builtin-sched.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929
  1. #include "builtin.h"
  2. #include "perf.h"
  3. #include "util/util.h"
  4. #include "util/cache.h"
  5. #include "util/symbol.h"
  6. #include "util/thread.h"
  7. #include "util/header.h"
  8. #include "util/parse-options.h"
  9. #include "util/trace-event.h"
  10. #include "util/debug.h"
  11. #include "util/data_map.h"
  12. #include <sys/prctl.h>
  13. #include <semaphore.h>
  14. #include <pthread.h>
  15. #include <math.h>
  16. static char const *input_name = "perf.data";
  17. static struct perf_header *header;
  18. static u64 sample_type;
  19. static char default_sort_order[] = "avg, max, switch, runtime";
  20. static char *sort_order = default_sort_order;
  21. static int profile_cpu = -1;
  22. #define PR_SET_NAME 15 /* Set process name */
  23. #define MAX_CPUS 4096
  24. static u64 run_measurement_overhead;
  25. static u64 sleep_measurement_overhead;
  26. #define COMM_LEN 20
  27. #define SYM_LEN 129
  28. #define MAX_PID 65536
  29. static unsigned long nr_tasks;
  30. struct sched_atom;
  31. struct task_desc {
  32. unsigned long nr;
  33. unsigned long pid;
  34. char comm[COMM_LEN];
  35. unsigned long nr_events;
  36. unsigned long curr_event;
  37. struct sched_atom **atoms;
  38. pthread_t thread;
  39. sem_t sleep_sem;
  40. sem_t ready_for_work;
  41. sem_t work_done_sem;
  42. u64 cpu_usage;
  43. };
  44. enum sched_event_type {
  45. SCHED_EVENT_RUN,
  46. SCHED_EVENT_SLEEP,
  47. SCHED_EVENT_WAKEUP,
  48. SCHED_EVENT_MIGRATION,
  49. };
  50. struct sched_atom {
  51. enum sched_event_type type;
  52. u64 timestamp;
  53. u64 duration;
  54. unsigned long nr;
  55. int specific_wait;
  56. sem_t *wait_sem;
  57. struct task_desc *wakee;
  58. };
  59. static struct task_desc *pid_to_task[MAX_PID];
  60. static struct task_desc **tasks;
  61. static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
  62. static u64 start_time;
  63. static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
  64. static unsigned long nr_run_events;
  65. static unsigned long nr_sleep_events;
  66. static unsigned long nr_wakeup_events;
  67. static unsigned long nr_sleep_corrections;
  68. static unsigned long nr_run_events_optimized;
  69. static unsigned long targetless_wakeups;
  70. static unsigned long multitarget_wakeups;
  71. static u64 cpu_usage;
  72. static u64 runavg_cpu_usage;
  73. static u64 parent_cpu_usage;
  74. static u64 runavg_parent_cpu_usage;
  75. static unsigned long nr_runs;
  76. static u64 sum_runtime;
  77. static u64 sum_fluct;
  78. static u64 run_avg;
  79. static unsigned long replay_repeat = 10;
  80. static unsigned long nr_timestamps;
  81. static unsigned long nr_unordered_timestamps;
  82. static unsigned long nr_state_machine_bugs;
  83. static unsigned long nr_context_switch_bugs;
  84. static unsigned long nr_events;
  85. static unsigned long nr_lost_chunks;
  86. static unsigned long nr_lost_events;
  87. #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
  88. enum thread_state {
  89. THREAD_SLEEPING = 0,
  90. THREAD_WAIT_CPU,
  91. THREAD_SCHED_IN,
  92. THREAD_IGNORE
  93. };
  94. struct work_atom {
  95. struct list_head list;
  96. enum thread_state state;
  97. u64 sched_out_time;
  98. u64 wake_up_time;
  99. u64 sched_in_time;
  100. u64 runtime;
  101. };
  102. struct work_atoms {
  103. struct list_head work_list;
  104. struct thread *thread;
  105. struct rb_node node;
  106. u64 max_lat;
  107. u64 max_lat_at;
  108. u64 total_lat;
  109. u64 nb_atoms;
  110. u64 total_runtime;
  111. };
  112. typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
  113. static struct rb_root atom_root, sorted_atom_root;
  114. static u64 all_runtime;
  115. static u64 all_count;
  116. static u64 get_nsecs(void)
  117. {
  118. struct timespec ts;
  119. clock_gettime(CLOCK_MONOTONIC, &ts);
  120. return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
  121. }
  122. static void burn_nsecs(u64 nsecs)
  123. {
  124. u64 T0 = get_nsecs(), T1;
  125. do {
  126. T1 = get_nsecs();
  127. } while (T1 + run_measurement_overhead < T0 + nsecs);
  128. }
  129. static void sleep_nsecs(u64 nsecs)
  130. {
  131. struct timespec ts;
  132. ts.tv_nsec = nsecs % 999999999;
  133. ts.tv_sec = nsecs / 999999999;
  134. nanosleep(&ts, NULL);
  135. }
  136. static void calibrate_run_measurement_overhead(void)
  137. {
  138. u64 T0, T1, delta, min_delta = 1000000000ULL;
  139. int i;
  140. for (i = 0; i < 10; i++) {
  141. T0 = get_nsecs();
  142. burn_nsecs(0);
  143. T1 = get_nsecs();
  144. delta = T1-T0;
  145. min_delta = min(min_delta, delta);
  146. }
  147. run_measurement_overhead = min_delta;
  148. printf("run measurement overhead: %Ld nsecs\n", min_delta);
  149. }
  150. static void calibrate_sleep_measurement_overhead(void)
  151. {
  152. u64 T0, T1, delta, min_delta = 1000000000ULL;
  153. int i;
  154. for (i = 0; i < 10; i++) {
  155. T0 = get_nsecs();
  156. sleep_nsecs(10000);
  157. T1 = get_nsecs();
  158. delta = T1-T0;
  159. min_delta = min(min_delta, delta);
  160. }
  161. min_delta -= 10000;
  162. sleep_measurement_overhead = min_delta;
  163. printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
  164. }
  165. static struct sched_atom *
  166. get_new_event(struct task_desc *task, u64 timestamp)
  167. {
  168. struct sched_atom *event = zalloc(sizeof(*event));
  169. unsigned long idx = task->nr_events;
  170. size_t size;
  171. event->timestamp = timestamp;
  172. event->nr = idx;
  173. task->nr_events++;
  174. size = sizeof(struct sched_atom *) * task->nr_events;
  175. task->atoms = realloc(task->atoms, size);
  176. BUG_ON(!task->atoms);
  177. task->atoms[idx] = event;
  178. return event;
  179. }
  180. static struct sched_atom *last_event(struct task_desc *task)
  181. {
  182. if (!task->nr_events)
  183. return NULL;
  184. return task->atoms[task->nr_events - 1];
  185. }
  186. static void
  187. add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
  188. {
  189. struct sched_atom *event, *curr_event = last_event(task);
  190. /*
  191. * optimize an existing RUN event by merging this one
  192. * to it:
  193. */
  194. if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
  195. nr_run_events_optimized++;
  196. curr_event->duration += duration;
