sched.c 269 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. #define CREATE_TRACE_POINTS
  77. #include <trace/events/sched.h>
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. static inline int rt_policy(int policy)
  112. {
  113. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  114. return 1;
  115. return 0;
  116. }
  117. static inline int task_has_rt_policy(struct task_struct *p)
  118. {
  119. return rt_policy(p->policy);
  120. }
  121. /*
  122. * This is the priority-queue data structure of the RT scheduling class:
  123. */
  124. struct rt_prio_array {
  125. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  126. struct list_head queue[MAX_RT_PRIO];
  127. };
  128. struct rt_bandwidth {
  129. /* nests inside the rq lock: */
  130. spinlock_t rt_runtime_lock;
  131. ktime_t rt_period;
  132. u64 rt_runtime;
  133. struct hrtimer rt_period_timer;
  134. };
  135. static struct rt_bandwidth def_rt_bandwidth;
  136. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  137. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  138. {
  139. struct rt_bandwidth *rt_b =
  140. container_of(timer, struct rt_bandwidth, rt_period_timer);
  141. ktime_t now;
  142. int overrun;
  143. int idle = 0;
  144. for (;;) {
  145. now = hrtimer_cb_get_time(timer);
  146. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  147. if (!overrun)
  148. break;
  149. idle = do_sched_rt_period_timer(rt_b, overrun);
  150. }
  151. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  152. }
  153. static
  154. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  155. {
  156. rt_b->rt_period = ns_to_ktime(period);
  157. rt_b->rt_runtime = runtime;
  158. spin_lock_init(&rt_b->rt_runtime_lock);
  159. hrtimer_init(&rt_b->rt_period_timer,
  160. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  161. rt_b->rt_period_timer.function = sched_rt_period_timer;
  162. }
  163. static inline int rt_bandwidth_enabled(void)
  164. {
  165. return sysctl_sched_rt_runtime >= 0;
  166. }
  167. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  168. {
  169. ktime_t now;
  170. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  171. return;
  172. if (hrtimer_active(&rt_b->rt_period_timer))
  173. return;
  174. spin_lock(&rt_b->rt_runtime_lock);
  175. for (;;) {
  176. unsigned long delta;
  177. ktime_t soft, hard;
  178. if (hrtimer_active(&rt_b->rt_period_timer))
  179. break;
  180. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  181. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  182. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  183. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  184. delta = ktime_to_ns(ktime_sub(hard, soft));
  185. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  186. HRTIMER_MODE_ABS_PINNED, 0);
  187. }
  188. spin_unlock(&rt_b->rt_runtime_lock);
  189. }
  190. #ifdef CONFIG_RT_GROUP_SCHED
  191. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  192. {
  193. hrtimer_cancel(&rt_b->rt_period_timer);
  194. }
  195. #endif
  196. /*
  197. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  198. * detach_destroy_domains and partition_sched_domains.
  199. */
  200. static DEFINE_MUTEX(sched_domains_mutex);
  201. #ifdef CONFIG_GROUP_SCHED
  202. #include <linux/cgroup.h>
  203. struct cfs_rq;
  204. static LIST_HEAD(task_groups);
  205. /* task group related information */
  206. struct task_group {
  207. #ifdef CONFIG_CGROUP_SCHED
  208. struct cgroup_subsys_state css;
  209. #endif
  210. #ifdef CONFIG_USER_SCHED
  211. uid_t uid;
  212. #endif
  213. #ifdef CONFIG_FAIR_GROUP_SCHED
  214. /* schedulable entities of this group on each cpu */
  215. struct sched_entity **se;
  216. /* runqueue "owned" by this group on each cpu */
  217. struct cfs_rq **cfs_rq;
  218. unsigned long shares;
  219. #endif
  220. #ifdef CONFIG_RT_GROUP_SCHED
  221. struct sched_rt_entity **rt_se;
  222. struct rt_rq **rt_rq;
  223. struct rt_bandwidth rt_bandwidth;
  224. #endif
  225. struct rcu_head rcu;
  226. struct list_head list;
  227. struct task_group *parent;
  228. struct list_head siblings;
  229. struct list_head children;
  230. };
  231. #ifdef CONFIG_USER_SCHED
  232. /* Helper function to pass uid information to create_sched_user() */
  233. void set_tg_uid(struct user_struct *user)
  234. {
  235. user->tg->uid = user->uid;
  236. }
  237. /*
  238. * Root task group.
  239. * Every UID task group (including init_task_group aka UID-0) will
  240. * be a child to this group.
  241. */
  242. struct task_group root_task_group;
  243. #ifdef CONFIG_FAIR_GROUP_SCHED
  244. /* Default task group's sched entity on each cpu */
  245. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  246. /* Default task group's cfs_rq on each cpu */
  247. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  248. #endif /* CONFIG_FAIR_GROUP_SCHED */
  249. #ifdef CONFIG_RT_GROUP_SCHED
  250. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  251. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
  252. #endif /* CONFIG_RT_GROUP_SCHED */
  253. #else /* !CONFIG_USER_SCHED */
  254. #define root_task_group init_task_group
  255. #endif /* CONFIG_USER_SCHED */
  256. /* task_group_lock serializes add/remove of task groups and also changes to
  257. * a task group's cpu shares.
  258. */
  259. static DEFINE_SPINLOCK(task_group_lock);
  260. #ifdef CONFIG_FAIR_GROUP_SCHED
  261. #ifdef CONFIG_SMP
  262. static int root_task_group_empty(void)
  263. {
  264. return list_empty(&root_task_group.children);
  265. }
  266. #endif
  267. #ifdef CONFIG_USER_SCHED
  268. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  269. #else /* !CONFIG_USER_SCHED */
  270. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  271. #endif /* CONFIG_USER_SCHED */
  272. /*
  273. * A weight of 0 or 1 can cause arithmetics problems.
  274. * A weight of a cfs_rq is the sum of weights of which entities
  275. * are queued on this cfs_rq, so a weight of a entity should not be
  276. * too large, so as the shares value of a task group.
  277. * (The default weight is 1024 - so there's no practical
  278. * limitation from this.)
  279. */
  280. #define MIN_SHARES 2
  281. #define MAX_SHARES (1UL << 18)
  282. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  283. #endif
  284. /* Default task group.
  285. * Every task in system belong to this group at bootup.
  286. */
  287. struct task_group init_task_group;
  288. /* return group to which a task belongs */
  289. static inline struct task_group *task_group(struct task_struct *p)
  290. {
  291. struct task_group *tg;
  292. #ifdef CONFIG_USER_SCHED
  293. rcu_read_lock();
  294. tg = __task_cred(p)->user->tg;
  295. rcu_read_unlock();
  296. #elif defined(CONFIG_CGROUP_SCHED)
  297. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  298. struct task_group, css);
  299. #else
  300. tg = &init_task_group;
  301. #endif
  302. return tg;
  303. }
  304. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  305. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  306. {
  307. #ifdef CONFIG_FAIR_GROUP_SCHED
  308. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  309. p->se.parent = task_group(p)->se[cpu];
  310. #endif
  311. #ifdef CONFIG_RT_GROUP_SCHED
  312. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  313. p->rt.parent = task_group(p)->rt_se[cpu];
  314. #endif
  315. }
  316. #else
  317. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  318. static inline struct task_group *task_group(struct task_struct *p)
  319. {
  320. return NULL;
  321. }
  322. #endif /* CONFIG_GROUP_SCHED */
  323. /* CFS-related fields in a runqueue */
  324. struct cfs_rq {
  325. struct load_weight load;
  326. unsigned long nr_running;
  327. u64 exec_clock;
  328. u64 min_vruntime;
  329. struct rb_root tasks_timeline;
  330. struct rb_node *rb_leftmost;
  331. struct list_head tasks;
  332. struct list_head *balance_iterator;
  333. /*
  334. * 'curr' points to currently running entity on this cfs_rq.
  335. * It is set to NULL otherwise (i.e when none are currently running).
  336. */
  337. struct sched_entity *curr, *next, *last;
  338. unsigned int nr_spread_over;
  339. #ifdef CONFIG_FAIR_GROUP_SCHED
  340. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  341. /*
  342. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  343. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  344. * (like users, containers etc.)
  345. *
  346. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  347. * list is used during load balance.
  348. */
  349. struct list_head leaf_cfs_rq_list;
  350. struct task_group *tg; /* group that "owns" this runqueue */
  351. #ifdef CONFIG_SMP
  352. /*
  353. * the part of load.weight contributed by tasks
  354. */
  355. unsigned long task_weight;
  356. /*
  357. * h_load = weight * f(tg)
  358. *
  359. * Where f(tg) is the recursive weight fraction assigned to
  360. * this group.
  361. */
  362. unsigned long h_load;
  363. /*
  364. * this cpu's part of tg->shares
  365. */
  366. unsigned long shares;
  367. /*
  368. * load.weight at the time we set shares
  369. */
  370. unsigned long rq_weight;
  371. #endif
  372. #endif
  373. };
  374. /* Real-Time classes' related field in a runqueue: */
  375. struct rt_rq {
  376. struct rt_prio_array active;
  377. unsigned long rt_nr_running;
  378. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  379. struct {
  380. int curr; /* highest queued rt task prio */
  381. #ifdef CONFIG_SMP
  382. int next; /* next highest */
  383. #endif
  384. } highest_prio;
  385. #endif
  386. #ifdef CONFIG_SMP
  387. unsigned long rt_nr_migratory;
  388. unsigned long rt_nr_total;
  389. int overloaded;
  390. struct plist_head pushable_tasks;
  391. #endif
  392. int rt_throttled;
  393. u64 rt_time;
  394. u64 rt_runtime;
  395. /* Nests inside the rq lock: */
  396. spinlock_t rt_runtime_lock;
  397. #ifdef CONFIG_RT_GROUP_SCHED
  398. unsigned long rt_nr_boosted;
  399. struct rq *rq;
  400. struct list_head leaf_rt_rq_list;
  401. struct task_group *tg;
  402. struct sched_rt_entity *rt_se;
  403. #endif
  404. };
  405. #ifdef CONFIG_SMP
  406. /*
  407. * We add the notion of a root-domain which will be used to define per-domain
  408. * variables. Each exclusive cpuset essentially defines an island domain by
  409. * fully partitioning the member cpus from any other cpuset. Whenever a new
  410. * exclusive cpuset is created, we also create and attach a new root-domain
  411. * object.
  412. *
  413. */
  414. struct root_domain {
  415. atomic_t refcount;
  416. cpumask_var_t span;
  417. cpumask_var_t online;
  418. /*
  419. * The "RT overload" flag: it gets set if a CPU has more than
  420. * one runnable RT task.
  421. */
  422. cpumask_var_t rto_mask;
  423. atomic_t rto_count;
  424. #ifdef CONFIG_SMP
  425. struct cpupri cpupri;
  426. #endif
  427. };
  428. /*
  429. * By default the system creates a single root-domain with all cpus as
  430. * members (mimicking the global state we have today).
  431. */
  432. static struct root_domain def_root_domain;
  433. #endif
  434. /*
  435. * This is the main, per-CPU runqueue data structure.
  436. *
  437. * Locking rule: those places that want to lock multiple runqueues
  438. * (such as the load balancing or the thread migration code), lock
  439. * acquire operations must be ordered by ascending &runqueue.
  440. */
  441. struct rq {
  442. /* runqueue lock: */
  443. spinlock_t lock;
  444. /*
  445. * nr_running and cpu_load should be in the same cacheline because
  446. * remote CPUs use both these fields when doing load calculation.
  447. */
  448. unsigned long nr_running;
  449. #define CPU_LOAD_IDX_MAX 5
  450. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  451. #ifdef CONFIG_NO_HZ
  452. unsigned char in_nohz_recently;
  453. #endif
  454. /* capture load from *all* tasks on this cpu: */
  455. struct load_weight load;
  456. unsigned long nr_load_updates;
  457. u64 nr_switches;
  458. struct cfs_rq cfs;
  459. struct rt_rq rt;
  460. #ifdef CONFIG_FAIR_GROUP_SCHED
  461. /* list of leaf cfs_rq on this cpu: */
  462. struct list_head leaf_cfs_rq_list;
  463. #endif
  464. #ifdef CONFIG_RT_GROUP_SCHED
  465. struct list_head leaf_rt_rq_list;
  466. #endif
  467. /*
  468. * This is part of a global counter where only the total sum
  469. * over all CPUs matters. A task can increase this counter on
  470. * one CPU and if it got migrated afterwards it may decrease
  471. * it on another CPU. Always updated under the runqueue lock:
  472. */
  473. unsigned long nr_uninterruptible;
  474. struct task_struct *curr, *idle;
  475. unsigned long next_balance;
  476. struct mm_struct *prev_mm;
  477. u64 clock;
  478. atomic_t nr_iowait;
  479. #ifdef CONFIG_SMP
  480. struct root_domain *rd;
  481. struct sched_domain *sd;
  482. unsigned char idle_at_tick;
  483. /* For active balancing */
  484. int post_schedule;
  485. int active_balance;
  486. int push_cpu;
  487. /* cpu of this runqueue: */
  488. int cpu;
  489. int online;
  490. unsigned long avg_load_per_task;
  491. struct task_struct *migration_thread;
  492. struct list_head migration_queue;
  493. u64 rt_avg;
  494. u64 age_stamp;
  495. u64 idle_stamp;
  496. u64 avg_idle;
  497. #endif
  498. /* calc_load related fields */
  499. unsigned long calc_load_update;
  500. long calc_load_active;
  501. #ifdef CONFIG_SCHED_HRTICK
  502. #ifdef CONFIG_SMP
  503. int hrtick_csd_pending;
  504. struct call_single_data hrtick_csd;
  505. #endif
  506. struct hrtimer hrtick_timer;
  507. #endif
  508. #ifdef CONFIG_SCHEDSTATS
  509. /* latency stats */
  510. struct sched_info rq_sched_info;
  511. unsigned long long rq_cpu_time;
  512. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  513. /* sys_sched_yield() stats */
  514. unsigned int yld_count;
  515. /* schedule() stats */
  516. unsigned int sched_switch;
  517. unsigned int sched_count;
  518. unsigned int sched_goidle;
  519. /* try_to_wake_up() stats */
  520. unsigned int ttwu_count;
  521. unsigned int ttwu_local;
  522. /* BKL stats */
  523. unsigned int bkl_count;
  524. #endif
  525. };
  526. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  527. static inline
  528. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  529. {
  530. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  531. }
  532. static inline int cpu_of(struct rq *rq)
  533. {
  534. #ifdef CONFIG_SMP
  535. return rq->cpu;
  536. #else
  537. return 0;
  538. #endif
  539. }
  540. /*
  541. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  542. * See detach_destroy_domains: synchronize_sched for details.
  543. *
  544. * The domain tree of any CPU may only be accessed from within
  545. * preempt-disabled sections.
  546. */
  547. #define for_each_domain(cpu, __sd) \
  548. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  549. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  550. #define this_rq() (&__get_cpu_var(runqueues))
  551. #define task_rq(p) cpu_rq(task_cpu(p))
  552. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  553. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  554. inline void update_rq_clock(struct rq *rq)
  555. {
  556. rq->clock = sched_clock_cpu(cpu_of(rq));
  557. }
  558. /*
  559. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  560. */
  561. #ifdef CONFIG_SCHED_DEBUG
  562. # define const_debug __read_mostly
  563. #else
  564. # define const_debug static const
  565. #endif
  566. /**
  567. * runqueue_is_locked
  568. * @cpu: the processor in question.
  569. *
  570. * Returns true if the current cpu runqueue is locked.
  571. * This interface allows printk to be called with the runqueue lock
  572. * held and know whether or not it is OK to wake up the klogd.
  573. */
  574. int runqueue_is_locked(int cpu)
  575. {
  576. return spin_is_locked(&cpu_rq(cpu)->lock);
  577. }
  578. /*
  579. * Debugging: various feature bits
  580. */
  581. #define SCHED_FEAT(name, enabled) \
  582. __SCHED_FEAT_##name ,
  583. enum {
  584. #include "sched_features.h"
  585. };
  586. #undef SCHED_FEAT
  587. #define SCHED_FEAT(name, enabled) \
  588. (1UL << __SCHED_FEAT_##name) * enabled |
  589. const_debug unsigned int sysctl_sched_features =
  590. #include "sched_features.h"
  591. 0;
  592. #undef SCHED_FEAT
  593. #ifdef CONFIG_SCHED_DEBUG
  594. #define SCHED_FEAT(name, enabled) \
  595. #name ,
  596. static __read_mostly char *sched_feat_names[] = {
  597. #include "sched_features.h"
  598. NULL
  599. };
  600. #undef SCHED_FEAT
  601. static int sched_feat_show(struct seq_file *m, void *v)
  602. {
  603. int i;
  604. for (i = 0; sched_feat_names[i]; i++) {
  605. if (!(sysctl_sched_features & (1UL << i)))
  606. seq_puts(m, "NO_");
  607. seq_printf(m, "%s ", sched_feat_names[i]);
  608. }
  609. seq_puts(m, "\n");
  610. return 0;
  611. }
  612. static ssize_t
  613. sched_feat_write(struct file *filp, const char __user *ubuf,
  614. size_t cnt, loff_t *ppos)
  615. {
  616. char buf[64];
  617. char *cmp = buf;
  618. int neg = 0;
  619. int i;
  620. if (cnt > 63)
  621. cnt = 63;
  622. if (copy_from_user(&buf, ubuf, cnt))
  623. return -EFAULT;
  624. buf[cnt] = 0;
  625. if (strncmp(buf, "NO_", 3) == 0) {
  626. neg = 1;
  627. cmp += 3;
  628. }
  629. for (i = 0; sched_feat_names[i]; i++) {
  630. int len = strlen(sched_feat_names[i]);
  631. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  632. if (neg)
  633. sysctl_sched_features &= ~(1UL << i);
  634. else
  635. sysctl_sched_features |= (1UL << i);
  636. break;
  637. }
  638. }
  639. if (!sched_feat_names[i])
  640. return -EINVAL;
  641. *ppos += cnt;
  642. return cnt;
  643. }
  644. static int sched_feat_open(struct inode *inode, struct file *filp)
  645. {
  646. return single_open(filp, sched_feat_show, NULL);
  647. }
  648. static const struct file_operations sched_feat_fops = {
  649. .open = sched_feat_open,
  650. .write = sched_feat_write,
  651. .read = seq_read,
  652. .llseek = seq_lseek,
  653. .release = single_release,
  654. };
  655. static __init int sched_init_debug(void)
  656. {
  657. debugfs_create_file("sched_features", 0644, NULL, NULL,
  658. &sched_feat_fops);
  659. return 0;
  660. }
  661. late_initcall(sched_init_debug);
  662. #endif
  663. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  664. /*
  665. * Number of tasks to iterate in a single balance run.
  666. * Limited because this is done with IRQs disabled.
  667. */
  668. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  669. /*
  670. * ratelimit for updating the group shares.
  671. * default: 0.25ms
  672. */
  673. unsigned int sysctl_sched_shares_ratelimit = 250000;
  674. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  675. /*
  676. * Inject some fuzzyness into changing the per-cpu group shares
  677. * this avoids remote rq-locks at the expense of fairness.
  678. * default: 4
  679. */
  680. unsigned int sysctl_sched_shares_thresh = 4;
  681. /*
  682. * period over which we average the RT time consumption, measured
  683. * in ms.
  684. *
  685. * default: 1s
  686. */
  687. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  688. /*
  689. * period over which we measure -rt task cpu usage in us.
  690. * default: 1s
  691. */
  692. unsigned int sysctl_sched_rt_period = 1000000;
  693. static __read_mostly int scheduler_running;
  694. /*
  695. * part of the period that we allow rt tasks to run in us.
  696. * default: 0.95s
  697. */
  698. int sysctl_sched_rt_runtime = 950000;
  699. static inline u64 global_rt_period(void)
  700. {
  701. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  702. }
  703. static inline u64 global_rt_runtime(void)
  704. {
  705. if (sysctl_sched_rt_runtime < 0)
  706. return RUNTIME_INF;
  707. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  708. }
  709. #ifndef prepare_arch_switch
  710. # define prepare_arch_switch(next) do { } while (0)
  711. #endif
  712. #ifndef finish_arch_switch
  713. # define finish_arch_switch(prev) do { } while (0)
  714. #endif
  715. static inline int task_current(struct rq *rq, struct task_struct *p)
  716. {
  717. return rq->curr == p;
  718. }
  719. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  720. static inline int task_running(struct rq *rq, struct task_struct *p)
  721. {
  722. return task_current(rq, p);
  723. }
  724. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  725. {
  726. }
  727. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  728. {
  729. #ifdef CONFIG_DEBUG_SPINLOCK
  730. /* this is a valid case when another task releases the spinlock */
  731. rq->lock.owner = current;
  732. #endif
  733. /*
  734. * If we are tracking spinlock dependencies then we have to
  735. * fix up the runqueue lock - which gets 'carried over' from
  736. * prev into current:
  737. */
  738. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  739. spin_unlock_irq(&rq->lock);
  740. }
  741. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  742. static inline int task_running(struct rq *rq, struct task_struct *p)
  743. {
  744. #ifdef CONFIG_SMP
  745. return p->oncpu;
  746. #else
  747. return task_current(rq, p);
  748. #endif
  749. }
  750. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  751. {
  752. #ifdef CONFIG_SMP
  753. /*
  754. * We can optimise this out completely for !SMP, because the
  755. * SMP rebalancing from interrupt is the only thing that cares
  756. * here.
  757. */
  758. next->oncpu = 1;
  759. #endif
  760. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  761. spin_unlock_irq(&rq->lock);
  762. #else
  763. spin_unlock(&rq->lock);
  764. #endif
  765. }
  766. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  767. {
  768. #ifdef CONFIG_SMP
  769. /*
  770. * After ->oncpu is cleared, the task can be moved to a different CPU.
  771. * We must ensure this doesn't happen until the switch is completely
  772. * finished.
  773. */
  774. smp_wmb();
  775. prev->oncpu = 0;
  776. #endif
  777. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  778. local_irq_enable();
  779. #endif
  780. }
  781. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  782. /*
  783. * __task_rq_lock - lock the runqueue a given task resides on.
  784. * Must be called interrupts disabled.
  785. */
  786. static inline struct rq *__task_rq_lock(struct task_struct *p)
  787. __acquires(rq->lock)
  788. {
  789. for (;;) {
  790. struct rq *rq = task_rq(p);
  791. spin_lock(&rq->lock);
  792. if (likely(rq == task_rq(p)))
  793. return rq;
  794. spin_unlock(&rq->lock);
  795. }
  796. }
  797. /*
  798. * task_rq_lock - lock the runqueue a given task resides on and disable
  799. * interrupts. Note the ordering: we can safely lookup the task_rq without
  800. * explicitly disabling preemption.
  801. */
  802. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  803. __acquires(rq->lock)
  804. {
  805. struct rq *rq;
  806. for (;;) {
  807. local_irq_save(*flags);
  808. rq = task_rq(p);
  809. spin_lock(&rq->lock);
  810. if (likely(rq == task_rq(p)))
  811. return rq;
  812. spin_unlock_irqrestore(&rq->lock, *flags);
  813. }
  814. }
  815. void task_rq_unlock_wait(struct task_struct *p)
  816. {
  817. struct rq *rq = task_rq(p);
  818. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  819. spin_unlock_wait(&rq->lock);
  820. }
  821. static void __task_rq_unlock(struct rq *rq)
  822. __releases(rq->lock)
  823. {
  824. spin_unlock(&rq->lock);
  825. }
  826. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  827. __releases(rq->lock)
  828. {
  829. spin_unlock_irqrestore(&rq->lock, *flags);
  830. }
  831. /*
  832. * this_rq_lock - lock this runqueue and disable interrupts.
  833. */
  834. static struct rq *this_rq_lock(void)
  835. __acquires(rq->lock)
  836. {
  837. struct rq *rq;
  838. local_irq_disable();
  839. rq = this_rq();
  840. spin_lock(&rq->lock);
  841. return rq;
  842. }
  843. #ifdef CONFIG_SCHED_HRTICK
  844. /*
  845. * Use HR-timers to deliver accurate preemption points.
  846. *
  847. * Its all a bit involved since we cannot program an hrt while holding the
  848. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  849. * reschedule event.
  850. *
  851. * When we get rescheduled we reprogram the hrtick_timer outside of the
  852. * rq->lock.
  853. */
  854. /*
  855. * Use hrtick when:
  856. * - enabled by features
  857. * - hrtimer is actually high res
  858. */
  859. static inline int hrtick_enabled(struct rq *rq)
  860. {
  861. if (!sched_feat(HRTICK))
  862. return 0;
  863. if (!cpu_active(cpu_of(rq)))
  864. return 0;
  865. return hrtimer_is_hres_active(&rq->hrtick_timer);
  866. }
  867. static void hrtick_clear(struct rq *rq)
  868. {
  869. if (hrtimer_active(&rq->hrtick_timer))
  870. hrtimer_cancel(&rq->hrtick_timer);
  871. }
  872. /*
  873. * High-resolution timer tick.
  874. * Runs from hardirq context with interrupts disabled.
  875. */
  876. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  877. {
  878. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  879. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  880. spin_lock(&rq->lock);
  881. update_rq_clock(rq);
  882. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  883. spin_unlock(&rq->lock);
  884. return HRTIMER_NORESTART;
  885. }
  886. #ifdef CONFIG_SMP
  887. /*
  888. * called from hardirq (IPI) context
  889. */
  890. static void __hrtick_start(void *arg)
  891. {
  892. struct rq *rq = arg;
  893. spin_lock(&rq->lock);
  894. hrtimer_restart(&rq->hrtick_timer);
  895. rq->hrtick_csd_pending = 0;
  896. spin_unlock(&rq->lock);
  897. }
  898. /*
  899. * Called to set the hrtick timer state.
  900. *
  901. * called with rq->lock held and irqs disabled
  902. */
  903. static void hrtick_start(struct rq *rq, u64 delay)
  904. {
  905. struct hrtimer *timer = &rq->hrtick_timer;
  906. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  907. hrtimer_set_expires(timer, time);
  908. if (rq == this_rq()) {
  909. hrtimer_restart(timer);
  910. } else if (!rq->hrtick_csd_pending) {
  911. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  912. rq->hrtick_csd_pending = 1;
  913. }
  914. }
  915. static int
  916. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  917. {
  918. int cpu = (int)(long)hcpu;
  919. switch (action) {
  920. case CPU_UP_CANCELED:
  921. case CPU_UP_CANCELED_FROZEN:
  922. case CPU_DOWN_PREPARE:
  923. case CPU_DOWN_PREPARE_FROZEN:
  924. case CPU_DEAD:
  925. case CPU_DEAD_FROZEN:
  926. hrtick_clear(cpu_rq(cpu));
  927. return NOTIFY_OK;
  928. }
  929. return NOTIFY_DONE;
  930. }
  931. static __init void init_hrtick(void)
  932. {
  933. hotcpu_notifier(hotplug_hrtick, 0);
  934. }
  935. #else
  936. /*
  937. * Called to set the hrtick timer state.
  938. *
  939. * called with rq->lock held and irqs disabled
  940. */
  941. static void hrtick_start(struct rq *rq, u64 delay)
  942. {
  943. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  944. HRTIMER_MODE_REL_PINNED, 0);
  945. }
  946. static inline void init_hrtick(void)
  947. {
  948. }
  949. #endif /* CONFIG_SMP */
  950. static void init_rq_hrtick(struct rq *rq)
  951. {
  952. #ifdef CONFIG_SMP
  953. rq->hrtick_csd_pending = 0;
  954. rq->hrtick_csd.flags = 0;
  955. rq->hrtick_csd.func = __hrtick_start;
  956. rq->hrtick_csd.info = rq;
  957. #endif
  958. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  959. rq->hrtick_timer.function = hrtick;
  960. }
  961. #else /* CONFIG_SCHED_HRTICK */
  962. static inline void hrtick_clear(struct rq *rq)
  963. {
  964. }
  965. static inline void init_rq_hrtick(struct rq *rq)
  966. {
  967. }
  968. static inline void init_hrtick(void)
  969. {
  970. }
  971. #endif /* CONFIG_SCHED_HRTICK */
  972. /*
  973. * resched_task - mark a task 'to be rescheduled now'.
  974. *
  975. * On UP this means the setting of the need_resched flag, on SMP it
  976. * might also involve a cross-CPU call to trigger the scheduler on
  977. * the target CPU.
  978. */
  979. #ifdef CONFIG_SMP
  980. #ifndef tsk_is_polling
  981. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  982. #endif
  983. static void resched_task(struct task_struct *p)
  984. {
  985. int cpu;
  986. assert_spin_locked(&task_rq(p)->lock);
  987. if (test_tsk_need_resched(p))
  988. return;
  989. set_tsk_need_resched(p);
  990. cpu = task_cpu(p);
  991. if (cpu == smp_processor_id())
  992. return;
  993. /* NEED_RESCHED must be visible before we test polling */
  994. smp_mb();
  995. if (!tsk_is_polling(p))
  996. smp_send_reschedule(cpu);
  997. }
  998. static void resched_cpu(int cpu)
  999. {
  1000. struct rq *rq = cpu_rq(cpu);
  1001. unsigned long flags;
  1002. if (!spin_trylock_irqsave(&rq->lock, flags))
  1003. return;
  1004. resched_task(cpu_curr(cpu));
  1005. spin_unlock_irqrestore(&rq->lock, flags);
  1006. }
  1007. #ifdef CONFIG_NO_HZ
  1008. /*
  1009. * When add_timer_on() enqueues a timer into the timer wheel of an
  1010. * idle CPU then this timer might expire before the next timer event
  1011. * which is scheduled to wake up that CPU. In case of a completely
  1012. * idle system the next event might even be infinite time into the
  1013. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1014. * leaves the inner idle loop so the newly added timer is taken into
  1015. * account when the CPU goes back to idle and evaluates the timer
  1016. * wheel for the next timer event.
  1017. */
  1018. void wake_up_idle_cpu(int cpu)
  1019. {
  1020. struct rq *rq = cpu_rq(cpu);
  1021. if (cpu == smp_processor_id())
  1022. return;
  1023. /*
  1024. * This is safe, as this function is called with the timer
  1025. * wheel base lock of (cpu) held. When the CPU is on the way
  1026. * to idle and has not yet set rq->curr to idle then it will
  1027. * be serialized on the timer wheel base lock and take the new
  1028. * timer into account automatically.
  1029. */
  1030. if (rq->curr != rq->idle)
  1031. return;
  1032. /*
  1033. * We can set TIF_RESCHED on the idle task of the other CPU
  1034. * lockless. The worst case is that the other CPU runs the
  1035. * idle task through an additional NOOP schedule()
  1036. */
  1037. set_tsk_need_resched(rq->idle);
  1038. /* NEED_RESCHED must be visible before we test polling */
  1039. smp_mb();
  1040. if (!tsk_is_polling(rq->idle))
  1041. smp_send_reschedule(cpu);
  1042. }
  1043. #endif /* CONFIG_NO_HZ */
  1044. static u64 sched_avg_period(void)
  1045. {
  1046. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1047. }
  1048. static void sched_avg_update(struct rq *rq)
  1049. {
  1050. s64 period = sched_avg_period();
  1051. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1052. rq->age_stamp += period;
  1053. rq->rt_avg /= 2;
  1054. }
  1055. }
  1056. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1057. {
  1058. rq->rt_avg += rt_delta;
  1059. sched_avg_update(rq);
  1060. }
  1061. #else /* !CONFIG_SMP */
  1062. static void resched_task(struct task_struct *p)
  1063. {
  1064. assert_spin_locked(&task_rq(p)->lock);
  1065. set_tsk_need_resched(p);
  1066. }
  1067. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1068. {
  1069. }
  1070. #endif /* CONFIG_SMP */
  1071. #if BITS_PER_LONG == 32
  1072. # define WMULT_CONST (~0UL)
  1073. #else
  1074. # define WMULT_CONST (1UL << 32)
  1075. #endif
  1076. #define WMULT_SHIFT 32
  1077. /*
  1078. * Shift right and round:
  1079. */
  1080. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1081. /*
  1082. * delta *= weight / lw
  1083. */
  1084. static unsigned long
  1085. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1086. struct load_weight *lw)
  1087. {
  1088. u64 tmp;
  1089. if (!lw->inv_weight) {
  1090. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1091. lw->inv_weight = 1;
  1092. else
  1093. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1094. / (lw->weight+1);
  1095. }
  1096. tmp = (u64)delta_exec * weight;
  1097. /*
  1098. * Check whether we'd overflow the 64-bit multiplication:
  1099. */
  1100. if (unlikely(tmp > WMULT_CONST))
  1101. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1102. WMULT_SHIFT/2);
  1103. else
  1104. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1105. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1106. }
  1107. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1108. {
  1109. lw->weight += inc;
  1110. lw->inv_weight = 0;
  1111. }
  1112. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1113. {
  1114. lw->weight -= dec;
  1115. lw->inv_weight = 0;
  1116. }
  1117. /*
  1118. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1119. * of tasks with abnormal "nice" values across CPUs the contribution that
  1120. * each task makes to its run queue's load is weighted according to its
  1121. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1122. * scaled version of the new time slice allocation that they receive on time
  1123. * slice expiry etc.
  1124. */
  1125. #define WEIGHT_IDLEPRIO 3
  1126. #define WMULT_IDLEPRIO 1431655765
  1127. /*
  1128. * Nice levels are multiplicative, with a gentle 10% change for every
  1129. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1130. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1131. * that remained on nice 0.
  1132. *
  1133. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1134. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1135. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1136. * If a task goes up by ~10% and another task goes down by ~10% then
  1137. * the relative distance between them is ~25%.)
  1138. */
  1139. static const int prio_to_weight[40] = {
  1140. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1141. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1142. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1143. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1144. /* 0 */ 1024, 820, 655, 526, 423,
  1145. /* 5 */ 335, 272, 215, 172, 137,
  1146. /* 10 */ 110, 87, 70, 56, 45,
  1147. /* 15 */ 36, 29, 23, 18, 15,
  1148. };
  1149. /*
  1150. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1151. *
  1152. * In cases where the weight does not change often, we can use the
  1153. * precalculated inverse to speed up arithmetics by turning divisions
  1154. * into multiplications:
  1155. */
  1156. static const u32 prio_to_wmult[40] = {
  1157. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1158. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1159. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1160. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1161. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1162. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1163. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1164. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1165. };
  1166. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1167. /*
  1168. * runqueue iterator, to support SMP load-balancing between different
  1169. * scheduling classes, without having to expose their internal data
  1170. * structures to the load-balancing proper:
  1171. */
  1172. struct rq_iterator {
  1173. void *arg;
  1174. struct task_struct *(*start)(void *);
  1175. struct task_struct *(*next)(void *);
  1176. };
  1177. #ifdef CONFIG_SMP
  1178. static unsigned long
  1179. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1180. unsigned long max_load_move, struct sched_domain *sd,
  1181. enum cpu_idle_type idle, int *all_pinned,
  1182. int *this_best_prio, struct rq_iterator *iterator);
  1183. static int
  1184. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1185. struct sched_domain *sd, enum cpu_idle_type idle,
  1186. struct rq_iterator *iterator);
  1187. #endif
  1188. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1189. enum cpuacct_stat_index {
  1190. CPUACCT_STAT_USER, /* ... user mode */
  1191. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1192. CPUACCT_STAT_NSTATS,
  1193. };
  1194. #ifdef CONFIG_CGROUP_CPUACCT
  1195. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1196. static void cpuacct_update_stats(struct task_struct *tsk,
  1197. enum cpuacct_stat_index idx, cputime_t val);
  1198. #else
  1199. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1200. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1201. enum cpuacct_stat_index idx, cputime_t val) {}
  1202. #endif
  1203. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1204. {
  1205. update_load_add(&rq->load, load);
  1206. }
  1207. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1208. {
  1209. update_load_sub(&rq->load, load);
  1210. }
  1211. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1212. typedef int (*tg_visitor)(struct task_group *, void *);
  1213. /*
  1214. * Iterate the full tree, calling @down when first entering a node and @up when
  1215. * leaving it for the final time.
  1216. */
  1217. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1218. {
  1219. struct task_group *parent, *child;
  1220. int ret;
  1221. rcu_read_lock();
  1222. parent = &root_task_group;
  1223. down:
  1224. ret = (*down)(parent, data);
  1225. if (ret)
  1226. goto out_unlock;
  1227. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1228. parent = child;
  1229. goto down;
  1230. up:
  1231. continue;
  1232. }
  1233. ret = (*up)(parent, data);
  1234. if (ret)
  1235. goto out_unlock;
  1236. child = parent;
  1237. parent = parent->parent;
  1238. if (parent)
  1239. goto up;
  1240. out_unlock:
  1241. rcu_read_unlock();
  1242. return ret;
  1243. }
  1244. static int tg_nop(struct task_group *tg, void *data)
  1245. {
  1246. return 0;
  1247. }
  1248. #endif
  1249. #ifdef CONFIG_SMP
  1250. /* Used instead of source_load when we know the type == 0 */
  1251. static unsigned long weighted_cpuload(const int cpu)
  1252. {
  1253. return cpu_rq(cpu)->load.weight;
  1254. }
  1255. /*
  1256. * Return a low guess at the load of a migration-source cpu weighted
  1257. * according to the scheduling class and "nice" value.
  1258. *
  1259. * We want to under-estimate the load of migration sources, to
  1260. * balance conservatively.
  1261. */
  1262. static unsigned long source_load(int cpu, int type)
  1263. {
  1264. struct rq *rq = cpu_rq(cpu);
  1265. unsigned long total = weighted_cpuload(cpu);
  1266. if (type == 0 || !sched_feat(LB_BIAS))
  1267. return total;
  1268. return min(rq->cpu_load[type-1], total);
  1269. }
  1270. /*
  1271. * Return a high guess at the load of a migration-target cpu weighted
  1272. * according to the scheduling class and "nice" value.
  1273. */
  1274. static unsigned long target_load(int cpu, int type)
  1275. {
  1276. struct rq *rq = cpu_rq(cpu);
  1277. unsigned long total = weighted_cpuload(cpu);
  1278. if (type == 0 || !sched_feat(LB_BIAS))
  1279. return total;
  1280. return max(rq->cpu_load[type-1], total);
  1281. }
  1282. static struct sched_group *group_of(int cpu)
  1283. {
  1284. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1285. if (!sd)
  1286. return NULL;
  1287. return sd->groups;
  1288. }
  1289. static unsigned long power_of(int cpu)
  1290. {
  1291. struct sched_group *group = group_of(cpu);
  1292. if (!group)
  1293. return SCHED_LOAD_SCALE;
  1294. return group->cpu_power;
  1295. }
  1296. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1297. static unsigned long cpu_avg_load_per_task(int cpu)
  1298. {
  1299. struct rq *rq = cpu_rq(cpu);
  1300. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1301. if (nr_running)
  1302. rq->avg_load_per_task = rq->load.weight / nr_running;
  1303. else
  1304. rq->avg_load_per_task = 0;
  1305. return rq->avg_load_per_task;
  1306. }
  1307. #ifdef CONFIG_FAIR_GROUP_SCHED
  1308. static __read_mostly unsigned long *update_shares_data;
  1309. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1310. /*
  1311. * Calculate and set the cpu's group shares.
