata txdata;
  721. /* Rx */
  722. BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x)"
  723. " rx_comp_prod(0x%x)"
  724. " rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
  725. i, fp->rx_bd_prod, fp->rx_bd_cons,
  726. fp->rx_comp_prod,
  727. fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
  728. BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x)"
  729. " fp_hc_idx(0x%x)\n",
  730. fp->rx_sge_prod, fp->last_max_sge,
  731. le16_to_cpu(fp->fp_hc_idx));
  732. /* Tx */
  733. for_each_cos_in_tx_queue(fp, cos)
  734. {
  735. txdata = fp->txdata[cos];
  736. BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x)"
  737. " tx_bd_prod(0x%x) tx_bd_cons(0x%x)"
  738. " *tx_cons_sb(0x%x)\n",
  739. i, txdata.tx_pkt_prod,
  740. txdata.tx_pkt_cons, txdata.tx_bd_prod,
  741. txdata.tx_bd_cons,
  742. le16_to_cpu(*txdata.tx_cons_sb));
  743. }
  744. loop = CHIP_IS_E1x(bp) ?
  745. HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
  746. /* host sb data */
  747. #ifdef BCM_CNIC
  748. if (IS_FCOE_FP(fp))
  749. continue;
  750. #endif
  751. BNX2X_ERR(" run indexes (");
  752. for (j = 0; j < HC_SB_MAX_SM; j++)
  753. pr_cont("0x%x%s",
  754. fp->sb_running_index[j],
  755. (j == HC_SB_MAX_SM - 1) ? ")" : " ");
  756. BNX2X_ERR(" indexes (");
  757. for (j = 0; j < loop; j++)
  758. pr_cont("0x%x%s",
  759. fp->sb_index_values[j],
  760. (j == loop - 1) ? ")" : " ");
  761. /* fw sb data */
  762. data_size = CHIP_IS_E1x(bp) ?
  763. sizeof(struct hc_status_block_data_e1x) :
  764. sizeof(struct hc_status_block_data_e2);
  765. data_size /= sizeof(u32);
  766. sb_data_p = CHIP_IS_E1x(bp) ?
  767. (u32 *)&sb_data_e1x :
  768. (u32 *)&sb_data_e2;
  769. /* copy sb data in here */
  770. for (j = 0; j < data_size; j++)
  771. *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
  772. CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
  773. j * sizeof(u32));
  774. if (!CHIP_IS_E1x(bp)) {
  775. pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
  776. "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
  777. "state(0x%x)\n",
  778. sb_data_e2.common.p_func.pf_id,
  779. sb_data_e2.common.p_func.vf_id,
  780. sb_data_e2.common.p_func.vf_valid,
  781. sb_data_e2.common.p_func.vnic_id,
  782. sb_data_e2.common.same_igu_sb_1b,
  783. sb_data_e2.common.state);
  784. } else {
  785. pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
  786. "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
  787. "state(0x%x)\n",
  788. sb_data_e1x.common.p_func.pf_id,
  789. sb_data_e1x.common.p_func.vf_id,
  790. sb_data_e1x.common.p_func.vf_valid,
  791. sb_data_e1x.common.p_func.vnic_id,
  792. sb_data_e1x.common.same_igu_sb_1b,
  793. sb_data_e1x.common.state);
  794. }
  795. /* SB_SMs data */
  796. for (j = 0; j < HC_SB_MAX_SM; j++) {
  797. pr_cont("SM[%d] __flags (0x%x) "
  798. "igu_sb_id (0x%x) igu_seg_id(0x%x) "
  799. "time_to_expire (0x%x) "
  800. "timer_value(0x%x)\n", j,
  801. hc_sm_p[j].__flags,
  802. hc_sm_p[j].igu_sb_id,
  803. hc_sm_p[j].igu_seg_id,
  804. hc_sm_p[j].time_to_expire,
  805. hc_sm_p[j].timer_value);
  806. }
  807. /* Indecies data */
  808. for (j = 0; j < loop; j++) {
  809. pr_cont("INDEX[%d] flags (0x%x) "
  810. "timeout (0x%x)\n", j,
  811. hc_index_p[j].flags,
  812. hc_index_p[j].timeout);
  813. }
  814. }
  815. #ifdef BNX2X_STOP_ON_ERROR
  816. /* Rings */
  817. /* Rx */
  818. for_each_rx_queue(bp, i) {
  819. struct bnx2x_fastpath *fp = &bp->fp[i];
  820. start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
  821. end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
  822. for (j = start; j != end; j = RX_BD(j + 1)) {
  823. u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
  824. struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
  825. BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
  826. i, j, rx_bd[1], rx_bd[0], sw_bd->data);
  827. }
  828. start = RX_SGE(fp->rx_sge_prod);
  829. end = RX_SGE(fp->last_max_sge);
  830. for (j = start; j != end; j = RX_SGE(j + 1)) {
  831. u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
  832. struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
  833. BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
  834. i, j, rx_sge[1], rx_sge[0], sw_page->page);
  835. }
  836. start = RCQ_BD(fp->rx_comp_cons - 10);
  837. end = RCQ_BD(fp->rx_comp_cons + 503);
  838. for (j = start; j != end; j = RCQ_BD(j + 1)) {
  839. u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
  840. BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
  841. i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
  842. }
  843. }
  844. /* Tx */
  845. for_each_tx_queue(bp, i) {
  846. struct bnx2x_fastpath *fp = &bp->fp[i];
  847. for_each_cos_in_tx_queue(fp, cos) {
  848. struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
  849. start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
  850. end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
  851. for (j = start; j != end; j = TX_BD(j + 1)) {
  852. struct sw_tx_bd *sw_bd =
  853. &txdata->tx_buf_ring[j];
  854. BNX2X_ERR("fp%d: txdata %d, "
  855. "packet[%x]=[%p,%x]\n",
  856. i, cos, j, sw_bd->skb,
  857. sw_bd->first_bd);
  858. }
  859. start = TX_BD(txdata->tx_bd_cons - 10);
  860. end = TX_BD(txdata->tx_bd_cons + 254);
  861. for (j = start; j != end; j = TX_BD(j + 1)) {
  862. u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
  863. BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
  864. "[%x:%x:%x:%x]\n",
  865. i, cos, j, tx_bd[0], tx_bd[1],
  866. tx_bd[2], tx_bd[3]);
  867. }
  868. }
  869. }
  870. #endif
  871. bnx2x_fw_dump(bp);
  872. bnx2x_mc_assert(bp);
  873. BNX2X_ERR("end crash dump -----------------\n");
  874. }
  875. /*
  876. * FLR Support for E2
  877. *
  878. * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
  879. * initialization.
  880. */
  881. #define FLR_WAIT_USEC 10000 /* 10 miliseconds */
  882. #define FLR_WAIT_INTERVAL 50 /* usec */
  883. #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
  884. struct pbf_pN_buf_regs {
  885. int pN;
  886. u32 init_crd;
  887. u32 crd;
  888. u32 crd_freed;
  889. };
  890. struct pbf_pN_cmd_regs {
  891. int pN;
  892. u32 lines_occup;
  893. u32 lines_freed;
  894. };
  895. static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
  896. struct pbf_pN_buf_regs *regs,
  897. u32 poll_count)
  898. {
  899. u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
  900. u32 cur_cnt = poll_count;
  901. crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
  902. crd = crd_start = REG_RD(bp, regs->crd);
  903. init_crd = REG_RD(bp, regs->init_crd);
  904. DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
  905. DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
  906. DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
  907. while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
  908. (init_crd - crd_start))) {
  909. if (cur_cnt--) {
  910. udelay(FLR_WAIT_INTERVAL);
  911. crd = REG_RD(bp, regs->crd);
  912. crd_freed = REG_RD(bp, regs->crd_freed);
  913. } else {
  914. DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
  915. regs->pN);
  916. DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
  917. regs->pN, crd);
  918. DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
  919. regs->pN, crd_freed);
  920. break;
  921. }
  922. }
  923. DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
  924. poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
  925. }
  926. static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
  927. struct pbf_pN_cmd_regs *regs,
  928. u32 poll_count)
  929. {
  930. u32 occup, to_free, freed, freed_start;
  931. u32 cur_cnt = poll_count;
  932. occup = to_free = REG_RD(bp, regs->lines_occup);
  933. freed = freed_start = REG_RD(bp, regs->lines_freed);
  934. DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
  935. DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
  936. while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
  937. if (cur_cnt--) {
  938. udelay(FLR_WAIT_INTERVAL);
  939. occup = REG_RD(bp, regs->lines_occup);
  940. freed = REG_RD(bp, regs->lines_freed);
  941. } else {
  942. DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
  943. regs->pN);
  944. DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
  945. regs->pN, occup);
  946. DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
  947. regs->pN, freed);
  948. break;
  949. }
  950. }
  951. DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
  952. poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
  953. }
  954. static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
  955. u32 expected, u32 poll_count)
  956. {
  957. u32 cur_cnt = poll_count;
  958. u32 val;
  959. while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
  960. udelay(FLR_WAIT_INTERVAL);
  961. return val;
  962. }
  963. static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
  964. char *msg, u32 poll_cnt)
  965. {
  966. u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
  967. if (val != 0) {
  968. BNX2X_ERR("%s usage count=%d\n", msg, val);
  969. return 1;
  970. }
  971. return 0;
  972. }
  973. static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
  974. {
  975. /* adjust polling timeout */
  976. if (CHIP_REV_IS_EMUL(bp))
  977. return FLR_POLL_CNT * 2000;
  978. if (CHIP_REV_IS_FPGA(bp))
  979. return FLR_POLL_CNT * 120;
  980. return FLR_POLL_CNT;
  981. }
  982. static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
  983. {
  984. struct pbf_pN_cmd_regs cmd_regs[] = {
  985. {0, (CHIP_IS_E3B0(bp)) ?
  986. PBF_REG_TQ_OCCUPANCY_Q0 :
  987. PBF_REG_P0_TQ_OCCUPANCY,
  988. (CHIP_IS_E3B0(bp)) ?
  989. PBF_REG_TQ_LINES_FREED_CNT_Q0 :
  990. PBF_REG_P0_TQ_LINES_FREED_CNT},
  991. {1, (CHIP_IS_E3B0(bp)) ?
  992. PBF_REG_TQ_OCCUPANCY_Q1 :
  993. PBF_REG_P1_TQ_OCCUPANCY,
  994. (CHIP_IS_E3B0(bp)) ?
  995. PBF_REG_TQ_LINES_FREED_CNT_Q1 :
  996. PBF_REG_P1_TQ_LINES_FREED_CNT},
  997. {4, (CHIP_IS_E3B0(bp)) ?
  998. PBF_REG_TQ_OCCUPANCY_LB_Q :
  999. PBF_REG_P4_TQ_OCCUPANCY,
  1000. (CHIP_IS_E3B0(bp)) ?
  1001. PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
  1002. PBF_REG_P4_TQ_LINES_FREED_CNT}
  1003. };
  1004. struct pbf_pN_buf_regs buf_regs[] = {
  1005. {0, (CHIP_IS_E3B0(bp)) ?
  1006. PBF_REG_INIT_CRD_Q0 :
  1007. PBF_REG_P0_INIT_CRD ,
  1008. (CHIP_IS_E3B0(bp)) ?
  1009. PBF_REG_CREDIT_Q0 :
  1010. PBF_REG_P0_CREDIT,
  1011. (CHIP_IS_E3B0(bp)) ?
  1012. PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
  1013. PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
  1014. {1, (CHIP_IS_E3B0(bp)) ?
  1015. PBF_REG_INIT_CRD_Q1 :
  1016. PBF_REG_P1_INIT_CRD,
  1017. (CHIP_IS_E3B0(bp)) ?
  1018. PBF_REG_CREDIT_Q1 :
  1019. PBF_REG_P1_CREDIT,
  1020. (CHIP_IS_E3B0(bp)) ?
  1021. PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
  1022. PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
  1023. {4, (CHIP_IS_E3B0(bp)) ?
  1024. PBF_REG_INIT_CRD_LB_Q :
  1025. PBF_REG_P4_INIT_CRD,
  1026. (CHIP_IS_E3B0(bp)) ?
  1027. PBF_REG_CREDIT_LB_Q :
  1028. PBF_REG_P4_CREDIT,
  1029. (CHIP_IS_E3B0(bp)) ?
  1030. PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
  1031. PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
  1032. };
  1033. int i;
  1034. /* Verify the command queues are flushed P0, P1, P4 */
  1035. for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
  1036. bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
  1037. /* Verify the transmission buffers are flushed P0, P1, P4 */
  1038. for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
  1039. bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
  1040. }
  1041. #define OP_GEN_PARAM(param) \
  1042. (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
  1043. #define OP_GEN_TYPE(type) \
  1044. (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
  1045. #define OP_GEN_AGG_VECT(index) \
  1046. (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
  1047. static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
  1048. u32 poll_cnt)
  1049. {
  1050. struct sdm_op_gen op_gen = {0};
  1051. u32 comp_addr = BAR_CSTRORM_INTMEM +
  1052. CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
  1053. int ret = 0;
  1054. if (REG_RD(bp, comp_addr)) {
  1055. BNX2X_ERR("Cleanup complete was not 0 before sending\n");
  1056. return 1;
  1057. }
  1058. op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
  1059. op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
  1060. op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
  1061. op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
  1062. DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
  1063. REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
  1064. if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
  1065. BNX2X_ERR("FW final cleanup did not succeed\n");
  1066. ret = 1;
  1067. }
  1068. /* Zero completion for nxt FLR */
  1069. REG_WR(bp, comp_addr, 0);
  1070. return ret;
  1071. }
  1072. static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
  1073. {
  1074. int pos;
  1075. u16 status;
  1076. pos = pci_pcie_cap(dev);
  1077. if (!pos)
  1078. return false;
  1079. pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
  1080. return status & PCI_EXP_DEVSTA_TRPND;
  1081. }
  1082. /* PF FLR specific routines
  1083. */
  1084. static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
  1085. {
  1086. /* wait for CFC PF usage-counter to zero (includes all the VFs) */
  1087. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1088. CFC_REG_NUM_LCIDS_INSIDE_PF,
  1089. "CFC PF usage counter timed out",
  1090. poll_cnt))
  1091. return 1;
  1092. /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
  1093. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1094. DORQ_REG_PF_USAGE_CNT,
  1095. "DQ PF usage counter timed out",
  1096. poll_cnt))
  1097. return 1;
  1098. /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
  1099. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1100. QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
  1101. "QM PF usage counter timed out",
  1102. poll_cnt))
  1103. return 1;
  1104. /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
  1105. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1106. TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
  1107. "Timers VNIC usage counter timed out",
  1108. poll_cnt))
  1109. return 1;
  1110. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1111. TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
  1112. "Timers NUM_SCANS usage counter timed out",
  1113. poll_cnt))
  1114. return 1;
  1115. /* Wait DMAE PF usage counter to zero */
  1116. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1117. dmae_reg_go_c[INIT_DMAE_C(bp)],
  1118. "DMAE dommand register timed out",
  1119. poll_cnt))
  1120. return 1;
  1121. return 0;
  1122. }
  1123. static void bnx2x_hw_enable_status(struct bnx2x *bp)
  1124. {
  1125. u32 val;
  1126. val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
  1127. DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
  1128. val = REG_RD(bp, PBF_REG_DISABLE_PF);
  1129. DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
  1130. val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
  1131. DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
  1132. val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
  1133. DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
  1134. val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
  1135. DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
  1136. val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
  1137. DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
  1138. val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
  1139. DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
  1140. val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
  1141. DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
  1142. val);
  1143. }
  1144. static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
  1145. {
  1146. u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
  1147. DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
  1148. /* Re-enable PF target read access */
  1149. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
  1150. /* Poll HW usage counters */
  1151. DP(BNX2X_MSG_SP, "Polling usage counters\n");
  1152. if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
  1153. return -EBUSY;
  1154. /* Zero the igu 'trailing edge' and 'leading edge' */
  1155. /* Send the FW cleanup command */
  1156. if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
  1157. return -EBUSY;
  1158. /* ATC cleanup */
  1159. /* Verify TX hw is flushed */
  1160. bnx2x_tx_hw_flushed(bp, poll_cnt);
  1161. /* Wait 100ms (not adjusted according to platform) */
  1162. msleep(100);
  1163. /* Verify no pending pci transactions */
  1164. if (bnx2x_is_pcie_pending(bp->pdev))
  1165. BNX2X_ERR("PCIE Transactions still pending\n");
  1166. /* Debug */
  1167. bnx2x_hw_enable_status(bp);
  1168. /*
  1169. * Master enable - Due to WB DMAE writes performed before this
  1170. * register is re-initialized as part of the regular function init
  1171. */
  1172. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
  1173. return 0;
  1174. }
  1175. static void bnx2x_hc_int_enable(struct bnx2x *bp)
  1176. {
  1177. int port = BP_PORT(bp);
  1178. u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
  1179. u32 val = REG_RD(bp, addr);
  1180. int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
  1181. int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
  1182. if (msix) {
  1183. val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1184. HC_CONFIG_0_REG_INT_LINE_EN_0);
  1185. val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
  1186. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1187. } else if (msi) {
  1188. val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
  1189. val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1190. HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
  1191. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1192. } else {
  1193. val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1194. HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
  1195. HC_CONFIG_0_REG_INT_LINE_EN_0 |
  1196. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1197. if (!CHIP_IS_E1(bp)) {
  1198. DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
  1199. val, port, addr);
  1200. REG_WR(bp, addr, val);
  1201. val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
  1202. }
  1203. }
  1204. if (CHIP_IS_E1(bp))
  1205. REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
  1206. DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
  1207. val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
  1208. REG_WR(bp, addr, val);
  1209. /*
  1210. * Ensure that HC_CONFIG is written before leading/trailing edge config
  1211. */
  1212. mmiowb();
  1213. barrier();
  1214. if (!CHIP_IS_E1(bp)) {
  1215. /* init leading/trailing edge */
  1216. if (IS_MF(bp)) {
  1217. val = (0xee0f | (1 << (BP_VN(bp) + 4)));
  1218. if (bp->port.pmf)
  1219. /* enable nig and gpio3 attention */
  1220. val |= 0x1100;
  1221. } else
  1222. val = 0xffff;
  1223. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
  1224. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
  1225. }
  1226. /* Make sure that interrupts are indeed enabled from here on */
  1227. mmiowb();
  1228. }
  1229. static void bnx2x_igu_int_enable(struct bnx2x *bp)
  1230. {
  1231. u32 val;
  1232. int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
  1233. int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
  1234. val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
  1235. if (msix) {
  1236. val &= ~(IGU_PF_CONF_INT_LINE_EN |
  1237. IGU_PF_CONF_SINGLE_ISR_EN);
  1238. val |= (IGU_PF_CONF_FUNC_EN |
  1239. IGU_PF_CONF_MSI_MSIX_EN |
  1240. IGU_PF_CONF_ATTN_BIT_EN);
  1241. } else if (msi) {
  1242. val &= ~IGU_PF_CONF_INT_LINE_EN;
  1243. val |= (IGU_PF_CONF_FUNC_EN |
  1244. IGU_PF_CONF_MSI_MSIX_EN |
  1245. IGU_PF_CONF_ATTN_BIT_EN |
  1246. IGU_PF_CONF_SINGLE_ISR_EN);
  1247. } else {
  1248. val &= ~IGU_PF_CONF_MSI_MSIX_EN;
  1249. val |= (IGU_PF_CONF_FUNC_EN |
  1250. IGU_PF_CONF_INT_LINE_EN |
  1251. IGU_PF_CONF_ATTN_BIT_EN |
  1252. IGU_PF_CONF_SINGLE_ISR_EN);
  1253. }
  1254. DP(NETIF_MSG_INTR, "write 0x%x to IGU mode %s\n",
  1255. val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
  1256. REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
  1257. barrier();
  1258. /* init leading/trailing edge */
  1259. if (IS_MF(bp)) {
  1260. val = (0xee0f | (1 << (BP_VN(bp) + 4)));
  1261. if (bp->port.pmf)
  1262. /* enable nig and gpio3 attention */
  1263. val |= 0x1100;
  1264. } else
  1265. val = 0xffff;
  1266. REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
  1267. REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
  1268. /* Make sure that interrupts are indeed enabled from here on */
  1269. mmiowb();
  1270. }
  1271. void bnx2x_int_enable(struct bnx2x *bp)
  1272. {
  1273. if (bp->common.int_block == INT_BLOCK_HC)
  1274. bnx2x_hc_int_enable(bp);
  1275. else
  1276. bnx2x_igu_int_enable(bp);
  1277. }
  1278. static void bnx2x_hc_int_disable(struct bnx2x *bp)
  1279. {
  1280. int port = BP_PORT(bp);
  1281. u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
  1282. u32 val = REG_RD(bp, addr);
  1283. /*
  1284. * in E1 we must use only PCI configuration space to disable
  1285. * MSI/MSIX capablility
  1286. * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
  1287. */
  1288. if (CHIP_IS_E1(bp)) {
  1289. /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
  1290. * Use mask register to prevent from HC sending interrupts
  1291. * after we exit the function
  1292. */
  1293. REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
  1294. val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1295. HC_CONFIG_0_REG_INT_LINE_EN_0 |
  1296. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1297. } else
  1298. val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1299. HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
  1300. HC_CONFIG_0_REG_INT_LINE_EN_0 |
  1301. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1302. DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
  1303. val, port, addr);
  1304. /* flush all outstanding writes */
  1305. mmiowb();
  1306. REG_WR(bp, addr, val);
  1307. if (REG_RD(bp, addr) != val)
  1308. BNX2X_ERR("BUG! proper val not read from IGU!\n");
  1309. }
  1310. static void bnx2x_igu_int_disable(struct bnx2x *bp)
  1311. {
  1312. u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
  1313. val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
  1314. IGU_PF_CONF_INT_LINE_EN |
  1315. IGU_PF_CONF_ATTN_BIT_EN);
  1316. DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
  1317. /* flush all outstanding writes */
  1318. mmiowb();
  1319. REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
  1320. if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
  1321. BNX2X_ERR("BUG! proper val not read from IGU!\n");
  1322. }
  1323. void bnx2x_int_disable(struct bnx2x *bp)
  1324. {
  1325. if (bp->common.int_block == INT_BLOCK_HC)
  1326. bnx2x_hc_int_disable(bp);
  1327. else
  1328. bnx2x_igu_int_disable(bp);
  1329. }
  1330. void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
  1331. {
  1332. int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
  1333. int i, offset;
  1334. if (disable_hw)
  1335. /* prevent the HW from sending interrupts */
  1336. bnx2x_int_disable(bp);
  1337. /* make sure all ISRs are done */
  1338. if (msix) {
  1339. synchronize_irq(bp->msix_table[0].vector);
  1340. offset = 1;
  1341. #ifdef BCM_CNIC
  1342. offset++;
  1343. #endif
  1344. for_each_eth_queue(bp, i)
  1345. synchronize_irq(bp->msix_table[offset++].vector);
  1346. } else
  1347. synchronize_irq(bp->pdev->irq);
  1348. /* make sure sp_task is not running */
  1349. cancel_delayed_work(&bp->sp_task);
  1350. cancel_delayed_work(&bp->period_task);
  1351. flush_workqueue(bnx2x_wq);
  1352. }
  1353. /* fast path */
  1354. /*
  1355. * General service functions
  1356. */
  1357. /* Return true if succeeded to acquire the lock */
  1358. static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
  1359. {
  1360. u32 lock_status;
  1361. u32 resource_bit = (1 << resource);
  1362. int func = BP_FUNC(bp);
  1363. u32 hw_lock_control_reg;
  1364. DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
  1365. /* Validating that the resource is within range */
  1366. if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
  1367. DP(NETIF_MSG_HW,
  1368. "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
  1369. resource, HW_LOCK_MAX_RESOURCE_VALUE);
  1370. return false;
  1371. }
  1372. if (func <= 5)
  1373. hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
  1374. else
  1375. hw_lock_control_reg =
  1376. (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
  1377. /* Try to acquire the lock */
  1378. REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
  1379. lock_status = REG_RD(bp, hw_lock_control_reg);
  1380. if (lock_status & resource_bit)
  1381. return true;
  1382. DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
  1383. return false;
  1384. }
  1385. /**
  1386. * bnx2x_get_leader_lock_resource - get the recovery leader resource id
  1387. *
  1388. * @bp: driver handle
  1389. *
  1390. * Returns the recovery leader resource id according to the engine this function
  1391. * belongs to. Currently only only 2 engines is supported.
  1392. */
  1393. static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
  1394. {
  1395. if (BP_PATH(bp))
  1396. return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
  1397. else
  1398. return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
  1399. }
  1400. /**
  1401. * bnx2x_trylock_leader_lock- try to aquire a leader lock.
  1402. *
  1403. * @bp: driver handle
  1404. *
  1405. * Tries to aquire a leader lock for cuurent engine.
  1406. */
  1407. static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
  1408. {
  1409. return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
  1410. }
  1411. #ifdef BCM_CNIC
  1412. static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
  1413. #endif
  1414. void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
  1415. {
  1416. struct bnx2x *bp = fp->bp;
  1417. int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
  1418. int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
  1419. enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
  1420. struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
  1421. DP(BNX2X_MSG_SP,
  1422. "fp %d cid %d got ramrod #%d state is %x type is %d\n",
  1423. fp->index, cid, command, bp->state,
  1424. rr_cqe->ramrod_cqe.ramrod_type);
  1425. switch (command) {
  1426. case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
  1427. DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
  1428. drv_cmd = BNX2X_Q_CMD_UPDATE;
  1429. break;
  1430. case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
  1431. DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
  1432. drv_cmd = BNX2X_Q_CMD_SETUP;
  1433. break;
  1434. case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
  1435. DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
  1436. drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
  1437. break;
  1438. case (RAMROD_CMD_ID_ETH_HALT):
  1439. DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
  1440. drv_cmd = BNX2X_Q_CMD_HALT;
  1441. break;
  1442. case (RAMROD_CMD_ID_ETH_TERMINATE):
  1443. DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
  1444. drv_cmd = BNX2X_Q_CMD_TERMINATE;
  1445. break;
  1446. case (RAMROD_CMD_ID_ETH_EMPTY):
  1447. DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
  1448. drv_cmd = BNX2X_Q_CMD_EMPTY;
  1449. break;
  1450. default:
  1451. BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
  1452. command, fp->index);
  1453. return;
  1454. }
  1455. if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
  1456. q_obj->complete_cmd(bp, q_obj, drv_cmd))
  1457. /* q_obj->complete_cmd() failure means that this was
  1458. * an unexpected completion.
  1459. *
  1460. * In this case we don't want to increase the bp->spq_left
  1461. * because apparently we haven't sent this command the first
  1462. * place.
  1463. */
  1464. #ifdef BNX2X_STOP_ON_ERROR
  1465. bnx2x_panic();
  1466. #else
  1467. return;
  1468. #endif
  1469. smp_mb__before_atomic_inc();
  1470. atomic_inc(&bp->cq_spq_left);
  1471. /* push the change in bp->spq_left and towards the memory */
  1472. smp_mb__after_atomic_inc();
  1473. DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
  1474. return;
  1475. }
  1476. void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
  1477. u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
  1478. {
  1479. u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
  1480. bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
  1481. start);
  1482. }
  1483. irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
  1484. {
  1485. struct bnx2x *bp = netdev_priv(dev_instance);
  1486. u16 status = bnx2x_ack_int(bp);
  1487. u16 mask;
  1488. int i;
  1489. u8 cos;
  1490. /* Return here if interrupt is shared and it's not for us */
  1491. if (unlikely(status == 0)) {
  1492. DP(NETIF_MSG_INTR, "not our interrupt!\n");
  1493. return IRQ_NONE;
  1494. }
  1495. DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
  1496. #ifdef BNX2X_STOP_ON_ERROR
  1497. if (unlikely(bp->panic))
  1498. return IRQ_HANDLED;
  1499. #endif
  1500. for_each_eth_queue(bp, i) {
  1501. struct bnx2x_fastpath *fp = &bp->fp[i];
  1502. mask = 0x2 << (fp->index + CNIC_PRESENT);
  1503. if (status & mask) {
  1504. /* Handle Rx or Tx according to SB id */
  1505. prefetch(fp->rx_cons_sb);
  1506. for_each_cos_in_tx_queue(fp, cos)
  1507. prefetch(fp->txdata[cos].tx_cons_sb);
  1508. prefetch(&fp->sb_running_index[SM_RX_ID]);
  1509. napi_schedule(&bnx2x_fp(bp, fp->index, napi));
  1510. status &= ~mask;
  1511. }
  1512. }
  1513. #ifdef BCM_CNIC
  1514. mask = 0x2;
  1515. if (status & (mask | 0x1)) {
  1516. struct cnic_ops *c_ops = NULL;
  1517. if (likely(bp->state == BNX2X_STATE_OPEN)) {
  1518. rcu_read_lock();
  1519. c_ops = rcu_dereference(bp->cnic_ops);
  1520. if (c_ops)
  1521. c_ops->cnic_handler(bp->cnic_data, NULL);
  1522. rcu_read_unlock();
  1523. }
  1524. status &= ~mask;
  1525. }
  1526. #endif
  1527. if (unlikely(status & 0x1)) {
  1528. queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
  1529. status &= ~0x1;
  1530. if (!status)
  1531. return IRQ_HANDLED;
  1532. }
  1533. if (unlikely(status))
  1534. DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
  1535. status);
  1536. return IRQ_HANDLED;
  1537. }
  1538. /* Link */
  1539. /*
  1540. * General service functions
  1541. */
  1542. int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
  1543. {
  1544. u32 lock_status;
  1545. u32 resource_bit = (1 << resource);
  1546. int func = BP_FUNC(bp);
  1547. u32 hw_lock_control_reg;
  1548. int cnt;
  1549. /* Validating that the resource is within range */
  1550. if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
  1551. DP(NETIF_MSG_HW,
  1552. "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
  1553. resource, HW_LOCK_MAX_RESOURCE_VALUE);
  1554. return -EINVAL;
  1555. }
  1556. if (func <= 5) {
  1557. hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
  1558. } else {
  1559. hw_lock_control_reg =
  1560. (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
  1561. }
  1562. /* Validating that the resource is not already taken */
  1563. lock_status = REG_RD(bp, hw_lock_control_reg);
  1564. if (lock_status & resource_bit) {
  1565. DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
  1566. lock_status, resource_bit);
  1567. return -EEXIST;
  1568. }
  1569. /* Try for 5 second every 5ms */
  1570. for (cnt = 0; cnt < 1000; cnt++) {
  1571. /* Try to acquire the lock */
  1572. REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
  1573. lock_status = REG_RD(bp, hw_lock_control_reg);
  1574. if (lock_status & resource_bit)
  1575. return 0;
  1576. msleep(5);
  1577. }
  1578. DP(NETIF_MSG_HW, "Timeout\n");
  1579. return -EAGAIN;
  1580. }
  1581. int bnx2x_release_leader_lock(struct bnx2x *bp)
  1582. {
  1583. return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
  1584. }
  1585. int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
  1586. {
  1587. u32 lock_status;
  1588. u32 resource_bit = (1 << resource);
  1589. int func = BP_FUNC(bp);
  1590. u32 hw_lock_control_reg;
  1591. DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
  1592. /* Validating that the resource is within range */
  1593. if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
  1594. DP(NETIF_MSG_HW,
  1595. "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
  1596. resource, HW_LOCK_MAX_RESOURCE_VALUE);
  1597. return -EINVAL;
  1598. }
  1599. if (func <= 5) {
  1600. hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
  1601. } else {
  1602. hw_lock_control_reg =
  1603. (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
  1604. }
  1605. /* Validating that the resource is currently taken */
  1606. lock_status = REG_RD(bp, hw_lock_control_reg);
  1607. if (!(lock_status & resource_bit)) {
  1608. DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
  1609. lock_status, resource_bit);
  1610. return -EFAULT;
  1611. }
  1612. REG_WR(bp, hw_lock_control_reg, resource_bit);
  1613. return 0;
  1614. }
  1615. int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
  1616. {
  1617. /* The GPIO should be swapped if swap register is set and active */
  1618. int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
  1619. REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
  1620. int gpio_shift = gpio_num +
  1621. (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
  1622. u32 gpio_mask = (1 << gpio_shift);
  1623. u32 gpio_reg;
  1624. int value;
  1625. if (gpio_num > MISC_REGISTERS_GPIO_3) {
  1626. BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
  1627. return -EINVAL;
  1628. }
  1629. /* read GPIO value */
  1630. gpio_reg = REG_RD(bp, MISC_REG_GPIO);
  1631. /* get the requested pin value */
  1632. if ((gpio_reg & gpio_mask) == gpio_mask)
  1633. value = 1;
  1634. else
  1635. value = 0;
  1636. DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
  1637. return value;
  1638. }
  1639. int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
  1640. {
  1641. /* The GPIO should be swapped if swap register is set and active */
  1642. int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
  1643. REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
  1644. int gpio_shift = gpio_num +
  1645. (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
  1646. u32 gpio_mask = (1 << gpio_shift);
  1647. u32 gpio_reg;
  1648. if (gpio_num > MISC_REGISTERS_GPIO_3) {
  1649. BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
  1650. return -EINVAL;
  1651. }
  1652. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1653. /* read GPIO and mask except the float bits */
  1654. gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
  1655. switch (mode) {
  1656. case MISC_REGISTERS_GPIO_OUTPUT_LOW:
  1657. DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
  1658. gpio_num, gpio_shift);
  1659. /* clear FLOAT and set CLR */
  1660. gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
  1661. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
  1662. break;
  1663. case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
  1664. DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
  1665. gpio_num, gpio_shift);
  1666. /* clear FLOAT and set SET */
  1667. gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
  1668. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
  1669. break;
  1670. case MISC_REGISTERS_GPIO_INPUT_HI_Z:
  1671. DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
  1672. gpio_num, gpio_shift);
  1673. /* set FLOAT */
  1674. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
  1675. break;
  1676. default:
  1677. break;
  1678. }
  1679. REG_WR(bp, MISC_REG_GPIO, gpio_reg);
  1680. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1681. return 0;
  1682. }
  1683. int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
  1684. {
  1685. u32 gpio_reg = 0;
  1686. int rc = 0;
  1687. /* Any port swapping should be handled by caller. */
  1688. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1689. /* read GPIO and mask except the float bits */
  1690. gpio_reg = REG_RD(bp, MISC_REG_GPIO);
  1691. gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
  1692. gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
  1693. gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
  1694. switch (mode) {
  1695. case MISC_REGISTERS_GPIO_OUTPUT_LOW:
  1696. DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
  1697. /* set CLR */
  1698. gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
  1699. break;
  1700. case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
  1701. DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
  1702. /* set SET */
  1703. gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
  1704. break;
  1705. case MISC_REGISTERS_GPIO_INPUT_HI_Z:
  1706. DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
  1707. /* set FLOAT */
  1708. gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
  1709. break;
  1710. default:
  1711. BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
  1712. rc = -EINVAL;
  1713. break;
  1714. }
  1715. if (rc == 0)
  1716. REG_WR(bp, MISC_REG_GPIO, gpio_reg);
  1717. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1718. return rc;
  1719. }
  1720. int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
  1721. {
  1722. /* The GPIO should be swapped if swap register is set and active */
  1723. int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
  1724. REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
  1725. int gpio_shift = gpio_num +
  1726. (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
  1727. u32 gpio_mask = (1 << gpio_shift);
  1728. u32 gpio_reg;
  1729. if (gpio_num > MISC_REGISTERS_GPIO_3) {
  1730. BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
  1731. return -EINVAL;
  1732. }
  1733. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1734. /* read GPIO int */
  1735. gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
  1736. switch (mode) {
  1737. case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
  1738. DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
  1739. "output low\n", gpio_num, gpio_shift);
  1740. /* clear SET and set CLR */
  1741. gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
  1742. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
  1743. break;
  1744. case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
  1745. DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
  1746. "output high\n", gpio_num, gpio_shift);
  1747. /* clear CLR and set SET */
  1748. gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
  1749. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
  1750. break;
  1751. default:
  1752. break;
  1753. }
  1754. REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
  1755. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1756. return 0;
  1757. }
  1758. static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
  1759. {
  1760. u32 spio_mask = (1 << spio_num);
  1761. u32 spio_reg;
  1762. if ((spio_num < MISC_REGISTERS_SPIO_4) ||
  1763. (spio_num > MISC_REGISTERS_SPIO_7)) {
  1764. BNX2X_ERR("Invalid SPIO %d\n", spio_num);
  1765. return -EINVAL;
  1766. }
  1767. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
  1768. /* read SPIO and mask except the float bits */
  1769. spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
  1770. switch (mode) {
  1771. case MISC_REGISTERS_SPIO_OUTPUT_LOW:
  1772. DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
  1773. /* clear FLOAT and set CLR */
  1774. spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
  1775. spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
  1776. break;
  1777. case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
  1778. DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
  1779. /* clear FLOAT and set SET */
  1780. spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
  1781. spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
  1782. break;
  1783. case MISC_REGISTERS_SPIO_INPUT_HI_Z:
  1784. DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
  1785. /* set FLOAT */
  1786. spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
  1787. break;
  1788. default:
  1789. break;
  1790. }
  1791. REG_WR(bp, MISC_REG_SPIO, spio_reg);
  1792. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
  1793. return 0;
  1794. }
  1795. void bnx2x_calc_fc_adv(struct bnx2x *bp)
  1796. {
  1797. u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
  1798. switch (bp->link_vars.ieee_fc &
  1799. MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
  1800. case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
  1801. bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
  1802. ADVERTISED_Pause);
  1803. break;
  1804. case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
  1805. bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
  1806. ADVERTISED_Pause);
  1807. break;
  1808. case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
  1809. bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
  1810. break;
  1811. default:
  1812. bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
  1813. ADVERTISED_Pause);
  1814. break;
  1815. }
  1816. }
  1817. u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
  1818. {
  1819. if (!BP_NOMCP(bp)) {
  1820. u8 rc;
  1821. int cfx_idx = bnx2x_get_link_cfg_idx(bp);
  1822. u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
  1823. /*
  1824. * Initialize link parameters structure variables
  1825. * It is recommended to turn off RX FC for jumbo frames
  1826. * for better performance
  1827. */
  1828. if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
  1829. bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
  1830. else
  1831. bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
  1832. bnx2x_acquire_phy_lock(bp);
  1833. if (load_mode == LOAD_DIAG) {
  1834. struct link_params *lp = &bp->link_params;
  1835. lp->loopback_mode = LOOPBACK_XGXS;
  1836. /* do PHY loopback at 10G speed, if possible */
  1837. if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
  1838. if (lp->speed_cap_mask[cfx_idx] &
  1839. PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
  1840. lp->req_line_speed[cfx_idx] =
  1841. SPEED_10000;
  1842. else
  1843. lp->req_line_speed[cfx_idx] =
  1844. SPEED_1000;
  1845. }
  1846. }
  1847. rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
  1848. bnx2x_release_phy_lock(bp);
  1849. bnx2x_calc_fc_adv(bp);
  1850. if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
  1851. bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
  1852. bnx2x_link_report(bp);
  1853. } else
  1854. queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
  1855. bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
  1856. return rc;
  1857. }
  1858. BNX2X_ERR("Bootcode is missing - can not initialize link\n");
  1859. return -EINVAL;
  1860. }
  1861. void bnx2x_link_set(struct bnx2x *bp)
  1862. {
  1863. if (!BP_NOMCP(bp)) {
  1864. bnx2x_acquire_phy_lock(bp);
  1865. bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
  1866. bnx2x_phy_init(&bp->link_params, &bp->link_vars);
  1867. bnx2x_release_phy_lock(bp);
  1868. bnx2x_calc_fc_adv(bp);
  1869. } else
  1870. BNX2X_ERR("Bootcode is missing - can not set link\n");
  1871. }
  1872. static void bnx2x__link_reset(struct bnx2x *bp)
  1873. {
  1874. if (!BP_NOMCP(bp)) {
  1875. bnx2x_acquire_phy_lock(bp);
  1876. bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
  1877. bnx2x_release_phy_lock(bp);
  1878. } else
  1879. BNX2X_ERR("Bootcode is missing - can not reset link\n");
  1880. }
  1881. u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
  1882. {
  1883. u8 rc = 0;
  1884. if (!BP_NOMCP(bp)) {
  1885. bnx2x_acquire_phy_lock(bp);
  1886. rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
  1887. is_serdes);
  1888. bnx2x_release_phy_lock(bp);
  1889. } else
  1890. BNX2X_ERR("Bootcode is missing - can not test link\n");
  1891. return rc;
  1892. }
  1893. static void bnx2x_init_port_minmax(struct bnx2x *bp)
  1894. {
  1895. u32 r_param = bp->link_vars.line_speed / 8;
  1896. u32 fair_periodic_timeout_usec;
  1897. u32 t_fair;
  1898. memset(&(bp->cmng.rs_vars), 0,
  1899. sizeof(struct rate_shaping_vars_per_port));
  1900. memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
  1901. /* 100 usec in SDM ticks = 25 since each tick is 4 usec */
  1902. bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
  1903. /* this is the threshold below which no timer arming will occur
  1904. 1.25 coefficient is for the threshold to be a little bigger
  1905. than the real time, to compensate for timer in-accuracy */
  1906. bp->cmng.rs_vars.rs_threshold =
  1907. (RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
  1908. /* resolution of fairness timer */
  1909. fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
  1910. /* for 10G it is 1000usec. for 1G it is 10000usec. */
  1911. t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
  1912. /* this is the threshold below which we won't arm the timer anymore */
  1913. bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
  1914. /* we multiply by 1e3/8 to get bytes/msec.
  1915. We don't want the credits to pass a credit
  1916. of the t_fair*FAIR_MEM (algorithm resolution) */
  1917. bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
  1918. /* since each tick is 4 usec */
  1919. bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
  1920. }
  1921. /* Calculates the sum of vn_min_rates.
  1922. It's needed for further normalizing of the min_rates.
  1923. Returns:
  1924. sum of vn_min_rates.
  1925. or
  1926. 0 - if all the min_rates are 0.