  197. return;
  198. }
  199. event = get_new_event(task, timestamp);
  200. event->type = SCHED_EVENT_RUN;
  201. event->duration = duration;
  202. nr_run_events++;
  203. }
  204. static void
  205. add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
  206. struct task_desc *wakee)
  207. {
  208. struct sched_atom *event, *wakee_event;
  209. event = get_new_event(task, timestamp);
  210. event->type = SCHED_EVENT_WAKEUP;
  211. event->wakee = wakee;
  212. wakee_event = last_event(wakee);
  213. if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
  214. targetless_wakeups++;
  215. return;
  216. }
  217. if (wakee_event->wait_sem) {
  218. multitarget_wakeups++;
  219. return;
  220. }
  221. wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
  222. sem_init(wakee_event->wait_sem, 0, 0);
  223. wakee_event->specific_wait = 1;
  224. event->wait_sem = wakee_event->wait_sem;
  225. nr_wakeup_events++;
  226. }
  227. static void
  228. add_sched_event_sleep(struct task_desc *task, u64 timestamp,
  229. u64 task_state __used)
  230. {
  231. struct sched_atom *event = get_new_event(task, timestamp);
  232. event->type = SCHED_EVENT_SLEEP;
  233. nr_sleep_events++;
  234. }
  235. static struct task_desc *register_pid(unsigned long pid, const char *comm)
  236. {
  237. struct task_desc *task;
  238. BUG_ON(pid >= MAX_PID);
  239. task = pid_to_task[pid];
  240. if (task)
  241. return task;
  242. task = zalloc(sizeof(*task));
  243. task->pid = pid;
  244. task->nr = nr_tasks;
  245. strcpy(task->comm, comm);
  246. /*
  247. * every task starts in sleeping state - this gets ignored
  248. * if there's no wakeup pointing to this sleep state:
  249. */
  250. add_sched_event_sleep(task, 0, 0);
  251. pid_to_task[pid] = task;
  252. nr_tasks++;
  253. tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
  254. BUG_ON(!tasks);
  255. tasks[task->nr] = task;
  256. if (verbose)
  257. printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
  258. return task;
  259. }
  260. static void print_task_traces(void)
  261. {
  262. struct task_desc *task;
  263. unsigned long i;
  264. for (i = 0; i < nr_tasks; i++) {
  265. task = tasks[i];
  266. printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
  267. task->nr, task->comm, task->pid, task->nr_events);
  268. }
  269. }
  270. static void add_cross_task_wakeups(void)
  271. {
  272. struct task_desc *task1, *task2;
  273. unsigned long i, j;
  274. for (i = 0; i < nr_tasks; i++) {
  275. task1 = tasks[i];
  276. j = i + 1;
  277. if (j == nr_tasks)
  278. j = 0;
  279. task2 = tasks[j];
  280. add_sched_event_wakeup(task1, 0, task2);
  281. }
  282. }
  283. static void
  284. process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
  285. {
  286. int ret = 0;
  287. u64 now;
  288. long long delta;
  289. now = get_nsecs();
  290. delta = start_time + atom->timestamp - now;
  291. switch (atom->type) {
  292. case SCHED_EVENT_RUN:
  293. burn_nsecs(atom->duration);
  294. break;
  295. case SCHED_EVENT_SLEEP:
  296. if (atom->wait_sem)
  297. ret = sem_wait(atom->wait_sem);
  298. BUG_ON(ret);
  299. break;
  300. case SCHED_EVENT_WAKEUP:
  301. if (atom->wait_sem)
  302. ret = sem_post(atom->wait_sem);
  303. BUG_ON(ret);
  304. break;
  305. case SCHED_EVENT_MIGRATION:
  306. break;
  307. default:
  308. BUG_ON(1);
  309. }
  310. }
  311. static u64 get_cpu_usage_nsec_parent(void)
  312. {
  313. struct rusage ru;
  314. u64 sum;
  315. int err;
  316. err = getrusage(RUSAGE_SELF, &ru);
  317. BUG_ON(err);
  318. sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
  319. sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
  320. return sum;
  321. }
  322. static int self_open_counters(void)
  323. {
  324. struct perf_event_attr attr;
  325. int fd;
  326. memset(&attr, 0, sizeof(attr));
  327. attr.type = PERF_TYPE_SOFTWARE;
  328. attr.config = PERF_COUNT_SW_TASK_CLOCK;
  329. fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
  330. if (fd < 0)
  331. die("Error: sys_perf_event_open() syscall returned"
  332. "with %d (%s)\n", fd, strerror(errno));
  333. return fd;
  334. }
  335. static u64 get_cpu_usage_nsec_self(int fd)
  336. {
  337. u64 runtime;
  338. int ret;
  339. ret = read(fd, &runtime, sizeof(runtime));
  340. BUG_ON(ret != sizeof(runtime));
  341. return runtime;
  342. }
  343. static void *thread_func(void *ctx)
  344. {
  345. struct task_desc *this_task = ctx;
  346. u64 cpu_usage_0, cpu_usage_1;
  347. unsigned long i, ret;
  348. char comm2[22];
  349. int fd;
  350. sprintf(comm2, ":%s", this_task->comm);
  351. prctl(PR_SET_NAME, comm2);
  352. fd = self_open_counters();
  353. again:
  354. ret = sem_post(&this_task->ready_for_work);
  355. BUG_ON(ret);
  356. ret = pthread_mutex_lock(&start_work_mutex);
  357. BUG_ON(ret);
  358. ret = pthread_mutex_unlock(&start_work_mutex);
  359. BUG_ON(ret);
  360. cpu_usage_0 = get_cpu_usage_nsec_self(fd);
  361. for (i = 0; i < this_task->nr_events; i++) {
  362. this_task->curr_event = i;
  363. process_sched_event(this_task, this_task->atoms[i]);
  364. }
  365. cpu_usage_1 = get_cpu_usage_nsec_self(fd);
  366. this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
  367. ret = sem_post(&this_task->work_done_sem);
  368. BUG_ON(ret);
  369. ret = pthread_mutex_lock(&work_done_wait_mutex);
  370. BUG_ON(ret);
  371. ret = pthread_mutex_unlock(&work_done_wait_mutex);
  372. BUG_ON(ret);
  373. goto again;
  374. }
  375. static void create_tasks(void)
  376. {
  377. struct task_desc *task;
  378. pthread_attr_t attr;
  379. unsigned long i;
  380. int err;
  381. err = pthread_attr_init(&attr);
  382. BUG_ON(err);
  383. err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
  384. BUG_ON(err);
  385. err = pthread_mutex_lock(&start_work_mutex);
  386. BUG_ON(err);
  387. err = pthread_mutex_lock(&work_done_wait_mutex);
  388. BUG_ON(err);
  389. for (i = 0; i < nr_tasks; i++) {
  390. task = tasks[i];
  391. sem_init(&task->sleep_sem, 0, 0);
  392. sem_init(&task->ready_for_work, 0, 0);
  393. sem_init(&task->work_done_sem, 0, 0);
  394. task->curr_event = 0;
  395. err = pthread_create(&task->thread, &attr, thread_func, task);
  396. BUG_ON(err);
  397. }
  398. }
  399. static void wait_for_tasks(void)
  400. {
  401. u64 cpu_usage_0, cpu_usage_1;
