exit.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/iocontext.h>
  15. #include <linux/key.h>
  16. #include <linux/security.h>
  17. #include <linux/cpu.h>
  18. #include <linux/acct.h>
  19. #include <linux/tsacct_kern.h>
  20. #include <linux/file.h>
  21. #include <linux/fdtable.h>
  22. #include <linux/binfmts.h>
  23. #include <linux/nsproxy.h>
  24. #include <linux/pid_namespace.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/profile.h>
  27. #include <linux/mount.h>
  28. #include <linux/proc_fs.h>
  29. #include <linux/kthread.h>
  30. #include <linux/mempolicy.h>
  31. #include <linux/taskstats_kern.h>
  32. #include <linux/delayacct.h>
  33. #include <linux/freezer.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/signal.h>
  37. #include <linux/posix-timers.h>
  38. #include <linux/cn_proc.h>
  39. #include <linux/mutex.h>
  40. #include <linux/futex.h>
  41. #include <linux/pipe_fs_i.h>
  42. #include <linux/audit.h> /* for audit_free() */
  43. #include <linux/resource.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/task_io_accounting_ops.h>
  46. #include <linux/tracehook.h>
  47. #include <linux/fs_struct.h>
  48. #include <linux/init_task.h>
  49. #include <linux/perf_event.h>
  50. #include <trace/events/sched.h>
  51. #include <linux/hw_breakpoint.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/unistd.h>
  54. #include <asm/pgtable.h>
  55. #include <asm/mmu_context.h>
  56. #include "cred-internals.h"
  57. static void exit_mm(struct task_struct * tsk);
  58. static void __unhash_process(struct task_struct *p)
  59. {
  60. nr_threads--;
  61. detach_pid(p, PIDTYPE_PID);
  62. if (thread_group_leader(p)) {
  63. detach_pid(p, PIDTYPE_PGID);
  64. detach_pid(p, PIDTYPE_SID);
  65. list_del_rcu(&p->tasks);
  66. __get_cpu_var(process_counts)--;
  67. }
  68. list_del_rcu(&p->thread_group);
  69. list_del_init(&p->sibling);
  70. }
  71. /*
  72. * This function expects the tasklist_lock write-locked.
  73. */
  74. static void __exit_signal(struct task_struct *tsk)
  75. {
  76. struct signal_struct *sig = tsk->signal;
  77. struct sighand_struct *sighand;
  78. BUG_ON(!sig);
  79. BUG_ON(!atomic_read(&sig->count));
  80. sighand = rcu_dereference(tsk->sighand);
  81. spin_lock(&sighand->siglock);
  82. posix_cpu_timers_exit(tsk);
  83. if (atomic_dec_and_test(&sig->count))
  84. posix_cpu_timers_exit_group(tsk);
  85. else {
  86. /*
  87. * If there is any task waiting for the group exit
  88. * then notify it:
  89. */
  90. if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
  91. wake_up_process(sig->group_exit_task);
  92. if (tsk == sig->curr_target)
  93. sig->curr_target = next_thread(tsk);
  94. /*
  95. * Accumulate here the counters for all threads but the
  96. * group leader as they die, so they can be added into
  97. * the process-wide totals when those are taken.
  98. * The group leader stays around as a zombie as long
  99. * as there are other threads. When it gets reaped,
  100. * the exit.c code will add its counts into these totals.
  101. * We won't ever get here for the group leader, since it
  102. * will have been the last reference on the signal_struct.
  103. */
  104. sig->utime = cputime_add(sig->utime, tsk->utime);
  105. sig->stime = cputime_add(sig->stime, tsk->stime);
  106. sig->gtime = cputime_add(sig->gtime, tsk->gtime);
  107. sig->min_flt += tsk->min_flt;
  108. sig->maj_flt += tsk->maj_flt;
  109. sig->nvcsw += tsk->nvcsw;
  110. sig->nivcsw += tsk->nivcsw;
  111. sig->inblock += task_io_get_inblock(tsk);
  112. sig->oublock += task_io_get_oublock(tsk);
  113. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  114. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  115. sig = NULL; /* Marker for below. */
  116. }
  117. __unhash_process(tsk);
  118. /*
  119. * Do this under ->siglock, we can race with another thread
  120. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  121. */
  122. flush_sigqueue(&tsk->pending);
  123. tsk->signal = NULL;
  124. tsk->sighand = NULL;
  125. spin_unlock(&sighand->siglock);
  126. __cleanup_sighand(sighand);
  127. clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
  128. if (sig) {
  129. flush_sigqueue(&sig->shared_pending);
  130. taskstats_tgid_free(sig);
  131. /*
  132. * Make sure ->signal can't go away under rq->lock,
  133. * see account_group_exec_runtime().