  1927. In the later case fainess algorithm should be deactivated.
  1928. If not all min_rates are zero then those that are zeroes will be set to 1.
  1929. */
  1930. static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
  1931. {
  1932. int all_zero = 1;
  1933. int vn;
  1934. bp->vn_weight_sum = 0;
  1935. for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
  1936. u32 vn_cfg = bp->mf_config[vn];
  1937. u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
  1938. FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
  1939. /* Skip hidden vns */
  1940. if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
  1941. continue;
  1942. /* If min rate is zero - set it to 1 */
  1943. if (!vn_min_rate)
  1944. vn_min_rate = DEF_MIN_RATE;
  1945. else
  1946. all_zero = 0;
  1947. bp->vn_weight_sum += vn_min_rate;
  1948. }
  1949. /* if ETS or all min rates are zeros - disable fairness */
  1950. if (BNX2X_IS_ETS_ENABLED(bp)) {
  1951. bp->cmng.flags.cmng_enables &=
  1952. ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
  1953. DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
  1954. } else if (all_zero) {
  1955. bp->cmng.flags.cmng_enables &=
  1956. ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
  1957. DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
  1958. " fairness will be disabled\n");
  1959. } else
  1960. bp->cmng.flags.cmng_enables |=
  1961. CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
  1962. }
  1963. static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
  1964. {
  1965. struct rate_shaping_vars_per_vn m_rs_vn;
  1966. struct fairness_vars_per_vn m_fair_vn;
  1967. u32 vn_cfg = bp->mf_config[vn];
  1968. int func = func_by_vn(bp, vn);
  1969. u16 vn_min_rate, vn_max_rate;
  1970. int i;
  1971. /* If function is hidden - set min and max to zeroes */
  1972. if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
  1973. vn_min_rate = 0;
  1974. vn_max_rate = 0;
  1975. } else {
  1976. u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
  1977. vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
  1978. FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
  1979. /* If fairness is enabled (not all min rates are zeroes) and
  1980. if current min rate is zero - set it to 1.
  1981. This is a requirement of the algorithm. */
  1982. if (bp->vn_weight_sum && (vn_min_rate == 0))
  1983. vn_min_rate = DEF_MIN_RATE;
  1984. if (IS_MF_SI(bp))
  1985. /* maxCfg in percents of linkspeed */
  1986. vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
  1987. else
  1988. /* maxCfg is absolute in 100Mb units */
  1989. vn_max_rate = maxCfg * 100;
  1990. }
  1991. DP(NETIF_MSG_IFUP,
  1992. "func %d: vn_min_rate %d vn_max_rate %d vn_weight_sum %d\n",
  1993. func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
  1994. memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
  1995. memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
  1996. /* global vn counter - maximal Mbps for this vn */
  1997. m_rs_vn.vn_counter.rate = vn_max_rate;
  1998. /* quota - number of bytes transmitted in this period */
  1999. m_rs_vn.vn_counter.quota =
  2000. (vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
  2001. if (bp->vn_weight_sum) {
  2002. /* credit for each period of the fairness algorithm:
  2003. number of bytes in T_FAIR (the vn share the port rate).
  2004. vn_weight_sum should not be larger than 10000, thus
  2005. T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
  2006. than zero */
  2007. m_fair_vn.vn_credit_delta =
  2008. max_t(u32, (vn_min_rate * (T_FAIR_COEF /
  2009. (8 * bp->vn_weight_sum))),
  2010. (bp->cmng.fair_vars.fair_threshold +
  2011. MIN_ABOVE_THRESH));
  2012. DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
  2013. m_fair_vn.vn_credit_delta);
  2014. }
  2015. /* Store it to internal memory */
  2016. for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
  2017. REG_WR(bp, BAR_XSTRORM_INTMEM +
  2018. XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
  2019. ((u32 *)(&m_rs_vn))[i]);
  2020. for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
  2021. REG_WR(bp, BAR_XSTRORM_INTMEM +
  2022. XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
  2023. ((u32 *)(&m_fair_vn))[i]);
  2024. }
  2025. static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
  2026. {
  2027. if (CHIP_REV_IS_SLOW(bp))
  2028. return CMNG_FNS_NONE;
  2029. if (IS_MF(bp))
  2030. return CMNG_FNS_MINMAX;
  2031. return CMNG_FNS_NONE;
  2032. }
  2033. void bnx2x_read_mf_cfg(struct bnx2x *bp)
  2034. {
  2035. int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
  2036. if (BP_NOMCP(bp))
  2037. return; /* what should be the default bvalue in this case */
  2038. /* For 2 port configuration the absolute function number formula
  2039. * is:
  2040. * abs_func = 2 * vn + BP_PORT + BP_PATH
  2041. *
  2042. * and there are 4 functions per port
  2043. *
  2044. * For 4 port configuration it is
  2045. * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
  2046. *
  2047. * and there are 2 functions per port
  2048. */
  2049. for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
  2050. int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
  2051. if (func >= E1H_FUNC_MAX)
  2052. break;
  2053. bp->mf_config[vn] =
  2054. MF_CFG_RD(bp, func_mf_config[func].config);
  2055. }
  2056. }
  2057. static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
  2058. {
  2059. if (cmng_type == CMNG_FNS_MINMAX) {
  2060. int vn;
  2061. /* clear cmng_enables */
  2062. bp->cmng.flags.cmng_enables = 0;
  2063. /* read mf conf from shmem */
  2064. if (read_cfg)
  2065. bnx2x_read_mf_cfg(bp);
  2066. /* Init rate shaping and fairness contexts */
  2067. bnx2x_init_port_minmax(bp);
  2068. /* vn_weight_sum and enable fairness if not 0 */
  2069. bnx2x_calc_vn_weight_sum(bp);
  2070. /* calculate and set min-max rate for each vn */
  2071. if (bp->port.pmf)
  2072. for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
  2073. bnx2x_init_vn_minmax(bp, vn);
  2074. /* always enable rate shaping and fairness */
  2075. bp->cmng.flags.cmng_enables |=
  2076. CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
  2077. if (!bp->vn_weight_sum)
  2078. DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
  2079. " fairness will be disabled\n");
  2080. return;
  2081. }
  2082. /* rate shaping and fairness are disabled */
  2083. DP(NETIF_MSG_IFUP,
  2084. "rate shaping and fairness are disabled\n");
  2085. }
  2086. /* This function is called upon link interrupt */
  2087. static void bnx2x_link_attn(struct bnx2x *bp)
  2088. {
  2089. /* Make sure that we are synced with the current statistics */
  2090. bnx2x_stats_handle(bp, STATS_EVENT_STOP);
  2091. bnx2x_link_update(&bp->link_params, &bp->link_vars);
  2092. if (bp->link_vars.link_up) {
  2093. /* dropless flow control */
  2094. if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
  2095. int port = BP_PORT(bp);
  2096. u32 pause_enabled = 0;
  2097. if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
  2098. pause_enabled = 1;
  2099. REG_WR(bp, BAR_USTRORM_INTMEM +
  2100. USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
  2101. pause_enabled);
  2102. }
  2103. if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
  2104. struct host_port_stats *pstats;
  2105. pstats = bnx2x_sp(bp, port_stats);
  2106. /* reset old mac stats */
  2107. memset(&(pstats->mac_stx[0]), 0,
  2108. sizeof(struct mac_stx));
  2109. }
  2110. if (bp->state == BNX2X_STATE_OPEN)
  2111. bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
  2112. }
  2113. if (bp->link_vars.link_up && bp->link_vars.line_speed) {
  2114. int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
  2115. if (cmng_fns != CMNG_FNS_NONE) {
  2116. bnx2x_cmng_fns_init(bp, false, cmng_fns);
  2117. storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
  2118. } else
  2119. /* rate shaping and fairness are disabled */
  2120. DP(NETIF_MSG_IFUP,
  2121. "single function mode without fairness\n");
  2122. }
  2123. __bnx2x_link_report(bp);
  2124. if (IS_MF(bp))
  2125. bnx2x_link_sync_notify(bp);
  2126. }
  2127. void bnx2x__link_status_update(struct bnx2x *bp)
  2128. {
  2129. if (bp->state != BNX2X_STATE_OPEN)
  2130. return;
  2131. /* read updated dcb configuration */
  2132. bnx2x_dcbx_pmf_update(bp);
  2133. bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
  2134. if (bp->link_vars.link_up)
  2135. bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
  2136. else
  2137. bnx2x_stats_handle(bp, STATS_EVENT_STOP);
  2138. /* indicate link status */
  2139. bnx2x_link_report(bp);
  2140. }
  2141. static void bnx2x_pmf_update(struct bnx2x *bp)
  2142. {
  2143. int port = BP_PORT(bp);
  2144. u32 val;
  2145. bp->port.pmf = 1;
  2146. DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
  2147. /*
  2148. * We need the mb() to ensure the ordering between the writing to
  2149. * bp->port.pmf here and reading it from the bnx2x_periodic_task().
  2150. */
  2151. smp_mb();
  2152. /* queue a periodic task */
  2153. queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
  2154. bnx2x_dcbx_pmf_update(bp);
  2155. /* enable nig attention */
  2156. val = (0xff0f | (1 << (BP_VN(bp) + 4)));
  2157. if (bp->common.int_block == INT_BLOCK_HC) {
  2158. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
  2159. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
  2160. } else if (!CHIP_IS_E1x(bp)) {
  2161. REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
  2162. REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
  2163. }
  2164. bnx2x_stats_handle(bp, STATS_EVENT_PMF);
  2165. }
  2166. /* end of Link */
  2167. /* slow path */
  2168. /*
  2169. * General service functions
  2170. */
  2171. /* send the MCP a request, block until there is a reply */
  2172. u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
  2173. {
  2174. int mb_idx = BP_FW_MB_IDX(bp);
  2175. u32 seq;
  2176. u32 rc = 0;
  2177. u32 cnt = 1;
  2178. u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
  2179. mutex_lock(&bp->fw_mb_mutex);
  2180. seq = ++bp->fw_seq;
  2181. SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
  2182. SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
  2183. DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
  2184. (command | seq), param);
  2185. do {
  2186. /* let the FW do it's magic ... */
  2187. msleep(delay);
  2188. rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
  2189. /* Give the FW up to 5 second (500*10ms) */
  2190. } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
  2191. DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
  2192. cnt*delay, rc, seq);
  2193. /* is this a reply to our command? */
  2194. if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
  2195. rc &= FW_MSG_CODE_MASK;
  2196. else {
  2197. /* FW BUG! */
  2198. BNX2X_ERR("FW failed to respond!\n");
  2199. bnx2x_fw_dump(bp);
  2200. rc = 0;
  2201. }
  2202. mutex_unlock(&bp->fw_mb_mutex);
  2203. return rc;
  2204. }
  2205. void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
  2206. {
  2207. if (CHIP_IS_E1x(bp)) {
  2208. struct tstorm_eth_function_common_config tcfg = {0};
  2209. storm_memset_func_cfg(bp, &tcfg, p->func_id);
  2210. }
  2211. /* Enable the function in the FW */
  2212. storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
  2213. storm_memset_func_en(bp, p->func_id, 1);
  2214. /* spq */
  2215. if (p->func_flgs & FUNC_FLG_SPQ) {
  2216. storm_memset_spq_addr(bp, p->spq_map, p->func_id);
  2217. REG_WR(bp, XSEM_REG_FAST_MEMORY +
  2218. XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
  2219. }
  2220. }
  2221. /**
  2222. * bnx2x_get_tx_only_flags - Return common flags
  2223. *
  2224. * @bp device handle
  2225. * @fp queue handle
  2226. * @zero_stats TRUE if statistics zeroing is needed
  2227. *
  2228. * Return the flags that are common for the Tx-only and not normal connections.
  2229. */
  2230. static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
  2231. struct bnx2x_fastpath *fp,
  2232. bool zero_stats)
  2233. {
  2234. unsigned long flags = 0;
  2235. /* PF driver will always initialize the Queue to an ACTIVE state */
  2236. __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
  2237. /* tx only connections collect statistics (on the same index as the
  2238. * parent connection). The statistics are zeroed when the parent
  2239. * connection is initialized.
  2240. */
  2241. __set_bit(BNX2X_Q_FLG_STATS, &flags);
  2242. if (zero_stats)
  2243. __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
  2244. return flags;
  2245. }
  2246. static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
  2247. struct bnx2x_fastpath *fp,
  2248. bool leading)
  2249. {
  2250. unsigned long flags = 0;
  2251. /* calculate other queue flags */
  2252. if (IS_MF_SD(bp))
  2253. __set_bit(BNX2X_Q_FLG_OV, &flags);
  2254. if (IS_FCOE_FP(fp))
  2255. __set_bit(BNX2X_Q_FLG_FCOE, &flags);
  2256. if (!fp->disable_tpa) {
  2257. __set_bit(BNX2X_Q_FLG_TPA, &flags);
  2258. __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
  2259. if (fp->mode == TPA_MODE_GRO)
  2260. __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
  2261. }
  2262. if (leading) {
  2263. __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
  2264. __set_bit(BNX2X_Q_FLG_MCAST, &flags);
  2265. }
  2266. /* Always set HW VLAN stripping */
  2267. __set_bit(BNX2X_Q_FLG_VLAN, &flags);
  2268. return flags | bnx2x_get_common_flags(bp, fp, true);
  2269. }
  2270. static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
  2271. struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
  2272. u8 cos)
  2273. {
  2274. gen_init->stat_id = bnx2x_stats_id(fp);
  2275. gen_init->spcl_id = fp->cl_id;
  2276. /* Always use mini-jumbo MTU for FCoE L2 ring */
  2277. if (IS_FCOE_FP(fp))
  2278. gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
  2279. else
  2280. gen_init->mtu = bp->dev->mtu;
  2281. gen_init->cos = cos;
  2282. }
  2283. static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
  2284. struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
  2285. struct bnx2x_rxq_setup_params *rxq_init)
  2286. {
  2287. u8 max_sge = 0;
  2288. u16 sge_sz = 0;
  2289. u16 tpa_agg_size = 0;
  2290. if (!fp->disable_tpa) {
  2291. pause->sge_th_lo = SGE_TH_LO(bp);
  2292. pause->sge_th_hi = SGE_TH_HI(bp);
  2293. /* validate SGE ring has enough to cross high threshold */
  2294. WARN_ON(bp->dropless_fc &&
  2295. pause->sge_th_hi + FW_PREFETCH_CNT >
  2296. MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
  2297. tpa_agg_size = min_t(u32,
  2298. (min_t(u32, 8, MAX_SKB_FRAGS) *
  2299. SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
  2300. max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
  2301. SGE_PAGE_SHIFT;
  2302. max_sge = ((max_sge + PAGES_PER_SGE - 1) &
  2303. (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
  2304. sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
  2305. 0xffff);
  2306. }
  2307. /* pause - not for e1 */
  2308. if (!CHIP_IS_E1(bp)) {
  2309. pause->bd_th_lo = BD_TH_LO(bp);
  2310. pause->bd_th_hi = BD_TH_HI(bp);
  2311. pause->rcq_th_lo = RCQ_TH_LO(bp);
  2312. pause->rcq_th_hi = RCQ_TH_HI(bp);
  2313. /*
  2314. * validate that rings have enough entries to cross
  2315. * high thresholds
  2316. */
  2317. WARN_ON(bp->dropless_fc &&
  2318. pause->bd_th_hi + FW_PREFETCH_CNT >
  2319. bp->rx_ring_size);
  2320. WARN_ON(bp->dropless_fc &&
  2321. pause->rcq_th_hi + FW_PREFETCH_CNT >
  2322. NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
  2323. pause->pri_map = 1;
  2324. }
  2325. /* rxq setup */
  2326. rxq_init->dscr_map = fp->rx_desc_mapping;
  2327. rxq_init->sge_map = fp->rx_sge_mapping;
  2328. rxq_init->rcq_map = fp->rx_comp_mapping;
  2329. rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
  2330. /* This should be a maximum number of data bytes that may be
  2331. * placed on the BD (not including paddings).
  2332. */
  2333. rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
  2334. BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
  2335. rxq_init->cl_qzone_id = fp->cl_qzone_id;
  2336. rxq_init->tpa_agg_sz = tpa_agg_size;
  2337. rxq_init->sge_buf_sz = sge_sz;
  2338. rxq_init->max_sges_pkt = max_sge;
  2339. rxq_init->rss_engine_id = BP_FUNC(bp);
  2340. rxq_init->mcast_engine_id = BP_FUNC(bp);
  2341. /* Maximum number or simultaneous TPA aggregation for this Queue.
  2342. *
  2343. * For PF Clients it should be the maximum avaliable number.
  2344. * VF driver(s) may want to define it to a smaller value.
  2345. */
  2346. rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
  2347. rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
  2348. rxq_init->fw_sb_id = fp->fw_sb_id;
  2349. if (IS_FCOE_FP(fp))
  2350. rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
  2351. else
  2352. rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
  2353. }
  2354. static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
  2355. struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
  2356. u8 cos)
  2357. {
  2358. txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
  2359. txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
  2360. txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
  2361. txq_init->fw_sb_id = fp->fw_sb_id;
  2362. /*
  2363. * set the tss leading client id for TX classfication ==
  2364. * leading RSS client id
  2365. */
  2366. txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
  2367. if (IS_FCOE_FP(fp)) {
  2368. txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
  2369. txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
  2370. }
  2371. }
  2372. static void bnx2x_pf_init(struct bnx2x *bp)
  2373. {
  2374. struct bnx2x_func_init_params func_init = {0};
  2375. struct event_ring_data eq_data = { {0} };
  2376. u16 flags;
  2377. if (!CHIP_IS_E1x(bp)) {
  2378. /* reset IGU PF statistics: MSIX + ATTN */
  2379. /* PF */
  2380. REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
  2381. BNX2X_IGU_STAS_MSG_VF_CNT*4 +
  2382. (CHIP_MODE_IS_4_PORT(bp) ?
  2383. BP_FUNC(bp) : BP_VN(bp))*4, 0);
  2384. /* ATTN */
  2385. REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
  2386. BNX2X_IGU_STAS_MSG_VF_CNT*4 +
  2387. BNX2X_IGU_STAS_MSG_PF_CNT*4 +
  2388. (CHIP_MODE_IS_4_PORT(bp) ?
  2389. BP_FUNC(bp) : BP_VN(bp))*4, 0);
  2390. }
  2391. /* function setup flags */
  2392. flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
  2393. /* This flag is relevant for E1x only.
  2394. * E2 doesn't have a TPA configuration in a function level.
  2395. */
  2396. flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
  2397. func_init.func_flgs = flags;
  2398. func_init.pf_id = BP_FUNC(bp);
  2399. func_init.func_id = BP_FUNC(bp);
  2400. func_init.spq_map = bp->spq_mapping;
  2401. func_init.spq_prod = bp->spq_prod_idx;
  2402. bnx2x_func_init(bp, &func_init);
  2403. memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
  2404. /*
  2405. * Congestion management values depend on the link rate
  2406. * There is no active link so initial link rate is set to 10 Gbps.
  2407. * When the link comes up The congestion management values are
  2408. * re-calculated according to the actual link rate.
  2409. */
  2410. bp->link_vars.line_speed = SPEED_10000;
  2411. bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
  2412. /* Only the PMF sets the HW */
  2413. if (bp->port.pmf)
  2414. storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
  2415. /* init Event Queue */
  2416. eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
  2417. eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
  2418. eq_data.producer = bp->eq_prod;
  2419. eq_data.index_id = HC_SP_INDEX_EQ_CONS;
  2420. eq_data.sb_id = DEF_SB_ID;
  2421. storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
  2422. }
  2423. static void bnx2x_e1h_disable(struct bnx2x *bp)
  2424. {
  2425. int port = BP_PORT(bp);
  2426. bnx2x_tx_disable(bp);
  2427. REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
  2428. }
  2429. static void bnx2x_e1h_enable(struct bnx2x *bp)
  2430. {
  2431. int port = BP_PORT(bp);
  2432. REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
  2433. /* Tx queue should be only reenabled */
  2434. netif_tx_wake_all_queues(bp->dev);
  2435. /*
  2436. * Should not call netif_carrier_on since it will be called if the link
  2437. * is up when checking for link state
  2438. */
  2439. }
  2440. #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
  2441. static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
  2442. {
  2443. struct eth_stats_info *ether_stat =
  2444. &bp->slowpath->drv_info_to_mcp.ether_stat;
  2445. /* leave last char as NULL */
  2446. memcpy(ether_stat->version, DRV_MODULE_VERSION,
  2447. ETH_STAT_INFO_VERSION_LEN - 1);
  2448. bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
  2449. DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
  2450. ether_stat->mac_local);
  2451. ether_stat->mtu_size = bp->dev->mtu;
  2452. if (bp->dev->features & NETIF_F_RXCSUM)
  2453. ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
  2454. if (bp->dev->features & NETIF_F_TSO)
  2455. ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
  2456. ether_stat->feature_flags |= bp->common.boot_mode;
  2457. ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
  2458. ether_stat->txq_size = bp->tx_ring_size;
  2459. ether_stat->rxq_size = bp->rx_ring_size;
  2460. }
  2461. static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
  2462. {
  2463. #ifdef BCM_CNIC
  2464. struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
  2465. struct fcoe_stats_info *fcoe_stat =
  2466. &bp->slowpath->drv_info_to_mcp.fcoe_stat;
  2467. memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
  2468. fcoe_stat->qos_priority =
  2469. app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
  2470. /* insert FCoE stats from ramrod response */
  2471. if (!NO_FCOE(bp)) {
  2472. struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
  2473. &bp->fw_stats_data->queue_stats[FCOE_IDX].
  2474. tstorm_queue_statistics;
  2475. struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
  2476. &bp->fw_stats_data->queue_stats[FCOE_IDX].
  2477. xstorm_queue_statistics;
  2478. struct fcoe_statistics_params *fw_fcoe_stat =
  2479. &bp->fw_stats_data->fcoe;
  2480. ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
  2481. fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
  2482. ADD_64(fcoe_stat->rx_bytes_hi,
  2483. fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
  2484. fcoe_stat->rx_bytes_lo,
  2485. fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
  2486. ADD_64(fcoe_stat->rx_bytes_hi,
  2487. fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
  2488. fcoe_stat->rx_bytes_lo,
  2489. fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
  2490. ADD_64(fcoe_stat->rx_bytes_hi,
  2491. fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
  2492. fcoe_stat->rx_bytes_lo,
  2493. fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
  2494. ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
  2495. fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
  2496. ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
  2497. fcoe_q_tstorm_stats->rcv_ucast_pkts);
  2498. ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
  2499. fcoe_q_tstorm_stats->rcv_bcast_pkts);
  2500. ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
  2501. fcoe_q_tstorm_stats->rcv_mcast_pkts);
  2502. ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
  2503. fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
  2504. ADD_64(fcoe_stat->tx_bytes_hi,
  2505. fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
  2506. fcoe_stat->tx_bytes_lo,
  2507. fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
  2508. ADD_64(fcoe_stat->tx_bytes_hi,
  2509. fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
  2510. fcoe_stat->tx_bytes_lo,
  2511. fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
  2512. ADD_64(fcoe_stat->tx_bytes_hi,
  2513. fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
  2514. fcoe_stat->tx_bytes_lo,
  2515. fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
  2516. ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
  2517. fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
  2518. ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
  2519. fcoe_q_xstorm_stats->ucast_pkts_sent);
  2520. ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
  2521. fcoe_q_xstorm_stats->bcast_pkts_sent);
  2522. ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
  2523. fcoe_q_xstorm_stats->mcast_pkts_sent);
  2524. }
  2525. /* ask L5 driver to add data to the struct */
  2526. bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
  2527. #endif
  2528. }
  2529. static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
  2530. {
  2531. #ifdef BCM_CNIC
  2532. struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
  2533. struct iscsi_stats_info *iscsi_stat =
  2534. &bp->slowpath->drv_info_to_mcp.iscsi_stat;
  2535. memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
  2536. iscsi_stat->qos_priority =
  2537. app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
  2538. /* ask L5 driver to add data to the struct */
  2539. bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
  2540. #endif
  2541. }
  2542. /* called due to MCP event (on pmf):
  2543. * reread new bandwidth configuration
  2544. * configure FW
  2545. * notify others function about the change
  2546. */
  2547. static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
  2548. {
  2549. if (bp->link_vars.link_up) {
  2550. bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
  2551. bnx2x_link_sync_notify(bp);
  2552. }
  2553. storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
  2554. }
  2555. static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
  2556. {
  2557. bnx2x_config_mf_bw(bp);
  2558. bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
  2559. }
  2560. static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
  2561. {
  2562. enum drv_info_opcode op_code;
  2563. u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
  2564. /* if drv_info version supported by MFW doesn't match - send NACK */
  2565. if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
  2566. bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
  2567. return;
  2568. }
  2569. op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
  2570. DRV_INFO_CONTROL_OP_CODE_SHIFT;
  2571. memset(&bp->slowpath->drv_info_to_mcp, 0,
  2572. sizeof(union drv_info_to_mcp));
  2573. switch (op_code) {
  2574. case ETH_STATS_OPCODE:
  2575. bnx2x_drv_info_ether_stat(bp);
  2576. break;
  2577. case FCOE_STATS_OPCODE:
  2578. bnx2x_drv_info_fcoe_stat(bp);
  2579. break;
  2580. case ISCSI_STATS_OPCODE:
  2581. bnx2x_drv_info_iscsi_stat(bp);
  2582. break;
  2583. default:
  2584. /* if op code isn't supported - send NACK */
  2585. bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
  2586. return;
  2587. }
  2588. /* if we got drv_info attn from MFW then these fields are defined in
  2589. * shmem2 for sure
  2590. */
  2591. SHMEM2_WR(bp, drv_info_host_addr_lo,
  2592. U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
  2593. SHMEM2_WR(bp, drv_info_host_addr_hi,
  2594. U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
  2595. bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
  2596. }
  2597. static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
  2598. {
  2599. DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
  2600. if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
  2601. /*
  2602. * This is the only place besides the function initialization
  2603. * where the bp->flags can change so it is done without any
  2604. * locks
  2605. */
  2606. if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
  2607. DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
  2608. bp->flags |= MF_FUNC_DIS;
  2609. bnx2x_e1h_disable(bp);
  2610. } else {
  2611. DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
  2612. bp->flags &= ~MF_FUNC_DIS;
  2613. bnx2x_e1h_enable(bp);
  2614. }
  2615. dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
  2616. }
  2617. if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
  2618. bnx2x_config_mf_bw(bp);
  2619. dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
  2620. }
  2621. /* Report results to MCP */
  2622. if (dcc_event)
  2623. bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
  2624. else
  2625. bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
  2626. }
  2627. /* must be called under the spq lock */
  2628. static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
  2629. {
  2630. struct eth_spe *next_spe = bp->spq_prod_bd;
  2631. if (bp->spq_prod_bd == bp->spq_last_bd) {
  2632. bp->spq_prod_bd = bp->spq;
  2633. bp->spq_prod_idx = 0;
  2634. DP(NETIF_MSG_TIMER, "end of spq\n");
  2635. } else {
  2636. bp->spq_prod_bd++;
  2637. bp->spq_prod_idx++;
  2638. }
  2639. return next_spe;
  2640. }
  2641. /* must be called under the spq lock */
  2642. static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
  2643. {
  2644. int func = BP_FUNC(bp);
  2645. /*
  2646. * Make sure that BD data is updated before writing the producer:
  2647. * BD data is written to the memory, the producer is read from the
  2648. * memory, thus we need a full memory barrier to ensure the ordering.
  2649. */
  2650. mb();
  2651. REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
  2652. bp->spq_prod_idx);
  2653. mmiowb();
  2654. }
  2655. /**
  2656. * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
  2657. *
  2658. * @cmd: command to check
  2659. * @cmd_type: command type
  2660. */
  2661. static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
  2662. {
  2663. if ((cmd_type == NONE_CONNECTION_TYPE) ||
  2664. (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
  2665. (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
  2666. (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
  2667. (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
  2668. (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
  2669. (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
  2670. return true;
  2671. else
  2672. return false;
  2673. }
  2674. /**
  2675. * bnx2x_sp_post - place a single command on an SP ring
  2676. *
  2677. * @bp: driver handle
  2678. * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
  2679. * @cid: SW CID the command is related to
  2680. * @data_hi: command private data address (high 32 bits)
  2681. * @data_lo: command private data address (low 32 bits)
  2682. * @cmd_type: command type (e.g. NONE, ETH)
  2683. *
  2684. * SP data is handled as if it's always an address pair, thus data fields are
  2685. * not swapped to little endian in upper functions. Instead this function swaps
  2686. * data as if it's two u32 fields.
  2687. */
  2688. int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
  2689. u32 data_hi, u32 data_lo, int cmd_type)
  2690. {
  2691. struct eth_spe *spe;
  2692. u16 type;
  2693. bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
  2694. #ifdef BNX2X_STOP_ON_ERROR
  2695. if (unlikely(bp->panic))
  2696. return -EIO;
  2697. #endif
  2698. spin_lock_bh(&bp->spq_lock);
  2699. if (common) {
  2700. if (!atomic_read(&bp->eq_spq_left)) {
  2701. BNX2X_ERR("BUG! EQ ring full!\n");
  2702. spin_unlock_bh(&bp->spq_lock);
  2703. bnx2x_panic();
  2704. return -EBUSY;
  2705. }
  2706. } else if (!atomic_read(&bp->cq_spq_left)) {
  2707. BNX2X_ERR("BUG! SPQ ring full!\n");
  2708. spin_unlock_bh(&bp->spq_lock);
  2709. bnx2x_panic();
  2710. return -EBUSY;
  2711. }
  2712. spe = bnx2x_sp_get_next(bp);
  2713. /* CID needs port number to be encoded int it */
  2714. spe->hdr.conn_and_cmd_data =
  2715. cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
  2716. HW_CID(bp, cid));
  2717. type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
  2718. type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
  2719. SPE_HDR_FUNCTION_ID);
  2720. spe->hdr.type = cpu_to_le16(type);
  2721. spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
  2722. spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
  2723. /*
  2724. * It's ok if the actual decrement is issued towards the memory
  2725. * somewhere between the spin_lock and spin_unlock. Thus no
  2726. * more explict memory barrier is needed.
  2727. */
  2728. if (common)
  2729. atomic_dec(&bp->eq_spq_left);
  2730. else
  2731. atomic_dec(&bp->cq_spq_left);
  2732. DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
  2733. "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) "
  2734. "type(0x%x) left (CQ, EQ) (%x,%x)\n",
  2735. bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
  2736. (u32)(U64_LO(bp->spq_mapping) +
  2737. (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
  2738. HW_CID(bp, cid), data_hi, data_lo, type,
  2739. atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
  2740. bnx2x_sp_prod_update(bp);
  2741. spin_unlock_bh(&bp->spq_lock);
  2742. return 0;
  2743. }
  2744. /* acquire split MCP access lock register */
  2745. static int bnx2x_acquire_alr(struct bnx2x *bp)
  2746. {
  2747. u32 j, val;
  2748. int rc = 0;
  2749. might_sleep();
  2750. for (j = 0; j < 1000; j++) {
  2751. val = (1UL << 31);
  2752. REG_WR(bp, GRCBASE_MCP + 0x9c, val);
  2753. val = REG_RD(bp, GRCBASE_MCP + 0x9c);
  2754. if (val & (1L << 31))
  2755. break;
  2756. msleep(5);
  2757. }
  2758. if (!(val & (1L << 31))) {
  2759. BNX2X_ERR("Cannot acquire MCP access lock register\n");
  2760. rc = -EBUSY;
  2761. }
  2762. return rc;
  2763. }
  2764. /* release split MCP access lock register */
  2765. static void bnx2x_release_alr(struct bnx2x *bp)
  2766. {
  2767. REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
  2768. }
  2769. #define BNX2X_DEF_SB_ATT_IDX 0x0001
  2770. #define BNX2X_DEF_SB_IDX 0x0002
  2771. static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
  2772. {
  2773. struct host_sp_status_block *def_sb = bp->def_status_blk;
  2774. u16 rc = 0;
  2775. barrier(); /* status block is written to by the chip */
  2776. if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
  2777. bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
  2778. rc |= BNX2X_DEF_SB_ATT_IDX;
  2779. }
  2780. if (bp->def_idx != def_sb->sp_sb.running_index) {
  2781. bp->def_idx = def_sb->sp_sb.running_index;
  2782. rc |= BNX2X_DEF_SB_IDX;
  2783. }
  2784. /* Do not reorder: indecies reading should complete before handling */
  2785. barrier();
  2786. return rc;
  2787. }
  2788. /*
  2789. * slow path service functions
  2790. */
  2791. static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
  2792. {
  2793. int port = BP_PORT(bp);
  2794. u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
  2795. MISC_REG_AEU_MASK_ATTN_FUNC_0;
  2796. u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
  2797. NIG_REG_MASK_INTERRUPT_PORT0;
  2798. u32 aeu_mask;
  2799. u32 nig_mask = 0;
  2800. u32 reg_addr;
  2801. if (bp->attn_state & asserted)
  2802. BNX2X_ERR("IGU ERROR\n");
  2803. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
  2804. aeu_mask = REG_RD(bp, aeu_addr);
  2805. DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
  2806. aeu_mask, asserted);
  2807. aeu_mask &= ~(asserted & 0x3ff);
  2808. DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
  2809. REG_WR(bp, aeu_addr, aeu_mask);
  2810. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
  2811. DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
  2812. bp->attn_state |= asserted;
  2813. DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
  2814. if (asserted & ATTN_HARD_WIRED_MASK) {
  2815. if (asserted & ATTN_NIG_FOR_FUNC) {
  2816. bnx2x_acquire_phy_lock(bp);
  2817. /* save nig interrupt mask */
  2818. nig_mask = REG_RD(bp, nig_int_mask_addr);
  2819. /* If nig_mask is not set, no need to call the update
  2820. * function.
  2821. */
  2822. if (nig_mask) {
  2823. REG_WR(bp, nig_int_mask_addr, 0);
  2824. bnx2x_link_attn(bp);
  2825. }
  2826. /* handle unicore attn? */
  2827. }
  2828. if (asserted & ATTN_SW_TIMER_4_FUNC)
  2829. DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
  2830. if (asserted & GPIO_2_FUNC)
  2831. DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
  2832. if (asserted & GPIO_3_FUNC)
  2833. DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
  2834. if (asserted & GPIO_4_FUNC)
  2835. DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
  2836. if (port == 0) {
  2837. if (asserted & ATTN_GENERAL_ATTN_1) {
  2838. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
  2839. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
  2840. }
  2841. if (asserted & ATTN_GENERAL_ATTN_2) {
  2842. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
  2843. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
  2844. }
  2845. if (asserted & ATTN_GENERAL_ATTN_3) {
  2846. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
  2847. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
  2848. }
  2849. } else {
  2850. if (asserted & ATTN_GENERAL_ATTN_4) {
  2851. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
  2852. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
  2853. }
  2854. if (asserted & ATTN_GENERAL_ATTN_5) {
  2855. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
  2856. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
  2857. }
  2858. if (asserted & ATTN_GENERAL_ATTN_6) {
  2859. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
  2860. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
  2861. }
  2862. }
  2863. } /* if hardwired */
  2864. if (bp->common.int_block == INT_BLOCK_HC)
  2865. reg_addr = (HC_REG_COMMAND_REG + port*32 +
  2866. COMMAND_REG_ATTN_BITS_SET);
  2867. else
  2868. reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
  2869. DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
  2870. (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
  2871. REG_WR(bp, reg_addr, asserted);
  2872. /* now set back the mask */
  2873. if (asserted & ATTN_NIG_FOR_FUNC) {
  2874. REG_WR(bp, nig_int_mask_addr, nig_mask);
  2875. bnx2x_release_phy_lock(bp);
  2876. }
  2877. }
  2878. static inline void bnx2x_fan_failure(struct bnx2x *bp)
  2879. {
  2880. int port = BP_PORT(bp);
  2881. u32 ext_phy_config;
  2882. /* mark the failure */
  2883. ext_phy_config =
  2884. SHMEM_RD(bp,
  2885. dev_info.port_hw_config[port].external_phy_config);
  2886. ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
  2887. ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
  2888. SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
  2889. ext_phy_config);
  2890. /* log the failure */
  2891. netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
  2892. " the driver to shutdown the card to prevent permanent"
  2893. " damage. Please contact OEM Support for assistance\n");
  2894. /*
  2895. * Scheudle device reset (unload)
  2896. * This is due to some boards consuming sufficient power when driver is
  2897. * up to overheat if fan fails.
  2898. */
  2899. smp_mb__before_clear_bit();
  2900. set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
  2901. smp_mb__after_clear_bit();
  2902. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  2903. }
  2904. static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
  2905. {
  2906. int port = BP_PORT(bp);
  2907. int reg_offset;
  2908. u32 val;
  2909. reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
  2910. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
  2911. if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
  2912. val = REG_RD(bp, reg_offset);
  2913. val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
  2914. REG_WR(bp, reg_offset, val);
  2915. BNX2X_ERR("SPIO5 hw attention\n");
  2916. /* Fan failure attention */
  2917. bnx2x_hw_reset_phy(&bp->link_params);
  2918. bnx2x_fan_failure(bp);
  2919. }
  2920. if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
  2921. bnx2x_acquire_phy_lock(bp);
  2922. bnx2x_handle_module_detect_int(&bp->link_params);
  2923. bnx2x_release_phy_lock(bp);
  2924. }
  2925. if (attn & HW_INTERRUT_ASSERT_SET_0) {
  2926. val = REG_RD(bp, reg_offset);
  2927. val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
  2928. REG_WR(bp, reg_offset, val);
  2929. BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
  2930. (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
  2931. bnx2x_panic();
  2932. }
  2933. }
  2934. static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
  2935. {
  2936. u32 val;
  2937. if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
  2938. val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
  2939. BNX2X_ERR("DB hw attention 0x%x\n", val);
  2940. /* DORQ discard attention */
  2941. if (val & 0x2)
  2942. BNX2X_ERR("FATAL error from DORQ\n");
  2943. }
  2944. if (attn & HW_INTERRUT_ASSERT_SET_1) {
  2945. int port = BP_PORT(bp);
  2946. int reg_offset;
  2947. reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
  2948. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
  2949. val = REG_RD(bp, reg_offset);
  2950. val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
  2951. REG_WR(bp, reg_offset, val);
  2952. BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
  2953. (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
  2954. bnx2x_panic();
  2955. }
  2956. }
  2957. static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
  2958. {
  2959. u32 val;
  2960. if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
  2961. val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
  2962. BNX2X_ERR("CFC hw attention 0x%x\n", val);
  2963. /* CFC error attention */
  2964. if (val & 0x2)
  2965. BNX2X_ERR("FATAL error from CFC\n");
  2966. }
  2967. if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
  2968. val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
  2969. BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
  2970. /* RQ_USDMDP_FIFO_OVERFLOW */
  2971. if (val & 0x18000)
  2972. BNX2X_ERR("FATAL error from PXP\n");
  2973. if (!CHIP_IS_E1x(bp)) {
  2974. val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
  2975. BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
  2976. }
  2977. }
  2978. if (attn & HW_INTERRUT_ASSERT_SET_2) {
  2979. int port = BP_PORT(bp);
  2980. int reg_offset;
  2981. reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
  2982. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
  2983. val = REG_RD(bp, reg_offset);
  2984. val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
  2985. REG_WR(bp, reg_offset, val);
  2986. BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
  2987. (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
  2988. bnx2x_panic();
  2989. }
  2990. }
  2991. static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
  2992. {
  2993. u32 val;
  2994. if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
  2995. if (attn & BNX2X_PMF_LINK_ASSERT) {
  2996. int func = BP_FUNC(bp);
  2997. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
  2998. bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
  2999. func_mf_config[BP_ABS_FUNC(bp)].config);
  3000. val = SHMEM_RD(bp,
  3001. func_mb[BP_FW_MB_IDX(bp)].drv_status);
  3002. if (val & DRV_STATUS_DCC_EVENT_MASK)
  3003. bnx2x_dcc_event(bp,
  3004. (val & DRV_STATUS_DCC_EVENT_MASK));
  3005. if (val & DRV_STATUS_SET_MF_BW)
  3006. bnx2x_set_mf_bw(bp);
  3007. if (val & DRV_STATUS_DRV_INFO_REQ)
  3008. bnx2x_handle_drv_info_req(bp);
  3009. if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
  3010. bnx2x_pmf_update(bp);
  3011. if (bp->port.pmf &&
  3012. (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
  3013. bp->dcbx_enabled > 0)
  3014. /* start dcbx state machine */
  3015. bnx2x_dcbx_set_params(bp,
  3016. BNX2X_DCBX_STATE_NEG_RECEIVED);
  3017. if (bp->link_vars.periodic_flags &
  3018. PERIODIC_FLAGS_LINK_EVENT) {
  3019. /* sync with link */
  3020. bnx2x_acquire_phy_lock(bp);
  3021. bp->link_vars.periodic_flags &=
  3022. ~PERIODIC_FLAGS_LINK_EVENT;
  3023. bnx2x_release_phy_lock(bp);
  3024. if (IS_MF(bp))
  3025. bnx2x_link_sync_notify(bp);
  3026. bnx2x_link_report(bp);
  3027. }
  3028. /* Always call it here: bnx2x_link_report() will
  3029. * prevent the link indication duplication.
  3030. */
  3031. bnx2x__link_status_update(bp);
  3032. } else if (attn & BNX2X_MC_ASSERT_BITS) {
  3033. BNX2X_ERR("MC assert!\n");
  3034. bnx2x_mc_assert(bp);
  3035. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
  3036. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
  3037. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
  3038. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
  3039. bnx2x_panic();
  3040. } else if (attn & BNX2X_MCP_ASSERT) {
  3041. BNX2X_ERR("MCP assert!\n");
  3042. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
  3043. bnx2x_fw_dump(bp);
  3044. } else
  3045. BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
  3046. }
  3047. if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
  3048. BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
  3049. if (attn & BNX2X_GRC_TIMEOUT) {
  3050. val = CHIP_IS_E1(bp) ? 0 :
  3051. REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
  3052. BNX2X_ERR("GRC time-out 0x%08x\n", val);
  3053. }
  3054. if (attn & BNX2X_GRC_RSV) {
  3055. val = CHIP_IS_E1(bp) ? 0 :
  3056. REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
  3057. BNX2X_ERR("GRC reserved 0x%08x\n", val);
  3058. }
  3059. REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
  3060. }
  3061. }
  3062. /*
  3063. * Bits map:
  3064. * 0-7 - Engine0 load counter.
  3065. * 8-15 - Engine1 load counter.
  3066. * 16 - Engine0 RESET_IN_PROGRESS bit.
  3067. * 17 - Engine1 RESET_IN_PROGRESS bit.
  3068. * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
  3069. * on the engine
  3070. * 19 - Engine1 ONE_IS_LOADED.
  3071. * 20 - Chip reset flow bit. When set none-leader must wait for both engines
  3072. * leader to complete (check for both RESET_IN_PROGRESS bits and not for
  3073. * just the one belonging to its engine).