  402. struct task_desc *task;
  403. unsigned long i, ret;
  404. start_time = get_nsecs();
  405. cpu_usage = 0;
  406. pthread_mutex_unlock(&work_done_wait_mutex);
  407. for (i = 0; i < nr_tasks; i++) {
  408. task = tasks[i];
  409. ret = sem_wait(&task->ready_for_work);
  410. BUG_ON(ret);
  411. sem_init(&task->ready_for_work, 0, 0);
  412. }
  413. ret = pthread_mutex_lock(&work_done_wait_mutex);
  414. BUG_ON(ret);
  415. cpu_usage_0 = get_cpu_usage_nsec_parent();
  416. pthread_mutex_unlock(&start_work_mutex);
  417. for (i = 0; i < nr_tasks; i++) {
  418. task = tasks[i];
  419. ret = sem_wait(&task->work_done_sem);
  420. BUG_ON(ret);
  421. sem_init(&task->work_done_sem, 0, 0);
  422. cpu_usage += task->cpu_usage;
  423. task->cpu_usage = 0;
  424. }
  425. cpu_usage_1 = get_cpu_usage_nsec_parent();
  426. if (!runavg_cpu_usage)
  427. runavg_cpu_usage = cpu_usage;
  428. runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
  429. parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
  430. if (!runavg_parent_cpu_usage)
  431. runavg_parent_cpu_usage = parent_cpu_usage;
  432. runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
  433. parent_cpu_usage)/10;
  434. ret = pthread_mutex_lock(&start_work_mutex);
  435. BUG_ON(ret);
  436. for (i = 0; i < nr_tasks; i++) {
  437. task = tasks[i];
  438. sem_init(&task->sleep_sem, 0, 0);
  439. task->curr_event = 0;
  440. }
  441. }
  442. static void run_one_test(void)
  443. {
  444. u64 T0, T1, delta, avg_delta, fluct, std_dev;
  445. T0 = get_nsecs();
  446. wait_for_tasks();
  447. T1 = get_nsecs();
  448. delta = T1 - T0;
  449. sum_runtime += delta;
  450. nr_runs++;
  451. avg_delta = sum_runtime / nr_runs;
  452. if (delta < avg_delta)
  453. fluct = avg_delta - delta;
  454. else
  455. fluct = delta - avg_delta;
  456. sum_fluct += fluct;
  457. std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
  458. if (!run_avg)
  459. run_avg = delta;
  460. run_avg = (run_avg*9 + delta)/10;
  461. printf("#%-3ld: %0.3f, ",
  462. nr_runs, (double)delta/1000000.0);
  463. printf("ravg: %0.2f, ",
  464. (double)run_avg/1e6);
  465. printf("cpu: %0.2f / %0.2f",
  466. (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
  467. #if 0
  468. /*
  469. * rusage statistics done by the parent, these are less
  470. * accurate than the sum_exec_runtime based statistics:
  471. */
  472. printf(" [%0.2f / %0.2f]",
  473. (double)parent_cpu_usage/1e6,
  474. (double)runavg_parent_cpu_usage/1e6);
  475. #endif
  476. printf("\n");
  477. if (nr_sleep_corrections)
  478. printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
  479. nr_sleep_corrections = 0;
  480. }
  481. static void test_calibrations(void)
  482. {
  483. u64 T0, T1;
  484. T0 = get_nsecs();
  485. burn_nsecs(1e6);
  486. T1 = get_nsecs();
  487. printf("the run test took %Ld nsecs\n", T1-T0);
  488. T0 = get_nsecs();
  489. sleep_nsecs(1e6);
  490. T1 = get_nsecs();
  491. printf("the sleep test took %Ld nsecs\n", T1-T0);
  492. }
  493. #define FILL_FIELD(ptr, field, event, data) \
  494. ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
  495. #define FILL_ARRAY(ptr, array, event, data) \
  496. do { \
  497. void *__array = raw_field_ptr(event, #array, data); \
  498. memcpy(ptr.array, __array, sizeof(ptr.array)); \
  499. } while(0)
  500. #define FILL_COMMON_FIELDS(ptr, event, data) \
  501. do { \
  502. FILL_FIELD(ptr, common_type, event, data); \
  503. FILL_FIELD(ptr, common_flags, event, data); \
  504. FILL_FIELD(ptr, common_preempt_count, event, data); \
  505. FILL_FIELD(ptr, common_pid, event, data); \
  506. FILL_FIELD(ptr, common_tgid, event, data); \
  507. } while (0)
  508. struct trace_switch_event {
  509. u32 size;
  510. u16 common_type;
  511. u8 common_flags;
  512. u8 common_preempt_count;
  513. u32 common_pid;
  514. u32 common_tgid;
  515. char prev_comm[16];
  516. u32 prev_pid;
  517. u32 prev_prio;
  518. u64 prev_state;
  519. char next_comm[16];
  520. u32 next_pid;
  521. u32 next_prio;
  522. };
  523. struct trace_runtime_event {
  524. u32 size;
  525. u16 common_type;
  526. u8 common_flags;
  527. u8 common_preempt_count;
  528. u32 common_pid;
  529. u32 common_tgid;
  530. char comm[16];
  531. u32 pid;
  532. u64 runtime;
  533. u64 vruntime;
  534. };
  535. struct trace_wakeup_event {
  536. u32 size;
  537. u16 common_type;
  538. u8 common_flags;
  539. u8 common_preempt_count;
  540. u32 common_pid;
  541. u32 common_tgid;
  542. char comm[16];
  543. u32 pid;
  544. u32 prio;
  545. u32 success;
  546. u32 cpu;
  547. };
  548. struct trace_fork_event {
  549. u32 size;
  550. u16 common_type;
  551. u8 common_flags;
  552. u8 common_preempt_count;
  553. u32 common_pid;
  554. u32 common_tgid;
  555. char parent_comm[16];
  556. u32 parent_pid;
  557. char child_comm[16];
  558. u32 child_pid;
  559. };
  560. struct trace_migrate_task_event {
  561. u32 size;
  562. u16 common_type;
  563. u8 common_flags;
  564. u8 common_preempt_count;
  565. u32 common_pid;
  566. u32 common_tgid;
  567. char comm[16];
  568. u32 pid;
  569. u32 prio;
  570. u32 cpu;
  571. };
  572. struct trace_sched_handler {
  573. void (*switch_event)(struct trace_switch_event *,
  574. struct event *,
  575. int cpu,
  576. u64 timestamp,
  577. struct thread *thread);
  578. void (*runtime_event)(struct trace_runtime_event *,
  579. struct event *,
  580. int cpu,
  581. u64 timestamp,
  582. struct thread *thread);
  583. void (*wakeup_event)(struct trace_wakeup_event *,
  584. struct event *,
  585. int cpu,
  586. u64 timestamp,
  587. struct thread *thread);
  588. void (*fork_event)(struct trace_fork_event *,
  589. struct event *,
  590. int cpu,
  591. u64 timestamp,
  592. struct thread *thread);
  593. void (*migrate_task_event)(struct trace_migrate_task_event *,
  594. struct event *,
  595. int cpu,
  596. u64 timestamp,
  597. struct thread *thread);
  598. };
  599. static void
  600. replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
  601. struct event *event,
  602. int cpu __used,
  603. u64 timestamp __used,
  604. struct thread *thread __used)
  605. {
  606. struct task_desc *waker, *wakee;
  607. if (verbose) {
  608. printf("sched_wakeup event %p\n", event);
  609. printf(" ... pid %d woke up %s/%d\n",
  610. wakeup_event->common_pid,
  611. wakeup_event->comm,