  1312. */
  1313. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1314. unsigned long sd_shares,
  1315. unsigned long sd_rq_weight,
  1316. unsigned long *usd_rq_weight)
  1317. {
  1318. unsigned long shares, rq_weight;
  1319. int boost = 0;
  1320. rq_weight = usd_rq_weight[cpu];
  1321. if (!rq_weight) {
  1322. boost = 1;
  1323. rq_weight = NICE_0_LOAD;
  1324. }
  1325. /*
  1326. * \Sum_j shares_j * rq_weight_i
  1327. * shares_i = -----------------------------
  1328. * \Sum_j rq_weight_j
  1329. */
  1330. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1331. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1332. if (abs(shares - tg->se[cpu]->load.weight) >
  1333. sysctl_sched_shares_thresh) {
  1334. struct rq *rq = cpu_rq(cpu);
  1335. unsigned long flags;
  1336. spin_lock_irqsave(&rq->lock, flags);
  1337. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1338. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1339. __set_se_shares(tg->se[cpu], shares);
  1340. spin_unlock_irqrestore(&rq->lock, flags);
  1341. }
  1342. }
  1343. /*
  1344. * Re-compute the task group their per cpu shares over the given domain.
  1345. * This needs to be done in a bottom-up fashion because the rq weight of a
  1346. * parent group depends on the shares of its child groups.
  1347. */
  1348. static int tg_shares_up(struct task_group *tg, void *data)
  1349. {
  1350. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1351. unsigned long *usd_rq_weight;
  1352. struct sched_domain *sd = data;
  1353. unsigned long flags;
  1354. int i;
  1355. if (!tg->se[0])
  1356. return 0;
  1357. local_irq_save(flags);
  1358. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1359. for_each_cpu(i, sched_domain_span(sd)) {
  1360. weight = tg->cfs_rq[i]->load.weight;
  1361. usd_rq_weight[i] = weight;
  1362. rq_weight += weight;
  1363. /*
  1364. * If there are currently no tasks on the cpu pretend there
  1365. * is one of average load so that when a new task gets to
  1366. * run here it will not get delayed by group starvation.
  1367. */
  1368. if (!weight)
  1369. weight = NICE_0_LOAD;
  1370. sum_weight += weight;
  1371. shares += tg->cfs_rq[i]->shares;
  1372. }
  1373. if (!rq_weight)
  1374. rq_weight = sum_weight;
  1375. if ((!shares && rq_weight) || shares > tg->shares)
  1376. shares = tg->shares;
  1377. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1378. shares = tg->shares;
  1379. for_each_cpu(i, sched_domain_span(sd))
  1380. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1381. local_irq_restore(flags);
  1382. return 0;
  1383. }
  1384. /*
  1385. * Compute the cpu's hierarchical load factor for each task group.
  1386. * This needs to be done in a top-down fashion because the load of a child
  1387. * group is a fraction of its parents load.
  1388. */
  1389. static int tg_load_down(struct task_group *tg, void *data)
  1390. {
  1391. unsigned long load;
  1392. long cpu = (long)data;
  1393. if (!tg->parent) {
  1394. load = cpu_rq(cpu)->load.weight;
  1395. } else {
  1396. load = tg->parent->cfs_rq[cpu]->h_load;
  1397. load *= tg->cfs_rq[cpu]->shares;
  1398. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1399. }
  1400. tg->cfs_rq[cpu]->h_load = load;
  1401. return 0;
  1402. }
  1403. static void update_shares(struct sched_domain *sd)
  1404. {
  1405. s64 elapsed;
  1406. u64 now;
  1407. if (root_task_group_empty())
  1408. return;
  1409. now = cpu_clock(raw_smp_processor_id());
  1410. elapsed = now - sd->last_update;
  1411. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1412. sd->last_update = now;
  1413. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1414. }
  1415. }
  1416. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1417. {
  1418. if (root_task_group_empty())
  1419. return;
  1420. spin_unlock(&rq->lock);
  1421. update_shares(sd);
  1422. spin_lock(&rq->lock);
  1423. }
  1424. static void update_h_load(long cpu)
  1425. {
  1426. if (root_task_group_empty())
  1427. return;
  1428. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1429. }
  1430. #else
  1431. static inline void update_shares(struct sched_domain *sd)
  1432. {
  1433. }
  1434. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1435. {
  1436. }
  1437. #endif
  1438. #ifdef CONFIG_PREEMPT
  1439. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1440. /*
  1441. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1442. * way at the expense of forcing extra atomic operations in all
  1443. * invocations. This assures that the double_lock is acquired using the
  1444. * same underlying policy as the spinlock_t on this architecture, which
  1445. * reduces latency compared to the unfair variant below. However, it
  1446. * also adds more overhead and therefore may reduce throughput.
  1447. */
  1448. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1449. __releases(this_rq->lock)
  1450. __acquires(busiest->lock)
  1451. __acquires(this_rq->lock)
  1452. {
  1453. spin_unlock(&this_rq->lock);
  1454. double_rq_lock(this_rq, busiest);
  1455. return 1;
  1456. }
  1457. #else
  1458. /*
  1459. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1460. * latency by eliminating extra atomic operations when the locks are
  1461. * already in proper order on entry. This favors lower cpu-ids and will
  1462. * grant the double lock to lower cpus over higher ids under contention,
  1463. * regardless of entry order into the function.
  1464. */
  1465. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1466. __releases(this_rq->lock)
  1467. __acquires(busiest->lock)
  1468. __acquires(this_rq->lock)
  1469. {
  1470. int ret = 0;
  1471. if (unlikely(!spin_trylock(&busiest->lock))) {
  1472. if (busiest < this_rq) {
  1473. spin_unlock(&this_rq->lock);
  1474. spin_lock(&busiest->lock);
  1475. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1476. ret = 1;
  1477. } else
  1478. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1479. }
  1480. return ret;
  1481. }
  1482. #endif /* CONFIG_PREEMPT */
  1483. /*
  1484. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1485. */
  1486. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1487. {
  1488. if (unlikely(!irqs_disabled())) {
  1489. /* printk() doesn't work good under rq->lock */
  1490. spin_unlock(&this_rq->lock);
  1491. BUG_ON(1);
  1492. }
  1493. return _double_lock_balance(this_rq, busiest);
  1494. }
  1495. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1496. __releases(busiest->lock)
  1497. {
  1498. spin_unlock(&busiest->lock);
  1499. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1500. }
  1501. #endif
  1502. #ifdef CONFIG_FAIR_GROUP_SCHED
  1503. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1504. {
  1505. #ifdef CONFIG_SMP
  1506. cfs_rq->shares = shares;
  1507. #endif
  1508. }
  1509. #endif
  1510. static void calc_load_account_active(struct rq *this_rq);
  1511. static void update_sysctl(void);
  1512. static int get_update_sysctl_factor(void);
  1513. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1514. {
  1515. set_task_rq(p, cpu);
  1516. #ifdef CONFIG_SMP
  1517. /*
  1518. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1519. * successfuly executed on another CPU. We must ensure that updates of
  1520. * per-task data have been completed by this moment.
  1521. */
  1522. smp_wmb();
  1523. task_thread_info(p)->cpu = cpu;
  1524. #endif
  1525. }
  1526. #include "sched_stats.h"
  1527. #include "sched_idletask.c"
  1528. #include "sched_fair.c"
  1529. #include "sched_rt.c"
  1530. #ifdef CONFIG_SCHED_DEBUG
  1531. # include "sched_debug.c"
  1532. #endif
  1533. #define sched_class_highest (&rt_sched_class)
  1534. #define for_each_class(class) \
  1535. for (class = sched_class_highest; class; class = class->next)
  1536. static void inc_nr_running(struct rq *rq)
  1537. {
  1538. rq->nr_running++;
  1539. }
  1540. static void dec_nr_running(struct rq *rq)
  1541. {
  1542. rq->nr_running--;
  1543. }
  1544. static void set_load_weight(struct task_struct *p)
  1545. {
  1546. if (task_has_rt_policy(p)) {
  1547. p->se.load.weight = prio_to_weight[0] * 2;
  1548. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1549. return;
  1550. }
  1551. /*
  1552. * SCHED_IDLE tasks get minimal weight:
  1553. */
  1554. if (p->policy == SCHED_IDLE) {
  1555. p->se.load.weight = WEIGHT_IDLEPRIO;
  1556. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1557. return;
  1558. }
  1559. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1560. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1561. }
  1562. static void update_avg(u64 *avg, u64 sample)
  1563. {
  1564. s64 diff = sample - *avg;
  1565. *avg += diff >> 3;
  1566. }
  1567. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1568. {
  1569. if (wakeup)
  1570. p->se.start_runtime = p->se.sum_exec_runtime;
  1571. sched_info_queued(p);
  1572. p->sched_class->enqueue_task(rq, p, wakeup);
  1573. p->se.on_rq = 1;
  1574. }
  1575. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1576. {
  1577. if (sleep) {
  1578. if (p->se.last_wakeup) {
  1579. update_avg(&p->se.avg_overlap,
  1580. p->se.sum_exec_runtime - p->se.last_wakeup);
  1581. p->se.last_wakeup = 0;
  1582. } else {
  1583. update_avg(&p->se.avg_wakeup,
  1584. sysctl_sched_wakeup_granularity);
  1585. }
  1586. }
  1587. sched_info_dequeued(p);
  1588. p->sched_class->dequeue_task(rq, p, sleep);
  1589. p->se.on_rq = 0;
  1590. }
  1591. /*
  1592. * __normal_prio - return the priority that is based on the static prio
  1593. */
  1594. static inline int __normal_prio(struct task_struct *p)
  1595. {
  1596. return p->static_prio;
  1597. }
  1598. /*
  1599. * Calculate the expected normal priority: i.e. priority
  1600. * without taking RT-inheritance into account. Might be
  1601. * boosted by interactivity modifiers. Changes upon fork,
  1602. * setprio syscalls, and whenever the interactivity
  1603. * estimator recalculates.
  1604. */
  1605. static inline int normal_prio(struct task_struct *p)
  1606. {
  1607. int prio;
  1608. if (task_has_rt_policy(p))
  1609. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1610. else
  1611. prio = __normal_prio(p);
  1612. return prio;
  1613. }
  1614. /*
  1615. * Calculate the current priority, i.e. the priority
  1616. * taken into account by the scheduler. This value might
  1617. * be boosted by RT tasks, or might be boosted by
  1618. * interactivity modifiers. Will be RT if the task got
  1619. * RT-boosted. If not then it returns p->normal_prio.
  1620. */
  1621. static int effective_prio(struct task_struct *p)
  1622. {
  1623. p->normal_prio = normal_prio(p);
  1624. /*
  1625. * If we are RT tasks or we were boosted to RT priority,
  1626. * keep the priority unchanged. Otherwise, update priority
  1627. * to the normal priority:
  1628. */
  1629. if (!rt_prio(p->prio))
  1630. return p->normal_prio;
  1631. return p->prio;
  1632. }
  1633. /*
  1634. * activate_task - move a task to the runqueue.
  1635. */
  1636. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1637. {
  1638. if (task_contributes_to_load(p))
  1639. rq->nr_uninterruptible--;
  1640. enqueue_task(rq, p, wakeup);
  1641. inc_nr_running(rq);
  1642. }
  1643. /*
  1644. * deactivate_task - remove a task from the runqueue.
  1645. */
  1646. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1647. {
  1648. if (task_contributes_to_load(p))
  1649. rq->nr_uninterruptible++;
  1650. dequeue_task(rq, p, sleep);
  1651. dec_nr_running(rq);
  1652. }
  1653. /**
  1654. * task_curr - is this task currently executing on a CPU?
  1655. * @p: the task in question.
  1656. */
  1657. inline int task_curr(const struct task_struct *p)
  1658. {
  1659. return cpu_curr(task_cpu(p)) == p;
  1660. }
  1661. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1662. const struct sched_class *prev_class,
  1663. int oldprio, int running)
  1664. {
  1665. if (prev_class != p->sched_class) {
  1666. if (prev_class->switched_from)
  1667. prev_class->switched_from(rq, p, running);
  1668. p->sched_class->switched_to(rq, p, running);
  1669. } else
  1670. p->sched_class->prio_changed(rq, p, oldprio, running);
  1671. }
  1672. /**
  1673. * kthread_bind - bind a just-created kthread to a cpu.
  1674. * @p: thread created by kthread_create().
  1675. * @cpu: cpu (might not be online, must be possible) for @k to run on.
  1676. *
  1677. * Description: This function is equivalent to set_cpus_allowed(),
  1678. * except that @cpu doesn't need to be online, and the thread must be
  1679. * stopped (i.e., just returned from kthread_create()).
  1680. *
  1681. * Function lives here instead of kthread.c because it messes with
  1682. * scheduler internals which require locking.
  1683. */
  1684. void kthread_bind(struct task_struct *p, unsigned int cpu)
  1685. {
  1686. struct rq *rq = cpu_rq(cpu);
  1687. unsigned long flags;
  1688. /* Must have done schedule() in kthread() before we set_task_cpu */
  1689. if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
  1690. WARN_ON(1);
  1691. return;
  1692. }
  1693. spin_lock_irqsave(&rq->lock, flags);
  1694. update_rq_clock(rq);
  1695. set_task_cpu(p, cpu);
  1696. p->cpus_allowed = cpumask_of_cpu(cpu);
  1697. p->rt.nr_cpus_allowed = 1;
  1698. p->flags |= PF_THREAD_BOUND;
  1699. spin_unlock_irqrestore(&rq->lock, flags);
  1700. }
  1701. EXPORT_SYMBOL(kthread_bind);
  1702. #ifdef CONFIG_SMP
  1703. /*
  1704. * Is this task likely cache-hot:
  1705. */
  1706. static int
  1707. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1708. {
  1709. s64 delta;
  1710. /*
  1711. * Buddy candidates are cache hot:
  1712. */
  1713. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1714. (&p->se == cfs_rq_of(&p->se)->next ||
  1715. &p->se == cfs_rq_of(&p->se)->last))
  1716. return 1;
  1717. if (p->sched_class != &fair_sched_class)
  1718. return 0;
  1719. if (sysctl_sched_migration_cost == -1)
  1720. return 1;
  1721. if (sysctl_sched_migration_cost == 0)
  1722. return 0;
  1723. delta = now - p->se.exec_start;
  1724. return delta < (s64)sysctl_sched_migration_cost;
  1725. }
  1726. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1727. {
  1728. int old_cpu = task_cpu(p);
  1729. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1730. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1731. trace_sched_migrate_task(p, new_cpu);
  1732. if (old_cpu != new_cpu) {
  1733. p->se.nr_migrations++;
  1734. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1735. 1, 1, NULL, 0);
  1736. }
  1737. p->se.vruntime -= old_cfsrq->min_vruntime -
  1738. new_cfsrq->min_vruntime;
  1739. __set_task_cpu(p, new_cpu);
  1740. }
  1741. struct migration_req {
  1742. struct list_head list;
  1743. struct task_struct *task;
  1744. int dest_cpu;
  1745. struct completion done;
  1746. };
  1747. /*
  1748. * The task's runqueue lock must be held.
  1749. * Returns true if you have to wait for migration thread.
  1750. */
  1751. static int
  1752. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1753. {
  1754. struct rq *rq = task_rq(p);
  1755. /*
  1756. * If the task is not on a runqueue (and not running), then
  1757. * it is sufficient to simply update the task's cpu field.
  1758. */
  1759. if (!p->se.on_rq && !task_running(rq, p)) {
  1760. update_rq_clock(rq);
  1761. set_task_cpu(p, dest_cpu);
  1762. return 0;
  1763. }
  1764. init_completion(&req->done);
  1765. req->task = p;
  1766. req->dest_cpu = dest_cpu;
  1767. list_add(&req->list, &rq->migration_queue);
  1768. return 1;
  1769. }
  1770. /*
  1771. * wait_task_context_switch - wait for a thread to complete at least one
  1772. * context switch.
  1773. *
  1774. * @p must not be current.
  1775. */
  1776. void wait_task_context_switch(struct task_struct *p)
  1777. {
  1778. unsigned long nvcsw, nivcsw, flags;
  1779. int running;
  1780. struct rq *rq;
  1781. nvcsw = p->nvcsw;
  1782. nivcsw = p->nivcsw;
  1783. for (;;) {
  1784. /*
  1785. * The runqueue is assigned before the actual context
  1786. * switch. We need to take the runqueue lock.
  1787. *
  1788. * We could check initially without the lock but it is
  1789. * very likely that we need to take the lock in every
  1790. * iteration.
  1791. */
  1792. rq = task_rq_lock(p, &flags);
  1793. running = task_running(rq, p);
  1794. task_rq_unlock(rq, &flags);
  1795. if (likely(!running))
  1796. break;
  1797. /*
  1798. * The switch count is incremented before the actual
  1799. * context switch. We thus wait for two switches to be
  1800. * sure at least one completed.
  1801. */
  1802. if ((p->nvcsw - nvcsw) > 1)
  1803. break;
  1804. if ((p->nivcsw - nivcsw) > 1)
  1805. break;
  1806. cpu_relax();
  1807. }
  1808. }
  1809. /*
  1810. * wait_task_inactive - wait for a thread to unschedule.
  1811. *
  1812. * If @match_state is nonzero, it's the @p->state value just checked and
  1813. * not expected to change. If it changes, i.e. @p might have woken up,
  1814. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1815. * we return a positive number (its total switch count). If a second call
  1816. * a short while later returns the same number, the caller can be sure that
  1817. * @p has remained unscheduled the whole time.
  1818. *
  1819. * The caller must ensure that the task *will* unschedule sometime soon,
  1820. * else this function might spin for a *long* time. This function can't
  1821. * be called with interrupts off, or it may introduce deadlock with
  1822. * smp_call_function() if an IPI is sent by the same process we are
  1823. * waiting to become inactive.
  1824. */
  1825. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1826. {
  1827. unsigned long flags;
  1828. int running, on_rq;
  1829. unsigned long ncsw;
  1830. struct rq *rq;
  1831. for (;;) {
  1832. /*
  1833. * We do the initial early heuristics without holding
  1834. * any task-queue locks at all. We'll only try to get
  1835. * the runqueue lock when things look like they will
  1836. * work out!
  1837. */
  1838. rq = task_rq(p);
  1839. /*
  1840. * If the task is actively running on another CPU
  1841. * still, just relax and busy-wait without holding
  1842. * any locks.
  1843. *
  1844. * NOTE! Since we don't hold any locks, it's not
  1845. * even sure that "rq" stays as the right runqueue!
  1846. * But we don't care, since "task_running()" will
  1847. * return false if the runqueue has changed and p
  1848. * is actually now running somewhere else!
  1849. */
  1850. while (task_running(rq, p)) {
  1851. if (match_state && unlikely(p->state != match_state))
  1852. return 0;
  1853. cpu_relax();
  1854. }
  1855. /*
  1856. * Ok, time to look more closely! We need the rq
  1857. * lock now, to be *sure*. If we're wrong, we'll
  1858. * just go back and repeat.
  1859. */
  1860. rq = task_rq_lock(p, &flags);
  1861. trace_sched_wait_task(rq, p);
  1862. running = task_running(rq, p);
  1863. on_rq = p->se.on_rq;
  1864. ncsw = 0;
  1865. if (!match_state || p->state == match_state)
  1866. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1867. task_rq_unlock(rq, &flags);
  1868. /*
  1869. * If it changed from the expected state, bail out now.
  1870. */
  1871. if (unlikely(!ncsw))
  1872. break;
  1873. /*
  1874. * Was it really running after all now that we
  1875. * checked with the proper locks actually held?
  1876. *
  1877. * Oops. Go back and try again..
  1878. */
  1879. if (unlikely(running)) {
  1880. cpu_relax();
  1881. continue;
  1882. }
  1883. /*
  1884. * It's not enough that it's not actively running,
  1885. * it must be off the runqueue _entirely_, and not
  1886. * preempted!
  1887. *
  1888. * So if it was still runnable (but just not actively
  1889. * running right now), it's preempted, and we should
  1890. * yield - it could be a while.
  1891. */
  1892. if (unlikely(on_rq)) {
  1893. schedule_timeout_uninterruptible(1);
  1894. continue;
  1895. }
  1896. /*
  1897. * Ahh, all good. It wasn't running, and it wasn't
  1898. * runnable, which means that it will never become
  1899. * running in the future either. We're all done!
  1900. */
  1901. break;
  1902. }
  1903. return ncsw;
  1904. }
  1905. /***
  1906. * kick_process - kick a running thread to enter/exit the kernel
  1907. * @p: the to-be-kicked thread
  1908. *
  1909. * Cause a process which is running on another CPU to enter
  1910. * kernel-mode, without any delay. (to get signals handled.)
  1911. *
  1912. * NOTE: this function doesnt have to take the runqueue lock,
  1913. * because all it wants to ensure is that the remote task enters
  1914. * the kernel. If the IPI races and the task has been migrated
  1915. * to another CPU then no harm is done and the purpose has been
  1916. * achieved as well.
  1917. */
  1918. void kick_process(struct task_struct *p)
  1919. {
  1920. int cpu;
  1921. preempt_disable();
  1922. cpu = task_cpu(p);
  1923. if ((cpu != smp_processor_id()) && task_curr(p))
  1924. smp_send_reschedule(cpu);
  1925. preempt_enable();
  1926. }
  1927. EXPORT_SYMBOL_GPL(kick_process);
  1928. #endif /* CONFIG_SMP */
  1929. /**
  1930. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1931. * @p: the task to evaluate
  1932. * @func: the function to be called
  1933. * @info: the function call argument
  1934. *
  1935. * Calls the function @func when the task is currently running. This might
  1936. * be on the current CPU, which just calls the function directly
  1937. */
  1938. void task_oncpu_function_call(struct task_struct *p,
  1939. void (*func) (void *info), void *info)
  1940. {
  1941. int cpu;
  1942. preempt_disable();
  1943. cpu = task_cpu(p);
  1944. if (task_curr(p))
  1945. smp_call_function_single(cpu, func, info, 1);
  1946. preempt_enable();
  1947. }
  1948. #ifdef CONFIG_SMP
  1949. static inline
  1950. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1951. {
  1952. return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1953. }
  1954. #endif
  1955. /***
  1956. * try_to_wake_up - wake up a thread
  1957. * @p: the to-be-woken-up thread
  1958. * @state: the mask of task states that can be woken
  1959. * @sync: do a synchronous wakeup?
  1960. *
  1961. * Put it on the run-queue if it's not already there. The "current"
  1962. * thread is always on the run-queue (except when the actual
  1963. * re-schedule is in progress), and as such you're allowed to do
  1964. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1965. * runnable without the overhead of this.
  1966. *
  1967. * returns failure only if the task is already active.
  1968. */
  1969. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1970. int wake_flags)
  1971. {
  1972. int cpu, orig_cpu, this_cpu, success = 0;
  1973. unsigned long flags;
  1974. struct rq *rq, *orig_rq;
  1975. if (!sched_feat(SYNC_WAKEUPS))
  1976. wake_flags &= ~WF_SYNC;
  1977. this_cpu = get_cpu();
  1978. smp_wmb();
  1979. rq = orig_rq = task_rq_lock(p, &flags);
  1980. update_rq_clock(rq);
  1981. if (!(p->state & state))
  1982. goto out;
  1983. if (p->se.on_rq)
  1984. goto out_running;
  1985. cpu = task_cpu(p);
  1986. orig_cpu = cpu;
  1987. #ifdef CONFIG_SMP
  1988. if (unlikely(task_running(rq, p)))
  1989. goto out_activate;
  1990. /*
  1991. * In order to handle concurrent wakeups and release the rq->lock
  1992. * we put the task in TASK_WAKING state.
  1993. *
  1994. * First fix up the nr_uninterruptible count:
  1995. */
  1996. if (task_contributes_to_load(p))
  1997. rq->nr_uninterruptible--;
  1998. p->state = TASK_WAKING;
  1999. __task_rq_unlock(rq);
  2000. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2001. if (cpu != orig_cpu)
  2002. set_task_cpu(p, cpu);
  2003. rq = __task_rq_lock(p);
  2004. update_rq_clock(rq);
  2005. WARN_ON(p->state != TASK_WAKING);
  2006. cpu = task_cpu(p);
  2007. #ifdef CONFIG_SCHEDSTATS
  2008. schedstat_inc(rq, ttwu_count);
  2009. if (cpu == this_cpu)
  2010. schedstat_inc(rq, ttwu_local);
  2011. else {
  2012. struct sched_domain *sd;
  2013. for_each_domain(this_cpu, sd) {
  2014. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2015. schedstat_inc(sd, ttwu_wake_remote);
  2016. break;
  2017. }
  2018. }
  2019. }
  2020. #endif /* CONFIG_SCHEDSTATS */
  2021. out_activate:
  2022. #endif /* CONFIG_SMP */
  2023. schedstat_inc(p, se.nr_wakeups);
  2024. if (wake_flags & WF_SYNC)
  2025. schedstat_inc(p, se.nr_wakeups_sync);
  2026. if (orig_cpu != cpu)
  2027. schedstat_inc(p, se.nr_wakeups_migrate);
  2028. if (cpu == this_cpu)
  2029. schedstat_inc(p, se.nr_wakeups_local);
  2030. else
  2031. schedstat_inc(p, se.nr_wakeups_remote);
  2032. activate_task(rq, p, 1);
  2033. success = 1;
  2034. /*
  2035. * Only attribute actual wakeups done by this task.
  2036. */
  2037. if (!in_interrupt()) {
  2038. struct sched_entity *se = &current->se;
  2039. u64 sample = se->sum_exec_runtime;
  2040. if (se->last_wakeup)
  2041. sample -= se->last_wakeup;
  2042. else
  2043. sample -= se->start_runtime;
  2044. update_avg(&se->avg_wakeup, sample);
  2045. se->last_wakeup = se->sum_exec_runtime;
  2046. }
  2047. out_running:
  2048. trace_sched_wakeup(rq, p, success);
  2049. check_preempt_curr(rq, p, wake_flags);
  2050. p->state = TASK_RUNNING;
  2051. #ifdef CONFIG_SMP
  2052. if (p->sched_class->task_wake_up)
  2053. p->sched_class->task_wake_up(rq, p);
  2054. if (unlikely(rq->idle_stamp)) {
  2055. u64 delta = rq->clock - rq->idle_stamp;
  2056. u64 max = 2*sysctl_sched_migration_cost;
  2057. if (delta > max)
  2058. rq->avg_idle = max;
  2059. else
  2060. update_avg(&rq->avg_idle, delta);
  2061. rq->idle_stamp = 0;
  2062. }
  2063. #endif
  2064. out:
  2065. task_rq_unlock(rq, &flags);
  2066. put_cpu();
  2067. return success;
  2068. }
  2069. /**
  2070. * wake_up_process - Wake up a specific process
  2071. * @p: The process to be woken up.
  2072. *
  2073. * Attempt to wake up the nominated process and move it to the set of runnable
  2074. * processes. Returns 1 if the process was woken up, 0 if it was already
  2075. * running.
  2076. *
  2077. * It may be assumed that this function implies a write memory barrier before
  2078. * changing the task state if and only if any tasks are woken up.
  2079. */
  2080. int wake_up_process(struct task_struct *p)
  2081. {
  2082. return try_to_wake_up(p, TASK_ALL, 0);
  2083. }
  2084. EXPORT_SYMBOL(wake_up_process);
  2085. int wake_up_state(struct task_struct *p, unsigned int state)
  2086. {
  2087. return try_to_wake_up(p, state, 0);
  2088. }
  2089. /*
  2090. * Perform scheduler related setup for a newly forked process p.
  2091. * p is forked by current.
  2092. *
  2093. * __sched_fork() is basic setup used by init_idle() too:
  2094. */
  2095. static void __sched_fork(struct task_struct *p)
  2096. {
  2097. p->se.exec_start = 0;
  2098. p->se.sum_exec_runtime = 0;
  2099. p->se.prev_sum_exec_runtime = 0;
  2100. p->se.nr_migrations = 0;
  2101. p->se.last_wakeup = 0;
  2102. p->se.avg_overlap = 0;
  2103. p->se.start_runtime = 0;
  2104. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2105. #ifdef CONFIG_SCHEDSTATS
  2106. p->se.wait_start = 0;
  2107. p->se.wait_max = 0;
  2108. p->se.wait_count = 0;
  2109. p->se.wait_sum = 0;
  2110. p->se.sleep_start = 0;
  2111. p->se.sleep_max = 0;
  2112. p->se.sum_sleep_runtime = 0;
  2113. p->se.block_start = 0;
  2114. p->se.block_max = 0;
  2115. p->se.exec_max = 0;
  2116. p->se.slice_max = 0;
  2117. p->se.nr_migrations_cold = 0;
  2118. p->se.nr_failed_migrations_affine = 0;
  2119. p->se.nr_failed_migrations_running = 0;
  2120. p->se.nr_failed_migrations_hot = 0;
  2121. p->se.nr_forced_migrations = 0;
  2122. p->se.nr_wakeups = 0;
  2123. p->se.nr_wakeups_sync = 0;
  2124. p->se.nr_wakeups_migrate = 0;
  2125. p->se.nr_wakeups_local = 0;
  2126. p->se.nr_wakeups_remote = 0;
  2127. p->se.nr_wakeups_affine = 0;
  2128. p->se.nr_wakeups_affine_attempts = 0;
  2129. p->se.nr_wakeups_passive = 0;
  2130. p->se.nr_wakeups_idle = 0;
  2131. #endif
  2132. INIT_LIST_HEAD(&p->rt.run_list);
  2133. p->se.on_rq = 0;
  2134. INIT_LIST_HEAD(&p->se.group_node);
  2135. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2136. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2137. #endif
  2138. /*
  2139. * We mark the process as running here, but have not actually
  2140. * inserted it onto the runqueue yet. This guarantees that
  2141. * nobody will actually run it, and a signal or other external
  2142. * event cannot wake it up and insert it on the runqueue either.
  2143. */
  2144. p->state = TASK_RUNNING;
  2145. }
  2146. /*
  2147. * fork()/clone()-time setup:
  2148. */
  2149. void sched_fork(struct task_struct *p, int clone_flags)
  2150. {
  2151. int cpu = get_cpu();
  2152. __sched_fork(p);
  2153. /*
  2154. * Revert to default priority/policy on fork if requested.
  2155. */
  2156. if (unlikely(p->sched_reset_on_fork)) {
  2157. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2158. p->policy = SCHED_NORMAL;
  2159. p->normal_prio = p->static_prio;
  2160. }
  2161. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2162. p->static_prio = NICE_TO_PRIO(0);
  2163. p->normal_prio = p->static_prio;
  2164. set_load_weight(p);
  2165. }
  2166. /*
  2167. * We don't need the reset flag anymore after the fork. It has
  2168. * fulfilled its duty:
  2169. */
  2170. p->sched_reset_on_fork = 0;
  2171. }
  2172. /*
  2173. * Make sure we do not leak PI boosting priority to the child.
  2174. */
  2175. p->prio = current->normal_prio;
  2176. if (!rt_prio(p->prio))
  2177. p->sched_class = &fair_sched_class;
  2178. if (p->sched_class->task_fork)
  2179. p->sched_class->task_fork(p);
  2180. #ifdef CONFIG_SMP
  2181. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2182. #endif
  2183. set_task_cpu(p, cpu);
  2184. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2185. if (likely(sched_info_on()))
  2186. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2187. #endif
  2188. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2189. p->oncpu = 0;
  2190. #endif
  2191. #ifdef CONFIG_PREEMPT
  2192. /* Want to start with kernel preemption disabled. */
  2193. task_thread_info(p)->preempt_count = 1;
  2194. #endif
  2195. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2196. put_cpu();
  2197. }
  2198. /*
  2199. * wake_up_new_task - wake up a newly created task for the first time.
  2200. *
  2201. * This function will do some initial scheduler statistics housekeeping
  2202. * that must be done for every newly created context, then puts the task
  2203. * on the runqueue and wakes it.
  2204. */
  2205. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2206. {
  2207. unsigned long flags;
  2208. struct rq *rq;
  2209. rq = task_rq_lock(p, &flags);
  2210. BUG_ON(p->state != TASK_RUNNING);
  2211. update_rq_clock(rq);
  2212. activate_task(rq, p, 0);
  2213. trace_sched_wakeup_new(rq, p, 1);
  2214. check_preempt_curr(rq, p, WF_FORK);
  2215. #ifdef CONFIG_SMP
  2216. if (p->sched_class->task_wake_up)
  2217. p->sched_class->task_wake_up(rq, p);
  2218. #endif
  2219. task_rq_unlock(rq, &flags);
  2220. }
  2221. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2222. /**
  2223. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2224. * @notifier: notifier struct to register
  2225. */
  2226. void preempt_notifier_register(struct preempt_notifier *notifier)
  2227. {
  2228. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2229. }
  2230. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2231. /**
  2232. * preempt_notifier_unregister - no longer interested in preemption notifications
  2233. * @notifier: notifier struct to unregister
  2234. *
  2235. * This is safe to call from within a preemption notifier.
  2236. */
  2237. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2238. {
  2239. hlist_del(&notifier->link);
  2240. }
  2241. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2242. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2243. {
  2244. struct preempt_notifier *notifier;
  2245. struct hlist_node *node;
  2246. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2247. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2248. }
  2249. static void
  2250. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2251. struct task_struct *next)
  2252. {
  2253. struct preempt_notifier *notifier;
  2254. struct hlist_node *node;
  2255. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2256. notifier->ops->sched_out(notifier, next);
  2257. }
  2258. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2259. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2260. {
  2261. }
  2262. static void
  2263. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2264. struct task_struct *next)
  2265. {
  2266. }
  2267. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2268. /**
  2269. * prepare_task_switch - prepare to switch tasks
  2270. * @rq: the runqueue preparing to switch
  2271. * @prev: the current task that is being switched out
  2272. * @next: the task we are going to switch to.
  2273. *
  2274. * This is called with the rq lock held and interrupts off. It must
  2275. * be paired with a subsequent finish_task_switch after the context
  2276. * switch.
  2277. *
  2278. * prepare_task_switch sets up locking and calls architecture specific
  2279. * hooks.
  2280. */
  2281. static inline void
  2282. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2283. struct task_struct *next)
  2284. {
  2285. fire_sched_out_preempt_notifiers(prev, next);
  2286. prepare_lock_switch(rq, next);
  2287. prepare_arch_switch(next);
  2288. }
  2289. /**
  2290. * finish_task_switch - clean up after a task-switch
  2291. * @rq: runqueue associated with task-switch
  2292. * @prev: the thread we just switched away from.
  2293. *
  2294. * finish_task_switch must be called after the context switch, paired
  2295. * with a prepare_task_switch call before the context switch.
  2296. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2297. * and do any other architecture-specific cleanup actions.
  2298. *
  2299. * Note that we may have delayed dropping an mm in context_switch(). If
  2300. * so, we finish that here outside of the runqueue lock. (Doing it
  2301. * with the lock held can cause deadlocks; see schedule() for
  2302. * details.)
  2303. */
  2304. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2305. __releases(rq->lock)
  2306. {
  2307. struct mm_struct *mm = rq->prev_mm;
  2308. long prev_state;
  2309. rq->prev_mm = NULL;
  2310. /*
  2311. * A task struct has one reference for the use as "current".
  2312. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2313. * schedule one last time. The schedule call will never return, and
  2314. * the scheduled task must drop that reference.
  2315. * The test for TASK_DEAD must occur while the runqueue locks are
  2316. * still held, otherwise prev could be scheduled on another cpu, die
  2317. * there before we look at prev->state, and then the reference would
  2318. * be dropped twice.
  2319. * Manfred Spraul <manfred@colorfullife.com>
  2320. */
  2321. prev_state = prev->state;
  2322. finish_arch_switch(prev);
  2323. perf_event_task_sched_in(current, cpu_of(rq));
  2324. finish_lock_switch(rq, prev);
  2325. fire_sched_in_preempt_notifiers(current);
  2326. if (mm)
  2327. mmdrop(mm);
  2328. if (unlikely(prev_state == TASK_DEAD)) {
  2329. /*
  2330. * Remove function-return probe instances associated with this
  2331. * task and put them back on the free list.
  2332. */
  2333. kprobe_flush_task(prev);
  2334. put_task_struct(prev);
  2335. }
  2336. }
  2337. #ifdef CONFIG_SMP
  2338. /* assumes rq->lock is held */
  2339. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2340. {
  2341. if (prev->sched_class->pre_schedule)
  2342. prev->sched_class->pre_schedule(rq, prev);
  2343. }
  2344. /* rq->lock is NOT held, but preemption is disabled */
  2345. static inline void post_schedule(struct rq *rq)
  2346. {
  2347. if (rq->post_schedule) {
  2348. unsigned long flags;
  2349. spin_lock_irqsave(&rq->lock, flags);
  2350. if (rq->curr->sched_class->post_schedule)
  2351. rq->curr->sched_class->post_schedule(rq);
  2352. spin_unlock_irqrestore(&rq->lock, flags);
  2353. rq->post_schedule = 0;
  2354. }
  2355. }
  2356. #else
  2357. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2358. {
  2359. }
  2360. static inline void post_schedule(struct rq *rq)
  2361. {
  2362. }
  2363. #endif
  2364. /**
  2365. * schedule_tail - first thing a freshly forked thread must call.
  2366. * @prev: the thread we just switched away from.
  2367. */
  2368. asmlinkage void schedule_tail(struct task_struct *prev)
  2369. __releases(rq->lock)
  2370. {
  2371. struct rq *rq = this_rq();
  2372. finish_task_switch(rq, prev);
  2373. /*
  2374. * FIXME: do we need to worry about rq being invalidated by the
  2375. * task_switch?
  2376. */
  2377. post_schedule(rq);
  2378. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2379. /* In this case, finish_task_switch does not reenable preemption */
  2380. preempt_enable();
  2381. #endif
  2382. if (current->set_child_tid)
  2383. put_user(task_pid_vnr(current), current->set_child_tid);
  2384. }
  2385. /*
  2386. * context_switch - switch to the new MM and the new
  2387. * thread's register state.
  2388. */
  2389. static inline void
  2390. context_switch(struct rq *rq, struct task_struct *prev,
  2391. struct task_struct *next)
  2392. {
  2393. struct mm_struct *mm, *oldmm;
  2394. prepare_task_switch(rq, prev, next);
  2395. trace_sched_switch(rq, prev, next);
  2396. mm = next->mm;
  2397. oldmm = prev->active_mm;
  2398. /*
  2399. * For paravirt, this is coupled with an exit in switch_to to
  2400. * combine the page table reload and the switch backend into
  2401. * one hypercall.
  2402. */
  2403. arch_start_context_switch(prev);
  2404. if (likely(!mm)) {
  2405. next->active_mm = oldmm;
  2406. atomic_inc(&oldmm->mm_count);
  2407. enter_lazy_tlb(oldmm, next);
  2408. } else
  2409. switch_mm(oldmm, mm, next);
  2410. if (likely(!prev->mm)) {
  2411. prev->active_mm = NULL;
  2412. rq->prev_mm = oldmm;
  2413. }
  2414. /*
  2415. * Since the runqueue lock will be released by the next
  2416. * task (which is an invalid locking op but in the case
  2417. * of the scheduler it's an obvious special-case), so we
  2418. * do an early lockdep release here:
  2419. */
  2420. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2421. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2422. #endif
  2423. /* Here we just switch the register state and the stack. */
  2424. switch_to(prev, next, prev);
  2425. barrier();
  2426. /*
  2427. * this_rq must be evaluated again because prev may have moved
  2428. * CPUs since it called schedule(), thus the 'rq' on its stack
  2429. * frame will be invalid.
  2430. */
  2431. finish_task_switch(this_rq(), prev);
  2432. }
  2433. /*
  2434. * nr_running, nr_uninterruptible and nr_context_switches:
  2435. *
  2436. * externally visible scheduler statistics: current number of runnable
  2437. * threads, current number of uninterruptible-sleeping threads, total
  2438. * number of context switches performed since bootup.