  3074. *
  3075. */
  3076. #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
  3077. #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
  3078. #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
  3079. #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
  3080. #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
  3081. #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
  3082. #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
  3083. #define BNX2X_GLOBAL_RESET_BIT 0x00040000
  3084. /*
  3085. * Set the GLOBAL_RESET bit.
  3086. *
  3087. * Should be run under rtnl lock
  3088. */
  3089. void bnx2x_set_reset_global(struct bnx2x *bp)
  3090. {
  3091. u32 val;
  3092. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3093. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3094. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
  3095. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3096. }
  3097. /*
  3098. * Clear the GLOBAL_RESET bit.
  3099. *
  3100. * Should be run under rtnl lock
  3101. */
  3102. static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
  3103. {
  3104. u32 val;
  3105. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3106. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3107. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
  3108. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3109. }
  3110. /*
  3111. * Checks the GLOBAL_RESET bit.
  3112. *
  3113. * should be run under rtnl lock
  3114. */
  3115. static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
  3116. {
  3117. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3118. DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
  3119. return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
  3120. }
  3121. /*
  3122. * Clear RESET_IN_PROGRESS bit for the current engine.
  3123. *
  3124. * Should be run under rtnl lock
  3125. */
  3126. static inline void bnx2x_set_reset_done(struct bnx2x *bp)
  3127. {
  3128. u32 val;
  3129. u32 bit = BP_PATH(bp) ?
  3130. BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
  3131. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3132. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3133. /* Clear the bit */
  3134. val &= ~bit;
  3135. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
  3136. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3137. }
  3138. /*
  3139. * Set RESET_IN_PROGRESS for the current engine.
  3140. *
  3141. * should be run under rtnl lock
  3142. */
  3143. void bnx2x_set_reset_in_progress(struct bnx2x *bp)
  3144. {
  3145. u32 val;
  3146. u32 bit = BP_PATH(bp) ?
  3147. BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
  3148. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3149. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3150. /* Set the bit */
  3151. val |= bit;
  3152. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
  3153. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3154. }
  3155. /*
  3156. * Checks the RESET_IN_PROGRESS bit for the given engine.
  3157. * should be run under rtnl lock
  3158. */
  3159. bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
  3160. {
  3161. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3162. u32 bit = engine ?
  3163. BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
  3164. /* return false if bit is set */
  3165. return (val & bit) ? false : true;
  3166. }
  3167. /*
  3168. * set pf load for the current pf.
  3169. *
  3170. * should be run under rtnl lock
  3171. */
  3172. void bnx2x_set_pf_load(struct bnx2x *bp)
  3173. {
  3174. u32 val1, val;
  3175. u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
  3176. BNX2X_PATH0_LOAD_CNT_MASK;
  3177. u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
  3178. BNX2X_PATH0_LOAD_CNT_SHIFT;
  3179. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3180. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3181. DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
  3182. /* get the current counter value */
  3183. val1 = (val & mask) >> shift;
  3184. /* set bit of that PF */
  3185. val1 |= (1 << bp->pf_num);
  3186. /* clear the old value */
  3187. val &= ~mask;
  3188. /* set the new one */
  3189. val |= ((val1 << shift) & mask);
  3190. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
  3191. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3192. }
  3193. /**
  3194. * bnx2x_clear_pf_load - clear pf load mark
  3195. *
  3196. * @bp: driver handle
  3197. *
  3198. * Should be run under rtnl lock.
  3199. * Decrements the load counter for the current engine. Returns
  3200. * whether other functions are still loaded
  3201. */
  3202. bool bnx2x_clear_pf_load(struct bnx2x *bp)
  3203. {
  3204. u32 val1, val;
  3205. u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
  3206. BNX2X_PATH0_LOAD_CNT_MASK;
  3207. u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
  3208. BNX2X_PATH0_LOAD_CNT_SHIFT;
  3209. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3210. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3211. DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
  3212. /* get the current counter value */
  3213. val1 = (val & mask) >> shift;
  3214. /* clear bit of that PF */
  3215. val1 &= ~(1 << bp->pf_num);
  3216. /* clear the old value */
  3217. val &= ~mask;
  3218. /* set the new one */
  3219. val |= ((val1 << shift) & mask);
  3220. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
  3221. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3222. return val1 != 0;
  3223. }
  3224. /*
  3225. * Read the load status for the current engine.
  3226. *
  3227. * should be run under rtnl lock
  3228. */
  3229. static inline bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
  3230. {
  3231. u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
  3232. BNX2X_PATH0_LOAD_CNT_MASK);
  3233. u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
  3234. BNX2X_PATH0_LOAD_CNT_SHIFT);
  3235. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3236. DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
  3237. val = (val & mask) >> shift;
  3238. DP(NETIF_MSG_HW, "load mask for engine %d = 0x%x\n", engine, val);
  3239. return val != 0;
  3240. }
  3241. /*
  3242. * Reset the load status for the current engine.
  3243. */
  3244. static inline void bnx2x_clear_load_status(struct bnx2x *bp)
  3245. {
  3246. u32 val;
  3247. u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
  3248. BNX2X_PATH0_LOAD_CNT_MASK);
  3249. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3250. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3251. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
  3252. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3253. }
  3254. static inline void _print_next_block(int idx, const char *blk)
  3255. {
  3256. pr_cont("%s%s", idx ? ", " : "", blk);
  3257. }
  3258. static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
  3259. bool print)
  3260. {
  3261. int i = 0;
  3262. u32 cur_bit = 0;
  3263. for (i = 0; sig; i++) {
  3264. cur_bit = ((u32)0x1 << i);
  3265. if (sig & cur_bit) {
  3266. switch (cur_bit) {
  3267. case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
  3268. if (print)
  3269. _print_next_block(par_num++, "BRB");
  3270. break;
  3271. case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
  3272. if (print)
  3273. _print_next_block(par_num++, "PARSER");
  3274. break;
  3275. case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
  3276. if (print)
  3277. _print_next_block(par_num++, "TSDM");
  3278. break;
  3279. case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
  3280. if (print)
  3281. _print_next_block(par_num++,
  3282. "SEARCHER");
  3283. break;
  3284. case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
  3285. if (print)
  3286. _print_next_block(par_num++, "TCM");
  3287. break;
  3288. case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
  3289. if (print)
  3290. _print_next_block(par_num++, "TSEMI");
  3291. break;
  3292. case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
  3293. if (print)
  3294. _print_next_block(par_num++, "XPB");
  3295. break;
  3296. }
  3297. /* Clear the bit */
  3298. sig &= ~cur_bit;
  3299. }
  3300. }
  3301. return par_num;
  3302. }
  3303. static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
  3304. bool *global, bool print)
  3305. {
  3306. int i = 0;
  3307. u32 cur_bit = 0;
  3308. for (i = 0; sig; i++) {
  3309. cur_bit = ((u32)0x1 << i);
  3310. if (sig & cur_bit) {
  3311. switch (cur_bit) {
  3312. case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
  3313. if (print)
  3314. _print_next_block(par_num++, "PBF");
  3315. break;
  3316. case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
  3317. if (print)
  3318. _print_next_block(par_num++, "QM");
  3319. break;
  3320. case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
  3321. if (print)
  3322. _print_next_block(par_num++, "TM");
  3323. break;
  3324. case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
  3325. if (print)
  3326. _print_next_block(par_num++, "XSDM");
  3327. break;
  3328. case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
  3329. if (print)
  3330. _print_next_block(par_num++, "XCM");
  3331. break;
  3332. case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
  3333. if (print)
  3334. _print_next_block(par_num++, "XSEMI");
  3335. break;
  3336. case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
  3337. if (print)
  3338. _print_next_block(par_num++,
  3339. "DOORBELLQ");
  3340. break;
  3341. case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
  3342. if (print)
  3343. _print_next_block(par_num++, "NIG");
  3344. break;
  3345. case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
  3346. if (print)
  3347. _print_next_block(par_num++,
  3348. "VAUX PCI CORE");
  3349. *global = true;
  3350. break;
  3351. case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
  3352. if (print)
  3353. _print_next_block(par_num++, "DEBUG");
  3354. break;
  3355. case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
  3356. if (print)
  3357. _print_next_block(par_num++, "USDM");
  3358. break;
  3359. case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
  3360. if (print)
  3361. _print_next_block(par_num++, "UCM");
  3362. break;
  3363. case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
  3364. if (print)
  3365. _print_next_block(par_num++, "USEMI");
  3366. break;
  3367. case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
  3368. if (print)
  3369. _print_next_block(par_num++, "UPB");
  3370. break;
  3371. case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
  3372. if (print)
  3373. _print_next_block(par_num++, "CSDM");
  3374. break;
  3375. case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
  3376. if (print)
  3377. _print_next_block(par_num++, "CCM");
  3378. break;
  3379. }
  3380. /* Clear the bit */
  3381. sig &= ~cur_bit;
  3382. }
  3383. }
  3384. return par_num;
  3385. }
  3386. static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
  3387. bool print)
  3388. {
  3389. int i = 0;
  3390. u32 cur_bit = 0;
  3391. for (i = 0; sig; i++) {
  3392. cur_bit = ((u32)0x1 << i);
  3393. if (sig & cur_bit) {
  3394. switch (cur_bit) {
  3395. case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
  3396. if (print)
  3397. _print_next_block(par_num++, "CSEMI");
  3398. break;
  3399. case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
  3400. if (print)
  3401. _print_next_block(par_num++, "PXP");
  3402. break;
  3403. case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
  3404. if (print)
  3405. _print_next_block(par_num++,
  3406. "PXPPCICLOCKCLIENT");
  3407. break;
  3408. case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
  3409. if (print)
  3410. _print_next_block(par_num++, "CFC");
  3411. break;
  3412. case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
  3413. if (print)
  3414. _print_next_block(par_num++, "CDU");
  3415. break;
  3416. case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
  3417. if (print)
  3418. _print_next_block(par_num++, "DMAE");
  3419. break;
  3420. case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
  3421. if (print)
  3422. _print_next_block(par_num++, "IGU");
  3423. break;
  3424. case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
  3425. if (print)
  3426. _print_next_block(par_num++, "MISC");
  3427. break;
  3428. }
  3429. /* Clear the bit */
  3430. sig &= ~cur_bit;
  3431. }
  3432. }
  3433. return par_num;
  3434. }
  3435. static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
  3436. bool *global, bool print)
  3437. {
  3438. int i = 0;
  3439. u32 cur_bit = 0;
  3440. for (i = 0; sig; i++) {
  3441. cur_bit = ((u32)0x1 << i);
  3442. if (sig & cur_bit) {
  3443. switch (cur_bit) {
  3444. case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
  3445. if (print)
  3446. _print_next_block(par_num++, "MCP ROM");
  3447. *global = true;
  3448. break;
  3449. case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
  3450. if (print)
  3451. _print_next_block(par_num++,
  3452. "MCP UMP RX");
  3453. *global = true;
  3454. break;
  3455. case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
  3456. if (print)
  3457. _print_next_block(par_num++,
  3458. "MCP UMP TX");
  3459. *global = true;
  3460. break;
  3461. case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
  3462. if (print)
  3463. _print_next_block(par_num++,
  3464. "MCP SCPAD");
  3465. *global = true;
  3466. break;
  3467. }
  3468. /* Clear the bit */
  3469. sig &= ~cur_bit;
  3470. }
  3471. }
  3472. return par_num;
  3473. }
  3474. static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
  3475. bool print)
  3476. {
  3477. int i = 0;
  3478. u32 cur_bit = 0;
  3479. for (i = 0; sig; i++) {
  3480. cur_bit = ((u32)0x1 << i);
  3481. if (sig & cur_bit) {
  3482. switch (cur_bit) {
  3483. case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
  3484. if (print)
  3485. _print_next_block(par_num++, "PGLUE_B");
  3486. break;
  3487. case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
  3488. if (print)
  3489. _print_next_block(par_num++, "ATC");
  3490. break;
  3491. }
  3492. /* Clear the bit */
  3493. sig &= ~cur_bit;
  3494. }
  3495. }
  3496. return par_num;
  3497. }
  3498. static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
  3499. u32 *sig)
  3500. {
  3501. if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
  3502. (sig[1] & HW_PRTY_ASSERT_SET_1) ||
  3503. (sig[2] & HW_PRTY_ASSERT_SET_2) ||
  3504. (sig[3] & HW_PRTY_ASSERT_SET_3) ||
  3505. (sig[4] & HW_PRTY_ASSERT_SET_4)) {
  3506. int par_num = 0;
  3507. DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
  3508. "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
  3509. "[4]:0x%08x\n",
  3510. sig[0] & HW_PRTY_ASSERT_SET_0,
  3511. sig[1] & HW_PRTY_ASSERT_SET_1,
  3512. sig[2] & HW_PRTY_ASSERT_SET_2,
  3513. sig[3] & HW_PRTY_ASSERT_SET_3,
  3514. sig[4] & HW_PRTY_ASSERT_SET_4);
  3515. if (print)
  3516. netdev_err(bp->dev,
  3517. "Parity errors detected in blocks: ");
  3518. par_num = bnx2x_check_blocks_with_parity0(
  3519. sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
  3520. par_num = bnx2x_check_blocks_with_parity1(
  3521. sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
  3522. par_num = bnx2x_check_blocks_with_parity2(
  3523. sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
  3524. par_num = bnx2x_check_blocks_with_parity3(
  3525. sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
  3526. par_num = bnx2x_check_blocks_with_parity4(
  3527. sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
  3528. if (print)
  3529. pr_cont("\n");
  3530. return true;
  3531. } else
  3532. return false;
  3533. }
  3534. /**
  3535. * bnx2x_chk_parity_attn - checks for parity attentions.
  3536. *
  3537. * @bp: driver handle
  3538. * @global: true if there was a global attention
  3539. * @print: show parity attention in syslog
  3540. */
  3541. bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
  3542. {
  3543. struct attn_route attn = { {0} };
  3544. int port = BP_PORT(bp);
  3545. attn.sig[0] = REG_RD(bp,
  3546. MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
  3547. port*4);
  3548. attn.sig[1] = REG_RD(bp,
  3549. MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
  3550. port*4);
  3551. attn.sig[2] = REG_RD(bp,
  3552. MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
  3553. port*4);
  3554. attn.sig[3] = REG_RD(bp,
  3555. MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
  3556. port*4);
  3557. if (!CHIP_IS_E1x(bp))
  3558. attn.sig[4] = REG_RD(bp,
  3559. MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
  3560. port*4);
  3561. return bnx2x_parity_attn(bp, global, print, attn.sig);
  3562. }
  3563. static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
  3564. {
  3565. u32 val;
  3566. if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
  3567. val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
  3568. BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
  3569. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
  3570. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3571. "ADDRESS_ERROR\n");
  3572. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
  3573. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3574. "INCORRECT_RCV_BEHAVIOR\n");
  3575. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
  3576. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3577. "WAS_ERROR_ATTN\n");
  3578. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
  3579. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3580. "VF_LENGTH_VIOLATION_ATTN\n");
  3581. if (val &
  3582. PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
  3583. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3584. "VF_GRC_SPACE_VIOLATION_ATTN\n");
  3585. if (val &
  3586. PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
  3587. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3588. "VF_MSIX_BAR_VIOLATION_ATTN\n");
  3589. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
  3590. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3591. "TCPL_ERROR_ATTN\n");
  3592. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
  3593. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3594. "TCPL_IN_TWO_RCBS_ATTN\n");
  3595. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
  3596. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3597. "CSSNOOP_FIFO_OVERFLOW\n");
  3598. }
  3599. if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
  3600. val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
  3601. BNX2X_ERR("ATC hw attention 0x%x\n", val);
  3602. if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
  3603. BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
  3604. if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
  3605. BNX2X_ERR("ATC_ATC_INT_STS_REG"
  3606. "_ATC_TCPL_TO_NOT_PEND\n");
  3607. if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
  3608. BNX2X_ERR("ATC_ATC_INT_STS_REG_"
  3609. "ATC_GPA_MULTIPLE_HITS\n");
  3610. if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
  3611. BNX2X_ERR("ATC_ATC_INT_STS_REG_"
  3612. "ATC_RCPL_TO_EMPTY_CNT\n");
  3613. if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
  3614. BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
  3615. if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
  3616. BNX2X_ERR("ATC_ATC_INT_STS_REG_"
  3617. "ATC_IREQ_LESS_THAN_STU\n");
  3618. }
  3619. if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
  3620. AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
  3621. BNX2X_ERR("FATAL parity attention set4 0x%x\n",
  3622. (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
  3623. AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
  3624. }
  3625. }
  3626. static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
  3627. {
  3628. struct attn_route attn, *group_mask;
  3629. int port = BP_PORT(bp);
  3630. int index;
  3631. u32 reg_addr;
  3632. u32 val;
  3633. u32 aeu_mask;
  3634. bool global = false;
  3635. /* need to take HW lock because MCP or other port might also
  3636. try to handle this event */
  3637. bnx2x_acquire_alr(bp);
  3638. if (bnx2x_chk_parity_attn(bp, &global, true)) {
  3639. #ifndef BNX2X_STOP_ON_ERROR
  3640. bp->recovery_state = BNX2X_RECOVERY_INIT;
  3641. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  3642. /* Disable HW interrupts */
  3643. bnx2x_int_disable(bp);
  3644. /* In case of parity errors don't handle attentions so that
  3645. * other function would "see" parity errors.
  3646. */
  3647. #else
  3648. bnx2x_panic();
  3649. #endif
  3650. bnx2x_release_alr(bp);
  3651. return;
  3652. }
  3653. attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
  3654. attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
  3655. attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
  3656. attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
  3657. if (!CHIP_IS_E1x(bp))
  3658. attn.sig[4] =
  3659. REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
  3660. else
  3661. attn.sig[4] = 0;
  3662. DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
  3663. attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
  3664. for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
  3665. if (deasserted & (1 << index)) {
  3666. group_mask = &bp->attn_group[index];
  3667. DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
  3668. "%08x %08x %08x\n",
  3669. index,
  3670. group_mask->sig[0], group_mask->sig[1],
  3671. group_mask->sig[2], group_mask->sig[3],
  3672. group_mask->sig[4]);
  3673. bnx2x_attn_int_deasserted4(bp,
  3674. attn.sig[4] & group_mask->sig[4]);
  3675. bnx2x_attn_int_deasserted3(bp,
  3676. attn.sig[3] & group_mask->sig[3]);
  3677. bnx2x_attn_int_deasserted1(bp,
  3678. attn.sig[1] & group_mask->sig[1]);
  3679. bnx2x_attn_int_deasserted2(bp,
  3680. attn.sig[2] & group_mask->sig[2]);
  3681. bnx2x_attn_int_deasserted0(bp,
  3682. attn.sig[0] & group_mask->sig[0]);
  3683. }
  3684. }
  3685. bnx2x_release_alr(bp);
  3686. if (bp->common.int_block == INT_BLOCK_HC)
  3687. reg_addr = (HC_REG_COMMAND_REG + port*32 +
  3688. COMMAND_REG_ATTN_BITS_CLR);
  3689. else
  3690. reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
  3691. val = ~deasserted;
  3692. DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
  3693. (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
  3694. REG_WR(bp, reg_addr, val);
  3695. if (~bp->attn_state & deasserted)
  3696. BNX2X_ERR("IGU ERROR\n");
  3697. reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
  3698. MISC_REG_AEU_MASK_ATTN_FUNC_0;
  3699. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
  3700. aeu_mask = REG_RD(bp, reg_addr);
  3701. DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
  3702. aeu_mask, deasserted);
  3703. aeu_mask |= (deasserted & 0x3ff);
  3704. DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
  3705. REG_WR(bp, reg_addr, aeu_mask);
  3706. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
  3707. DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
  3708. bp->attn_state &= ~deasserted;
  3709. DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
  3710. }
  3711. static void bnx2x_attn_int(struct bnx2x *bp)
  3712. {
  3713. /* read local copy of bits */
  3714. u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
  3715. attn_bits);
  3716. u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
  3717. attn_bits_ack);
  3718. u32 attn_state = bp->attn_state;
  3719. /* look for changed bits */
  3720. u32 asserted = attn_bits & ~attn_ack & ~attn_state;
  3721. u32 deasserted = ~attn_bits & attn_ack & attn_state;
  3722. DP(NETIF_MSG_HW,
  3723. "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
  3724. attn_bits, attn_ack, asserted, deasserted);
  3725. if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
  3726. BNX2X_ERR("BAD attention state\n");
  3727. /* handle bits that were raised */
  3728. if (asserted)
  3729. bnx2x_attn_int_asserted(bp, asserted);
  3730. if (deasserted)
  3731. bnx2x_attn_int_deasserted(bp, deasserted);
  3732. }
  3733. void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
  3734. u16 index, u8 op, u8 update)
  3735. {
  3736. u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
  3737. bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
  3738. igu_addr);
  3739. }
  3740. static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
  3741. {
  3742. /* No memory barriers */
  3743. storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
  3744. mmiowb(); /* keep prod updates ordered */
  3745. }
  3746. #ifdef BCM_CNIC
  3747. static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
  3748. union event_ring_elem *elem)
  3749. {
  3750. u8 err = elem->message.error;
  3751. if (!bp->cnic_eth_dev.starting_cid ||
  3752. (cid < bp->cnic_eth_dev.starting_cid &&
  3753. cid != bp->cnic_eth_dev.iscsi_l2_cid))
  3754. return 1;
  3755. DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
  3756. if (unlikely(err)) {
  3757. BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
  3758. cid);
  3759. bnx2x_panic_dump(bp);
  3760. }
  3761. bnx2x_cnic_cfc_comp(bp, cid, err);
  3762. return 0;
  3763. }
  3764. #endif
  3765. static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
  3766. {
  3767. struct bnx2x_mcast_ramrod_params rparam;
  3768. int rc;
  3769. memset(&rparam, 0, sizeof(rparam));
  3770. rparam.mcast_obj = &bp->mcast_obj;
  3771. netif_addr_lock_bh(bp->dev);
  3772. /* Clear pending state for the last command */
  3773. bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
  3774. /* If there are pending mcast commands - send them */
  3775. if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
  3776. rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
  3777. if (rc < 0)
  3778. BNX2X_ERR("Failed to send pending mcast commands: %d\n",
  3779. rc);
  3780. }
  3781. netif_addr_unlock_bh(bp->dev);
  3782. }
  3783. static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
  3784. union event_ring_elem *elem)
  3785. {
  3786. unsigned long ramrod_flags = 0;
  3787. int rc = 0;
  3788. u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
  3789. struct bnx2x_vlan_mac_obj *vlan_mac_obj;
  3790. /* Always push next commands out, don't wait here */
  3791. __set_bit(RAMROD_CONT, &ramrod_flags);
  3792. switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
  3793. case BNX2X_FILTER_MAC_PENDING:
  3794. #ifdef BCM_CNIC
  3795. if (cid == BNX2X_ISCSI_ETH_CID)
  3796. vlan_mac_obj = &bp->iscsi_l2_mac_obj;
  3797. else
  3798. #endif
  3799. vlan_mac_obj = &bp->fp[cid].mac_obj;
  3800. break;
  3801. case BNX2X_FILTER_MCAST_PENDING:
  3802. /* This is only relevant for 57710 where multicast MACs are
  3803. * configured as unicast MACs using the same ramrod.
  3804. */
  3805. bnx2x_handle_mcast_eqe(bp);
  3806. return;
  3807. default:
  3808. BNX2X_ERR("Unsupported classification command: %d\n",
  3809. elem->message.data.eth_event.echo);
  3810. return;
  3811. }
  3812. rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
  3813. if (rc < 0)
  3814. BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
  3815. else if (rc > 0)
  3816. DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
  3817. }
  3818. #ifdef BCM_CNIC
  3819. static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
  3820. #endif
  3821. static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
  3822. {
  3823. netif_addr_lock_bh(bp->dev);
  3824. clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
  3825. /* Send rx_mode command again if was requested */
  3826. if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
  3827. bnx2x_set_storm_rx_mode(bp);
  3828. #ifdef BCM_CNIC
  3829. else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
  3830. &bp->sp_state))
  3831. bnx2x_set_iscsi_eth_rx_mode(bp, true);
  3832. else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
  3833. &bp->sp_state))
  3834. bnx2x_set_iscsi_eth_rx_mode(bp, false);
  3835. #endif
  3836. netif_addr_unlock_bh(bp->dev);
  3837. }
  3838. static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
  3839. struct bnx2x *bp, u32 cid)
  3840. {
  3841. DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
  3842. #ifdef BCM_CNIC
  3843. if (cid == BNX2X_FCOE_ETH_CID)
  3844. return &bnx2x_fcoe(bp, q_obj);
  3845. else
  3846. #endif
  3847. return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
  3848. }
  3849. static void bnx2x_eq_int(struct bnx2x *bp)
  3850. {
  3851. u16 hw_cons, sw_cons, sw_prod;
  3852. union event_ring_elem *elem;
  3853. u32 cid;
  3854. u8 opcode;
  3855. int spqe_cnt = 0;
  3856. struct bnx2x_queue_sp_obj *q_obj;
  3857. struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
  3858. struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
  3859. hw_cons = le16_to_cpu(*bp->eq_cons_sb);
  3860. /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
  3861. * when we get the the next-page we nned to adjust so the loop
  3862. * condition below will be met. The next element is the size of a
  3863. * regular element and hence incrementing by 1
  3864. */
  3865. if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
  3866. hw_cons++;
  3867. /* This function may never run in parallel with itself for a
  3868. * specific bp, thus there is no need in "paired" read memory
  3869. * barrier here.
  3870. */
  3871. sw_cons = bp->eq_cons;
  3872. sw_prod = bp->eq_prod;
  3873. DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
  3874. hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
  3875. for (; sw_cons != hw_cons;
  3876. sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
  3877. elem = &bp->eq_ring[EQ_DESC(sw_cons)];
  3878. cid = SW_CID(elem->message.data.cfc_del_event.cid);
  3879. opcode = elem->message.opcode;
  3880. /* handle eq element */
  3881. switch (opcode) {
  3882. case EVENT_RING_OPCODE_STAT_QUERY:
  3883. DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
  3884. bp->stats_comp++);
  3885. /* nothing to do with stats comp */
  3886. goto next_spqe;
  3887. case EVENT_RING_OPCODE_CFC_DEL:
  3888. /* handle according to cid range */
  3889. /*
  3890. * we may want to verify here that the bp state is
  3891. * HALTING
  3892. */
  3893. DP(BNX2X_MSG_SP,
  3894. "got delete ramrod for MULTI[%d]\n", cid);
  3895. #ifdef BCM_CNIC
  3896. if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
  3897. goto next_spqe;
  3898. #endif
  3899. q_obj = bnx2x_cid_to_q_obj(bp, cid);
  3900. if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
  3901. break;
  3902. goto next_spqe;
  3903. case EVENT_RING_OPCODE_STOP_TRAFFIC:
  3904. DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
  3905. if (f_obj->complete_cmd(bp, f_obj,
  3906. BNX2X_F_CMD_TX_STOP))
  3907. break;
  3908. bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
  3909. goto next_spqe;
  3910. case EVENT_RING_OPCODE_START_TRAFFIC:
  3911. DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
  3912. if (f_obj->complete_cmd(bp, f_obj,
  3913. BNX2X_F_CMD_TX_START))
  3914. break;
  3915. bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
  3916. goto next_spqe;
  3917. case EVENT_RING_OPCODE_FUNCTION_START:
  3918. DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
  3919. if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
  3920. break;
  3921. goto next_spqe;
  3922. case EVENT_RING_OPCODE_FUNCTION_STOP:
  3923. DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
  3924. if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
  3925. break;
  3926. goto next_spqe;
  3927. }
  3928. switch (opcode | bp->state) {
  3929. case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
  3930. BNX2X_STATE_OPEN):
  3931. case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
  3932. BNX2X_STATE_OPENING_WAIT4_PORT):
  3933. cid = elem->message.data.eth_event.echo &
  3934. BNX2X_SWCID_MASK;
  3935. DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
  3936. cid);
  3937. rss_raw->clear_pending(rss_raw);
  3938. break;
  3939. case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
  3940. case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
  3941. case (EVENT_RING_OPCODE_SET_MAC |
  3942. BNX2X_STATE_CLOSING_WAIT4_HALT):
  3943. case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
  3944. BNX2X_STATE_OPEN):
  3945. case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
  3946. BNX2X_STATE_DIAG):
  3947. case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
  3948. BNX2X_STATE_CLOSING_WAIT4_HALT):
  3949. DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
  3950. bnx2x_handle_classification_eqe(bp, elem);
  3951. break;
  3952. case (EVENT_RING_OPCODE_MULTICAST_RULES |
  3953. BNX2X_STATE_OPEN):
  3954. case (EVENT_RING_OPCODE_MULTICAST_RULES |
  3955. BNX2X_STATE_DIAG):
  3956. case (EVENT_RING_OPCODE_MULTICAST_RULES |
  3957. BNX2X_STATE_CLOSING_WAIT4_HALT):
  3958. DP(BNX2X_MSG_SP, "got mcast ramrod\n");
  3959. bnx2x_handle_mcast_eqe(bp);
  3960. break;
  3961. case (EVENT_RING_OPCODE_FILTERS_RULES |
  3962. BNX2X_STATE_OPEN):
  3963. case (EVENT_RING_OPCODE_FILTERS_RULES |
  3964. BNX2X_STATE_DIAG):
  3965. case (EVENT_RING_OPCODE_FILTERS_RULES |
  3966. BNX2X_STATE_CLOSING_WAIT4_HALT):
  3967. DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
  3968. bnx2x_handle_rx_mode_eqe(bp);
  3969. break;
  3970. default:
  3971. /* unknown event log error and continue */
  3972. BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
  3973. elem->message.opcode, bp->state);
  3974. }
  3975. next_spqe:
  3976. spqe_cnt++;
  3977. } /* for */
  3978. smp_mb__before_atomic_inc();
  3979. atomic_add(spqe_cnt, &bp->eq_spq_left);
  3980. bp->eq_cons = sw_cons;
  3981. bp->eq_prod = sw_prod;
  3982. /* Make sure that above mem writes were issued towards the memory */
  3983. smp_wmb();
  3984. /* update producer */
  3985. bnx2x_update_eq_prod(bp, bp->eq_prod);
  3986. }
  3987. static void bnx2x_sp_task(struct work_struct *work)
  3988. {
  3989. struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
  3990. u16 status;
  3991. status = bnx2x_update_dsb_idx(bp);
  3992. /* if (status == 0) */
  3993. /* BNX2X_ERR("spurious slowpath interrupt!\n"); */
  3994. DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
  3995. /* HW attentions */
  3996. if (status & BNX2X_DEF_SB_ATT_IDX) {
  3997. bnx2x_attn_int(bp);
  3998. status &= ~BNX2X_DEF_SB_ATT_IDX;
  3999. }
  4000. /* SP events: STAT_QUERY and others */
  4001. if (status & BNX2X_DEF_SB_IDX) {
  4002. #ifdef BCM_CNIC
  4003. struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
  4004. if ((!NO_FCOE(bp)) &&
  4005. (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
  4006. /*
  4007. * Prevent local bottom-halves from running as
  4008. * we are going to change the local NAPI list.
  4009. */
  4010. local_bh_disable();
  4011. napi_schedule(&bnx2x_fcoe(bp, napi));
  4012. local_bh_enable();
  4013. }
  4014. #endif
  4015. /* Handle EQ completions */
  4016. bnx2x_eq_int(bp);
  4017. bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
  4018. le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
  4019. status &= ~BNX2X_DEF_SB_IDX;
  4020. }
  4021. if (unlikely(status))
  4022. DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
  4023. status);
  4024. bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
  4025. le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
  4026. }
  4027. irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
  4028. {
  4029. struct net_device *dev = dev_instance;
  4030. struct bnx2x *bp = netdev_priv(dev);
  4031. bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
  4032. IGU_INT_DISABLE, 0);
  4033. #ifdef BNX2X_STOP_ON_ERROR
  4034. if (unlikely(bp->panic))
  4035. return IRQ_HANDLED;
  4036. #endif
  4037. #ifdef BCM_CNIC
  4038. {
  4039. struct cnic_ops *c_ops;
  4040. rcu_read_lock();
  4041. c_ops = rcu_dereference(bp->cnic_ops);
  4042. if (c_ops)
  4043. c_ops->cnic_handler(bp->cnic_data, NULL);
  4044. rcu_read_unlock();
  4045. }
  4046. #endif
  4047. queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
  4048. return IRQ_HANDLED;
  4049. }
  4050. /* end of slow path */
  4051. void bnx2x_drv_pulse(struct bnx2x *bp)
  4052. {
  4053. SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
  4054. bp->fw_drv_pulse_wr_seq);
  4055. }
  4056. static void bnx2x_timer(unsigned long data)
  4057. {
  4058. struct bnx2x *bp = (struct bnx2x *) data;
  4059. if (!netif_running(bp->dev))
  4060. return;
  4061. if (!BP_NOMCP(bp)) {
  4062. int mb_idx = BP_FW_MB_IDX(bp);
  4063. u32 drv_pulse;
  4064. u32 mcp_pulse;
  4065. ++bp->fw_drv_pulse_wr_seq;
  4066. bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
  4067. /* TBD - add SYSTEM_TIME */
  4068. drv_pulse = bp->fw_drv_pulse_wr_seq;
  4069. bnx2x_drv_pulse(bp);
  4070. mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
  4071. MCP_PULSE_SEQ_MASK);
  4072. /* The delta between driver pulse and mcp response
  4073. * should be 1 (before mcp response) or 0 (after mcp response)
  4074. */
  4075. if ((drv_pulse != mcp_pulse) &&
  4076. (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
  4077. /* someone lost a heartbeat... */
  4078. BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
  4079. drv_pulse, mcp_pulse);
  4080. }
  4081. }
  4082. if (bp->state == BNX2X_STATE_OPEN)
  4083. bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
  4084. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4085. }
  4086. /* end of Statistics */
  4087. /* nic init */
  4088. /*
  4089. * nic init service functions
  4090. */
  4091. static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
  4092. {
  4093. u32 i;
  4094. if (!(len%4) && !(addr%4))
  4095. for (i = 0; i < len; i += 4)
  4096. REG_WR(bp, addr + i, fill);
  4097. else
  4098. for (i = 0; i < len; i++)
  4099. REG_WR8(bp, addr + i, fill);
  4100. }
  4101. /* helper: writes FP SP data to FW - data_size in dwords */
  4102. static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
  4103. int fw_sb_id,
  4104. u32 *sb_data_p,
  4105. u32 data_size)
  4106. {
  4107. int index;
  4108. for (index = 0; index < data_size; index++)
  4109. REG_WR(bp, BAR_CSTRORM_INTMEM +
  4110. CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
  4111. sizeof(u32)*index,
  4112. *(sb_data_p + index));
  4113. }
  4114. static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
  4115. {
  4116. u32 *sb_data_p;
  4117. u32 data_size = 0;
  4118. struct hc_status_block_data_e2 sb_data_e2;
  4119. struct hc_status_block_data_e1x sb_data_e1x;
  4120. /* disable the function first */
  4121. if (!CHIP_IS_E1x(bp)) {
  4122. memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
  4123. sb_data_e2.common.state = SB_DISABLED;
  4124. sb_data_e2.common.p_func.vf_valid = false;
  4125. sb_data_p = (u32 *)&sb_data_e2;
  4126. data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
  4127. } else {
  4128. memset(&sb_data_e1x, 0,
  4129. sizeof(struct hc_status_block_data_e1x));
  4130. sb_data_e1x.common.state = SB_DISABLED;
  4131. sb_data_e1x.common.p_func.vf_valid = false;
  4132. sb_data_p = (u32 *)&sb_data_e1x;
  4133. data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
  4134. }
  4135. bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
  4136. bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
  4137. CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
  4138. CSTORM_STATUS_BLOCK_SIZE);
  4139. bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
  4140. CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
  4141. CSTORM_SYNC_BLOCK_SIZE);
  4142. }
  4143. /* helper: writes SP SB data to FW */
  4144. static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
  4145. struct hc_sp_status_block_data *sp_sb_data)
  4146. {
  4147. int func = BP_FUNC(bp);
  4148. int i;
  4149. for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
  4150. REG_WR(bp, BAR_CSTRORM_INTMEM +
  4151. CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
  4152. i*sizeof(u32),
  4153. *((u32 *)sp_sb_data + i));
  4154. }
  4155. static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
  4156. {
  4157. int func = BP_FUNC(bp);
  4158. struct hc_sp_status_block_data sp_sb_data;
  4159. memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
  4160. sp_sb_data.state = SB_DISABLED;
  4161. sp_sb_data.p_func.vf_valid = false;
  4162. bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
  4163. bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
  4164. CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
  4165. CSTORM_SP_STATUS_BLOCK_SIZE);
  4166. bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
  4167. CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
  4168. CSTORM_SP_SYNC_BLOCK_SIZE);
  4169. }
  4170. static inline
  4171. void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
  4172. int igu_sb_id, int igu_seg_id)
  4173. {
  4174. hc_sm->igu_sb_id = igu_sb_id;
  4175. hc_sm->igu_seg_id = igu_seg_id;
  4176. hc_sm->timer_value = 0xFF;
  4177. hc_sm->time_to_expire = 0xFFFFFFFF;
  4178. }
  4179. /* allocates state machine ids. */
  4180. static inline
  4181. void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
  4182. {
  4183. /* zero out state machine indices */
  4184. /* rx indices */
  4185. index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
  4186. /* tx indices */
  4187. index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
  4188. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
  4189. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
  4190. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
  4191. /* map indices */
  4192. /* rx indices */
  4193. index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
  4194. SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4195. /* tx indices */
  4196. index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
  4197. SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4198. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
  4199. SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4200. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
  4201. SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4202. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
  4203. SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4204. }
  4205. static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
  4206. u8 vf_valid, int fw_sb_id, int igu_sb_id)
  4207. {
  4208. int igu_seg_id;
  4209. struct hc_status_block_data_e2 sb_data_e2;
  4210. struct hc_status_block_data_e1x sb_data_e1x;
  4211. struct hc_status_block_sm *hc_sm_p;
  4212. int data_size;
  4213. u32 *sb_data_p;
  4214. if (CHIP_INT_MODE_IS_BC(bp))
  4215. igu_seg_id = HC_SEG_ACCESS_NORM;
  4216. else
  4217. igu_seg_id = IGU_SEG_ACCESS_NORM;
  4218. bnx2x_zero_fp_sb(bp, fw_sb_id);
  4219. if (!CHIP_IS_E1x(bp)) {
  4220. memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
  4221. sb_data_e2.common.state = SB_ENABLED;
  4222. sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
  4223. sb_data_e2.common.p_func.vf_id = vfid;
  4224. sb_data_e2.common.p_func.vf_valid = vf_valid;
  4225. sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
  4226. sb_data_e2.common.same_igu_sb_1b = true;
  4227. sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
  4228. sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
  4229. hc_sm_p = sb_data_e2.common.state_machine;
  4230. sb_data_p = (u32 *)&sb_data_e2;
  4231. data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
  4232. bnx2x_map_sb_state_machines(sb_data_e2.index_data);
  4233. } else {
  4234. memset(&sb_data_e1x, 0,
  4235. sizeof(struct hc_status_block_data_e1x));
  4236. sb_data_e1x.common.state = SB_ENABLED;
  4237. sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
  4238. sb_data_e1x.common.p_func.vf_id = 0xff;
  4239. sb_data_e1x.common.p_func.vf_valid = false;
  4240. sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
  4241. sb_data_e1x.common.same_igu_sb_1b = true;
  4242. sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
  4243. sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
  4244. hc_sm_p = sb_data_e1x.common.state_machine;
  4245. sb_data_p = (u32 *)&sb_data_e1x;
  4246. data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
  4247. bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
  4248. }
  4249. bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
  4250. igu_sb_id, igu_seg_id);
  4251. bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
  4252. igu_sb_id, igu_seg_id);
  4253. DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
  4254. /* write indecies to HW */
  4255. bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
  4256. }
  4257. static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
  4258. u16 tx_usec, u16 rx_usec)
  4259. {
  4260. bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
  4261. false, rx_usec);
  4262. bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
  4263. HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
  4264. tx_usec);
  4265. bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
  4266. HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
  4267. tx_usec);
  4268. bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
  4269. HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
  4270. tx_usec);
  4271. }
  4272. static void bnx2x_init_def_sb(struct bnx2x *bp)
  4273. {
  4274. struct host_sp_status_block *def_sb = bp->def_status_blk;
  4275. dma_addr_t mapping = bp->def_status_blk_mapping;
  4276. int igu_sp_sb_index;
  4277. int igu_seg_id;
  4278. int port = BP_PORT(bp);
  4279. int func = BP_FUNC(bp);
  4280. int reg_offset, reg_offset_en5;
  4281. u64 section;
  4282. int index;
  4283. struct hc_sp_status_block_data sp_sb_data;
  4284. memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
  4285. if (CHIP_INT_MODE_IS_BC(bp)) {
  4286. igu_sp_sb_index = DEF_SB_IGU_ID;
  4287. igu_seg_id = HC_SEG_ACCESS_DEF;
  4288. } else {
  4289. igu_sp_sb_index = bp->igu_dsb_id;
  4290. igu_seg_id = IGU_SEG_ACCESS_DEF;
  4291. }
  4292. /* ATTN */
  4293. section = ((u64)mapping) + offsetof(struct host_sp_status_block,
  4294. atten_status_block);
  4295. def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
  4296. bp->attn_state = 0;
  4297. reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
  4298. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
  4299. reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
  4300. MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
  4301. for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
  4302. int sindex;
  4303. /* take care of sig[0]..sig[4] */
  4304. for (sindex = 0; sindex < 4; sindex++)
  4305. bp->attn_group[index].sig[sindex] =
  4306. REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
  4307. if (!CHIP_IS_E1x(bp))
  4308. /*
  4309. * enable5 is separate from the rest of the registers,
  4310. * and therefore the address skip is 4
  4311. * and not 16 between the different groups
  4312. */
  4313. bp->attn_group[index].sig[4] = REG_RD(bp,
  4314. reg_offset_en5 + 0x4*index);
  4315. else
  4316. bp->attn_group[index].sig[4] = 0;
  4317. }
  4318. if (bp->common.int_block == INT_BLOCK_HC) {
  4319. reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
  4320. HC_REG_ATTN_MSG0_ADDR_L);
  4321. REG_WR(bp, reg_offset, U64_LO(section));
  4322. REG_WR(bp, reg_offset + 4, U64_HI(section));
  4323. } else if (!CHIP_IS_E1x(bp)) {
  4324. REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
  4325. REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
  4326. }
  4327. section = ((u64)mapping) + offsetof(struct host_sp_status_block,
  4328. sp_sb);
  4329. bnx2x_zero_sp_sb(bp);
  4330. sp_sb_data.state = SB_ENABLED;
  4331. sp_sb_data.host_sb_addr.lo = U64_LO(section);
  4332. sp_sb_data.host_sb_addr.hi = U64_HI(section);
  4333. sp_sb_data.igu_sb_id = igu_sp_sb_index;
  4334. sp_sb_data.igu_seg_id = igu_seg_id;
  4335. sp_sb_data.p_func.pf_id = func;
  4336. sp_sb_data.p_func.vnic_id = BP_VN(bp);
  4337. sp_sb_data.p_func.vf_id = 0xff;
  4338. bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
  4339. bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
  4340. }
  4341. void bnx2x_update_coalesce(struct bnx2x *bp)
  4342. {
  4343. int i;
  4344. for_each_eth_queue(bp, i)
  4345. bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
  4346. bp->tx_ticks, bp->rx_ticks);
  4347. }
  4348. static void bnx2x_init_sp_ring(struct bnx2x *bp)
  4349. {
  4350. spin_lock_init(&bp->spq_lock);
  4351. atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
  4352. bp->spq_prod_idx = 0;
  4353. bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
  4354. bp->spq_prod_bd = bp->spq;
  4355. bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
  4356. }
  4357. static void bnx2x_init_eq_ring(struct bnx2x *bp)
  4358. {
  4359. int i;
  4360. for (i = 1; i <= NUM_EQ_PAGES; i++) {
  4361. union event_ring_elem *elem =
  4362. &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
  4363. elem->next_page.addr.hi =
  4364. cpu_to_le32(U64_HI(bp->eq_mapping +
  4365. BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
  4366. elem->next_page.addr.lo =
  4367. cpu_to_le32(U64_LO(bp->eq_mapping +
  4368. BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
  4369. }
  4370. bp->eq_cons = 0;
  4371. bp->eq_prod = NUM_EQ_DESC;
  4372. bp->eq_cons_sb = BNX2X_EQ_INDEX;
  4373. /* we want a warning message before it gets rought... */
  4374. atomic_set(&bp->eq_spq_left,
  4375. min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
  4376. }
  4377. /* called with netif_addr_lock_bh() */
  4378. void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
  4379. unsigned long rx_mode_flags,
  4380. unsigned long rx_accept_flags,
  4381. unsigned long tx_accept_flags,
  4382. unsigned long ramrod_flags)
  4383. {
  4384. struct bnx2x_rx_mode_ramrod_params ramrod_param;
  4385. int rc;
  4386. memset(&ramrod_param, 0, sizeof(ramrod_param));
  4387. /* Prepare ramrod parameters */
  4388. ramrod_param.cid = 0;
  4389. ramrod_param.cl_id = cl_id;
  4390. ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
  4391. ramrod_param.func_id = BP_FUNC(bp);
  4392. ramrod_param.pstate = &bp->sp_state;
  4393. ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
  4394. ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
  4395. ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
  4396. set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
  4397. ramrod_param.ramrod_flags = ramrod_flags;
  4398. ramrod_param.rx_mode_flags = rx_mode_flags;
  4399. ramrod_param.rx_accept_flags = rx_accept_flags;
  4400. ramrod_param.tx_accept_flags = tx_accept_flags;
  4401. rc = bnx2x_config_rx_mode(bp, &ramrod_param);
  4402. if (rc < 0) {
  4403. BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
  4404. return;
  4405. }
  4406. }
  4407. /* called with netif_addr_lock_bh() */
  4408. void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
  4409. {
  4410. unsigned long rx_mode_flags = 0, ramrod_flags = 0;
  4411. unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
  4412. #ifdef BCM_CNIC
  4413. if (!NO_FCOE(bp))
  4414. /* Configure rx_mode of FCoE Queue */
  4415. __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
  4416. #endif
  4417. switch (bp->rx_mode) {
  4418. case BNX2X_RX_MODE_NONE:
  4419. /*
  4420. * 'drop all' supersedes any accept flags that may have been
  4421. * passed to the function.