  612. wakeup_event->pid);
  613. }
  614. waker = register_pid(wakeup_event->common_pid, "<unknown>");
  615. wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
  616. add_sched_event_wakeup(waker, timestamp, wakee);
  617. }
  618. static u64 cpu_last_switched[MAX_CPUS];
  619. static void
  620. replay_switch_event(struct trace_switch_event *switch_event,
  621. struct event *event,
  622. int cpu,
  623. u64 timestamp,
  624. struct thread *thread __used)
  625. {
  626. struct task_desc *prev, *next;
  627. u64 timestamp0;
  628. s64 delta;
  629. if (verbose)
  630. printf("sched_switch event %p\n", event);
  631. if (cpu >= MAX_CPUS || cpu < 0)
  632. return;
  633. timestamp0 = cpu_last_switched[cpu];
  634. if (timestamp0)
  635. delta = timestamp - timestamp0;
  636. else
  637. delta = 0;
  638. if (delta < 0)
  639. die("hm, delta: %Ld < 0 ?\n", delta);
  640. if (verbose) {
  641. printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
  642. switch_event->prev_comm, switch_event->prev_pid,
  643. switch_event->next_comm, switch_event->next_pid,
  644. delta);
  645. }
  646. prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
  647. next = register_pid(switch_event->next_pid, switch_event->next_comm);
  648. cpu_last_switched[cpu] = timestamp;
  649. add_sched_event_run(prev, timestamp, delta);
  650. add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
  651. }
  652. static void
  653. replay_fork_event(struct trace_fork_event *fork_event,
  654. struct event *event,
  655. int cpu __used,
  656. u64 timestamp __used,
  657. struct thread *thread __used)
  658. {
  659. if (verbose) {
  660. printf("sched_fork event %p\n", event);
  661. printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
  662. printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
  663. }
  664. register_pid(fork_event->parent_pid, fork_event->parent_comm);
  665. register_pid(fork_event->child_pid, fork_event->child_comm);
  666. }
  667. static struct trace_sched_handler replay_ops = {
  668. .wakeup_event = replay_wakeup_event,
  669. .switch_event = replay_switch_event,
  670. .fork_event = replay_fork_event,
  671. };
  672. struct sort_dimension {
  673. const char *name;
  674. sort_fn_t cmp;
  675. struct list_head list;
  676. };
  677. static LIST_HEAD(cmp_pid);
  678. static int
  679. thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
  680. {
  681. struct sort_dimension *sort;
  682. int ret = 0;
  683. BUG_ON(list_empty(list));
  684. list_for_each_entry(sort, list, list) {
  685. ret = sort->cmp(l, r);
  686. if (ret)
  687. return ret;
  688. }
  689. return ret;
  690. }
  691. static struct work_atoms *
  692. thread_atoms_search(struct rb_root *root, struct thread *thread,
  693. struct list_head *sort_list)
  694. {
  695. struct rb_node *node = root->rb_node;
  696. struct work_atoms key = { .thread = thread };
  697. while (node) {
  698. struct work_atoms *atoms;
  699. int cmp;
  700. atoms = container_of(node, struct work_atoms, node);
  701. cmp = thread_lat_cmp(sort_list, &key, atoms);
  702. if (cmp > 0)
  703. node = node->rb_left;
  704. else if (cmp < 0)
  705. node = node->rb_right;
  706. else {
  707. BUG_ON(thread != atoms->thread);
  708. return atoms;
  709. }
  710. }
  711. return NULL;
  712. }
  713. static void
  714. __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
  715. struct list_head *sort_list)
  716. {
  717. struct rb_node **new = &(root->rb_node), *parent = NULL;
  718. while (*new) {
  719. struct work_atoms *this;
  720. int cmp;
  721. this = container_of(*new, struct work_atoms, node);
  722. parent = *new;
  723. cmp = thread_lat_cmp(sort_list, data, this);
  724. if (cmp > 0)
  725. new = &((*new)->rb_left);
  726. else
  727. new = &((*new)->rb_right);
  728. }
  729. rb_link_node(&data->node, parent, new);
  730. rb_insert_color(&data->node, root);
  731. }
  732. static void thread_atoms_insert(struct thread *thread)
  733. {
  734. struct work_atoms *atoms = zalloc(sizeof(*atoms));
  735. if (!atoms)
  736. die("No memory");
  737. atoms->thread = thread;
  738. INIT_LIST_HEAD(&atoms->work_list);
  739. __thread_latency_insert(&atom_root, atoms, &cmp_pid);
  740. }
  741. static void
  742. latency_fork_event(struct trace_fork_event *fork_event __used,
  743. struct event *event __used,
  744. int cpu __used,
  745. u64 timestamp __used,
  746. struct thread *thread __used)
  747. {
  748. /* should insert the newcomer */
  749. }
  750. __used
  751. static char sched_out_state(struct trace_switch_event *switch_event)
  752. {
  753. const char *str = TASK_STATE_TO_CHAR_STR;
  754. return str[switch_event->prev_state];
  755. }
  756. static void
  757. add_sched_out_event(struct work_atoms *atoms,
  758. char run_state,
  759. u64 timestamp)
  760. {
  761. struct work_atom *atom = zalloc(sizeof(*atom));
  762. if (!atom)
  763. die("Non memory");
  764. atom->sched_out_time = timestamp;
  765. if (run_state == 'R') {
  766. atom->state = THREAD_WAIT_CPU;
  767. atom->wake_up_time = atom->sched_out_time;
  768. }
  769. list_add_tail(&atom->list, &atoms->work_list);
  770. }
  771. static void
  772. add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
  773. {
  774. struct work_atom *atom;
  775. BUG_ON(list_empty(&atoms->work_list));
  776. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  777. atom->runtime += delta;
  778. atoms->total_runtime += delta;
  779. }
  780. static void
  781. add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
  782. {
  783. struct work_atom *atom;
  784. u64 delta;
  785. if (list_empty(&atoms->work_list))
  786. return;
  787. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  788. if (atom->state != THREAD_WAIT_CPU)
  789. return;
  790. if (timestamp < atom->wake_up_time) {
  791. atom->state = THREAD_IGNORE;
  792. return;
  793. }
  794. atom->state = THREAD_SCHED_IN;
  795. atom->sched_in_time = timestamp;
  796. delta = atom->sched_in_time - atom->wake_up_time;
  797. atoms->total_lat += delta;
  798. if (delta > atoms->max_lat) {
  799. atoms->max_lat = delta;
  800. atoms->max_lat_at = timestamp;
  801. }
  802. atoms->nb_atoms++;
  803. }
  804. static void
  805. latency_switch_event(struct trace_switch_event *switch_event,
  806. struct event *event __used,
  807. int cpu,