  2439. */
  2440. unsigned long nr_running(void)
  2441. {
  2442. unsigned long i, sum = 0;
  2443. for_each_online_cpu(i)
  2444. sum += cpu_rq(i)->nr_running;
  2445. return sum;
  2446. }
  2447. unsigned long nr_uninterruptible(void)
  2448. {
  2449. unsigned long i, sum = 0;
  2450. for_each_possible_cpu(i)
  2451. sum += cpu_rq(i)->nr_uninterruptible;
  2452. /*
  2453. * Since we read the counters lockless, it might be slightly
  2454. * inaccurate. Do not allow it to go below zero though:
  2455. */
  2456. if (unlikely((long)sum < 0))
  2457. sum = 0;
  2458. return sum;
  2459. }
  2460. unsigned long long nr_context_switches(void)
  2461. {
  2462. int i;
  2463. unsigned long long sum = 0;
  2464. for_each_possible_cpu(i)
  2465. sum += cpu_rq(i)->nr_switches;
  2466. return sum;
  2467. }
  2468. unsigned long nr_iowait(void)
  2469. {
  2470. unsigned long i, sum = 0;
  2471. for_each_possible_cpu(i)
  2472. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2473. return sum;
  2474. }
  2475. unsigned long nr_iowait_cpu(void)
  2476. {
  2477. struct rq *this = this_rq();
  2478. return atomic_read(&this->nr_iowait);
  2479. }
  2480. unsigned long this_cpu_load(void)
  2481. {
  2482. struct rq *this = this_rq();
  2483. return this->cpu_load[0];
  2484. }
  2485. /* Variables and functions for calc_load */
  2486. static atomic_long_t calc_load_tasks;
  2487. static unsigned long calc_load_update;
  2488. unsigned long avenrun[3];
  2489. EXPORT_SYMBOL(avenrun);
  2490. /**
  2491. * get_avenrun - get the load average array
  2492. * @loads: pointer to dest load array
  2493. * @offset: offset to add
  2494. * @shift: shift count to shift the result left
  2495. *
  2496. * These values are estimates at best, so no need for locking.
  2497. */
  2498. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2499. {
  2500. loads[0] = (avenrun[0] + offset) << shift;
  2501. loads[1] = (avenrun[1] + offset) << shift;
  2502. loads[2] = (avenrun[2] + offset) << shift;
  2503. }
  2504. static unsigned long
  2505. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2506. {
  2507. load *= exp;
  2508. load += active * (FIXED_1 - exp);
  2509. return load >> FSHIFT;
  2510. }
  2511. /*
  2512. * calc_load - update the avenrun load estimates 10 ticks after the
  2513. * CPUs have updated calc_load_tasks.
  2514. */
  2515. void calc_global_load(void)
  2516. {
  2517. unsigned long upd = calc_load_update + 10;
  2518. long active;
  2519. if (time_before(jiffies, upd))
  2520. return;
  2521. active = atomic_long_read(&calc_load_tasks);
  2522. active = active > 0 ? active * FIXED_1 : 0;
  2523. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2524. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2525. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2526. calc_load_update += LOAD_FREQ;
  2527. }
  2528. /*
  2529. * Either called from update_cpu_load() or from a cpu going idle
  2530. */
  2531. static void calc_load_account_active(struct rq *this_rq)
  2532. {
  2533. long nr_active, delta;
  2534. nr_active = this_rq->nr_running;
  2535. nr_active += (long) this_rq->nr_uninterruptible;
  2536. if (nr_active != this_rq->calc_load_active) {
  2537. delta = nr_active - this_rq->calc_load_active;
  2538. this_rq->calc_load_active = nr_active;
  2539. atomic_long_add(delta, &calc_load_tasks);
  2540. }
  2541. }
  2542. /*
  2543. * Update rq->cpu_load[] statistics. This function is usually called every
  2544. * scheduler tick (TICK_NSEC).
  2545. */
  2546. static void update_cpu_load(struct rq *this_rq)
  2547. {
  2548. unsigned long this_load = this_rq->load.weight;
  2549. int i, scale;
  2550. this_rq->nr_load_updates++;
  2551. /* Update our load: */
  2552. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2553. unsigned long old_load, new_load;
  2554. /* scale is effectively 1 << i now, and >> i divides by scale */
  2555. old_load = this_rq->cpu_load[i];
  2556. new_load = this_load;
  2557. /*
  2558. * Round up the averaging division if load is increasing. This
  2559. * prevents us from getting stuck on 9 if the load is 10, for
  2560. * example.
  2561. */
  2562. if (new_load > old_load)
  2563. new_load += scale-1;
  2564. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2565. }
  2566. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2567. this_rq->calc_load_update += LOAD_FREQ;
  2568. calc_load_account_active(this_rq);
  2569. }
  2570. }
  2571. #ifdef CONFIG_SMP
  2572. /*
  2573. * double_rq_lock - safely lock two runqueues
  2574. *
  2575. * Note this does not disable interrupts like task_rq_lock,
  2576. * you need to do so manually before calling.
  2577. */
  2578. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2579. __acquires(rq1->lock)
  2580. __acquires(rq2->lock)
  2581. {
  2582. BUG_ON(!irqs_disabled());
  2583. if (rq1 == rq2) {
  2584. spin_lock(&rq1->lock);
  2585. __acquire(rq2->lock); /* Fake it out ;) */
  2586. } else {
  2587. if (rq1 < rq2) {
  2588. spin_lock(&rq1->lock);
  2589. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2590. } else {
  2591. spin_lock(&rq2->lock);
  2592. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2593. }
  2594. }
  2595. update_rq_clock(rq1);
  2596. update_rq_clock(rq2);
  2597. }
  2598. /*
  2599. * double_rq_unlock - safely unlock two runqueues
  2600. *
  2601. * Note this does not restore interrupts like task_rq_unlock,
  2602. * you need to do so manually after calling.
  2603. */
  2604. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2605. __releases(rq1->lock)
  2606. __releases(rq2->lock)
  2607. {
  2608. spin_unlock(&rq1->lock);
  2609. if (rq1 != rq2)
  2610. spin_unlock(&rq2->lock);
  2611. else
  2612. __release(rq2->lock);
  2613. }
  2614. /*
  2615. * If dest_cpu is allowed for this process, migrate the task to it.
  2616. * This is accomplished by forcing the cpu_allowed mask to only
  2617. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2618. * the cpu_allowed mask is restored.
  2619. */
  2620. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2621. {
  2622. struct migration_req req;
  2623. unsigned long flags;
  2624. struct rq *rq;
  2625. rq = task_rq_lock(p, &flags);
  2626. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2627. || unlikely(!cpu_active(dest_cpu)))
  2628. goto out;
  2629. /* force the process onto the specified CPU */
  2630. if (migrate_task(p, dest_cpu, &req)) {
  2631. /* Need to wait for migration thread (might exit: take ref). */
  2632. struct task_struct *mt = rq->migration_thread;
  2633. get_task_struct(mt);
  2634. task_rq_unlock(rq, &flags);
  2635. wake_up_process(mt);
  2636. put_task_struct(mt);
  2637. wait_for_completion(&req.done);
  2638. return;
  2639. }
  2640. out:
  2641. task_rq_unlock(rq, &flags);
  2642. }
  2643. /*
  2644. * sched_exec - execve() is a valuable balancing opportunity, because at
  2645. * this point the task has the smallest effective memory and cache footprint.
  2646. */
  2647. void sched_exec(void)
  2648. {
  2649. int new_cpu, this_cpu = get_cpu();
  2650. new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
  2651. put_cpu();
  2652. if (new_cpu != this_cpu)
  2653. sched_migrate_task(current, new_cpu);
  2654. }
  2655. /*
  2656. * pull_task - move a task from a remote runqueue to the local runqueue.
  2657. * Both runqueues must be locked.
  2658. */
  2659. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2660. struct rq *this_rq, int this_cpu)
  2661. {
  2662. deactivate_task(src_rq, p, 0);
  2663. set_task_cpu(p, this_cpu);
  2664. activate_task(this_rq, p, 0);
  2665. check_preempt_curr(this_rq, p, 0);
  2666. }
  2667. /*
  2668. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2669. */
  2670. static
  2671. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2672. struct sched_domain *sd, enum cpu_idle_type idle,
  2673. int *all_pinned)
  2674. {
  2675. int tsk_cache_hot = 0;
  2676. /*
  2677. * We do not migrate tasks that are:
  2678. * 1) running (obviously), or
  2679. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2680. * 3) are cache-hot on their current CPU.
  2681. */
  2682. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2683. schedstat_inc(p, se.nr_failed_migrations_affine);
  2684. return 0;
  2685. }
  2686. *all_pinned = 0;
  2687. if (task_running(rq, p)) {
  2688. schedstat_inc(p, se.nr_failed_migrations_running);
  2689. return 0;
  2690. }
  2691. /*
  2692. * Aggressive migration if:
  2693. * 1) task is cache cold, or
  2694. * 2) too many balance attempts have failed.
  2695. */
  2696. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2697. if (!tsk_cache_hot ||
  2698. sd->nr_balance_failed > sd->cache_nice_tries) {
  2699. #ifdef CONFIG_SCHEDSTATS
  2700. if (tsk_cache_hot) {
  2701. schedstat_inc(sd, lb_hot_gained[idle]);
  2702. schedstat_inc(p, se.nr_forced_migrations);
  2703. }
  2704. #endif
  2705. return 1;
  2706. }
  2707. if (tsk_cache_hot) {
  2708. schedstat_inc(p, se.nr_failed_migrations_hot);
  2709. return 0;
  2710. }
  2711. return 1;
  2712. }
  2713. static unsigned long
  2714. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2715. unsigned long max_load_move, struct sched_domain *sd,
  2716. enum cpu_idle_type idle, int *all_pinned,
  2717. int *this_best_prio, struct rq_iterator *iterator)
  2718. {
  2719. int loops = 0, pulled = 0, pinned = 0;
  2720. struct task_struct *p;
  2721. long rem_load_move = max_load_move;
  2722. if (max_load_move == 0)
  2723. goto out;
  2724. pinned = 1;
  2725. /*
  2726. * Start the load-balancing iterator:
  2727. */
  2728. p = iterator->start(iterator->arg);
  2729. next:
  2730. if (!p || loops++ > sysctl_sched_nr_migrate)
  2731. goto out;
  2732. if ((p->se.load.weight >> 1) > rem_load_move ||
  2733. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2734. p = iterator->next(iterator->arg);
  2735. goto next;
  2736. }
  2737. pull_task(busiest, p, this_rq, this_cpu);
  2738. pulled++;
  2739. rem_load_move -= p->se.load.weight;
  2740. #ifdef CONFIG_PREEMPT
  2741. /*
  2742. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2743. * will stop after the first task is pulled to minimize the critical
  2744. * section.
  2745. */
  2746. if (idle == CPU_NEWLY_IDLE)
  2747. goto out;
  2748. #endif
  2749. /*
  2750. * We only want to steal up to the prescribed amount of weighted load.
  2751. */
  2752. if (rem_load_move > 0) {
  2753. if (p->prio < *this_best_prio)
  2754. *this_best_prio = p->prio;
  2755. p = iterator->next(iterator->arg);
  2756. goto next;
  2757. }
  2758. out:
  2759. /*
  2760. * Right now, this is one of only two places pull_task() is called,
  2761. * so we can safely collect pull_task() stats here rather than
  2762. * inside pull_task().
  2763. */
  2764. schedstat_add(sd, lb_gained[idle], pulled);
  2765. if (all_pinned)
  2766. *all_pinned = pinned;
  2767. return max_load_move - rem_load_move;
  2768. }
  2769. /*
  2770. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2771. * this_rq, as part of a balancing operation within domain "sd".
  2772. * Returns 1 if successful and 0 otherwise.
  2773. *
  2774. * Called with both runqueues locked.
  2775. */
  2776. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2777. unsigned long max_load_move,
  2778. struct sched_domain *sd, enum cpu_idle_type idle,
  2779. int *all_pinned)
  2780. {
  2781. const struct sched_class *class = sched_class_highest;
  2782. unsigned long total_load_moved = 0;
  2783. int this_best_prio = this_rq->curr->prio;
  2784. do {
  2785. total_load_moved +=
  2786. class->load_balance(this_rq, this_cpu, busiest,
  2787. max_load_move - total_load_moved,
  2788. sd, idle, all_pinned, &this_best_prio);
  2789. class = class->next;
  2790. #ifdef CONFIG_PREEMPT
  2791. /*
  2792. * NEWIDLE balancing is a source of latency, so preemptible
  2793. * kernels will stop after the first task is pulled to minimize
  2794. * the critical section.
  2795. */
  2796. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2797. break;
  2798. #endif
  2799. } while (class && max_load_move > total_load_moved);
  2800. return total_load_moved > 0;
  2801. }
  2802. static int
  2803. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2804. struct sched_domain *sd, enum cpu_idle_type idle,
  2805. struct rq_iterator *iterator)
  2806. {
  2807. struct task_struct *p = iterator->start(iterator->arg);
  2808. int pinned = 0;
  2809. while (p) {
  2810. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2811. pull_task(busiest, p, this_rq, this_cpu);
  2812. /*
  2813. * Right now, this is only the second place pull_task()
  2814. * is called, so we can safely collect pull_task()
  2815. * stats here rather than inside pull_task().
  2816. */
  2817. schedstat_inc(sd, lb_gained[idle]);
  2818. return 1;
  2819. }
  2820. p = iterator->next(iterator->arg);
  2821. }
  2822. return 0;
  2823. }
  2824. /*
  2825. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2826. * part of active balancing operations within "domain".
  2827. * Returns 1 if successful and 0 otherwise.
  2828. *
  2829. * Called with both runqueues locked.
  2830. */
  2831. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2832. struct sched_domain *sd, enum cpu_idle_type idle)
  2833. {
  2834. const struct sched_class *class;
  2835. for_each_class(class) {
  2836. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2837. return 1;
  2838. }
  2839. return 0;
  2840. }
  2841. /********** Helpers for find_busiest_group ************************/
  2842. /*
  2843. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2844. * during load balancing.
  2845. */
  2846. struct sd_lb_stats {
  2847. struct sched_group *busiest; /* Busiest group in this sd */
  2848. struct sched_group *this; /* Local group in this sd */
  2849. unsigned long total_load; /* Total load of all groups in sd */
  2850. unsigned long total_pwr; /* Total power of all groups in sd */
  2851. unsigned long avg_load; /* Average load across all groups in sd */
  2852. /** Statistics of this group */
  2853. unsigned long this_load;
  2854. unsigned long this_load_per_task;
  2855. unsigned long this_nr_running;
  2856. /* Statistics of the busiest group */
  2857. unsigned long max_load;
  2858. unsigned long busiest_load_per_task;
  2859. unsigned long busiest_nr_running;
  2860. int group_imb; /* Is there imbalance in this sd */
  2861. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2862. int power_savings_balance; /* Is powersave balance needed for this sd */
  2863. struct sched_group *group_min; /* Least loaded group in sd */
  2864. struct sched_group *group_leader; /* Group which relieves group_min */
  2865. unsigned long min_load_per_task; /* load_per_task in group_min */
  2866. unsigned long leader_nr_running; /* Nr running of group_leader */
  2867. unsigned long min_nr_running; /* Nr running of group_min */
  2868. #endif
  2869. };
  2870. /*
  2871. * sg_lb_stats - stats of a sched_group required for load_balancing
  2872. */
  2873. struct sg_lb_stats {
  2874. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2875. unsigned long group_load; /* Total load over the CPUs of the group */
  2876. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2877. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2878. unsigned long group_capacity;
  2879. int group_imb; /* Is there an imbalance in the group ? */
  2880. };
  2881. /**
  2882. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2883. * @group: The group whose first cpu is to be returned.
  2884. */
  2885. static inline unsigned int group_first_cpu(struct sched_group *group)
  2886. {
  2887. return cpumask_first(sched_group_cpus(group));
  2888. }
  2889. /**
  2890. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2891. * @sd: The sched_domain whose load_idx is to be obtained.
  2892. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2893. */
  2894. static inline int get_sd_load_idx(struct sched_domain *sd,
  2895. enum cpu_idle_type idle)
  2896. {
  2897. int load_idx;
  2898. switch (idle) {
  2899. case CPU_NOT_IDLE:
  2900. load_idx = sd->busy_idx;
  2901. break;
  2902. case CPU_NEWLY_IDLE:
  2903. load_idx = sd->newidle_idx;
  2904. break;
  2905. default:
  2906. load_idx = sd->idle_idx;
  2907. break;
  2908. }
  2909. return load_idx;
  2910. }
  2911. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2912. /**
  2913. * init_sd_power_savings_stats - Initialize power savings statistics for
  2914. * the given sched_domain, during load balancing.
  2915. *
  2916. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2917. * @sds: Variable containing the statistics for sd.
  2918. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2919. */
  2920. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2921. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2922. {
  2923. /*
  2924. * Busy processors will not participate in power savings
  2925. * balance.
  2926. */
  2927. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2928. sds->power_savings_balance = 0;
  2929. else {
  2930. sds->power_savings_balance = 1;
  2931. sds->min_nr_running = ULONG_MAX;
  2932. sds->leader_nr_running = 0;
  2933. }
  2934. }
  2935. /**
  2936. * update_sd_power_savings_stats - Update the power saving stats for a
  2937. * sched_domain while performing load balancing.
  2938. *
  2939. * @group: sched_group belonging to the sched_domain under consideration.
  2940. * @sds: Variable containing the statistics of the sched_domain
  2941. * @local_group: Does group contain the CPU for which we're performing
  2942. * load balancing ?
  2943. * @sgs: Variable containing the statistics of the group.
  2944. */
  2945. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2946. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2947. {
  2948. if (!sds->power_savings_balance)
  2949. return;
  2950. /*
  2951. * If the local group is idle or completely loaded
  2952. * no need to do power savings balance at this domain
  2953. */
  2954. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2955. !sds->this_nr_running))
  2956. sds->power_savings_balance = 0;
  2957. /*
  2958. * If a group is already running at full capacity or idle,
  2959. * don't include that group in power savings calculations
  2960. */
  2961. if (!sds->power_savings_balance ||
  2962. sgs->sum_nr_running >= sgs->group_capacity ||
  2963. !sgs->sum_nr_running)
  2964. return;
  2965. /*
  2966. * Calculate the group which has the least non-idle load.
  2967. * This is the group from where we need to pick up the load
  2968. * for saving power
  2969. */
  2970. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2971. (sgs->sum_nr_running == sds->min_nr_running &&
  2972. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2973. sds->group_min = group;
  2974. sds->min_nr_running = sgs->sum_nr_running;
  2975. sds->min_load_per_task = sgs->sum_weighted_load /
  2976. sgs->sum_nr_running;
  2977. }
  2978. /*
  2979. * Calculate the group which is almost near its
  2980. * capacity but still has some space to pick up some load
  2981. * from other group and save more power
  2982. */
  2983. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2984. return;
  2985. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2986. (sgs->sum_nr_running == sds->leader_nr_running &&
  2987. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2988. sds->group_leader = group;
  2989. sds->leader_nr_running = sgs->sum_nr_running;
  2990. }
  2991. }
  2992. /**
  2993. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2994. * @sds: Variable containing the statistics of the sched_domain
  2995. * under consideration.
  2996. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2997. * @imbalance: Variable to store the imbalance.
  2998. *
  2999. * Description:
  3000. * Check if we have potential to perform some power-savings balance.
  3001. * If yes, set the busiest group to be the least loaded group in the
  3002. * sched_domain, so that it's CPUs can be put to idle.
  3003. *
  3004. * Returns 1 if there is potential to perform power-savings balance.
  3005. * Else returns 0.
  3006. */
  3007. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3008. int this_cpu, unsigned long *imbalance)
  3009. {
  3010. if (!sds->power_savings_balance)
  3011. return 0;
  3012. if (sds->this != sds->group_leader ||
  3013. sds->group_leader == sds->group_min)
  3014. return 0;
  3015. *imbalance = sds->min_load_per_task;
  3016. sds->busiest = sds->group_min;
  3017. return 1;
  3018. }
  3019. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3020. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3021. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3022. {
  3023. return;
  3024. }
  3025. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3026. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3027. {
  3028. return;
  3029. }
  3030. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3031. int this_cpu, unsigned long *imbalance)
  3032. {
  3033. return 0;
  3034. }
  3035. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3036. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3037. {
  3038. return SCHED_LOAD_SCALE;
  3039. }
  3040. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3041. {
  3042. return default_scale_freq_power(sd, cpu);
  3043. }
  3044. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3045. {
  3046. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3047. unsigned long smt_gain = sd->smt_gain;
  3048. smt_gain /= weight;
  3049. return smt_gain;
  3050. }
  3051. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3052. {
  3053. return default_scale_smt_power(sd, cpu);
  3054. }
  3055. unsigned long scale_rt_power(int cpu)
  3056. {
  3057. struct rq *rq = cpu_rq(cpu);
  3058. u64 total, available;
  3059. sched_avg_update(rq);
  3060. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3061. available = total - rq->rt_avg;
  3062. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3063. total = SCHED_LOAD_SCALE;
  3064. total >>= SCHED_LOAD_SHIFT;
  3065. return div_u64(available, total);
  3066. }
  3067. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3068. {
  3069. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3070. unsigned long power = SCHED_LOAD_SCALE;
  3071. struct sched_group *sdg = sd->groups;
  3072. if (sched_feat(ARCH_POWER))
  3073. power *= arch_scale_freq_power(sd, cpu);
  3074. else
  3075. power *= default_scale_freq_power(sd, cpu);
  3076. power >>= SCHED_LOAD_SHIFT;
  3077. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3078. if (sched_feat(ARCH_POWER))
  3079. power *= arch_scale_smt_power(sd, cpu);
  3080. else
  3081. power *= default_scale_smt_power(sd, cpu);
  3082. power >>= SCHED_LOAD_SHIFT;
  3083. }
  3084. power *= scale_rt_power(cpu);
  3085. power >>= SCHED_LOAD_SHIFT;
  3086. if (!power)
  3087. power = 1;
  3088. sdg->cpu_power = power;
  3089. }
  3090. static void update_group_power(struct sched_domain *sd, int cpu)
  3091. {
  3092. struct sched_domain *child = sd->child;
  3093. struct sched_group *group, *sdg = sd->groups;
  3094. unsigned long power;
  3095. if (!child) {
  3096. update_cpu_power(sd, cpu);
  3097. return;
  3098. }
  3099. power = 0;
  3100. group = child->groups;
  3101. do {
  3102. power += group->cpu_power;
  3103. group = group->next;
  3104. } while (group != child->groups);
  3105. sdg->cpu_power = power;
  3106. }
  3107. /**
  3108. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3109. * @sd: The sched_domain whose statistics are to be updated.
  3110. * @group: sched_group whose statistics are to be updated.
  3111. * @this_cpu: Cpu for which load balance is currently performed.
  3112. * @idle: Idle status of this_cpu
  3113. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3114. * @sd_idle: Idle status of the sched_domain containing group.
  3115. * @local_group: Does group contain this_cpu.
  3116. * @cpus: Set of cpus considered for load balancing.
  3117. * @balance: Should we balance.
  3118. * @sgs: variable to hold the statistics for this group.
  3119. */
  3120. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3121. struct sched_group *group, int this_cpu,
  3122. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3123. int local_group, const struct cpumask *cpus,
  3124. int *balance, struct sg_lb_stats *sgs)
  3125. {
  3126. unsigned long load, max_cpu_load, min_cpu_load;
  3127. int i;
  3128. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3129. unsigned long sum_avg_load_per_task;
  3130. unsigned long avg_load_per_task;
  3131. if (local_group) {
  3132. balance_cpu = group_first_cpu(group);
  3133. if (balance_cpu == this_cpu)
  3134. update_group_power(sd, this_cpu);
  3135. }
  3136. /* Tally up the load of all CPUs in the group */
  3137. sum_avg_load_per_task = avg_load_per_task = 0;
  3138. max_cpu_load = 0;
  3139. min_cpu_load = ~0UL;
  3140. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3141. struct rq *rq = cpu_rq(i);
  3142. if (*sd_idle && rq->nr_running)
  3143. *sd_idle = 0;
  3144. /* Bias balancing toward cpus of our domain */
  3145. if (local_group) {
  3146. if (idle_cpu(i) && !first_idle_cpu) {
  3147. first_idle_cpu = 1;
  3148. balance_cpu = i;
  3149. }
  3150. load = target_load(i, load_idx);
  3151. } else {
  3152. load = source_load(i, load_idx);
  3153. if (load > max_cpu_load)
  3154. max_cpu_load = load;
  3155. if (min_cpu_load > load)
  3156. min_cpu_load = load;
  3157. }
  3158. sgs->group_load += load;
  3159. sgs->sum_nr_running += rq->nr_running;
  3160. sgs->sum_weighted_load += weighted_cpuload(i);
  3161. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3162. }
  3163. /*
  3164. * First idle cpu or the first cpu(busiest) in this sched group
  3165. * is eligible for doing load balancing at this and above
  3166. * domains. In the newly idle case, we will allow all the cpu's
  3167. * to do the newly idle load balance.
  3168. */
  3169. if (idle != CPU_NEWLY_IDLE && local_group &&
  3170. balance_cpu != this_cpu && balance) {
  3171. *balance = 0;
  3172. return;
  3173. }
  3174. /* Adjust by relative CPU power of the group */
  3175. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3176. /*
  3177. * Consider the group unbalanced when the imbalance is larger
  3178. * than the average weight of two tasks.
  3179. *
  3180. * APZ: with cgroup the avg task weight can vary wildly and
  3181. * might not be a suitable number - should we keep a
  3182. * normalized nr_running number somewhere that negates
  3183. * the hierarchy?
  3184. */
  3185. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3186. group->cpu_power;
  3187. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3188. sgs->group_imb = 1;
  3189. sgs->group_capacity =
  3190. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3191. }
  3192. /**
  3193. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3194. * @sd: sched_domain whose statistics are to be updated.
  3195. * @this_cpu: Cpu for which load balance is currently performed.
  3196. * @idle: Idle status of this_cpu
  3197. * @sd_idle: Idle status of the sched_domain containing group.
  3198. * @cpus: Set of cpus considered for load balancing.
  3199. * @balance: Should we balance.
  3200. * @sds: variable to hold the statistics for this sched_domain.
  3201. */
  3202. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3203. enum cpu_idle_type idle, int *sd_idle,
  3204. const struct cpumask *cpus, int *balance,
  3205. struct sd_lb_stats *sds)
  3206. {
  3207. struct sched_domain *child = sd->child;
  3208. struct sched_group *group = sd->groups;
  3209. struct sg_lb_stats sgs;
  3210. int load_idx, prefer_sibling = 0;
  3211. if (child && child->flags & SD_PREFER_SIBLING)
  3212. prefer_sibling = 1;
  3213. init_sd_power_savings_stats(sd, sds, idle);
  3214. load_idx = get_sd_load_idx(sd, idle);
  3215. do {
  3216. int local_group;
  3217. local_group = cpumask_test_cpu(this_cpu,
  3218. sched_group_cpus(group));
  3219. memset(&sgs, 0, sizeof(sgs));
  3220. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3221. local_group, cpus, balance, &sgs);
  3222. if (local_group && balance && !(*balance))
  3223. return;
  3224. sds->total_load += sgs.group_load;
  3225. sds->total_pwr += group->cpu_power;
  3226. /*
  3227. * In case the child domain prefers tasks go to siblings
  3228. * first, lower the group capacity to one so that we'll try
  3229. * and move all the excess tasks away.
  3230. */
  3231. if (prefer_sibling)
  3232. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3233. if (local_group) {
  3234. sds->this_load = sgs.avg_load;
  3235. sds->this = group;
  3236. sds->this_nr_running = sgs.sum_nr_running;
  3237. sds->this_load_per_task = sgs.sum_weighted_load;
  3238. } else if (sgs.avg_load > sds->max_load &&
  3239. (sgs.sum_nr_running > sgs.group_capacity ||
  3240. sgs.group_imb)) {
  3241. sds->max_load = sgs.avg_load;
  3242. sds->busiest = group;
  3243. sds->busiest_nr_running = sgs.sum_nr_running;
  3244. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3245. sds->group_imb = sgs.group_imb;
  3246. }
  3247. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3248. group = group->next;
  3249. } while (group != sd->groups);
  3250. }
  3251. /**
  3252. * fix_small_imbalance - Calculate the minor imbalance that exists
  3253. * amongst the groups of a sched_domain, during
  3254. * load balancing.
  3255. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3256. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3257. * @imbalance: Variable to store the imbalance.
  3258. */
  3259. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3260. int this_cpu, unsigned long *imbalance)
  3261. {
  3262. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3263. unsigned int imbn = 2;
  3264. if (sds->this_nr_running) {
  3265. sds->this_load_per_task /= sds->this_nr_running;
  3266. if (sds->busiest_load_per_task >
  3267. sds->this_load_per_task)
  3268. imbn = 1;
  3269. } else
  3270. sds->this_load_per_task =
  3271. cpu_avg_load_per_task(this_cpu);
  3272. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3273. sds->busiest_load_per_task * imbn) {
  3274. *imbalance = sds->busiest_load_per_task;
  3275. return;
  3276. }
  3277. /*
  3278. * OK, we don't have enough imbalance to justify moving tasks,
  3279. * however we may be able to increase total CPU power used by
  3280. * moving them.
  3281. */
  3282. pwr_now += sds->busiest->cpu_power *
  3283. min(sds->busiest_load_per_task, sds->max_load);
  3284. pwr_now += sds->this->cpu_power *
  3285. min(sds->this_load_per_task, sds->this_load);
  3286. pwr_now /= SCHED_LOAD_SCALE;
  3287. /* Amount of load we'd subtract */
  3288. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3289. sds->busiest->cpu_power;
  3290. if (sds->max_load > tmp)
  3291. pwr_move += sds->busiest->cpu_power *
  3292. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3293. /* Amount of load we'd add */
  3294. if (sds->max_load * sds->busiest->cpu_power <
  3295. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3296. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3297. sds->this->cpu_power;
  3298. else
  3299. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3300. sds->this->cpu_power;
  3301. pwr_move += sds->this->cpu_power *
  3302. min(sds->this_load_per_task, sds->this_load + tmp);
  3303. pwr_move /= SCHED_LOAD_SCALE;
  3304. /* Move if we gain throughput */
  3305. if (pwr_move > pwr_now)
  3306. *imbalance = sds->busiest_load_per_task;
  3307. }
  3308. /**
  3309. * calculate_imbalance - Calculate the amount of imbalance present within the
  3310. * groups of a given sched_domain during load balance.
  3311. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3312. * @this_cpu: Cpu for which currently load balance is being performed.
  3313. * @imbalance: The variable to store the imbalance.
  3314. */
  3315. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3316. unsigned long *imbalance)
  3317. {
  3318. unsigned long max_pull;
  3319. /*
  3320. * In the presence of smp nice balancing, certain scenarios can have
  3321. * max load less than avg load(as we skip the groups at or below
  3322. * its cpu_power, while calculating max_load..)
  3323. */
  3324. if (sds->max_load < sds->avg_load) {
  3325. *imbalance = 0;
  3326. return fix_small_imbalance(sds, this_cpu, imbalance);
  3327. }
  3328. /* Don't want to pull so many tasks that a group would go idle */
  3329. max_pull = min(sds->max_load - sds->avg_load,
  3330. sds->max_load - sds->busiest_load_per_task);
  3331. /* How much load to actually move to equalise the imbalance */
  3332. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3333. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3334. / SCHED_LOAD_SCALE;
  3335. /*
  3336. * if *imbalance is less than the average load per runnable task
  3337. * there is no gaurantee that any tasks will be moved so we'll have
  3338. * a think about bumping its value to force at least one task to be
  3339. * moved
  3340. */
  3341. if (*imbalance < sds->busiest_load_per_task)
  3342. return fix_small_imbalance(sds, this_cpu, imbalance);
  3343. }
  3344. /******* find_busiest_group() helpers end here *********************/
  3345. /**
  3346. * find_busiest_group - Returns the busiest group within the sched_domain
  3347. * if there is an imbalance. If there isn't an imbalance, and
  3348. * the user has opted for power-savings, it returns a group whose
  3349. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3350. * such a group exists.
  3351. *
  3352. * Also calculates the amount of weighted load which should be moved
  3353. * to restore balance.
  3354. *
  3355. * @sd: The sched_domain whose busiest group is to be returned.
  3356. * @this_cpu: The cpu for which load balancing is currently being performed.
  3357. * @imbalance: Variable which stores amount of weighted load which should
  3358. * be moved to restore balance/put a group to idle.
  3359. * @idle: The idle status of this_cpu.
  3360. * @sd_idle: The idleness of sd
  3361. * @cpus: The set of CPUs under consideration for load-balancing.
  3362. * @balance: Pointer to a variable indicating if this_cpu
  3363. * is the appropriate cpu to perform load balancing at this_level.
  3364. *
  3365. * Returns: - the busiest group if imbalance exists.
  3366. * - If no imbalance and user has opted for power-savings balance,
  3367. * return the least loaded group whose CPUs can be
  3368. * put to idle by rebalancing its tasks onto our group.
  3369. */
  3370. static struct sched_group *
  3371. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3372. unsigned long *imbalance, enum cpu_idle_type idle,
  3373. int *sd_idle, const struct cpumask *cpus, int *balance)
  3374. {
  3375. struct sd_lb_stats sds;
  3376. memset(&sds, 0, sizeof(sds));
  3377. /*
  3378. * Compute the various statistics relavent for load balancing at
  3379. * this level.
  3380. */
  3381. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3382. balance, &sds);
  3383. /* Cases where imbalance does not exist from POV of this_cpu */
  3384. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3385. * at this level.
  3386. * 2) There is no busy sibling group to pull from.
  3387. * 3) This group is the busiest group.
  3388. * 4) This group is more busy than the avg busieness at this
  3389. * sched_domain.
  3390. * 5) The imbalance is within the specified limit.
  3391. * 6) Any rebalance would lead to ping-pong
  3392. */
  3393. if (balance && !(*balance))
  3394. goto ret;
  3395. if (!sds.busiest || sds.busiest_nr_running == 0)
  3396. goto out_balanced;
  3397. if (sds.this_load >= sds.max_load)
  3398. goto out_balanced;
  3399. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3400. if (sds.this_load >= sds.avg_load)
  3401. goto out_balanced;
  3402. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3403. goto out_balanced;
  3404. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3405. if (sds.group_imb)
  3406. sds.busiest_load_per_task =
  3407. min(sds.busiest_load_per_task, sds.avg_load);
  3408. /*
  3409. * We're trying to get all the cpus to the average_load, so we don't
  3410. * want to push ourselves above the average load, nor do we wish to
  3411. * reduce the max loaded cpu below the average load, as either of these
  3412. * actions would just result in more rebalancing later, and ping-pong
  3413. * tasks around. Thus we look for the minimum possible imbalance.
  3414. * Negative imbalances (*we* are more loaded than anyone else) will
  3415. * be counted as no imbalance for these purposes -- we can't fix that
  3416. * by pulling tasks to us. Be careful of negative numbers as they'll
  3417. * appear as very large values with unsigned longs.
  3418. */
  3419. if (sds.max_load <= sds.busiest_load_per_task)
  3420. goto out_balanced;
  3421. /* Looks like there is an imbalance. Compute it */
  3422. calculate_imbalance(&sds, this_cpu, imbalance);
  3423. return sds.busiest;
  3424. out_balanced:
  3425. /*
  3426. * There is no obvious imbalance. But check if we can do some balancing
  3427. * to save power.
  3428. */
  3429. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3430. return sds.busiest;
  3431. ret:
  3432. *imbalance = 0;
  3433. return NULL;
  3434. }
  3435. /*
  3436. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3437. */
  3438. static struct rq *
  3439. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3440. unsigned long imbalance, const struct cpumask *cpus)
  3441. {
  3442. struct rq *busiest = NULL, *rq;
  3443. unsigned long max_load = 0;
  3444. int i;
  3445. for_each_cpu(i, sched_group_cpus(group)) {
  3446. unsigned long power = power_of(i);
  3447. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3448. unsigned long wl;
  3449. if (!cpumask_test_cpu(i, cpus))
  3450. continue;
  3451. rq = cpu_rq(i);
  3452. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3453. wl /= power;
  3454. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3455. continue;
  3456. if (wl > max_load) {
  3457. max_load = wl;
  3458. busiest = rq;
  3459. }
  3460. }
  3461. return busiest;
  3462. }
  3463. /*
  3464. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3465. * so long as it is large enough.
  3466. */
  3467. #define MAX_PINNED_INTERVAL 512
  3468. /* Working cpumask for load_balance and load_balance_newidle. */
  3469. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3470. /*
  3471. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3472. * tasks if there is an imbalance.
  3473. */
  3474. static int load_balance(int this_cpu, struct rq *this_rq,
  3475. struct sched_domain *sd, enum cpu_idle_type idle,
  3476. int *balance)
  3477. {
  3478. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3479. struct sched_group *group;
  3480. unsigned long imbalance;
  3481. struct rq *busiest;
  3482. unsigned long flags;
  3483. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3484. cpumask_copy(cpus, cpu_active_mask);
  3485. /*
  3486. * When power savings policy is enabled for the parent domain, idle
  3487. * sibling can pick up load irrespective of busy siblings. In this case,
  3488. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3489. * portraying it as CPU_NOT_IDLE.
  3490. */
  3491. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3492. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3493. sd_idle = 1;
  3494. schedstat_inc(sd, lb_count[idle]);
  3495. redo:
  3496. update_shares(sd);
  3497. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3498. cpus, balance);
  3499. if (*balance == 0)
  3500. goto out_balanced;
  3501. if (!group) {
  3502. schedstat_inc(sd, lb_nobusyg[idle]);
  3503. goto out_balanced;
  3504. }
  3505. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3506. if (!busiest) {
  3507. schedstat_inc(sd, lb_nobusyq[idle]);
  3508. goto out_balanced;
  3509. }
  3510. BUG_ON(busiest == this_rq);
  3511. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3512. ld_moved = 0;
  3513. if (busiest->nr_running > 1) {
  3514. /*
  3515. * Attempt to move tasks. If find_busiest_group has found
  3516. * an imbalance but busiest->nr_running <= 1, the group is
  3517. * still unbalanced. ld_moved simply stays zero, so it is
  3518. * correctly treated as an imbalance.
  3519. */
  3520. local_irq_save(flags);
  3521. double_rq_lock(this_rq, busiest);
  3522. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3523. imbalance, sd, idle, &all_pinned);
  3524. double_rq_unlock(this_rq, busiest);
  3525. local_irq_restore(flags);
  3526. /*
  3527. * some other cpu did the load balance for us.
  3528. */
  3529. if (ld_moved && this_cpu != smp_processor_id())
  3530. resched_cpu(this_cpu);
  3531. /* All tasks on this runqueue were pinned by CPU affinity */
  3532. if (unlikely(all_pinned)) {
  3533. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3534. if (!cpumask_empty(cpus))
  3535. goto redo;
  3536. goto out_balanced;
  3537. }
  3538. }
  3539. if (!ld_moved) {
  3540. schedstat_inc(sd, lb_failed[idle]);
  3541. sd->nr_balance_failed++;
  3542. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3543. spin_lock_irqsave(&busiest->lock, flags);
  3544. /* don't kick the migration_thread, if the curr
  3545. * task on busiest cpu can't be moved to this_cpu
  3546. */
  3547. if (!cpumask_test_cpu(this_cpu,
  3548. &busiest->curr->cpus_allowed)) {
  3549. spin_unlock_irqrestore(&busiest->lock, flags);
  3550. all_pinned = 1;
  3551. goto out_one_pinned;
  3552. }
  3553. if (!busiest->active_balance) {
  3554. busiest->active_balance = 1;
  3555. busiest->push_cpu = this_cpu;
  3556. active_balance = 1;
  3557. }
  3558. spin_unlock_irqrestore(&busiest->lock, flags);
  3559. if (active_balance)
  3560. wake_up_process(busiest->migration_thread);
  3561. /*
  3562. * We've kicked active balancing, reset the failure
  3563. * counter.