  4422. */
  4423. break;
  4424. case BNX2X_RX_MODE_NORMAL:
  4425. __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
  4426. __set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
  4427. __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
  4428. /* internal switching mode */
  4429. __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
  4430. __set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
  4431. __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
  4432. break;
  4433. case BNX2X_RX_MODE_ALLMULTI:
  4434. __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
  4435. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
  4436. __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
  4437. /* internal switching mode */
  4438. __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
  4439. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
  4440. __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
  4441. break;
  4442. case BNX2X_RX_MODE_PROMISC:
  4443. /* According to deffinition of SI mode, iface in promisc mode
  4444. * should receive matched and unmatched (in resolution of port)
  4445. * unicast packets.
  4446. */
  4447. __set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
  4448. __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
  4449. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
  4450. __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
  4451. /* internal switching mode */
  4452. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
  4453. __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
  4454. if (IS_MF_SI(bp))
  4455. __set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
  4456. else
  4457. __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
  4458. break;
  4459. default:
  4460. BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
  4461. return;
  4462. }
  4463. if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
  4464. __set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
  4465. __set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
  4466. }
  4467. __set_bit(RAMROD_RX, &ramrod_flags);
  4468. __set_bit(RAMROD_TX, &ramrod_flags);
  4469. bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
  4470. tx_accept_flags, ramrod_flags);
  4471. }
  4472. static void bnx2x_init_internal_common(struct bnx2x *bp)
  4473. {
  4474. int i;
  4475. if (IS_MF_SI(bp))
  4476. /*
  4477. * In switch independent mode, the TSTORM needs to accept
  4478. * packets that failed classification, since approximate match
  4479. * mac addresses aren't written to NIG LLH
  4480. */
  4481. REG_WR8(bp, BAR_TSTRORM_INTMEM +
  4482. TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
  4483. else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
  4484. REG_WR8(bp, BAR_TSTRORM_INTMEM +
  4485. TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
  4486. /* Zero this manually as its initialization is
  4487. currently missing in the initTool */
  4488. for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
  4489. REG_WR(bp, BAR_USTRORM_INTMEM +
  4490. USTORM_AGG_DATA_OFFSET + i * 4, 0);
  4491. if (!CHIP_IS_E1x(bp)) {
  4492. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
  4493. CHIP_INT_MODE_IS_BC(bp) ?
  4494. HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
  4495. }
  4496. }
  4497. static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
  4498. {
  4499. switch (load_code) {
  4500. case FW_MSG_CODE_DRV_LOAD_COMMON:
  4501. case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
  4502. bnx2x_init_internal_common(bp);
  4503. /* no break */
  4504. case FW_MSG_CODE_DRV_LOAD_PORT:
  4505. /* nothing to do */
  4506. /* no break */
  4507. case FW_MSG_CODE_DRV_LOAD_FUNCTION:
  4508. /* internal memory per function is
  4509. initialized inside bnx2x_pf_init */
  4510. break;
  4511. default:
  4512. BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
  4513. break;
  4514. }
  4515. }
  4516. static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
  4517. {
  4518. return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
  4519. }
  4520. static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
  4521. {
  4522. return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
  4523. }
  4524. static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
  4525. {
  4526. if (CHIP_IS_E1x(fp->bp))
  4527. return BP_L_ID(fp->bp) + fp->index;
  4528. else /* We want Client ID to be the same as IGU SB ID for 57712 */
  4529. return bnx2x_fp_igu_sb_id(fp);
  4530. }
  4531. static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
  4532. {
  4533. struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
  4534. u8 cos;
  4535. unsigned long q_type = 0;
  4536. u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
  4537. fp->rx_queue = fp_idx;
  4538. fp->cid = fp_idx;
  4539. fp->cl_id = bnx2x_fp_cl_id(fp);
  4540. fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
  4541. fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
  4542. /* qZone id equals to FW (per path) client id */
  4543. fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
  4544. /* init shortcut */
  4545. fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
  4546. /* Setup SB indicies */
  4547. fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
  4548. /* Configure Queue State object */
  4549. __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
  4550. __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
  4551. BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
  4552. /* init tx data */
  4553. for_each_cos_in_tx_queue(fp, cos) {
  4554. bnx2x_init_txdata(bp, &fp->txdata[cos],
  4555. CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
  4556. FP_COS_TO_TXQ(fp, cos),
  4557. BNX2X_TX_SB_INDEX_BASE + cos);
  4558. cids[cos] = fp->txdata[cos].cid;
  4559. }
  4560. bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
  4561. BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
  4562. bnx2x_sp_mapping(bp, q_rdata), q_type);
  4563. /**
  4564. * Configure classification DBs: Always enable Tx switching
  4565. */
  4566. bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
  4567. DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) "
  4568. "cl_id %d fw_sb %d igu_sb %d\n",
  4569. fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
  4570. fp->igu_sb_id);
  4571. bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
  4572. fp->fw_sb_id, fp->igu_sb_id);
  4573. bnx2x_update_fpsb_idx(fp);
  4574. }
  4575. void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
  4576. {
  4577. int i;
  4578. for_each_eth_queue(bp, i)
  4579. bnx2x_init_eth_fp(bp, i);
  4580. #ifdef BCM_CNIC
  4581. if (!NO_FCOE(bp))
  4582. bnx2x_init_fcoe_fp(bp);
  4583. bnx2x_init_sb(bp, bp->cnic_sb_mapping,
  4584. BNX2X_VF_ID_INVALID, false,
  4585. bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
  4586. #endif
  4587. /* Initialize MOD_ABS interrupts */
  4588. bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
  4589. bp->common.shmem_base, bp->common.shmem2_base,
  4590. BP_PORT(bp));
  4591. /* ensure status block indices were read */
  4592. rmb();
  4593. bnx2x_init_def_sb(bp);
  4594. bnx2x_update_dsb_idx(bp);
  4595. bnx2x_init_rx_rings(bp);
  4596. bnx2x_init_tx_rings(bp);
  4597. bnx2x_init_sp_ring(bp);
  4598. bnx2x_init_eq_ring(bp);
  4599. bnx2x_init_internal(bp, load_code);
  4600. bnx2x_pf_init(bp);
  4601. bnx2x_stats_init(bp);
  4602. /* flush all before enabling interrupts */
  4603. mb();
  4604. mmiowb();
  4605. bnx2x_int_enable(bp);
  4606. /* Check for SPIO5 */
  4607. bnx2x_attn_int_deasserted0(bp,
  4608. REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
  4609. AEU_INPUTS_ATTN_BITS_SPIO5);
  4610. }
  4611. /* end of nic init */
  4612. /*
  4613. * gzip service functions
  4614. */
  4615. static int bnx2x_gunzip_init(struct bnx2x *bp)
  4616. {
  4617. bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
  4618. &bp->gunzip_mapping, GFP_KERNEL);
  4619. if (bp->gunzip_buf == NULL)
  4620. goto gunzip_nomem1;
  4621. bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
  4622. if (bp->strm == NULL)
  4623. goto gunzip_nomem2;
  4624. bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
  4625. if (bp->strm->workspace == NULL)
  4626. goto gunzip_nomem3;
  4627. return 0;
  4628. gunzip_nomem3:
  4629. kfree(bp->strm);
  4630. bp->strm = NULL;
  4631. gunzip_nomem2:
  4632. dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
  4633. bp->gunzip_mapping);
  4634. bp->gunzip_buf = NULL;
  4635. gunzip_nomem1:
  4636. netdev_err(bp->dev, "Cannot allocate firmware buffer for"
  4637. " un-compression\n");
  4638. return -ENOMEM;
  4639. }
  4640. static void bnx2x_gunzip_end(struct bnx2x *bp)
  4641. {
  4642. if (bp->strm) {
  4643. vfree(bp->strm->workspace);
  4644. kfree(bp->strm);
  4645. bp->strm = NULL;
  4646. }
  4647. if (bp->gunzip_buf) {
  4648. dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
  4649. bp->gunzip_mapping);
  4650. bp->gunzip_buf = NULL;
  4651. }
  4652. }
  4653. static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
  4654. {
  4655. int n, rc;
  4656. /* check gzip header */
  4657. if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
  4658. BNX2X_ERR("Bad gzip header\n");
  4659. return -EINVAL;
  4660. }
  4661. n = 10;
  4662. #define FNAME 0x8
  4663. if (zbuf[3] & FNAME)
  4664. while ((zbuf[n++] != 0) && (n < len));
  4665. bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
  4666. bp->strm->avail_in = len - n;
  4667. bp->strm->next_out = bp->gunzip_buf;
  4668. bp->strm->avail_out = FW_BUF_SIZE;
  4669. rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
  4670. if (rc != Z_OK)
  4671. return rc;
  4672. rc = zlib_inflate(bp->strm, Z_FINISH);
  4673. if ((rc != Z_OK) && (rc != Z_STREAM_END))
  4674. netdev_err(bp->dev, "Firmware decompression error: %s\n",
  4675. bp->strm->msg);
  4676. bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
  4677. if (bp->gunzip_outlen & 0x3)
  4678. netdev_err(bp->dev, "Firmware decompression error:"
  4679. " gunzip_outlen (%d) not aligned\n",
  4680. bp->gunzip_outlen);
  4681. bp->gunzip_outlen >>= 2;
  4682. zlib_inflateEnd(bp->strm);
  4683. if (rc == Z_STREAM_END)
  4684. return 0;
  4685. return rc;
  4686. }
  4687. /* nic load/unload */
  4688. /*
  4689. * General service functions
  4690. */
  4691. /* send a NIG loopback debug packet */
  4692. static void bnx2x_lb_pckt(struct bnx2x *bp)
  4693. {
  4694. u32 wb_write[3];
  4695. /* Ethernet source and destination addresses */
  4696. wb_write[0] = 0x55555555;
  4697. wb_write[1] = 0x55555555;
  4698. wb_write[2] = 0x20; /* SOP */
  4699. REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
  4700. /* NON-IP protocol */
  4701. wb_write[0] = 0x09000000;
  4702. wb_write[1] = 0x55555555;
  4703. wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
  4704. REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
  4705. }
  4706. /* some of the internal memories
  4707. * are not directly readable from the driver
  4708. * to test them we send debug packets
  4709. */
  4710. static int bnx2x_int_mem_test(struct bnx2x *bp)
  4711. {
  4712. int factor;
  4713. int count, i;
  4714. u32 val = 0;
  4715. if (CHIP_REV_IS_FPGA(bp))
  4716. factor = 120;
  4717. else if (CHIP_REV_IS_EMUL(bp))
  4718. factor = 200;
  4719. else
  4720. factor = 1;
  4721. /* Disable inputs of parser neighbor blocks */
  4722. REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
  4723. REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
  4724. REG_WR(bp, CFC_REG_DEBUG0, 0x1);
  4725. REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
  4726. /* Write 0 to parser credits for CFC search request */
  4727. REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
  4728. /* send Ethernet packet */
  4729. bnx2x_lb_pckt(bp);
  4730. /* TODO do i reset NIG statistic? */
  4731. /* Wait until NIG register shows 1 packet of size 0x10 */
  4732. count = 1000 * factor;
  4733. while (count) {
  4734. bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
  4735. val = *bnx2x_sp(bp, wb_data[0]);
  4736. if (val == 0x10)
  4737. break;
  4738. msleep(10);
  4739. count--;
  4740. }
  4741. if (val != 0x10) {
  4742. BNX2X_ERR("NIG timeout val = 0x%x\n", val);
  4743. return -1;
  4744. }
  4745. /* Wait until PRS register shows 1 packet */
  4746. count = 1000 * factor;
  4747. while (count) {
  4748. val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
  4749. if (val == 1)
  4750. break;
  4751. msleep(10);
  4752. count--;
  4753. }
  4754. if (val != 0x1) {
  4755. BNX2X_ERR("PRS timeout val = 0x%x\n", val);
  4756. return -2;
  4757. }
  4758. /* Reset and init BRB, PRS */
  4759. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
  4760. msleep(50);
  4761. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
  4762. msleep(50);
  4763. bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
  4764. bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
  4765. DP(NETIF_MSG_HW, "part2\n");
  4766. /* Disable inputs of parser neighbor blocks */
  4767. REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
  4768. REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
  4769. REG_WR(bp, CFC_REG_DEBUG0, 0x1);
  4770. REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
  4771. /* Write 0 to parser credits for CFC search request */
  4772. REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
  4773. /* send 10 Ethernet packets */
  4774. for (i = 0; i < 10; i++)
  4775. bnx2x_lb_pckt(bp);
  4776. /* Wait until NIG register shows 10 + 1
  4777. packets of size 11*0x10 = 0xb0 */
  4778. count = 1000 * factor;
  4779. while (count) {
  4780. bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
  4781. val = *bnx2x_sp(bp, wb_data[0]);
  4782. if (val == 0xb0)
  4783. break;
  4784. msleep(10);
  4785. count--;
  4786. }
  4787. if (val != 0xb0) {
  4788. BNX2X_ERR("NIG timeout val = 0x%x\n", val);
  4789. return -3;
  4790. }
  4791. /* Wait until PRS register shows 2 packets */
  4792. val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
  4793. if (val != 2)
  4794. BNX2X_ERR("PRS timeout val = 0x%x\n", val);
  4795. /* Write 1 to parser credits for CFC search request */
  4796. REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
  4797. /* Wait until PRS register shows 3 packets */
  4798. msleep(10 * factor);
  4799. /* Wait until NIG register shows 1 packet of size 0x10 */
  4800. val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
  4801. if (val != 3)
  4802. BNX2X_ERR("PRS timeout val = 0x%x\n", val);
  4803. /* clear NIG EOP FIFO */
  4804. for (i = 0; i < 11; i++)
  4805. REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
  4806. val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
  4807. if (val != 1) {
  4808. BNX2X_ERR("clear of NIG failed\n");
  4809. return -4;
  4810. }
  4811. /* Reset and init BRB, PRS, NIG */
  4812. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
  4813. msleep(50);
  4814. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
  4815. msleep(50);
  4816. bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
  4817. bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
  4818. #ifndef BCM_CNIC
  4819. /* set NIC mode */
  4820. REG_WR(bp, PRS_REG_NIC_MODE, 1);
  4821. #endif
  4822. /* Enable inputs of parser neighbor blocks */
  4823. REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
  4824. REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
  4825. REG_WR(bp, CFC_REG_DEBUG0, 0x0);
  4826. REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
  4827. DP(NETIF_MSG_HW, "done\n");
  4828. return 0; /* OK */
  4829. }
  4830. static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
  4831. {
  4832. REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
  4833. if (!CHIP_IS_E1x(bp))
  4834. REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
  4835. else
  4836. REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
  4837. REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
  4838. REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
  4839. /*
  4840. * mask read length error interrupts in brb for parser
  4841. * (parsing unit and 'checksum and crc' unit)
  4842. * these errors are legal (PU reads fixed length and CAC can cause
  4843. * read length error on truncated packets)
  4844. */
  4845. REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
  4846. REG_WR(bp, QM_REG_QM_INT_MASK, 0);
  4847. REG_WR(bp, TM_REG_TM_INT_MASK, 0);
  4848. REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
  4849. REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
  4850. REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
  4851. /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
  4852. /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
  4853. REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
  4854. REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
  4855. REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
  4856. /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
  4857. /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
  4858. REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
  4859. REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
  4860. REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
  4861. REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
  4862. /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
  4863. /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
  4864. if (CHIP_REV_IS_FPGA(bp))
  4865. REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
  4866. else if (!CHIP_IS_E1x(bp))
  4867. REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
  4868. (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
  4869. | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
  4870. | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
  4871. | PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
  4872. | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
  4873. else
  4874. REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
  4875. REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
  4876. REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
  4877. REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
  4878. /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
  4879. if (!CHIP_IS_E1x(bp))
  4880. /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
  4881. REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
  4882. REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
  4883. REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
  4884. /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
  4885. REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
  4886. }
  4887. static void bnx2x_reset_common(struct bnx2x *bp)
  4888. {
  4889. u32 val = 0x1400;
  4890. /* reset_common */
  4891. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
  4892. 0xd3ffff7f);
  4893. if (CHIP_IS_E3(bp)) {
  4894. val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
  4895. val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
  4896. }
  4897. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
  4898. }
  4899. static void bnx2x_setup_dmae(struct bnx2x *bp)
  4900. {
  4901. bp->dmae_ready = 0;
  4902. spin_lock_init(&bp->dmae_lock);
  4903. }
  4904. static void bnx2x_init_pxp(struct bnx2x *bp)
  4905. {
  4906. u16 devctl;
  4907. int r_order, w_order;
  4908. pci_read_config_word(bp->pdev,
  4909. pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
  4910. DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
  4911. w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
  4912. if (bp->mrrs == -1)
  4913. r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
  4914. else {
  4915. DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
  4916. r_order = bp->mrrs;
  4917. }
  4918. bnx2x_init_pxp_arb(bp, r_order, w_order);
  4919. }
  4920. static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
  4921. {
  4922. int is_required;
  4923. u32 val;
  4924. int port;
  4925. if (BP_NOMCP(bp))
  4926. return;
  4927. is_required = 0;
  4928. val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
  4929. SHARED_HW_CFG_FAN_FAILURE_MASK;
  4930. if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
  4931. is_required = 1;
  4932. /*
  4933. * The fan failure mechanism is usually related to the PHY type since
  4934. * the power consumption of the board is affected by the PHY. Currently,
  4935. * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
  4936. */
  4937. else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
  4938. for (port = PORT_0; port < PORT_MAX; port++) {
  4939. is_required |=
  4940. bnx2x_fan_failure_det_req(
  4941. bp,
  4942. bp->common.shmem_base,
  4943. bp->common.shmem2_base,
  4944. port);
  4945. }
  4946. DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
  4947. if (is_required == 0)
  4948. return;
  4949. /* Fan failure is indicated by SPIO 5 */
  4950. bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
  4951. MISC_REGISTERS_SPIO_INPUT_HI_Z);
  4952. /* set to active low mode */
  4953. val = REG_RD(bp, MISC_REG_SPIO_INT);
  4954. val |= ((1 << MISC_REGISTERS_SPIO_5) <<
  4955. MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
  4956. REG_WR(bp, MISC_REG_SPIO_INT, val);
  4957. /* enable interrupt to signal the IGU */
  4958. val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
  4959. val |= (1 << MISC_REGISTERS_SPIO_5);
  4960. REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
  4961. }
  4962. static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
  4963. {
  4964. u32 offset = 0;
  4965. if (CHIP_IS_E1(bp))
  4966. return;
  4967. if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
  4968. return;
  4969. switch (BP_ABS_FUNC(bp)) {
  4970. case 0:
  4971. offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
  4972. break;
  4973. case 1:
  4974. offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
  4975. break;
  4976. case 2:
  4977. offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
  4978. break;
  4979. case 3:
  4980. offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
  4981. break;
  4982. case 4:
  4983. offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
  4984. break;
  4985. case 5:
  4986. offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
  4987. break;
  4988. case 6:
  4989. offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
  4990. break;
  4991. case 7:
  4992. offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
  4993. break;
  4994. default:
  4995. return;
  4996. }
  4997. REG_WR(bp, offset, pretend_func_num);
  4998. REG_RD(bp, offset);
  4999. DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
  5000. }
  5001. void bnx2x_pf_disable(struct bnx2x *bp)
  5002. {
  5003. u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
  5004. val &= ~IGU_PF_CONF_FUNC_EN;
  5005. REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
  5006. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
  5007. REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
  5008. }
  5009. static inline void bnx2x__common_init_phy(struct bnx2x *bp)
  5010. {
  5011. u32 shmem_base[2], shmem2_base[2];
  5012. shmem_base[0] = bp->common.shmem_base;
  5013. shmem2_base[0] = bp->common.shmem2_base;
  5014. if (!CHIP_IS_E1x(bp)) {
  5015. shmem_base[1] =
  5016. SHMEM2_RD(bp, other_shmem_base_addr);
  5017. shmem2_base[1] =
  5018. SHMEM2_RD(bp, other_shmem2_base_addr);
  5019. }
  5020. bnx2x_acquire_phy_lock(bp);
  5021. bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
  5022. bp->common.chip_id);
  5023. bnx2x_release_phy_lock(bp);
  5024. }
  5025. /**
  5026. * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
  5027. *
  5028. * @bp: driver handle
  5029. */
  5030. static int bnx2x_init_hw_common(struct bnx2x *bp)
  5031. {
  5032. u32 val;
  5033. DP(BNX2X_MSG_MCP, "starting common init func %d\n", BP_ABS_FUNC(bp));
  5034. /*
  5035. * take the UNDI lock to protect undi_unload flow from accessing
  5036. * registers while we're resetting the chip
  5037. */
  5038. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  5039. bnx2x_reset_common(bp);
  5040. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
  5041. val = 0xfffc;
  5042. if (CHIP_IS_E3(bp)) {
  5043. val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
  5044. val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
  5045. }
  5046. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
  5047. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  5048. bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
  5049. if (!CHIP_IS_E1x(bp)) {
  5050. u8 abs_func_id;
  5051. /**
  5052. * 4-port mode or 2-port mode we need to turn of master-enable
  5053. * for everyone, after that, turn it back on for self.
  5054. * so, we disregard multi-function or not, and always disable
  5055. * for all functions on the given path, this means 0,2,4,6 for
  5056. * path 0 and 1,3,5,7 for path 1
  5057. */
  5058. for (abs_func_id = BP_PATH(bp);
  5059. abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
  5060. if (abs_func_id == BP_ABS_FUNC(bp)) {
  5061. REG_WR(bp,
  5062. PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
  5063. 1);
  5064. continue;
  5065. }
  5066. bnx2x_pretend_func(bp, abs_func_id);
  5067. /* clear pf enable */
  5068. bnx2x_pf_disable(bp);
  5069. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  5070. }
  5071. }
  5072. bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
  5073. if (CHIP_IS_E1(bp)) {
  5074. /* enable HW interrupt from PXP on USDM overflow
  5075. bit 16 on INT_MASK_0 */
  5076. REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
  5077. }
  5078. bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
  5079. bnx2x_init_pxp(bp);
  5080. #ifdef __BIG_ENDIAN
  5081. REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
  5082. REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
  5083. REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
  5084. REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
  5085. REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
  5086. /* make sure this value is 0 */
  5087. REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
  5088. /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
  5089. REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
  5090. REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
  5091. REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
  5092. REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
  5093. #endif
  5094. bnx2x_ilt_init_page_size(bp, INITOP_SET);
  5095. if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
  5096. REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
  5097. /* let the HW do it's magic ... */
  5098. msleep(100);
  5099. /* finish PXP init */
  5100. val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
  5101. if (val != 1) {
  5102. BNX2X_ERR("PXP2 CFG failed\n");
  5103. return -EBUSY;
  5104. }
  5105. val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
  5106. if (val != 1) {
  5107. BNX2X_ERR("PXP2 RD_INIT failed\n");
  5108. return -EBUSY;
  5109. }
  5110. /* Timers bug workaround E2 only. We need to set the entire ILT to
  5111. * have entries with value "0" and valid bit on.
  5112. * This needs to be done by the first PF that is loaded in a path
  5113. * (i.e. common phase)
  5114. */
  5115. if (!CHIP_IS_E1x(bp)) {
  5116. /* In E2 there is a bug in the timers block that can cause function 6 / 7
  5117. * (i.e. vnic3) to start even if it is marked as "scan-off".
  5118. * This occurs when a different function (func2,3) is being marked
  5119. * as "scan-off". Real-life scenario for example: if a driver is being
  5120. * load-unloaded while func6,7 are down. This will cause the timer to access
  5121. * the ilt, translate to a logical address and send a request to read/write.
  5122. * Since the ilt for the function that is down is not valid, this will cause
  5123. * a translation error which is unrecoverable.
  5124. * The Workaround is intended to make sure that when this happens nothing fatal
  5125. * will occur. The workaround:
  5126. * 1. First PF driver which loads on a path will:
  5127. * a. After taking the chip out of reset, by using pretend,
  5128. * it will write "0" to the following registers of
  5129. * the other vnics.
  5130. * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
  5131. * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
  5132. * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
  5133. * And for itself it will write '1' to
  5134. * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
  5135. * dmae-operations (writing to pram for example.)
  5136. * note: can be done for only function 6,7 but cleaner this
  5137. * way.
  5138. * b. Write zero+valid to the entire ILT.
  5139. * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
  5140. * VNIC3 (of that port). The range allocated will be the
  5141. * entire ILT. This is needed to prevent ILT range error.
  5142. * 2. Any PF driver load flow:
  5143. * a. ILT update with the physical addresses of the allocated
  5144. * logical pages.
  5145. * b. Wait 20msec. - note that this timeout is needed to make
  5146. * sure there are no requests in one of the PXP internal
  5147. * queues with "old" ILT addresses.
  5148. * c. PF enable in the PGLC.
  5149. * d. Clear the was_error of the PF in the PGLC. (could have
  5150. * occured while driver was down)
  5151. * e. PF enable in the CFC (WEAK + STRONG)
  5152. * f. Timers scan enable
  5153. * 3. PF driver unload flow:
  5154. * a. Clear the Timers scan_en.
  5155. * b. Polling for scan_on=0 for that PF.
  5156. * c. Clear the PF enable bit in the PXP.
  5157. * d. Clear the PF enable in the CFC (WEAK + STRONG)
  5158. * e. Write zero+valid to all ILT entries (The valid bit must
  5159. * stay set)
  5160. * f. If this is VNIC 3 of a port then also init
  5161. * first_timers_ilt_entry to zero and last_timers_ilt_entry
  5162. * to the last enrty in the ILT.
  5163. *
  5164. * Notes:
  5165. * Currently the PF error in the PGLC is non recoverable.
  5166. * In the future the there will be a recovery routine for this error.
  5167. * Currently attention is masked.
  5168. * Having an MCP lock on the load/unload process does not guarantee that
  5169. * there is no Timer disable during Func6/7 enable. This is because the
  5170. * Timers scan is currently being cleared by the MCP on FLR.
  5171. * Step 2.d can be done only for PF6/7 and the driver can also check if
  5172. * there is error before clearing it. But the flow above is simpler and
  5173. * more general.
  5174. * All ILT entries are written by zero+valid and not just PF6/7
  5175. * ILT entries since in the future the ILT entries allocation for
  5176. * PF-s might be dynamic.
  5177. */
  5178. struct ilt_client_info ilt_cli;
  5179. struct bnx2x_ilt ilt;
  5180. memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
  5181. memset(&ilt, 0, sizeof(struct bnx2x_ilt));
  5182. /* initialize dummy TM client */
  5183. ilt_cli.start = 0;
  5184. ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
  5185. ilt_cli.client_num = ILT_CLIENT_TM;
  5186. /* Step 1: set zeroes to all ilt page entries with valid bit on
  5187. * Step 2: set the timers first/last ilt entry to point
  5188. * to the entire range to prevent ILT range error for 3rd/4th
  5189. * vnic (this code assumes existance of the vnic)
  5190. *
  5191. * both steps performed by call to bnx2x_ilt_client_init_op()
  5192. * with dummy TM client
  5193. *
  5194. * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
  5195. * and his brother are split registers
  5196. */
  5197. bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
  5198. bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
  5199. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  5200. REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
  5201. REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
  5202. REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
  5203. }
  5204. REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
  5205. REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
  5206. if (!CHIP_IS_E1x(bp)) {
  5207. int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
  5208. (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
  5209. bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
  5210. bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
  5211. /* let the HW do it's magic ... */
  5212. do {
  5213. msleep(200);
  5214. val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
  5215. } while (factor-- && (val != 1));
  5216. if (val != 1) {
  5217. BNX2X_ERR("ATC_INIT failed\n");
  5218. return -EBUSY;
  5219. }
  5220. }
  5221. bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
  5222. /* clean the DMAE memory */
  5223. bp->dmae_ready = 1;
  5224. bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
  5225. bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
  5226. bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
  5227. bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
  5228. bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
  5229. bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
  5230. bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
  5231. bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
  5232. bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
  5233. bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
  5234. /* QM queues pointers table */
  5235. bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
  5236. /* soft reset pulse */
  5237. REG_WR(bp, QM_REG_SOFT_RESET, 1);
  5238. REG_WR(bp, QM_REG_SOFT_RESET, 0);
  5239. #ifdef BCM_CNIC
  5240. bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
  5241. #endif
  5242. bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
  5243. REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
  5244. if (!CHIP_REV_IS_SLOW(bp))
  5245. /* enable hw interrupt from doorbell Q */
  5246. REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
  5247. bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
  5248. bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
  5249. REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
  5250. if (!CHIP_IS_E1(bp))
  5251. REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
  5252. if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
  5253. /* Bit-map indicating which L2 hdrs may appear
  5254. * after the basic Ethernet header
  5255. */
  5256. REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
  5257. bp->path_has_ovlan ? 7 : 6);
  5258. bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
  5259. bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
  5260. bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
  5261. bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
  5262. if (!CHIP_IS_E1x(bp)) {
  5263. /* reset VFC memories */
  5264. REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
  5265. VFC_MEMORIES_RST_REG_CAM_RST |
  5266. VFC_MEMORIES_RST_REG_RAM_RST);
  5267. REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
  5268. VFC_MEMORIES_RST_REG_CAM_RST |
  5269. VFC_MEMORIES_RST_REG_RAM_RST);
  5270. msleep(20);
  5271. }
  5272. bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
  5273. bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
  5274. bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
  5275. bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
  5276. /* sync semi rtc */
  5277. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
  5278. 0x80000000);
  5279. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
  5280. 0x80000000);
  5281. bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
  5282. bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
  5283. bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
  5284. if (!CHIP_IS_E1x(bp))
  5285. REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
  5286. bp->path_has_ovlan ? 7 : 6);
  5287. REG_WR(bp, SRC_REG_SOFT_RST, 1);
  5288. bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
  5289. #ifdef BCM_CNIC
  5290. REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
  5291. REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
  5292. REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
  5293. REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
  5294. REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
  5295. REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
  5296. REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
  5297. REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
  5298. REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
  5299. REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
  5300. #endif
  5301. REG_WR(bp, SRC_REG_SOFT_RST, 0);
  5302. if (sizeof(union cdu_context) != 1024)
  5303. /* we currently assume that a context is 1024 bytes */
  5304. dev_alert(&bp->pdev->dev, "please adjust the size "
  5305. "of cdu_context(%ld)\n",
  5306. (long)sizeof(union cdu_context));
  5307. bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
  5308. val = (4 << 24) + (0 << 12) + 1024;
  5309. REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
  5310. bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
  5311. REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
  5312. /* enable context validation interrupt from CFC */
  5313. REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
  5314. /* set the thresholds to prevent CFC/CDU race */
  5315. REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
  5316. bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
  5317. if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
  5318. REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
  5319. bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
  5320. bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
  5321. /* Reset PCIE errors for debug */
  5322. REG_WR(bp, 0x2814, 0xffffffff);
  5323. REG_WR(bp, 0x3820, 0xffffffff);
  5324. if (!CHIP_IS_E1x(bp)) {
  5325. REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
  5326. (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
  5327. PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
  5328. REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
  5329. (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
  5330. PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
  5331. PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
  5332. REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
  5333. (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
  5334. PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
  5335. PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
  5336. }
  5337. bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
  5338. if (!CHIP_IS_E1(bp)) {
  5339. /* in E3 this done in per-port section */
  5340. if (!CHIP_IS_E3(bp))
  5341. REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
  5342. }
  5343. if (CHIP_IS_E1H(bp))
  5344. /* not applicable for E2 (and above ...) */
  5345. REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
  5346. if (CHIP_REV_IS_SLOW(bp))
  5347. msleep(200);
  5348. /* finish CFC init */
  5349. val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
  5350. if (val != 1) {
  5351. BNX2X_ERR("CFC LL_INIT failed\n");
  5352. return -EBUSY;
  5353. }
  5354. val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
  5355. if (val != 1) {
  5356. BNX2X_ERR("CFC AC_INIT failed\n");
  5357. return -EBUSY;
  5358. }
  5359. val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
  5360. if (val != 1) {
  5361. BNX2X_ERR("CFC CAM_INIT failed\n");
  5362. return -EBUSY;
  5363. }
  5364. REG_WR(bp, CFC_REG_DEBUG0, 0);
  5365. if (CHIP_IS_E1(bp)) {
  5366. /* read NIG statistic
  5367. to see if this is our first up since powerup */
  5368. bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
  5369. val = *bnx2x_sp(bp, wb_data[0]);
  5370. /* do internal memory self test */
  5371. if ((val == 0) && bnx2x_int_mem_test(bp)) {
  5372. BNX2X_ERR("internal mem self test failed\n");
  5373. return -EBUSY;
  5374. }
  5375. }
  5376. bnx2x_setup_fan_failure_detection(bp);
  5377. /* clear PXP2 attentions */
  5378. REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
  5379. bnx2x_enable_blocks_attention(bp);
  5380. bnx2x_enable_blocks_parity(bp);
  5381. if (!BP_NOMCP(bp)) {
  5382. if (CHIP_IS_E1x(bp))
  5383. bnx2x__common_init_phy(bp);
  5384. } else
  5385. BNX2X_ERR("Bootcode is missing - can not initialize link\n");
  5386. return 0;
  5387. }
  5388. /**
  5389. * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
  5390. *
  5391. * @bp: driver handle
  5392. */
  5393. static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
  5394. {
  5395. int rc = bnx2x_init_hw_common(bp);
  5396. if (rc)
  5397. return rc;
  5398. /* In E2 2-PORT mode, same ext phy is used for the two paths */
  5399. if (!BP_NOMCP(bp))
  5400. bnx2x__common_init_phy(bp);
  5401. return 0;
  5402. }
  5403. static int bnx2x_init_hw_port(struct bnx2x *bp)
  5404. {
  5405. int port = BP_PORT(bp);
  5406. int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
  5407. u32 low, high;
  5408. u32 val;
  5409. bnx2x__link_reset(bp);
  5410. DP(BNX2X_MSG_MCP, "starting port init port %d\n", port);
  5411. REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
  5412. bnx2x_init_block(bp, BLOCK_MISC, init_phase);
  5413. bnx2x_init_block(bp, BLOCK_PXP, init_phase);
  5414. bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
  5415. /* Timers bug workaround: disables the pf_master bit in pglue at
  5416. * common phase, we need to enable it here before any dmae access are
  5417. * attempted. Therefore we manually added the enable-master to the
  5418. * port phase (it also happens in the function phase)
  5419. */
  5420. if (!CHIP_IS_E1x(bp))
  5421. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
  5422. bnx2x_init_block(bp, BLOCK_ATC, init_phase);
  5423. bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
  5424. bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
  5425. bnx2x_init_block(bp, BLOCK_QM, init_phase);
  5426. bnx2x_init_block(bp, BLOCK_TCM, init_phase);
  5427. bnx2x_init_block(bp, BLOCK_UCM, init_phase);
  5428. bnx2x_init_block(bp, BLOCK_CCM, init_phase);
  5429. bnx2x_init_block(bp, BLOCK_XCM, init_phase);
  5430. /* QM cid (connection) count */
  5431. bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
  5432. #ifdef BCM_CNIC
  5433. bnx2x_init_block(bp, BLOCK_TM, init_phase);
  5434. REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
  5435. REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
  5436. #endif
  5437. bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
  5438. if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
  5439. bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
  5440. if (IS_MF(bp))
  5441. low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
  5442. else if (bp->dev->mtu > 4096) {
  5443. if (bp->flags & ONE_PORT_FLAG)
  5444. low = 160;
  5445. else {
  5446. val = bp->dev->mtu;
  5447. /* (24*1024 + val*4)/256 */
  5448. low = 96 + (val/64) +
  5449. ((val % 64) ? 1 : 0);
  5450. }
  5451. } else
  5452. low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
  5453. high = low + 56; /* 14*1024/256 */
  5454. REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
  5455. REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
  5456. }
  5457. if (CHIP_MODE_IS_4_PORT(bp))
  5458. REG_WR(bp, (BP_PORT(bp) ?
  5459. BRB1_REG_MAC_GUARANTIED_1 :
  5460. BRB1_REG_MAC_GUARANTIED_0), 40);
  5461. bnx2x_init_block(bp, BLOCK_PRS, init_phase);
  5462. if (CHIP_IS_E3B0(bp))
  5463. /* Ovlan exists only if we are in multi-function +
  5464. * switch-dependent mode, in switch-independent there
  5465. * is no ovlan headers
  5466. */
  5467. REG_WR(bp, BP_PORT(bp) ?
  5468. PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
  5469. PRS_REG_HDRS_AFTER_BASIC_PORT_0,
  5470. (bp->path_has_ovlan ? 7 : 6));
  5471. bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
  5472. bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
  5473. bnx2x_init_block(bp, BLOCK_USDM, init_phase);
  5474. bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
  5475. bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
  5476. bnx2x_init_block(bp, BLOCK_USEM, init_phase);
  5477. bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
  5478. bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
  5479. bnx2x_init_block(bp, BLOCK_UPB, init_phase);
  5480. bnx2x_init_block(bp, BLOCK_XPB, init_phase);
  5481. bnx2x_init_block(bp, BLOCK_PBF, init_phase);
  5482. if (CHIP_IS_E1x(bp)) {
  5483. /* configure PBF to work without PAUSE mtu 9000 */
  5484. REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
  5485. /* update threshold */
  5486. REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
  5487. /* update init credit */
  5488. REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
  5489. /* probe changes */
  5490. REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
  5491. udelay(50);
  5492. REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
  5493. }
  5494. #ifdef BCM_CNIC
  5495. bnx2x_init_block(bp, BLOCK_SRC, init_phase);
  5496. #endif
  5497. bnx2x_init_block(bp, BLOCK_CDU, init_phase);
  5498. bnx2x_init_block(bp, BLOCK_CFC, init_phase);
  5499. if (CHIP_IS_E1(bp)) {
  5500. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
  5501. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
  5502. }
  5503. bnx2x_init_block(bp, BLOCK_HC, init_phase);
  5504. bnx2x_init_block(bp, BLOCK_IGU, init_phase);
  5505. bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
  5506. /* init aeu_mask_attn_func_0/1:
  5507. * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
  5508. * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
  5509. * bits 4-7 are used for "per vn group attention" */
  5510. val = IS_MF(bp) ? 0xF7 : 0x7;
  5511. /* Enable DCBX attention for all but E1 */
  5512. val |= CHIP_IS_E1(bp) ? 0 : 0x10;
  5513. REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
  5514. bnx2x_init_block(bp, BLOCK_NIG, init_phase);
  5515. if (!CHIP_IS_E1x(bp)) {
  5516. /* Bit-map indicating which L2 hdrs may appear after the
  5517. * basic Ethernet header
  5518. */
  5519. REG_WR(bp, BP_PORT(bp) ?
  5520. NIG_REG_P1_HDRS_AFTER_BASIC :
  5521. NIG_REG_P0_HDRS_AFTER_BASIC,
  5522. IS_MF_SD(bp) ? 7 : 6);
  5523. if (CHIP_IS_E3(bp))
  5524. REG_WR(bp, BP_PORT(bp) ?
  5525. NIG_REG_LLH1_MF_MODE :
  5526. NIG_REG_LLH_MF_MODE, IS_MF(bp));
  5527. }
  5528. if (!CHIP_IS_E3(bp))
  5529. REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
  5530. if (!CHIP_IS_E1(bp)) {
  5531. /* 0x2 disable mf_ov, 0x1 enable */
  5532. REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
  5533. (IS_MF_SD(bp) ? 0x1 : 0x2));
  5534. if (!CHIP_IS_E1x(bp)) {
  5535. val = 0;
  5536. switch (bp->mf_mode) {
  5537. case MULTI_FUNCTION_SD:
  5538. val = 1;
  5539. break;
  5540. case MULTI_FUNCTION_SI:
  5541. val = 2;
  5542. break;
  5543. }
  5544. REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
  5545. NIG_REG_LLH0_CLS_TYPE), val);
  5546. }
  5547. {
  5548. REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
  5549. REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
  5550. REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
  5551. }
  5552. }
  5553. /* If SPIO5 is set to generate interrupts, enable it for this port */
  5554. val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
  5555. if (val & (1 << MISC_REGISTERS_SPIO_5)) {
  5556. u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
  5557. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
  5558. val = REG_RD(bp, reg_addr);
  5559. val |= AEU_INPUTS_ATTN_BITS_SPIO5;
  5560. REG_WR(bp, reg_addr, val);
  5561. }
  5562. return 0;
  5563. }
  5564. static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
  5565. {
  5566. int reg;
  5567. if (CHIP_IS_E1(bp))
  5568. reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
  5569. else
  5570. reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
  5571. bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
  5572. }
  5573. static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
  5574. {
  5575. bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
  5576. }
  5577. static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
  5578. {
  5579. u32 i, base = FUNC_ILT_BASE(func);
  5580. for (i = base; i < base + ILT_PER_FUNC; i++)
  5581. bnx2x_ilt_wr(bp, i, 0);
  5582. }
  5583. static int bnx2x_init_hw_func(struct bnx2x *bp)
  5584. {
  5585. int port = BP_PORT(bp);
  5586. int func = BP_FUNC(bp);
  5587. int init_phase = PHASE_PF0 + func;
  5588. struct bnx2x_ilt *ilt = BP_ILT(bp);
  5589. u16 cdu_ilt_start;
  5590. u32 addr, val;
  5591. u32 main_mem_base, main_mem_size, main_mem_prty_clr;
  5592. int i, main_mem_width, rc;
  5593. DP(BNX2X_MSG_MCP, "starting func init func %d\n", func);
  5594. /* FLR cleanup - hmmm */
  5595. if (!CHIP_IS_E1x(bp)) {
  5596. rc = bnx2x_pf_flr_clnup(bp);
  5597. if (rc)
  5598. return rc;
  5599. }
  5600. /* set MSI reconfigure capability */
  5601. if (bp->common.int_block == INT_BLOCK_HC) {
  5602. addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
  5603. val = REG_RD(bp, addr);
  5604. val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
  5605. REG_WR(bp, addr, val);
  5606. }
  5607. bnx2x_init_block(bp, BLOCK_PXP, init_phase);
  5608. bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
  5609. ilt = BP_ILT(bp);
  5610. cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
  5611. for (i = 0; i < L2_ILT_LINES(bp); i++) {
  5612. ilt->lines[cdu_ilt_start + i].page =
  5613. bp->context.vcxt + (ILT_PAGE_CIDS * i);
  5614. ilt->lines[cdu_ilt_start + i].page_mapping =
  5615. bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
  5616. /* cdu ilt pages are allocated manually so there's no need to
  5617. set the size */
  5618. }
  5619. bnx2x_ilt_init_op(bp, INITOP_SET);
  5620. #ifdef BCM_CNIC
  5621. bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
  5622. /* T1 hash bits value determines the T1 number of entries */
  5623. REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
  5624. #endif
  5625. #ifndef BCM_CNIC
  5626. /* set NIC mode */
  5627. REG_WR(bp, PRS_REG_NIC_MODE, 1);
  5628. #endif /* BCM_CNIC */
  5629. if (!CHIP_IS_E1x(bp)) {
  5630. u32 pf_conf = IGU_PF_CONF_FUNC_EN;
  5631. /* Turn on a single ISR mode in IGU if driver is going to use
  5632. * INT#x or MSI
  5633. */
  5634. if (!(bp->flags & USING_MSIX_FLAG))
  5635. pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
  5636. /*
  5637. * Timers workaround bug: function init part.