  808. u64 timestamp,
  809. struct thread *thread __used)
  810. {
  811. struct work_atoms *out_events, *in_events;
  812. struct thread *sched_out, *sched_in;
  813. u64 timestamp0;
  814. s64 delta;
  815. BUG_ON(cpu >= MAX_CPUS || cpu < 0);
  816. timestamp0 = cpu_last_switched[cpu];
  817. cpu_last_switched[cpu] = timestamp;
  818. if (timestamp0)
  819. delta = timestamp - timestamp0;
  820. else
  821. delta = 0;
  822. if (delta < 0)
  823. die("hm, delta: %Ld < 0 ?\n", delta);
  824. sched_out = threads__findnew(switch_event->prev_pid);
  825. sched_in = threads__findnew(switch_event->next_pid);
  826. out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
  827. if (!out_events) {
  828. thread_atoms_insert(sched_out);
  829. out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
  830. if (!out_events)
  831. die("out-event: Internal tree error");
  832. }
  833. add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
  834. in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
  835. if (!in_events) {
  836. thread_atoms_insert(sched_in);
  837. in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
  838. if (!in_events)
  839. die("in-event: Internal tree error");
  840. /*
  841. * Take came in we have not heard about yet,
  842. * add in an initial atom in runnable state:
  843. */
  844. add_sched_out_event(in_events, 'R', timestamp);
  845. }
  846. add_sched_in_event(in_events, timestamp);
  847. }
  848. static void
  849. latency_runtime_event(struct trace_runtime_event *runtime_event,
  850. struct event *event __used,
  851. int cpu,
  852. u64 timestamp,
  853. struct thread *this_thread __used)
  854. {
  855. struct thread *thread = threads__findnew(runtime_event->pid);
  856. struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
  857. BUG_ON(cpu >= MAX_CPUS || cpu < 0);
  858. if (!atoms) {
  859. thread_atoms_insert(thread);
  860. atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
  861. if (!atoms)
  862. die("in-event: Internal tree error");
  863. add_sched_out_event(atoms, 'R', timestamp);
  864. }
  865. add_runtime_event(atoms, runtime_event->runtime, timestamp);
  866. }
  867. static void
  868. latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
  869. struct event *__event __used,
  870. int cpu __used,
  871. u64 timestamp,
  872. struct thread *thread __used)
  873. {
  874. struct work_atoms *atoms;
  875. struct work_atom *atom;
  876. struct thread *wakee;
  877. /* Note for later, it may be interesting to observe the failing cases */
  878. if (!wakeup_event->success)
  879. return;
  880. wakee = threads__findnew(wakeup_event->pid);
  881. atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
  882. if (!atoms) {
  883. thread_atoms_insert(wakee);
  884. atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
  885. if (!atoms)
  886. die("wakeup-event: Internal tree error");
  887. add_sched_out_event(atoms, 'S', timestamp);
  888. }
  889. BUG_ON(list_empty(&atoms->work_list));
  890. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  891. /*
  892. * You WILL be missing events if you've recorded only
  893. * one CPU, or are only looking at only one, so don't
  894. * make useless noise.
  895. */
  896. if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
  897. nr_state_machine_bugs++;
  898. nr_timestamps++;
  899. if (atom->sched_out_time > timestamp) {
  900. nr_unordered_timestamps++;
  901. return;
  902. }
  903. atom->state = THREAD_WAIT_CPU;
  904. atom->wake_up_time = timestamp;
  905. }
  906. static void
  907. latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
  908. struct event *__event __used,
  909. int cpu __used,
  910. u64 timestamp,
  911. struct thread *thread __used)
  912. {
  913. struct work_atoms *atoms;
  914. struct work_atom *atom;
  915. struct thread *migrant;
  916. /*
  917. * Only need to worry about migration when profiling one CPU.
  918. */
  919. if (profile_cpu == -1)
  920. return;
  921. migrant = threads__findnew(migrate_task_event->pid);
  922. atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
  923. if (!atoms) {
  924. thread_atoms_insert(migrant);
  925. register_pid(migrant->pid, migrant->comm);
  926. atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
  927. if (!atoms)
  928. die("migration-event: Internal tree error");
  929. add_sched_out_event(atoms, 'R', timestamp);
  930. }
  931. BUG_ON(list_empty(&atoms->work_list));
  932. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  933. atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
  934. nr_timestamps++;
  935. if (atom->sched_out_time > timestamp)
  936. nr_unordered_timestamps++;
  937. }
  938. static struct trace_sched_handler lat_ops = {
  939. .wakeup_event = latency_wakeup_event,
  940. .switch_event = latency_switch_event,
  941. .runtime_event = latency_runtime_event,
  942. .fork_event = latency_fork_event,
  943. .migrate_task_event = latency_migrate_task_event,
  944. };
  945. static void output_lat_thread(struct work_atoms *work_list)
  946. {
  947. int i;
  948. int ret;
  949. u64 avg;
  950. if (!work_list->nb_atoms)
  951. return;
  952. /*
  953. * Ignore idle threads:
  954. */
  955. if (!strcmp(work_list->thread->comm, "swapper"))
  956. return;
  957. all_runtime += work_list->total_runtime;
  958. all_count += work_list->nb_atoms;
  959. ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
  960. for (i = 0; i < 24 - ret; i++)
  961. printf(" ");
  962. avg = work_list->total_lat / work_list->nb_atoms;
  963. printf("|%11.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
  964. (double)work_list->total_runtime / 1e6,
  965. work_list->nb_atoms, (double)avg / 1e6,
  966. (double)work_list->max_lat / 1e6,
  967. (double)work_list->max_lat_at / 1e9);
  968. }
  969. static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
  970. {
  971. if (l->thread->pid < r->thread->pid)
  972. return -1;
  973. if (l->thread->pid > r->thread->pid)
  974. return 1;
  975. return 0;
  976. }
  977. static struct sort_dimension pid_sort_dimension = {
  978. .name = "pid",
  979. .cmp = pid_cmp,
  980. };
  981. static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
  982. {
  983. u64 avgl, avgr;
  984. if (!l->nb_atoms)
  985. return -1;
  986. if (!r->nb_atoms)
  987. return 1;
  988. avgl = l->total_lat / l->nb_atoms;