  134. */
  135. task_rq_unlock_wait(tsk);
  136. __cleanup_signal(sig);
  137. }
  138. }
  139. static void delayed_put_task_struct(struct rcu_head *rhp)
  140. {
  141. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  142. #ifdef CONFIG_PERF_EVENTS
  143. WARN_ON_ONCE(tsk->perf_event_ctxp);
  144. #endif
  145. trace_sched_process_free(tsk);
  146. put_task_struct(tsk);
  147. }
  148. void release_task(struct task_struct * p)
  149. {
  150. struct task_struct *leader;
  151. int zap_leader;
  152. repeat:
  153. tracehook_prepare_release_task(p);
  154. /* don't need to get the RCU readlock here - the process is dead and
  155. * can't be modifying its own credentials */
  156. atomic_dec(&__task_cred(p)->user->processes);
  157. proc_flush_task(p);
  158. write_lock_irq(&tasklist_lock);
  159. tracehook_finish_release_task(p);
  160. __exit_signal(p);
  161. /*
  162. * If we are the last non-leader member of the thread
  163. * group, and the leader is zombie, then notify the
  164. * group leader's parent process. (if it wants notification.)
  165. */
  166. zap_leader = 0;
  167. leader = p->group_leader;
  168. if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
  169. BUG_ON(task_detached(leader));
  170. do_notify_parent(leader, leader->exit_signal);
  171. /*
  172. * If we were the last child thread and the leader has
  173. * exited already, and the leader's parent ignores SIGCHLD,
  174. * then we are the one who should release the leader.
  175. *
  176. * do_notify_parent() will have marked it self-reaping in
  177. * that case.
  178. */
  179. zap_leader = task_detached(leader);
  180. /*
  181. * This maintains the invariant that release_task()
  182. * only runs on a task in EXIT_DEAD, just for sanity.
  183. */
  184. if (zap_leader)
  185. leader->exit_state = EXIT_DEAD;
  186. }
  187. write_unlock_irq(&tasklist_lock);
  188. release_thread(p);
  189. call_rcu(&p->rcu, delayed_put_task_struct);
  190. p = leader;
  191. if (unlikely(zap_leader))
  192. goto repeat;
  193. }
  194. /*
  195. * This checks not only the pgrp, but falls back on the pid if no
  196. * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
  197. * without this...
  198. *
  199. * The caller must hold rcu lock or the tasklist lock.
  200. */
  201. struct pid *session_of_pgrp(struct pid *pgrp)
  202. {
  203. struct task_struct *p;
  204. struct pid *sid = NULL;
  205. p = pid_task(pgrp, PIDTYPE_PGID);
  206. if (p == NULL)
  207. p = pid_task(pgrp, PIDTYPE_PID);
  208. if (p != NULL)
  209. sid = task_session(p);
  210. return sid;
  211. }
  212. /*
  213. * Determine if a process group is "orphaned", according to the POSIX
  214. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  215. * by terminal-generated stop signals. Newly orphaned process groups are
  216. * to receive a SIGHUP and a SIGCONT.
  217. *
  218. * "I ask you, have you ever known what it is to be an orphan?"
  219. */
  220. static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
  221. {
  222. struct task_struct *p;
  223. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  224. if ((p == ignored_task) ||
  225. (p->exit_state && thread_group_empty(p)) ||
  226. is_global_init(p->real_parent))
  227. continue;
  228. if (task_pgrp(p->real_parent) != pgrp &&
  229. task_session(p->real_parent) == task_session(p))
  230. return 0;
  231. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  232. return 1;
  233. }
  234. int is_current_pgrp_orphaned(void)
  235. {
  236. int retval;
  237. read_lock(&tasklist_lock);
  238. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  239. read_unlock(&tasklist_lock);
  240. return retval;
  241. }
  242. static int has_stopped_jobs(struct pid *pgrp)
  243. {
  244. int retval = 0;
  245. struct task_struct *p;
  246. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  247. if (!task_is_stopped(p))
  248. continue;
  249. retval = 1;
  250. break;
  251. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  252. return retval;
  253. }
  254. /*
  255. * Check to see if any process groups have become orphaned as
  256. * a result of our exiting, and if they have any stopped jobs,
  257. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  258. */
  259. static void
  260. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  261. {
  262. struct pid *pgrp = task_pgrp(tsk);
  263. struct task_struct *ignored_task = tsk;
  264. if (!parent)
  265. /* exit: our father is in a different pgrp than
  266. * we are and we were the only connection outside.