  5638. * Need to wait 20msec after initializing ILT,
  5639. * needed to make sure there are no requests in
  5640. * one of the PXP internal queues with "old" ILT addresses
  5641. */
  5642. msleep(20);
  5643. /*
  5644. * Master enable - Due to WB DMAE writes performed before this
  5645. * register is re-initialized as part of the regular function
  5646. * init
  5647. */
  5648. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
  5649. /* Enable the function in IGU */
  5650. REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
  5651. }
  5652. bp->dmae_ready = 1;
  5653. bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
  5654. if (!CHIP_IS_E1x(bp))
  5655. REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
  5656. bnx2x_init_block(bp, BLOCK_ATC, init_phase);
  5657. bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
  5658. bnx2x_init_block(bp, BLOCK_NIG, init_phase);
  5659. bnx2x_init_block(bp, BLOCK_SRC, init_phase);
  5660. bnx2x_init_block(bp, BLOCK_MISC, init_phase);
  5661. bnx2x_init_block(bp, BLOCK_TCM, init_phase);
  5662. bnx2x_init_block(bp, BLOCK_UCM, init_phase);
  5663. bnx2x_init_block(bp, BLOCK_CCM, init_phase);
  5664. bnx2x_init_block(bp, BLOCK_XCM, init_phase);
  5665. bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
  5666. bnx2x_init_block(bp, BLOCK_USEM, init_phase);
  5667. bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
  5668. bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
  5669. if (!CHIP_IS_E1x(bp))
  5670. REG_WR(bp, QM_REG_PF_EN, 1);
  5671. if (!CHIP_IS_E1x(bp)) {
  5672. REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
  5673. REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
  5674. REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
  5675. REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
  5676. }
  5677. bnx2x_init_block(bp, BLOCK_QM, init_phase);
  5678. bnx2x_init_block(bp, BLOCK_TM, init_phase);
  5679. bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
  5680. bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
  5681. bnx2x_init_block(bp, BLOCK_PRS, init_phase);
  5682. bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
  5683. bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
  5684. bnx2x_init_block(bp, BLOCK_USDM, init_phase);
  5685. bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
  5686. bnx2x_init_block(bp, BLOCK_UPB, init_phase);
  5687. bnx2x_init_block(bp, BLOCK_XPB, init_phase);
  5688. bnx2x_init_block(bp, BLOCK_PBF, init_phase);
  5689. if (!CHIP_IS_E1x(bp))
  5690. REG_WR(bp, PBF_REG_DISABLE_PF, 0);
  5691. bnx2x_init_block(bp, BLOCK_CDU, init_phase);
  5692. bnx2x_init_block(bp, BLOCK_CFC, init_phase);
  5693. if (!CHIP_IS_E1x(bp))
  5694. REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
  5695. if (IS_MF(bp)) {
  5696. REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
  5697. REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
  5698. }
  5699. bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
  5700. /* HC init per function */
  5701. if (bp->common.int_block == INT_BLOCK_HC) {
  5702. if (CHIP_IS_E1H(bp)) {
  5703. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
  5704. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
  5705. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
  5706. }
  5707. bnx2x_init_block(bp, BLOCK_HC, init_phase);
  5708. } else {
  5709. int num_segs, sb_idx, prod_offset;
  5710. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
  5711. if (!CHIP_IS_E1x(bp)) {
  5712. REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
  5713. REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
  5714. }
  5715. bnx2x_init_block(bp, BLOCK_IGU, init_phase);
  5716. if (!CHIP_IS_E1x(bp)) {
  5717. int dsb_idx = 0;
  5718. /**
  5719. * Producer memory:
  5720. * E2 mode: address 0-135 match to the mapping memory;
  5721. * 136 - PF0 default prod; 137 - PF1 default prod;
  5722. * 138 - PF2 default prod; 139 - PF3 default prod;
  5723. * 140 - PF0 attn prod; 141 - PF1 attn prod;
  5724. * 142 - PF2 attn prod; 143 - PF3 attn prod;
  5725. * 144-147 reserved.
  5726. *
  5727. * E1.5 mode - In backward compatible mode;
  5728. * for non default SB; each even line in the memory
  5729. * holds the U producer and each odd line hold
  5730. * the C producer. The first 128 producers are for
  5731. * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
  5732. * producers are for the DSB for each PF.
  5733. * Each PF has five segments: (the order inside each
  5734. * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
  5735. * 132-135 C prods; 136-139 X prods; 140-143 T prods;
  5736. * 144-147 attn prods;
  5737. */
  5738. /* non-default-status-blocks */
  5739. num_segs = CHIP_INT_MODE_IS_BC(bp) ?
  5740. IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
  5741. for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
  5742. prod_offset = (bp->igu_base_sb + sb_idx) *
  5743. num_segs;
  5744. for (i = 0; i < num_segs; i++) {
  5745. addr = IGU_REG_PROD_CONS_MEMORY +
  5746. (prod_offset + i) * 4;
  5747. REG_WR(bp, addr, 0);
  5748. }
  5749. /* send consumer update with value 0 */
  5750. bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
  5751. USTORM_ID, 0, IGU_INT_NOP, 1);
  5752. bnx2x_igu_clear_sb(bp,
  5753. bp->igu_base_sb + sb_idx);
  5754. }
  5755. /* default-status-blocks */
  5756. num_segs = CHIP_INT_MODE_IS_BC(bp) ?
  5757. IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
  5758. if (CHIP_MODE_IS_4_PORT(bp))
  5759. dsb_idx = BP_FUNC(bp);
  5760. else
  5761. dsb_idx = BP_VN(bp);
  5762. prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
  5763. IGU_BC_BASE_DSB_PROD + dsb_idx :
  5764. IGU_NORM_BASE_DSB_PROD + dsb_idx);
  5765. /*
  5766. * igu prods come in chunks of E1HVN_MAX (4) -
  5767. * does not matters what is the current chip mode
  5768. */
  5769. for (i = 0; i < (num_segs * E1HVN_MAX);
  5770. i += E1HVN_MAX) {
  5771. addr = IGU_REG_PROD_CONS_MEMORY +
  5772. (prod_offset + i)*4;
  5773. REG_WR(bp, addr, 0);
  5774. }
  5775. /* send consumer update with 0 */
  5776. if (CHIP_INT_MODE_IS_BC(bp)) {
  5777. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  5778. USTORM_ID, 0, IGU_INT_NOP, 1);
  5779. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  5780. CSTORM_ID, 0, IGU_INT_NOP, 1);
  5781. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  5782. XSTORM_ID, 0, IGU_INT_NOP, 1);
  5783. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  5784. TSTORM_ID, 0, IGU_INT_NOP, 1);
  5785. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  5786. ATTENTION_ID, 0, IGU_INT_NOP, 1);
  5787. } else {
  5788. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  5789. USTORM_ID, 0, IGU_INT_NOP, 1);
  5790. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  5791. ATTENTION_ID, 0, IGU_INT_NOP, 1);
  5792. }
  5793. bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
  5794. /* !!! these should become driver const once
  5795. rf-tool supports split-68 const */
  5796. REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
  5797. REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
  5798. REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
  5799. REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
  5800. REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
  5801. REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
  5802. }
  5803. }
  5804. /* Reset PCIE errors for debug */
  5805. REG_WR(bp, 0x2114, 0xffffffff);
  5806. REG_WR(bp, 0x2120, 0xffffffff);
  5807. if (CHIP_IS_E1x(bp)) {
  5808. main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
  5809. main_mem_base = HC_REG_MAIN_MEMORY +
  5810. BP_PORT(bp) * (main_mem_size * 4);
  5811. main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
  5812. main_mem_width = 8;
  5813. val = REG_RD(bp, main_mem_prty_clr);
  5814. if (val)
  5815. DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
  5816. "block during "
  5817. "function init (0x%x)!\n", val);
  5818. /* Clear "false" parity errors in MSI-X table */
  5819. for (i = main_mem_base;
  5820. i < main_mem_base + main_mem_size * 4;
  5821. i += main_mem_width) {
  5822. bnx2x_read_dmae(bp, i, main_mem_width / 4);
  5823. bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
  5824. i, main_mem_width / 4);
  5825. }
  5826. /* Clear HC parity attention */
  5827. REG_RD(bp, main_mem_prty_clr);
  5828. }
  5829. #ifdef BNX2X_STOP_ON_ERROR
  5830. /* Enable STORMs SP logging */
  5831. REG_WR8(bp, BAR_USTRORM_INTMEM +
  5832. USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
  5833. REG_WR8(bp, BAR_TSTRORM_INTMEM +
  5834. TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
  5835. REG_WR8(bp, BAR_CSTRORM_INTMEM +
  5836. CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
  5837. REG_WR8(bp, BAR_XSTRORM_INTMEM +
  5838. XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
  5839. #endif
  5840. bnx2x_phy_probe(&bp->link_params);
  5841. return 0;
  5842. }
  5843. void bnx2x_free_mem(struct bnx2x *bp)
  5844. {
  5845. /* fastpath */
  5846. bnx2x_free_fp_mem(bp);
  5847. /* end of fastpath */
  5848. BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
  5849. sizeof(struct host_sp_status_block));
  5850. BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
  5851. bp->fw_stats_data_sz + bp->fw_stats_req_sz);
  5852. BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
  5853. sizeof(struct bnx2x_slowpath));
  5854. BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
  5855. bp->context.size);
  5856. bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
  5857. BNX2X_FREE(bp->ilt->lines);
  5858. #ifdef BCM_CNIC
  5859. if (!CHIP_IS_E1x(bp))
  5860. BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
  5861. sizeof(struct host_hc_status_block_e2));
  5862. else
  5863. BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
  5864. sizeof(struct host_hc_status_block_e1x));
  5865. BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
  5866. #endif
  5867. BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
  5868. BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
  5869. BCM_PAGE_SIZE * NUM_EQ_PAGES);
  5870. }
  5871. static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
  5872. {
  5873. int num_groups;
  5874. int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
  5875. /* number of queues for statistics is number of eth queues + FCoE */
  5876. u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
  5877. /* Total number of FW statistics requests =
  5878. * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
  5879. * num of queues
  5880. */
  5881. bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
  5882. /* Request is built from stats_query_header and an array of
  5883. * stats_query_cmd_group each of which contains
  5884. * STATS_QUERY_CMD_COUNT rules. The real number or requests is
  5885. * configured in the stats_query_header.
  5886. */
  5887. num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
  5888. (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
  5889. bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
  5890. num_groups * sizeof(struct stats_query_cmd_group);
  5891. /* Data for statistics requests + stats_conter
  5892. *
  5893. * stats_counter holds per-STORM counters that are incremented
  5894. * when STORM has finished with the current request.
  5895. *
  5896. * memory for FCoE offloaded statistics are counted anyway,
  5897. * even if they will not be sent.
  5898. */
  5899. bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
  5900. sizeof(struct per_pf_stats) +
  5901. sizeof(struct fcoe_statistics_params) +
  5902. sizeof(struct per_queue_stats) * num_queue_stats +
  5903. sizeof(struct stats_counter);
  5904. BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
  5905. bp->fw_stats_data_sz + bp->fw_stats_req_sz);
  5906. /* Set shortcuts */
  5907. bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
  5908. bp->fw_stats_req_mapping = bp->fw_stats_mapping;
  5909. bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
  5910. ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
  5911. bp->fw_stats_data_mapping = bp->fw_stats_mapping +
  5912. bp->fw_stats_req_sz;
  5913. return 0;
  5914. alloc_mem_err:
  5915. BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
  5916. bp->fw_stats_data_sz + bp->fw_stats_req_sz);
  5917. return -ENOMEM;
  5918. }
  5919. int bnx2x_alloc_mem(struct bnx2x *bp)
  5920. {
  5921. #ifdef BCM_CNIC
  5922. if (!CHIP_IS_E1x(bp))
  5923. /* size = the status block + ramrod buffers */
  5924. BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
  5925. sizeof(struct host_hc_status_block_e2));
  5926. else
  5927. BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
  5928. sizeof(struct host_hc_status_block_e1x));
  5929. /* allocate searcher T2 table */
  5930. BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
  5931. #endif
  5932. BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
  5933. sizeof(struct host_sp_status_block));
  5934. BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
  5935. sizeof(struct bnx2x_slowpath));
  5936. #ifdef BCM_CNIC
  5937. /* write address to which L5 should insert its values */
  5938. bp->cnic_eth_dev.addr_drv_info_to_mcp = &bp->slowpath->drv_info_to_mcp;
  5939. #endif
  5940. /* Allocated memory for FW statistics */
  5941. if (bnx2x_alloc_fw_stats_mem(bp))
  5942. goto alloc_mem_err;
  5943. bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
  5944. BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
  5945. bp->context.size);
  5946. BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
  5947. if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
  5948. goto alloc_mem_err;
  5949. /* Slow path ring */
  5950. BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
  5951. /* EQ */
  5952. BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
  5953. BCM_PAGE_SIZE * NUM_EQ_PAGES);
  5954. /* fastpath */
  5955. /* need to be done at the end, since it's self adjusting to amount
  5956. * of memory available for RSS queues
  5957. */
  5958. if (bnx2x_alloc_fp_mem(bp))
  5959. goto alloc_mem_err;
  5960. return 0;
  5961. alloc_mem_err:
  5962. bnx2x_free_mem(bp);
  5963. return -ENOMEM;
  5964. }
  5965. /*
  5966. * Init service functions
  5967. */
  5968. int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
  5969. struct bnx2x_vlan_mac_obj *obj, bool set,
  5970. int mac_type, unsigned long *ramrod_flags)
  5971. {
  5972. int rc;
  5973. struct bnx2x_vlan_mac_ramrod_params ramrod_param;
  5974. memset(&ramrod_param, 0, sizeof(ramrod_param));
  5975. /* Fill general parameters */
  5976. ramrod_param.vlan_mac_obj = obj;
  5977. ramrod_param.ramrod_flags = *ramrod_flags;
  5978. /* Fill a user request section if needed */
  5979. if (!test_bit(RAMROD_CONT, ramrod_flags)) {
  5980. memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
  5981. __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
  5982. /* Set the command: ADD or DEL */
  5983. if (set)
  5984. ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
  5985. else
  5986. ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
  5987. }
  5988. rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
  5989. if (rc < 0)
  5990. BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
  5991. return rc;
  5992. }
  5993. int bnx2x_del_all_macs(struct bnx2x *bp,
  5994. struct bnx2x_vlan_mac_obj *mac_obj,
  5995. int mac_type, bool wait_for_comp)
  5996. {
  5997. int rc;
  5998. unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
  5999. /* Wait for completion of requested */
  6000. if (wait_for_comp)
  6001. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  6002. /* Set the mac type of addresses we want to clear */
  6003. __set_bit(mac_type, &vlan_mac_flags);
  6004. rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
  6005. if (rc < 0)
  6006. BNX2X_ERR("Failed to delete MACs: %d\n", rc);
  6007. return rc;
  6008. }
  6009. int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
  6010. {
  6011. unsigned long ramrod_flags = 0;
  6012. #ifdef BCM_CNIC
  6013. if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_ISCSI_SD(bp)) {
  6014. DP(NETIF_MSG_IFUP, "Ignoring Zero MAC for iSCSI SD mode\n");
  6015. return 0;
  6016. }
  6017. #endif
  6018. DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
  6019. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  6020. /* Eth MAC is set on RSS leading client (fp[0]) */
  6021. return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
  6022. BNX2X_ETH_MAC, &ramrod_flags);
  6023. }
  6024. int bnx2x_setup_leading(struct bnx2x *bp)
  6025. {
  6026. return bnx2x_setup_queue(bp, &bp->fp[0], 1);
  6027. }
  6028. /**
  6029. * bnx2x_set_int_mode - configure interrupt mode
  6030. *
  6031. * @bp: driver handle
  6032. *
  6033. * In case of MSI-X it will also try to enable MSI-X.
  6034. */
  6035. static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
  6036. {
  6037. switch (int_mode) {
  6038. case INT_MODE_MSI:
  6039. bnx2x_enable_msi(bp);
  6040. /* falling through... */
  6041. case INT_MODE_INTx:
  6042. bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
  6043. DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
  6044. break;
  6045. default:
  6046. /* Set number of queues according to bp->multi_mode value */
  6047. bnx2x_set_num_queues(bp);
  6048. DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
  6049. bp->num_queues);
  6050. /* if we can't use MSI-X we only need one fp,
  6051. * so try to enable MSI-X with the requested number of fp's
  6052. * and fallback to MSI or legacy INTx with one fp
  6053. */
  6054. if (bnx2x_enable_msix(bp)) {
  6055. /* failed to enable MSI-X */
  6056. if (bp->multi_mode)
  6057. DP(NETIF_MSG_IFUP,
  6058. "Multi requested but failed to "
  6059. "enable MSI-X (%d), "
  6060. "set number of queues to %d\n",
  6061. bp->num_queues,
  6062. 1 + NON_ETH_CONTEXT_USE);
  6063. bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
  6064. /* Try to enable MSI */
  6065. if (!(bp->flags & DISABLE_MSI_FLAG))
  6066. bnx2x_enable_msi(bp);
  6067. }
  6068. break;
  6069. }
  6070. }
  6071. /* must be called prioir to any HW initializations */
  6072. static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
  6073. {
  6074. return L2_ILT_LINES(bp);
  6075. }
  6076. void bnx2x_ilt_set_info(struct bnx2x *bp)
  6077. {
  6078. struct ilt_client_info *ilt_client;
  6079. struct bnx2x_ilt *ilt = BP_ILT(bp);
  6080. u16 line = 0;
  6081. ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
  6082. DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
  6083. /* CDU */
  6084. ilt_client = &ilt->clients[ILT_CLIENT_CDU];
  6085. ilt_client->client_num = ILT_CLIENT_CDU;
  6086. ilt_client->page_size = CDU_ILT_PAGE_SZ;
  6087. ilt_client->flags = ILT_CLIENT_SKIP_MEM;
  6088. ilt_client->start = line;
  6089. line += bnx2x_cid_ilt_lines(bp);
  6090. #ifdef BCM_CNIC
  6091. line += CNIC_ILT_LINES;
  6092. #endif
  6093. ilt_client->end = line - 1;
  6094. DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
  6095. "flags 0x%x, hw psz %d\n",
  6096. ilt_client->start,
  6097. ilt_client->end,
  6098. ilt_client->page_size,
  6099. ilt_client->flags,
  6100. ilog2(ilt_client->page_size >> 12));
  6101. /* QM */
  6102. if (QM_INIT(bp->qm_cid_count)) {
  6103. ilt_client = &ilt->clients[ILT_CLIENT_QM];
  6104. ilt_client->client_num = ILT_CLIENT_QM;
  6105. ilt_client->page_size = QM_ILT_PAGE_SZ;
  6106. ilt_client->flags = 0;
  6107. ilt_client->start = line;
  6108. /* 4 bytes for each cid */
  6109. line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
  6110. QM_ILT_PAGE_SZ);
  6111. ilt_client->end = line - 1;
  6112. DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
  6113. "flags 0x%x, hw psz %d\n",
  6114. ilt_client->start,
  6115. ilt_client->end,
  6116. ilt_client->page_size,
  6117. ilt_client->flags,
  6118. ilog2(ilt_client->page_size >> 12));
  6119. }
  6120. /* SRC */
  6121. ilt_client = &ilt->clients[ILT_CLIENT_SRC];
  6122. #ifdef BCM_CNIC
  6123. ilt_client->client_num = ILT_CLIENT_SRC;
  6124. ilt_client->page_size = SRC_ILT_PAGE_SZ;
  6125. ilt_client->flags = 0;
  6126. ilt_client->start = line;
  6127. line += SRC_ILT_LINES;
  6128. ilt_client->end = line - 1;
  6129. DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
  6130. "flags 0x%x, hw psz %d\n",
  6131. ilt_client->start,
  6132. ilt_client->end,
  6133. ilt_client->page_size,
  6134. ilt_client->flags,
  6135. ilog2(ilt_client->page_size >> 12));
  6136. #else
  6137. ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
  6138. #endif
  6139. /* TM */
  6140. ilt_client = &ilt->clients[ILT_CLIENT_TM];
  6141. #ifdef BCM_CNIC
  6142. ilt_client->client_num = ILT_CLIENT_TM;
  6143. ilt_client->page_size = TM_ILT_PAGE_SZ;
  6144. ilt_client->flags = 0;
  6145. ilt_client->start = line;
  6146. line += TM_ILT_LINES;
  6147. ilt_client->end = line - 1;
  6148. DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
  6149. "flags 0x%x, hw psz %d\n",
  6150. ilt_client->start,
  6151. ilt_client->end,
  6152. ilt_client->page_size,
  6153. ilt_client->flags,
  6154. ilog2(ilt_client->page_size >> 12));
  6155. #else
  6156. ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
  6157. #endif
  6158. BUG_ON(line > ILT_MAX_LINES);
  6159. }
  6160. /**
  6161. * bnx2x_pf_q_prep_init - prepare INIT transition parameters
  6162. *
  6163. * @bp: driver handle
  6164. * @fp: pointer to fastpath
  6165. * @init_params: pointer to parameters structure
  6166. *
  6167. * parameters configured:
  6168. * - HC configuration
  6169. * - Queue's CDU context
  6170. */
  6171. static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
  6172. struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
  6173. {
  6174. u8 cos;
  6175. /* FCoE Queue uses Default SB, thus has no HC capabilities */
  6176. if (!IS_FCOE_FP(fp)) {
  6177. __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
  6178. __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
  6179. /* If HC is supporterd, enable host coalescing in the transition
  6180. * to INIT state.
  6181. */
  6182. __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
  6183. __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
  6184. /* HC rate */
  6185. init_params->rx.hc_rate = bp->rx_ticks ?
  6186. (1000000 / bp->rx_ticks) : 0;
  6187. init_params->tx.hc_rate = bp->tx_ticks ?
  6188. (1000000 / bp->tx_ticks) : 0;
  6189. /* FW SB ID */
  6190. init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
  6191. fp->fw_sb_id;
  6192. /*
  6193. * CQ index among the SB indices: FCoE clients uses the default
  6194. * SB, therefore it's different.
  6195. */
  6196. init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
  6197. init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
  6198. }
  6199. /* set maximum number of COSs supported by this queue */
  6200. init_params->max_cos = fp->max_cos;
  6201. DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
  6202. fp->index, init_params->max_cos);
  6203. /* set the context pointers queue object */
  6204. for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
  6205. init_params->cxts[cos] =
  6206. &bp->context.vcxt[fp->txdata[cos].cid].eth;
  6207. }
  6208. int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
  6209. struct bnx2x_queue_state_params *q_params,
  6210. struct bnx2x_queue_setup_tx_only_params *tx_only_params,
  6211. int tx_index, bool leading)
  6212. {
  6213. memset(tx_only_params, 0, sizeof(*tx_only_params));
  6214. /* Set the command */
  6215. q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
  6216. /* Set tx-only QUEUE flags: don't zero statistics */
  6217. tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
  6218. /* choose the index of the cid to send the slow path on */
  6219. tx_only_params->cid_index = tx_index;
  6220. /* Set general TX_ONLY_SETUP parameters */
  6221. bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
  6222. /* Set Tx TX_ONLY_SETUP parameters */
  6223. bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
  6224. DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
  6225. "cos %d, primary cid %d, cid %d, "
  6226. "client id %d, sp-client id %d, flags %lx\n",
  6227. tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
  6228. q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
  6229. tx_only_params->gen_params.spcl_id, tx_only_params->flags);
  6230. /* send the ramrod */
  6231. return bnx2x_queue_state_change(bp, q_params);
  6232. }
  6233. /**
  6234. * bnx2x_setup_queue - setup queue
  6235. *
  6236. * @bp: driver handle
  6237. * @fp: pointer to fastpath
  6238. * @leading: is leading
  6239. *
  6240. * This function performs 2 steps in a Queue state machine
  6241. * actually: 1) RESET->INIT 2) INIT->SETUP
  6242. */
  6243. int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
  6244. bool leading)
  6245. {
  6246. struct bnx2x_queue_state_params q_params = {0};
  6247. struct bnx2x_queue_setup_params *setup_params =
  6248. &q_params.params.setup;
  6249. struct bnx2x_queue_setup_tx_only_params *tx_only_params =
  6250. &q_params.params.tx_only;
  6251. int rc;
  6252. u8 tx_index;
  6253. DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
  6254. /* reset IGU state skip FCoE L2 queue */
  6255. if (!IS_FCOE_FP(fp))
  6256. bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
  6257. IGU_INT_ENABLE, 0);
  6258. q_params.q_obj = &fp->q_obj;
  6259. /* We want to wait for completion in this context */
  6260. __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
  6261. /* Prepare the INIT parameters */
  6262. bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
  6263. /* Set the command */
  6264. q_params.cmd = BNX2X_Q_CMD_INIT;
  6265. /* Change the state to INIT */
  6266. rc = bnx2x_queue_state_change(bp, &q_params);
  6267. if (rc) {
  6268. BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
  6269. return rc;
  6270. }
  6271. DP(BNX2X_MSG_SP, "init complete\n");
  6272. /* Now move the Queue to the SETUP state... */
  6273. memset(setup_params, 0, sizeof(*setup_params));
  6274. /* Set QUEUE flags */
  6275. setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
  6276. /* Set general SETUP parameters */
  6277. bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
  6278. FIRST_TX_COS_INDEX);
  6279. bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
  6280. &setup_params->rxq_params);
  6281. bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
  6282. FIRST_TX_COS_INDEX);
  6283. /* Set the command */
  6284. q_params.cmd = BNX2X_Q_CMD_SETUP;
  6285. /* Change the state to SETUP */
  6286. rc = bnx2x_queue_state_change(bp, &q_params);
  6287. if (rc) {
  6288. BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
  6289. return rc;
  6290. }
  6291. /* loop through the relevant tx-only indices */
  6292. for (tx_index = FIRST_TX_ONLY_COS_INDEX;
  6293. tx_index < fp->max_cos;
  6294. tx_index++) {
  6295. /* prepare and send tx-only ramrod*/
  6296. rc = bnx2x_setup_tx_only(bp, fp, &q_params,
  6297. tx_only_params, tx_index, leading);
  6298. if (rc) {
  6299. BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
  6300. fp->index, tx_index);
  6301. return rc;
  6302. }
  6303. }
  6304. return rc;
  6305. }
  6306. static int bnx2x_stop_queue(struct bnx2x *bp, int index)
  6307. {
  6308. struct bnx2x_fastpath *fp = &bp->fp[index];
  6309. struct bnx2x_fp_txdata *txdata;
  6310. struct bnx2x_queue_state_params q_params = {0};
  6311. int rc, tx_index;
  6312. DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
  6313. q_params.q_obj = &fp->q_obj;
  6314. /* We want to wait for completion in this context */
  6315. __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
  6316. /* close tx-only connections */
  6317. for (tx_index = FIRST_TX_ONLY_COS_INDEX;
  6318. tx_index < fp->max_cos;
  6319. tx_index++){
  6320. /* ascertain this is a normal queue*/
  6321. txdata = &fp->txdata[tx_index];
  6322. DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
  6323. txdata->txq_index);
  6324. /* send halt terminate on tx-only connection */
  6325. q_params.cmd = BNX2X_Q_CMD_TERMINATE;
  6326. memset(&q_params.params.terminate, 0,
  6327. sizeof(q_params.params.terminate));
  6328. q_params.params.terminate.cid_index = tx_index;
  6329. rc = bnx2x_queue_state_change(bp, &q_params);
  6330. if (rc)
  6331. return rc;
  6332. /* send halt terminate on tx-only connection */
  6333. q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
  6334. memset(&q_params.params.cfc_del, 0,
  6335. sizeof(q_params.params.cfc_del));
  6336. q_params.params.cfc_del.cid_index = tx_index;
  6337. rc = bnx2x_queue_state_change(bp, &q_params);
  6338. if (rc)
  6339. return rc;
  6340. }
  6341. /* Stop the primary connection: */
  6342. /* ...halt the connection */
  6343. q_params.cmd = BNX2X_Q_CMD_HALT;
  6344. rc = bnx2x_queue_state_change(bp, &q_params);
  6345. if (rc)
  6346. return rc;
  6347. /* ...terminate the connection */
  6348. q_params.cmd = BNX2X_Q_CMD_TERMINATE;
  6349. memset(&q_params.params.terminate, 0,
  6350. sizeof(q_params.params.terminate));
  6351. q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
  6352. rc = bnx2x_queue_state_change(bp, &q_params);
  6353. if (rc)
  6354. return rc;
  6355. /* ...delete cfc entry */
  6356. q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
  6357. memset(&q_params.params.cfc_del, 0,
  6358. sizeof(q_params.params.cfc_del));
  6359. q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
  6360. return bnx2x_queue_state_change(bp, &q_params);
  6361. }
  6362. static void bnx2x_reset_func(struct bnx2x *bp)
  6363. {
  6364. int port = BP_PORT(bp);
  6365. int func = BP_FUNC(bp);
  6366. int i;
  6367. /* Disable the function in the FW */
  6368. REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
  6369. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
  6370. REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
  6371. REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
  6372. /* FP SBs */
  6373. for_each_eth_queue(bp, i) {
  6374. struct bnx2x_fastpath *fp = &bp->fp[i];
  6375. REG_WR8(bp, BAR_CSTRORM_INTMEM +
  6376. CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
  6377. SB_DISABLED);
  6378. }
  6379. #ifdef BCM_CNIC
  6380. /* CNIC SB */
  6381. REG_WR8(bp, BAR_CSTRORM_INTMEM +
  6382. CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
  6383. SB_DISABLED);
  6384. #endif
  6385. /* SP SB */
  6386. REG_WR8(bp, BAR_CSTRORM_INTMEM +
  6387. CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
  6388. SB_DISABLED);
  6389. for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
  6390. REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
  6391. 0);
  6392. /* Configure IGU */
  6393. if (bp->common.int_block == INT_BLOCK_HC) {
  6394. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
  6395. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
  6396. } else {
  6397. REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
  6398. REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
  6399. }
  6400. #ifdef BCM_CNIC
  6401. /* Disable Timer scan */
  6402. REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
  6403. /*
  6404. * Wait for at least 10ms and up to 2 second for the timers scan to
  6405. * complete
  6406. */
  6407. for (i = 0; i < 200; i++) {
  6408. msleep(10);
  6409. if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
  6410. break;
  6411. }
  6412. #endif
  6413. /* Clear ILT */
  6414. bnx2x_clear_func_ilt(bp, func);
  6415. /* Timers workaround bug for E2: if this is vnic-3,
  6416. * we need to set the entire ilt range for this timers.
  6417. */
  6418. if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
  6419. struct ilt_client_info ilt_cli;
  6420. /* use dummy TM client */
  6421. memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
  6422. ilt_cli.start = 0;
  6423. ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
  6424. ilt_cli.client_num = ILT_CLIENT_TM;
  6425. bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
  6426. }
  6427. /* this assumes that reset_port() called before reset_func()*/
  6428. if (!CHIP_IS_E1x(bp))
  6429. bnx2x_pf_disable(bp);
  6430. bp->dmae_ready = 0;
  6431. }
  6432. static void bnx2x_reset_port(struct bnx2x *bp)
  6433. {
  6434. int port = BP_PORT(bp);
  6435. u32 val;
  6436. /* Reset physical Link */
  6437. bnx2x__link_reset(bp);
  6438. REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
  6439. /* Do not rcv packets to BRB */
  6440. REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
  6441. /* Do not direct rcv packets that are not for MCP to the BRB */
  6442. REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
  6443. NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
  6444. /* Configure AEU */
  6445. REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
  6446. msleep(100);
  6447. /* Check for BRB port occupancy */
  6448. val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
  6449. if (val)
  6450. DP(NETIF_MSG_IFDOWN,
  6451. "BRB1 is not empty %d blocks are occupied\n", val);
  6452. /* TODO: Close Doorbell port? */
  6453. }
  6454. static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
  6455. {
  6456. struct bnx2x_func_state_params func_params = {0};
  6457. /* Prepare parameters for function state transitions */
  6458. __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
  6459. func_params.f_obj = &bp->func_obj;
  6460. func_params.cmd = BNX2X_F_CMD_HW_RESET;
  6461. func_params.params.hw_init.load_phase = load_code;
  6462. return bnx2x_func_state_change(bp, &func_params);
  6463. }
  6464. static inline int bnx2x_func_stop(struct bnx2x *bp)
  6465. {
  6466. struct bnx2x_func_state_params func_params = {0};
  6467. int rc;
  6468. /* Prepare parameters for function state transitions */
  6469. __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
  6470. func_params.f_obj = &bp->func_obj;
  6471. func_params.cmd = BNX2X_F_CMD_STOP;
  6472. /*
  6473. * Try to stop the function the 'good way'. If fails (in case
  6474. * of a parity error during bnx2x_chip_cleanup()) and we are
  6475. * not in a debug mode, perform a state transaction in order to
  6476. * enable further HW_RESET transaction.
  6477. */
  6478. rc = bnx2x_func_state_change(bp, &func_params);
  6479. if (rc) {
  6480. #ifdef BNX2X_STOP_ON_ERROR
  6481. return rc;
  6482. #else
  6483. BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
  6484. "transaction\n");
  6485. __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
  6486. return bnx2x_func_state_change(bp, &func_params);
  6487. #endif
  6488. }
  6489. return 0;
  6490. }
  6491. /**
  6492. * bnx2x_send_unload_req - request unload mode from the MCP.
  6493. *
  6494. * @bp: driver handle
  6495. * @unload_mode: requested function's unload mode
  6496. *
  6497. * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
  6498. */
  6499. u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
  6500. {
  6501. u32 reset_code = 0;
  6502. int port = BP_PORT(bp);
  6503. /* Select the UNLOAD request mode */
  6504. if (unload_mode == UNLOAD_NORMAL)
  6505. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
  6506. else if (bp->flags & NO_WOL_FLAG)
  6507. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
  6508. else if (bp->wol) {
  6509. u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
  6510. u8 *mac_addr = bp->dev->dev_addr;
  6511. u32 val;
  6512. u16 pmc;
  6513. /* The mac address is written to entries 1-4 to
  6514. * preserve entry 0 which is used by the PMF
  6515. */
  6516. u8 entry = (BP_VN(bp) + 1)*8;
  6517. val = (mac_addr[0] << 8) | mac_addr[1];
  6518. EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
  6519. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  6520. (mac_addr[4] << 8) | mac_addr[5];
  6521. EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
  6522. /* Enable the PME and clear the status */
  6523. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
  6524. pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
  6525. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
  6526. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
  6527. } else
  6528. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
  6529. /* Send the request to the MCP */
  6530. if (!BP_NOMCP(bp))
  6531. reset_code = bnx2x_fw_command(bp, reset_code, 0);
  6532. else {
  6533. int path = BP_PATH(bp);
  6534. DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] "
  6535. "%d, %d, %d\n",
  6536. path, load_count[path][0], load_count[path][1],
  6537. load_count[path][2]);
  6538. load_count[path][0]--;
  6539. load_count[path][1 + port]--;
  6540. DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] "
  6541. "%d, %d, %d\n",
  6542. path, load_count[path][0], load_count[path][1],
  6543. load_count[path][2]);
  6544. if (load_count[path][0] == 0)
  6545. reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
  6546. else if (load_count[path][1 + port] == 0)
  6547. reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
  6548. else
  6549. reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
  6550. }
  6551. return reset_code;
  6552. }
  6553. /**
  6554. * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
  6555. *
  6556. * @bp: driver handle
  6557. */
  6558. void bnx2x_send_unload_done(struct bnx2x *bp)
  6559. {
  6560. /* Report UNLOAD_DONE to MCP */
  6561. if (!BP_NOMCP(bp))
  6562. bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
  6563. }
  6564. static inline int bnx2x_func_wait_started(struct bnx2x *bp)
  6565. {
  6566. int tout = 50;
  6567. int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
  6568. if (!bp->port.pmf)
  6569. return 0;
  6570. /*
  6571. * (assumption: No Attention from MCP at this stage)
  6572. * PMF probably in the middle of TXdisable/enable transaction
  6573. * 1. Sync IRS for default SB
  6574. * 2. Sync SP queue - this guarantes us that attention handling started
  6575. * 3. Wait, that TXdisable/enable transaction completes
  6576. *
  6577. * 1+2 guranty that if DCBx attention was scheduled it already changed
  6578. * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
  6579. * received complettion for the transaction the state is TX_STOPPED.
  6580. * State will return to STARTED after completion of TX_STOPPED-->STARTED
  6581. * transaction.