  3564. */
  3565. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3566. }
  3567. } else
  3568. sd->nr_balance_failed = 0;
  3569. if (likely(!active_balance)) {
  3570. /* We were unbalanced, so reset the balancing interval */
  3571. sd->balance_interval = sd->min_interval;
  3572. } else {
  3573. /*
  3574. * If we've begun active balancing, start to back off. This
  3575. * case may not be covered by the all_pinned logic if there
  3576. * is only 1 task on the busy runqueue (because we don't call
  3577. * move_tasks).
  3578. */
  3579. if (sd->balance_interval < sd->max_interval)
  3580. sd->balance_interval *= 2;
  3581. }
  3582. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3583. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3584. ld_moved = -1;
  3585. goto out;
  3586. out_balanced:
  3587. schedstat_inc(sd, lb_balanced[idle]);
  3588. sd->nr_balance_failed = 0;
  3589. out_one_pinned:
  3590. /* tune up the balancing interval */
  3591. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3592. (sd->balance_interval < sd->max_interval))
  3593. sd->balance_interval *= 2;
  3594. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3595. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3596. ld_moved = -1;
  3597. else
  3598. ld_moved = 0;
  3599. out:
  3600. if (ld_moved)
  3601. update_shares(sd);
  3602. return ld_moved;
  3603. }
  3604. /*
  3605. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3606. * tasks if there is an imbalance.
  3607. *
  3608. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3609. * this_rq is locked.
  3610. */
  3611. static int
  3612. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3613. {
  3614. struct sched_group *group;
  3615. struct rq *busiest = NULL;
  3616. unsigned long imbalance;
  3617. int ld_moved = 0;
  3618. int sd_idle = 0;
  3619. int all_pinned = 0;
  3620. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3621. cpumask_copy(cpus, cpu_active_mask);
  3622. /*
  3623. * When power savings policy is enabled for the parent domain, idle
  3624. * sibling can pick up load irrespective of busy siblings. In this case,
  3625. * let the state of idle sibling percolate up as IDLE, instead of
  3626. * portraying it as CPU_NOT_IDLE.
  3627. */
  3628. if (sd->flags & SD_SHARE_CPUPOWER &&
  3629. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3630. sd_idle = 1;
  3631. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3632. redo:
  3633. update_shares_locked(this_rq, sd);
  3634. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3635. &sd_idle, cpus, NULL);
  3636. if (!group) {
  3637. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3638. goto out_balanced;
  3639. }
  3640. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3641. if (!busiest) {
  3642. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3643. goto out_balanced;
  3644. }
  3645. BUG_ON(busiest == this_rq);
  3646. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3647. ld_moved = 0;
  3648. if (busiest->nr_running > 1) {
  3649. /* Attempt to move tasks */
  3650. double_lock_balance(this_rq, busiest);
  3651. /* this_rq->clock is already updated */
  3652. update_rq_clock(busiest);
  3653. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3654. imbalance, sd, CPU_NEWLY_IDLE,
  3655. &all_pinned);
  3656. double_unlock_balance(this_rq, busiest);
  3657. if (unlikely(all_pinned)) {
  3658. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3659. if (!cpumask_empty(cpus))
  3660. goto redo;
  3661. }
  3662. }
  3663. if (!ld_moved) {
  3664. int active_balance = 0;
  3665. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3666. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3667. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3668. return -1;
  3669. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3670. return -1;
  3671. if (sd->nr_balance_failed++ < 2)
  3672. return -1;
  3673. /*
  3674. * The only task running in a non-idle cpu can be moved to this
  3675. * cpu in an attempt to completely freeup the other CPU
  3676. * package. The same method used to move task in load_balance()
  3677. * have been extended for load_balance_newidle() to speedup
  3678. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3679. *
  3680. * The package power saving logic comes from
  3681. * find_busiest_group(). If there are no imbalance, then
  3682. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3683. * f_b_g() will select a group from which a running task may be
  3684. * pulled to this cpu in order to make the other package idle.
  3685. * If there is no opportunity to make a package idle and if
  3686. * there are no imbalance, then f_b_g() will return NULL and no
  3687. * action will be taken in load_balance_newidle().
  3688. *
  3689. * Under normal task pull operation due to imbalance, there
  3690. * will be more than one task in the source run queue and
  3691. * move_tasks() will succeed. ld_moved will be true and this
  3692. * active balance code will not be triggered.
  3693. */
  3694. /* Lock busiest in correct order while this_rq is held */
  3695. double_lock_balance(this_rq, busiest);
  3696. /*
  3697. * don't kick the migration_thread, if the curr
  3698. * task on busiest cpu can't be moved to this_cpu
  3699. */
  3700. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3701. double_unlock_balance(this_rq, busiest);
  3702. all_pinned = 1;
  3703. return ld_moved;
  3704. }
  3705. if (!busiest->active_balance) {
  3706. busiest->active_balance = 1;
  3707. busiest->push_cpu = this_cpu;
  3708. active_balance = 1;
  3709. }
  3710. double_unlock_balance(this_rq, busiest);
  3711. /*
  3712. * Should not call ttwu while holding a rq->lock
  3713. */
  3714. spin_unlock(&this_rq->lock);
  3715. if (active_balance)
  3716. wake_up_process(busiest->migration_thread);
  3717. spin_lock(&this_rq->lock);
  3718. } else
  3719. sd->nr_balance_failed = 0;
  3720. update_shares_locked(this_rq, sd);
  3721. return ld_moved;
  3722. out_balanced:
  3723. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3724. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3725. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3726. return -1;
  3727. sd->nr_balance_failed = 0;
  3728. return 0;
  3729. }
  3730. /*
  3731. * idle_balance is called by schedule() if this_cpu is about to become
  3732. * idle. Attempts to pull tasks from other CPUs.
  3733. */
  3734. static void idle_balance(int this_cpu, struct rq *this_rq)
  3735. {
  3736. struct sched_domain *sd;
  3737. int pulled_task = 0;
  3738. unsigned long next_balance = jiffies + HZ;
  3739. this_rq->idle_stamp = this_rq->clock;
  3740. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3741. return;
  3742. for_each_domain(this_cpu, sd) {
  3743. unsigned long interval;
  3744. if (!(sd->flags & SD_LOAD_BALANCE))
  3745. continue;
  3746. if (sd->flags & SD_BALANCE_NEWIDLE)
  3747. /* If we've pulled tasks over stop searching: */
  3748. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3749. sd);
  3750. interval = msecs_to_jiffies(sd->balance_interval);
  3751. if (time_after(next_balance, sd->last_balance + interval))
  3752. next_balance = sd->last_balance + interval;
  3753. if (pulled_task) {
  3754. this_rq->idle_stamp = 0;
  3755. break;
  3756. }
  3757. }
  3758. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3759. /*
  3760. * We are going idle. next_balance may be set based on
  3761. * a busy processor. So reset next_balance.
  3762. */
  3763. this_rq->next_balance = next_balance;
  3764. }
  3765. }
  3766. /*
  3767. * active_load_balance is run by migration threads. It pushes running tasks
  3768. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3769. * running on each physical CPU where possible, and avoids physical /
  3770. * logical imbalances.
  3771. *
  3772. * Called with busiest_rq locked.
  3773. */
  3774. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3775. {
  3776. int target_cpu = busiest_rq->push_cpu;
  3777. struct sched_domain *sd;
  3778. struct rq *target_rq;
  3779. /* Is there any task to move? */
  3780. if (busiest_rq->nr_running <= 1)
  3781. return;
  3782. target_rq = cpu_rq(target_cpu);
  3783. /*
  3784. * This condition is "impossible", if it occurs
  3785. * we need to fix it. Originally reported by
  3786. * Bjorn Helgaas on a 128-cpu setup.
  3787. */
  3788. BUG_ON(busiest_rq == target_rq);
  3789. /* move a task from busiest_rq to target_rq */
  3790. double_lock_balance(busiest_rq, target_rq);
  3791. update_rq_clock(busiest_rq);
  3792. update_rq_clock(target_rq);
  3793. /* Search for an sd spanning us and the target CPU. */
  3794. for_each_domain(target_cpu, sd) {
  3795. if ((sd->flags & SD_LOAD_BALANCE) &&
  3796. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3797. break;
  3798. }
  3799. if (likely(sd)) {
  3800. schedstat_inc(sd, alb_count);
  3801. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3802. sd, CPU_IDLE))
  3803. schedstat_inc(sd, alb_pushed);
  3804. else
  3805. schedstat_inc(sd, alb_failed);
  3806. }
  3807. double_unlock_balance(busiest_rq, target_rq);
  3808. }
  3809. #ifdef CONFIG_NO_HZ
  3810. static struct {
  3811. atomic_t load_balancer;
  3812. cpumask_var_t cpu_mask;
  3813. cpumask_var_t ilb_grp_nohz_mask;
  3814. } nohz ____cacheline_aligned = {
  3815. .load_balancer = ATOMIC_INIT(-1),
  3816. };
  3817. int get_nohz_load_balancer(void)
  3818. {
  3819. return atomic_read(&nohz.load_balancer);
  3820. }
  3821. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3822. /**
  3823. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3824. * @cpu: The cpu whose lowest level of sched domain is to
  3825. * be returned.
  3826. * @flag: The flag to check for the lowest sched_domain
  3827. * for the given cpu.
  3828. *
  3829. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3830. */
  3831. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3832. {
  3833. struct sched_domain *sd;
  3834. for_each_domain(cpu, sd)
  3835. if (sd && (sd->flags & flag))
  3836. break;
  3837. return sd;
  3838. }
  3839. /**
  3840. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3841. * @cpu: The cpu whose domains we're iterating over.
  3842. * @sd: variable holding the value of the power_savings_sd
  3843. * for cpu.
  3844. * @flag: The flag to filter the sched_domains to be iterated.
  3845. *
  3846. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3847. * set, starting from the lowest sched_domain to the highest.
  3848. */
  3849. #define for_each_flag_domain(cpu, sd, flag) \
  3850. for (sd = lowest_flag_domain(cpu, flag); \
  3851. (sd && (sd->flags & flag)); sd = sd->parent)
  3852. /**
  3853. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3854. * @ilb_group: group to be checked for semi-idleness
  3855. *
  3856. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3857. *
  3858. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3859. * and atleast one non-idle CPU. This helper function checks if the given
  3860. * sched_group is semi-idle or not.
  3861. */
  3862. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3863. {
  3864. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3865. sched_group_cpus(ilb_group));
  3866. /*
  3867. * A sched_group is semi-idle when it has atleast one busy cpu
  3868. * and atleast one idle cpu.
  3869. */
  3870. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3871. return 0;
  3872. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3873. return 0;
  3874. return 1;
  3875. }
  3876. /**
  3877. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3878. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3879. *
  3880. * Returns: Returns the id of the idle load balancer if it exists,
  3881. * Else, returns >= nr_cpu_ids.
  3882. *
  3883. * This algorithm picks the idle load balancer such that it belongs to a
  3884. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3885. * completely idle packages/cores just for the purpose of idle load balancing
  3886. * when there are other idle cpu's which are better suited for that job.
  3887. */
  3888. static int find_new_ilb(int cpu)
  3889. {
  3890. struct sched_domain *sd;
  3891. struct sched_group *ilb_group;
  3892. /*
  3893. * Have idle load balancer selection from semi-idle packages only
  3894. * when power-aware load balancing is enabled
  3895. */
  3896. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3897. goto out_done;
  3898. /*
  3899. * Optimize for the case when we have no idle CPUs or only one
  3900. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3901. */
  3902. if (cpumask_weight(nohz.cpu_mask) < 2)
  3903. goto out_done;
  3904. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3905. ilb_group = sd->groups;
  3906. do {
  3907. if (is_semi_idle_group(ilb_group))
  3908. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3909. ilb_group = ilb_group->next;
  3910. } while (ilb_group != sd->groups);
  3911. }
  3912. out_done:
  3913. return cpumask_first(nohz.cpu_mask);
  3914. }
  3915. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3916. static inline int find_new_ilb(int call_cpu)
  3917. {
  3918. return cpumask_first(nohz.cpu_mask);
  3919. }
  3920. #endif
  3921. /*
  3922. * This routine will try to nominate the ilb (idle load balancing)
  3923. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3924. * load balancing on behalf of all those cpus. If all the cpus in the system
  3925. * go into this tickless mode, then there will be no ilb owner (as there is
  3926. * no need for one) and all the cpus will sleep till the next wakeup event
  3927. * arrives...
  3928. *
  3929. * For the ilb owner, tick is not stopped. And this tick will be used
  3930. * for idle load balancing. ilb owner will still be part of
  3931. * nohz.cpu_mask..
  3932. *
  3933. * While stopping the tick, this cpu will become the ilb owner if there
  3934. * is no other owner. And will be the owner till that cpu becomes busy
  3935. * or if all cpus in the system stop their ticks at which point
  3936. * there is no need for ilb owner.
  3937. *
  3938. * When the ilb owner becomes busy, it nominates another owner, during the
  3939. * next busy scheduler_tick()
  3940. */
  3941. int select_nohz_load_balancer(int stop_tick)
  3942. {
  3943. int cpu = smp_processor_id();
  3944. if (stop_tick) {
  3945. cpu_rq(cpu)->in_nohz_recently = 1;
  3946. if (!cpu_active(cpu)) {
  3947. if (atomic_read(&nohz.load_balancer) != cpu)
  3948. return 0;
  3949. /*
  3950. * If we are going offline and still the leader,
  3951. * give up!
  3952. */
  3953. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3954. BUG();
  3955. return 0;
  3956. }
  3957. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3958. /* time for ilb owner also to sleep */
  3959. if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
  3960. if (atomic_read(&nohz.load_balancer) == cpu)
  3961. atomic_set(&nohz.load_balancer, -1);
  3962. return 0;
  3963. }
  3964. if (atomic_read(&nohz.load_balancer) == -1) {
  3965. /* make me the ilb owner */
  3966. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3967. return 1;
  3968. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3969. int new_ilb;
  3970. if (!(sched_smt_power_savings ||
  3971. sched_mc_power_savings))
  3972. return 1;
  3973. /*
  3974. * Check to see if there is a more power-efficient
  3975. * ilb.
  3976. */
  3977. new_ilb = find_new_ilb(cpu);
  3978. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3979. atomic_set(&nohz.load_balancer, -1);
  3980. resched_cpu(new_ilb);
  3981. return 0;
  3982. }
  3983. return 1;
  3984. }
  3985. } else {
  3986. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3987. return 0;
  3988. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3989. if (atomic_read(&nohz.load_balancer) == cpu)
  3990. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3991. BUG();
  3992. }
  3993. return 0;
  3994. }
  3995. #endif
  3996. static DEFINE_SPINLOCK(balancing);
  3997. /*
  3998. * It checks each scheduling domain to see if it is due to be balanced,
  3999. * and initiates a balancing operation if so.
  4000. *
  4001. * Balancing parameters are set up in arch_init_sched_domains.
  4002. */
  4003. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4004. {
  4005. int balance = 1;
  4006. struct rq *rq = cpu_rq(cpu);
  4007. unsigned long interval;
  4008. struct sched_domain *sd;
  4009. /* Earliest time when we have to do rebalance again */
  4010. unsigned long next_balance = jiffies + 60*HZ;
  4011. int update_next_balance = 0;
  4012. int need_serialize;
  4013. for_each_domain(cpu, sd) {
  4014. if (!(sd->flags & SD_LOAD_BALANCE))
  4015. continue;
  4016. interval = sd->balance_interval;
  4017. if (idle != CPU_IDLE)
  4018. interval *= sd->busy_factor;
  4019. /* scale ms to jiffies */
  4020. interval = msecs_to_jiffies(interval);
  4021. if (unlikely(!interval))
  4022. interval = 1;
  4023. if (interval > HZ*NR_CPUS/10)
  4024. interval = HZ*NR_CPUS/10;
  4025. need_serialize = sd->flags & SD_SERIALIZE;
  4026. if (need_serialize) {
  4027. if (!spin_trylock(&balancing))
  4028. goto out;
  4029. }
  4030. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4031. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4032. /*
  4033. * We've pulled tasks over so either we're no
  4034. * longer idle, or one of our SMT siblings is
  4035. * not idle.
  4036. */
  4037. idle = CPU_NOT_IDLE;
  4038. }
  4039. sd->last_balance = jiffies;
  4040. }
  4041. if (need_serialize)
  4042. spin_unlock(&balancing);
  4043. out:
  4044. if (time_after(next_balance, sd->last_balance + interval)) {
  4045. next_balance = sd->last_balance + interval;
  4046. update_next_balance = 1;
  4047. }
  4048. /*
  4049. * Stop the load balance at this level. There is another
  4050. * CPU in our sched group which is doing load balancing more
  4051. * actively.
  4052. */
  4053. if (!balance)
  4054. break;
  4055. }
  4056. /*
  4057. * next_balance will be updated only when there is a need.
  4058. * When the cpu is attached to null domain for ex, it will not be
  4059. * updated.
  4060. */
  4061. if (likely(update_next_balance))
  4062. rq->next_balance = next_balance;
  4063. }
  4064. /*
  4065. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4066. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4067. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4068. */
  4069. static void run_rebalance_domains(struct softirq_action *h)
  4070. {
  4071. int this_cpu = smp_processor_id();
  4072. struct rq *this_rq = cpu_rq(this_cpu);
  4073. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4074. CPU_IDLE : CPU_NOT_IDLE;
  4075. rebalance_domains(this_cpu, idle);
  4076. #ifdef CONFIG_NO_HZ
  4077. /*
  4078. * If this cpu is the owner for idle load balancing, then do the
  4079. * balancing on behalf of the other idle cpus whose ticks are
  4080. * stopped.
  4081. */
  4082. if (this_rq->idle_at_tick &&
  4083. atomic_read(&nohz.load_balancer) == this_cpu) {
  4084. struct rq *rq;
  4085. int balance_cpu;
  4086. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4087. if (balance_cpu == this_cpu)
  4088. continue;
  4089. /*
  4090. * If this cpu gets work to do, stop the load balancing
  4091. * work being done for other cpus. Next load
  4092. * balancing owner will pick it up.
  4093. */
  4094. if (need_resched())
  4095. break;
  4096. rebalance_domains(balance_cpu, CPU_IDLE);
  4097. rq = cpu_rq(balance_cpu);
  4098. if (time_after(this_rq->next_balance, rq->next_balance))
  4099. this_rq->next_balance = rq->next_balance;
  4100. }
  4101. }
  4102. #endif
  4103. }
  4104. static inline int on_null_domain(int cpu)
  4105. {
  4106. return !rcu_dereference(cpu_rq(cpu)->sd);
  4107. }
  4108. /*
  4109. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4110. *
  4111. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4112. * idle load balancing owner or decide to stop the periodic load balancing,
  4113. * if the whole system is idle.
  4114. */
  4115. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4116. {
  4117. #ifdef CONFIG_NO_HZ
  4118. /*
  4119. * If we were in the nohz mode recently and busy at the current
  4120. * scheduler tick, then check if we need to nominate new idle
  4121. * load balancer.
  4122. */
  4123. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4124. rq->in_nohz_recently = 0;
  4125. if (atomic_read(&nohz.load_balancer) == cpu) {
  4126. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4127. atomic_set(&nohz.load_balancer, -1);
  4128. }
  4129. if (atomic_read(&nohz.load_balancer) == -1) {
  4130. int ilb = find_new_ilb(cpu);
  4131. if (ilb < nr_cpu_ids)
  4132. resched_cpu(ilb);
  4133. }
  4134. }
  4135. /*
  4136. * If this cpu is idle and doing idle load balancing for all the
  4137. * cpus with ticks stopped, is it time for that to stop?
  4138. */
  4139. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4140. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4141. resched_cpu(cpu);
  4142. return;
  4143. }
  4144. /*
  4145. * If this cpu is idle and the idle load balancing is done by
  4146. * someone else, then no need raise the SCHED_SOFTIRQ
  4147. */
  4148. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4149. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4150. return;
  4151. #endif
  4152. /* Don't need to rebalance while attached to NULL domain */
  4153. if (time_after_eq(jiffies, rq->next_balance) &&
  4154. likely(!on_null_domain(cpu)))
  4155. raise_softirq(SCHED_SOFTIRQ);
  4156. }
  4157. #else /* CONFIG_SMP */
  4158. /*
  4159. * on UP we do not need to balance between CPUs:
  4160. */
  4161. static inline void idle_balance(int cpu, struct rq *rq)
  4162. {
  4163. }
  4164. #endif
  4165. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4166. EXPORT_PER_CPU_SYMBOL(kstat);
  4167. /*
  4168. * Return any ns on the sched_clock that have not yet been accounted in
  4169. * @p in case that task is currently running.
  4170. *
  4171. * Called with task_rq_lock() held on @rq.
  4172. */
  4173. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4174. {
  4175. u64 ns = 0;
  4176. if (task_current(rq, p)) {
  4177. update_rq_clock(rq);
  4178. ns = rq->clock - p->se.exec_start;
  4179. if ((s64)ns < 0)
  4180. ns = 0;
  4181. }
  4182. return ns;
  4183. }
  4184. unsigned long long task_delta_exec(struct task_struct *p)
  4185. {
  4186. unsigned long flags;
  4187. struct rq *rq;
  4188. u64 ns = 0;
  4189. rq = task_rq_lock(p, &flags);
  4190. ns = do_task_delta_exec(p, rq);
  4191. task_rq_unlock(rq, &flags);
  4192. return ns;
  4193. }
  4194. /*
  4195. * Return accounted runtime for the task.
  4196. * In case the task is currently running, return the runtime plus current's
  4197. * pending runtime that have not been accounted yet.
  4198. */
  4199. unsigned long long task_sched_runtime(struct task_struct *p)
  4200. {
  4201. unsigned long flags;
  4202. struct rq *rq;
  4203. u64 ns = 0;
  4204. rq = task_rq_lock(p, &flags);
  4205. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4206. task_rq_unlock(rq, &flags);
  4207. return ns;
  4208. }
  4209. /*
  4210. * Return sum_exec_runtime for the thread group.
  4211. * In case the task is currently running, return the sum plus current's
  4212. * pending runtime that have not been accounted yet.
  4213. *
  4214. * Note that the thread group might have other running tasks as well,
  4215. * so the return value not includes other pending runtime that other
  4216. * running tasks might have.
  4217. */
  4218. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4219. {
  4220. struct task_cputime totals;
  4221. unsigned long flags;
  4222. struct rq *rq;
  4223. u64 ns;
  4224. rq = task_rq_lock(p, &flags);
  4225. thread_group_cputime(p, &totals);
  4226. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4227. task_rq_unlock(rq, &flags);
  4228. return ns;
  4229. }
  4230. /*
  4231. * Account user cpu time to a process.
  4232. * @p: the process that the cpu time gets accounted to
  4233. * @cputime: the cpu time spent in user space since the last update
  4234. * @cputime_scaled: cputime scaled by cpu frequency
  4235. */
  4236. void account_user_time(struct task_struct *p, cputime_t cputime,
  4237. cputime_t cputime_scaled)
  4238. {
  4239. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4240. cputime64_t tmp;
  4241. /* Add user time to process. */
  4242. p->utime = cputime_add(p->utime, cputime);
  4243. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4244. account_group_user_time(p, cputime);
  4245. /* Add user time to cpustat. */
  4246. tmp = cputime_to_cputime64(cputime);
  4247. if (TASK_NICE(p) > 0)
  4248. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4249. else
  4250. cpustat->user = cputime64_add(cpustat->user, tmp);
  4251. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4252. /* Account for user time used */
  4253. acct_update_integrals(p);
  4254. }
  4255. /*
  4256. * Account guest cpu time to a process.
  4257. * @p: the process that the cpu time gets accounted to
  4258. * @cputime: the cpu time spent in virtual machine since the last update
  4259. * @cputime_scaled: cputime scaled by cpu frequency
  4260. */
  4261. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4262. cputime_t cputime_scaled)
  4263. {
  4264. cputime64_t tmp;
  4265. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4266. tmp = cputime_to_cputime64(cputime);
  4267. /* Add guest time to process. */
  4268. p->utime = cputime_add(p->utime, cputime);
  4269. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4270. account_group_user_time(p, cputime);
  4271. p->gtime = cputime_add(p->gtime, cputime);
  4272. /* Add guest time to cpustat. */
  4273. if (TASK_NICE(p) > 0) {
  4274. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4275. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  4276. } else {
  4277. cpustat->user = cputime64_add(cpustat->user, tmp);
  4278. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4279. }
  4280. }
  4281. /*
  4282. * Account system cpu time to a process.
  4283. * @p: the process that the cpu time gets accounted to
  4284. * @hardirq_offset: the offset to subtract from hardirq_count()
  4285. * @cputime: the cpu time spent in kernel space since the last update
  4286. * @cputime_scaled: cputime scaled by cpu frequency
  4287. */
  4288. void account_system_time(struct task_struct *p, int hardirq_offset,
  4289. cputime_t cputime, cputime_t cputime_scaled)
  4290. {
  4291. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4292. cputime64_t tmp;
  4293. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4294. account_guest_time(p, cputime, cputime_scaled);
  4295. return;
  4296. }
  4297. /* Add system time to process. */
  4298. p->stime = cputime_add(p->stime, cputime);
  4299. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4300. account_group_system_time(p, cputime);
  4301. /* Add system time to cpustat. */
  4302. tmp = cputime_to_cputime64(cputime);
  4303. if (hardirq_count() - hardirq_offset)
  4304. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4305. else if (softirq_count())
  4306. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4307. else
  4308. cpustat->system = cputime64_add(cpustat->system, tmp);
  4309. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4310. /* Account for system time used */
  4311. acct_update_integrals(p);
  4312. }
  4313. /*
  4314. * Account for involuntary wait time.
  4315. * @steal: the cpu time spent in involuntary wait
  4316. */
  4317. void account_steal_time(cputime_t cputime)
  4318. {
  4319. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4320. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4321. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4322. }
  4323. /*
  4324. * Account for idle time.
  4325. * @cputime: the cpu time spent in idle wait
  4326. */
  4327. void account_idle_time(cputime_t cputime)
  4328. {
  4329. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4330. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4331. struct rq *rq = this_rq();
  4332. if (atomic_read(&rq->nr_iowait) > 0)
  4333. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4334. else
  4335. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4336. }
  4337. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4338. /*
  4339. * Account a single tick of cpu time.
  4340. * @p: the process that the cpu time gets accounted to
  4341. * @user_tick: indicates if the tick is a user or a system tick
  4342. */
  4343. void account_process_tick(struct task_struct *p, int user_tick)
  4344. {
  4345. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  4346. struct rq *rq = this_rq();
  4347. if (user_tick)
  4348. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  4349. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4350. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  4351. one_jiffy_scaled);
  4352. else
  4353. account_idle_time(cputime_one_jiffy);
  4354. }
  4355. /*
  4356. * Account multiple ticks of steal time.
  4357. * @p: the process from which the cpu time has been stolen
  4358. * @ticks: number of stolen ticks
  4359. */
  4360. void account_steal_ticks(unsigned long ticks)
  4361. {
  4362. account_steal_time(jiffies_to_cputime(ticks));
  4363. }
  4364. /*
  4365. * Account multiple ticks of idle time.
  4366. * @ticks: number of stolen ticks
  4367. */
  4368. void account_idle_ticks(unsigned long ticks)
  4369. {
  4370. account_idle_time(jiffies_to_cputime(ticks));
  4371. }
  4372. #endif
  4373. /*
  4374. * Use precise platform statistics if available:
  4375. */
  4376. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4377. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4378. {
  4379. *ut = p->utime;
  4380. *st = p->stime;
  4381. }
  4382. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4383. {
  4384. struct task_cputime cputime;
  4385. thread_group_cputime(p, &cputime);
  4386. *ut = cputime.utime;
  4387. *st = cputime.stime;
  4388. }
  4389. #else
  4390. #ifndef nsecs_to_cputime
  4391. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  4392. #endif
  4393. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4394. {
  4395. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  4396. /*
  4397. * Use CFS's precise accounting:
  4398. */
  4399. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  4400. if (total) {
  4401. u64 temp;
  4402. temp = (u64)(rtime * utime);
  4403. do_div(temp, total);
  4404. utime = (cputime_t)temp;
  4405. } else
  4406. utime = rtime;
  4407. /*
  4408. * Compare with previous values, to keep monotonicity:
  4409. */
  4410. p->prev_utime = max(p->prev_utime, utime);
  4411. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  4412. *ut = p->prev_utime;
  4413. *st = p->prev_stime;
  4414. }
  4415. /*
  4416. * Must be called with siglock held.
  4417. */
  4418. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4419. {
  4420. struct signal_struct *sig = p->signal;
  4421. struct task_cputime cputime;
  4422. cputime_t rtime, utime, total;
  4423. thread_group_cputime(p, &cputime);
  4424. total = cputime_add(cputime.utime, cputime.stime);
  4425. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  4426. if (total) {
  4427. u64 temp;
  4428. temp = (u64)(rtime * cputime.utime);
  4429. do_div(temp, total);
  4430. utime = (cputime_t)temp;
  4431. } else
  4432. utime = rtime;
  4433. sig->prev_utime = max(sig->prev_utime, utime);
  4434. sig->prev_stime = max(sig->prev_stime,
  4435. cputime_sub(rtime, sig->prev_utime));
  4436. *ut = sig->prev_utime;
  4437. *st = sig->prev_stime;
  4438. }
  4439. #endif
  4440. /*
  4441. * This function gets called by the timer code, with HZ frequency.
  4442. * We call it with interrupts disabled.
  4443. *
  4444. * It also gets called by the fork code, when changing the parent's
  4445. * timeslices.
  4446. */
  4447. void scheduler_tick(void)
  4448. {
  4449. int cpu = smp_processor_id();
  4450. struct rq *rq = cpu_rq(cpu);
  4451. struct task_struct *curr = rq->curr;
  4452. sched_clock_tick();
  4453. spin_lock(&rq->lock);
  4454. update_rq_clock(rq);
  4455. update_cpu_load(rq);
  4456. curr->sched_class->task_tick(rq, curr, 0);
  4457. spin_unlock(&rq->lock);
  4458. perf_event_task_tick(curr, cpu);
  4459. #ifdef CONFIG_SMP
  4460. rq->idle_at_tick = idle_cpu(cpu);
  4461. trigger_load_balance(rq, cpu);
  4462. #endif
  4463. }
  4464. notrace unsigned long get_parent_ip(unsigned long addr)
  4465. {
  4466. if (in_lock_functions(addr)) {
  4467. addr = CALLER_ADDR2;
  4468. if (in_lock_functions(addr))
  4469. addr = CALLER_ADDR3;
  4470. }
  4471. return addr;
  4472. }
  4473. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4474. defined(CONFIG_PREEMPT_TRACER))
  4475. void __kprobes add_preempt_count(int val)
  4476. {
  4477. #ifdef CONFIG_DEBUG_PREEMPT
  4478. /*
  4479. * Underflow?
  4480. */
  4481. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4482. return;
  4483. #endif
  4484. preempt_count() += val;
  4485. #ifdef CONFIG_DEBUG_PREEMPT
  4486. /*
  4487. * Spinlock count overflowing soon?
  4488. */
  4489. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4490. PREEMPT_MASK - 10);
  4491. #endif
  4492. if (preempt_count() == val)
  4493. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4494. }
  4495. EXPORT_SYMBOL(add_preempt_count);
  4496. void __kprobes sub_preempt_count(int val)
  4497. {
  4498. #ifdef CONFIG_DEBUG_PREEMPT
  4499. /*
  4500. * Underflow?
  4501. */
  4502. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4503. return;
  4504. /*
  4505. * Is the spinlock portion underflowing?
  4506. */
  4507. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4508. !(preempt_count() & PREEMPT_MASK)))
  4509. return;
  4510. #endif
  4511. if (preempt_count() == val)
  4512. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4513. preempt_count() -= val;
  4514. }
  4515. EXPORT_SYMBOL(sub_preempt_count);
  4516. #endif
  4517. /*
  4518. * Print scheduling while atomic bug:
  4519. */
  4520. static noinline void __schedule_bug(struct task_struct *prev)
  4521. {
  4522. struct pt_regs *regs = get_irq_regs();
  4523. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4524. prev->comm, prev->pid, preempt_count());
  4525. debug_show_held_locks(prev);
  4526. print_modules();
  4527. if (irqs_disabled())
  4528. print_irqtrace_events(prev);
  4529. if (regs)
  4530. show_regs(regs);
  4531. else
  4532. dump_stack();
  4533. }
  4534. /*
  4535. * Various schedule()-time debugging checks and statistics:
  4536. */
  4537. static inline void schedule_debug(struct task_struct *prev)
  4538. {
  4539. /*
  4540. * Test if we are atomic. Since do_exit() needs to call into
  4541. * schedule() atomically, we ignore that path for now.
  4542. * Otherwise, whine if we are scheduling when we should not be.
  4543. */
  4544. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4545. __schedule_bug(prev);
  4546. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4547. schedstat_inc(this_rq(), sched_count);
  4548. #ifdef CONFIG_SCHEDSTATS
  4549. if (unlikely(prev->lock_depth >= 0)) {
  4550. schedstat_inc(this_rq(), bkl_count);
  4551. schedstat_inc(prev, sched_info.bkl_count);
  4552. }
  4553. #endif
  4554. }
  4555. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4556. {
  4557. if (prev->state == TASK_RUNNING) {
  4558. u64 runtime = prev->se.sum_exec_runtime;
  4559. runtime -= prev->se.prev_sum_exec_runtime;
  4560. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4561. /*
  4562. * In order to avoid avg_overlap growing stale when we are
  4563. * indeed overlapping and hence not getting put to sleep, grow
  4564. * the avg_overlap on preemption.
  4565. *
  4566. * We use the average preemption runtime because that
  4567. * correlates to the amount of cache footprint a task can
  4568. * build up.
  4569. */
  4570. update_avg(&prev->se.avg_overlap, runtime);
  4571. }
  4572. prev->sched_class->put_prev_task(rq, prev);
  4573. }
  4574. /*
  4575. * Pick up the highest-prio task:
  4576. */
  4577. static inline struct task_struct *
  4578. pick_next_task(struct rq *rq)
  4579. {
  4580. const struct sched_class *class;
  4581. struct task_struct *p;
  4582. /*
  4583. * Optimization: we know that if all tasks are in
  4584. * the fair class we can call that function directly:
  4585. */
  4586. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4587. p = fair_sched_class.pick_next_task(rq);
  4588. if (likely(p))
  4589. return p;
  4590. }
  4591. class = sched_class_highest;
  4592. for ( ; ; ) {
  4593. p = class->pick_next_task(rq);
  4594. if (p)
  4595. return p;
  4596. /*
  4597. * Will never be NULL as the idle class always
  4598. * returns a non-NULL p:
  4599. */
  4600. class = class->next;
  4601. }
  4602. }
  4603. /*
  4604. * schedule() is the main scheduler function.
  4605. */
  4606. asmlinkage void __sched schedule(void)
  4607. {
  4608. struct task_struct *prev, *next;
  4609. unsigned long *switch_count;
  4610. struct rq *rq;
  4611. int cpu;
  4612. need_resched:
  4613. preempt_disable();
  4614. cpu = smp_processor_id();
  4615. rq = cpu_rq(cpu);
  4616. rcu_sched_qs(cpu);
  4617. prev = rq->curr;
  4618. switch_count = &prev->nivcsw;
  4619. release_kernel_lock(prev);
  4620. need_resched_nonpreemptible:
  4621. schedule_debug(prev);
  4622. if (sched_feat(HRTICK))
  4623. hrtick_clear(rq);
  4624. spin_lock_irq(&rq->lock);
  4625. update_rq_clock(rq);
  4626. clear_tsk_need_resched(prev);
  4627. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4628. if (unlikely(signal_pending_state(prev->state, prev)))
  4629. prev->state = TASK_RUNNING;
  4630. else
  4631. deactivate_task(rq, prev, 1);
  4632. switch_count = &prev->nvcsw;
  4633. }
  4634. pre_schedule(rq, prev);
  4635. if (unlikely(!rq->nr_running))
  4636. idle_balance(cpu, rq);
  4637. put_prev_task(rq, prev);
  4638. next = pick_next_task(rq);
  4639. if (likely(prev != next)) {
  4640. sched_info_switch(prev, next);
  4641. perf_event_task_sched_out(prev, next, cpu);
  4642. rq->nr_switches++;
  4643. rq->curr = next;
  4644. ++*switch_count;
  4645. context_switch(rq, prev, next); /* unlocks the rq */
  4646. /*
  4647. * the context switch might have flipped the stack from under
  4648. * us, hence refresh the local variables.
  4649. */
  4650. cpu = smp_processor_id();
  4651. rq = cpu_rq(cpu);
  4652. } else
  4653. spin_unlock_irq(&rq->lock);
  4654. post_schedule(rq);
  4655. if (unlikely(reacquire_kernel_lock(current) < 0))
  4656. goto need_resched_nonpreemptible;
  4657. preempt_enable_no_resched();
  4658. if (need_resched())
  4659. goto need_resched;
  4660. }
  4661. EXPORT_SYMBOL(schedule);
  4662. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  4663. /*
  4664. * Look out! "owner" is an entirely speculative pointer
  4665. * access and not reliable.
  4666. */
  4667. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4668. {
  4669. unsigned int cpu;
  4670. struct rq *rq;
  4671. if (!sched_feat(OWNER_SPIN))
  4672. return 0;
  4673. #ifdef CONFIG_DEBUG_PAGEALLOC
  4674. /*
  4675. * Need to access the cpu field knowing that
  4676. * DEBUG_PAGEALLOC could have unmapped it if
  4677. * the mutex owner just released it and exited.
  4678. */
  4679. if (probe_kernel_address(&owner->cpu, cpu))
  4680. goto out;
  4681. #else
  4682. cpu = owner->cpu;
  4683. #endif
  4684. /*
  4685. * Even if the access succeeded (likely case),
  4686. * the cpu field may no longer be valid.
  4687. */
  4688. if (cpu >= nr_cpumask_bits)
  4689. goto out;
  4690. /*
  4691. * We need to validate that we can do a
  4692. * get_cpu() and that we have the percpu area.
  4693. */
  4694. if (!cpu_online(cpu))
  4695. goto out;
  4696. rq = cpu_rq(cpu);
  4697. for (;;) {
  4698. /*
  4699. * Owner changed, break to re-assess state.
  4700. */
  4701. if (lock->owner != owner)
  4702. break;
  4703. /*
  4704. * Is that owner really running on that cpu?
  4705. */
  4706. if (task_thread_info(rq->curr) != owner || need_resched())
  4707. return 0;
  4708. cpu_relax();
  4709. }
  4710. out:
  4711. return 1;
  4712. }
  4713. #endif
  4714. #ifdef CONFIG_PREEMPT
  4715. /*
  4716. * this is the entry point to schedule() from in-kernel preemption
  4717. * off of preempt_enable. Kernel preemptions off return from interrupt
  4718. * occur there and call schedule directly.
  4719. */
  4720. asmlinkage void __sched preempt_schedule(void)
  4721. {
  4722. struct thread_info *ti = current_thread_info();
  4723. /*
  4724. * If there is a non-zero preempt_count or interrupts are disabled,
  4725. * we do not want to preempt the current task. Just return..