  267. */
  268. parent = tsk->real_parent;
  269. else
  270. /* reparent: our child is in a different pgrp than
  271. * we are, and it was the only connection outside.
  272. */
  273. ignored_task = NULL;
  274. if (task_pgrp(parent) != pgrp &&
  275. task_session(parent) == task_session(tsk) &&
  276. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  277. has_stopped_jobs(pgrp)) {
  278. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  279. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  280. }
  281. }
  282. /**
  283. * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
  284. *
  285. * If a kernel thread is launched as a result of a system call, or if
  286. * it ever exits, it should generally reparent itself to kthreadd so it
  287. * isn't in the way of other processes and is correctly cleaned up on exit.
  288. *
  289. * The various task state such as scheduling policy and priority may have
  290. * been inherited from a user process, so we reset them to sane values here.
  291. *
  292. * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
  293. */
  294. static void reparent_to_kthreadd(void)
  295. {
  296. write_lock_irq(&tasklist_lock);
  297. ptrace_unlink(current);
  298. /* Reparent to init */
  299. current->real_parent = current->parent = kthreadd_task;
  300. list_move_tail(&current->sibling, &current->real_parent->children);
  301. /* Set the exit signal to SIGCHLD so we signal init on exit */
  302. current->exit_signal = SIGCHLD;
  303. if (task_nice(current) < 0)
  304. set_user_nice(current, 0);
  305. /* cpus_allowed? */
  306. /* rt_priority? */
  307. /* signals? */
  308. memcpy(current->signal->rlim, init_task.signal->rlim,
  309. sizeof(current->signal->rlim));
  310. atomic_inc(&init_cred.usage);
  311. commit_creds(&init_cred);
  312. write_unlock_irq(&tasklist_lock);
  313. }
  314. void __set_special_pids(struct pid *pid)
  315. {
  316. struct task_struct *curr = current->group_leader;
  317. if (task_session(curr) != pid)
  318. change_pid(curr, PIDTYPE_SID, pid);
  319. if (task_pgrp(curr) != pid)
  320. change_pid(curr, PIDTYPE_PGID, pid);
  321. }
  322. static void set_special_pids(struct pid *pid)
  323. {
  324. write_lock_irq(&tasklist_lock);
  325. __set_special_pids(pid);
  326. write_unlock_irq(&tasklist_lock);
  327. }
  328. /*
  329. * Let kernel threads use this to say that they allow a certain signal.
  330. * Must not be used if kthread was cloned with CLONE_SIGHAND.
  331. */
  332. int allow_signal(int sig)
  333. {
  334. if (!valid_signal(sig) || sig < 1)
  335. return -EINVAL;
  336. spin_lock_irq(&current->sighand->siglock);
  337. /* This is only needed for daemonize()'ed kthreads */
  338. sigdelset(&current->blocked, sig);
  339. /*
  340. * Kernel threads handle their own signals. Let the signal code
  341. * know it'll be handled, so that they don't get converted to
  342. * SIGKILL or just silently dropped.
  343. */
  344. current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
  345. recalc_sigpending();
  346. spin_unlock_irq(&current->sighand->siglock);
  347. return 0;
  348. }
  349. EXPORT_SYMBOL(allow_signal);
  350. int disallow_signal(int sig)
  351. {
  352. if (!valid_signal(sig) || sig < 1)
  353. return -EINVAL;
  354. spin_lock_irq(&current->sighand->siglock);
  355. current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
  356. recalc_sigpending();
  357. spin_unlock_irq(&current->sighand->siglock);
  358. return 0;
  359. }
  360. EXPORT_SYMBOL(disallow_signal);
  361. /*
  362. * Put all the gunge required to become a kernel thread without
  363. * attached user resources in one place where it belongs.
  364. */
  365. void daemonize(const char *name, ...)
  366. {
  367. va_list args;
  368. sigset_t blocked;
  369. va_start(args, name);
  370. vsnprintf(current->comm, sizeof(current->comm), name, args);
  371. va_end(args);
  372. /*
  373. * If we were started as result of loading a module, close all of the
  374. * user space pages. We don't need them, and if we didn't close them
  375. * they would be locked into memory.