  6582. */
  6583. /* make sure default SB ISR is done */
  6584. if (msix)
  6585. synchronize_irq(bp->msix_table[0].vector);
  6586. else
  6587. synchronize_irq(bp->pdev->irq);
  6588. flush_workqueue(bnx2x_wq);
  6589. while (bnx2x_func_get_state(bp, &bp->func_obj) !=
  6590. BNX2X_F_STATE_STARTED && tout--)
  6591. msleep(20);
  6592. if (bnx2x_func_get_state(bp, &bp->func_obj) !=
  6593. BNX2X_F_STATE_STARTED) {
  6594. #ifdef BNX2X_STOP_ON_ERROR
  6595. return -EBUSY;
  6596. #else
  6597. /*
  6598. * Failed to complete the transaction in a "good way"
  6599. * Force both transactions with CLR bit
  6600. */
  6601. struct bnx2x_func_state_params func_params = {0};
  6602. DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
  6603. "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
  6604. func_params.f_obj = &bp->func_obj;
  6605. __set_bit(RAMROD_DRV_CLR_ONLY,
  6606. &func_params.ramrod_flags);
  6607. /* STARTED-->TX_ST0PPED */
  6608. func_params.cmd = BNX2X_F_CMD_TX_STOP;
  6609. bnx2x_func_state_change(bp, &func_params);
  6610. /* TX_ST0PPED-->STARTED */
  6611. func_params.cmd = BNX2X_F_CMD_TX_START;
  6612. return bnx2x_func_state_change(bp, &func_params);
  6613. #endif
  6614. }
  6615. return 0;
  6616. }
  6617. void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
  6618. {
  6619. int port = BP_PORT(bp);
  6620. int i, rc = 0;
  6621. u8 cos;
  6622. struct bnx2x_mcast_ramrod_params rparam = {0};
  6623. u32 reset_code;
  6624. /* Wait until tx fastpath tasks complete */
  6625. for_each_tx_queue(bp, i) {
  6626. struct bnx2x_fastpath *fp = &bp->fp[i];
  6627. for_each_cos_in_tx_queue(fp, cos)
  6628. rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
  6629. #ifdef BNX2X_STOP_ON_ERROR
  6630. if (rc)
  6631. return;
  6632. #endif
  6633. }
  6634. /* Give HW time to discard old tx messages */
  6635. usleep_range(1000, 1000);
  6636. /* Clean all ETH MACs */
  6637. rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
  6638. if (rc < 0)
  6639. BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
  6640. /* Clean up UC list */
  6641. rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
  6642. true);
  6643. if (rc < 0)
  6644. BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
  6645. "%d\n", rc);
  6646. /* Disable LLH */
  6647. if (!CHIP_IS_E1(bp))
  6648. REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
  6649. /* Set "drop all" (stop Rx).
  6650. * We need to take a netif_addr_lock() here in order to prevent
  6651. * a race between the completion code and this code.
  6652. */
  6653. netif_addr_lock_bh(bp->dev);
  6654. /* Schedule the rx_mode command */
  6655. if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
  6656. set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
  6657. else
  6658. bnx2x_set_storm_rx_mode(bp);
  6659. /* Cleanup multicast configuration */
  6660. rparam.mcast_obj = &bp->mcast_obj;
  6661. rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
  6662. if (rc < 0)
  6663. BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
  6664. netif_addr_unlock_bh(bp->dev);
  6665. /*
  6666. * Send the UNLOAD_REQUEST to the MCP. This will return if
  6667. * this function should perform FUNC, PORT or COMMON HW
  6668. * reset.
  6669. */
  6670. reset_code = bnx2x_send_unload_req(bp, unload_mode);
  6671. /*
  6672. * (assumption: No Attention from MCP at this stage)
  6673. * PMF probably in the middle of TXdisable/enable transaction
  6674. */
  6675. rc = bnx2x_func_wait_started(bp);
  6676. if (rc) {
  6677. BNX2X_ERR("bnx2x_func_wait_started failed\n");
  6678. #ifdef BNX2X_STOP_ON_ERROR
  6679. return;
  6680. #endif
  6681. }
  6682. /* Close multi and leading connections
  6683. * Completions for ramrods are collected in a synchronous way
  6684. */
  6685. for_each_queue(bp, i)
  6686. if (bnx2x_stop_queue(bp, i))
  6687. #ifdef BNX2X_STOP_ON_ERROR
  6688. return;
  6689. #else
  6690. goto unload_error;
  6691. #endif
  6692. /* If SP settings didn't get completed so far - something
  6693. * very wrong has happen.
  6694. */
  6695. if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
  6696. BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
  6697. #ifndef BNX2X_STOP_ON_ERROR
  6698. unload_error:
  6699. #endif
  6700. rc = bnx2x_func_stop(bp);
  6701. if (rc) {
  6702. BNX2X_ERR("Function stop failed!\n");
  6703. #ifdef BNX2X_STOP_ON_ERROR
  6704. return;
  6705. #endif
  6706. }
  6707. /* Disable HW interrupts, NAPI */
  6708. bnx2x_netif_stop(bp, 1);
  6709. /* Release IRQs */
  6710. bnx2x_free_irq(bp);
  6711. /* Reset the chip */
  6712. rc = bnx2x_reset_hw(bp, reset_code);
  6713. if (rc)
  6714. BNX2X_ERR("HW_RESET failed\n");
  6715. /* Report UNLOAD_DONE to MCP */
  6716. bnx2x_send_unload_done(bp);
  6717. }
  6718. void bnx2x_disable_close_the_gate(struct bnx2x *bp)
  6719. {
  6720. u32 val;
  6721. DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
  6722. if (CHIP_IS_E1(bp)) {
  6723. int port = BP_PORT(bp);
  6724. u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
  6725. MISC_REG_AEU_MASK_ATTN_FUNC_0;
  6726. val = REG_RD(bp, addr);
  6727. val &= ~(0x300);
  6728. REG_WR(bp, addr, val);
  6729. } else {
  6730. val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
  6731. val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
  6732. MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
  6733. REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
  6734. }
  6735. }
  6736. /* Close gates #2, #3 and #4: */
  6737. static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
  6738. {
  6739. u32 val;
  6740. /* Gates #2 and #4a are closed/opened for "not E1" only */
  6741. if (!CHIP_IS_E1(bp)) {
  6742. /* #4 */
  6743. REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
  6744. /* #2 */
  6745. REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
  6746. }
  6747. /* #3 */
  6748. if (CHIP_IS_E1x(bp)) {
  6749. /* Prevent interrupts from HC on both ports */
  6750. val = REG_RD(bp, HC_REG_CONFIG_1);
  6751. REG_WR(bp, HC_REG_CONFIG_1,
  6752. (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
  6753. (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
  6754. val = REG_RD(bp, HC_REG_CONFIG_0);
  6755. REG_WR(bp, HC_REG_CONFIG_0,
  6756. (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
  6757. (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
  6758. } else {
  6759. /* Prevent incomming interrupts in IGU */
  6760. val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
  6761. REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
  6762. (!close) ?
  6763. (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
  6764. (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
  6765. }
  6766. DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
  6767. close ? "closing" : "opening");
  6768. mmiowb();
  6769. }
  6770. #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
  6771. static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
  6772. {
  6773. /* Do some magic... */
  6774. u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
  6775. *magic_val = val & SHARED_MF_CLP_MAGIC;
  6776. MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
  6777. }
  6778. /**
  6779. * bnx2x_clp_reset_done - restore the value of the `magic' bit.
  6780. *
  6781. * @bp: driver handle
  6782. * @magic_val: old value of the `magic' bit.
  6783. */
  6784. static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
  6785. {
  6786. /* Restore the `magic' bit value... */
  6787. u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
  6788. MF_CFG_WR(bp, shared_mf_config.clp_mb,
  6789. (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
  6790. }
  6791. /**
  6792. * bnx2x_reset_mcp_prep - prepare for MCP reset.
  6793. *
  6794. * @bp: driver handle
  6795. * @magic_val: old value of 'magic' bit.
  6796. *
  6797. * Takes care of CLP configurations.
  6798. */
  6799. static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
  6800. {
  6801. u32 shmem;
  6802. u32 validity_offset;
  6803. DP(NETIF_MSG_HW, "Starting\n");
  6804. /* Set `magic' bit in order to save MF config */
  6805. if (!CHIP_IS_E1(bp))
  6806. bnx2x_clp_reset_prep(bp, magic_val);
  6807. /* Get shmem offset */
  6808. shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
  6809. validity_offset = offsetof(struct shmem_region, validity_map[0]);
  6810. /* Clear validity map flags */
  6811. if (shmem > 0)
  6812. REG_WR(bp, shmem + validity_offset, 0);
  6813. }
  6814. #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
  6815. #define MCP_ONE_TIMEOUT 100 /* 100 ms */
  6816. /**
  6817. * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
  6818. *
  6819. * @bp: driver handle
  6820. */
  6821. static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
  6822. {
  6823. /* special handling for emulation and FPGA,
  6824. wait 10 times longer */
  6825. if (CHIP_REV_IS_SLOW(bp))
  6826. msleep(MCP_ONE_TIMEOUT*10);
  6827. else
  6828. msleep(MCP_ONE_TIMEOUT);
  6829. }
  6830. /*
  6831. * initializes bp->common.shmem_base and waits for validity signature to appear
  6832. */
  6833. static int bnx2x_init_shmem(struct bnx2x *bp)
  6834. {
  6835. int cnt = 0;
  6836. u32 val = 0;
  6837. do {
  6838. bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
  6839. if (bp->common.shmem_base) {
  6840. val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
  6841. if (val & SHR_MEM_VALIDITY_MB)
  6842. return 0;
  6843. }
  6844. bnx2x_mcp_wait_one(bp);
  6845. } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
  6846. BNX2X_ERR("BAD MCP validity signature\n");
  6847. return -ENODEV;
  6848. }
  6849. static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
  6850. {
  6851. int rc = bnx2x_init_shmem(bp);
  6852. /* Restore the `magic' bit value */
  6853. if (!CHIP_IS_E1(bp))
  6854. bnx2x_clp_reset_done(bp, magic_val);
  6855. return rc;
  6856. }
  6857. static void bnx2x_pxp_prep(struct bnx2x *bp)
  6858. {
  6859. if (!CHIP_IS_E1(bp)) {
  6860. REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
  6861. REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
  6862. mmiowb();
  6863. }
  6864. }
  6865. /*
  6866. * Reset the whole chip except for:
  6867. * - PCIE core
  6868. * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
  6869. * one reset bit)
  6870. * - IGU
  6871. * - MISC (including AEU)
  6872. * - GRC
  6873. * - RBCN, RBCP
  6874. */
  6875. static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
  6876. {
  6877. u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
  6878. u32 global_bits2, stay_reset2;
  6879. /*
  6880. * Bits that have to be set in reset_mask2 if we want to reset 'global'
  6881. * (per chip) blocks.
  6882. */
  6883. global_bits2 =
  6884. MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
  6885. MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
  6886. /* Don't reset the following blocks */
  6887. not_reset_mask1 =
  6888. MISC_REGISTERS_RESET_REG_1_RST_HC |
  6889. MISC_REGISTERS_RESET_REG_1_RST_PXPV |
  6890. MISC_REGISTERS_RESET_REG_1_RST_PXP;
  6891. not_reset_mask2 =
  6892. MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
  6893. MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
  6894. MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
  6895. MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
  6896. MISC_REGISTERS_RESET_REG_2_RST_RBCN |
  6897. MISC_REGISTERS_RESET_REG_2_RST_GRC |
  6898. MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
  6899. MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
  6900. MISC_REGISTERS_RESET_REG_2_RST_ATC |
  6901. MISC_REGISTERS_RESET_REG_2_PGLC;
  6902. /*
  6903. * Keep the following blocks in reset:
  6904. * - all xxMACs are handled by the bnx2x_link code.
  6905. */
  6906. stay_reset2 =
  6907. MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
  6908. MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
  6909. MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
  6910. MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
  6911. MISC_REGISTERS_RESET_REG_2_UMAC0 |
  6912. MISC_REGISTERS_RESET_REG_2_UMAC1 |
  6913. MISC_REGISTERS_RESET_REG_2_XMAC |
  6914. MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
  6915. /* Full reset masks according to the chip */
  6916. reset_mask1 = 0xffffffff;
  6917. if (CHIP_IS_E1(bp))
  6918. reset_mask2 = 0xffff;
  6919. else if (CHIP_IS_E1H(bp))
  6920. reset_mask2 = 0x1ffff;
  6921. else if (CHIP_IS_E2(bp))
  6922. reset_mask2 = 0xfffff;
  6923. else /* CHIP_IS_E3 */
  6924. reset_mask2 = 0x3ffffff;
  6925. /* Don't reset global blocks unless we need to */
  6926. if (!global)
  6927. reset_mask2 &= ~global_bits2;
  6928. /*
  6929. * In case of attention in the QM, we need to reset PXP
  6930. * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
  6931. * because otherwise QM reset would release 'close the gates' shortly
  6932. * before resetting the PXP, then the PSWRQ would send a write
  6933. * request to PGLUE. Then when PXP is reset, PGLUE would try to
  6934. * read the payload data from PSWWR, but PSWWR would not
  6935. * respond. The write queue in PGLUE would stuck, dmae commands
  6936. * would not return. Therefore it's important to reset the second
  6937. * reset register (containing the
  6938. * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
  6939. * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
  6940. * bit).
  6941. */
  6942. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
  6943. reset_mask2 & (~not_reset_mask2));
  6944. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
  6945. reset_mask1 & (~not_reset_mask1));
  6946. barrier();
  6947. mmiowb();
  6948. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
  6949. reset_mask2 & (~stay_reset2));
  6950. barrier();
  6951. mmiowb();
  6952. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
  6953. mmiowb();
  6954. }
  6955. /**
  6956. * bnx2x_er_poll_igu_vq - poll for pending writes bit.
  6957. * It should get cleared in no more than 1s.
  6958. *
  6959. * @bp: driver handle
  6960. *
  6961. * It should get cleared in no more than 1s. Returns 0 if
  6962. * pending writes bit gets cleared.
  6963. */
  6964. static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
  6965. {
  6966. u32 cnt = 1000;
  6967. u32 pend_bits = 0;
  6968. do {
  6969. pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
  6970. if (pend_bits == 0)
  6971. break;
  6972. usleep_range(1000, 1000);
  6973. } while (cnt-- > 0);
  6974. if (cnt <= 0) {
  6975. BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
  6976. pend_bits);
  6977. return -EBUSY;
  6978. }
  6979. return 0;
  6980. }
  6981. static int bnx2x_process_kill(struct bnx2x *bp, bool global)
  6982. {
  6983. int cnt = 1000;
  6984. u32 val = 0;
  6985. u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
  6986. /* Empty the Tetris buffer, wait for 1s */
  6987. do {
  6988. sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
  6989. blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
  6990. port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
  6991. port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
  6992. pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
  6993. if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
  6994. ((port_is_idle_0 & 0x1) == 0x1) &&
  6995. ((port_is_idle_1 & 0x1) == 0x1) &&
  6996. (pgl_exp_rom2 == 0xffffffff))
  6997. break;
  6998. usleep_range(1000, 1000);
  6999. } while (cnt-- > 0);
  7000. if (cnt <= 0) {
  7001. DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
  7002. " are still"
  7003. " outstanding read requests after 1s!\n");
  7004. DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
  7005. " port_is_idle_0=0x%08x,"
  7006. " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
  7007. sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
  7008. pgl_exp_rom2);
  7009. return -EAGAIN;
  7010. }
  7011. barrier();
  7012. /* Close gates #2, #3 and #4 */
  7013. bnx2x_set_234_gates(bp, true);
  7014. /* Poll for IGU VQs for 57712 and newer chips */
  7015. if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
  7016. return -EAGAIN;
  7017. /* TBD: Indicate that "process kill" is in progress to MCP */
  7018. /* Clear "unprepared" bit */
  7019. REG_WR(bp, MISC_REG_UNPREPARED, 0);
  7020. barrier();
  7021. /* Make sure all is written to the chip before the reset */
  7022. mmiowb();
  7023. /* Wait for 1ms to empty GLUE and PCI-E core queues,
  7024. * PSWHST, GRC and PSWRD Tetris buffer.
  7025. */
  7026. usleep_range(1000, 1000);
  7027. /* Prepare to chip reset: */
  7028. /* MCP */
  7029. if (global)
  7030. bnx2x_reset_mcp_prep(bp, &val);
  7031. /* PXP */
  7032. bnx2x_pxp_prep(bp);
  7033. barrier();
  7034. /* reset the chip */
  7035. bnx2x_process_kill_chip_reset(bp, global);
  7036. barrier();
  7037. /* Recover after reset: */
  7038. /* MCP */
  7039. if (global && bnx2x_reset_mcp_comp(bp, val))
  7040. return -EAGAIN;
  7041. /* TBD: Add resetting the NO_MCP mode DB here */
  7042. /* PXP */
  7043. bnx2x_pxp_prep(bp);
  7044. /* Open the gates #2, #3 and #4 */
  7045. bnx2x_set_234_gates(bp, false);
  7046. /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
  7047. * reset state, re-enable attentions. */
  7048. return 0;
  7049. }
  7050. int bnx2x_leader_reset(struct bnx2x *bp)
  7051. {
  7052. int rc = 0;
  7053. bool global = bnx2x_reset_is_global(bp);
  7054. u32 load_code;
  7055. /* if not going to reset MCP - load "fake" driver to reset HW while
  7056. * driver is owner of the HW
  7057. */
  7058. if (!global && !BP_NOMCP(bp)) {
  7059. load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 0);
  7060. if (!load_code) {
  7061. BNX2X_ERR("MCP response failure, aborting\n");
  7062. rc = -EAGAIN;
  7063. goto exit_leader_reset;
  7064. }
  7065. if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
  7066. (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
  7067. BNX2X_ERR("MCP unexpected resp, aborting\n");
  7068. rc = -EAGAIN;
  7069. goto exit_leader_reset2;
  7070. }
  7071. load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
  7072. if (!load_code) {
  7073. BNX2X_ERR("MCP response failure, aborting\n");
  7074. rc = -EAGAIN;
  7075. goto exit_leader_reset2;
  7076. }
  7077. }
  7078. /* Try to recover after the failure */
  7079. if (bnx2x_process_kill(bp, global)) {
  7080. netdev_err(bp->dev, "Something bad had happen on engine %d! "
  7081. "Aii!\n", BP_PATH(bp));
  7082. rc = -EAGAIN;
  7083. goto exit_leader_reset2;
  7084. }
  7085. /*
  7086. * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
  7087. * state.
  7088. */
  7089. bnx2x_set_reset_done(bp);
  7090. if (global)
  7091. bnx2x_clear_reset_global(bp);
  7092. exit_leader_reset2:
  7093. /* unload "fake driver" if it was loaded */
  7094. if (!global && !BP_NOMCP(bp)) {
  7095. bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
  7096. bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
  7097. }
  7098. exit_leader_reset:
  7099. bp->is_leader = 0;
  7100. bnx2x_release_leader_lock(bp);
  7101. smp_mb();
  7102. return rc;
  7103. }
  7104. static inline void bnx2x_recovery_failed(struct bnx2x *bp)
  7105. {
  7106. netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
  7107. /* Disconnect this device */
  7108. netif_device_detach(bp->dev);
  7109. /*
  7110. * Block ifup for all function on this engine until "process kill"
  7111. * or power cycle.
  7112. */
  7113. bnx2x_set_reset_in_progress(bp);
  7114. /* Shut down the power */
  7115. bnx2x_set_power_state(bp, PCI_D3hot);
  7116. bp->recovery_state = BNX2X_RECOVERY_FAILED;
  7117. smp_mb();
  7118. }
  7119. /*
  7120. * Assumption: runs under rtnl lock. This together with the fact
  7121. * that it's called only from bnx2x_sp_rtnl() ensure that it
  7122. * will never be called when netif_running(bp->dev) is false.
  7123. */
  7124. static void bnx2x_parity_recover(struct bnx2x *bp)
  7125. {
  7126. bool global = false;
  7127. u32 error_recovered, error_unrecovered;
  7128. bool is_parity;
  7129. DP(NETIF_MSG_HW, "Handling parity\n");
  7130. while (1) {
  7131. switch (bp->recovery_state) {
  7132. case BNX2X_RECOVERY_INIT:
  7133. DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
  7134. is_parity = bnx2x_chk_parity_attn(bp, &global, false);
  7135. WARN_ON(!is_parity);
  7136. /* Try to get a LEADER_LOCK HW lock */
  7137. if (bnx2x_trylock_leader_lock(bp)) {
  7138. bnx2x_set_reset_in_progress(bp);
  7139. /*
  7140. * Check if there is a global attention and if
  7141. * there was a global attention, set the global
  7142. * reset bit.
  7143. */
  7144. if (global)
  7145. bnx2x_set_reset_global(bp);
  7146. bp->is_leader = 1;
  7147. }
  7148. /* Stop the driver */
  7149. /* If interface has been removed - break */
  7150. if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
  7151. return;
  7152. bp->recovery_state = BNX2X_RECOVERY_WAIT;
  7153. /* Ensure "is_leader", MCP command sequence and
  7154. * "recovery_state" update values are seen on other
  7155. * CPUs.
  7156. */
  7157. smp_mb();
  7158. break;
  7159. case BNX2X_RECOVERY_WAIT:
  7160. DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
  7161. if (bp->is_leader) {
  7162. int other_engine = BP_PATH(bp) ? 0 : 1;
  7163. bool other_load_status =
  7164. bnx2x_get_load_status(bp, other_engine);
  7165. bool load_status =
  7166. bnx2x_get_load_status(bp, BP_PATH(bp));
  7167. global = bnx2x_reset_is_global(bp);
  7168. /*
  7169. * In case of a parity in a global block, let
  7170. * the first leader that performs a
  7171. * leader_reset() reset the global blocks in
  7172. * order to clear global attentions. Otherwise
  7173. * the the gates will remain closed for that
  7174. * engine.
  7175. */
  7176. if (load_status ||
  7177. (global && other_load_status)) {
  7178. /* Wait until all other functions get
  7179. * down.
  7180. */
  7181. schedule_delayed_work(&bp->sp_rtnl_task,
  7182. HZ/10);
  7183. return;
  7184. } else {
  7185. /* If all other functions got down -
  7186. * try to bring the chip back to
  7187. * normal. In any case it's an exit
  7188. * point for a leader.
  7189. */
  7190. if (bnx2x_leader_reset(bp)) {
  7191. bnx2x_recovery_failed(bp);
  7192. return;
  7193. }
  7194. /* If we are here, means that the
  7195. * leader has succeeded and doesn't
  7196. * want to be a leader any more. Try
  7197. * to continue as a none-leader.
  7198. */
  7199. break;
  7200. }
  7201. } else { /* non-leader */
  7202. if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
  7203. /* Try to get a LEADER_LOCK HW lock as
  7204. * long as a former leader may have
  7205. * been unloaded by the user or
  7206. * released a leadership by another
  7207. * reason.
  7208. */
  7209. if (bnx2x_trylock_leader_lock(bp)) {
  7210. /* I'm a leader now! Restart a
  7211. * switch case.
  7212. */
  7213. bp->is_leader = 1;
  7214. break;
  7215. }
  7216. schedule_delayed_work(&bp->sp_rtnl_task,
  7217. HZ/10);
  7218. return;
  7219. } else {
  7220. /*
  7221. * If there was a global attention, wait
  7222. * for it to be cleared.
  7223. */
  7224. if (bnx2x_reset_is_global(bp)) {
  7225. schedule_delayed_work(
  7226. &bp->sp_rtnl_task,
  7227. HZ/10);
  7228. return;
  7229. }
  7230. error_recovered =
  7231. bp->eth_stats.recoverable_error;
  7232. error_unrecovered =
  7233. bp->eth_stats.unrecoverable_error;
  7234. bp->recovery_state =
  7235. BNX2X_RECOVERY_NIC_LOADING;
  7236. if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
  7237. error_unrecovered++;
  7238. netdev_err(bp->dev,
  7239. "Recovery failed. "
  7240. "Power cycle "
  7241. "needed\n");
  7242. /* Disconnect this device */
  7243. netif_device_detach(bp->dev);
  7244. /* Shut down the power */
  7245. bnx2x_set_power_state(
  7246. bp, PCI_D3hot);
  7247. smp_mb();
  7248. } else {
  7249. bp->recovery_state =
  7250. BNX2X_RECOVERY_DONE;
  7251. error_recovered++;
  7252. smp_mb();
  7253. }
  7254. bp->eth_stats.recoverable_error =
  7255. error_recovered;
  7256. bp->eth_stats.unrecoverable_error =
  7257. error_unrecovered;
  7258. return;
  7259. }
  7260. }
  7261. default:
  7262. return;
  7263. }
  7264. }
  7265. }
  7266. static int bnx2x_close(struct net_device *dev);
  7267. /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
  7268. * scheduled on a general queue in order to prevent a dead lock.
  7269. */
  7270. static void bnx2x_sp_rtnl_task(struct work_struct *work)
  7271. {
  7272. struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
  7273. rtnl_lock();
  7274. if (!netif_running(bp->dev))
  7275. goto sp_rtnl_exit;
  7276. /* if stop on error is defined no recovery flows should be executed */
  7277. #ifdef BNX2X_STOP_ON_ERROR
  7278. BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
  7279. "so reset not done to allow debug dump,\n"
  7280. "you will need to reboot when done\n");
  7281. goto sp_rtnl_not_reset;
  7282. #endif
  7283. if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
  7284. /*
  7285. * Clear all pending SP commands as we are going to reset the
  7286. * function anyway.
  7287. */
  7288. bp->sp_rtnl_state = 0;
  7289. smp_mb();
  7290. bnx2x_parity_recover(bp);
  7291. goto sp_rtnl_exit;
  7292. }
  7293. if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
  7294. /*
  7295. * Clear all pending SP commands as we are going to reset the
  7296. * function anyway.
  7297. */
  7298. bp->sp_rtnl_state = 0;
  7299. smp_mb();
  7300. bnx2x_nic_unload(bp, UNLOAD_NORMAL);
  7301. bnx2x_nic_load(bp, LOAD_NORMAL);
  7302. goto sp_rtnl_exit;
  7303. }
  7304. #ifdef BNX2X_STOP_ON_ERROR
  7305. sp_rtnl_not_reset:
  7306. #endif
  7307. if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
  7308. bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
  7309. /*
  7310. * in case of fan failure we need to reset id if the "stop on error"
  7311. * debug flag is set, since we trying to prevent permanent overheating
  7312. * damage
  7313. */
  7314. if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
  7315. DP(BNX2X_MSG_SP, "fan failure detected. Unloading driver\n");
  7316. netif_device_detach(bp->dev);
  7317. bnx2x_close(bp->dev);
  7318. }
  7319. sp_rtnl_exit:
  7320. rtnl_unlock();
  7321. }
  7322. /* end of nic load/unload */
  7323. static void bnx2x_period_task(struct work_struct *work)
  7324. {
  7325. struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
  7326. if (!netif_running(bp->dev))
  7327. goto period_task_exit;
  7328. if (CHIP_REV_IS_SLOW(bp)) {
  7329. BNX2X_ERR("period task called on emulation, ignoring\n");
  7330. goto period_task_exit;
  7331. }
  7332. bnx2x_acquire_phy_lock(bp);
  7333. /*
  7334. * The barrier is needed to ensure the ordering between the writing to
  7335. * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
  7336. * the reading here.
  7337. */
  7338. smp_mb();
  7339. if (bp->port.pmf) {
  7340. bnx2x_period_func(&bp->link_params, &bp->link_vars);
  7341. /* Re-queue task in 1 sec */
  7342. queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
  7343. }
  7344. bnx2x_release_phy_lock(bp);
  7345. period_task_exit:
  7346. return;
  7347. }
  7348. /*
  7349. * Init service functions
  7350. */
  7351. static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
  7352. {
  7353. u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
  7354. u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
  7355. return base + (BP_ABS_FUNC(bp)) * stride;
  7356. }
  7357. static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
  7358. {
  7359. u32 reg = bnx2x_get_pretend_reg(bp);
  7360. /* Flush all outstanding writes */
  7361. mmiowb();
  7362. /* Pretend to be function 0 */
  7363. REG_WR(bp, reg, 0);
  7364. REG_RD(bp, reg); /* Flush the GRC transaction (in the chip) */
  7365. /* From now we are in the "like-E1" mode */
  7366. bnx2x_int_disable(bp);
  7367. /* Flush all outstanding writes */
  7368. mmiowb();
  7369. /* Restore the original function */
  7370. REG_WR(bp, reg, BP_ABS_FUNC(bp));
  7371. REG_RD(bp, reg);
  7372. }
  7373. static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
  7374. {
  7375. if (CHIP_IS_E1(bp))
  7376. bnx2x_int_disable(bp);
  7377. else
  7378. bnx2x_undi_int_disable_e1h(bp);
  7379. }
  7380. static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
  7381. {
  7382. u32 val;
  7383. /* possibly another driver is trying to reset the chip */
  7384. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  7385. /* check if doorbell queue is reset */
  7386. if (REG_RD(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET)
  7387. & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
  7388. /*
  7389. * Check if it is the UNDI driver
  7390. * UNDI driver initializes CID offset for normal bell to 0x7
  7391. */
  7392. val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
  7393. if (val == 0x7) {
  7394. u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
  7395. /* save our pf_num */
  7396. int orig_pf_num = bp->pf_num;
  7397. int port;
  7398. u32 swap_en, swap_val, value;
  7399. /* clear the UNDI indication */
  7400. REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
  7401. BNX2X_DEV_INFO("UNDI is active! reset device\n");
  7402. /* try unload UNDI on port 0 */
  7403. bp->pf_num = 0;
  7404. bp->fw_seq =
  7405. (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
  7406. DRV_MSG_SEQ_NUMBER_MASK);
  7407. reset_code = bnx2x_fw_command(bp, reset_code, 0);
  7408. /* if UNDI is loaded on the other port */
  7409. if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
  7410. /* send "DONE" for previous unload */
  7411. bnx2x_fw_command(bp,
  7412. DRV_MSG_CODE_UNLOAD_DONE, 0);
  7413. /* unload UNDI on port 1 */
  7414. bp->pf_num = 1;
  7415. bp->fw_seq =
  7416. (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
  7417. DRV_MSG_SEQ_NUMBER_MASK);
  7418. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
  7419. bnx2x_fw_command(bp, reset_code, 0);
  7420. }
  7421. bnx2x_undi_int_disable(bp);
  7422. port = BP_PORT(bp);
  7423. /* close input traffic and wait for it */
  7424. /* Do not rcv packets to BRB */
  7425. REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
  7426. NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
  7427. /* Do not direct rcv packets that are not for MCP to
  7428. * the BRB */
  7429. REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
  7430. NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
  7431. /* clear AEU */
  7432. REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
  7433. MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
  7434. msleep(10);
  7435. /* save NIG port swap info */
  7436. swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
  7437. swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
  7438. /* reset device */
  7439. REG_WR(bp,
  7440. GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
  7441. 0xd3ffffff);
  7442. value = 0x1400;
  7443. if (CHIP_IS_E3(bp)) {
  7444. value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
  7445. value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
  7446. }
  7447. REG_WR(bp,
  7448. GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
  7449. value);
  7450. /* take the NIG out of reset and restore swap values */
  7451. REG_WR(bp,
  7452. GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
  7453. MISC_REGISTERS_RESET_REG_1_RST_NIG);
  7454. REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
  7455. REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
  7456. /* send unload done to the MCP */
  7457. bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
  7458. /* restore our func and fw_seq */
  7459. bp->pf_num = orig_pf_num;
  7460. }
  7461. }
  7462. /* now it's safe to release the lock */
  7463. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  7464. }
  7465. static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
  7466. {
  7467. u32 val, val2, val3, val4, id, boot_mode;
  7468. u16 pmc;
  7469. /* Get the chip revision id and number. */
  7470. /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
  7471. val = REG_RD(bp, MISC_REG_CHIP_NUM);
  7472. id = ((val & 0xffff) << 16);
  7473. val = REG_RD(bp, MISC_REG_CHIP_REV);
  7474. id |= ((val & 0xf) << 12);
  7475. val = REG_RD(bp, MISC_REG_CHIP_METAL);
  7476. id |= ((val & 0xff) << 4);
  7477. val = REG_RD(bp, MISC_REG_BOND_ID);
  7478. id |= (val & 0xf);
  7479. bp->common.chip_id = id;
  7480. /* Set doorbell size */
  7481. bp->db_size = (1 << BNX2X_DB_SHIFT);
  7482. if (!CHIP_IS_E1x(bp)) {
  7483. val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
  7484. if ((val & 1) == 0)
  7485. val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
  7486. else
  7487. val = (val >> 1) & 1;
  7488. BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
  7489. "2_PORT_MODE");
  7490. bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
  7491. CHIP_2_PORT_MODE;
  7492. if (CHIP_MODE_IS_4_PORT(bp))
  7493. bp->pfid = (bp->pf_num >> 1); /* 0..3 */
  7494. else
  7495. bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
  7496. } else {
  7497. bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
  7498. bp->pfid = bp->pf_num; /* 0..7 */
  7499. }
  7500. bp->link_params.chip_id = bp->common.chip_id;
  7501. BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
  7502. val = (REG_RD(bp, 0x2874) & 0x55);
  7503. if ((bp->common.chip_id & 0x1) ||
  7504. (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
  7505. bp->flags |= ONE_PORT_FLAG;
  7506. BNX2X_DEV_INFO("single port device\n");
  7507. }
  7508. val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
  7509. bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
  7510. (val & MCPR_NVM_CFG4_FLASH_SIZE));
  7511. BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
  7512. bp->common.flash_size, bp->common.flash_size);
  7513. bnx2x_init_shmem(bp);
  7514. bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
  7515. MISC_REG_GENERIC_CR_1 :
  7516. MISC_REG_GENERIC_CR_0));
  7517. bp->link_params.shmem_base = bp->common.shmem_base;
  7518. bp->link_params.shmem2_base = bp->common.shmem2_base;
  7519. BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
  7520. bp->common.shmem_base, bp->common.shmem2_base);
  7521. if (!bp->common.shmem_base) {
  7522. BNX2X_DEV_INFO("MCP not active\n");
  7523. bp->flags |= NO_MCP_FLAG;
  7524. return;
  7525. }
  7526. bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
  7527. BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
  7528. bp->link_params.hw_led_mode = ((bp->common.hw_config &
  7529. SHARED_HW_CFG_LED_MODE_MASK) >>
  7530. SHARED_HW_CFG_LED_MODE_SHIFT);
  7531. bp->link_params.feature_config_flags = 0;
  7532. val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
  7533. if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
  7534. bp->link_params.feature_config_flags |=
  7535. FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
  7536. else
  7537. bp->link_params.feature_config_flags &=
  7538. ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
  7539. val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
  7540. bp->common.bc_ver = val;
  7541. BNX2X_DEV_INFO("bc_ver %X\n", val);
  7542. if (val < BNX2X_BC_VER) {
  7543. /* for now only warn
  7544. * later we might need to enforce this */
  7545. BNX2X_ERR("This driver needs bc_ver %X but found %X, "
  7546. "please upgrade BC\n", BNX2X_BC_VER, val);
  7547. }
  7548. bp->link_params.feature_config_flags |=
  7549. (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
  7550. FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
  7551. bp->link_params.feature_config_flags |=
  7552. (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
  7553. FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
  7554. bp->link_params.feature_config_flags |=
  7555. (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
  7556. FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
  7557. bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
  7558. BC_SUPPORTS_PFC_STATS : 0;
  7559. boot_mode = SHMEM_RD(bp,
  7560. dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
  7561. PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
  7562. switch (boot_mode) {
  7563. case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
  7564. bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
  7565. break;
  7566. case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
  7567. bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
  7568. break;
  7569. case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
  7570. bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
  7571. break;
  7572. case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
  7573. bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
  7574. break;
  7575. }
  7576. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
  7577. bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
  7578. BNX2X_DEV_INFO("%sWoL capable\n",
  7579. (bp->flags & NO_WOL_FLAG) ? "not " : "");
  7580. val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
  7581. val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
  7582. val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
  7583. val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
  7584. dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
  7585. val, val2, val3, val4);
  7586. }
  7587. #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
  7588. #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
  7589. static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
  7590. {
  7591. int pfid = BP_FUNC(bp);
  7592. int igu_sb_id;
  7593. u32 val;
  7594. u8 fid, igu_sb_cnt = 0;
  7595. bp->igu_base_sb = 0xff;
  7596. if (CHIP_INT_MODE_IS_BC(bp)) {
  7597. int vn = BP_VN(bp);
  7598. igu_sb_cnt = bp->igu_sb_cnt;
  7599. bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
  7600. FP_SB_MAX_E1x;
  7601. bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
  7602. (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
  7603. return;
  7604. }
  7605. /* IGU in normal mode - read CAM */
  7606. for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
  7607. igu_sb_id++) {
  7608. val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
  7609. if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
  7610. continue;
  7611. fid = IGU_FID(val);
  7612. if ((fid & IGU_FID_ENCODE_IS_PF)) {
  7613. if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
  7614. continue;
  7615. if (IGU_VEC(val) == 0)
  7616. /* default status block */
  7617. bp->igu_dsb_id = igu_sb_id;
  7618. else {
  7619. if (bp->igu_base_sb == 0xff)
  7620. bp->igu_base_sb = igu_sb_id;
  7621. igu_sb_cnt++;
  7622. }
  7623. }
  7624. }
  7625. #ifdef CONFIG_PCI_MSI
  7626. /*
  7627. * It's expected that number of CAM entries for this functions is equal
  7628. * to the number evaluated based on the MSI-X table size. We want a
  7629. * harsh warning if these values are different!