  4726. */
  4727. if (likely(ti->preempt_count || irqs_disabled()))
  4728. return;
  4729. do {
  4730. add_preempt_count(PREEMPT_ACTIVE);
  4731. schedule();
  4732. sub_preempt_count(PREEMPT_ACTIVE);
  4733. /*
  4734. * Check again in case we missed a preemption opportunity
  4735. * between schedule and now.
  4736. */
  4737. barrier();
  4738. } while (need_resched());
  4739. }
  4740. EXPORT_SYMBOL(preempt_schedule);
  4741. /*
  4742. * this is the entry point to schedule() from kernel preemption
  4743. * off of irq context.
  4744. * Note, that this is called and return with irqs disabled. This will
  4745. * protect us against recursive calling from irq.
  4746. */
  4747. asmlinkage void __sched preempt_schedule_irq(void)
  4748. {
  4749. struct thread_info *ti = current_thread_info();
  4750. /* Catch callers which need to be fixed */
  4751. BUG_ON(ti->preempt_count || !irqs_disabled());
  4752. do {
  4753. add_preempt_count(PREEMPT_ACTIVE);
  4754. local_irq_enable();
  4755. schedule();
  4756. local_irq_disable();
  4757. sub_preempt_count(PREEMPT_ACTIVE);
  4758. /*
  4759. * Check again in case we missed a preemption opportunity
  4760. * between schedule and now.
  4761. */
  4762. barrier();
  4763. } while (need_resched());
  4764. }
  4765. #endif /* CONFIG_PREEMPT */
  4766. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  4767. void *key)
  4768. {
  4769. return try_to_wake_up(curr->private, mode, wake_flags);
  4770. }
  4771. EXPORT_SYMBOL(default_wake_function);
  4772. /*
  4773. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4774. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4775. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4776. *
  4777. * There are circumstances in which we can try to wake a task which has already
  4778. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4779. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4780. */
  4781. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4782. int nr_exclusive, int wake_flags, void *key)
  4783. {
  4784. wait_queue_t *curr, *next;
  4785. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4786. unsigned flags = curr->flags;
  4787. if (curr->func(curr, mode, wake_flags, key) &&
  4788. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4789. break;
  4790. }
  4791. }
  4792. /**
  4793. * __wake_up - wake up threads blocked on a waitqueue.
  4794. * @q: the waitqueue
  4795. * @mode: which threads
  4796. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4797. * @key: is directly passed to the wakeup function
  4798. *
  4799. * It may be assumed that this function implies a write memory barrier before
  4800. * changing the task state if and only if any tasks are woken up.
  4801. */
  4802. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4803. int nr_exclusive, void *key)
  4804. {
  4805. unsigned long flags;
  4806. spin_lock_irqsave(&q->lock, flags);
  4807. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4808. spin_unlock_irqrestore(&q->lock, flags);
  4809. }
  4810. EXPORT_SYMBOL(__wake_up);
  4811. /*
  4812. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4813. */
  4814. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4815. {
  4816. __wake_up_common(q, mode, 1, 0, NULL);
  4817. }
  4818. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4819. {
  4820. __wake_up_common(q, mode, 1, 0, key);
  4821. }
  4822. /**
  4823. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4824. * @q: the waitqueue
  4825. * @mode: which threads
  4826. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4827. * @key: opaque value to be passed to wakeup targets
  4828. *
  4829. * The sync wakeup differs that the waker knows that it will schedule
  4830. * away soon, so while the target thread will be woken up, it will not
  4831. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4832. * with each other. This can prevent needless bouncing between CPUs.
  4833. *
  4834. * On UP it can prevent extra preemption.
  4835. *
  4836. * It may be assumed that this function implies a write memory barrier before
  4837. * changing the task state if and only if any tasks are woken up.
  4838. */
  4839. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4840. int nr_exclusive, void *key)
  4841. {
  4842. unsigned long flags;
  4843. int wake_flags = WF_SYNC;
  4844. if (unlikely(!q))
  4845. return;
  4846. if (unlikely(!nr_exclusive))
  4847. wake_flags = 0;
  4848. spin_lock_irqsave(&q->lock, flags);
  4849. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  4850. spin_unlock_irqrestore(&q->lock, flags);
  4851. }
  4852. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4853. /*
  4854. * __wake_up_sync - see __wake_up_sync_key()
  4855. */
  4856. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4857. {
  4858. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4859. }
  4860. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4861. /**
  4862. * complete: - signals a single thread waiting on this completion
  4863. * @x: holds the state of this particular completion
  4864. *
  4865. * This will wake up a single thread waiting on this completion. Threads will be
  4866. * awakened in the same order in which they were queued.
  4867. *
  4868. * See also complete_all(), wait_for_completion() and related routines.
  4869. *
  4870. * It may be assumed that this function implies a write memory barrier before
  4871. * changing the task state if and only if any tasks are woken up.
  4872. */
  4873. void complete(struct completion *x)
  4874. {
  4875. unsigned long flags;
  4876. spin_lock_irqsave(&x->wait.lock, flags);
  4877. x->done++;
  4878. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4879. spin_unlock_irqrestore(&x->wait.lock, flags);
  4880. }
  4881. EXPORT_SYMBOL(complete);
  4882. /**
  4883. * complete_all: - signals all threads waiting on this completion
  4884. * @x: holds the state of this particular completion
  4885. *
  4886. * This will wake up all threads waiting on this particular completion event.
  4887. *
  4888. * It may be assumed that this function implies a write memory barrier before
  4889. * changing the task state if and only if any tasks are woken up.
  4890. */
  4891. void complete_all(struct completion *x)
  4892. {
  4893. unsigned long flags;
  4894. spin_lock_irqsave(&x->wait.lock, flags);
  4895. x->done += UINT_MAX/2;
  4896. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4897. spin_unlock_irqrestore(&x->wait.lock, flags);
  4898. }
  4899. EXPORT_SYMBOL(complete_all);
  4900. static inline long __sched
  4901. do_wait_for_common(struct completion *x, long timeout, int state)
  4902. {
  4903. if (!x->done) {
  4904. DECLARE_WAITQUEUE(wait, current);
  4905. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4906. __add_wait_queue_tail(&x->wait, &wait);
  4907. do {
  4908. if (signal_pending_state(state, current)) {
  4909. timeout = -ERESTARTSYS;
  4910. break;
  4911. }
  4912. __set_current_state(state);
  4913. spin_unlock_irq(&x->wait.lock);
  4914. timeout = schedule_timeout(timeout);
  4915. spin_lock_irq(&x->wait.lock);
  4916. } while (!x->done && timeout);
  4917. __remove_wait_queue(&x->wait, &wait);
  4918. if (!x->done)
  4919. return timeout;
  4920. }
  4921. x->done--;
  4922. return timeout ?: 1;
  4923. }
  4924. static long __sched
  4925. wait_for_common(struct completion *x, long timeout, int state)
  4926. {
  4927. might_sleep();
  4928. spin_lock_irq(&x->wait.lock);
  4929. timeout = do_wait_for_common(x, timeout, state);
  4930. spin_unlock_irq(&x->wait.lock);
  4931. return timeout;
  4932. }
  4933. /**
  4934. * wait_for_completion: - waits for completion of a task
  4935. * @x: holds the state of this particular completion
  4936. *
  4937. * This waits to be signaled for completion of a specific task. It is NOT
  4938. * interruptible and there is no timeout.
  4939. *
  4940. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4941. * and interrupt capability. Also see complete().
  4942. */
  4943. void __sched wait_for_completion(struct completion *x)
  4944. {
  4945. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4946. }
  4947. EXPORT_SYMBOL(wait_for_completion);
  4948. /**
  4949. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4950. * @x: holds the state of this particular completion
  4951. * @timeout: timeout value in jiffies
  4952. *
  4953. * This waits for either a completion of a specific task to be signaled or for a
  4954. * specified timeout to expire. The timeout is in jiffies. It is not
  4955. * interruptible.
  4956. */
  4957. unsigned long __sched
  4958. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4959. {
  4960. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4961. }
  4962. EXPORT_SYMBOL(wait_for_completion_timeout);
  4963. /**
  4964. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4965. * @x: holds the state of this particular completion
  4966. *
  4967. * This waits for completion of a specific task to be signaled. It is
  4968. * interruptible.
  4969. */
  4970. int __sched wait_for_completion_interruptible(struct completion *x)
  4971. {
  4972. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4973. if (t == -ERESTARTSYS)
  4974. return t;
  4975. return 0;
  4976. }
  4977. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4978. /**
  4979. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4980. * @x: holds the state of this particular completion
  4981. * @timeout: timeout value in jiffies
  4982. *
  4983. * This waits for either a completion of a specific task to be signaled or for a
  4984. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4985. */
  4986. unsigned long __sched
  4987. wait_for_completion_interruptible_timeout(struct completion *x,
  4988. unsigned long timeout)
  4989. {
  4990. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4991. }
  4992. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4993. /**
  4994. * wait_for_completion_killable: - waits for completion of a task (killable)
  4995. * @x: holds the state of this particular completion
  4996. *
  4997. * This waits to be signaled for completion of a specific task. It can be
  4998. * interrupted by a kill signal.
  4999. */
  5000. int __sched wait_for_completion_killable(struct completion *x)
  5001. {
  5002. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  5003. if (t == -ERESTARTSYS)
  5004. return t;
  5005. return 0;
  5006. }
  5007. EXPORT_SYMBOL(wait_for_completion_killable);
  5008. /**
  5009. * try_wait_for_completion - try to decrement a completion without blocking
  5010. * @x: completion structure
  5011. *
  5012. * Returns: 0 if a decrement cannot be done without blocking
  5013. * 1 if a decrement succeeded.
  5014. *
  5015. * If a completion is being used as a counting completion,
  5016. * attempt to decrement the counter without blocking. This
  5017. * enables us to avoid waiting if the resource the completion
  5018. * is protecting is not available.
  5019. */
  5020. bool try_wait_for_completion(struct completion *x)
  5021. {
  5022. int ret = 1;
  5023. spin_lock_irq(&x->wait.lock);
  5024. if (!x->done)
  5025. ret = 0;
  5026. else
  5027. x->done--;
  5028. spin_unlock_irq(&x->wait.lock);
  5029. return ret;
  5030. }
  5031. EXPORT_SYMBOL(try_wait_for_completion);
  5032. /**
  5033. * completion_done - Test to see if a completion has any waiters
  5034. * @x: completion structure
  5035. *
  5036. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5037. * 1 if there are no waiters.
  5038. *
  5039. */
  5040. bool completion_done(struct completion *x)
  5041. {
  5042. int ret = 1;
  5043. spin_lock_irq(&x->wait.lock);
  5044. if (!x->done)
  5045. ret = 0;
  5046. spin_unlock_irq(&x->wait.lock);
  5047. return ret;
  5048. }
  5049. EXPORT_SYMBOL(completion_done);
  5050. static long __sched
  5051. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5052. {
  5053. unsigned long flags;
  5054. wait_queue_t wait;
  5055. init_waitqueue_entry(&wait, current);
  5056. __set_current_state(state);
  5057. spin_lock_irqsave(&q->lock, flags);
  5058. __add_wait_queue(q, &wait);
  5059. spin_unlock(&q->lock);
  5060. timeout = schedule_timeout(timeout);
  5061. spin_lock_irq(&q->lock);
  5062. __remove_wait_queue(q, &wait);
  5063. spin_unlock_irqrestore(&q->lock, flags);
  5064. return timeout;
  5065. }
  5066. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5067. {
  5068. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5069. }
  5070. EXPORT_SYMBOL(interruptible_sleep_on);
  5071. long __sched
  5072. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5073. {
  5074. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5075. }
  5076. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5077. void __sched sleep_on(wait_queue_head_t *q)
  5078. {
  5079. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5080. }
  5081. EXPORT_SYMBOL(sleep_on);
  5082. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5083. {
  5084. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5085. }
  5086. EXPORT_SYMBOL(sleep_on_timeout);
  5087. #ifdef CONFIG_RT_MUTEXES
  5088. /*
  5089. * rt_mutex_setprio - set the current priority of a task
  5090. * @p: task
  5091. * @prio: prio value (kernel-internal form)
  5092. *
  5093. * This function changes the 'effective' priority of a task. It does
  5094. * not touch ->normal_prio like __setscheduler().
  5095. *
  5096. * Used by the rt_mutex code to implement priority inheritance logic.
  5097. */
  5098. void rt_mutex_setprio(struct task_struct *p, int prio)
  5099. {
  5100. unsigned long flags;
  5101. int oldprio, on_rq, running;
  5102. struct rq *rq;
  5103. const struct sched_class *prev_class = p->sched_class;
  5104. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5105. rq = task_rq_lock(p, &flags);
  5106. update_rq_clock(rq);
  5107. oldprio = p->prio;
  5108. on_rq = p->se.on_rq;
  5109. running = task_current(rq, p);
  5110. if (on_rq)
  5111. dequeue_task(rq, p, 0);
  5112. if (running)
  5113. p->sched_class->put_prev_task(rq, p);
  5114. if (rt_prio(prio))
  5115. p->sched_class = &rt_sched_class;
  5116. else
  5117. p->sched_class = &fair_sched_class;
  5118. p->prio = prio;
  5119. if (running)
  5120. p->sched_class->set_curr_task(rq);
  5121. if (on_rq) {
  5122. enqueue_task(rq, p, 0);
  5123. check_class_changed(rq, p, prev_class, oldprio, running);
  5124. }
  5125. task_rq_unlock(rq, &flags);
  5126. }
  5127. #endif
  5128. void set_user_nice(struct task_struct *p, long nice)
  5129. {
  5130. int old_prio, delta, on_rq;
  5131. unsigned long flags;
  5132. struct rq *rq;
  5133. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5134. return;
  5135. /*
  5136. * We have to be careful, if called from sys_setpriority(),
  5137. * the task might be in the middle of scheduling on another CPU.
  5138. */
  5139. rq = task_rq_lock(p, &flags);
  5140. update_rq_clock(rq);
  5141. /*
  5142. * The RT priorities are set via sched_setscheduler(), but we still
  5143. * allow the 'normal' nice value to be set - but as expected
  5144. * it wont have any effect on scheduling until the task is
  5145. * SCHED_FIFO/SCHED_RR:
  5146. */
  5147. if (task_has_rt_policy(p)) {
  5148. p->static_prio = NICE_TO_PRIO(nice);
  5149. goto out_unlock;
  5150. }
  5151. on_rq = p->se.on_rq;
  5152. if (on_rq)
  5153. dequeue_task(rq, p, 0);
  5154. p->static_prio = NICE_TO_PRIO(nice);
  5155. set_load_weight(p);
  5156. old_prio = p->prio;
  5157. p->prio = effective_prio(p);
  5158. delta = p->prio - old_prio;
  5159. if (on_rq) {
  5160. enqueue_task(rq, p, 0);
  5161. /*
  5162. * If the task increased its priority or is running and
  5163. * lowered its priority, then reschedule its CPU:
  5164. */
  5165. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5166. resched_task(rq->curr);
  5167. }
  5168. out_unlock:
  5169. task_rq_unlock(rq, &flags);
  5170. }
  5171. EXPORT_SYMBOL(set_user_nice);
  5172. /*
  5173. * can_nice - check if a task can reduce its nice value
  5174. * @p: task
  5175. * @nice: nice value
  5176. */
  5177. int can_nice(const struct task_struct *p, const int nice)
  5178. {
  5179. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5180. int nice_rlim = 20 - nice;
  5181. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5182. capable(CAP_SYS_NICE));
  5183. }
  5184. #ifdef __ARCH_WANT_SYS_NICE
  5185. /*
  5186. * sys_nice - change the priority of the current process.
  5187. * @increment: priority increment
  5188. *
  5189. * sys_setpriority is a more generic, but much slower function that
  5190. * does similar things.
  5191. */
  5192. SYSCALL_DEFINE1(nice, int, increment)
  5193. {
  5194. long nice, retval;
  5195. /*
  5196. * Setpriority might change our priority at the same moment.
  5197. * We don't have to worry. Conceptually one call occurs first
  5198. * and we have a single winner.
  5199. */
  5200. if (increment < -40)
  5201. increment = -40;
  5202. if (increment > 40)
  5203. increment = 40;
  5204. nice = TASK_NICE(current) + increment;
  5205. if (nice < -20)
  5206. nice = -20;
  5207. if (nice > 19)
  5208. nice = 19;
  5209. if (increment < 0 && !can_nice(current, nice))
  5210. return -EPERM;
  5211. retval = security_task_setnice(current, nice);
  5212. if (retval)
  5213. return retval;
  5214. set_user_nice(current, nice);
  5215. return 0;
  5216. }
  5217. #endif
  5218. /**
  5219. * task_prio - return the priority value of a given task.
  5220. * @p: the task in question.
  5221. *
  5222. * This is the priority value as seen by users in /proc.
  5223. * RT tasks are offset by -200. Normal tasks are centered
  5224. * around 0, value goes from -16 to +15.
  5225. */
  5226. int task_prio(const struct task_struct *p)
  5227. {
  5228. return p->prio - MAX_RT_PRIO;
  5229. }
  5230. /**
  5231. * task_nice - return the nice value of a given task.
  5232. * @p: the task in question.
  5233. */
  5234. int task_nice(const struct task_struct *p)
  5235. {
  5236. return TASK_NICE(p);
  5237. }
  5238. EXPORT_SYMBOL(task_nice);
  5239. /**
  5240. * idle_cpu - is a given cpu idle currently?
  5241. * @cpu: the processor in question.
  5242. */
  5243. int idle_cpu(int cpu)
  5244. {
  5245. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5246. }
  5247. /**
  5248. * idle_task - return the idle task for a given cpu.
  5249. * @cpu: the processor in question.
  5250. */
  5251. struct task_struct *idle_task(int cpu)
  5252. {
  5253. return cpu_rq(cpu)->idle;
  5254. }
  5255. /**
  5256. * find_process_by_pid - find a process with a matching PID value.
  5257. * @pid: the pid in question.
  5258. */
  5259. static struct task_struct *find_process_by_pid(pid_t pid)
  5260. {
  5261. return pid ? find_task_by_vpid(pid) : current;
  5262. }
  5263. /* Actually do priority change: must hold rq lock. */
  5264. static void
  5265. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5266. {
  5267. BUG_ON(p->se.on_rq);
  5268. p->policy = policy;
  5269. p->rt_priority = prio;
  5270. p->normal_prio = normal_prio(p);
  5271. /* we are holding p->pi_lock already */
  5272. p->prio = rt_mutex_getprio(p);
  5273. if (rt_prio(p->prio))
  5274. p->sched_class = &rt_sched_class;
  5275. else
  5276. p->sched_class = &fair_sched_class;
  5277. set_load_weight(p);
  5278. }
  5279. /*
  5280. * check the target process has a UID that matches the current process's
  5281. */
  5282. static bool check_same_owner(struct task_struct *p)
  5283. {
  5284. const struct cred *cred = current_cred(), *pcred;
  5285. bool match;
  5286. rcu_read_lock();
  5287. pcred = __task_cred(p);
  5288. match = (cred->euid == pcred->euid ||
  5289. cred->euid == pcred->uid);
  5290. rcu_read_unlock();
  5291. return match;
  5292. }
  5293. static int __sched_setscheduler(struct task_struct *p, int policy,
  5294. struct sched_param *param, bool user)
  5295. {
  5296. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5297. unsigned long flags;
  5298. const struct sched_class *prev_class = p->sched_class;
  5299. struct rq *rq;
  5300. int reset_on_fork;
  5301. /* may grab non-irq protected spin_locks */
  5302. BUG_ON(in_interrupt());
  5303. recheck:
  5304. /* double check policy once rq lock held */
  5305. if (policy < 0) {
  5306. reset_on_fork = p->sched_reset_on_fork;
  5307. policy = oldpolicy = p->policy;
  5308. } else {
  5309. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5310. policy &= ~SCHED_RESET_ON_FORK;
  5311. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5312. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5313. policy != SCHED_IDLE)
  5314. return -EINVAL;
  5315. }
  5316. /*
  5317. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5318. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5319. * SCHED_BATCH and SCHED_IDLE is 0.
  5320. */
  5321. if (param->sched_priority < 0 ||
  5322. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5323. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5324. return -EINVAL;
  5325. if (rt_policy(policy) != (param->sched_priority != 0))
  5326. return -EINVAL;
  5327. /*
  5328. * Allow unprivileged RT tasks to decrease priority:
  5329. */
  5330. if (user && !capable(CAP_SYS_NICE)) {
  5331. if (rt_policy(policy)) {
  5332. unsigned long rlim_rtprio;
  5333. if (!lock_task_sighand(p, &flags))
  5334. return -ESRCH;
  5335. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5336. unlock_task_sighand(p, &flags);
  5337. /* can't set/change the rt policy */
  5338. if (policy != p->policy && !rlim_rtprio)
  5339. return -EPERM;
  5340. /* can't increase priority */
  5341. if (param->sched_priority > p->rt_priority &&
  5342. param->sched_priority > rlim_rtprio)
  5343. return -EPERM;
  5344. }
  5345. /*
  5346. * Like positive nice levels, dont allow tasks to
  5347. * move out of SCHED_IDLE either:
  5348. */
  5349. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5350. return -EPERM;
  5351. /* can't change other user's priorities */
  5352. if (!check_same_owner(p))
  5353. return -EPERM;
  5354. /* Normal users shall not reset the sched_reset_on_fork flag */
  5355. if (p->sched_reset_on_fork && !reset_on_fork)
  5356. return -EPERM;
  5357. }
  5358. if (user) {
  5359. #ifdef CONFIG_RT_GROUP_SCHED
  5360. /*
  5361. * Do not allow realtime tasks into groups that have no runtime
  5362. * assigned.
  5363. */
  5364. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5365. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5366. return -EPERM;
  5367. #endif
  5368. retval = security_task_setscheduler(p, policy, param);
  5369. if (retval)
  5370. return retval;
  5371. }
  5372. /*
  5373. * make sure no PI-waiters arrive (or leave) while we are
  5374. * changing the priority of the task:
  5375. */
  5376. spin_lock_irqsave(&p->pi_lock, flags);
  5377. /*
  5378. * To be able to change p->policy safely, the apropriate
  5379. * runqueue lock must be held.
  5380. */
  5381. rq = __task_rq_lock(p);
  5382. /* recheck policy now with rq lock held */
  5383. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5384. policy = oldpolicy = -1;
  5385. __task_rq_unlock(rq);
  5386. spin_unlock_irqrestore(&p->pi_lock, flags);
  5387. goto recheck;
  5388. }
  5389. update_rq_clock(rq);
  5390. on_rq = p->se.on_rq;
  5391. running = task_current(rq, p);
  5392. if (on_rq)
  5393. deactivate_task(rq, p, 0);
  5394. if (running)
  5395. p->sched_class->put_prev_task(rq, p);
  5396. p->sched_reset_on_fork = reset_on_fork;
  5397. oldprio = p->prio;
  5398. __setscheduler(rq, p, policy, param->sched_priority);
  5399. if (running)
  5400. p->sched_class->set_curr_task(rq);
  5401. if (on_rq) {
  5402. activate_task(rq, p, 0);
  5403. check_class_changed(rq, p, prev_class, oldprio, running);
  5404. }
  5405. __task_rq_unlock(rq);
  5406. spin_unlock_irqrestore(&p->pi_lock, flags);
  5407. rt_mutex_adjust_pi(p);
  5408. return 0;
  5409. }
  5410. /**
  5411. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5412. * @p: the task in question.
  5413. * @policy: new policy.
  5414. * @param: structure containing the new RT priority.
  5415. *
  5416. * NOTE that the task may be already dead.
  5417. */
  5418. int sched_setscheduler(struct task_struct *p, int policy,
  5419. struct sched_param *param)
  5420. {
  5421. return __sched_setscheduler(p, policy, param, true);
  5422. }
  5423. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5424. /**
  5425. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5426. * @p: the task in question.
  5427. * @policy: new policy.
  5428. * @param: structure containing the new RT priority.
  5429. *
  5430. * Just like sched_setscheduler, only don't bother checking if the
  5431. * current context has permission. For example, this is needed in
  5432. * stop_machine(): we create temporary high priority worker threads,
  5433. * but our caller might not have that capability.
  5434. */
  5435. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5436. struct sched_param *param)
  5437. {
  5438. return __sched_setscheduler(p, policy, param, false);
  5439. }
  5440. static int
  5441. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5442. {
  5443. struct sched_param lparam;
  5444. struct task_struct *p;
  5445. int retval;
  5446. if (!param || pid < 0)
  5447. return -EINVAL;
  5448. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5449. return -EFAULT;
  5450. rcu_read_lock();
  5451. retval = -ESRCH;
  5452. p = find_process_by_pid(pid);
  5453. if (p != NULL)
  5454. retval = sched_setscheduler(p, policy, &lparam);
  5455. rcu_read_unlock();
  5456. return retval;
  5457. }
  5458. /**
  5459. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5460. * @pid: the pid in question.
  5461. * @policy: new policy.
  5462. * @param: structure containing the new RT priority.
  5463. */
  5464. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5465. struct sched_param __user *, param)
  5466. {
  5467. /* negative values for policy are not valid */
  5468. if (policy < 0)
  5469. return -EINVAL;
  5470. return do_sched_setscheduler(pid, policy, param);
  5471. }
  5472. /**
  5473. * sys_sched_setparam - set/change the RT priority of a thread
  5474. * @pid: the pid in question.
  5475. * @param: structure containing the new RT priority.
  5476. */
  5477. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5478. {
  5479. return do_sched_setscheduler(pid, -1, param);
  5480. }
  5481. /**
  5482. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5483. * @pid: the pid in question.
  5484. */
  5485. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5486. {
  5487. struct task_struct *p;
  5488. int retval;
  5489. if (pid < 0)
  5490. return -EINVAL;
  5491. retval = -ESRCH;
  5492. read_lock(&tasklist_lock);
  5493. p = find_process_by_pid(pid);
  5494. if (p) {
  5495. retval = security_task_getscheduler(p);
  5496. if (!retval)
  5497. retval = p->policy
  5498. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5499. }
  5500. read_unlock(&tasklist_lock);
  5501. return retval;
  5502. }
  5503. /**
  5504. * sys_sched_getparam - get the RT priority of a thread
  5505. * @pid: the pid in question.
  5506. * @param: structure containing the RT priority.
  5507. */
  5508. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5509. {
  5510. struct sched_param lp;
  5511. struct task_struct *p;
  5512. int retval;
  5513. if (!param || pid < 0)
  5514. return -EINVAL;
  5515. read_lock(&tasklist_lock);
  5516. p = find_process_by_pid(pid);
  5517. retval = -ESRCH;
  5518. if (!p)
  5519. goto out_unlock;
  5520. retval = security_task_getscheduler(p);
  5521. if (retval)
  5522. goto out_unlock;
  5523. lp.sched_priority = p->rt_priority;
  5524. read_unlock(&tasklist_lock);
  5525. /*
  5526. * This one might sleep, we cannot do it with a spinlock held ...
  5527. */
  5528. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5529. return retval;
  5530. out_unlock:
  5531. read_unlock(&tasklist_lock);
  5532. return retval;
  5533. }
  5534. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5535. {
  5536. cpumask_var_t cpus_allowed, new_mask;
  5537. struct task_struct *p;
  5538. int retval;
  5539. get_online_cpus();
  5540. read_lock(&tasklist_lock);
  5541. p = find_process_by_pid(pid);
  5542. if (!p) {
  5543. read_unlock(&tasklist_lock);
  5544. put_online_cpus();
  5545. return -ESRCH;
  5546. }
  5547. /*
  5548. * It is not safe to call set_cpus_allowed with the
  5549. * tasklist_lock held. We will bump the task_struct's
  5550. * usage count and then drop tasklist_lock.
  5551. */
  5552. get_task_struct(p);
  5553. read_unlock(&tasklist_lock);
  5554. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5555. retval = -ENOMEM;
  5556. goto out_put_task;
  5557. }
  5558. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5559. retval = -ENOMEM;
  5560. goto out_free_cpus_allowed;
  5561. }
  5562. retval = -EPERM;
  5563. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5564. goto out_unlock;
  5565. retval = security_task_setscheduler(p, 0, NULL);
  5566. if (retval)
  5567. goto out_unlock;
  5568. cpuset_cpus_allowed(p, cpus_allowed);
  5569. cpumask_and(new_mask, in_mask, cpus_allowed);
  5570. again:
  5571. retval = set_cpus_allowed_ptr(p, new_mask);
  5572. if (!retval) {
  5573. cpuset_cpus_allowed(p, cpus_allowed);
  5574. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5575. /*
  5576. * We must have raced with a concurrent cpuset
  5577. * update. Just reset the cpus_allowed to the
  5578. * cpuset's cpus_allowed
  5579. */
  5580. cpumask_copy(new_mask, cpus_allowed);
  5581. goto again;
  5582. }
  5583. }
  5584. out_unlock:
  5585. free_cpumask_var(new_mask);
  5586. out_free_cpus_allowed:
  5587. free_cpumask_var(cpus_allowed);
  5588. out_put_task:
  5589. put_task_struct(p);
  5590. put_online_cpus();
  5591. return retval;
  5592. }
  5593. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5594. struct cpumask *new_mask)
  5595. {
  5596. if (len < cpumask_size())
  5597. cpumask_clear(new_mask);
  5598. else if (len > cpumask_size())
  5599. len = cpumask_size();
  5600. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5601. }
  5602. /**
  5603. * sys_sched_setaffinity - set the cpu affinity of a process
  5604. * @pid: pid of the process
  5605. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5606. * @user_mask_ptr: user-space pointer to the new cpu mask
  5607. */
  5608. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5609. unsigned long __user *, user_mask_ptr)
  5610. {
  5611. cpumask_var_t new_mask;
  5612. int retval;
  5613. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5614. return -ENOMEM;
  5615. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5616. if (retval == 0)
  5617. retval = sched_setaffinity(pid, new_mask);
  5618. free_cpumask_var(new_mask);
  5619. return retval;
  5620. }
  5621. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5622. {
  5623. struct task_struct *p;
  5624. unsigned long flags;
  5625. struct rq *rq;
  5626. int retval;
  5627. get_online_cpus();
  5628. read_lock(&tasklist_lock);
  5629. retval = -ESRCH;
  5630. p = find_process_by_pid(pid);
  5631. if (!p)
  5632. goto out_unlock;
  5633. retval = security_task_getscheduler(p);
  5634. if (retval)
  5635. goto out_unlock;
  5636. rq = task_rq_lock(p, &flags);
  5637. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5638. task_rq_unlock(rq, &flags);
  5639. out_unlock:
  5640. read_unlock(&tasklist_lock);
  5641. put_online_cpus();
  5642. return retval;
  5643. }
  5644. /**
  5645. * sys_sched_getaffinity - get the cpu affinity of a process
  5646. * @pid: pid of the process
  5647. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5648. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5649. */
  5650. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5651. unsigned long __user *, user_mask_ptr)
  5652. {
  5653. int ret;
  5654. cpumask_var_t mask;
  5655. if (len < cpumask_size())
  5656. return -EINVAL;
  5657. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5658. return -ENOMEM;
  5659. ret = sched_getaffinity(pid, mask);
  5660. if (ret == 0) {
  5661. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5662. ret = -EFAULT;
  5663. else
  5664. ret = cpumask_size();
  5665. }
  5666. free_cpumask_var(mask);
  5667. return ret;
  5668. }
  5669. /**
  5670. * sys_sched_yield - yield the current processor to other threads.
  5671. *
  5672. * This function yields the current CPU to other tasks. If there are no
  5673. * other threads running on this CPU then this function will return.
  5674. */
  5675. SYSCALL_DEFINE0(sched_yield)
  5676. {
  5677. struct rq *rq = this_rq_lock();
  5678. schedstat_inc(rq, yld_count);
  5679. current->sched_class->yield_task(rq);
  5680. /*
  5681. * Since we are going to call schedule() anyway, there's
  5682. * no need to preempt or enable interrupts:
  5683. */
  5684. __release(rq->lock);
  5685. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5686. _raw_spin_unlock(&rq->lock);
  5687. preempt_enable_no_resched();
  5688. schedule();
  5689. return 0;
  5690. }
  5691. static inline int should_resched(void)
  5692. {
  5693. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5694. }
  5695. static void __cond_resched(void)
  5696. {
  5697. add_preempt_count(PREEMPT_ACTIVE);
  5698. schedule();
  5699. sub_preempt_count(PREEMPT_ACTIVE);
  5700. }
  5701. int __sched _cond_resched(void)
  5702. {
  5703. if (should_resched()) {
  5704. __cond_resched();
  5705. return 1;
  5706. }
  5707. return 0;
  5708. }
  5709. EXPORT_SYMBOL(_cond_resched);
  5710. /*
  5711. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5712. * call schedule, and on return reacquire the lock.
  5713. *
  5714. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5715. * operations here to prevent schedule() from being called twice (once via
  5716. * spin_unlock(), once by hand).
  5717. */
  5718. int __cond_resched_lock(spinlock_t *lock)
  5719. {
  5720. int resched = should_resched();
  5721. int ret = 0;
  5722. lockdep_assert_held(lock);
  5723. if (spin_needbreak(lock) || resched) {
  5724. spin_unlock(lock);
  5725. if (resched)
  5726. __cond_resched();
  5727. else
  5728. cpu_relax();
  5729. ret = 1;
  5730. spin_lock(lock);
  5731. }
  5732. return ret;
  5733. }
  5734. EXPORT_SYMBOL(__cond_resched_lock);
  5735. int __sched __cond_resched_softirq(void)
  5736. {
  5737. BUG_ON(!in_softirq());
  5738. if (should_resched()) {
  5739. local_bh_enable();
  5740. __cond_resched();
  5741. local_bh_disable();
  5742. return 1;
  5743. }
  5744. return 0;
  5745. }
  5746. EXPORT_SYMBOL(__cond_resched_softirq);
  5747. /**
  5748. * yield - yield the current processor to other threads.
  5749. *
  5750. * This is a shortcut for kernel-space yielding - it marks the
  5751. * thread runnable and calls sys_sched_yield().
  5752. */
  5753. void __sched yield(void)
  5754. {
  5755. set_current_state(TASK_RUNNING);
  5756. sys_sched_yield();
  5757. }
  5758. EXPORT_SYMBOL(yield);
  5759. /*
  5760. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5761. * that process accounting knows that this is a task in IO wait state.
  5762. */
  5763. void __sched io_schedule(void)
  5764. {
  5765. struct rq *rq = raw_rq();
  5766. delayacct_blkio_start();
  5767. atomic_inc(&rq->nr_iowait);
  5768. current->in_iowait = 1;
  5769. schedule();
  5770. current->in_iowait = 0;
  5771. atomic_dec(&rq->nr_iowait);
  5772. delayacct_blkio_end();
  5773. }
  5774. EXPORT_SYMBOL(io_schedule);
  5775. long __sched io_schedule_timeout(long timeout)
  5776. {
  5777. struct rq *rq = raw_rq();
  5778. long ret;
  5779. delayacct_blkio_start();
  5780. atomic_inc(&rq->nr_iowait);
  5781. current->in_iowait = 1;
  5782. ret = schedule_timeout(timeout);
  5783. current->in_iowait = 0;
  5784. atomic_dec(&rq->nr_iowait);
  5785. delayacct_blkio_end();
  5786. return ret;
  5787. }
  5788. /**
  5789. * sys_sched_get_priority_max - return maximum RT priority.
  5790. * @policy: scheduling class.
  5791. *
  5792. * this syscall returns the maximum rt_priority that can be used
  5793. * by a given scheduling class.
  5794. */
  5795. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5796. {
  5797. int ret = -EINVAL;
  5798. switch (policy) {
  5799. case SCHED_FIFO:
  5800. case SCHED_RR:
  5801. ret = MAX_USER_RT_PRIO-1;
  5802. break;
  5803. case SCHED_NORMAL:
  5804. case SCHED_BATCH:
  5805. case SCHED_IDLE:
  5806. ret = 0;
  5807. break;
  5808. }
  5809. return ret;
  5810. }
  5811. /**
  5812. * sys_sched_get_priority_min - return minimum RT priority.
  5813. * @policy: scheduling class.
  5814. *
  5815. * this syscall returns the minimum rt_priority that can be used
  5816. * by a given scheduling class.
  5817. */
  5818. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5819. {
  5820. int ret = -EINVAL;
  5821. switch (policy) {
  5822. case SCHED_FIFO:
  5823. case SCHED_RR:
  5824. ret = 1;
  5825. break;
  5826. case SCHED_NORMAL:
  5827. case SCHED_BATCH:
  5828. case SCHED_IDLE:
  5829. ret = 0;
  5830. }
  5831. return ret;
  5832. }
  5833. /**
  5834. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5835. * @pid: pid of the process.
  5836. * @interval: userspace pointer to the timeslice value.
  5837. *
  5838. * this syscall writes the default timeslice value of a given process
  5839. * into the user-space timespec buffer. A value of '0' means infinity.
  5840. */
  5841. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5842. struct timespec __user *, interval)
  5843. {
  5844. struct task_struct *p;
  5845. unsigned int time_slice;
  5846. unsigned long flags;
  5847. struct rq *rq;
  5848. int retval;
  5849. struct timespec t;
  5850. if (pid < 0)
  5851. return -EINVAL;
  5852. retval = -ESRCH;
  5853. read_lock(&tasklist_lock);
  5854. p = find_process_by_pid(pid);
  5855. if (!p)
  5856. goto out_unlock;
  5857. retval = security_task_getscheduler(p);
  5858. if (retval)
  5859. goto out_unlock;
  5860. rq = task_rq_lock(p, &flags);
  5861. time_slice = p->sched_class->get_rr_interval(rq, p);
  5862. task_rq_unlock(rq, &flags);
  5863. read_unlock(&tasklist_lock);
  5864. jiffies_to_timespec(time_slice, &t);
  5865. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5866. return retval;
  5867. out_unlock:
  5868. read_unlock(&tasklist_lock);
  5869. return retval;
  5870. }
  5871. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5872. void sched_show_task(struct task_struct *p)
  5873. {
  5874. unsigned long free = 0;
  5875. unsigned state;
  5876. state = p->state ? __ffs(p->state) + 1 : 0;
  5877. printk(KERN_INFO "%-13.13s %c", p->comm,
  5878. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5879. #if BITS_PER_LONG == 32
  5880. if (state == TASK_RUNNING)
  5881. printk(KERN_CONT " running ");
  5882. else
  5883. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5884. #else
  5885. if (state == TASK_RUNNING)
  5886. printk(KERN_CONT " running task ");
  5887. else
  5888. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5889. #endif
  5890. #ifdef CONFIG_DEBUG_STACK_USAGE
  5891. free = stack_not_used(p);
  5892. #endif
  5893. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5894. task_pid_nr(p), task_pid_nr(p->real_parent),
  5895. (unsigned long)task_thread_info(p)->flags);
  5896. show_stack(p, NULL);
  5897. }
  5898. void show_state_filter(unsigned long state_filter)
  5899. {
  5900. struct task_struct *g, *p;
  5901. #if BITS_PER_LONG == 32
  5902. printk(KERN_INFO
  5903. " task PC stack pid father\n");
  5904. #else
  5905. printk(KERN_INFO
  5906. " task PC stack pid father\n");
  5907. #endif
  5908. read_lock(&tasklist_lock);
  5909. do_each_thread(g, p) {
  5910. /*
  5911. * reset the NMI-timeout, listing all files on a slow
  5912. * console might take alot of time:
  5913. */
  5914. touch_nmi_watchdog();
  5915. if (!state_filter || (p->state & state_filter))
  5916. sched_show_task(p);
  5917. } while_each_thread(g, p);
  5918. touch_all_softlockup_watchdogs();
  5919. #ifdef CONFIG_SCHED_DEBUG
  5920. sysrq_sched_debug_show();
  5921. #endif
  5922. read_unlock(&tasklist_lock);
  5923. /*
  5924. * Only show locks if all tasks are dumped:
  5925. */
  5926. if (!state_filter)
  5927. debug_show_all_locks();
  5928. }
  5929. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5930. {
  5931. idle->sched_class = &idle_sched_class;
  5932. }
  5933. /**
  5934. * init_idle - set up an idle thread for a given CPU
  5935. * @idle: task in question
  5936. * @cpu: cpu the idle task belongs to
  5937. *
  5938. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5939. * flag, to make booting more robust.