  376. */
  377. exit_mm(current);
  378. /*
  379. * We don't want to have TIF_FREEZE set if the system-wide hibernation
  380. * or suspend transition begins right now.
  381. */
  382. current->flags |= (PF_NOFREEZE | PF_KTHREAD);
  383. if (current->nsproxy != &init_nsproxy) {
  384. get_nsproxy(&init_nsproxy);
  385. switch_task_namespaces(current, &init_nsproxy);
  386. }
  387. set_special_pids(&init_struct_pid);
  388. proc_clear_tty(current);
  389. /* Block and flush all signals */
  390. sigfillset(&blocked);
  391. sigprocmask(SIG_BLOCK, &blocked, NULL);
  392. flush_signals(current);
  393. /* Become as one with the init task */
  394. daemonize_fs_struct();
  395. exit_files(current);
  396. current->files = init_task.files;
  397. atomic_inc(&current->files->count);
  398. reparent_to_kthreadd();
  399. }
  400. EXPORT_SYMBOL(daemonize);
  401. static void close_files(struct files_struct * files)
  402. {
  403. int i, j;
  404. struct fdtable *fdt;
  405. j = 0;
  406. /*
  407. * It is safe to dereference the fd table without RCU or
  408. * ->file_lock because this is the last reference to the
  409. * files structure.
  410. */
  411. fdt = files_fdtable(files);
  412. for (;;) {
  413. unsigned long set;
  414. i = j * __NFDBITS;
  415. if (i >= fdt->max_fds)
  416. break;
  417. set = fdt->open_fds->fds_bits[j++];
  418. while (set) {
  419. if (set & 1) {
  420. struct file * file = xchg(&fdt->fd[i], NULL);
  421. if (file) {
  422. filp_close(file, files);
  423. cond_resched();
  424. }
  425. }
  426. i++;
  427. set >>= 1;
  428. }
  429. }
  430. }
  431. struct files_struct *get_files_struct(struct task_struct *task)
  432. {
  433. struct files_struct *files;
  434. task_lock(task);
  435. files = task->files;
  436. if (files)
  437. atomic_inc(&files->count);
  438. task_unlock(task);
  439. return files;
  440. }
  441. void put_files_struct(struct files_struct *files)
  442. {
  443. struct fdtable *fdt;
  444. if (atomic_dec_and_test(&files->count)) {
  445. close_files(files);
  446. /*
  447. * Free the fd and fdset arrays if we expanded them.
  448. * If the fdtable was embedded, pass files for freeing
  449. * at the end of the RCU grace period. Otherwise,
  450. * you can free files immediately.
  451. */
  452. fdt = files_fdtable(files);
  453. if (fdt != &files->fdtab)
  454. kmem_cache_free(files_cachep, files);
  455. free_fdtable(fdt);
  456. }
  457. }
  458. void reset_files_struct(struct files_struct *files)
  459. {
  460. struct task_struct *tsk = current;
  461. struct files_struct *old;
  462. old = tsk->files;
  463. task_lock(tsk);
  464. tsk->files = files;
  465. task_unlock(tsk);
  466. put_files_struct(old);
  467. }
  468. void exit_files(struct task_struct *tsk)
  469. {
  470. struct files_struct * files = tsk->files;
  471. if (files) {
  472. task_lock(tsk);
  473. tsk->files = NULL;
  474. task_unlock(tsk);
  475. put_files_struct(files);
  476. }
  477. }
  478. #ifdef CONFIG_MM_OWNER
  479. /*
  480. * Task p is exiting and it owned mm, lets find a new owner for it
  481. */
  482. static inline int
  483. mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
  484. {
  485. /*
  486. * If there are other users of the mm and the owner (us) is exiting
  487. * we need to find a new owner to take on the responsibility.