  7630. */
  7631. WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
  7632. #endif
  7633. if (igu_sb_cnt == 0)
  7634. BNX2X_ERR("CAM configuration error\n");
  7635. }
  7636. static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
  7637. u32 switch_cfg)
  7638. {
  7639. int cfg_size = 0, idx, port = BP_PORT(bp);
  7640. /* Aggregation of supported attributes of all external phys */
  7641. bp->port.supported[0] = 0;
  7642. bp->port.supported[1] = 0;
  7643. switch (bp->link_params.num_phys) {
  7644. case 1:
  7645. bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
  7646. cfg_size = 1;
  7647. break;
  7648. case 2:
  7649. bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
  7650. cfg_size = 1;
  7651. break;
  7652. case 3:
  7653. if (bp->link_params.multi_phy_config &
  7654. PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
  7655. bp->port.supported[1] =
  7656. bp->link_params.phy[EXT_PHY1].supported;
  7657. bp->port.supported[0] =
  7658. bp->link_params.phy[EXT_PHY2].supported;
  7659. } else {
  7660. bp->port.supported[0] =
  7661. bp->link_params.phy[EXT_PHY1].supported;
  7662. bp->port.supported[1] =
  7663. bp->link_params.phy[EXT_PHY2].supported;
  7664. }
  7665. cfg_size = 2;
  7666. break;
  7667. }
  7668. if (!(bp->port.supported[0] || bp->port.supported[1])) {
  7669. BNX2X_ERR("NVRAM config error. BAD phy config."
  7670. "PHY1 config 0x%x, PHY2 config 0x%x\n",
  7671. SHMEM_RD(bp,
  7672. dev_info.port_hw_config[port].external_phy_config),
  7673. SHMEM_RD(bp,
  7674. dev_info.port_hw_config[port].external_phy_config2));
  7675. return;
  7676. }
  7677. if (CHIP_IS_E3(bp))
  7678. bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
  7679. else {
  7680. switch (switch_cfg) {
  7681. case SWITCH_CFG_1G:
  7682. bp->port.phy_addr = REG_RD(
  7683. bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
  7684. break;
  7685. case SWITCH_CFG_10G:
  7686. bp->port.phy_addr = REG_RD(
  7687. bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
  7688. break;
  7689. default:
  7690. BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
  7691. bp->port.link_config[0]);
  7692. return;
  7693. }
  7694. }
  7695. BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
  7696. /* mask what we support according to speed_cap_mask per configuration */
  7697. for (idx = 0; idx < cfg_size; idx++) {
  7698. if (!(bp->link_params.speed_cap_mask[idx] &
  7699. PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
  7700. bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
  7701. if (!(bp->link_params.speed_cap_mask[idx] &
  7702. PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
  7703. bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
  7704. if (!(bp->link_params.speed_cap_mask[idx] &
  7705. PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
  7706. bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
  7707. if (!(bp->link_params.speed_cap_mask[idx] &
  7708. PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
  7709. bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
  7710. if (!(bp->link_params.speed_cap_mask[idx] &
  7711. PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
  7712. bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
  7713. SUPPORTED_1000baseT_Full);
  7714. if (!(bp->link_params.speed_cap_mask[idx] &
  7715. PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
  7716. bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
  7717. if (!(bp->link_params.speed_cap_mask[idx] &
  7718. PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
  7719. bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
  7720. }
  7721. BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
  7722. bp->port.supported[1]);
  7723. }
  7724. static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
  7725. {
  7726. u32 link_config, idx, cfg_size = 0;
  7727. bp->port.advertising[0] = 0;
  7728. bp->port.advertising[1] = 0;
  7729. switch (bp->link_params.num_phys) {
  7730. case 1:
  7731. case 2:
  7732. cfg_size = 1;
  7733. break;
  7734. case 3:
  7735. cfg_size = 2;
  7736. break;
  7737. }
  7738. for (idx = 0; idx < cfg_size; idx++) {
  7739. bp->link_params.req_duplex[idx] = DUPLEX_FULL;
  7740. link_config = bp->port.link_config[idx];
  7741. switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
  7742. case PORT_FEATURE_LINK_SPEED_AUTO:
  7743. if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
  7744. bp->link_params.req_line_speed[idx] =
  7745. SPEED_AUTO_NEG;
  7746. bp->port.advertising[idx] |=
  7747. bp->port.supported[idx];
  7748. if (bp->link_params.phy[EXT_PHY1].type ==
  7749. PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
  7750. bp->port.advertising[idx] |=
  7751. (SUPPORTED_100baseT_Half |
  7752. SUPPORTED_100baseT_Full);
  7753. } else {
  7754. /* force 10G, no AN */
  7755. bp->link_params.req_line_speed[idx] =
  7756. SPEED_10000;
  7757. bp->port.advertising[idx] |=
  7758. (ADVERTISED_10000baseT_Full |
  7759. ADVERTISED_FIBRE);
  7760. continue;
  7761. }
  7762. break;
  7763. case PORT_FEATURE_LINK_SPEED_10M_FULL:
  7764. if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
  7765. bp->link_params.req_line_speed[idx] =
  7766. SPEED_10;
  7767. bp->port.advertising[idx] |=
  7768. (ADVERTISED_10baseT_Full |
  7769. ADVERTISED_TP);
  7770. } else {
  7771. BNX2X_ERR("NVRAM config error. "
  7772. "Invalid link_config 0x%x"
  7773. " speed_cap_mask 0x%x\n",
  7774. link_config,
  7775. bp->link_params.speed_cap_mask[idx]);
  7776. return;
  7777. }
  7778. break;
  7779. case PORT_FEATURE_LINK_SPEED_10M_HALF:
  7780. if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
  7781. bp->link_params.req_line_speed[idx] =
  7782. SPEED_10;
  7783. bp->link_params.req_duplex[idx] =
  7784. DUPLEX_HALF;
  7785. bp->port.advertising[idx] |=
  7786. (ADVERTISED_10baseT_Half |
  7787. ADVERTISED_TP);
  7788. } else {
  7789. BNX2X_ERR("NVRAM config error. "
  7790. "Invalid link_config 0x%x"
  7791. " speed_cap_mask 0x%x\n",
  7792. link_config,
  7793. bp->link_params.speed_cap_mask[idx]);
  7794. return;
  7795. }
  7796. break;
  7797. case PORT_FEATURE_LINK_SPEED_100M_FULL:
  7798. if (bp->port.supported[idx] &
  7799. SUPPORTED_100baseT_Full) {
  7800. bp->link_params.req_line_speed[idx] =
  7801. SPEED_100;
  7802. bp->port.advertising[idx] |=
  7803. (ADVERTISED_100baseT_Full |
  7804. ADVERTISED_TP);
  7805. } else {
  7806. BNX2X_ERR("NVRAM config error. "
  7807. "Invalid link_config 0x%x"
  7808. " speed_cap_mask 0x%x\n",
  7809. link_config,
  7810. bp->link_params.speed_cap_mask[idx]);
  7811. return;
  7812. }
  7813. break;
  7814. case PORT_FEATURE_LINK_SPEED_100M_HALF:
  7815. if (bp->port.supported[idx] &
  7816. SUPPORTED_100baseT_Half) {
  7817. bp->link_params.req_line_speed[idx] =
  7818. SPEED_100;
  7819. bp->link_params.req_duplex[idx] =
  7820. DUPLEX_HALF;
  7821. bp->port.advertising[idx] |=
  7822. (ADVERTISED_100baseT_Half |
  7823. ADVERTISED_TP);
  7824. } else {
  7825. BNX2X_ERR("NVRAM config error. "
  7826. "Invalid link_config 0x%x"
  7827. " speed_cap_mask 0x%x\n",
  7828. link_config,
  7829. bp->link_params.speed_cap_mask[idx]);
  7830. return;
  7831. }
  7832. break;
  7833. case PORT_FEATURE_LINK_SPEED_1G:
  7834. if (bp->port.supported[idx] &
  7835. SUPPORTED_1000baseT_Full) {
  7836. bp->link_params.req_line_speed[idx] =
  7837. SPEED_1000;
  7838. bp->port.advertising[idx] |=
  7839. (ADVERTISED_1000baseT_Full |
  7840. ADVERTISED_TP);
  7841. } else {
  7842. BNX2X_ERR("NVRAM config error. "
  7843. "Invalid link_config 0x%x"
  7844. " speed_cap_mask 0x%x\n",
  7845. link_config,
  7846. bp->link_params.speed_cap_mask[idx]);
  7847. return;
  7848. }
  7849. break;
  7850. case PORT_FEATURE_LINK_SPEED_2_5G:
  7851. if (bp->port.supported[idx] &
  7852. SUPPORTED_2500baseX_Full) {
  7853. bp->link_params.req_line_speed[idx] =
  7854. SPEED_2500;
  7855. bp->port.advertising[idx] |=
  7856. (ADVERTISED_2500baseX_Full |
  7857. ADVERTISED_TP);
  7858. } else {
  7859. BNX2X_ERR("NVRAM config error. "
  7860. "Invalid link_config 0x%x"
  7861. " speed_cap_mask 0x%x\n",
  7862. link_config,
  7863. bp->link_params.speed_cap_mask[idx]);
  7864. return;
  7865. }
  7866. break;
  7867. case PORT_FEATURE_LINK_SPEED_10G_CX4:
  7868. if (bp->port.supported[idx] &
  7869. SUPPORTED_10000baseT_Full) {
  7870. bp->link_params.req_line_speed[idx] =
  7871. SPEED_10000;
  7872. bp->port.advertising[idx] |=
  7873. (ADVERTISED_10000baseT_Full |
  7874. ADVERTISED_FIBRE);
  7875. } else {
  7876. BNX2X_ERR("NVRAM config error. "
  7877. "Invalid link_config 0x%x"
  7878. " speed_cap_mask 0x%x\n",
  7879. link_config,
  7880. bp->link_params.speed_cap_mask[idx]);
  7881. return;
  7882. }
  7883. break;
  7884. case PORT_FEATURE_LINK_SPEED_20G:
  7885. bp->link_params.req_line_speed[idx] = SPEED_20000;
  7886. break;
  7887. default:
  7888. BNX2X_ERR("NVRAM config error. "
  7889. "BAD link speed link_config 0x%x\n",
  7890. link_config);
  7891. bp->link_params.req_line_speed[idx] =
  7892. SPEED_AUTO_NEG;
  7893. bp->port.advertising[idx] =
  7894. bp->port.supported[idx];
  7895. break;
  7896. }
  7897. bp->link_params.req_flow_ctrl[idx] = (link_config &
  7898. PORT_FEATURE_FLOW_CONTROL_MASK);
  7899. if ((bp->link_params.req_flow_ctrl[idx] ==
  7900. BNX2X_FLOW_CTRL_AUTO) &&
  7901. !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
  7902. bp->link_params.req_flow_ctrl[idx] =
  7903. BNX2X_FLOW_CTRL_NONE;
  7904. }
  7905. BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl"
  7906. " 0x%x advertising 0x%x\n",
  7907. bp->link_params.req_line_speed[idx],
  7908. bp->link_params.req_duplex[idx],
  7909. bp->link_params.req_flow_ctrl[idx],
  7910. bp->port.advertising[idx]);
  7911. }
  7912. }
  7913. static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
  7914. {
  7915. mac_hi = cpu_to_be16(mac_hi);
  7916. mac_lo = cpu_to_be32(mac_lo);
  7917. memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
  7918. memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
  7919. }
  7920. static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
  7921. {
  7922. int port = BP_PORT(bp);
  7923. u32 config;
  7924. u32 ext_phy_type, ext_phy_config;
  7925. bp->link_params.bp = bp;
  7926. bp->link_params.port = port;
  7927. bp->link_params.lane_config =
  7928. SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
  7929. bp->link_params.speed_cap_mask[0] =
  7930. SHMEM_RD(bp,
  7931. dev_info.port_hw_config[port].speed_capability_mask);
  7932. bp->link_params.speed_cap_mask[1] =
  7933. SHMEM_RD(bp,
  7934. dev_info.port_hw_config[port].speed_capability_mask2);
  7935. bp->port.link_config[0] =
  7936. SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
  7937. bp->port.link_config[1] =
  7938. SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
  7939. bp->link_params.multi_phy_config =
  7940. SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
  7941. /* If the device is capable of WoL, set the default state according
  7942. * to the HW
  7943. */
  7944. config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
  7945. bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
  7946. (config & PORT_FEATURE_WOL_ENABLED));
  7947. BNX2X_DEV_INFO("lane_config 0x%08x "
  7948. "speed_cap_mask0 0x%08x link_config0 0x%08x\n",
  7949. bp->link_params.lane_config,
  7950. bp->link_params.speed_cap_mask[0],
  7951. bp->port.link_config[0]);
  7952. bp->link_params.switch_cfg = (bp->port.link_config[0] &
  7953. PORT_FEATURE_CONNECTED_SWITCH_MASK);
  7954. bnx2x_phy_probe(&bp->link_params);
  7955. bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
  7956. bnx2x_link_settings_requested(bp);
  7957. /*
  7958. * If connected directly, work with the internal PHY, otherwise, work
  7959. * with the external PHY
  7960. */
  7961. ext_phy_config =
  7962. SHMEM_RD(bp,
  7963. dev_info.port_hw_config[port].external_phy_config);
  7964. ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
  7965. if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
  7966. bp->mdio.prtad = bp->port.phy_addr;
  7967. else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
  7968. (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
  7969. bp->mdio.prtad =
  7970. XGXS_EXT_PHY_ADDR(ext_phy_config);
  7971. /*
  7972. * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
  7973. * In MF mode, it is set to cover self test cases
  7974. */
  7975. if (IS_MF(bp))
  7976. bp->port.need_hw_lock = 1;
  7977. else
  7978. bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
  7979. bp->common.shmem_base,
  7980. bp->common.shmem2_base);
  7981. }
  7982. void bnx2x_get_iscsi_info(struct bnx2x *bp)
  7983. {
  7984. #ifdef BCM_CNIC
  7985. int port = BP_PORT(bp);
  7986. u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
  7987. drv_lic_key[port].max_iscsi_conn);
  7988. /* Get the number of maximum allowed iSCSI connections */
  7989. bp->cnic_eth_dev.max_iscsi_conn =
  7990. (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
  7991. BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
  7992. BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
  7993. bp->cnic_eth_dev.max_iscsi_conn);
  7994. /*
  7995. * If maximum allowed number of connections is zero -
  7996. * disable the feature.
  7997. */
  7998. if (!bp->cnic_eth_dev.max_iscsi_conn)
  7999. bp->flags |= NO_ISCSI_FLAG;
  8000. #else
  8001. bp->flags |= NO_ISCSI_FLAG;
  8002. #endif
  8003. }
  8004. static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
  8005. {
  8006. #ifdef BCM_CNIC
  8007. int port = BP_PORT(bp);
  8008. int func = BP_ABS_FUNC(bp);
  8009. u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
  8010. drv_lic_key[port].max_fcoe_conn);
  8011. /* Get the number of maximum allowed FCoE connections */
  8012. bp->cnic_eth_dev.max_fcoe_conn =
  8013. (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
  8014. BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
  8015. /* Read the WWN: */
  8016. if (!IS_MF(bp)) {
  8017. /* Port info */
  8018. bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
  8019. SHMEM_RD(bp,
  8020. dev_info.port_hw_config[port].
  8021. fcoe_wwn_port_name_upper);
  8022. bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
  8023. SHMEM_RD(bp,
  8024. dev_info.port_hw_config[port].
  8025. fcoe_wwn_port_name_lower);
  8026. /* Node info */
  8027. bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
  8028. SHMEM_RD(bp,
  8029. dev_info.port_hw_config[port].
  8030. fcoe_wwn_node_name_upper);
  8031. bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
  8032. SHMEM_RD(bp,
  8033. dev_info.port_hw_config[port].
  8034. fcoe_wwn_node_name_lower);
  8035. } else if (!IS_MF_SD(bp)) {
  8036. u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
  8037. /*
  8038. * Read the WWN info only if the FCoE feature is enabled for
  8039. * this function.
  8040. */
  8041. if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
  8042. /* Port info */
  8043. bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
  8044. MF_CFG_RD(bp, func_ext_config[func].
  8045. fcoe_wwn_port_name_upper);
  8046. bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
  8047. MF_CFG_RD(bp, func_ext_config[func].
  8048. fcoe_wwn_port_name_lower);
  8049. /* Node info */
  8050. bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
  8051. MF_CFG_RD(bp, func_ext_config[func].
  8052. fcoe_wwn_node_name_upper);
  8053. bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
  8054. MF_CFG_RD(bp, func_ext_config[func].
  8055. fcoe_wwn_node_name_lower);
  8056. }
  8057. }
  8058. BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
  8059. /*
  8060. * If maximum allowed number of connections is zero -
  8061. * disable the feature.
  8062. */
  8063. if (!bp->cnic_eth_dev.max_fcoe_conn)
  8064. bp->flags |= NO_FCOE_FLAG;
  8065. #else
  8066. bp->flags |= NO_FCOE_FLAG;
  8067. #endif
  8068. }
  8069. static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
  8070. {
  8071. /*
  8072. * iSCSI may be dynamically disabled but reading
  8073. * info here we will decrease memory usage by driver
  8074. * if the feature is disabled for good
  8075. */
  8076. bnx2x_get_iscsi_info(bp);
  8077. bnx2x_get_fcoe_info(bp);
  8078. }
  8079. static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
  8080. {
  8081. u32 val, val2;
  8082. int func = BP_ABS_FUNC(bp);
  8083. int port = BP_PORT(bp);
  8084. #ifdef BCM_CNIC
  8085. u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
  8086. u8 *fip_mac = bp->fip_mac;
  8087. #endif
  8088. /* Zero primary MAC configuration */
  8089. memset(bp->dev->dev_addr, 0, ETH_ALEN);
  8090. if (BP_NOMCP(bp)) {
  8091. BNX2X_ERROR("warning: random MAC workaround active\n");
  8092. eth_hw_addr_random(bp->dev);
  8093. } else if (IS_MF(bp)) {
  8094. val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
  8095. val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
  8096. if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
  8097. (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
  8098. bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
  8099. #ifdef BCM_CNIC
  8100. /*
  8101. * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
  8102. * FCoE MAC then the appropriate feature should be disabled.
  8103. */
  8104. if (IS_MF_SI(bp)) {
  8105. u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
  8106. if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
  8107. val2 = MF_CFG_RD(bp, func_ext_config[func].
  8108. iscsi_mac_addr_upper);
  8109. val = MF_CFG_RD(bp, func_ext_config[func].
  8110. iscsi_mac_addr_lower);
  8111. bnx2x_set_mac_buf(iscsi_mac, val, val2);
  8112. BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
  8113. iscsi_mac);
  8114. } else
  8115. bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
  8116. if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
  8117. val2 = MF_CFG_RD(bp, func_ext_config[func].
  8118. fcoe_mac_addr_upper);
  8119. val = MF_CFG_RD(bp, func_ext_config[func].
  8120. fcoe_mac_addr_lower);
  8121. bnx2x_set_mac_buf(fip_mac, val, val2);
  8122. BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
  8123. fip_mac);
  8124. } else
  8125. bp->flags |= NO_FCOE_FLAG;
  8126. } else { /* SD mode */
  8127. if (BNX2X_IS_MF_PROTOCOL_ISCSI(bp)) {
  8128. /* use primary mac as iscsi mac */
  8129. memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
  8130. /* Zero primary MAC configuration */
  8131. memset(bp->dev->dev_addr, 0, ETH_ALEN);
  8132. BNX2X_DEV_INFO("SD ISCSI MODE\n");
  8133. BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
  8134. iscsi_mac);
  8135. }
  8136. }
  8137. #endif
  8138. } else {
  8139. /* in SF read MACs from port configuration */
  8140. val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
  8141. val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
  8142. bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
  8143. #ifdef BCM_CNIC
  8144. val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
  8145. iscsi_mac_upper);
  8146. val = SHMEM_RD(bp, dev_info.port_hw_config[port].
  8147. iscsi_mac_lower);
  8148. bnx2x_set_mac_buf(iscsi_mac, val, val2);
  8149. val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
  8150. fcoe_fip_mac_upper);
  8151. val = SHMEM_RD(bp, dev_info.port_hw_config[port].
  8152. fcoe_fip_mac_lower);
  8153. bnx2x_set_mac_buf(fip_mac, val, val2);
  8154. #endif
  8155. }
  8156. memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
  8157. memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
  8158. #ifdef BCM_CNIC
  8159. /* Set the FCoE MAC in MF_SD mode */
  8160. if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
  8161. memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
  8162. /* Disable iSCSI if MAC configuration is
  8163. * invalid.
  8164. */
  8165. if (!is_valid_ether_addr(iscsi_mac)) {
  8166. bp->flags |= NO_ISCSI_FLAG;
  8167. memset(iscsi_mac, 0, ETH_ALEN);
  8168. }
  8169. /* Disable FCoE if MAC configuration is
  8170. * invalid.
  8171. */
  8172. if (!is_valid_ether_addr(fip_mac)) {
  8173. bp->flags |= NO_FCOE_FLAG;
  8174. memset(bp->fip_mac, 0, ETH_ALEN);
  8175. }
  8176. #endif
  8177. if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
  8178. dev_err(&bp->pdev->dev,
  8179. "bad Ethernet MAC address configuration: "
  8180. "%pM, change it manually before bringing up "
  8181. "the appropriate network interface\n",
  8182. bp->dev->dev_addr);
  8183. }
  8184. static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
  8185. {
  8186. int /*abs*/func = BP_ABS_FUNC(bp);
  8187. int vn;
  8188. u32 val = 0;
  8189. int rc = 0;
  8190. bnx2x_get_common_hwinfo(bp);
  8191. /*
  8192. * initialize IGU parameters
  8193. */
  8194. if (CHIP_IS_E1x(bp)) {
  8195. bp->common.int_block = INT_BLOCK_HC;
  8196. bp->igu_dsb_id = DEF_SB_IGU_ID;
  8197. bp->igu_base_sb = 0;
  8198. } else {
  8199. bp->common.int_block = INT_BLOCK_IGU;
  8200. /* do not allow device reset during IGU info preocessing */
  8201. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  8202. val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
  8203. if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
  8204. int tout = 5000;
  8205. BNX2X_DEV_INFO("FORCING Normal Mode\n");
  8206. val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
  8207. REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
  8208. REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
  8209. while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
  8210. tout--;
  8211. usleep_range(1000, 1000);
  8212. }
  8213. if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
  8214. dev_err(&bp->pdev->dev,
  8215. "FORCING Normal Mode failed!!!\n");
  8216. return -EPERM;
  8217. }
  8218. }
  8219. if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
  8220. BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
  8221. bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
  8222. } else
  8223. BNX2X_DEV_INFO("IGU Normal Mode\n");
  8224. bnx2x_get_igu_cam_info(bp);
  8225. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  8226. }
  8227. /*
  8228. * set base FW non-default (fast path) status block id, this value is
  8229. * used to initialize the fw_sb_id saved on the fp/queue structure to
  8230. * determine the id used by the FW.
  8231. */
  8232. if (CHIP_IS_E1x(bp))
  8233. bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
  8234. else /*
  8235. * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
  8236. * the same queue are indicated on the same IGU SB). So we prefer
  8237. * FW and IGU SBs to be the same value.
  8238. */
  8239. bp->base_fw_ndsb = bp->igu_base_sb;
  8240. BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
  8241. "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
  8242. bp->igu_sb_cnt, bp->base_fw_ndsb);
  8243. /*
  8244. * Initialize MF configuration
  8245. */
  8246. bp->mf_ov = 0;
  8247. bp->mf_mode = 0;
  8248. vn = BP_VN(bp);
  8249. if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
  8250. BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
  8251. bp->common.shmem2_base, SHMEM2_RD(bp, size),
  8252. (u32)offsetof(struct shmem2_region, mf_cfg_addr));
  8253. if (SHMEM2_HAS(bp, mf_cfg_addr))
  8254. bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
  8255. else
  8256. bp->common.mf_cfg_base = bp->common.shmem_base +
  8257. offsetof(struct shmem_region, func_mb) +
  8258. E1H_FUNC_MAX * sizeof(struct drv_func_mb);
  8259. /*
  8260. * get mf configuration:
  8261. * 1. existence of MF configuration
  8262. * 2. MAC address must be legal (check only upper bytes)
  8263. * for Switch-Independent mode;
  8264. * OVLAN must be legal for Switch-Dependent mode
  8265. * 3. SF_MODE configures specific MF mode
  8266. */
  8267. if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
  8268. /* get mf configuration */
  8269. val = SHMEM_RD(bp,
  8270. dev_info.shared_feature_config.config);
  8271. val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
  8272. switch (val) {
  8273. case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
  8274. val = MF_CFG_RD(bp, func_mf_config[func].
  8275. mac_upper);
  8276. /* check for legal mac (upper bytes)*/
  8277. if (val != 0xffff) {
  8278. bp->mf_mode = MULTI_FUNCTION_SI;
  8279. bp->mf_config[vn] = MF_CFG_RD(bp,
  8280. func_mf_config[func].config);
  8281. } else
  8282. BNX2X_DEV_INFO("illegal MAC address "
  8283. "for SI\n");
  8284. break;
  8285. case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
  8286. /* get OV configuration */
  8287. val = MF_CFG_RD(bp,
  8288. func_mf_config[FUNC_0].e1hov_tag);
  8289. val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
  8290. if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
  8291. bp->mf_mode = MULTI_FUNCTION_SD;
  8292. bp->mf_config[vn] = MF_CFG_RD(bp,
  8293. func_mf_config[func].config);
  8294. } else
  8295. BNX2X_DEV_INFO("illegal OV for SD\n");
  8296. break;
  8297. default:
  8298. /* Unknown configuration: reset mf_config */
  8299. bp->mf_config[vn] = 0;
  8300. BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
  8301. }
  8302. }
  8303. BNX2X_DEV_INFO("%s function mode\n",
  8304. IS_MF(bp) ? "multi" : "single");
  8305. switch (bp->mf_mode) {
  8306. case MULTI_FUNCTION_SD:
  8307. val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
  8308. FUNC_MF_CFG_E1HOV_TAG_MASK;
  8309. if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
  8310. bp->mf_ov = val;
  8311. bp->path_has_ovlan = true;
  8312. BNX2X_DEV_INFO("MF OV for func %d is %d "
  8313. "(0x%04x)\n", func, bp->mf_ov,
  8314. bp->mf_ov);
  8315. } else {
  8316. dev_err(&bp->pdev->dev,
  8317. "No valid MF OV for func %d, "
  8318. "aborting\n", func);
  8319. return -EPERM;
  8320. }
  8321. break;
  8322. case MULTI_FUNCTION_SI:
  8323. BNX2X_DEV_INFO("func %d is in MF "
  8324. "switch-independent mode\n", func);
  8325. break;
  8326. default:
  8327. if (vn) {
  8328. dev_err(&bp->pdev->dev,
  8329. "VN %d is in a single function mode, "
  8330. "aborting\n", vn);
  8331. return -EPERM;
  8332. }
  8333. break;
  8334. }
  8335. /* check if other port on the path needs ovlan:
  8336. * Since MF configuration is shared between ports
  8337. * Possible mixed modes are only
  8338. * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
  8339. */
  8340. if (CHIP_MODE_IS_4_PORT(bp) &&
  8341. !bp->path_has_ovlan &&
  8342. !IS_MF(bp) &&
  8343. bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
  8344. u8 other_port = !BP_PORT(bp);
  8345. u8 other_func = BP_PATH(bp) + 2*other_port;
  8346. val = MF_CFG_RD(bp,
  8347. func_mf_config[other_func].e1hov_tag);
  8348. if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
  8349. bp->path_has_ovlan = true;
  8350. }
  8351. }
  8352. /* adjust igu_sb_cnt to MF for E1x */
  8353. if (CHIP_IS_E1x(bp) && IS_MF(bp))
  8354. bp->igu_sb_cnt /= E1HVN_MAX;
  8355. /* port info */
  8356. bnx2x_get_port_hwinfo(bp);
  8357. /* Get MAC addresses */
  8358. bnx2x_get_mac_hwinfo(bp);
  8359. bnx2x_get_cnic_info(bp);
  8360. return rc;
  8361. }
  8362. static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
  8363. {
  8364. int cnt, i, block_end, rodi;
  8365. char vpd_start[BNX2X_VPD_LEN+1];
  8366. char str_id_reg[VENDOR_ID_LEN+1];
  8367. char str_id_cap[VENDOR_ID_LEN+1];
  8368. char *vpd_data;
  8369. char *vpd_extended_data = NULL;
  8370. u8 len;
  8371. cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
  8372. memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
  8373. if (cnt < BNX2X_VPD_LEN)
  8374. goto out_not_found;
  8375. /* VPD RO tag should be first tag after identifier string, hence
  8376. * we should be able to find it in first BNX2X_VPD_LEN chars
  8377. */
  8378. i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
  8379. PCI_VPD_LRDT_RO_DATA);
  8380. if (i < 0)
  8381. goto out_not_found;
  8382. block_end = i + PCI_VPD_LRDT_TAG_SIZE +
  8383. pci_vpd_lrdt_size(&vpd_start[i]);
  8384. i += PCI_VPD_LRDT_TAG_SIZE;
  8385. if (block_end > BNX2X_VPD_LEN) {
  8386. vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
  8387. if (vpd_extended_data == NULL)
  8388. goto out_not_found;
  8389. /* read rest of vpd image into vpd_extended_data */
  8390. memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
  8391. cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
  8392. block_end - BNX2X_VPD_LEN,
  8393. vpd_extended_data + BNX2X_VPD_LEN);
  8394. if (cnt < (block_end - BNX2X_VPD_LEN))
  8395. goto out_not_found;
  8396. vpd_data = vpd_extended_data;
  8397. } else
  8398. vpd_data = vpd_start;
  8399. /* now vpd_data holds full vpd content in both cases */
  8400. rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
  8401. PCI_VPD_RO_KEYWORD_MFR_ID);
  8402. if (rodi < 0)
  8403. goto out_not_found;
  8404. len = pci_vpd_info_field_size(&vpd_data[rodi]);
  8405. if (len != VENDOR_ID_LEN)
  8406. goto out_not_found;
  8407. rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
  8408. /* vendor specific info */
  8409. snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
  8410. snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
  8411. if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
  8412. !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
  8413. rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
  8414. PCI_VPD_RO_KEYWORD_VENDOR0);
  8415. if (rodi >= 0) {
  8416. len = pci_vpd_info_field_size(&vpd_data[rodi]);
  8417. rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
  8418. if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
  8419. memcpy(bp->fw_ver, &vpd_data[rodi], len);
  8420. bp->fw_ver[len] = ' ';
  8421. }
  8422. }
  8423. kfree(vpd_extended_data);
  8424. return;
  8425. }
  8426. out_not_found:
  8427. kfree(vpd_extended_data);
  8428. return;
  8429. }
  8430. static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
  8431. {
  8432. u32 flags = 0;
  8433. if (CHIP_REV_IS_FPGA(bp))
  8434. SET_FLAGS(flags, MODE_FPGA);
  8435. else if (CHIP_REV_IS_EMUL(bp))
  8436. SET_FLAGS(flags, MODE_EMUL);
  8437. else
  8438. SET_FLAGS(flags, MODE_ASIC);
  8439. if (CHIP_MODE_IS_4_PORT(bp))
  8440. SET_FLAGS(flags, MODE_PORT4);
  8441. else
  8442. SET_FLAGS(flags, MODE_PORT2);
  8443. if (CHIP_IS_E2(bp))
  8444. SET_FLAGS(flags, MODE_E2);
  8445. else if (CHIP_IS_E3(bp)) {
  8446. SET_FLAGS(flags, MODE_E3);
  8447. if (CHIP_REV(bp) == CHIP_REV_Ax)
  8448. SET_FLAGS(flags, MODE_E3_A0);
  8449. else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
  8450. SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
  8451. }
  8452. if (IS_MF(bp)) {
  8453. SET_FLAGS(flags, MODE_MF);
  8454. switch (bp->mf_mode) {
  8455. case MULTI_FUNCTION_SD:
  8456. SET_FLAGS(flags, MODE_MF_SD);
  8457. break;
  8458. case MULTI_FUNCTION_SI:
  8459. SET_FLAGS(flags, MODE_MF_SI);
  8460. break;
  8461. }
  8462. } else
  8463. SET_FLAGS(flags, MODE_SF);
  8464. #if defined(__LITTLE_ENDIAN)
  8465. SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
  8466. #else /*(__BIG_ENDIAN)*/
  8467. SET_FLAGS(flags, MODE_BIG_ENDIAN);
  8468. #endif
  8469. INIT_MODE_FLAGS(bp) = flags;
  8470. }
  8471. static int __devinit bnx2x_init_bp(struct bnx2x *bp)
  8472. {
  8473. int func;
  8474. int rc;
  8475. mutex_init(&bp->port.phy_mutex);
  8476. mutex_init(&bp->fw_mb_mutex);
  8477. spin_lock_init(&bp->stats_lock);
  8478. #ifdef BCM_CNIC
  8479. mutex_init(&bp->cnic_mutex);
  8480. #endif
  8481. INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
  8482. INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
  8483. INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
  8484. rc = bnx2x_get_hwinfo(bp);
  8485. if (rc)
  8486. return rc;
  8487. bnx2x_set_modes_bitmap(bp);
  8488. rc = bnx2x_alloc_mem_bp(bp);
  8489. if (rc)
  8490. return rc;
  8491. bnx2x_read_fwinfo(bp);
  8492. func = BP_FUNC(bp);
  8493. /* need to reset chip if undi was active */
  8494. if (!BP_NOMCP(bp))
  8495. bnx2x_undi_unload(bp);
  8496. if (CHIP_REV_IS_FPGA(bp))
  8497. dev_err(&bp->pdev->dev, "FPGA detected\n");
  8498. if (BP_NOMCP(bp) && (func == 0))
  8499. dev_err(&bp->pdev->dev, "MCP disabled, "
  8500. "must load devices in order!\n");
  8501. bp->multi_mode = multi_mode;
  8502. bp->disable_tpa = disable_tpa;
  8503. #ifdef BCM_CNIC
  8504. bp->disable_tpa |= IS_MF_ISCSI_SD(bp);
  8505. #endif
  8506. /* Set TPA flags */
  8507. if (bp->disable_tpa) {
  8508. bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
  8509. bp->dev->features &= ~NETIF_F_LRO;
  8510. } else {
  8511. bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
  8512. bp->dev->features |= NETIF_F_LRO;
  8513. }
  8514. if (CHIP_IS_E1(bp))
  8515. bp->dropless_fc = 0;
  8516. else
  8517. bp->dropless_fc = dropless_fc;
  8518. bp->mrrs = mrrs;
  8519. bp->tx_ring_size = MAX_TX_AVAIL;
  8520. /* make sure that the numbers are in the right granularity */
  8521. bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
  8522. bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
  8523. bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
  8524. init_timer(&bp->timer);
  8525. bp->timer.expires = jiffies + bp->current_interval;
  8526. bp->timer.data = (unsigned long) bp;
  8527. bp->timer.function = bnx2x_timer;
  8528. bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
  8529. bnx2x_dcbx_init_params(bp);
  8530. #ifdef BCM_CNIC
  8531. if (CHIP_IS_E1x(bp))
  8532. bp->cnic_base_cl_id = FP_SB_MAX_E1x;
  8533. else
  8534. bp->cnic_base_cl_id = FP_SB_MAX_E2;
  8535. #endif
  8536. /* multiple tx priority */
  8537. if (CHIP_IS_E1x(bp))
  8538. bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
  8539. if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
  8540. bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
  8541. if (CHIP_IS_E3B0(bp))
  8542. bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
  8543. bp->gro_check = bnx2x_need_gro_check(bp->dev->mtu);
  8544. return rc;
  8545. }
  8546. /****************************************************************************
  8547. * General service functions
  8548. ****************************************************************************/
  8549. /*
  8550. * net_device service functions
  8551. */
  8552. /* called with rtnl_lock */
  8553. static int bnx2x_open(struct net_device *dev)
  8554. {
  8555. struct bnx2x *bp = netdev_priv(dev);
  8556. bool global = false;
  8557. int other_engine = BP_PATH(bp) ? 0 : 1;
  8558. bool other_load_status, load_status;
  8559. bp->stats_init = true;
  8560. netif_carrier_off(dev);
  8561. bnx2x_set_power_state(bp, PCI_D0);
  8562. other_load_status = bnx2x_get_load_status(bp, other_engine);
  8563. load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
  8564. /*
  8565. * If parity had happen during the unload, then attentions
  8566. * and/or RECOVERY_IN_PROGRES may still be set. In this case we
  8567. * want the first function loaded on the current engine to
  8568. * complete the recovery.
  8569. */
  8570. if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
  8571. bnx2x_chk_parity_attn(bp, &global, true))
  8572. do {
  8573. /*
  8574. * If there are attentions and they are in a global
  8575. * blocks, set the GLOBAL_RESET bit regardless whether
  8576. * it will be this function that will complete the
  8577. * recovery or not.
  8578. */
  8579. if (global)
  8580. bnx2x_set_reset_global(bp);
  8581. /*
  8582. * Only the first function on the current engine should
  8583. * try to recover in open. In case of attentions in
  8584. * global blocks only the first in the chip should try
  8585. * to recover.
  8586. */
  8587. if ((!load_status &&
  8588. (!global || !other_load_status)) &&
  8589. bnx2x_trylock_leader_lock(bp) &&
  8590. !bnx2x_leader_reset(bp)) {
  8591. netdev_info(bp->dev, "Recovered in open\n");
  8592. break;
  8593. }
  8594. /* recovery has failed... */
  8595. bnx2x_set_power_state(bp, PCI_D3hot);
  8596. bp->recovery_state = BNX2X_RECOVERY_FAILED;
  8597. netdev_err(bp->dev, "Recovery flow hasn't been properly"
  8598. " completed yet. Try again later. If u still see this"
  8599. " message after a few retries then power cycle is"
  8600. " required.\n");
  8601. return -EAGAIN;
  8602. } while (0);
  8603. bp->recovery_state = BNX2X_RECOVERY_DONE;
  8604. return bnx2x_nic_load(bp, LOAD_OPEN);
  8605. }
  8606. /* called with rtnl_lock */
  8607. static int bnx2x_close(struct net_device *dev)
  8608. {
  8609. struct bnx2x *bp = netdev_priv(dev);
  8610. /* Unload the driver, release IRQs */
  8611. bnx2x_nic_unload(bp, UNLOAD_CLOSE);
  8612. /* Power off */
  8613. bnx2x_set_power_state(bp, PCI_D3hot);
  8614. return 0;
  8615. }
  8616. static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
  8617. struct bnx2x_mcast_ramrod_params *p)
  8618. {
  8619. int mc_count = netdev_mc_count(bp->dev);
  8620. struct bnx2x_mcast_list_elem *mc_mac =
  8621. kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
  8622. struct netdev_hw_addr *ha;
  8623. if (!mc_mac)
  8624. return -ENOMEM;
  8625. INIT_LIST_HEAD(&p->mcast_list);
  8626. netdev_for_each_mc_addr(ha, bp->dev) {
  8627. mc_mac->mac = bnx2x_mc_addr(ha);
  8628. list_add_tail(&mc_mac->link, &p->mcast_list);
  8629. mc_mac++;
  8630. }
  8631. p->mcast_list_len = mc_count;
  8632. return 0;
  8633. }
  8634. static inline void bnx2x_free_mcast_macs_list(
  8635. struct bnx2x_mcast_ramrod_params *p)
  8636. {
  8637. struct bnx2x_mcast_list_elem *mc_mac =
  8638. list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
  8639. link);
  8640. WARN_ON(!mc_mac);
  8641. kfree(mc_mac);
  8642. }
  8643. /**
  8644. * bnx2x_set_uc_list - configure a new unicast MACs list.
  8645. *
  8646. * @bp: driver handle
  8647. *
  8648. * We will use zero (0) as a MAC type for these MACs.
  8649. */
  8650. static inline int bnx2x_set_uc_list(struct bnx2x *bp)
  8651. {
  8652. int rc;
  8653. struct net_device *dev = bp->dev;
  8654. struct netdev_hw_addr *ha;
  8655. struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
  8656. unsigned long ramrod_flags = 0;
  8657. /* First schedule a cleanup up of old configuration */
  8658. rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
  8659. if (rc < 0) {
  8660. BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
  8661. return rc;
  8662. }
  8663. netdev_for_each_uc_addr(ha, dev) {
  8664. rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
  8665. BNX2X_UC_LIST_MAC, &ramrod_flags);
  8666. if (rc < 0) {
  8667. BNX2X_ERR("Failed to schedule ADD operations: %d\n",
  8668. rc);
  8669. return rc;
  8670. }
  8671. }
  8672. /* Execute the pending commands */
  8673. __set_bit(RAMROD_CONT, &ramrod_flags);
  8674. return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
  8675. BNX2X_UC_LIST_MAC, &ramrod_flags);
  8676. }
  8677. static inline int bnx2x_set_mc_list(struct bnx2x *bp)
  8678. {
  8679. struct net_device *dev = bp->dev;
  8680. struct bnx2x_mcast_ramrod_params rparam = {0};
  8681. int rc = 0;
  8682. rparam.mcast_obj = &bp->mcast_obj;
  8683. /* first, clear all configured multicast MACs */
  8684. rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
  8685. if (rc < 0) {
  8686. BNX2X_ERR("Failed to clear multicast "
  8687. "configuration: %d\n", rc);
  8688. return rc;
  8689. }
  8690. /* then, configure a new MACs list */
  8691. if (netdev_mc_count(dev)) {
  8692. rc = bnx2x_init_mcast_macs_list(bp, &rparam);
  8693. if (rc) {
  8694. BNX2X_ERR("Failed to create multicast MACs "
  8695. "list: %d\n", rc);
  8696. return rc;
  8697. }
  8698. /* Now add the new MACs */
  8699. rc = bnx2x_config_mcast(bp, &rparam,
  8700. BNX2X_MCAST_CMD_ADD);
  8701. if (rc < 0)
  8702. BNX2X_ERR("Failed to set a new multicast "
  8703. "configuration: %d\n", rc);
  8704. bnx2x_free_mcast_macs_list(&rparam);
  8705. }
  8706. return rc;
  8707. }
  8708. /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
  8709. void bnx2x_set_rx_mode(struct net_device *dev)
  8710. {
  8711. struct bnx2x *bp = netdev_priv(dev);
  8712. u32 rx_mode = BNX2X_RX_MODE_NORMAL;
  8713. if (bp->state != BNX2X_STATE_OPEN) {
  8714. DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
  8715. return;
  8716. }
  8717. DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
  8718. if (dev->flags & IFF_PROMISC)
  8719. rx_mode = BNX2X_RX_MODE_PROMISC;
  8720. else if ((dev->flags & IFF_ALLMULTI) ||
  8721. ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
  8722. CHIP_IS_E1(bp)))
  8723. rx_mode = BNX2X_RX_MODE_ALLMULTI;
  8724. else {
  8725. /* some multicasts */
  8726. if (bnx2x_set_mc_list(bp) < 0)
  8727. rx_mode = BNX2X_RX_MODE_ALLMULTI;
  8728. if (bnx2x_set_uc_list(bp) < 0)
  8729. rx_mode = BNX2X_RX_MODE_PROMISC;
  8730. }
  8731. bp->rx_mode = rx_mode;
  8732. #ifdef BCM_CNIC
  8733. /* handle ISCSI SD mode */
  8734. if (IS_MF_ISCSI_SD(bp))
  8735. bp->rx_mode = BNX2X_RX_MODE_NONE;
  8736. #endif
  8737. /* Schedule the rx_mode command */
  8738. if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
  8739. set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
  8740. return;
  8741. }
  8742. bnx2x_set_storm_rx_mode(bp);
  8743. }
  8744. /* called with rtnl_lock */
  8745. static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
  8746. int devad, u16 addr)
  8747. {
  8748. struct bnx2x *bp = netdev_priv(netdev);
  8749. u16 value;
  8750. int rc;
  8751. DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
  8752. prtad, devad, addr);
  8753. /* The HW expects different devad if CL22 is used */
  8754. devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
  8755. bnx2x_acquire_phy_lock(bp);
  8756. rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
  8757. bnx2x_release_phy_lock(bp);
  8758. DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
  8759. if (!rc)
  8760. rc = value;
  8761. return rc;
  8762. }
  8763. /* called with rtnl_lock */
  8764. static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
  8765. u16 addr, u16 value)
  8766. {
  8767. struct bnx2x *bp = netdev_priv(netdev);
  8768. int rc;
  8769. DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
  8770. " value 0x%x\n", prtad, devad, addr, value);
  8771. /* The HW expects different devad if CL22 is used */
  8772. devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
  8773. bnx2x_acquire_phy_lock(bp);
  8774. rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
  8775. bnx2x_release_phy_lock(bp);
  8776. return rc;
  8777. }
  8778. /* called with rtnl_lock */
  8779. static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  8780. {
  8781. struct bnx2x *bp = netdev_priv(dev);
  8782. struct mii_ioctl_data *mdio = if_mii(ifr);
  8783. DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
  8784. mdio->phy_id, mdio->reg_num, mdio->val_in);
  8785. if (!netif_running(dev))
  8786. return -EAGAIN;
  8787. return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
  8788. }
  8789. #ifdef CONFIG_NET_POLL_CONTROLLER
  8790. static void poll_bnx2x(struct net_device *dev)
  8791. {
  8792. struct bnx2x *bp = netdev_priv(dev);
  8793. disable_irq(bp->pdev->irq);
  8794. bnx2x_interrupt(bp->pdev->irq, dev);
  8795. enable_irq(bp->pdev->irq);
  8796. }
  8797. #endif
  8798. static int bnx2x_validate_addr(struct net_device *dev)
  8799. {
  8800. struct bnx2x *bp = netdev_priv(dev);
  8801. if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr))
  8802. return -EADDRNOTAVAIL;
  8803. return 0;
  8804. }
  8805. static const struct net_device_ops bnx2x_netdev_ops = {
  8806. .ndo_open = bnx2x_open,
  8807. .ndo_stop = bnx2x_close,
  8808. .ndo_start_xmit = bnx2x_start_xmit,
  8809. .ndo_select_queue = bnx2x_select_queue,
  8810. .ndo_set_rx_mode = bnx2x_set_rx_mode,
  8811. .ndo_set_mac_address = bnx2x_change_mac_addr,
  8812. .ndo_validate_addr = bnx2x_validate_addr,
  8813. .ndo_do_ioctl = bnx2x_ioctl,
  8814. .ndo_change_mtu = bnx2x_change_mtu,
  8815. .ndo_fix_features = bnx2x_fix_features,
  8816. .ndo_set_features = bnx2x_set_features,
  8817. .ndo_tx_timeout = bnx2x_tx_timeout,
  8818. #ifdef CONFIG_NET_POLL_CONTROLLER
  8819. .ndo_poll_controller = poll_bnx2x,
  8820. #endif
  8821. .ndo_setup_tc = bnx2x_setup_tc,
  8822. #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
  8823. .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
  8824. #endif
  8825. };
  8826. static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
  8827. {
  8828. struct device *dev = &bp->pdev->dev;
  8829. if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
  8830. bp->flags |= USING_DAC_FLAG;
  8831. if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
  8832. dev_err(dev, "dma_set_coherent_mask failed, "
  8833. "aborting\n");
  8834. return -EIO;
  8835. }
  8836. } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
  8837. dev_err(dev, "System does not support DMA, aborting\n");
  8838. return -EIO;
  8839. }
  8840. return 0;
  8841. }
  8842. static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
  8843. struct net_device *dev,
  8844. unsigned long board_type)
  8845. {
  8846. struct bnx2x *bp;
  8847. int rc;
  8848. u32 pci_cfg_dword;
  8849. bool chip_is_e1x = (board_type == BCM57710 ||
  8850. board_type == BCM57711 ||
  8851. board_type == BCM57711E);
  8852. SET_NETDEV_DEV(dev, &pdev->dev);
  8853. bp = netdev_priv(dev);
  8854. bp->dev = dev;
  8855. bp->pdev = pdev;
  8856. bp->flags = 0;
  8857. rc = pci_enable_device(pdev);
  8858. if (rc) {
  8859. dev_err(&bp->pdev->dev,
  8860. "Cannot enable PCI device, aborting\n");
  8861. goto err_out;
  8862. }
  8863. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  8864. dev_err(&bp->pdev->dev,
  8865. "Cannot find PCI device base address, aborting\n");
  8866. rc = -ENODEV;
  8867. goto err_out_disable;
  8868. }
  8869. if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8870. dev_err(&bp->pdev->dev, "Cannot find second PCI device"
  8871. " base address, aborting\n");
  8872. rc = -ENODEV;
  8873. goto err_out_disable;
  8874. }
  8875. if (atomic_read(&pdev->enable_cnt) == 1) {
  8876. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  8877. if (rc) {
  8878. dev_err(&bp->pdev->dev,
  8879. "Cannot obtain PCI resources, aborting\n");
  8880. goto err_out_disable;
  8881. }
  8882. pci_set_master(pdev);
  8883. pci_save_state(pdev);
  8884. }
  8885. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  8886. if (bp->pm_cap == 0) {
  8887. dev_err(&bp->pdev->dev,
  8888. "Cannot find power management capability, aborting\n");
  8889. rc = -EIO;
  8890. goto err_out_release;
  8891. }
  8892. if (!pci_is_pcie(pdev)) {
  8893. dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
  8894. rc = -EIO;
  8895. goto err_out_release;
  8896. }
  8897. rc = bnx2x_set_coherency_mask(bp);
  8898. if (rc)
  8899. goto err_out_release;
  8900. dev->mem_start = pci_resource_start(pdev, 0);
  8901. dev->base_addr = dev->mem_start;
  8902. dev->mem_end = pci_resource_end(pdev, 0);
  8903. dev->irq = pdev->irq;
  8904. bp->regview = pci_ioremap_bar(pdev, 0);
  8905. if (!bp->regview) {
  8906. dev_err(&bp->pdev->dev,
  8907. "Cannot map register space, aborting\n");
  8908. rc = -ENOMEM;
  8909. goto err_out_release;
  8910. }
  8911. /* In E1/E1H use pci device function given by kernel.