  989. avgr = r->total_lat / r->nb_atoms;
  990. if (avgl < avgr)
  991. return -1;
  992. if (avgl > avgr)
  993. return 1;
  994. return 0;
  995. }
  996. static struct sort_dimension avg_sort_dimension = {
  997. .name = "avg",
  998. .cmp = avg_cmp,
  999. };
  1000. static int max_cmp(struct work_atoms *l, struct work_atoms *r)
  1001. {
  1002. if (l->max_lat < r->max_lat)
  1003. return -1;
  1004. if (l->max_lat > r->max_lat)
  1005. return 1;
  1006. return 0;
  1007. }
  1008. static struct sort_dimension max_sort_dimension = {
  1009. .name = "max",
  1010. .cmp = max_cmp,
  1011. };
  1012. static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
  1013. {
  1014. if (l->nb_atoms < r->nb_atoms)
  1015. return -1;
  1016. if (l->nb_atoms > r->nb_atoms)
  1017. return 1;
  1018. return 0;
  1019. }
  1020. static struct sort_dimension switch_sort_dimension = {
  1021. .name = "switch",
  1022. .cmp = switch_cmp,
  1023. };
  1024. static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
  1025. {
  1026. if (l->total_runtime < r->total_runtime)
  1027. return -1;
  1028. if (l->total_runtime > r->total_runtime)
  1029. return 1;
  1030. return 0;
  1031. }
  1032. static struct sort_dimension runtime_sort_dimension = {
  1033. .name = "runtime",
  1034. .cmp = runtime_cmp,
  1035. };
  1036. static struct sort_dimension *available_sorts[] = {
  1037. &pid_sort_dimension,
  1038. &avg_sort_dimension,
  1039. &max_sort_dimension,
  1040. &switch_sort_dimension,
  1041. &runtime_sort_dimension,
  1042. };
  1043. #define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
  1044. static LIST_HEAD(sort_list);
  1045. static int sort_dimension__add(const char *tok, struct list_head *list)
  1046. {
  1047. int i;
  1048. for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
  1049. if (!strcmp(available_sorts[i]->name, tok)) {
  1050. list_add_tail(&available_sorts[i]->list, list);
  1051. return 0;
  1052. }
  1053. }
  1054. return -1;
  1055. }
  1056. static void setup_sorting(void);
  1057. static void sort_lat(void)
  1058. {
  1059. struct rb_node *node;
  1060. for (;;) {
  1061. struct work_atoms *data;
  1062. node = rb_first(&atom_root);
  1063. if (!node)
  1064. break;
  1065. rb_erase(node, &atom_root);
  1066. data = rb_entry(node, struct work_atoms, node);
  1067. __thread_latency_insert(&sorted_atom_root, data, &sort_list);
  1068. }
  1069. }
  1070. static struct trace_sched_handler *trace_handler;
  1071. static void
  1072. process_sched_wakeup_event(void *data,
  1073. struct event *event,
  1074. int cpu __used,
  1075. u64 timestamp __used,
  1076. struct thread *thread __used)
  1077. {
  1078. struct trace_wakeup_event wakeup_event;
  1079. FILL_COMMON_FIELDS(wakeup_event, event, data);
  1080. FILL_ARRAY(wakeup_event, comm, event, data);
  1081. FILL_FIELD(wakeup_event, pid, event, data);
  1082. FILL_FIELD(wakeup_event, prio, event, data);
  1083. FILL_FIELD(wakeup_event, success, event, data);
  1084. FILL_FIELD(wakeup_event, cpu, event, data);
  1085. if (trace_handler->wakeup_event)
  1086. trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
  1087. }
  1088. /*
  1089. * Track the current task - that way we can know whether there's any
  1090. * weird events, such as a task being switched away that is not current.
  1091. */
  1092. static int max_cpu;
  1093. static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
  1094. static struct thread *curr_thread[MAX_CPUS];
  1095. static char next_shortname1 = 'A';
  1096. static char next_shortname2 = '0';
  1097. static void
  1098. map_switch_event(struct trace_switch_event *switch_event,
  1099. struct event *event __used,
  1100. int this_cpu,
  1101. u64 timestamp,
  1102. struct thread *thread __used)
  1103. {
  1104. struct thread *sched_out, *sched_in;
  1105. int new_shortname;
  1106. u64 timestamp0;
  1107. s64 delta;
  1108. int cpu;
  1109. BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
  1110. if (this_cpu > max_cpu)
  1111. max_cpu = this_cpu;
  1112. timestamp0 = cpu_last_switched[this_cpu];
  1113. cpu_last_switched[this_cpu] = timestamp;
  1114. if (timestamp0)
  1115. delta = timestamp - timestamp0;
  1116. else
  1117. delta = 0;
  1118. if (delta < 0)
  1119. die("hm, delta: %Ld < 0 ?\n", delta);
  1120. sched_out = threads__findnew(switch_event->prev_pid);
  1121. sched_in = threads__findnew(switch_event->next_pid);
  1122. curr_thread[this_cpu] = sched_in;
  1123. printf(" ");
  1124. new_shortname = 0;
  1125. if (!sched_in->shortname[0]) {
  1126. sched_in->shortname[0] = next_shortname1;
  1127. sched_in->shortname[1] = next_shortname2;
  1128. if (next_shortname1 < 'Z') {
  1129. next_shortname1++;
  1130. } else {
  1131. next_shortname1='A';
  1132. if (next_shortname2 < '9') {
  1133. next_shortname2++;
  1134. } else {
  1135. next_shortname2='0';
  1136. }
  1137. }
  1138. new_shortname = 1;
  1139. }
  1140. for (cpu = 0; cpu <= max_cpu; cpu++) {
  1141. if (cpu != this_cpu)
  1142. printf(" ");
  1143. else
  1144. printf("*");
  1145. if (curr_thread[cpu]) {
  1146. if (curr_thread[cpu]->pid)
  1147. printf("%2s ", curr_thread[cpu]->shortname);
  1148. else
  1149. printf(". ");
  1150. } else
  1151. printf(" ");
  1152. }
  1153. printf(" %12.6f secs ", (double)timestamp/1e9);
  1154. if (new_shortname) {
  1155. printf("%s => %s:%d\n",
  1156. sched_in->shortname, sched_in->comm, sched_in->pid);
  1157. } else {
  1158. printf("\n");
  1159. }
  1160. }
  1161. static void
  1162. process_sched_switch_event(void *data,
  1163. struct event *event,
  1164. int this_cpu,
  1165. u64 timestamp __used,
  1166. struct thread *thread __used)
  1167. {
  1168. struct trace_switch_event switch_event;
  1169. FILL_COMMON_FIELDS(switch_event, event, data);
  1170. FILL_ARRAY(switch_event, prev_comm, event, data);
  1171. FILL_FIELD(switch_event, prev_pid, event, data);
  1172. FILL_FIELD(switch_event, prev_prio, event, data);
  1173. FILL_FIELD(switch_event, prev_state, event, data);
  1174. FILL_ARRAY(switch_event, next_comm, event, data);
  1175. FILL_FIELD(switch_event, next_pid, event, data);
  1176. FILL_FIELD(switch_event, next_prio, event, data);
  1177. if (curr_pid[this_cpu] != (u32)-1) {
  1178. /*
  1179. * Are we trying to switch away a PID that is
  1180. * not current?