  488. */
  489. if (atomic_read(&mm->mm_users) <= 1)
  490. return 0;
  491. if (mm->owner != p)
  492. return 0;
  493. return 1;
  494. }
  495. void mm_update_next_owner(struct mm_struct *mm)
  496. {
  497. struct task_struct *c, *g, *p = current;
  498. retry:
  499. if (!mm_need_new_owner(mm, p))
  500. return;
  501. read_lock(&tasklist_lock);
  502. /*
  503. * Search in the children
  504. */
  505. list_for_each_entry(c, &p->children, sibling) {
  506. if (c->mm == mm)
  507. goto assign_new_owner;
  508. }
  509. /*
  510. * Search in the siblings
  511. */
  512. list_for_each_entry(c, &p->real_parent->children, sibling) {
  513. if (c->mm == mm)
  514. goto assign_new_owner;
  515. }
  516. /*
  517. * Search through everything else. We should not get
  518. * here often
  519. */
  520. do_each_thread(g, c) {
  521. if (c->mm == mm)
  522. goto assign_new_owner;
  523. } while_each_thread(g, c);
  524. read_unlock(&tasklist_lock);
  525. /*
  526. * We found no owner yet mm_users > 1: this implies that we are
  527. * most likely racing with swapoff (try_to_unuse()) or /proc or
  528. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  529. */
  530. mm->owner = NULL;
  531. return;
  532. assign_new_owner:
  533. BUG_ON(c == p);
  534. get_task_struct(c);
  535. /*
  536. * The task_lock protects c->mm from changing.
  537. * We always want mm->owner->mm == mm
  538. */
  539. task_lock(c);
  540. /*
  541. * Delay read_unlock() till we have the task_lock()
  542. * to ensure that c does not slip away underneath us
  543. */
  544. read_unlock(&tasklist_lock);
  545. if (c->mm != mm) {
  546. task_unlock(c);
  547. put_task_struct(c);
  548. goto retry;
  549. }
  550. mm->owner = c;
  551. task_unlock(c);
  552. put_task_struct(c);
  553. }
  554. #endif /* CONFIG_MM_OWNER */
  555. /*
  556. * Turn us into a lazy TLB process if we
  557. * aren't already..
  558. */
  559. static void exit_mm(struct task_struct * tsk)
  560. {
  561. struct mm_struct *mm = tsk->mm;
  562. struct core_state *core_state;
  563. mm_release(tsk, mm);
  564. if (!mm)
  565. return;
  566. /*
  567. * Serialize with any possible pending coredump.
  568. * We must hold mmap_sem around checking core_state
  569. * and clearing tsk->mm. The core-inducing thread
  570. * will increment ->nr_threads for each thread in the
  571. * group with ->mm != NULL.
  572. */
  573. down_read(&mm->mmap_sem);
  574. core_state = mm->core_state;
  575. if (core_state) {
  576. struct core_thread self;
  577. up_read(&mm->mmap_sem);
  578. self.task = tsk;
  579. self.next = xchg(&core_state->dumper.next, &self);
  580. /*
  581. * Implies mb(), the result of xchg() must be visible
  582. * to core_state->dumper.
  583. */
  584. if (atomic_dec_and_test(&core_state->nr_threads))
  585. complete(&core_state->startup);
  586. for (;;) {
  587. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  588. if (!self.task) /* see coredump_finish() */
  589. break;
  590. schedule();
  591. }
  592. __set_task_state(tsk, TASK_RUNNING);
  593. down_read(&mm->mmap_sem);
  594. }
  595. atomic_inc(&mm->mm_count);
  596. BUG_ON(mm != tsk->active_mm);
  597. /* more a memory barrier than a real lock */
  598. task_lock(tsk);
  599. tsk->mm = NULL;
  600. up_read(&mm->mmap_sem);
  601. enter_lazy_tlb(mm, current);
  602. /* We don't want this task to be frozen prematurely */
  603. clear_freeze_flag(tsk);
  604. task_unlock(tsk);
  605. mm_update_next_owner(mm);
  606. mmput(mm);
  607. }
  608. /*
  609. * When we die, we re-parent all our children.
  610. * Try to give them to another thread in our thread
  611. * group, and if no such member exists, give it to
  612. * the child reaper process (ie "init") in our pid
  613. * space.
  614. */
  615. static struct task_struct *find_new_reaper(struct task_struct *father)
  616. {
  617. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  618. struct task_struct *thread;
  619. thread = father;
  620. while_each_thread(father, thread) {
  621. if (thread->flags & PF_EXITING)
  622. continue;
  623. if (unlikely(pid_ns->child_reaper == father))
  624. pid_ns->child_reaper = thread;
  625. return thread;
  626. }
  627. if (unlikely(pid_ns->child_reaper == father)) {
  628. write_unlock_irq(&tasklist_lock);
  629. if (unlikely(pid_ns == &init_pid_ns))
  630. panic("Attempted to kill init!");
  631. zap_pid_ns_processes(pid_ns);
  632. write_lock_irq(&tasklist_lock);
  633. /*
  634. * We can not clear ->child_reaper or leave it alone.
  635. * There may by stealth EXIT_DEAD tasks on ->children,
  636. * forget_original_parent() must move them somewhere.