  5940. */
  5941. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5942. {
  5943. struct rq *rq = cpu_rq(cpu);
  5944. unsigned long flags;
  5945. spin_lock_irqsave(&rq->lock, flags);
  5946. __sched_fork(idle);
  5947. idle->se.exec_start = sched_clock();
  5948. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5949. __set_task_cpu(idle, cpu);
  5950. rq->curr = rq->idle = idle;
  5951. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5952. idle->oncpu = 1;
  5953. #endif
  5954. spin_unlock_irqrestore(&rq->lock, flags);
  5955. /* Set the preempt count _outside_ the spinlocks! */
  5956. #if defined(CONFIG_PREEMPT)
  5957. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5958. #else
  5959. task_thread_info(idle)->preempt_count = 0;
  5960. #endif
  5961. /*
  5962. * The idle tasks have their own, simple scheduling class:
  5963. */
  5964. idle->sched_class = &idle_sched_class;
  5965. ftrace_graph_init_task(idle);
  5966. }
  5967. /*
  5968. * In a system that switches off the HZ timer nohz_cpu_mask
  5969. * indicates which cpus entered this state. This is used
  5970. * in the rcu update to wait only for active cpus. For system
  5971. * which do not switch off the HZ timer nohz_cpu_mask should
  5972. * always be CPU_BITS_NONE.
  5973. */
  5974. cpumask_var_t nohz_cpu_mask;
  5975. /*
  5976. * Increase the granularity value when there are more CPUs,
  5977. * because with more CPUs the 'effective latency' as visible
  5978. * to users decreases. But the relationship is not linear,
  5979. * so pick a second-best guess by going with the log2 of the
  5980. * number of CPUs.
  5981. *
  5982. * This idea comes from the SD scheduler of Con Kolivas:
  5983. */
  5984. static int get_update_sysctl_factor(void)
  5985. {
  5986. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  5987. unsigned int factor;
  5988. switch (sysctl_sched_tunable_scaling) {
  5989. case SCHED_TUNABLESCALING_NONE:
  5990. factor = 1;
  5991. break;
  5992. case SCHED_TUNABLESCALING_LINEAR:
  5993. factor = cpus;
  5994. break;
  5995. case SCHED_TUNABLESCALING_LOG:
  5996. default:
  5997. factor = 1 + ilog2(cpus);
  5998. break;
  5999. }
  6000. return factor;
  6001. }
  6002. static void update_sysctl(void)
  6003. {
  6004. unsigned int factor = get_update_sysctl_factor();
  6005. #define SET_SYSCTL(name) \
  6006. (sysctl_##name = (factor) * normalized_sysctl_##name)
  6007. SET_SYSCTL(sched_min_granularity);
  6008. SET_SYSCTL(sched_latency);
  6009. SET_SYSCTL(sched_wakeup_granularity);
  6010. SET_SYSCTL(sched_shares_ratelimit);
  6011. #undef SET_SYSCTL
  6012. }
  6013. static inline void sched_init_granularity(void)
  6014. {
  6015. update_sysctl();
  6016. }
  6017. #ifdef CONFIG_SMP
  6018. /*
  6019. * This is how migration works:
  6020. *
  6021. * 1) we queue a struct migration_req structure in the source CPU's
  6022. * runqueue and wake up that CPU's migration thread.
  6023. * 2) we down() the locked semaphore => thread blocks.
  6024. * 3) migration thread wakes up (implicitly it forces the migrated
  6025. * thread off the CPU)
  6026. * 4) it gets the migration request and checks whether the migrated
  6027. * task is still in the wrong runqueue.
  6028. * 5) if it's in the wrong runqueue then the migration thread removes
  6029. * it and puts it into the right queue.
  6030. * 6) migration thread up()s the semaphore.
  6031. * 7) we wake up and the migration is done.
  6032. */
  6033. /*
  6034. * Change a given task's CPU affinity. Migrate the thread to a
  6035. * proper CPU and schedule it away if the CPU it's executing on
  6036. * is removed from the allowed bitmask.
  6037. *
  6038. * NOTE: the caller must have a valid reference to the task, the
  6039. * task must not exit() & deallocate itself prematurely. The
  6040. * call is not atomic; no spinlocks may be held.
  6041. */
  6042. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6043. {
  6044. struct migration_req req;
  6045. unsigned long flags;
  6046. struct rq *rq;
  6047. int ret = 0;
  6048. rq = task_rq_lock(p, &flags);
  6049. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  6050. ret = -EINVAL;
  6051. goto out;
  6052. }
  6053. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6054. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6055. ret = -EINVAL;
  6056. goto out;
  6057. }
  6058. if (p->sched_class->set_cpus_allowed)
  6059. p->sched_class->set_cpus_allowed(p, new_mask);
  6060. else {
  6061. cpumask_copy(&p->cpus_allowed, new_mask);
  6062. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6063. }
  6064. /* Can the task run on the task's current CPU? If so, we're done */
  6065. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6066. goto out;
  6067. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  6068. /* Need help from migration thread: drop lock and wait. */
  6069. struct task_struct *mt = rq->migration_thread;
  6070. get_task_struct(mt);
  6071. task_rq_unlock(rq, &flags);
  6072. wake_up_process(rq->migration_thread);
  6073. put_task_struct(mt);
  6074. wait_for_completion(&req.done);
  6075. tlb_migrate_finish(p->mm);
  6076. return 0;
  6077. }
  6078. out:
  6079. task_rq_unlock(rq, &flags);
  6080. return ret;
  6081. }
  6082. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6083. /*
  6084. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6085. * this because either it can't run here any more (set_cpus_allowed()
  6086. * away from this CPU, or CPU going down), or because we're
  6087. * attempting to rebalance this task on exec (sched_exec).
  6088. *
  6089. * So we race with normal scheduler movements, but that's OK, as long
  6090. * as the task is no longer on this CPU.
  6091. *
  6092. * Returns non-zero if task was successfully migrated.
  6093. */
  6094. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6095. {
  6096. struct rq *rq_dest, *rq_src;
  6097. int ret = 0, on_rq;
  6098. if (unlikely(!cpu_active(dest_cpu)))
  6099. return ret;
  6100. rq_src = cpu_rq(src_cpu);
  6101. rq_dest = cpu_rq(dest_cpu);
  6102. double_rq_lock(rq_src, rq_dest);
  6103. /* Already moved. */
  6104. if (task_cpu(p) != src_cpu)
  6105. goto done;
  6106. /* Affinity changed (again). */
  6107. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6108. goto fail;
  6109. on_rq = p->se.on_rq;
  6110. if (on_rq)
  6111. deactivate_task(rq_src, p, 0);
  6112. set_task_cpu(p, dest_cpu);
  6113. if (on_rq) {
  6114. activate_task(rq_dest, p, 0);
  6115. check_preempt_curr(rq_dest, p, 0);
  6116. }
  6117. done:
  6118. ret = 1;
  6119. fail:
  6120. double_rq_unlock(rq_src, rq_dest);
  6121. return ret;
  6122. }
  6123. #define RCU_MIGRATION_IDLE 0
  6124. #define RCU_MIGRATION_NEED_QS 1
  6125. #define RCU_MIGRATION_GOT_QS 2
  6126. #define RCU_MIGRATION_MUST_SYNC 3
  6127. /*
  6128. * migration_thread - this is a highprio system thread that performs
  6129. * thread migration by bumping thread off CPU then 'pushing' onto
  6130. * another runqueue.
  6131. */
  6132. static int migration_thread(void *data)
  6133. {
  6134. int badcpu;
  6135. int cpu = (long)data;
  6136. struct rq *rq;
  6137. rq = cpu_rq(cpu);
  6138. BUG_ON(rq->migration_thread != current);
  6139. set_current_state(TASK_INTERRUPTIBLE);
  6140. while (!kthread_should_stop()) {
  6141. struct migration_req *req;
  6142. struct list_head *head;
  6143. spin_lock_irq(&rq->lock);
  6144. if (cpu_is_offline(cpu)) {
  6145. spin_unlock_irq(&rq->lock);
  6146. break;
  6147. }
  6148. if (rq->active_balance) {
  6149. active_load_balance(rq, cpu);
  6150. rq->active_balance = 0;
  6151. }
  6152. head = &rq->migration_queue;
  6153. if (list_empty(head)) {
  6154. spin_unlock_irq(&rq->lock);
  6155. schedule();
  6156. set_current_state(TASK_INTERRUPTIBLE);
  6157. continue;
  6158. }
  6159. req = list_entry(head->next, struct migration_req, list);
  6160. list_del_init(head->next);
  6161. if (req->task != NULL) {
  6162. spin_unlock(&rq->lock);
  6163. __migrate_task(req->task, cpu, req->dest_cpu);
  6164. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6165. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6166. spin_unlock(&rq->lock);
  6167. } else {
  6168. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6169. spin_unlock(&rq->lock);
  6170. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6171. }
  6172. local_irq_enable();
  6173. complete(&req->done);
  6174. }
  6175. __set_current_state(TASK_RUNNING);
  6176. return 0;
  6177. }
  6178. #ifdef CONFIG_HOTPLUG_CPU
  6179. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6180. {
  6181. int ret;
  6182. local_irq_disable();
  6183. ret = __migrate_task(p, src_cpu, dest_cpu);
  6184. local_irq_enable();
  6185. return ret;
  6186. }
  6187. /*
  6188. * Figure out where task on dead CPU should go, use force if necessary.
  6189. */
  6190. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6191. {
  6192. int dest_cpu;
  6193. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6194. again:
  6195. /* Look for allowed, online CPU in same node. */
  6196. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  6197. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6198. goto move;
  6199. /* Any allowed, online CPU? */
  6200. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  6201. if (dest_cpu < nr_cpu_ids)
  6202. goto move;
  6203. /* No more Mr. Nice Guy. */
  6204. if (dest_cpu >= nr_cpu_ids) {
  6205. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6206. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  6207. /*
  6208. * Don't tell them about moving exiting tasks or
  6209. * kernel threads (both mm NULL), since they never
  6210. * leave kernel.
  6211. */
  6212. if (p->mm && printk_ratelimit()) {
  6213. printk(KERN_INFO "process %d (%s) no "
  6214. "longer affine to cpu%d\n",
  6215. task_pid_nr(p), p->comm, dead_cpu);
  6216. }
  6217. }
  6218. move:
  6219. /* It can have affinity changed while we were choosing. */
  6220. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6221. goto again;
  6222. }
  6223. /*
  6224. * While a dead CPU has no uninterruptible tasks queued at this point,
  6225. * it might still have a nonzero ->nr_uninterruptible counter, because
  6226. * for performance reasons the counter is not stricly tracking tasks to
  6227. * their home CPUs. So we just add the counter to another CPU's counter,
  6228. * to keep the global sum constant after CPU-down:
  6229. */
  6230. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6231. {
  6232. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  6233. unsigned long flags;
  6234. local_irq_save(flags);
  6235. double_rq_lock(rq_src, rq_dest);
  6236. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6237. rq_src->nr_uninterruptible = 0;
  6238. double_rq_unlock(rq_src, rq_dest);
  6239. local_irq_restore(flags);
  6240. }
  6241. /* Run through task list and migrate tasks from the dead cpu. */
  6242. static void migrate_live_tasks(int src_cpu)
  6243. {
  6244. struct task_struct *p, *t;
  6245. read_lock(&tasklist_lock);
  6246. do_each_thread(t, p) {
  6247. if (p == current)
  6248. continue;
  6249. if (task_cpu(p) == src_cpu)
  6250. move_task_off_dead_cpu(src_cpu, p);
  6251. } while_each_thread(t, p);
  6252. read_unlock(&tasklist_lock);
  6253. }
  6254. /*
  6255. * Schedules idle task to be the next runnable task on current CPU.
  6256. * It does so by boosting its priority to highest possible.
  6257. * Used by CPU offline code.
  6258. */
  6259. void sched_idle_next(void)
  6260. {
  6261. int this_cpu = smp_processor_id();
  6262. struct rq *rq = cpu_rq(this_cpu);
  6263. struct task_struct *p = rq->idle;
  6264. unsigned long flags;
  6265. /* cpu has to be offline */
  6266. BUG_ON(cpu_online(this_cpu));
  6267. /*
  6268. * Strictly not necessary since rest of the CPUs are stopped by now
  6269. * and interrupts disabled on the current cpu.
  6270. */
  6271. spin_lock_irqsave(&rq->lock, flags);
  6272. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6273. update_rq_clock(rq);
  6274. activate_task(rq, p, 0);
  6275. spin_unlock_irqrestore(&rq->lock, flags);
  6276. }
  6277. /*
  6278. * Ensures that the idle task is using init_mm right before its cpu goes
  6279. * offline.
  6280. */
  6281. void idle_task_exit(void)
  6282. {
  6283. struct mm_struct *mm = current->active_mm;
  6284. BUG_ON(cpu_online(smp_processor_id()));
  6285. if (mm != &init_mm)
  6286. switch_mm(mm, &init_mm, current);
  6287. mmdrop(mm);
  6288. }
  6289. /* called under rq->lock with disabled interrupts */
  6290. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6291. {
  6292. struct rq *rq = cpu_rq(dead_cpu);
  6293. /* Must be exiting, otherwise would be on tasklist. */
  6294. BUG_ON(!p->exit_state);
  6295. /* Cannot have done final schedule yet: would have vanished. */
  6296. BUG_ON(p->state == TASK_DEAD);
  6297. get_task_struct(p);
  6298. /*
  6299. * Drop lock around migration; if someone else moves it,
  6300. * that's OK. No task can be added to this CPU, so iteration is
  6301. * fine.
  6302. */
  6303. spin_unlock_irq(&rq->lock);
  6304. move_task_off_dead_cpu(dead_cpu, p);
  6305. spin_lock_irq(&rq->lock);
  6306. put_task_struct(p);
  6307. }
  6308. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6309. static void migrate_dead_tasks(unsigned int dead_cpu)
  6310. {
  6311. struct rq *rq = cpu_rq(dead_cpu);
  6312. struct task_struct *next;
  6313. for ( ; ; ) {
  6314. if (!rq->nr_running)
  6315. break;
  6316. update_rq_clock(rq);
  6317. next = pick_next_task(rq);
  6318. if (!next)
  6319. break;
  6320. next->sched_class->put_prev_task(rq, next);
  6321. migrate_dead(dead_cpu, next);
  6322. }
  6323. }
  6324. /*
  6325. * remove the tasks which were accounted by rq from calc_load_tasks.
  6326. */
  6327. static void calc_global_load_remove(struct rq *rq)
  6328. {
  6329. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6330. rq->calc_load_active = 0;
  6331. }
  6332. #endif /* CONFIG_HOTPLUG_CPU */
  6333. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6334. static struct ctl_table sd_ctl_dir[] = {
  6335. {
  6336. .procname = "sched_domain",
  6337. .mode = 0555,
  6338. },
  6339. {}
  6340. };
  6341. static struct ctl_table sd_ctl_root[] = {
  6342. {
  6343. .procname = "kernel",
  6344. .mode = 0555,
  6345. .child = sd_ctl_dir,
  6346. },
  6347. {}
  6348. };
  6349. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6350. {
  6351. struct ctl_table *entry =
  6352. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6353. return entry;
  6354. }
  6355. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6356. {
  6357. struct ctl_table *entry;
  6358. /*
  6359. * In the intermediate directories, both the child directory and
  6360. * procname are dynamically allocated and could fail but the mode
  6361. * will always be set. In the lowest directory the names are
  6362. * static strings and all have proc handlers.
  6363. */
  6364. for (entry = *tablep; entry->mode; entry++) {
  6365. if (entry->child)
  6366. sd_free_ctl_entry(&entry->child);
  6367. if (entry->proc_handler == NULL)
  6368. kfree(entry->procname);
  6369. }
  6370. kfree(*tablep);
  6371. *tablep = NULL;
  6372. }
  6373. static void
  6374. set_table_entry(struct ctl_table *entry,
  6375. const char *procname, void *data, int maxlen,
  6376. mode_t mode, proc_handler *proc_handler)
  6377. {
  6378. entry->procname = procname;
  6379. entry->data = data;
  6380. entry->maxlen = maxlen;
  6381. entry->mode = mode;
  6382. entry->proc_handler = proc_handler;
  6383. }
  6384. static struct ctl_table *
  6385. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6386. {
  6387. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6388. if (table == NULL)
  6389. return NULL;
  6390. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6391. sizeof(long), 0644, proc_doulongvec_minmax);
  6392. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6393. sizeof(long), 0644, proc_doulongvec_minmax);
  6394. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6395. sizeof(int), 0644, proc_dointvec_minmax);
  6396. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6397. sizeof(int), 0644, proc_dointvec_minmax);
  6398. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6399. sizeof(int), 0644, proc_dointvec_minmax);
  6400. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6401. sizeof(int), 0644, proc_dointvec_minmax);
  6402. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6403. sizeof(int), 0644, proc_dointvec_minmax);
  6404. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6405. sizeof(int), 0644, proc_dointvec_minmax);
  6406. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6407. sizeof(int), 0644, proc_dointvec_minmax);
  6408. set_table_entry(&table[9], "cache_nice_tries",
  6409. &sd->cache_nice_tries,
  6410. sizeof(int), 0644, proc_dointvec_minmax);
  6411. set_table_entry(&table[10], "flags", &sd->flags,
  6412. sizeof(int), 0644, proc_dointvec_minmax);
  6413. set_table_entry(&table[11], "name", sd->name,
  6414. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6415. /* &table[12] is terminator */
  6416. return table;
  6417. }
  6418. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6419. {
  6420. struct ctl_table *entry, *table;
  6421. struct sched_domain *sd;
  6422. int domain_num = 0, i;
  6423. char buf[32];
  6424. for_each_domain(cpu, sd)
  6425. domain_num++;
  6426. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6427. if (table == NULL)
  6428. return NULL;
  6429. i = 0;
  6430. for_each_domain(cpu, sd) {
  6431. snprintf(buf, 32, "domain%d", i);
  6432. entry->procname = kstrdup(buf, GFP_KERNEL);
  6433. entry->mode = 0555;
  6434. entry->child = sd_alloc_ctl_domain_table(sd);
  6435. entry++;
  6436. i++;
  6437. }
  6438. return table;
  6439. }
  6440. static struct ctl_table_header *sd_sysctl_header;
  6441. static void register_sched_domain_sysctl(void)
  6442. {
  6443. int i, cpu_num = num_possible_cpus();
  6444. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6445. char buf[32];
  6446. WARN_ON(sd_ctl_dir[0].child);
  6447. sd_ctl_dir[0].child = entry;
  6448. if (entry == NULL)
  6449. return;
  6450. for_each_possible_cpu(i) {
  6451. snprintf(buf, 32, "cpu%d", i);
  6452. entry->procname = kstrdup(buf, GFP_KERNEL);
  6453. entry->mode = 0555;
  6454. entry->child = sd_alloc_ctl_cpu_table(i);
  6455. entry++;
  6456. }
  6457. WARN_ON(sd_sysctl_header);
  6458. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6459. }
  6460. /* may be called multiple times per register */
  6461. static void unregister_sched_domain_sysctl(void)
  6462. {
  6463. if (sd_sysctl_header)
  6464. unregister_sysctl_table(sd_sysctl_header);
  6465. sd_sysctl_header = NULL;
  6466. if (sd_ctl_dir[0].child)
  6467. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6468. }
  6469. #else
  6470. static void register_sched_domain_sysctl(void)
  6471. {
  6472. }
  6473. static void unregister_sched_domain_sysctl(void)
  6474. {
  6475. }
  6476. #endif
  6477. static void set_rq_online(struct rq *rq)
  6478. {
  6479. if (!rq->online) {
  6480. const struct sched_class *class;
  6481. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6482. rq->online = 1;
  6483. for_each_class(class) {
  6484. if (class->rq_online)
  6485. class->rq_online(rq);
  6486. }
  6487. }
  6488. }
  6489. static void set_rq_offline(struct rq *rq)
  6490. {
  6491. if (rq->online) {
  6492. const struct sched_class *class;
  6493. for_each_class(class) {
  6494. if (class->rq_offline)
  6495. class->rq_offline(rq);
  6496. }
  6497. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6498. rq->online = 0;
  6499. }
  6500. }
  6501. /*
  6502. * migration_call - callback that gets triggered when a CPU is added.
  6503. * Here we can start up the necessary migration thread for the new CPU.
  6504. */
  6505. static int __cpuinit
  6506. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6507. {
  6508. struct task_struct *p;
  6509. int cpu = (long)hcpu;
  6510. unsigned long flags;
  6511. struct rq *rq;
  6512. switch (action) {
  6513. case CPU_UP_PREPARE:
  6514. case CPU_UP_PREPARE_FROZEN:
  6515. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6516. if (IS_ERR(p))
  6517. return NOTIFY_BAD;
  6518. kthread_bind(p, cpu);
  6519. /* Must be high prio: stop_machine expects to yield to it. */
  6520. rq = task_rq_lock(p, &flags);
  6521. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6522. task_rq_unlock(rq, &flags);
  6523. get_task_struct(p);
  6524. cpu_rq(cpu)->migration_thread = p;
  6525. rq->calc_load_update = calc_load_update;
  6526. break;
  6527. case CPU_ONLINE:
  6528. case CPU_ONLINE_FROZEN:
  6529. /* Strictly unnecessary, as first user will wake it. */
  6530. wake_up_process(cpu_rq(cpu)->migration_thread);
  6531. /* Update our root-domain */
  6532. rq = cpu_rq(cpu);
  6533. spin_lock_irqsave(&rq->lock, flags);
  6534. if (rq->rd) {
  6535. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6536. set_rq_online(rq);
  6537. }
  6538. spin_unlock_irqrestore(&rq->lock, flags);
  6539. break;
  6540. #ifdef CONFIG_HOTPLUG_CPU
  6541. case CPU_UP_CANCELED:
  6542. case CPU_UP_CANCELED_FROZEN:
  6543. if (!cpu_rq(cpu)->migration_thread)
  6544. break;
  6545. /* Unbind it from offline cpu so it can run. Fall thru. */
  6546. kthread_bind(cpu_rq(cpu)->migration_thread,
  6547. cpumask_any(cpu_online_mask));
  6548. kthread_stop(cpu_rq(cpu)->migration_thread);
  6549. put_task_struct(cpu_rq(cpu)->migration_thread);
  6550. cpu_rq(cpu)->migration_thread = NULL;
  6551. break;
  6552. case CPU_DEAD:
  6553. case CPU_DEAD_FROZEN:
  6554. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6555. migrate_live_tasks(cpu);
  6556. rq = cpu_rq(cpu);
  6557. kthread_stop(rq->migration_thread);
  6558. put_task_struct(rq->migration_thread);
  6559. rq->migration_thread = NULL;
  6560. /* Idle task back to normal (off runqueue, low prio) */
  6561. spin_lock_irq(&rq->lock);
  6562. update_rq_clock(rq);
  6563. deactivate_task(rq, rq->idle, 0);
  6564. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6565. rq->idle->sched_class = &idle_sched_class;
  6566. migrate_dead_tasks(cpu);
  6567. spin_unlock_irq(&rq->lock);
  6568. cpuset_unlock();
  6569. migrate_nr_uninterruptible(rq);
  6570. BUG_ON(rq->nr_running != 0);
  6571. calc_global_load_remove(rq);
  6572. /*
  6573. * No need to migrate the tasks: it was best-effort if
  6574. * they didn't take sched_hotcpu_mutex. Just wake up
  6575. * the requestors.
  6576. */
  6577. spin_lock_irq(&rq->lock);
  6578. while (!list_empty(&rq->migration_queue)) {
  6579. struct migration_req *req;
  6580. req = list_entry(rq->migration_queue.next,
  6581. struct migration_req, list);
  6582. list_del_init(&req->list);
  6583. spin_unlock_irq(&rq->lock);
  6584. complete(&req->done);
  6585. spin_lock_irq(&rq->lock);
  6586. }
  6587. spin_unlock_irq(&rq->lock);
  6588. break;
  6589. case CPU_DYING:
  6590. case CPU_DYING_FROZEN:
  6591. /* Update our root-domain */
  6592. rq = cpu_rq(cpu);
  6593. spin_lock_irqsave(&rq->lock, flags);
  6594. if (rq->rd) {
  6595. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6596. set_rq_offline(rq);
  6597. }
  6598. spin_unlock_irqrestore(&rq->lock, flags);
  6599. break;
  6600. #endif
  6601. }
  6602. return NOTIFY_OK;
  6603. }
  6604. /*
  6605. * Register at high priority so that task migration (migrate_all_tasks)
  6606. * happens before everything else. This has to be lower priority than
  6607. * the notifier in the perf_event subsystem, though.
  6608. */
  6609. static struct notifier_block __cpuinitdata migration_notifier = {
  6610. .notifier_call = migration_call,
  6611. .priority = 10
  6612. };
  6613. static int __init migration_init(void)
  6614. {
  6615. void *cpu = (void *)(long)smp_processor_id();
  6616. int err;
  6617. /* Start one for the boot CPU: */
  6618. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6619. BUG_ON(err == NOTIFY_BAD);
  6620. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6621. register_cpu_notifier(&migration_notifier);
  6622. return 0;
  6623. }
  6624. early_initcall(migration_init);
  6625. #endif
  6626. #ifdef CONFIG_SMP
  6627. #ifdef CONFIG_SCHED_DEBUG
  6628. static __read_mostly int sched_domain_debug_enabled;
  6629. static int __init sched_domain_debug_setup(char *str)
  6630. {
  6631. sched_domain_debug_enabled = 1;
  6632. return 0;
  6633. }
  6634. early_param("sched_debug", sched_domain_debug_setup);
  6635. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6636. struct cpumask *groupmask)
  6637. {
  6638. struct sched_group *group = sd->groups;
  6639. char str[256];
  6640. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6641. cpumask_clear(groupmask);
  6642. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6643. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6644. printk("does not load-balance\n");
  6645. if (sd->parent)
  6646. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6647. " has parent");
  6648. return -1;
  6649. }
  6650. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6651. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6652. printk(KERN_ERR "ERROR: domain->span does not contain "
  6653. "CPU%d\n", cpu);
  6654. }
  6655. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6656. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6657. " CPU%d\n", cpu);
  6658. }
  6659. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6660. do {
  6661. if (!group) {
  6662. printk("\n");
  6663. printk(KERN_ERR "ERROR: group is NULL\n");
  6664. break;
  6665. }
  6666. if (!group->cpu_power) {
  6667. printk(KERN_CONT "\n");
  6668. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6669. "set\n");
  6670. break;
  6671. }
  6672. if (!cpumask_weight(sched_group_cpus(group))) {
  6673. printk(KERN_CONT "\n");
  6674. printk(KERN_ERR "ERROR: empty group\n");
  6675. break;
  6676. }
  6677. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6678. printk(KERN_CONT "\n");
  6679. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6680. break;
  6681. }
  6682. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6683. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6684. printk(KERN_CONT " %s", str);
  6685. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6686. printk(KERN_CONT " (cpu_power = %d)",
  6687. group->cpu_power);
  6688. }
  6689. group = group->next;
  6690. } while (group != sd->groups);
  6691. printk(KERN_CONT "\n");
  6692. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6693. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6694. if (sd->parent &&
  6695. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6696. printk(KERN_ERR "ERROR: parent span is not a superset "
  6697. "of domain->span\n");
  6698. return 0;
  6699. }
  6700. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6701. {
  6702. cpumask_var_t groupmask;
  6703. int level = 0;
  6704. if (!sched_domain_debug_enabled)
  6705. return;
  6706. if (!sd) {
  6707. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6708. return;
  6709. }
  6710. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6711. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6712. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6713. return;
  6714. }
  6715. for (;;) {
  6716. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6717. break;
  6718. level++;
  6719. sd = sd->parent;
  6720. if (!sd)
  6721. break;
  6722. }
  6723. free_cpumask_var(groupmask);
  6724. }
  6725. #else /* !CONFIG_SCHED_DEBUG */
  6726. # define sched_domain_debug(sd, cpu) do { } while (0)
  6727. #endif /* CONFIG_SCHED_DEBUG */
  6728. static int sd_degenerate(struct sched_domain *sd)
  6729. {
  6730. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6731. return 1;
  6732. /* Following flags need at least 2 groups */
  6733. if (sd->flags & (SD_LOAD_BALANCE |
  6734. SD_BALANCE_NEWIDLE |
  6735. SD_BALANCE_FORK |
  6736. SD_BALANCE_EXEC |
  6737. SD_SHARE_CPUPOWER |
  6738. SD_SHARE_PKG_RESOURCES)) {
  6739. if (sd->groups != sd->groups->next)
  6740. return 0;
  6741. }
  6742. /* Following flags don't use groups */
  6743. if (sd->flags & (SD_WAKE_AFFINE))
  6744. return 0;
  6745. return 1;
  6746. }
  6747. static int
  6748. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6749. {
  6750. unsigned long cflags = sd->flags, pflags = parent->flags;
  6751. if (sd_degenerate(parent))
  6752. return 1;
  6753. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6754. return 0;
  6755. /* Flags needing groups don't count if only 1 group in parent */
  6756. if (parent->groups == parent->groups->next) {
  6757. pflags &= ~(SD_LOAD_BALANCE |
  6758. SD_BALANCE_NEWIDLE |
  6759. SD_BALANCE_FORK |
  6760. SD_BALANCE_EXEC |
  6761. SD_SHARE_CPUPOWER |
  6762. SD_SHARE_PKG_RESOURCES);
  6763. if (nr_node_ids == 1)
  6764. pflags &= ~SD_SERIALIZE;
  6765. }
  6766. if (~cflags & pflags)
  6767. return 0;
  6768. return 1;
  6769. }
  6770. static void free_rootdomain(struct root_domain *rd)
  6771. {
  6772. synchronize_sched();
  6773. cpupri_cleanup(&rd->cpupri);
  6774. free_cpumask_var(rd->rto_mask);
  6775. free_cpumask_var(rd->online);
  6776. free_cpumask_var(rd->span);
  6777. kfree(rd);
  6778. }
  6779. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6780. {
  6781. struct root_domain *old_rd = NULL;
  6782. unsigned long flags;
  6783. spin_lock_irqsave(&rq->lock, flags);
  6784. if (rq->rd) {
  6785. old_rd = rq->rd;
  6786. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6787. set_rq_offline(rq);
  6788. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6789. /*
  6790. * If we dont want to free the old_rt yet then
  6791. * set old_rd to NULL to skip the freeing later
  6792. * in this function:
  6793. */
  6794. if (!atomic_dec_and_test(&old_rd->refcount))
  6795. old_rd = NULL;
  6796. }
  6797. atomic_inc(&rd->refcount);
  6798. rq->rd = rd;
  6799. cpumask_set_cpu(rq->cpu, rd->span);
  6800. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6801. set_rq_online(rq);
  6802. spin_unlock_irqrestore(&rq->lock, flags);
  6803. if (old_rd)
  6804. free_rootdomain(old_rd);
  6805. }
  6806. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6807. {
  6808. gfp_t gfp = GFP_KERNEL;
  6809. memset(rd, 0, sizeof(*rd));
  6810. if (bootmem)
  6811. gfp = GFP_NOWAIT;
  6812. if (!alloc_cpumask_var(&rd->span, gfp))
  6813. goto out;
  6814. if (!alloc_cpumask_var(&rd->online, gfp))
  6815. goto free_span;
  6816. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6817. goto free_online;
  6818. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6819. goto free_rto_mask;
  6820. return 0;
  6821. free_rto_mask:
  6822. free_cpumask_var(rd->rto_mask);
  6823. free_online:
  6824. free_cpumask_var(rd->online);
  6825. free_span:
  6826. free_cpumask_var(rd->span);
  6827. out:
  6828. return -ENOMEM;
  6829. }
  6830. static void init_defrootdomain(void)
  6831. {
  6832. init_rootdomain(&def_root_domain, true);
  6833. atomic_set(&def_root_domain.refcount, 1);
  6834. }
  6835. static struct root_domain *alloc_rootdomain(void)
  6836. {
  6837. struct root_domain *rd;
  6838. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6839. if (!rd)
  6840. return NULL;
  6841. if (init_rootdomain(rd, false) != 0) {
  6842. kfree(rd);
  6843. return NULL;
  6844. }
  6845. return rd;
  6846. }
  6847. /*
  6848. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6849. * hold the hotplug lock.
  6850. */
  6851. static void
  6852. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6853. {
  6854. struct rq *rq = cpu_rq(cpu);
  6855. struct sched_domain *tmp;
  6856. /* Remove the sched domains which do not contribute to scheduling. */
  6857. for (tmp = sd; tmp; ) {
  6858. struct sched_domain *parent = tmp->parent;
  6859. if (!parent)
  6860. break;
  6861. if (sd_parent_degenerate(tmp, parent)) {
  6862. tmp->parent = parent->parent;
  6863. if (parent->parent)
  6864. parent->parent->child = tmp;
  6865. } else
  6866. tmp = tmp->parent;
  6867. }
  6868. if (sd && sd_degenerate(sd)) {
  6869. sd = sd->parent;
  6870. if (sd)
  6871. sd->child = NULL;
  6872. }
  6873. sched_domain_debug(sd, cpu);
  6874. rq_attach_root(rq, rd);
  6875. rcu_assign_pointer(rq->sd, sd);
  6876. }
  6877. /* cpus with isolated domains */
  6878. static cpumask_var_t cpu_isolated_map;
  6879. /* Setup the mask of cpus configured for isolated domains */
  6880. static int __init isolated_cpu_setup(char *str)
  6881. {
  6882. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  6883. cpulist_parse(str, cpu_isolated_map);
  6884. return 1;
  6885. }
  6886. __setup("isolcpus=", isolated_cpu_setup);
  6887. /*
  6888. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6889. * to a function which identifies what group(along with sched group) a CPU
  6890. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6891. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6892. *
  6893. * init_sched_build_groups will build a circular linked list of the groups
  6894. * covered by the given span, and will set each group's ->cpumask correctly,
  6895. * and ->cpu_power to 0.
  6896. */
  6897. static void
  6898. init_sched_build_groups(const struct cpumask *span,
  6899. const struct cpumask *cpu_map,
  6900. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6901. struct sched_group **sg,
  6902. struct cpumask *tmpmask),
  6903. struct cpumask *covered, struct cpumask *tmpmask)
  6904. {
  6905. struct sched_group *first = NULL, *last = NULL;
  6906. int i;
  6907. cpumask_clear(covered);
  6908. for_each_cpu(i, span) {
  6909. struct sched_group *sg;
  6910. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6911. int j;
  6912. if (cpumask_test_cpu(i, covered))
  6913. continue;
  6914. cpumask_clear(sched_group_cpus(sg));
  6915. sg->cpu_power = 0;
  6916. for_each_cpu(j, span) {
  6917. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6918. continue;
  6919. cpumask_set_cpu(j, covered);
  6920. cpumask_set_cpu(j, sched_group_cpus(sg));
  6921. }
  6922. if (!first)
  6923. first = sg;
  6924. if (last)
  6925. last->next = sg;
  6926. last = sg;
  6927. }
  6928. last->next = first;
  6929. }
  6930. #define SD_NODES_PER_DOMAIN 16
  6931. #ifdef CONFIG_NUMA
  6932. /**
  6933. * find_next_best_node - find the next node to include in a sched_domain
  6934. * @node: node whose sched_domain we're building
  6935. * @used_nodes: nodes already in the sched_domain
  6936. *
  6937. * Find the next node to include in a given scheduling domain. Simply
  6938. * finds the closest node not already in the @used_nodes map.
  6939. *
  6940. * Should use nodemask_t.
  6941. */
  6942. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6943. {
  6944. int i, n, val, min_val, best_node = 0;
  6945. min_val = INT_MAX;
  6946. for (i = 0; i < nr_node_ids; i++) {
  6947. /* Start at @node */
  6948. n = (node + i) % nr_node_ids;
  6949. if (!nr_cpus_node(n))
  6950. continue;
  6951. /* Skip already used nodes */
  6952. if (node_isset(n, *used_nodes))
  6953. continue;
  6954. /* Simple min distance search */
  6955. val = node_distance(node, n);
  6956. if (val < min_val) {
  6957. min_val = val;
  6958. best_node = n;
  6959. }
  6960. }
  6961. node_set(best_node, *used_nodes);
  6962. return best_node;
  6963. }
  6964. /**
  6965. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6966. * @node: node whose cpumask we're constructing
  6967. * @span: resulting cpumask
  6968. *
  6969. * Given a node, construct a good cpumask for its sched_domain to span. It
  6970. * should be one that prevents unnecessary balancing, but also spreads tasks
  6971. * out optimally.
  6972. */
  6973. static void sched_domain_node_span(int node, struct cpumask *span)
  6974. {
  6975. nodemask_t used_nodes;
  6976. int i;
  6977. cpumask_clear(span);
  6978. nodes_clear(used_nodes);
  6979. cpumask_or(span, span, cpumask_of_node(node));
  6980. node_set(node, used_nodes);
  6981. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6982. int next_node = find_next_best_node(node, &used_nodes);
  6983. cpumask_or(span, span, cpumask_of_node(next_node));
  6984. }
  6985. }
  6986. #endif /* CONFIG_NUMA */
  6987. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6988. /*
  6989. * The cpus mask in sched_group and sched_domain hangs off the end.