  1181. */
  1182. if (curr_pid[this_cpu] != switch_event.prev_pid)
  1183. nr_context_switch_bugs++;
  1184. }
  1185. if (trace_handler->switch_event)
  1186. trace_handler->switch_event(&switch_event, event, this_cpu, timestamp, thread);
  1187. curr_pid[this_cpu] = switch_event.next_pid;
  1188. }
  1189. static void
  1190. process_sched_runtime_event(void *data,
  1191. struct event *event,
  1192. int cpu __used,
  1193. u64 timestamp __used,
  1194. struct thread *thread __used)
  1195. {
  1196. struct trace_runtime_event runtime_event;
  1197. FILL_ARRAY(runtime_event, comm, event, data);
  1198. FILL_FIELD(runtime_event, pid, event, data);
  1199. FILL_FIELD(runtime_event, runtime, event, data);
  1200. FILL_FIELD(runtime_event, vruntime, event, data);
  1201. if (trace_handler->runtime_event)
  1202. trace_handler->runtime_event(&runtime_event, event, cpu, timestamp, thread);
  1203. }
  1204. static void
  1205. process_sched_fork_event(void *data,
  1206. struct event *event,
  1207. int cpu __used,
  1208. u64 timestamp __used,
  1209. struct thread *thread __used)
  1210. {
  1211. struct trace_fork_event fork_event;
  1212. FILL_COMMON_FIELDS(fork_event, event, data);
  1213. FILL_ARRAY(fork_event, parent_comm, event, data);
  1214. FILL_FIELD(fork_event, parent_pid, event, data);
  1215. FILL_ARRAY(fork_event, child_comm, event, data);
  1216. FILL_FIELD(fork_event, child_pid, event, data);
  1217. if (trace_handler->fork_event)
  1218. trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
  1219. }
  1220. static void
  1221. process_sched_exit_event(struct event *event,
  1222. int cpu __used,
  1223. u64 timestamp __used,
  1224. struct thread *thread __used)
  1225. {
  1226. if (verbose)
  1227. printf("sched_exit event %p\n", event);
  1228. }
  1229. static void
  1230. process_sched_migrate_task_event(void *data,
  1231. struct event *event,
  1232. int cpu __used,
  1233. u64 timestamp __used,
  1234. struct thread *thread __used)
  1235. {
  1236. struct trace_migrate_task_event migrate_task_event;
  1237. FILL_COMMON_FIELDS(migrate_task_event, event, data);
  1238. FILL_ARRAY(migrate_task_event, comm, event, data);
  1239. FILL_FIELD(migrate_task_event, pid, event, data);
  1240. FILL_FIELD(migrate_task_event, prio, event, data);
  1241. FILL_FIELD(migrate_task_event, cpu, event, data);
  1242. if (trace_handler->migrate_task_event)
  1243. trace_handler->migrate_task_event(&migrate_task_event, event, cpu, timestamp, thread);
  1244. }
  1245. static void
  1246. process_raw_event(event_t *raw_event __used, void *data,
  1247. int cpu, u64 timestamp, struct thread *thread)
  1248. {
  1249. struct event *event;
  1250. int type;
  1251. type = trace_parse_common_type(data);
  1252. event = trace_find_event(type);
  1253. if (!strcmp(event->name, "sched_switch"))
  1254. process_sched_switch_event(data, event, cpu, timestamp, thread);
  1255. if (!strcmp(event->name, "sched_stat_runtime"))
  1256. process_sched_runtime_event(data, event, cpu, timestamp, thread);
  1257. if (!strcmp(event->name, "sched_wakeup"))
  1258. process_sched_wakeup_event(data, event, cpu, timestamp, thread);
  1259. if (!strcmp(event->name, "sched_wakeup_new"))
  1260. process_sched_wakeup_event(data, event, cpu, timestamp, thread);
  1261. if (!strcmp(event->name, "sched_process_fork"))
  1262. process_sched_fork_event(data, event, cpu, timestamp, thread);
  1263. if (!strcmp(event->name, "sched_process_exit"))
  1264. process_sched_exit_event(event, cpu, timestamp, thread);
  1265. if (!strcmp(event->name, "sched_migrate_task"))
  1266. process_sched_migrate_task_event(data, event, cpu, timestamp, thread);
  1267. }
  1268. static int process_sample_event(event_t *event)
  1269. {
  1270. struct sample_data data;
  1271. struct thread *thread;
  1272. if (!(sample_type & PERF_SAMPLE_RAW))
  1273. return 0;
  1274. memset(&data, 0, sizeof(data));
  1275. data.time = -1;
  1276. data.cpu = -1;
  1277. data.period = -1;
  1278. event__parse_sample(event, sample_type, &data);
  1279. dump_printf("(IP, %d): %d/%d: %p period: %Ld\n",
  1280. event->header.misc,
  1281. data.pid, data.tid,
  1282. (void *)(long)data.ip,
  1283. (long long)data.period);
  1284. thread = threads__findnew(data.pid);
  1285. if (thread == NULL) {
  1286. pr_debug("problem processing %d event, skipping it.\n",
  1287. event->header.type);
  1288. return -1;
  1289. }
  1290. dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
  1291. if (profile_cpu != -1 && profile_cpu != (int)data.cpu)
  1292. return 0;
  1293. process_raw_event(event, data.raw_data, data.cpu, data.time, thread);
  1294. return 0;
  1295. }
  1296. static int process_lost_event(event_t *event __used)
  1297. {
  1298. nr_lost_chunks++;
  1299. nr_lost_events += event->lost.lost;
  1300. return 0;
  1301. }
  1302. static int sample_type_check(u64 type)
  1303. {
  1304. sample_type = type;
  1305. if (!(sample_type & PERF_SAMPLE_RAW)) {
  1306. fprintf(stderr,
  1307. "No trace sample to read. Did you call perf record "
  1308. "without -R?");
  1309. return -1;
  1310. }
  1311. return 0;
  1312. }
  1313. static struct perf_file_handler file_handler = {
  1314. .process_sample_event = process_sample_event,
  1315. .process_comm_event = event__process_comm,
  1316. .process_lost_event = process_lost_event,
  1317. .sample_type_check = sample_type_check,
  1318. };
  1319. static int read_events(void)
  1320. {
  1321. register_idle_thread();
  1322. register_perf_file_handler(&file_handler);
  1323. return mmap_dispatch_perf_file(&header, input_name, 0, 0,
  1324. &event__cwdlen, &event__cwd);
  1325. }
  1326. static void print_bad_events(void)
  1327. {
  1328. if (nr_unordered_timestamps && nr_timestamps) {
  1329. printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
  1330. (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
  1331. nr_unordered_timestamps, nr_timestamps);
  1332. }
  1333. if (nr_lost_events && nr_events) {
  1334. printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
  1335. (double)nr_lost_events/(double)nr_events*100.0,
  1336. nr_lost_events, nr_events, nr_lost_chunks);
  1337. }
  1338. if (nr_state_machine_bugs && nr_timestamps) {
  1339. printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
  1340. (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
  1341. nr_state_machine_bugs, nr_timestamps);
  1342. if (nr_lost_events)
  1343. printf(" (due to lost events?)");
  1344. printf("\n");
  1345. }
  1346. if (nr_context_switch_bugs && nr_timestamps) {
  1347. printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
  1348. (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
  1349. nr_context_switch_bugs, nr_timestamps);
  1350. if (nr_lost_events)
  1351. printf(" (due to lost events?)");
  1352. printf("\n");
  1353. }
  1354. }
  1355. static void __cmd_lat(void)