  8912. * In E2/E3 read physical function from ME register since these chips
  8913. * support Physical Device Assignment where kernel BDF maybe arbitrary
  8914. * (depending on hypervisor).
  8915. */
  8916. if (chip_is_e1x)
  8917. bp->pf_num = PCI_FUNC(pdev->devfn);
  8918. else {/* chip is E2/3*/
  8919. pci_read_config_dword(bp->pdev,
  8920. PCICFG_ME_REGISTER, &pci_cfg_dword);
  8921. bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
  8922. ME_REG_ABS_PF_NUM_SHIFT);
  8923. }
  8924. DP(BNX2X_MSG_SP, "me reg PF num: %d\n", bp->pf_num);
  8925. bnx2x_set_power_state(bp, PCI_D0);
  8926. /* clean indirect addresses */
  8927. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
  8928. PCICFG_VENDOR_ID_OFFSET);
  8929. /*
  8930. * Clean the following indirect addresses for all functions since it
  8931. * is not used by the driver.
  8932. */
  8933. REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
  8934. REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
  8935. REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
  8936. REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
  8937. if (chip_is_e1x) {
  8938. REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
  8939. REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
  8940. REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
  8941. REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
  8942. }
  8943. /*
  8944. * Enable internal target-read (in case we are probed after PF FLR).
  8945. * Must be done prior to any BAR read access. Only for 57712 and up
  8946. */
  8947. if (!chip_is_e1x)
  8948. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
  8949. /* Reset the load counter */
  8950. bnx2x_clear_load_status(bp);
  8951. dev->watchdog_timeo = TX_TIMEOUT;
  8952. dev->netdev_ops = &bnx2x_netdev_ops;
  8953. bnx2x_set_ethtool_ops(dev);
  8954. dev->priv_flags |= IFF_UNICAST_FLT;
  8955. dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  8956. NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
  8957. NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
  8958. NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
  8959. dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  8960. NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
  8961. dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
  8962. if (bp->flags & USING_DAC_FLAG)
  8963. dev->features |= NETIF_F_HIGHDMA;
  8964. /* Add Loopback capability to the device */
  8965. dev->hw_features |= NETIF_F_LOOPBACK;
  8966. #ifdef BCM_DCBNL
  8967. dev->dcbnl_ops = &bnx2x_dcbnl_ops;
  8968. #endif
  8969. /* get_port_hwinfo() will set prtad and mmds properly */
  8970. bp->mdio.prtad = MDIO_PRTAD_NONE;
  8971. bp->mdio.mmds = 0;
  8972. bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
  8973. bp->mdio.dev = dev;
  8974. bp->mdio.mdio_read = bnx2x_mdio_read;
  8975. bp->mdio.mdio_write = bnx2x_mdio_write;
  8976. return 0;
  8977. err_out_release:
  8978. if (atomic_read(&pdev->enable_cnt) == 1)
  8979. pci_release_regions(pdev);
  8980. err_out_disable:
  8981. pci_disable_device(pdev);
  8982. pci_set_drvdata(pdev, NULL);
  8983. err_out:
  8984. return rc;
  8985. }
  8986. static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
  8987. int *width, int *speed)
  8988. {
  8989. u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
  8990. *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
  8991. /* return value of 1=2.5GHz 2=5GHz */
  8992. *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
  8993. }
  8994. static int bnx2x_check_firmware(struct bnx2x *bp)
  8995. {
  8996. const struct firmware *firmware = bp->firmware;
  8997. struct bnx2x_fw_file_hdr *fw_hdr;
  8998. struct bnx2x_fw_file_section *sections;
  8999. u32 offset, len, num_ops;
  9000. u16 *ops_offsets;
  9001. int i;
  9002. const u8 *fw_ver;
  9003. if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
  9004. return -EINVAL;
  9005. fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
  9006. sections = (struct bnx2x_fw_file_section *)fw_hdr;
  9007. /* Make sure none of the offsets and sizes make us read beyond
  9008. * the end of the firmware data */
  9009. for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
  9010. offset = be32_to_cpu(sections[i].offset);
  9011. len = be32_to_cpu(sections[i].len);
  9012. if (offset + len > firmware->size) {
  9013. dev_err(&bp->pdev->dev,
  9014. "Section %d length is out of bounds\n", i);
  9015. return -EINVAL;
  9016. }
  9017. }
  9018. /* Likewise for the init_ops offsets */
  9019. offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
  9020. ops_offsets = (u16 *)(firmware->data + offset);
  9021. num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
  9022. for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
  9023. if (be16_to_cpu(ops_offsets[i]) > num_ops) {
  9024. dev_err(&bp->pdev->dev,
  9025. "Section offset %d is out of bounds\n", i);
  9026. return -EINVAL;
  9027. }
  9028. }
  9029. /* Check FW version */
  9030. offset = be32_to_cpu(fw_hdr->fw_version.offset);
  9031. fw_ver = firmware->data + offset;
  9032. if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
  9033. (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
  9034. (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
  9035. (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
  9036. dev_err(&bp->pdev->dev,
  9037. "Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
  9038. fw_ver[0], fw_ver[1], fw_ver[2],
  9039. fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
  9040. BCM_5710_FW_MINOR_VERSION,
  9041. BCM_5710_FW_REVISION_VERSION,
  9042. BCM_5710_FW_ENGINEERING_VERSION);
  9043. return -EINVAL;
  9044. }
  9045. return 0;
  9046. }
  9047. static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
  9048. {
  9049. const __be32 *source = (const __be32 *)_source;
  9050. u32 *target = (u32 *)_target;
  9051. u32 i;
  9052. for (i = 0; i < n/4; i++)
  9053. target[i] = be32_to_cpu(source[i]);
  9054. }
  9055. /*
  9056. Ops array is stored in the following format:
  9057. {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
  9058. */
  9059. static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
  9060. {
  9061. const __be32 *source = (const __be32 *)_source;
  9062. struct raw_op *target = (struct raw_op *)_target;
  9063. u32 i, j, tmp;
  9064. for (i = 0, j = 0; i < n/8; i++, j += 2) {
  9065. tmp = be32_to_cpu(source[j]);
  9066. target[i].op = (tmp >> 24) & 0xff;
  9067. target[i].offset = tmp & 0xffffff;
  9068. target[i].raw_data = be32_to_cpu(source[j + 1]);
  9069. }
  9070. }
  9071. /**
  9072. * IRO array is stored in the following format:
  9073. * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
  9074. */
  9075. static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
  9076. {
  9077. const __be32 *source = (const __be32 *)_source;
  9078. struct iro *target = (struct iro *)_target;
  9079. u32 i, j, tmp;
  9080. for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
  9081. target[i].base = be32_to_cpu(source[j]);
  9082. j++;
  9083. tmp = be32_to_cpu(source[j]);
  9084. target[i].m1 = (tmp >> 16) & 0xffff;
  9085. target[i].m2 = tmp & 0xffff;
  9086. j++;
  9087. tmp = be32_to_cpu(source[j]);
  9088. target[i].m3 = (tmp >> 16) & 0xffff;
  9089. target[i].size = tmp & 0xffff;
  9090. j++;
  9091. }
  9092. }
  9093. static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
  9094. {
  9095. const __be16 *source = (const __be16 *)_source;
  9096. u16 *target = (u16 *)_target;
  9097. u32 i;
  9098. for (i = 0; i < n/2; i++)
  9099. target[i] = be16_to_cpu(source[i]);
  9100. }
  9101. #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
  9102. do { \
  9103. u32 len = be32_to_cpu(fw_hdr->arr.len); \
  9104. bp->arr = kmalloc(len, GFP_KERNEL); \
  9105. if (!bp->arr) \
  9106. goto lbl; \
  9107. func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
  9108. (u8 *)bp->arr, len); \
  9109. } while (0)
  9110. int bnx2x_init_firmware(struct bnx2x *bp)
  9111. {
  9112. struct bnx2x_fw_file_hdr *fw_hdr;
  9113. int rc;
  9114. if (!bp->firmware) {
  9115. const char *fw_file_name;
  9116. if (CHIP_IS_E1(bp))
  9117. fw_file_name = FW_FILE_NAME_E1;
  9118. else if (CHIP_IS_E1H(bp))
  9119. fw_file_name = FW_FILE_NAME_E1H;
  9120. else if (!CHIP_IS_E1x(bp))
  9121. fw_file_name = FW_FILE_NAME_E2;
  9122. else {
  9123. BNX2X_ERR("Unsupported chip revision\n");
  9124. return -EINVAL;
  9125. }
  9126. BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
  9127. rc = request_firmware(&bp->firmware, fw_file_name,
  9128. &bp->pdev->dev);
  9129. if (rc) {
  9130. BNX2X_ERR("Can't load firmware file %s\n",
  9131. fw_file_name);
  9132. goto request_firmware_exit;
  9133. }
  9134. rc = bnx2x_check_firmware(bp);
  9135. if (rc) {
  9136. BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
  9137. goto request_firmware_exit;
  9138. }
  9139. }
  9140. fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
  9141. /* Initialize the pointers to the init arrays */
  9142. /* Blob */
  9143. BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
  9144. /* Opcodes */
  9145. BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
  9146. /* Offsets */
  9147. BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
  9148. be16_to_cpu_n);
  9149. /* STORMs firmware */
  9150. INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
  9151. be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
  9152. INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
  9153. be32_to_cpu(fw_hdr->tsem_pram_data.offset);
  9154. INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
  9155. be32_to_cpu(fw_hdr->usem_int_table_data.offset);
  9156. INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
  9157. be32_to_cpu(fw_hdr->usem_pram_data.offset);
  9158. INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
  9159. be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
  9160. INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
  9161. be32_to_cpu(fw_hdr->xsem_pram_data.offset);
  9162. INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
  9163. be32_to_cpu(fw_hdr->csem_int_table_data.offset);
  9164. INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
  9165. be32_to_cpu(fw_hdr->csem_pram_data.offset);
  9166. /* IRO */
  9167. BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
  9168. return 0;
  9169. iro_alloc_err:
  9170. kfree(bp->init_ops_offsets);
  9171. init_offsets_alloc_err:
  9172. kfree(bp->init_ops);
  9173. init_ops_alloc_err:
  9174. kfree(bp->init_data);
  9175. request_firmware_exit:
  9176. release_firmware(bp->firmware);
  9177. return rc;
  9178. }
  9179. static void bnx2x_release_firmware(struct bnx2x *bp)
  9180. {
  9181. kfree(bp->init_ops_offsets);
  9182. kfree(bp->init_ops);
  9183. kfree(bp->init_data);
  9184. release_firmware(bp->firmware);
  9185. bp->firmware = NULL;
  9186. }
  9187. static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
  9188. .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
  9189. .init_hw_cmn = bnx2x_init_hw_common,
  9190. .init_hw_port = bnx2x_init_hw_port,
  9191. .init_hw_func = bnx2x_init_hw_func,
  9192. .reset_hw_cmn = bnx2x_reset_common,
  9193. .reset_hw_port = bnx2x_reset_port,
  9194. .reset_hw_func = bnx2x_reset_func,
  9195. .gunzip_init = bnx2x_gunzip_init,
  9196. .gunzip_end = bnx2x_gunzip_end,
  9197. .init_fw = bnx2x_init_firmware,
  9198. .release_fw = bnx2x_release_firmware,
  9199. };
  9200. void bnx2x__init_func_obj(struct bnx2x *bp)
  9201. {
  9202. /* Prepare DMAE related driver resources */
  9203. bnx2x_setup_dmae(bp);
  9204. bnx2x_init_func_obj(bp, &bp->func_obj,
  9205. bnx2x_sp(bp, func_rdata),
  9206. bnx2x_sp_mapping(bp, func_rdata),
  9207. &bnx2x_func_sp_drv);
  9208. }
  9209. /* must be called after sriov-enable */
  9210. static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
  9211. {
  9212. int cid_count = BNX2X_L2_CID_COUNT(bp);
  9213. #ifdef BCM_CNIC
  9214. cid_count += CNIC_CID_MAX;
  9215. #endif
  9216. return roundup(cid_count, QM_CID_ROUND);
  9217. }
  9218. /**
  9219. * bnx2x_get_num_none_def_sbs - return the number of none default SBs
  9220. *
  9221. * @dev: pci device
  9222. *
  9223. */
  9224. static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
  9225. {
  9226. int pos;
  9227. u16 control;
  9228. pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
  9229. /*
  9230. * If MSI-X is not supported - return number of SBs needed to support
  9231. * one fast path queue: one FP queue + SB for CNIC
  9232. */
  9233. if (!pos)
  9234. return 1 + CNIC_PRESENT;
  9235. /*
  9236. * The value in the PCI configuration space is the index of the last
  9237. * entry, namely one less than the actual size of the table, which is
  9238. * exactly what we want to return from this function: number of all SBs
  9239. * without the default SB.
  9240. */
  9241. pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
  9242. return control & PCI_MSIX_FLAGS_QSIZE;
  9243. }
  9244. static int __devinit bnx2x_init_one(struct pci_dev *pdev,
  9245. const struct pci_device_id *ent)
  9246. {
  9247. struct net_device *dev = NULL;
  9248. struct bnx2x *bp;
  9249. int pcie_width, pcie_speed;
  9250. int rc, max_non_def_sbs;
  9251. int rx_count, tx_count, rss_count;
  9252. /*
  9253. * An estimated maximum supported CoS number according to the chip
  9254. * version.
  9255. * We will try to roughly estimate the maximum number of CoSes this chip
  9256. * may support in order to minimize the memory allocated for Tx
  9257. * netdev_queue's. This number will be accurately calculated during the
  9258. * initialization of bp->max_cos based on the chip versions AND chip
  9259. * revision in the bnx2x_init_bp().
  9260. */
  9261. u8 max_cos_est = 0;
  9262. switch (ent->driver_data) {
  9263. case BCM57710:
  9264. case BCM57711:
  9265. case BCM57711E:
  9266. max_cos_est = BNX2X_MULTI_TX_COS_E1X;
  9267. break;
  9268. case BCM57712:
  9269. case BCM57712_MF:
  9270. max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
  9271. break;
  9272. case BCM57800:
  9273. case BCM57800_MF:
  9274. case BCM57810:
  9275. case BCM57810_MF:
  9276. case BCM57840:
  9277. case BCM57840_MF:
  9278. max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
  9279. break;
  9280. default:
  9281. pr_err("Unknown board_type (%ld), aborting\n",
  9282. ent->driver_data);
  9283. return -ENODEV;
  9284. }
  9285. max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
  9286. /* !!! FIXME !!!
  9287. * Do not allow the maximum SB count to grow above 16
  9288. * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
  9289. * We will use the FP_SB_MAX_E1x macro for this matter.
  9290. */
  9291. max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
  9292. WARN_ON(!max_non_def_sbs);
  9293. /* Maximum number of RSS queues: one IGU SB goes to CNIC */
  9294. rss_count = max_non_def_sbs - CNIC_PRESENT;
  9295. /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
  9296. rx_count = rss_count + FCOE_PRESENT;
  9297. /*
  9298. * Maximum number of netdev Tx queues:
  9299. * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
  9300. */
  9301. tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
  9302. /* dev zeroed in init_etherdev */
  9303. dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
  9304. if (!dev)
  9305. return -ENOMEM;
  9306. bp = netdev_priv(dev);
  9307. DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
  9308. tx_count, rx_count);
  9309. bp->igu_sb_cnt = max_non_def_sbs;
  9310. bp->msg_enable = debug;
  9311. pci_set_drvdata(pdev, dev);
  9312. rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
  9313. if (rc < 0) {
  9314. free_netdev(dev);
  9315. return rc;
  9316. }
  9317. DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
  9318. rc = bnx2x_init_bp(bp);
  9319. if (rc)
  9320. goto init_one_exit;
  9321. /*
  9322. * Map doorbels here as we need the real value of bp->max_cos which
  9323. * is initialized in bnx2x_init_bp().
  9324. */
  9325. bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
  9326. min_t(u64, BNX2X_DB_SIZE(bp),
  9327. pci_resource_len(pdev, 2)));
  9328. if (!bp->doorbells) {
  9329. dev_err(&bp->pdev->dev,
  9330. "Cannot map doorbell space, aborting\n");
  9331. rc = -ENOMEM;
  9332. goto init_one_exit;
  9333. }
  9334. /* calc qm_cid_count */
  9335. bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
  9336. #ifdef BCM_CNIC
  9337. /* disable FCOE L2 queue for E1x */
  9338. if (CHIP_IS_E1x(bp))
  9339. bp->flags |= NO_FCOE_FLAG;
  9340. #endif
  9341. /* Configure interrupt mode: try to enable MSI-X/MSI if
  9342. * needed, set bp->num_queues appropriately.
  9343. */
  9344. bnx2x_set_int_mode(bp);
  9345. /* Add all NAPI objects */
  9346. bnx2x_add_all_napi(bp);
  9347. rc = register_netdev(dev);
  9348. if (rc) {
  9349. dev_err(&pdev->dev, "Cannot register net device\n");
  9350. goto init_one_exit;
  9351. }
  9352. #ifdef BCM_CNIC
  9353. if (!NO_FCOE(bp)) {
  9354. /* Add storage MAC address */
  9355. rtnl_lock();
  9356. dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
  9357. rtnl_unlock();
  9358. }
  9359. #endif
  9360. bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
  9361. netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
  9362. board_info[ent->driver_data].name,
  9363. (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
  9364. pcie_width,
  9365. ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
  9366. (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
  9367. "5GHz (Gen2)" : "2.5GHz",
  9368. dev->base_addr, bp->pdev->irq, dev->dev_addr);
  9369. return 0;
  9370. init_one_exit:
  9371. if (bp->regview)
  9372. iounmap(bp->regview);
  9373. if (bp->doorbells)
  9374. iounmap(bp->doorbells);
  9375. free_netdev(dev);
  9376. if (atomic_read(&pdev->enable_cnt) == 1)
  9377. pci_release_regions(pdev);
  9378. pci_disable_device(pdev);
  9379. pci_set_drvdata(pdev, NULL);
  9380. return rc;
  9381. }
  9382. static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
  9383. {
  9384. struct net_device *dev = pci_get_drvdata(pdev);
  9385. struct bnx2x *bp;
  9386. if (!dev) {
  9387. dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
  9388. return;
  9389. }
  9390. bp = netdev_priv(dev);
  9391. #ifdef BCM_CNIC
  9392. /* Delete storage MAC address */
  9393. if (!NO_FCOE(bp)) {
  9394. rtnl_lock();
  9395. dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
  9396. rtnl_unlock();
  9397. }
  9398. #endif
  9399. #ifdef BCM_DCBNL
  9400. /* Delete app tlvs from dcbnl */
  9401. bnx2x_dcbnl_update_applist(bp, true);
  9402. #endif
  9403. unregister_netdev(dev);
  9404. /* Delete all NAPI objects */
  9405. bnx2x_del_all_napi(bp);
  9406. /* Power on: we can't let PCI layer write to us while we are in D3 */
  9407. bnx2x_set_power_state(bp, PCI_D0);
  9408. /* Disable MSI/MSI-X */
  9409. bnx2x_disable_msi(bp);
  9410. /* Power off */
  9411. bnx2x_set_power_state(bp, PCI_D3hot);
  9412. /* Make sure RESET task is not scheduled before continuing */
  9413. cancel_delayed_work_sync(&bp->sp_rtnl_task);
  9414. if (bp->regview)
  9415. iounmap(bp->regview);
  9416. if (bp->doorbells)
  9417. iounmap(bp->doorbells);
  9418. bnx2x_release_firmware(bp);
  9419. bnx2x_free_mem_bp(bp);
  9420. free_netdev(dev);
  9421. if (atomic_read(&pdev->enable_cnt) == 1)
  9422. pci_release_regions(pdev);
  9423. pci_disable_device(pdev);
  9424. pci_set_drvdata(pdev, NULL);
  9425. }
  9426. static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
  9427. {
  9428. int i;
  9429. bp->state = BNX2X_STATE_ERROR;
  9430. bp->rx_mode = BNX2X_RX_MODE_NONE;
  9431. #ifdef BCM_CNIC
  9432. bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
  9433. #endif
  9434. /* Stop Tx */
  9435. bnx2x_tx_disable(bp);
  9436. bnx2x_netif_stop(bp, 0);
  9437. del_timer_sync(&bp->timer);
  9438. bnx2x_stats_handle(bp, STATS_EVENT_STOP);
  9439. /* Release IRQs */
  9440. bnx2x_free_irq(bp);
  9441. /* Free SKBs, SGEs, TPA pool and driver internals */
  9442. bnx2x_free_skbs(bp);
  9443. for_each_rx_queue(bp, i)
  9444. bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
  9445. bnx2x_free_mem(bp);
  9446. bp->state = BNX2X_STATE_CLOSED;
  9447. netif_carrier_off(bp->dev);
  9448. return 0;
  9449. }
  9450. static void bnx2x_eeh_recover(struct bnx2x *bp)
  9451. {
  9452. u32 val;
  9453. mutex_init(&bp->port.phy_mutex);
  9454. val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
  9455. if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
  9456. != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
  9457. BNX2X_ERR("BAD MCP validity signature\n");
  9458. }
  9459. /**
  9460. * bnx2x_io_error_detected - called when PCI error is detected
  9461. * @pdev: Pointer to PCI device
  9462. * @state: The current pci connection state
  9463. *
  9464. * This function is called after a PCI bus error affecting
  9465. * this device has been detected.
  9466. */
  9467. static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
  9468. pci_channel_state_t state)
  9469. {
  9470. struct net_device *dev = pci_get_drvdata(pdev);
  9471. struct bnx2x *bp = netdev_priv(dev);
  9472. rtnl_lock();
  9473. netif_device_detach(dev);
  9474. if (state == pci_channel_io_perm_failure) {
  9475. rtnl_unlock();
  9476. return PCI_ERS_RESULT_DISCONNECT;
  9477. }
  9478. if (netif_running(dev))
  9479. bnx2x_eeh_nic_unload(bp);
  9480. pci_disable_device(pdev);
  9481. rtnl_unlock();
  9482. /* Request a slot reset */
  9483. return PCI_ERS_RESULT_NEED_RESET;
  9484. }
  9485. /**
  9486. * bnx2x_io_slot_reset - called after the PCI bus has been reset
  9487. * @pdev: Pointer to PCI device
  9488. *
  9489. * Restart the card from scratch, as if from a cold-boot.
  9490. */
  9491. static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
  9492. {
  9493. struct net_device *dev = pci_get_drvdata(pdev);
  9494. struct bnx2x *bp = netdev_priv(dev);
  9495. rtnl_lock();
  9496. if (pci_enable_device(pdev)) {
  9497. dev_err(&pdev->dev,
  9498. "Cannot re-enable PCI device after reset\n");
  9499. rtnl_unlock();
  9500. return PCI_ERS_RESULT_DISCONNECT;
  9501. }
  9502. pci_set_master(pdev);
  9503. pci_restore_state(pdev);
  9504. if (netif_running(dev))
  9505. bnx2x_set_power_state(bp, PCI_D0);
  9506. rtnl_unlock();
  9507. return PCI_ERS_RESULT_RECOVERED;
  9508. }
  9509. /**
  9510. * bnx2x_io_resume - called when traffic can start flowing again
  9511. * @pdev: Pointer to PCI device
  9512. *
  9513. * This callback is called when the error recovery driver tells us that
  9514. * its OK to resume normal operation.
  9515. */
  9516. static void bnx2x_io_resume(struct pci_dev *pdev)
  9517. {
  9518. struct net_device *dev = pci_get_drvdata(pdev);
  9519. struct bnx2x *bp = netdev_priv(dev);
  9520. if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
  9521. netdev_err(bp->dev, "Handling parity error recovery. "
  9522. "Try again later\n");
  9523. return;
  9524. }
  9525. rtnl_lock();
  9526. bnx2x_eeh_recover(bp);
  9527. if (netif_running(dev))
  9528. bnx2x_nic_load(bp, LOAD_NORMAL);
  9529. netif_device_attach(dev);
  9530. rtnl_unlock();
  9531. }
  9532. static struct pci_error_handlers bnx2x_err_handler = {
  9533. .error_detected = bnx2x_io_error_detected,
  9534. .slot_reset = bnx2x_io_slot_reset,
  9535. .resume = bnx2x_io_resume,
  9536. };
  9537. static struct pci_driver bnx2x_pci_driver = {
  9538. .name = DRV_MODULE_NAME,
  9539. .id_table = bnx2x_pci_tbl,
  9540. .probe = bnx2x_init_one,
  9541. .remove = __devexit_p(bnx2x_remove_one),
  9542. .suspend = bnx2x_suspend,
  9543. .resume = bnx2x_resume,
  9544. .err_handler = &bnx2x_err_handler,
  9545. };
  9546. static int __init bnx2x_init(void)
  9547. {
  9548. int ret;
  9549. pr_info("%s", version);
  9550. bnx2x_wq = create_singlethread_workqueue("bnx2x");
  9551. if (bnx2x_wq == NULL) {
  9552. pr_err("Cannot create workqueue\n");
  9553. return -ENOMEM;
  9554. }
  9555. ret = pci_register_driver(&bnx2x_pci_driver);
  9556. if (ret) {
  9557. pr_err("Cannot register driver\n");
  9558. destroy_workqueue(bnx2x_wq);
  9559. }
  9560. return ret;
  9561. }
  9562. static void __exit bnx2x_cleanup(void)
  9563. {
  9564. pci_unregister_driver(&bnx2x_pci_driver);
  9565. destroy_workqueue(bnx2x_wq);
  9566. }
  9567. void bnx2x_notify_link_changed(struct bnx2x *bp)
  9568. {
  9569. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
  9570. }
  9571. module_init(bnx2x_init);
  9572. module_exit(bnx2x_cleanup);
  9573. #ifdef BCM_CNIC
  9574. /**
  9575. * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
  9576. *
  9577. * @bp: driver handle
  9578. * @set: set or clear the CAM entry
  9579. *
  9580. * This function will wait until the ramdord completion returns.
  9581. * Return 0 if success, -ENODEV if ramrod doesn't return.
  9582. */
  9583. static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
  9584. {
  9585. unsigned long ramrod_flags = 0;
  9586. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  9587. return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
  9588. &bp->iscsi_l2_mac_obj, true,
  9589. BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
  9590. }
  9591. /* count denotes the number of new completions we have seen */
  9592. static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
  9593. {
  9594. struct eth_spe *spe;
  9595. #ifdef BNX2X_STOP_ON_ERROR
  9596. if (unlikely(bp->panic))
  9597. return;
  9598. #endif
  9599. spin_lock_bh(&bp->spq_lock);
  9600. BUG_ON(bp->cnic_spq_pending < count);
  9601. bp->cnic_spq_pending -= count;
  9602. for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
  9603. u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
  9604. & SPE_HDR_CONN_TYPE) >>
  9605. SPE_HDR_CONN_TYPE_SHIFT;
  9606. u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
  9607. >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
  9608. /* Set validation for iSCSI L2 client before sending SETUP
  9609. * ramrod
  9610. */
  9611. if (type == ETH_CONNECTION_TYPE) {
  9612. if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
  9613. bnx2x_set_ctx_validation(bp, &bp->context.
  9614. vcxt[BNX2X_ISCSI_ETH_CID].eth,
  9615. BNX2X_ISCSI_ETH_CID);
  9616. }
  9617. /*
  9618. * There may be not more than 8 L2, not more than 8 L5 SPEs
  9619. * and in the air. We also check that number of outstanding
  9620. * COMMON ramrods is not more than the EQ and SPQ can
  9621. * accommodate.
  9622. */
  9623. if (type == ETH_CONNECTION_TYPE) {
  9624. if (!atomic_read(&bp->cq_spq_left))
  9625. break;
  9626. else
  9627. atomic_dec(&bp->cq_spq_left);
  9628. } else if (type == NONE_CONNECTION_TYPE) {
  9629. if (!atomic_read(&bp->eq_spq_left))
  9630. break;
  9631. else
  9632. atomic_dec(&bp->eq_spq_left);
  9633. } else if ((type == ISCSI_CONNECTION_TYPE) ||
  9634. (type == FCOE_CONNECTION_TYPE)) {
  9635. if (bp->cnic_spq_pending >=
  9636. bp->cnic_eth_dev.max_kwqe_pending)
  9637. break;
  9638. else
  9639. bp->cnic_spq_pending++;
  9640. } else {
  9641. BNX2X_ERR("Unknown SPE type: %d\n", type);
  9642. bnx2x_panic();
  9643. break;
  9644. }
  9645. spe = bnx2x_sp_get_next(bp);
  9646. *spe = *bp->cnic_kwq_cons;
  9647. DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
  9648. bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
  9649. if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
  9650. bp->cnic_kwq_cons = bp->cnic_kwq;
  9651. else
  9652. bp->cnic_kwq_cons++;
  9653. }
  9654. bnx2x_sp_prod_update(bp);
  9655. spin_unlock_bh(&bp->spq_lock);
  9656. }
  9657. static int bnx2x_cnic_sp_queue(struct net_device *dev,
  9658. struct kwqe_16 *kwqes[], u32 count)
  9659. {
  9660. struct bnx2x *bp = netdev_priv(dev);
  9661. int i;
  9662. #ifdef BNX2X_STOP_ON_ERROR
  9663. if (unlikely(bp->panic))
  9664. return -EIO;
  9665. #endif
  9666. if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
  9667. (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
  9668. netdev_err(dev, "Handling parity error recovery. Try again "
  9669. "later\n");
  9670. return -EAGAIN;
  9671. }
  9672. spin_lock_bh(&bp->spq_lock);
  9673. for (i = 0; i < count; i++) {
  9674. struct eth_spe *spe = (struct eth_spe *)kwqes[i];
  9675. if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
  9676. break;
  9677. *bp->cnic_kwq_prod = *spe;
  9678. bp->cnic_kwq_pending++;
  9679. DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
  9680. spe->hdr.conn_and_cmd_data, spe->hdr.type,
  9681. spe->data.update_data_addr.hi,
  9682. spe->data.update_data_addr.lo,
  9683. bp->cnic_kwq_pending);
  9684. if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
  9685. bp->cnic_kwq_prod = bp->cnic_kwq;
  9686. else
  9687. bp->cnic_kwq_prod++;
  9688. }
  9689. spin_unlock_bh(&bp->spq_lock);
  9690. if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
  9691. bnx2x_cnic_sp_post(bp, 0);
  9692. return i;
  9693. }
  9694. static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
  9695. {
  9696. struct cnic_ops *c_ops;
  9697. int rc = 0;
  9698. mutex_lock(&bp->cnic_mutex);
  9699. c_ops = rcu_dereference_protected(bp->cnic_ops,
  9700. lockdep_is_held(&bp->cnic_mutex));
  9701. if (c_ops)
  9702. rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
  9703. mutex_unlock(&bp->cnic_mutex);
  9704. return rc;
  9705. }
  9706. static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
  9707. {
  9708. struct cnic_ops *c_ops;
  9709. int rc = 0;
  9710. rcu_read_lock();
  9711. c_ops = rcu_dereference(bp->cnic_ops);
  9712. if (c_ops)
  9713. rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
  9714. rcu_read_unlock();
  9715. return rc;
  9716. }
  9717. /*
  9718. * for commands that have no data
  9719. */
  9720. int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
  9721. {
  9722. struct cnic_ctl_info ctl = {0};
  9723. ctl.cmd = cmd;
  9724. return bnx2x_cnic_ctl_send(bp, &ctl);
  9725. }
  9726. static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
  9727. {
  9728. struct cnic_ctl_info ctl = {0};
  9729. /* first we tell CNIC and only then we count this as a completion */
  9730. ctl.cmd = CNIC_CTL_COMPLETION_CMD;
  9731. ctl.data.comp.cid = cid;
  9732. ctl.data.comp.error = err;
  9733. bnx2x_cnic_ctl_send_bh(bp, &ctl);
  9734. bnx2x_cnic_sp_post(bp, 0);
  9735. }
  9736. /* Called with netif_addr_lock_bh() taken.
  9737. * Sets an rx_mode config for an iSCSI ETH client.
  9738. * Doesn't block.
  9739. * Completion should be checked outside.
  9740. */
  9741. static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
  9742. {
  9743. unsigned long accept_flags = 0, ramrod_flags = 0;
  9744. u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
  9745. int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
  9746. if (start) {
  9747. /* Start accepting on iSCSI L2 ring. Accept all multicasts
  9748. * because it's the only way for UIO Queue to accept
  9749. * multicasts (in non-promiscuous mode only one Queue per
  9750. * function will receive multicast packets (leading in our
  9751. * case).
  9752. */
  9753. __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
  9754. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
  9755. __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
  9756. __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
  9757. /* Clear STOP_PENDING bit if START is requested */
  9758. clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
  9759. sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
  9760. } else
  9761. /* Clear START_PENDING bit if STOP is requested */
  9762. clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
  9763. if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
  9764. set_bit(sched_state, &bp->sp_state);
  9765. else {
  9766. __set_bit(RAMROD_RX, &ramrod_flags);
  9767. bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
  9768. ramrod_flags);
  9769. }
  9770. }
  9771. static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
  9772. {
  9773. struct bnx2x *bp = netdev_priv(dev);
  9774. int rc = 0;
  9775. switch (ctl->cmd) {
  9776. case DRV_CTL_CTXTBL_WR_CMD: {
  9777. u32 index = ctl->data.io.offset;
  9778. dma_addr_t addr = ctl->data.io.dma_addr;
  9779. bnx2x_ilt_wr(bp, index, addr);
  9780. break;
  9781. }
  9782. case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
  9783. int count = ctl->data.credit.credit_count;
  9784. bnx2x_cnic_sp_post(bp, count);
  9785. break;
  9786. }
  9787. /* rtnl_lock is held. */
  9788. case DRV_CTL_START_L2_CMD: {
  9789. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  9790. unsigned long sp_bits = 0;
  9791. /* Configure the iSCSI classification object */
  9792. bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
  9793. cp->iscsi_l2_client_id,
  9794. cp->iscsi_l2_cid, BP_FUNC(bp),
  9795. bnx2x_sp(bp, mac_rdata),
  9796. bnx2x_sp_mapping(bp, mac_rdata),
  9797. BNX2X_FILTER_MAC_PENDING,
  9798. &bp->sp_state, BNX2X_OBJ_TYPE_RX,
  9799. &bp->macs_pool);
  9800. /* Set iSCSI MAC address */
  9801. rc = bnx2x_set_iscsi_eth_mac_addr(bp);
  9802. if (rc)
  9803. break;
  9804. mmiowb();
  9805. barrier();
  9806. /* Start accepting on iSCSI L2 ring */
  9807. netif_addr_lock_bh(dev);
  9808. bnx2x_set_iscsi_eth_rx_mode(bp, true);
  9809. netif_addr_unlock_bh(dev);
  9810. /* bits to wait on */
  9811. __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
  9812. __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
  9813. if (!bnx2x_wait_sp_comp(bp, sp_bits))
  9814. BNX2X_ERR("rx_mode completion timed out!\n");
  9815. break;
  9816. }
  9817. /* rtnl_lock is held. */
  9818. case DRV_CTL_STOP_L2_CMD: {
  9819. unsigned long sp_bits = 0;
  9820. /* Stop accepting on iSCSI L2 ring */
  9821. netif_addr_lock_bh(dev);
  9822. bnx2x_set_iscsi_eth_rx_mode(bp, false);
  9823. netif_addr_unlock_bh(dev);
  9824. /* bits to wait on */
  9825. __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
  9826. __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
  9827. if (!bnx2x_wait_sp_comp(bp, sp_bits))
  9828. BNX2X_ERR("rx_mode completion timed out!\n");
  9829. mmiowb();
  9830. barrier();
  9831. /* Unset iSCSI L2 MAC */
  9832. rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
  9833. BNX2X_ISCSI_ETH_MAC, true);
  9834. break;
  9835. }
  9836. case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
  9837. int count = ctl->data.credit.credit_count;
  9838. smp_mb__before_atomic_inc();
  9839. atomic_add(count, &bp->cq_spq_left);
  9840. smp_mb__after_atomic_inc();
  9841. break;
  9842. }
  9843. case DRV_CTL_ULP_REGISTER_CMD: {
  9844. int ulp_type = ctl->data.ulp_type;
  9845. if (CHIP_IS_E3(bp)) {
  9846. int idx = BP_FW_MB_IDX(bp);
  9847. u32 cap;
  9848. cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
  9849. if (ulp_type == CNIC_ULP_ISCSI)
  9850. cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
  9851. else if (ulp_type == CNIC_ULP_FCOE)
  9852. cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
  9853. SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
  9854. }
  9855. break;
  9856. }
  9857. case DRV_CTL_ULP_UNREGISTER_CMD: {
  9858. int ulp_type = ctl->data.ulp_type;
  9859. if (CHIP_IS_E3(bp)) {
  9860. int idx = BP_FW_MB_IDX(bp);
  9861. u32 cap;
  9862. cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
  9863. if (ulp_type == CNIC_ULP_ISCSI)
  9864. cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
  9865. else if (ulp_type == CNIC_ULP_FCOE)
  9866. cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
  9867. SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
  9868. }
  9869. break;
  9870. }
  9871. default:
  9872. BNX2X_ERR("unknown command %x\n", ctl->cmd);
  9873. rc = -EINVAL;
  9874. }
  9875. return rc;
  9876. }
  9877. void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
  9878. {
  9879. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  9880. if (bp->flags & USING_MSIX_FLAG) {
  9881. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  9882. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  9883. cp->irq_arr[0].vector = bp->msix_table[1].vector;
  9884. } else {
  9885. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  9886. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  9887. }
  9888. if (!CHIP_IS_E1x(bp))
  9889. cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
  9890. else
  9891. cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
  9892. cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
  9893. cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
  9894. cp->irq_arr[1].status_blk = bp->def_status_blk;
  9895. cp->irq_arr[1].status_blk_num = DEF_SB_ID;
  9896. cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
  9897. cp->num_irq = 2;
  9898. }
  9899. static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  9900. void *data)
  9901. {
  9902. struct bnx2x *bp = netdev_priv(dev);
  9903. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  9904. if (ops == NULL)
  9905. return -EINVAL;
  9906. bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
  9907. if (!bp->cnic_kwq)
  9908. return -ENOMEM;
  9909. bp->cnic_kwq_cons = bp->cnic_kwq;
  9910. bp->cnic_kwq_prod = bp->cnic_kwq;
  9911. bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
  9912. bp->cnic_spq_pending = 0;
  9913. bp->cnic_kwq_pending = 0;
  9914. bp->cnic_data = data;
  9915. cp->num_irq = 0;
  9916. cp->drv_state |= CNIC_DRV_STATE_REGD;
  9917. cp->iro_arr = bp->iro_arr;
  9918. bnx2x_setup_cnic_irq_info(bp);
  9919. rcu_assign_pointer(bp->cnic_ops, ops);
  9920. return 0;
  9921. }
  9922. static int bnx2x_unregister_cnic(struct net_device *dev)
  9923. {
  9924. struct bnx2x *bp = netdev_priv(dev);
  9925. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  9926. mutex_lock(&bp->cnic_mutex);
  9927. cp->drv_state = 0;
  9928. RCU_INIT_POINTER(bp->cnic_ops, NULL);
  9929. mutex_unlock(&bp->cnic_mutex);
  9930. synchronize_rcu();
  9931. kfree(bp->cnic_kwq);
  9932. bp->cnic_kwq = NULL;
  9933. return 0;
  9934. }
  9935. struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
  9936. {
  9937. struct bnx2x *bp = netdev_priv(dev);
  9938. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  9939. /* If both iSCSI and FCoE are disabled - return NULL in
  9940. * order to indicate CNIC that it should not try to work
  9941. * with this device.
  9942. */
  9943. if (NO_ISCSI(bp) && NO_FCOE(bp))
  9944. return NULL;
  9945. cp->drv_owner = THIS_MODULE;
  9946. cp->chip_id = CHIP_ID(bp);
  9947. cp->pdev = bp->pdev;
  9948. cp->io_base = bp->regview;
  9949. cp->io_base2 = bp->doorbells;
  9950. cp->max_kwqe_pending = 8;
  9951. cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
  9952. cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
  9953. bnx2x_cid_ilt_lines(bp);
  9954. cp->ctx_tbl_len = CNIC_ILT_LINES;
  9955. cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
  9956. cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
  9957. cp->drv_ctl = bnx2x_drv_ctl;
  9958. cp->drv_register_cnic = bnx2x_register_cnic;
  9959. cp->drv_unregister_cnic = bnx2x_unregister_cnic;
  9960. cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
  9961. cp->iscsi_l2_client_id =
  9962. bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
  9963. cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
  9964. if (NO_ISCSI_OOO(bp))
  9965. cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
  9966. if (NO_ISCSI(bp))
  9967. cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
  9968. if (NO_FCOE(bp))
  9969. cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
  9970. DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
  9971. "starting cid %d\n",
  9972. cp->ctx_blk_size,
  9973. cp->ctx_tbl_offset,
  9974. cp->ctx_tbl_len,
  9975. cp->starting_cid);
  9976. return cp;
  9977. }
  9978. EXPORT_SYMBOL(bnx2x_cnic_probe);
  9979. #endif /* BCM_CNIC */