  6990. *
  6991. * ( See the the comments in include/linux/sched.h:struct sched_group
  6992. * and struct sched_domain. )
  6993. */
  6994. struct static_sched_group {
  6995. struct sched_group sg;
  6996. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6997. };
  6998. struct static_sched_domain {
  6999. struct sched_domain sd;
  7000. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  7001. };
  7002. struct s_data {
  7003. #ifdef CONFIG_NUMA
  7004. int sd_allnodes;
  7005. cpumask_var_t domainspan;
  7006. cpumask_var_t covered;
  7007. cpumask_var_t notcovered;
  7008. #endif
  7009. cpumask_var_t nodemask;
  7010. cpumask_var_t this_sibling_map;
  7011. cpumask_var_t this_core_map;
  7012. cpumask_var_t send_covered;
  7013. cpumask_var_t tmpmask;
  7014. struct sched_group **sched_group_nodes;
  7015. struct root_domain *rd;
  7016. };
  7017. enum s_alloc {
  7018. sa_sched_groups = 0,
  7019. sa_rootdomain,
  7020. sa_tmpmask,
  7021. sa_send_covered,
  7022. sa_this_core_map,
  7023. sa_this_sibling_map,
  7024. sa_nodemask,
  7025. sa_sched_group_nodes,
  7026. #ifdef CONFIG_NUMA
  7027. sa_notcovered,
  7028. sa_covered,
  7029. sa_domainspan,
  7030. #endif
  7031. sa_none,
  7032. };
  7033. /*
  7034. * SMT sched-domains:
  7035. */
  7036. #ifdef CONFIG_SCHED_SMT
  7037. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  7038. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  7039. static int
  7040. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  7041. struct sched_group **sg, struct cpumask *unused)
  7042. {
  7043. if (sg)
  7044. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  7045. return cpu;
  7046. }
  7047. #endif /* CONFIG_SCHED_SMT */
  7048. /*
  7049. * multi-core sched-domains:
  7050. */
  7051. #ifdef CONFIG_SCHED_MC
  7052. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  7053. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  7054. #endif /* CONFIG_SCHED_MC */
  7055. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  7056. static int
  7057. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7058. struct sched_group **sg, struct cpumask *mask)
  7059. {
  7060. int group;
  7061. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7062. group = cpumask_first(mask);
  7063. if (sg)
  7064. *sg = &per_cpu(sched_group_core, group).sg;
  7065. return group;
  7066. }
  7067. #elif defined(CONFIG_SCHED_MC)
  7068. static int
  7069. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7070. struct sched_group **sg, struct cpumask *unused)
  7071. {
  7072. if (sg)
  7073. *sg = &per_cpu(sched_group_core, cpu).sg;
  7074. return cpu;
  7075. }
  7076. #endif
  7077. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7078. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7079. static int
  7080. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7081. struct sched_group **sg, struct cpumask *mask)
  7082. {
  7083. int group;
  7084. #ifdef CONFIG_SCHED_MC
  7085. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7086. group = cpumask_first(mask);
  7087. #elif defined(CONFIG_SCHED_SMT)
  7088. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7089. group = cpumask_first(mask);
  7090. #else
  7091. group = cpu;
  7092. #endif
  7093. if (sg)
  7094. *sg = &per_cpu(sched_group_phys, group).sg;
  7095. return group;
  7096. }
  7097. #ifdef CONFIG_NUMA
  7098. /*
  7099. * The init_sched_build_groups can't handle what we want to do with node
  7100. * groups, so roll our own. Now each node has its own list of groups which
  7101. * gets dynamically allocated.
  7102. */
  7103. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7104. static struct sched_group ***sched_group_nodes_bycpu;
  7105. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7106. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7107. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7108. struct sched_group **sg,
  7109. struct cpumask *nodemask)
  7110. {
  7111. int group;
  7112. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7113. group = cpumask_first(nodemask);
  7114. if (sg)
  7115. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7116. return group;
  7117. }
  7118. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7119. {
  7120. struct sched_group *sg = group_head;
  7121. int j;
  7122. if (!sg)
  7123. return;
  7124. do {
  7125. for_each_cpu(j, sched_group_cpus(sg)) {
  7126. struct sched_domain *sd;
  7127. sd = &per_cpu(phys_domains, j).sd;
  7128. if (j != group_first_cpu(sd->groups)) {
  7129. /*
  7130. * Only add "power" once for each
  7131. * physical package.
  7132. */
  7133. continue;
  7134. }
  7135. sg->cpu_power += sd->groups->cpu_power;
  7136. }
  7137. sg = sg->next;
  7138. } while (sg != group_head);
  7139. }
  7140. static int build_numa_sched_groups(struct s_data *d,
  7141. const struct cpumask *cpu_map, int num)
  7142. {
  7143. struct sched_domain *sd;
  7144. struct sched_group *sg, *prev;
  7145. int n, j;
  7146. cpumask_clear(d->covered);
  7147. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7148. if (cpumask_empty(d->nodemask)) {
  7149. d->sched_group_nodes[num] = NULL;
  7150. goto out;
  7151. }
  7152. sched_domain_node_span(num, d->domainspan);
  7153. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7154. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7155. GFP_KERNEL, num);
  7156. if (!sg) {
  7157. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  7158. num);
  7159. return -ENOMEM;
  7160. }
  7161. d->sched_group_nodes[num] = sg;
  7162. for_each_cpu(j, d->nodemask) {
  7163. sd = &per_cpu(node_domains, j).sd;
  7164. sd->groups = sg;
  7165. }
  7166. sg->cpu_power = 0;
  7167. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7168. sg->next = sg;
  7169. cpumask_or(d->covered, d->covered, d->nodemask);
  7170. prev = sg;
  7171. for (j = 0; j < nr_node_ids; j++) {
  7172. n = (num + j) % nr_node_ids;
  7173. cpumask_complement(d->notcovered, d->covered);
  7174. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7175. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7176. if (cpumask_empty(d->tmpmask))
  7177. break;
  7178. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7179. if (cpumask_empty(d->tmpmask))
  7180. continue;
  7181. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7182. GFP_KERNEL, num);
  7183. if (!sg) {
  7184. printk(KERN_WARNING
  7185. "Can not alloc domain group for node %d\n", j);
  7186. return -ENOMEM;
  7187. }
  7188. sg->cpu_power = 0;
  7189. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7190. sg->next = prev->next;
  7191. cpumask_or(d->covered, d->covered, d->tmpmask);
  7192. prev->next = sg;
  7193. prev = sg;
  7194. }
  7195. out:
  7196. return 0;
  7197. }
  7198. #endif /* CONFIG_NUMA */
  7199. #ifdef CONFIG_NUMA
  7200. /* Free memory allocated for various sched_group structures */
  7201. static void free_sched_groups(const struct cpumask *cpu_map,
  7202. struct cpumask *nodemask)
  7203. {
  7204. int cpu, i;
  7205. for_each_cpu(cpu, cpu_map) {
  7206. struct sched_group **sched_group_nodes
  7207. = sched_group_nodes_bycpu[cpu];
  7208. if (!sched_group_nodes)
  7209. continue;
  7210. for (i = 0; i < nr_node_ids; i++) {
  7211. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7212. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7213. if (cpumask_empty(nodemask))
  7214. continue;
  7215. if (sg == NULL)
  7216. continue;
  7217. sg = sg->next;
  7218. next_sg:
  7219. oldsg = sg;
  7220. sg = sg->next;
  7221. kfree(oldsg);
  7222. if (oldsg != sched_group_nodes[i])
  7223. goto next_sg;
  7224. }
  7225. kfree(sched_group_nodes);
  7226. sched_group_nodes_bycpu[cpu] = NULL;
  7227. }
  7228. }
  7229. #else /* !CONFIG_NUMA */
  7230. static void free_sched_groups(const struct cpumask *cpu_map,
  7231. struct cpumask *nodemask)
  7232. {
  7233. }
  7234. #endif /* CONFIG_NUMA */
  7235. /*
  7236. * Initialize sched groups cpu_power.
  7237. *
  7238. * cpu_power indicates the capacity of sched group, which is used while
  7239. * distributing the load between different sched groups in a sched domain.
  7240. * Typically cpu_power for all the groups in a sched domain will be same unless
  7241. * there are asymmetries in the topology. If there are asymmetries, group
  7242. * having more cpu_power will pickup more load compared to the group having
  7243. * less cpu_power.
  7244. */
  7245. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7246. {
  7247. struct sched_domain *child;
  7248. struct sched_group *group;
  7249. long power;
  7250. int weight;
  7251. WARN_ON(!sd || !sd->groups);
  7252. if (cpu != group_first_cpu(sd->groups))
  7253. return;
  7254. child = sd->child;
  7255. sd->groups->cpu_power = 0;
  7256. if (!child) {
  7257. power = SCHED_LOAD_SCALE;
  7258. weight = cpumask_weight(sched_domain_span(sd));
  7259. /*
  7260. * SMT siblings share the power of a single core.
  7261. * Usually multiple threads get a better yield out of
  7262. * that one core than a single thread would have,
  7263. * reflect that in sd->smt_gain.
  7264. */
  7265. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7266. power *= sd->smt_gain;
  7267. power /= weight;
  7268. power >>= SCHED_LOAD_SHIFT;
  7269. }
  7270. sd->groups->cpu_power += power;
  7271. return;
  7272. }
  7273. /*
  7274. * Add cpu_power of each child group to this groups cpu_power.
  7275. */
  7276. group = child->groups;
  7277. do {
  7278. sd->groups->cpu_power += group->cpu_power;
  7279. group = group->next;
  7280. } while (group != child->groups);
  7281. }
  7282. /*
  7283. * Initializers for schedule domains
  7284. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7285. */
  7286. #ifdef CONFIG_SCHED_DEBUG
  7287. # define SD_INIT_NAME(sd, type) sd->name = #type
  7288. #else
  7289. # define SD_INIT_NAME(sd, type) do { } while (0)
  7290. #endif
  7291. #define SD_INIT(sd, type) sd_init_##type(sd)
  7292. #define SD_INIT_FUNC(type) \
  7293. static noinline void sd_init_##type(struct sched_domain *sd) \
  7294. { \
  7295. memset(sd, 0, sizeof(*sd)); \
  7296. *sd = SD_##type##_INIT; \
  7297. sd->level = SD_LV_##type; \
  7298. SD_INIT_NAME(sd, type); \
  7299. }
  7300. SD_INIT_FUNC(CPU)
  7301. #ifdef CONFIG_NUMA
  7302. SD_INIT_FUNC(ALLNODES)
  7303. SD_INIT_FUNC(NODE)
  7304. #endif
  7305. #ifdef CONFIG_SCHED_SMT
  7306. SD_INIT_FUNC(SIBLING)
  7307. #endif
  7308. #ifdef CONFIG_SCHED_MC
  7309. SD_INIT_FUNC(MC)
  7310. #endif
  7311. static int default_relax_domain_level = -1;
  7312. static int __init setup_relax_domain_level(char *str)
  7313. {
  7314. unsigned long val;
  7315. val = simple_strtoul(str, NULL, 0);
  7316. if (val < SD_LV_MAX)
  7317. default_relax_domain_level = val;
  7318. return 1;
  7319. }
  7320. __setup("relax_domain_level=", setup_relax_domain_level);
  7321. static void set_domain_attribute(struct sched_domain *sd,
  7322. struct sched_domain_attr *attr)
  7323. {
  7324. int request;
  7325. if (!attr || attr->relax_domain_level < 0) {
  7326. if (default_relax_domain_level < 0)
  7327. return;
  7328. else
  7329. request = default_relax_domain_level;
  7330. } else
  7331. request = attr->relax_domain_level;
  7332. if (request < sd->level) {
  7333. /* turn off idle balance on this domain */
  7334. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7335. } else {
  7336. /* turn on idle balance on this domain */
  7337. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7338. }
  7339. }
  7340. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7341. const struct cpumask *cpu_map)
  7342. {
  7343. switch (what) {
  7344. case sa_sched_groups:
  7345. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7346. d->sched_group_nodes = NULL;
  7347. case sa_rootdomain:
  7348. free_rootdomain(d->rd); /* fall through */
  7349. case sa_tmpmask:
  7350. free_cpumask_var(d->tmpmask); /* fall through */
  7351. case sa_send_covered:
  7352. free_cpumask_var(d->send_covered); /* fall through */
  7353. case sa_this_core_map:
  7354. free_cpumask_var(d->this_core_map); /* fall through */
  7355. case sa_this_sibling_map:
  7356. free_cpumask_var(d->this_sibling_map); /* fall through */
  7357. case sa_nodemask:
  7358. free_cpumask_var(d->nodemask); /* fall through */
  7359. case sa_sched_group_nodes:
  7360. #ifdef CONFIG_NUMA
  7361. kfree(d->sched_group_nodes); /* fall through */
  7362. case sa_notcovered:
  7363. free_cpumask_var(d->notcovered); /* fall through */
  7364. case sa_covered:
  7365. free_cpumask_var(d->covered); /* fall through */
  7366. case sa_domainspan:
  7367. free_cpumask_var(d->domainspan); /* fall through */
  7368. #endif
  7369. case sa_none:
  7370. break;
  7371. }
  7372. }
  7373. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7374. const struct cpumask *cpu_map)
  7375. {
  7376. #ifdef CONFIG_NUMA
  7377. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7378. return sa_none;
  7379. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7380. return sa_domainspan;
  7381. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7382. return sa_covered;
  7383. /* Allocate the per-node list of sched groups */
  7384. d->sched_group_nodes = kcalloc(nr_node_ids,
  7385. sizeof(struct sched_group *), GFP_KERNEL);
  7386. if (!d->sched_group_nodes) {
  7387. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7388. return sa_notcovered;
  7389. }
  7390. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7391. #endif
  7392. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7393. return sa_sched_group_nodes;
  7394. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7395. return sa_nodemask;
  7396. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7397. return sa_this_sibling_map;
  7398. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7399. return sa_this_core_map;
  7400. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7401. return sa_send_covered;
  7402. d->rd = alloc_rootdomain();
  7403. if (!d->rd) {
  7404. printk(KERN_WARNING "Cannot alloc root domain\n");
  7405. return sa_tmpmask;
  7406. }
  7407. return sa_rootdomain;
  7408. }
  7409. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7410. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7411. {
  7412. struct sched_domain *sd = NULL;
  7413. #ifdef CONFIG_NUMA
  7414. struct sched_domain *parent;
  7415. d->sd_allnodes = 0;
  7416. if (cpumask_weight(cpu_map) >
  7417. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7418. sd = &per_cpu(allnodes_domains, i).sd;
  7419. SD_INIT(sd, ALLNODES);
  7420. set_domain_attribute(sd, attr);
  7421. cpumask_copy(sched_domain_span(sd), cpu_map);
  7422. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7423. d->sd_allnodes = 1;
  7424. }
  7425. parent = sd;
  7426. sd = &per_cpu(node_domains, i).sd;
  7427. SD_INIT(sd, NODE);
  7428. set_domain_attribute(sd, attr);
  7429. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7430. sd->parent = parent;
  7431. if (parent)
  7432. parent->child = sd;
  7433. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7434. #endif
  7435. return sd;
  7436. }
  7437. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7438. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7439. struct sched_domain *parent, int i)
  7440. {
  7441. struct sched_domain *sd;
  7442. sd = &per_cpu(phys_domains, i).sd;
  7443. SD_INIT(sd, CPU);
  7444. set_domain_attribute(sd, attr);
  7445. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7446. sd->parent = parent;
  7447. if (parent)
  7448. parent->child = sd;
  7449. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7450. return sd;
  7451. }
  7452. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7453. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7454. struct sched_domain *parent, int i)
  7455. {
  7456. struct sched_domain *sd = parent;
  7457. #ifdef CONFIG_SCHED_MC
  7458. sd = &per_cpu(core_domains, i).sd;
  7459. SD_INIT(sd, MC);
  7460. set_domain_attribute(sd, attr);
  7461. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7462. sd->parent = parent;
  7463. parent->child = sd;
  7464. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7465. #endif
  7466. return sd;
  7467. }
  7468. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7469. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7470. struct sched_domain *parent, int i)
  7471. {
  7472. struct sched_domain *sd = parent;
  7473. #ifdef CONFIG_SCHED_SMT
  7474. sd = &per_cpu(cpu_domains, i).sd;
  7475. SD_INIT(sd, SIBLING);
  7476. set_domain_attribute(sd, attr);
  7477. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7478. sd->parent = parent;
  7479. parent->child = sd;
  7480. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7481. #endif
  7482. return sd;
  7483. }
  7484. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7485. const struct cpumask *cpu_map, int cpu)
  7486. {
  7487. switch (l) {
  7488. #ifdef CONFIG_SCHED_SMT
  7489. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7490. cpumask_and(d->this_sibling_map, cpu_map,
  7491. topology_thread_cpumask(cpu));
  7492. if (cpu == cpumask_first(d->this_sibling_map))
  7493. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7494. &cpu_to_cpu_group,
  7495. d->send_covered, d->tmpmask);
  7496. break;
  7497. #endif
  7498. #ifdef CONFIG_SCHED_MC
  7499. case SD_LV_MC: /* set up multi-core groups */
  7500. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7501. if (cpu == cpumask_first(d->this_core_map))
  7502. init_sched_build_groups(d->this_core_map, cpu_map,
  7503. &cpu_to_core_group,
  7504. d->send_covered, d->tmpmask);
  7505. break;
  7506. #endif
  7507. case SD_LV_CPU: /* set up physical groups */
  7508. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7509. if (!cpumask_empty(d->nodemask))
  7510. init_sched_build_groups(d->nodemask, cpu_map,
  7511. &cpu_to_phys_group,
  7512. d->send_covered, d->tmpmask);
  7513. break;
  7514. #ifdef CONFIG_NUMA
  7515. case SD_LV_ALLNODES:
  7516. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7517. d->send_covered, d->tmpmask);
  7518. break;
  7519. #endif
  7520. default:
  7521. break;
  7522. }
  7523. }
  7524. /*
  7525. * Build sched domains for a given set of cpus and attach the sched domains
  7526. * to the individual cpus
  7527. */
  7528. static int __build_sched_domains(const struct cpumask *cpu_map,
  7529. struct sched_domain_attr *attr)
  7530. {
  7531. enum s_alloc alloc_state = sa_none;
  7532. struct s_data d;
  7533. struct sched_domain *sd;
  7534. int i;
  7535. #ifdef CONFIG_NUMA
  7536. d.sd_allnodes = 0;
  7537. #endif
  7538. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7539. if (alloc_state != sa_rootdomain)
  7540. goto error;
  7541. alloc_state = sa_sched_groups;
  7542. /*
  7543. * Set up domains for cpus specified by the cpu_map.
  7544. */
  7545. for_each_cpu(i, cpu_map) {
  7546. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7547. cpu_map);
  7548. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7549. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7550. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7551. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7552. }
  7553. for_each_cpu(i, cpu_map) {
  7554. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7555. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7556. }
  7557. /* Set up physical groups */
  7558. for (i = 0; i < nr_node_ids; i++)
  7559. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7560. #ifdef CONFIG_NUMA
  7561. /* Set up node groups */
  7562. if (d.sd_allnodes)
  7563. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7564. for (i = 0; i < nr_node_ids; i++)
  7565. if (build_numa_sched_groups(&d, cpu_map, i))
  7566. goto error;
  7567. #endif
  7568. /* Calculate CPU power for physical packages and nodes */
  7569. #ifdef CONFIG_SCHED_SMT
  7570. for_each_cpu(i, cpu_map) {
  7571. sd = &per_cpu(cpu_domains, i).sd;
  7572. init_sched_groups_power(i, sd);
  7573. }
  7574. #endif
  7575. #ifdef CONFIG_SCHED_MC
  7576. for_each_cpu(i, cpu_map) {
  7577. sd = &per_cpu(core_domains, i).sd;
  7578. init_sched_groups_power(i, sd);
  7579. }
  7580. #endif
  7581. for_each_cpu(i, cpu_map) {
  7582. sd = &per_cpu(phys_domains, i).sd;
  7583. init_sched_groups_power(i, sd);
  7584. }
  7585. #ifdef CONFIG_NUMA
  7586. for (i = 0; i < nr_node_ids; i++)
  7587. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7588. if (d.sd_allnodes) {
  7589. struct sched_group *sg;
  7590. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7591. d.tmpmask);
  7592. init_numa_sched_groups_power(sg);
  7593. }
  7594. #endif
  7595. /* Attach the domains */
  7596. for_each_cpu(i, cpu_map) {
  7597. #ifdef CONFIG_SCHED_SMT
  7598. sd = &per_cpu(cpu_domains, i).sd;
  7599. #elif defined(CONFIG_SCHED_MC)
  7600. sd = &per_cpu(core_domains, i).sd;
  7601. #else
  7602. sd = &per_cpu(phys_domains, i).sd;
  7603. #endif
  7604. cpu_attach_domain(sd, d.rd, i);
  7605. }
  7606. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7607. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7608. return 0;
  7609. error:
  7610. __free_domain_allocs(&d, alloc_state, cpu_map);
  7611. return -ENOMEM;
  7612. }
  7613. static int build_sched_domains(const struct cpumask *cpu_map)
  7614. {
  7615. return __build_sched_domains(cpu_map, NULL);
  7616. }
  7617. static cpumask_var_t *doms_cur; /* current sched domains */
  7618. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7619. static struct sched_domain_attr *dattr_cur;
  7620. /* attribues of custom domains in 'doms_cur' */
  7621. /*
  7622. * Special case: If a kmalloc of a doms_cur partition (array of
  7623. * cpumask) fails, then fallback to a single sched domain,
  7624. * as determined by the single cpumask fallback_doms.
  7625. */
  7626. static cpumask_var_t fallback_doms;
  7627. /*
  7628. * arch_update_cpu_topology lets virtualized architectures update the
  7629. * cpu core maps. It is supposed to return 1 if the topology changed
  7630. * or 0 if it stayed the same.
  7631. */
  7632. int __attribute__((weak)) arch_update_cpu_topology(void)
  7633. {
  7634. return 0;
  7635. }
  7636. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  7637. {
  7638. int i;
  7639. cpumask_var_t *doms;
  7640. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  7641. if (!doms)
  7642. return NULL;
  7643. for (i = 0; i < ndoms; i++) {
  7644. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  7645. free_sched_domains(doms, i);
  7646. return NULL;
  7647. }
  7648. }
  7649. return doms;
  7650. }
  7651. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  7652. {
  7653. unsigned int i;
  7654. for (i = 0; i < ndoms; i++)
  7655. free_cpumask_var(doms[i]);
  7656. kfree(doms);
  7657. }
  7658. /*
  7659. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7660. * For now this just excludes isolated cpus, but could be used to
  7661. * exclude other special cases in the future.
  7662. */
  7663. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7664. {
  7665. int err;
  7666. arch_update_cpu_topology();
  7667. ndoms_cur = 1;
  7668. doms_cur = alloc_sched_domains(ndoms_cur);
  7669. if (!doms_cur)
  7670. doms_cur = &fallback_doms;
  7671. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  7672. dattr_cur = NULL;
  7673. err = build_sched_domains(doms_cur[0]);
  7674. register_sched_domain_sysctl();
  7675. return err;
  7676. }
  7677. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7678. struct cpumask *tmpmask)
  7679. {
  7680. free_sched_groups(cpu_map, tmpmask);
  7681. }
  7682. /*
  7683. * Detach sched domains from a group of cpus specified in cpu_map
  7684. * These cpus will now be attached to the NULL domain
  7685. */
  7686. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7687. {
  7688. /* Save because hotplug lock held. */
  7689. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7690. int i;
  7691. for_each_cpu(i, cpu_map)
  7692. cpu_attach_domain(NULL, &def_root_domain, i);
  7693. synchronize_sched();
  7694. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7695. }
  7696. /* handle null as "default" */
  7697. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7698. struct sched_domain_attr *new, int idx_new)
  7699. {
  7700. struct sched_domain_attr tmp;
  7701. /* fast path */
  7702. if (!new && !cur)
  7703. return 1;
  7704. tmp = SD_ATTR_INIT;
  7705. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7706. new ? (new + idx_new) : &tmp,
  7707. sizeof(struct sched_domain_attr));
  7708. }
  7709. /*
  7710. * Partition sched domains as specified by the 'ndoms_new'
  7711. * cpumasks in the array doms_new[] of cpumasks. This compares
  7712. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7713. * It destroys each deleted domain and builds each new domain.
  7714. *
  7715. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  7716. * The masks don't intersect (don't overlap.) We should setup one
  7717. * sched domain for each mask. CPUs not in any of the cpumasks will
  7718. * not be load balanced. If the same cpumask appears both in the
  7719. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7720. * it as it is.
  7721. *
  7722. * The passed in 'doms_new' should be allocated using
  7723. * alloc_sched_domains. This routine takes ownership of it and will
  7724. * free_sched_domains it when done with it. If the caller failed the
  7725. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  7726. * and partition_sched_domains() will fallback to the single partition
  7727. * 'fallback_doms', it also forces the domains to be rebuilt.
  7728. *
  7729. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7730. * ndoms_new == 0 is a special case for destroying existing domains,
  7731. * and it will not create the default domain.
  7732. *
  7733. * Call with hotplug lock held
  7734. */
  7735. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  7736. struct sched_domain_attr *dattr_new)
  7737. {
  7738. int i, j, n;
  7739. int new_topology;
  7740. mutex_lock(&sched_domains_mutex);
  7741. /* always unregister in case we don't destroy any domains */
  7742. unregister_sched_domain_sysctl();
  7743. /* Let architecture update cpu core mappings. */
  7744. new_topology = arch_update_cpu_topology();
  7745. n = doms_new ? ndoms_new : 0;
  7746. /* Destroy deleted domains */
  7747. for (i = 0; i < ndoms_cur; i++) {
  7748. for (j = 0; j < n && !new_topology; j++) {
  7749. if (cpumask_equal(doms_cur[i], doms_new[j])
  7750. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7751. goto match1;
  7752. }
  7753. /* no match - a current sched domain not in new doms_new[] */
  7754. detach_destroy_domains(doms_cur[i]);
  7755. match1:
  7756. ;
  7757. }
  7758. if (doms_new == NULL) {
  7759. ndoms_cur = 0;
  7760. doms_new = &fallback_doms;
  7761. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  7762. WARN_ON_ONCE(dattr_new);
  7763. }
  7764. /* Build new domains */
  7765. for (i = 0; i < ndoms_new; i++) {
  7766. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7767. if (cpumask_equal(doms_new[i], doms_cur[j])
  7768. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7769. goto match2;
  7770. }
  7771. /* no match - add a new doms_new */
  7772. __build_sched_domains(doms_new[i],
  7773. dattr_new ? dattr_new + i : NULL);
  7774. match2:
  7775. ;
  7776. }
  7777. /* Remember the new sched domains */
  7778. if (doms_cur != &fallback_doms)
  7779. free_sched_domains(doms_cur, ndoms_cur);
  7780. kfree(dattr_cur); /* kfree(NULL) is safe */
  7781. doms_cur = doms_new;
  7782. dattr_cur = dattr_new;
  7783. ndoms_cur = ndoms_new;
  7784. register_sched_domain_sysctl();
  7785. mutex_unlock(&sched_domains_mutex);
  7786. }
  7787. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7788. static void arch_reinit_sched_domains(void)
  7789. {
  7790. get_online_cpus();
  7791. /* Destroy domains first to force the rebuild */
  7792. partition_sched_domains(0, NULL, NULL);
  7793. rebuild_sched_domains();
  7794. put_online_cpus();
  7795. }
  7796. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7797. {
  7798. unsigned int level = 0;
  7799. if (sscanf(buf, "%u", &level) != 1)
  7800. return -EINVAL;
  7801. /*
  7802. * level is always be positive so don't check for
  7803. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7804. * What happens on 0 or 1 byte write,
  7805. * need to check for count as well?
  7806. */
  7807. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7808. return -EINVAL;
  7809. if (smt)
  7810. sched_smt_power_savings = level;
  7811. else
  7812. sched_mc_power_savings = level;
  7813. arch_reinit_sched_domains();
  7814. return count;
  7815. }
  7816. #ifdef CONFIG_SCHED_MC
  7817. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7818. char *page)
  7819. {
  7820. return sprintf(page, "%u\n", sched_mc_power_savings);
  7821. }
  7822. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7823. const char *buf, size_t count)
  7824. {
  7825. return sched_power_savings_store(buf, count, 0);
  7826. }
  7827. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7828. sched_mc_power_savings_show,
  7829. sched_mc_power_savings_store);
  7830. #endif
  7831. #ifdef CONFIG_SCHED_SMT
  7832. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7833. char *page)
  7834. {
  7835. return sprintf(page, "%u\n", sched_smt_power_savings);
  7836. }
  7837. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7838. const char *buf, size_t count)
  7839. {
  7840. return sched_power_savings_store(buf, count, 1);
  7841. }
  7842. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7843. sched_smt_power_savings_show,
  7844. sched_smt_power_savings_store);
  7845. #endif
  7846. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7847. {
  7848. int err = 0;
  7849. #ifdef CONFIG_SCHED_SMT
  7850. if (smt_capable())
  7851. err = sysfs_create_file(&cls->kset.kobj,
  7852. &attr_sched_smt_power_savings.attr);
  7853. #endif
  7854. #ifdef CONFIG_SCHED_MC
  7855. if (!err && mc_capable())
  7856. err = sysfs_create_file(&cls->kset.kobj,
  7857. &attr_sched_mc_power_savings.attr);
  7858. #endif
  7859. return err;
  7860. }
  7861. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7862. #ifndef CONFIG_CPUSETS
  7863. /*
  7864. * Add online and remove offline CPUs from the scheduler domains.
  7865. * When cpusets are enabled they take over this function.
  7866. */
  7867. static int update_sched_domains(struct notifier_block *nfb,
  7868. unsigned long action, void *hcpu)
  7869. {
  7870. switch (action) {
  7871. case CPU_ONLINE:
  7872. case CPU_ONLINE_FROZEN:
  7873. case CPU_DOWN_PREPARE:
  7874. case CPU_DOWN_PREPARE_FROZEN:
  7875. case CPU_DOWN_FAILED:
  7876. case CPU_DOWN_FAILED_FROZEN:
  7877. partition_sched_domains(1, NULL, NULL);
  7878. return NOTIFY_OK;
  7879. default:
  7880. return NOTIFY_DONE;
  7881. }
  7882. }
  7883. #endif
  7884. static int update_runtime(struct notifier_block *nfb,
  7885. unsigned long action, void *hcpu)
  7886. {
  7887. int cpu = (int)(long)hcpu;
  7888. switch (action) {
  7889. case CPU_DOWN_PREPARE:
  7890. case CPU_DOWN_PREPARE_FROZEN:
  7891. disable_runtime(cpu_rq(cpu));
  7892. return NOTIFY_OK;
  7893. case CPU_DOWN_FAILED:
  7894. case CPU_DOWN_FAILED_FROZEN:
  7895. case CPU_ONLINE:
  7896. case CPU_ONLINE_FROZEN:
  7897. enable_runtime(cpu_rq(cpu));
  7898. return NOTIFY_OK;
  7899. default:
  7900. return NOTIFY_DONE;
  7901. }
  7902. }
  7903. void __init sched_init_smp(void)
  7904. {
  7905. cpumask_var_t non_isolated_cpus;
  7906. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7907. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7908. #if defined(CONFIG_NUMA)
  7909. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7910. GFP_KERNEL);
  7911. BUG_ON(sched_group_nodes_bycpu == NULL);
  7912. #endif
  7913. get_online_cpus();
  7914. mutex_lock(&sched_domains_mutex);
  7915. arch_init_sched_domains(cpu_active_mask);
  7916. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7917. if (cpumask_empty(non_isolated_cpus))
  7918. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7919. mutex_unlock(&sched_domains_mutex);
  7920. put_online_cpus();
  7921. #ifndef CONFIG_CPUSETS
  7922. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7923. hotcpu_notifier(update_sched_domains, 0);
  7924. #endif
  7925. /* RT runtime code needs to handle some hotplug events */
  7926. hotcpu_notifier(update_runtime, 0);
  7927. init_hrtick();
  7928. /* Move init over to a non-isolated CPU */
  7929. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7930. BUG();
  7931. sched_init_granularity();
  7932. free_cpumask_var(non_isolated_cpus);
  7933. init_sched_rt_class();
  7934. }
  7935. #else
  7936. void __init sched_init_smp(void)
  7937. {
  7938. sched_init_granularity();
  7939. }
  7940. #endif /* CONFIG_SMP */
  7941. const_debug unsigned int sysctl_timer_migration = 1;
  7942. int in_sched_functions(unsigned long addr)
  7943. {
  7944. return in_lock_functions(addr) ||
  7945. (addr >= (unsigned long)__sched_text_start
  7946. && addr < (unsigned long)__sched_text_end);
  7947. }
  7948. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7949. {
  7950. cfs_rq->tasks_timeline = RB_ROOT;
  7951. INIT_LIST_HEAD(&cfs_rq->tasks);
  7952. #ifdef CONFIG_FAIR_GROUP_SCHED
  7953. cfs_rq->rq = rq;
  7954. #endif
  7955. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7956. }
  7957. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7958. {
  7959. struct rt_prio_array *array;
  7960. int i;
  7961. array = &rt_rq->active;
  7962. for (i = 0; i < MAX_RT_PRIO; i++) {
  7963. INIT_LIST_HEAD(array->queue + i);
  7964. __clear_bit(i, array->bitmap);
  7965. }
  7966. /* delimiter for bitsearch: */
  7967. __set_bit(MAX_RT_PRIO, array->bitmap);
  7968. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7969. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7970. #ifdef CONFIG_SMP
  7971. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7972. #endif
  7973. #endif
  7974. #ifdef CONFIG_SMP
  7975. rt_rq->rt_nr_migratory = 0;
  7976. rt_rq->overloaded = 0;
  7977. plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
  7978. #endif
  7979. rt_rq->rt_time = 0;
  7980. rt_rq->rt_throttled = 0;
  7981. rt_rq->rt_runtime = 0;
  7982. spin_lock_init(&rt_rq->rt_runtime_lock);
  7983. #ifdef CONFIG_RT_GROUP_SCHED
  7984. rt_rq->rt_nr_boosted = 0;
  7985. rt_rq->rq = rq;
  7986. #endif
  7987. }
  7988. #ifdef CONFIG_FAIR_GROUP_SCHED
  7989. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7990. struct sched_entity *se, int cpu, int add,
  7991. struct sched_entity *parent)
  7992. {
  7993. struct rq *rq = cpu_rq(cpu);
  7994. tg->cfs_rq[cpu] = cfs_rq;
  7995. init_cfs_rq(cfs_rq, rq);
  7996. cfs_rq->tg = tg;
  7997. if (add)
  7998. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7999. tg->se[cpu] = se;
  8000. /* se could be NULL for init_task_group */
  8001. if (!se)
  8002. return;
  8003. if (!parent)
  8004. se->cfs_rq = &rq->cfs;
  8005. else
  8006. se->cfs_rq = parent->my_q;
  8007. se->my_q = cfs_rq;
  8008. se->load.weight = tg->shares;
  8009. se->load.inv_weight = 0;
  8010. se->parent = parent;
  8011. }
  8012. #endif
  8013. #ifdef CONFIG_RT_GROUP_SCHED
  8014. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  8015. struct sched_rt_entity *rt_se, int cpu, int add,
  8016. struct sched_rt_entity *parent)
  8017. {
  8018. struct rq *rq = cpu_rq(cpu);
  8019. tg->rt_rq[cpu] = rt_rq;
  8020. init_rt_rq(rt_rq, rq);
  8021. rt_rq->tg = tg;
  8022. rt_rq->rt_se = rt_se;
  8023. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  8024. if (add)
  8025. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  8026. tg->rt_se[cpu] = rt_se;
  8027. if (!rt_se)
  8028. return;
  8029. if (!parent)
  8030. rt_se->rt_rq = &rq->rt;
  8031. else
  8032. rt_se->rt_rq = parent->my_q;
  8033. rt_se->my_q = rt_rq;
  8034. rt_se->parent = parent;
  8035. INIT_LIST_HEAD(&rt_se->run_list);
  8036. }
  8037. #endif
  8038. void __init sched_init(void)
  8039. {
  8040. int i, j;
  8041. unsigned long alloc_size = 0, ptr;
  8042. #ifdef CONFIG_FAIR_GROUP_SCHED
  8043. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8044. #endif
  8045. #ifdef CONFIG_RT_GROUP_SCHED
  8046. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8047. #endif
  8048. #ifdef CONFIG_USER_SCHED
  8049. alloc_size *= 2;
  8050. #endif
  8051. #ifdef CONFIG_CPUMASK_OFFSTACK
  8052. alloc_size += num_possible_cpus() * cpumask_size();
  8053. #endif
  8054. if (alloc_size) {
  8055. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  8056. #ifdef CONFIG_FAIR_GROUP_SCHED
  8057. init_task_group.se = (struct sched_entity **)ptr;
  8058. ptr += nr_cpu_ids * sizeof(void **);
  8059. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8060. ptr += nr_cpu_ids * sizeof(void **);
  8061. #ifdef CONFIG_USER_SCHED
  8062. root_task_group.se = (struct sched_entity **)ptr;
  8063. ptr += nr_cpu_ids * sizeof(void **);
  8064. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8065. ptr += nr_cpu_ids * sizeof(void **);
  8066. #endif /* CONFIG_USER_SCHED */
  8067. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8068. #ifdef CONFIG_RT_GROUP_SCHED
  8069. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8070. ptr += nr_cpu_ids * sizeof(void **);
  8071. init_task_group.rt_rq = (struct rt_rq **)ptr;
  8072. ptr += nr_cpu_ids * sizeof(void **);
  8073. #ifdef CONFIG_USER_SCHED
  8074. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8075. ptr += nr_cpu_ids * sizeof(void **);
  8076. root_task_group.rt_rq = (struct rt_rq **)ptr;
  8077. ptr += nr_cpu_ids * sizeof(void **);
  8078. #endif /* CONFIG_USER_SCHED */
  8079. #endif /* CONFIG_RT_GROUP_SCHED */
  8080. #ifdef CONFIG_CPUMASK_OFFSTACK
  8081. for_each_possible_cpu(i) {
  8082. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  8083. ptr += cpumask_size();
  8084. }
  8085. #endif /* CONFIG_CPUMASK_OFFSTACK */
  8086. }
  8087. #ifdef CONFIG_SMP
  8088. init_defrootdomain();
  8089. #endif
  8090. init_rt_bandwidth(&def_rt_bandwidth,
  8091. global_rt_period(), global_rt_runtime());
  8092. #ifdef CONFIG_RT_GROUP_SCHED
  8093. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8094. global_rt_period(), global_rt_runtime());
  8095. #ifdef CONFIG_USER_SCHED
  8096. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8097. global_rt_period(), RUNTIME_INF);
  8098. #endif /* CONFIG_USER_SCHED */
  8099. #endif /* CONFIG_RT_GROUP_SCHED */
  8100. #ifdef CONFIG_GROUP_SCHED
  8101. list_add(&init_task_group.list, &task_groups);
  8102. INIT_LIST_HEAD(&init_task_group.children);
  8103. #ifdef CONFIG_USER_SCHED
  8104. INIT_LIST_HEAD(&root_task_group.children);
  8105. init_task_group.parent = &root_task_group;
  8106. list_add(&init_task_group.siblings, &root_task_group.children);
  8107. #endif /* CONFIG_USER_SCHED */
  8108. #endif /* CONFIG_GROUP_SCHED */
  8109. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  8110. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  8111. __alignof__(unsigned long));
  8112. #endif
  8113. for_each_possible_cpu(i) {
  8114. struct rq *rq;
  8115. rq = cpu_rq(i);
  8116. spin_lock_init(&rq->lock);
  8117. rq->nr_running = 0;
  8118. rq->calc_load_active = 0;
  8119. rq->calc_load_update = jiffies + LOAD_FREQ;
  8120. init_cfs_rq(&rq->cfs, rq);
  8121. init_rt_rq(&rq->rt, rq);
  8122. #ifdef CONFIG_FAIR_GROUP_SCHED
  8123. init_task_group.shares = init_task_group_load;
  8124. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8125. #ifdef CONFIG_CGROUP_SCHED
  8126. /*
  8127. * How much cpu bandwidth does init_task_group get?
  8128. *
  8129. * In case of task-groups formed thr' the cgroup filesystem, it
  8130. * gets 100% of the cpu resources in the system. This overall
  8131. * system cpu resource is divided among the tasks of
  8132. * init_task_group and its child task-groups in a fair manner,
  8133. * based on each entity's (task or task-group's) weight
  8134. * (se->load.weight).
  8135. *
  8136. * In other words, if init_task_group has 10 tasks of weight
  8137. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8138. * then A0's share of the cpu resource is:
  8139. *
  8140. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8141. *
  8142. * We achieve this by letting init_task_group's tasks sit
  8143. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8144. */
  8145. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8146. #elif defined CONFIG_USER_SCHED
  8147. root_task_group.shares = NICE_0_LOAD;
  8148. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8149. /*
  8150. * In case of task-groups formed thr' the user id of tasks,
  8151. * init_task_group represents tasks belonging to root user.
  8152. * Hence it forms a sibling of all subsequent groups formed.