  1356. {
  1357. struct rb_node *next;
  1358. setup_pager();
  1359. read_events();
  1360. sort_lat();
  1361. printf("\n ---------------------------------------------------------------------------------------------------------------\n");
  1362. printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
  1363. printf(" ---------------------------------------------------------------------------------------------------------------\n");
  1364. next = rb_first(&sorted_atom_root);
  1365. while (next) {
  1366. struct work_atoms *work_list;
  1367. work_list = rb_entry(next, struct work_atoms, node);
  1368. output_lat_thread(work_list);
  1369. next = rb_next(next);
  1370. }
  1371. printf(" -----------------------------------------------------------------------------------------\n");
  1372. printf(" TOTAL: |%11.3f ms |%9Ld |\n",
  1373. (double)all_runtime/1e6, all_count);
  1374. printf(" ---------------------------------------------------\n");
  1375. print_bad_events();
  1376. printf("\n");
  1377. }
  1378. static struct trace_sched_handler map_ops = {
  1379. .wakeup_event = NULL,
  1380. .switch_event = map_switch_event,
  1381. .runtime_event = NULL,
  1382. .fork_event = NULL,
  1383. };
  1384. static void __cmd_map(void)
  1385. {
  1386. max_cpu = sysconf(_SC_NPROCESSORS_CONF);
  1387. setup_pager();
  1388. read_events();
  1389. print_bad_events();
  1390. }
  1391. static void __cmd_replay(void)
  1392. {
  1393. unsigned long i;
  1394. calibrate_run_measurement_overhead();
  1395. calibrate_sleep_measurement_overhead();
  1396. test_calibrations();
  1397. read_events();
  1398. printf("nr_run_events: %ld\n", nr_run_events);
  1399. printf("nr_sleep_events: %ld\n", nr_sleep_events);
  1400. printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
  1401. if (targetless_wakeups)
  1402. printf("target-less wakeups: %ld\n", targetless_wakeups);
  1403. if (multitarget_wakeups)
  1404. printf("multi-target wakeups: %ld\n", multitarget_wakeups);
  1405. if (nr_run_events_optimized)
  1406. printf("run atoms optimized: %ld\n",
  1407. nr_run_events_optimized);
  1408. print_task_traces();
  1409. add_cross_task_wakeups();
  1410. create_tasks();
  1411. printf("------------------------------------------------------------\n");
  1412. for (i = 0; i < replay_repeat; i++)
  1413. run_one_test();
  1414. }
  1415. static const char * const sched_usage[] = {
  1416. "perf sched [<options>] {record|latency|map|replay|trace}",
  1417. NULL
  1418. };
  1419. static const struct option sched_options[] = {
  1420. OPT_STRING('i', "input", &input_name, "file",
  1421. "input file name"),
  1422. OPT_BOOLEAN('v', "verbose", &verbose,
  1423. "be more verbose (show symbol address, etc)"),
  1424. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1425. "dump raw trace in ASCII"),
  1426. OPT_END()
  1427. };
  1428. static const char * const latency_usage[] = {
  1429. "perf sched latency [<options>]",
  1430. NULL
  1431. };
  1432. static const struct option latency_options[] = {
  1433. OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
  1434. "sort by key(s): runtime, switch, avg, max"),
  1435. OPT_BOOLEAN('v', "verbose", &verbose,
  1436. "be more verbose (show symbol address, etc)"),
  1437. OPT_INTEGER('C', "CPU", &profile_cpu,
  1438. "CPU to profile on"),
  1439. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1440. "dump raw trace in ASCII"),
  1441. OPT_END()
  1442. };
  1443. static const char * const replay_usage[] = {
  1444. "perf sched replay [<options>]",
  1445. NULL
  1446. };
  1447. static const struct option replay_options[] = {
  1448. OPT_INTEGER('r', "repeat", &replay_repeat,
  1449. "repeat the workload replay N times (-1: infinite)"),
  1450. OPT_BOOLEAN('v', "verbose", &verbose,
  1451. "be more verbose (show symbol address, etc)"),
  1452. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1453. "dump raw trace in ASCII"),
  1454. OPT_END()
  1455. };
  1456. static void setup_sorting(void)
  1457. {
  1458. char *tmp, *tok, *str = strdup(sort_order);
  1459. for (tok = strtok_r(str, ", ", &tmp);
  1460. tok; tok = strtok_r(NULL, ", ", &tmp)) {
  1461. if (sort_dimension__add(tok, &sort_list) < 0) {
  1462. error("Unknown --sort key: `%s'", tok);
  1463. usage_with_options(latency_usage, latency_options);
  1464. }
  1465. }
  1466. free(str);
  1467. sort_dimension__add("pid", &cmp_pid);
  1468. }
  1469. static const char *record_args[] = {
  1470. "record",
  1471. "-a",
  1472. "-R",
  1473. "-M",
  1474. "-f",
  1475. "-m", "1024",
  1476. "-c", "1",
  1477. "-e", "sched:sched_switch:r",
  1478. "-e", "sched:sched_stat_wait:r",
  1479. "-e", "sched:sched_stat_sleep:r",
  1480. "-e", "sched:sched_stat_iowait:r",
  1481. "-e", "sched:sched_stat_runtime:r",
  1482. "-e", "sched:sched_process_exit:r",
  1483. "-e", "sched:sched_process_fork:r",
  1484. "-e", "sched:sched_wakeup:r",
  1485. "-e", "sched:sched_migrate_task:r",
  1486. };
  1487. static int __cmd_record(int argc, const char **argv)
  1488. {
  1489. unsigned int rec_argc, i, j;
  1490. const char **rec_argv;
  1491. rec_argc = ARRAY_SIZE(record_args) + argc - 1;
  1492. rec_argv = calloc(rec_argc + 1, sizeof(char *));
  1493. for (i = 0; i < ARRAY_SIZE(record_args); i++)
  1494. rec_argv[i] = strdup(record_args[i]);
  1495. for (j = 1; j < (unsigned int)argc; j++, i++)
  1496. rec_argv[i] = argv[j];
  1497. BUG_ON(i != rec_argc);
  1498. return cmd_record(i, rec_argv, NULL);
  1499. }
  1500. int cmd_sched(int argc, const char **argv, const char *prefix __used)
  1501. {
  1502. argc = parse_options(argc, argv, sched_options, sched_usage,
  1503. PARSE_OPT_STOP_AT_NON_OPTION);
  1504. if (!argc)
  1505. usage_with_options(sched_usage, sched_options);
  1506. /*
  1507. * Aliased to 'perf trace' for now:
  1508. */
  1509. if (!strcmp(argv[0], "trace"))
  1510. return cmd_trace(argc, argv, prefix);
  1511. symbol__init(0);
  1512. if (!strncmp(argv[0], "rec", 3)) {
  1513. return __cmd_record(argc, argv);
  1514. } else if (!strncmp(argv[0], "lat", 3)) {
  1515. trace_handler = &lat_ops;
  1516. if (argc > 1) {
  1517. argc = parse_options(argc, argv, latency_options, latency_usage, 0);
  1518. if (argc)
  1519. usage_with_options(latency_usage, latency_options);
  1520. }
  1521. setup_sorting();
  1522. __cmd_lat();
  1523. } else if (!strcmp(argv[0], "map")) {
  1524. trace_handler = &map_ops;
  1525. setup_sorting();
  1526. __cmd_map();
  1527. } else if (!strncmp(argv[0], "rep", 3)) {
  1528. trace_handler = &replay_ops;
  1529. if (argc) {
  1530. argc = parse_options(argc, argv, replay_options, replay_usage, 0);
  1531. if (argc)
  1532. usage_with_options(replay_usage, replay_options);
  1533. }
  1534. __cmd_replay();
  1535. } else {
  1536. usage_with_options(sched_usage, sched_options);
  1537. }
  1538. return 0;
  1539. }