  8153. * In this case, init_task_group gets only a fraction of overall
  8154. * system cpu resource, based on the weight assigned to root
  8155. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8156. * by letting tasks of init_task_group sit in a separate cfs_rq
  8157. * (init_tg_cfs_rq) and having one entity represent this group of
  8158. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8159. */
  8160. init_tg_cfs_entry(&init_task_group,
  8161. &per_cpu(init_tg_cfs_rq, i),
  8162. &per_cpu(init_sched_entity, i), i, 1,
  8163. root_task_group.se[i]);
  8164. #endif
  8165. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8166. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8167. #ifdef CONFIG_RT_GROUP_SCHED
  8168. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8169. #ifdef CONFIG_CGROUP_SCHED
  8170. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8171. #elif defined CONFIG_USER_SCHED
  8172. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8173. init_tg_rt_entry(&init_task_group,
  8174. &per_cpu(init_rt_rq, i),
  8175. &per_cpu(init_sched_rt_entity, i), i, 1,
  8176. root_task_group.rt_se[i]);
  8177. #endif
  8178. #endif
  8179. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8180. rq->cpu_load[j] = 0;
  8181. #ifdef CONFIG_SMP
  8182. rq->sd = NULL;
  8183. rq->rd = NULL;
  8184. rq->post_schedule = 0;
  8185. rq->active_balance = 0;
  8186. rq->next_balance = jiffies;
  8187. rq->push_cpu = 0;
  8188. rq->cpu = i;
  8189. rq->online = 0;
  8190. rq->migration_thread = NULL;
  8191. rq->idle_stamp = 0;
  8192. rq->avg_idle = 2*sysctl_sched_migration_cost;
  8193. INIT_LIST_HEAD(&rq->migration_queue);
  8194. rq_attach_root(rq, &def_root_domain);
  8195. #endif
  8196. init_rq_hrtick(rq);
  8197. atomic_set(&rq->nr_iowait, 0);
  8198. }
  8199. set_load_weight(&init_task);
  8200. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8201. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8202. #endif
  8203. #ifdef CONFIG_SMP
  8204. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8205. #endif
  8206. #ifdef CONFIG_RT_MUTEXES
  8207. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  8208. #endif
  8209. /*
  8210. * The boot idle thread does lazy MMU switching as well:
  8211. */
  8212. atomic_inc(&init_mm.mm_count);
  8213. enter_lazy_tlb(&init_mm, current);
  8214. /*
  8215. * Make us the idle thread. Technically, schedule() should not be
  8216. * called from this thread, however somewhere below it might be,
  8217. * but because we are the idle thread, we just pick up running again
  8218. * when this runqueue becomes "idle".
  8219. */
  8220. init_idle(current, smp_processor_id());
  8221. calc_load_update = jiffies + LOAD_FREQ;
  8222. /*
  8223. * During early bootup we pretend to be a normal task:
  8224. */
  8225. current->sched_class = &fair_sched_class;
  8226. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8227. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8228. #ifdef CONFIG_SMP
  8229. #ifdef CONFIG_NO_HZ
  8230. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8231. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8232. #endif
  8233. /* May be allocated at isolcpus cmdline parse time */
  8234. if (cpu_isolated_map == NULL)
  8235. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8236. #endif /* SMP */
  8237. perf_event_init();
  8238. scheduler_running = 1;
  8239. }
  8240. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8241. static inline int preempt_count_equals(int preempt_offset)
  8242. {
  8243. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8244. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8245. }
  8246. void __might_sleep(char *file, int line, int preempt_offset)
  8247. {
  8248. #ifdef in_atomic
  8249. static unsigned long prev_jiffy; /* ratelimiting */
  8250. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8251. system_state != SYSTEM_RUNNING || oops_in_progress)
  8252. return;
  8253. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8254. return;
  8255. prev_jiffy = jiffies;
  8256. printk(KERN_ERR
  8257. "BUG: sleeping function called from invalid context at %s:%d\n",
  8258. file, line);
  8259. printk(KERN_ERR
  8260. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8261. in_atomic(), irqs_disabled(),
  8262. current->pid, current->comm);
  8263. debug_show_held_locks(current);
  8264. if (irqs_disabled())
  8265. print_irqtrace_events(current);
  8266. dump_stack();
  8267. #endif
  8268. }
  8269. EXPORT_SYMBOL(__might_sleep);
  8270. #endif
  8271. #ifdef CONFIG_MAGIC_SYSRQ
  8272. static void normalize_task(struct rq *rq, struct task_struct *p)
  8273. {
  8274. int on_rq;
  8275. update_rq_clock(rq);
  8276. on_rq = p->se.on_rq;
  8277. if (on_rq)
  8278. deactivate_task(rq, p, 0);
  8279. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8280. if (on_rq) {
  8281. activate_task(rq, p, 0);
  8282. resched_task(rq->curr);
  8283. }
  8284. }
  8285. void normalize_rt_tasks(void)
  8286. {
  8287. struct task_struct *g, *p;
  8288. unsigned long flags;
  8289. struct rq *rq;
  8290. read_lock_irqsave(&tasklist_lock, flags);
  8291. do_each_thread(g, p) {
  8292. /*
  8293. * Only normalize user tasks:
  8294. */
  8295. if (!p->mm)
  8296. continue;
  8297. p->se.exec_start = 0;
  8298. #ifdef CONFIG_SCHEDSTATS
  8299. p->se.wait_start = 0;
  8300. p->se.sleep_start = 0;
  8301. p->se.block_start = 0;
  8302. #endif
  8303. if (!rt_task(p)) {
  8304. /*
  8305. * Renice negative nice level userspace
  8306. * tasks back to 0:
  8307. */
  8308. if (TASK_NICE(p) < 0 && p->mm)
  8309. set_user_nice(p, 0);
  8310. continue;
  8311. }
  8312. spin_lock(&p->pi_lock);
  8313. rq = __task_rq_lock(p);
  8314. normalize_task(rq, p);
  8315. __task_rq_unlock(rq);
  8316. spin_unlock(&p->pi_lock);
  8317. } while_each_thread(g, p);
  8318. read_unlock_irqrestore(&tasklist_lock, flags);
  8319. }
  8320. #endif /* CONFIG_MAGIC_SYSRQ */
  8321. #ifdef CONFIG_IA64
  8322. /*
  8323. * These functions are only useful for the IA64 MCA handling.
  8324. *
  8325. * They can only be called when the whole system has been
  8326. * stopped - every CPU needs to be quiescent, and no scheduling
  8327. * activity can take place. Using them for anything else would
  8328. * be a serious bug, and as a result, they aren't even visible
  8329. * under any other configuration.
  8330. */
  8331. /**
  8332. * curr_task - return the current task for a given cpu.
  8333. * @cpu: the processor in question.
  8334. *
  8335. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8336. */
  8337. struct task_struct *curr_task(int cpu)
  8338. {
  8339. return cpu_curr(cpu);
  8340. }
  8341. /**
  8342. * set_curr_task - set the current task for a given cpu.
  8343. * @cpu: the processor in question.
  8344. * @p: the task pointer to set.
  8345. *
  8346. * Description: This function must only be used when non-maskable interrupts
  8347. * are serviced on a separate stack. It allows the architecture to switch the
  8348. * notion of the current task on a cpu in a non-blocking manner. This function
  8349. * must be called with all CPU's synchronized, and interrupts disabled, the
  8350. * and caller must save the original value of the current task (see
  8351. * curr_task() above) and restore that value before reenabling interrupts and
  8352. * re-starting the system.
  8353. *
  8354. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8355. */
  8356. void set_curr_task(int cpu, struct task_struct *p)
  8357. {
  8358. cpu_curr(cpu) = p;
  8359. }
  8360. #endif
  8361. #ifdef CONFIG_FAIR_GROUP_SCHED
  8362. static void free_fair_sched_group(struct task_group *tg)
  8363. {
  8364. int i;
  8365. for_each_possible_cpu(i) {
  8366. if (tg->cfs_rq)
  8367. kfree(tg->cfs_rq[i]);
  8368. if (tg->se)
  8369. kfree(tg->se[i]);
  8370. }
  8371. kfree(tg->cfs_rq);
  8372. kfree(tg->se);
  8373. }
  8374. static
  8375. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8376. {
  8377. struct cfs_rq *cfs_rq;
  8378. struct sched_entity *se;
  8379. struct rq *rq;
  8380. int i;
  8381. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8382. if (!tg->cfs_rq)
  8383. goto err;
  8384. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8385. if (!tg->se)
  8386. goto err;
  8387. tg->shares = NICE_0_LOAD;
  8388. for_each_possible_cpu(i) {
  8389. rq = cpu_rq(i);
  8390. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8391. GFP_KERNEL, cpu_to_node(i));
  8392. if (!cfs_rq)
  8393. goto err;
  8394. se = kzalloc_node(sizeof(struct sched_entity),
  8395. GFP_KERNEL, cpu_to_node(i));
  8396. if (!se)
  8397. goto err_free_rq;
  8398. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8399. }
  8400. return 1;
  8401. err_free_rq:
  8402. kfree(cfs_rq);
  8403. err:
  8404. return 0;
  8405. }
  8406. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8407. {
  8408. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8409. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8410. }
  8411. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8412. {
  8413. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8414. }
  8415. #else /* !CONFG_FAIR_GROUP_SCHED */
  8416. static inline void free_fair_sched_group(struct task_group *tg)
  8417. {
  8418. }
  8419. static inline
  8420. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8421. {
  8422. return 1;
  8423. }
  8424. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8425. {
  8426. }
  8427. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8428. {
  8429. }
  8430. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8431. #ifdef CONFIG_RT_GROUP_SCHED
  8432. static void free_rt_sched_group(struct task_group *tg)
  8433. {
  8434. int i;
  8435. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8436. for_each_possible_cpu(i) {
  8437. if (tg->rt_rq)
  8438. kfree(tg->rt_rq[i]);
  8439. if (tg->rt_se)
  8440. kfree(tg->rt_se[i]);
  8441. }
  8442. kfree(tg->rt_rq);
  8443. kfree(tg->rt_se);
  8444. }
  8445. static
  8446. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8447. {
  8448. struct rt_rq *rt_rq;
  8449. struct sched_rt_entity *rt_se;
  8450. struct rq *rq;
  8451. int i;
  8452. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8453. if (!tg->rt_rq)
  8454. goto err;
  8455. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8456. if (!tg->rt_se)
  8457. goto err;
  8458. init_rt_bandwidth(&tg->rt_bandwidth,
  8459. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8460. for_each_possible_cpu(i) {
  8461. rq = cpu_rq(i);
  8462. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8463. GFP_KERNEL, cpu_to_node(i));
  8464. if (!rt_rq)
  8465. goto err;
  8466. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8467. GFP_KERNEL, cpu_to_node(i));
  8468. if (!rt_se)
  8469. goto err_free_rq;
  8470. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8471. }
  8472. return 1;
  8473. err_free_rq:
  8474. kfree(rt_rq);
  8475. err:
  8476. return 0;
  8477. }
  8478. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8479. {
  8480. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8481. &cpu_rq(cpu)->leaf_rt_rq_list);
  8482. }
  8483. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8484. {
  8485. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8486. }
  8487. #else /* !CONFIG_RT_GROUP_SCHED */
  8488. static inline void free_rt_sched_group(struct task_group *tg)
  8489. {
  8490. }
  8491. static inline
  8492. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8493. {
  8494. return 1;
  8495. }
  8496. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8497. {
  8498. }
  8499. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8500. {
  8501. }
  8502. #endif /* CONFIG_RT_GROUP_SCHED */
  8503. #ifdef CONFIG_GROUP_SCHED
  8504. static void free_sched_group(struct task_group *tg)
  8505. {
  8506. free_fair_sched_group(tg);
  8507. free_rt_sched_group(tg);
  8508. kfree(tg);
  8509. }
  8510. /* allocate runqueue etc for a new task group */
  8511. struct task_group *sched_create_group(struct task_group *parent)
  8512. {
  8513. struct task_group *tg;
  8514. unsigned long flags;
  8515. int i;
  8516. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8517. if (!tg)
  8518. return ERR_PTR(-ENOMEM);
  8519. if (!alloc_fair_sched_group(tg, parent))
  8520. goto err;
  8521. if (!alloc_rt_sched_group(tg, parent))
  8522. goto err;
  8523. spin_lock_irqsave(&task_group_lock, flags);
  8524. for_each_possible_cpu(i) {
  8525. register_fair_sched_group(tg, i);
  8526. register_rt_sched_group(tg, i);
  8527. }
  8528. list_add_rcu(&tg->list, &task_groups);
  8529. WARN_ON(!parent); /* root should already exist */
  8530. tg->parent = parent;
  8531. INIT_LIST_HEAD(&tg->children);
  8532. list_add_rcu(&tg->siblings, &parent->children);
  8533. spin_unlock_irqrestore(&task_group_lock, flags);
  8534. return tg;
  8535. err:
  8536. free_sched_group(tg);
  8537. return ERR_PTR(-ENOMEM);
  8538. }
  8539. /* rcu callback to free various structures associated with a task group */
  8540. static void free_sched_group_rcu(struct rcu_head *rhp)
  8541. {
  8542. /* now it should be safe to free those cfs_rqs */
  8543. free_sched_group(container_of(rhp, struct task_group, rcu));
  8544. }
  8545. /* Destroy runqueue etc associated with a task group */
  8546. void sched_destroy_group(struct task_group *tg)
  8547. {
  8548. unsigned long flags;
  8549. int i;
  8550. spin_lock_irqsave(&task_group_lock, flags);
  8551. for_each_possible_cpu(i) {
  8552. unregister_fair_sched_group(tg, i);
  8553. unregister_rt_sched_group(tg, i);
  8554. }
  8555. list_del_rcu(&tg->list);
  8556. list_del_rcu(&tg->siblings);
  8557. spin_unlock_irqrestore(&task_group_lock, flags);
  8558. /* wait for possible concurrent references to cfs_rqs complete */
  8559. call_rcu(&tg->rcu, free_sched_group_rcu);
  8560. }
  8561. /* change task's runqueue when it moves between groups.
  8562. * The caller of this function should have put the task in its new group
  8563. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8564. * reflect its new group.
  8565. */
  8566. void sched_move_task(struct task_struct *tsk)
  8567. {
  8568. int on_rq, running;
  8569. unsigned long flags;
  8570. struct rq *rq;
  8571. rq = task_rq_lock(tsk, &flags);
  8572. update_rq_clock(rq);
  8573. running = task_current(rq, tsk);
  8574. on_rq = tsk->se.on_rq;
  8575. if (on_rq)
  8576. dequeue_task(rq, tsk, 0);
  8577. if (unlikely(running))
  8578. tsk->sched_class->put_prev_task(rq, tsk);
  8579. set_task_rq(tsk, task_cpu(tsk));
  8580. #ifdef CONFIG_FAIR_GROUP_SCHED
  8581. if (tsk->sched_class->moved_group)
  8582. tsk->sched_class->moved_group(tsk);
  8583. #endif
  8584. if (unlikely(running))
  8585. tsk->sched_class->set_curr_task(rq);
  8586. if (on_rq)
  8587. enqueue_task(rq, tsk, 0);
  8588. task_rq_unlock(rq, &flags);
  8589. }
  8590. #endif /* CONFIG_GROUP_SCHED */
  8591. #ifdef CONFIG_FAIR_GROUP_SCHED
  8592. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8593. {
  8594. struct cfs_rq *cfs_rq = se->cfs_rq;
  8595. int on_rq;
  8596. on_rq = se->on_rq;
  8597. if (on_rq)
  8598. dequeue_entity(cfs_rq, se, 0);
  8599. se->load.weight = shares;
  8600. se->load.inv_weight = 0;
  8601. if (on_rq)
  8602. enqueue_entity(cfs_rq, se, 0);
  8603. }
  8604. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8605. {
  8606. struct cfs_rq *cfs_rq = se->cfs_rq;
  8607. struct rq *rq = cfs_rq->rq;
  8608. unsigned long flags;
  8609. spin_lock_irqsave(&rq->lock, flags);
  8610. __set_se_shares(se, shares);
  8611. spin_unlock_irqrestore(&rq->lock, flags);
  8612. }
  8613. static DEFINE_MUTEX(shares_mutex);
  8614. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8615. {
  8616. int i;
  8617. unsigned long flags;
  8618. /*
  8619. * We can't change the weight of the root cgroup.
  8620. */
  8621. if (!tg->se[0])
  8622. return -EINVAL;
  8623. if (shares < MIN_SHARES)
  8624. shares = MIN_SHARES;
  8625. else if (shares > MAX_SHARES)
  8626. shares = MAX_SHARES;
  8627. mutex_lock(&shares_mutex);
  8628. if (tg->shares == shares)
  8629. goto done;
  8630. spin_lock_irqsave(&task_group_lock, flags);
  8631. for_each_possible_cpu(i)
  8632. unregister_fair_sched_group(tg, i);
  8633. list_del_rcu(&tg->siblings);
  8634. spin_unlock_irqrestore(&task_group_lock, flags);
  8635. /* wait for any ongoing reference to this group to finish */
  8636. synchronize_sched();
  8637. /*
  8638. * Now we are free to modify the group's share on each cpu
  8639. * w/o tripping rebalance_share or load_balance_fair.
  8640. */
  8641. tg->shares = shares;
  8642. for_each_possible_cpu(i) {
  8643. /*
  8644. * force a rebalance
  8645. */
  8646. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8647. set_se_shares(tg->se[i], shares);
  8648. }
  8649. /*
  8650. * Enable load balance activity on this group, by inserting it back on
  8651. * each cpu's rq->leaf_cfs_rq_list.
  8652. */
  8653. spin_lock_irqsave(&task_group_lock, flags);
  8654. for_each_possible_cpu(i)
  8655. register_fair_sched_group(tg, i);
  8656. list_add_rcu(&tg->siblings, &tg->parent->children);
  8657. spin_unlock_irqrestore(&task_group_lock, flags);
  8658. done:
  8659. mutex_unlock(&shares_mutex);
  8660. return 0;
  8661. }
  8662. unsigned long sched_group_shares(struct task_group *tg)
  8663. {
  8664. return tg->shares;
  8665. }
  8666. #endif
  8667. #ifdef CONFIG_RT_GROUP_SCHED
  8668. /*
  8669. * Ensure that the real time constraints are schedulable.
  8670. */
  8671. static DEFINE_MUTEX(rt_constraints_mutex);
  8672. static unsigned long to_ratio(u64 period, u64 runtime)
  8673. {
  8674. if (runtime == RUNTIME_INF)
  8675. return 1ULL << 20;
  8676. return div64_u64(runtime << 20, period);
  8677. }
  8678. /* Must be called with tasklist_lock held */
  8679. static inline int tg_has_rt_tasks(struct task_group *tg)
  8680. {
  8681. struct task_struct *g, *p;
  8682. do_each_thread(g, p) {
  8683. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8684. return 1;
  8685. } while_each_thread(g, p);
  8686. return 0;
  8687. }
  8688. struct rt_schedulable_data {
  8689. struct task_group *tg;
  8690. u64 rt_period;
  8691. u64 rt_runtime;
  8692. };
  8693. static int tg_schedulable(struct task_group *tg, void *data)
  8694. {
  8695. struct rt_schedulable_data *d = data;
  8696. struct task_group *child;
  8697. unsigned long total, sum = 0;
  8698. u64 period, runtime;
  8699. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8700. runtime = tg->rt_bandwidth.rt_runtime;
  8701. if (tg == d->tg) {
  8702. period = d->rt_period;
  8703. runtime = d->rt_runtime;
  8704. }
  8705. #ifdef CONFIG_USER_SCHED
  8706. if (tg == &root_task_group) {
  8707. period = global_rt_period();
  8708. runtime = global_rt_runtime();
  8709. }
  8710. #endif
  8711. /*
  8712. * Cannot have more runtime than the period.
  8713. */
  8714. if (runtime > period && runtime != RUNTIME_INF)
  8715. return -EINVAL;
  8716. /*
  8717. * Ensure we don't starve existing RT tasks.
  8718. */
  8719. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8720. return -EBUSY;
  8721. total = to_ratio(period, runtime);
  8722. /*
  8723. * Nobody can have more than the global setting allows.
  8724. */
  8725. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8726. return -EINVAL;
  8727. /*
  8728. * The sum of our children's runtime should not exceed our own.
  8729. */
  8730. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8731. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8732. runtime = child->rt_bandwidth.rt_runtime;
  8733. if (child == d->tg) {
  8734. period = d->rt_period;
  8735. runtime = d->rt_runtime;
  8736. }
  8737. sum += to_ratio(period, runtime);
  8738. }
  8739. if (sum > total)
  8740. return -EINVAL;
  8741. return 0;
  8742. }
  8743. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8744. {
  8745. struct rt_schedulable_data data = {
  8746. .tg = tg,
  8747. .rt_period = period,
  8748. .rt_runtime = runtime,
  8749. };
  8750. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8751. }
  8752. static int tg_set_bandwidth(struct task_group *tg,
  8753. u64 rt_period, u64 rt_runtime)
  8754. {
  8755. int i, err = 0;
  8756. mutex_lock(&rt_constraints_mutex);
  8757. read_lock(&tasklist_lock);
  8758. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8759. if (err)
  8760. goto unlock;
  8761. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8762. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8763. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8764. for_each_possible_cpu(i) {
  8765. struct rt_rq *rt_rq = tg->rt_rq[i];
  8766. spin_lock(&rt_rq->rt_runtime_lock);
  8767. rt_rq->rt_runtime = rt_runtime;
  8768. spin_unlock(&rt_rq->rt_runtime_lock);
  8769. }
  8770. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8771. unlock:
  8772. read_unlock(&tasklist_lock);
  8773. mutex_unlock(&rt_constraints_mutex);
  8774. return err;
  8775. }
  8776. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8777. {
  8778. u64 rt_runtime, rt_period;
  8779. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8780. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8781. if (rt_runtime_us < 0)
  8782. rt_runtime = RUNTIME_INF;
  8783. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8784. }
  8785. long sched_group_rt_runtime(struct task_group *tg)
  8786. {
  8787. u64 rt_runtime_us;
  8788. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8789. return -1;
  8790. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8791. do_div(rt_runtime_us, NSEC_PER_USEC);
  8792. return rt_runtime_us;
  8793. }
  8794. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8795. {
  8796. u64 rt_runtime, rt_period;
  8797. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8798. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8799. if (rt_period == 0)
  8800. return -EINVAL;
  8801. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8802. }
  8803. long sched_group_rt_period(struct task_group *tg)
  8804. {
  8805. u64 rt_period_us;
  8806. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8807. do_div(rt_period_us, NSEC_PER_USEC);
  8808. return rt_period_us;
  8809. }
  8810. static int sched_rt_global_constraints(void)
  8811. {
  8812. u64 runtime, period;
  8813. int ret = 0;
  8814. if (sysctl_sched_rt_period <= 0)
  8815. return -EINVAL;
  8816. runtime = global_rt_runtime();
  8817. period = global_rt_period();
  8818. /*
  8819. * Sanity check on the sysctl variables.
  8820. */
  8821. if (runtime > period && runtime != RUNTIME_INF)
  8822. return -EINVAL;
  8823. mutex_lock(&rt_constraints_mutex);
  8824. read_lock(&tasklist_lock);
  8825. ret = __rt_schedulable(NULL, 0, 0);
  8826. read_unlock(&tasklist_lock);
  8827. mutex_unlock(&rt_constraints_mutex);
  8828. return ret;
  8829. }
  8830. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8831. {
  8832. /* Don't accept realtime tasks when there is no way for them to run */
  8833. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8834. return 0;
  8835. return 1;
  8836. }
  8837. #else /* !CONFIG_RT_GROUP_SCHED */
  8838. static int sched_rt_global_constraints(void)
  8839. {
  8840. unsigned long flags;
  8841. int i;
  8842. if (sysctl_sched_rt_period <= 0)
  8843. return -EINVAL;
  8844. /*
  8845. * There's always some RT tasks in the root group
  8846. * -- migration, kstopmachine etc..
  8847. */
  8848. if (sysctl_sched_rt_runtime == 0)
  8849. return -EBUSY;
  8850. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8851. for_each_possible_cpu(i) {
  8852. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8853. spin_lock(&rt_rq->rt_runtime_lock);
  8854. rt_rq->rt_runtime = global_rt_runtime();
  8855. spin_unlock(&rt_rq->rt_runtime_lock);
  8856. }
  8857. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8858. return 0;
  8859. }
  8860. #endif /* CONFIG_RT_GROUP_SCHED */
  8861. int sched_rt_handler(struct ctl_table *table, int write,
  8862. void __user *buffer, size_t *lenp,
  8863. loff_t *ppos)
  8864. {
  8865. int ret;
  8866. int old_period, old_runtime;
  8867. static DEFINE_MUTEX(mutex);
  8868. mutex_lock(&mutex);
  8869. old_period = sysctl_sched_rt_period;
  8870. old_runtime = sysctl_sched_rt_runtime;
  8871. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  8872. if (!ret && write) {
  8873. ret = sched_rt_global_constraints();
  8874. if (ret) {
  8875. sysctl_sched_rt_period = old_period;
  8876. sysctl_sched_rt_runtime = old_runtime;
  8877. } else {
  8878. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8879. def_rt_bandwidth.rt_period =
  8880. ns_to_ktime(global_rt_period());
  8881. }
  8882. }
  8883. mutex_unlock(&mutex);
  8884. return ret;
  8885. }
  8886. #ifdef CONFIG_CGROUP_SCHED
  8887. /* return corresponding task_group object of a cgroup */
  8888. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8889. {
  8890. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8891. struct task_group, css);
  8892. }
  8893. static struct cgroup_subsys_state *
  8894. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8895. {
  8896. struct task_group *tg, *parent;
  8897. if (!cgrp->parent) {
  8898. /* This is early initialization for the top cgroup */
  8899. return &init_task_group.css;
  8900. }
  8901. parent = cgroup_tg(cgrp->parent);
  8902. tg = sched_create_group(parent);
  8903. if (IS_ERR(tg))
  8904. return ERR_PTR(-ENOMEM);
  8905. return &tg->css;
  8906. }
  8907. static void
  8908. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8909. {
  8910. struct task_group *tg = cgroup_tg(cgrp);
  8911. sched_destroy_group(tg);
  8912. }
  8913. static int
  8914. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  8915. {
  8916. #ifdef CONFIG_RT_GROUP_SCHED
  8917. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8918. return -EINVAL;
  8919. #else
  8920. /* We don't support RT-tasks being in separate groups */
  8921. if (tsk->sched_class != &fair_sched_class)
  8922. return -EINVAL;
  8923. #endif
  8924. return 0;
  8925. }
  8926. static int
  8927. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8928. struct task_struct *tsk, bool threadgroup)
  8929. {
  8930. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  8931. if (retval)
  8932. return retval;
  8933. if (threadgroup) {
  8934. struct task_struct *c;
  8935. rcu_read_lock();
  8936. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8937. retval = cpu_cgroup_can_attach_task(cgrp, c);
  8938. if (retval) {
  8939. rcu_read_unlock();
  8940. return retval;
  8941. }
  8942. }
  8943. rcu_read_unlock();
  8944. }
  8945. return 0;
  8946. }
  8947. static void
  8948. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8949. struct cgroup *old_cont, struct task_struct *tsk,
  8950. bool threadgroup)
  8951. {
  8952. sched_move_task(tsk);
  8953. if (threadgroup) {
  8954. struct task_struct *c;
  8955. rcu_read_lock();
  8956. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8957. sched_move_task(c);
  8958. }
  8959. rcu_read_unlock();
  8960. }
  8961. }
  8962. #ifdef CONFIG_FAIR_GROUP_SCHED
  8963. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8964. u64 shareval)
  8965. {
  8966. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8967. }
  8968. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8969. {
  8970. struct task_group *tg = cgroup_tg(cgrp);
  8971. return (u64) tg->shares;
  8972. }
  8973. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8974. #ifdef CONFIG_RT_GROUP_SCHED
  8975. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8976. s64 val)
  8977. {
  8978. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8979. }
  8980. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8981. {
  8982. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8983. }
  8984. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8985. u64 rt_period_us)
  8986. {
  8987. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8988. }
  8989. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8990. {
  8991. return sched_group_rt_period(cgroup_tg(cgrp));
  8992. }
  8993. #endif /* CONFIG_RT_GROUP_SCHED */
  8994. static struct cftype cpu_files[] = {
  8995. #ifdef CONFIG_FAIR_GROUP_SCHED
  8996. {
  8997. .name = "shares",
  8998. .read_u64 = cpu_shares_read_u64,
  8999. .write_u64 = cpu_shares_write_u64,
  9000. },
  9001. #endif
  9002. #ifdef CONFIG_RT_GROUP_SCHED
  9003. {
  9004. .name = "rt_runtime_us",
  9005. .read_s64 = cpu_rt_runtime_read,
  9006. .write_s64 = cpu_rt_runtime_write,
  9007. },
  9008. {
  9009. .name = "rt_period_us",
  9010. .read_u64 = cpu_rt_period_read_uint,
  9011. .write_u64 = cpu_rt_period_write_uint,
  9012. },
  9013. #endif
  9014. };
  9015. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  9016. {
  9017. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  9018. }
  9019. struct cgroup_subsys cpu_cgroup_subsys = {
  9020. .name = "cpu",
  9021. .create = cpu_cgroup_create,
  9022. .destroy = cpu_cgroup_destroy,
  9023. .can_attach = cpu_cgroup_can_attach,
  9024. .attach = cpu_cgroup_attach,
  9025. .populate = cpu_cgroup_populate,
  9026. .subsys_id = cpu_cgroup_subsys_id,
  9027. .early_init = 1,
  9028. };
  9029. #endif /* CONFIG_CGROUP_SCHED */
  9030. #ifdef CONFIG_CGROUP_CPUACCT
  9031. /*
  9032. * CPU accounting code for task groups.
  9033. *
  9034. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  9035. * (balbir@in.ibm.com).
  9036. */
  9037. /* track cpu usage of a group of tasks and its child groups */
  9038. struct cpuacct {
  9039. struct cgroup_subsys_state css;
  9040. /* cpuusage holds pointer to a u64-type object on every cpu */
  9041. u64 *cpuusage;
  9042. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  9043. struct cpuacct *parent;
  9044. };
  9045. struct cgroup_subsys cpuacct_subsys;
  9046. /* return cpu accounting group corresponding to this container */
  9047. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  9048. {
  9049. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  9050. struct cpuacct, css);
  9051. }
  9052. /* return cpu accounting group to which this task belongs */
  9053. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  9054. {
  9055. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  9056. struct cpuacct, css);
  9057. }
  9058. /* create a new cpu accounting group */
  9059. static struct cgroup_subsys_state *cpuacct_create(
  9060. struct cgroup_subsys *ss, struct cgroup *cgrp)
  9061. {
  9062. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  9063. int i;
  9064. if (!ca)
  9065. goto out;
  9066. ca->cpuusage = alloc_percpu(u64);
  9067. if (!ca->cpuusage)
  9068. goto out_free_ca;
  9069. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9070. if (percpu_counter_init(&ca->cpustat[i], 0))
  9071. goto out_free_counters;
  9072. if (cgrp->parent)
  9073. ca->parent = cgroup_ca(cgrp->parent);
  9074. return &ca->css;
  9075. out_free_counters:
  9076. while (--i >= 0)
  9077. percpu_counter_destroy(&ca->cpustat[i]);
  9078. free_percpu(ca->cpuusage);
  9079. out_free_ca:
  9080. kfree(ca);
  9081. out:
  9082. return ERR_PTR(-ENOMEM);
  9083. }
  9084. /* destroy an existing cpu accounting group */
  9085. static void
  9086. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9087. {
  9088. struct cpuacct *ca = cgroup_ca(cgrp);
  9089. int i;
  9090. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9091. percpu_counter_destroy(&ca->cpustat[i]);
  9092. free_percpu(ca->cpuusage);
  9093. kfree(ca);
  9094. }
  9095. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  9096. {
  9097. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9098. u64 data;
  9099. #ifndef CONFIG_64BIT
  9100. /*
  9101. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  9102. */
  9103. spin_lock_irq(&cpu_rq(cpu)->lock);
  9104. data = *cpuusage;
  9105. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9106. #else
  9107. data = *cpuusage;
  9108. #endif
  9109. return data;
  9110. }
  9111. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  9112. {
  9113. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9114. #ifndef CONFIG_64BIT
  9115. /*
  9116. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  9117. */
  9118. spin_lock_irq(&cpu_rq(cpu)->lock);
  9119. *cpuusage = val;
  9120. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9121. #else
  9122. *cpuusage = val;
  9123. #endif
  9124. }
  9125. /* return total cpu usage (in nanoseconds) of a group */
  9126. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9127. {
  9128. struct cpuacct *ca = cgroup_ca(cgrp);
  9129. u64 totalcpuusage = 0;
  9130. int i;
  9131. for_each_present_cpu(i)
  9132. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9133. return totalcpuusage;
  9134. }
  9135. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9136. u64 reset)
  9137. {
  9138. struct cpuacct *ca = cgroup_ca(cgrp);
  9139. int err = 0;
  9140. int i;
  9141. if (reset) {
  9142. err = -EINVAL;
  9143. goto out;
  9144. }
  9145. for_each_present_cpu(i)
  9146. cpuacct_cpuusage_write(ca, i, 0);
  9147. out:
  9148. return err;
  9149. }
  9150. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9151. struct seq_file *m)
  9152. {
  9153. struct cpuacct *ca = cgroup_ca(cgroup);
  9154. u64 percpu;
  9155. int i;
  9156. for_each_present_cpu(i) {
  9157. percpu = cpuacct_cpuusage_read(ca, i);
  9158. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9159. }
  9160. seq_printf(m, "\n");
  9161. return 0;
  9162. }
  9163. static const char *cpuacct_stat_desc[] = {
  9164. [CPUACCT_STAT_USER] = "user",
  9165. [CPUACCT_STAT_SYSTEM] = "system",
  9166. };
  9167. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9168. struct cgroup_map_cb *cb)
  9169. {
  9170. struct cpuacct *ca = cgroup_ca(cgrp);
  9171. int i;
  9172. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9173. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9174. val = cputime64_to_clock_t(val);
  9175. cb->fill(cb, cpuacct_stat_desc[i], val);
  9176. }
  9177. return 0;
  9178. }
  9179. static struct cftype files[] = {
  9180. {
  9181. .name = "usage",
  9182. .read_u64 = cpuusage_read,
  9183. .write_u64 = cpuusage_write,
  9184. },
  9185. {
  9186. .name = "usage_percpu",
  9187. .read_seq_string = cpuacct_percpu_seq_read,
  9188. },
  9189. {
  9190. .name = "stat",
  9191. .read_map = cpuacct_stats_show,
  9192. },
  9193. };
  9194. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9195. {
  9196. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9197. }
  9198. /*
  9199. * charge this task's execution time to its accounting group.
  9200. *
  9201. * called with rq->lock held.
  9202. */
  9203. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9204. {
  9205. struct cpuacct *ca;
  9206. int cpu;
  9207. if (unlikely(!cpuacct_subsys.active))
  9208. return;
  9209. cpu = task_cpu(tsk);
  9210. rcu_read_lock();
  9211. ca = task_ca(tsk);
  9212. for (; ca; ca = ca->parent) {
  9213. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9214. *cpuusage += cputime;
  9215. }
  9216. rcu_read_unlock();
  9217. }
  9218. /*
  9219. * Charge the system/user time to the task's accounting group.
  9220. */
  9221. static void cpuacct_update_stats(struct task_struct *tsk,
  9222. enum cpuacct_stat_index idx, cputime_t val)
  9223. {
  9224. struct cpuacct *ca;
  9225. if (unlikely(!cpuacct_subsys.active))
  9226. return;
  9227. rcu_read_lock();
  9228. ca = task_ca(tsk);
  9229. do {
  9230. percpu_counter_add(&ca->cpustat[idx], val);
  9231. ca = ca->parent;
  9232. } while (ca);
  9233. rcu_read_unlock();
  9234. }
  9235. struct cgroup_subsys cpuacct_subsys = {
  9236. .name = "cpuacct",
  9237. .create = cpuacct_create,
  9238. .destroy = cpuacct_destroy,
  9239. .populate = cpuacct_populate,
  9240. .subsys_id = cpuacct_subsys_id,
  9241. };
  9242. #endif /* CONFIG_CGROUP_CPUACCT */
  9243. #ifndef CONFIG_SMP
  9244. int rcu_expedited_torture_stats(char *page)
  9245. {
  9246. return 0;
  9247. }
  9248. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9249. void synchronize_sched_expedited(void)
  9250. {
  9251. }
  9252. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9253. #else /* #ifndef CONFIG_SMP */
  9254. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9255. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9256. #define RCU_EXPEDITED_STATE_POST -2
  9257. #define RCU_EXPEDITED_STATE_IDLE -1
  9258. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9259. int rcu_expedited_torture_stats(char *page)
  9260. {
  9261. int cnt = 0;
  9262. int cpu;
  9263. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9264. for_each_online_cpu(cpu) {
  9265. cnt += sprintf(&page[cnt], " %d:%d",
  9266. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9267. }
  9268. cnt += sprintf(&page[cnt], "\n");
  9269. return cnt;
  9270. }
  9271. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9272. static long synchronize_sched_expedited_count;
  9273. /*
  9274. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9275. * approach to force grace period to end quickly. This consumes
  9276. * significant time on all CPUs, and is thus not recommended for
  9277. * any sort of common-case code.
  9278. *
  9279. * Note that it is illegal to call this function while holding any
  9280. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9281. * observe this restriction will result in deadlock.
  9282. */
  9283. void synchronize_sched_expedited(void)
  9284. {
  9285. int cpu;
  9286. unsigned long flags;
  9287. bool need_full_sync = 0;
  9288. struct rq *rq;
  9289. struct migration_req *req;
  9290. long snap;
  9291. int trycount = 0;
  9292. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9293. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9294. get_online_cpus();
  9295. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9296. put_online_cpus();
  9297. if (trycount++ < 10)
  9298. udelay(trycount * num_online_cpus());
  9299. else {
  9300. synchronize_sched();
  9301. return;
  9302. }
  9303. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9304. smp_mb(); /* ensure test happens before caller kfree */
  9305. return;
  9306. }
  9307. get_online_cpus();
  9308. }
  9309. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9310. for_each_online_cpu(cpu) {
  9311. rq = cpu_rq(cpu);
  9312. req = &per_cpu(rcu_migration_req, cpu);
  9313. init_completion(&req->done);
  9314. req->task = NULL;
  9315. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9316. spin_lock_irqsave(&rq->lock, flags);
  9317. list_add(&req->list, &rq->migration_queue);
  9318. spin_unlock_irqrestore(&rq->lock, flags);
  9319. wake_up_process(rq->migration_thread);
  9320. }
  9321. for_each_online_cpu(cpu) {
  9322. rcu_expedited_state = cpu;
  9323. req = &per_cpu(rcu_migration_req, cpu);
  9324. rq = cpu_rq(cpu);
  9325. wait_for_completion(&req->done);
  9326. spin_lock_irqsave(&rq->lock, flags);
  9327. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9328. need_full_sync = 1;
  9329. req->dest_cpu = RCU_MIGRATION_IDLE;
  9330. spin_unlock_irqrestore(&rq->lock, flags);
  9331. }
  9332. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9333. synchronize_sched_expedited_count++;
  9334. mutex_unlock(&rcu_sched_expedited_mutex);
  9335. put_online_cpus();
  9336. if (need_full_sync)
  9337. synchronize_sched();
  9338. }
  9339. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9340. #endif /* #else #ifndef CONFIG_SMP */