  637. */
  638. pid_ns->child_reaper = init_pid_ns.child_reaper;
  639. }
  640. return pid_ns->child_reaper;
  641. }
  642. /*
  643. * Any that need to be release_task'd are put on the @dead list.
  644. */
  645. static void reparent_thread(struct task_struct *father, struct task_struct *p,
  646. struct list_head *dead)
  647. {
  648. if (p->pdeath_signal)
  649. group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
  650. list_move_tail(&p->sibling, &p->real_parent->children);
  651. if (task_detached(p))
  652. return;
  653. /*
  654. * If this is a threaded reparent there is no need to
  655. * notify anyone anything has happened.
  656. */
  657. if (same_thread_group(p->real_parent, father))
  658. return;
  659. /* We don't want people slaying init. */
  660. p->exit_signal = SIGCHLD;
  661. /* If it has exited notify the new parent about this child's death. */
  662. if (!task_ptrace(p) &&
  663. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  664. do_notify_parent(p, p->exit_signal);
  665. if (task_detached(p)) {
  666. p->exit_state = EXIT_DEAD;
  667. list_move_tail(&p->sibling, dead);
  668. }
  669. }
  670. kill_orphaned_pgrp(p, father);
  671. }
  672. static void forget_original_parent(struct task_struct *father)
  673. {
  674. struct task_struct *p, *n, *reaper;
  675. LIST_HEAD(dead_children);
  676. exit_ptrace(father);
  677. write_lock_irq(&tasklist_lock);
  678. reaper = find_new_reaper(father);
  679. list_for_each_entry_safe(p, n, &father->children, sibling) {
  680. p->real_parent = reaper;
  681. if (p->parent == father) {
  682. BUG_ON(task_ptrace(p));
  683. p->parent = p->real_parent;
  684. }
  685. reparent_thread(father, p, &dead_children);
  686. }
  687. write_unlock_irq(&tasklist_lock);
  688. BUG_ON(!list_empty(&father->children));
  689. list_for_each_entry_safe(p, n, &dead_children, sibling) {
  690. list_del_init(&p->sibling);
  691. release_task(p);
  692. }
  693. }
  694. /*
  695. * Send signals to all our closest relatives so that they know
  696. * to properly mourn us..
  697. */
  698. static void exit_notify(struct task_struct *tsk, int group_dead)
  699. {
  700. int signal;
  701. void *cookie;
  702. /*
  703. * This does two things:
  704. *
  705. * A. Make init inherit all the child processes
  706. * B. Check to see if any process groups have become orphaned
  707. * as a result of our exiting, and if they have any stopped
  708. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  709. */
  710. forget_original_parent(tsk);
  711. exit_task_namespaces(tsk);
  712. write_lock_irq(&tasklist_lock);
  713. if (group_dead)
  714. kill_orphaned_pgrp(tsk->group_leader, NULL);
  715. /* Let father know we died
  716. *
  717. * Thread signals are configurable, but you aren't going to use
  718. * that to send signals to arbitary processes.
  719. * That stops right now.
  720. *
  721. * If the parent exec id doesn't match the exec id we saved
  722. * when we started then we know the parent has changed security
  723. * domain.
  724. *
  725. * If our self_exec id doesn't match our parent_exec_id then
  726. * we have changed execution domain as these two values started
  727. * the same after a fork.
  728. */
  729. if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
  730. (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
  731. tsk->self_exec_id != tsk->parent_exec_id))
  732. tsk->exit_signal = SIGCHLD;
  733. signal = tracehook_notify_death(tsk, &cookie, group_dead);
  734. if (signal >= 0)
  735. signal = do_notify_parent(tsk, signal);
  736. tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
  737. /* mt-exec, de_thread() is waiting for us */
  738. if (thread_group_leader(tsk) &&
  739. tsk->signal->group_exit_task &&
  740. tsk->signal->notify_count < 0)
  741. wake_up_process(tsk->signal->group_exit_task);
  742. write_unlock_irq(&tasklist_lock);
  743. tracehook_report_death(tsk, signal, cookie, group_dead);
  744. /* If the process is dead, release it - nobody will wait for it */
  745. if (signal == DEATH_REAP)
  746. release_task(tsk);
  747. }
  748. #ifdef CONFIG_DEBUG_STACK_USAGE
  749. static void check_stack_usage(void)
  750. {
  751. static DEFINE_SPINLOCK(low_water_lock);
  752. static int lowest_to_date = THREAD_SIZE;
  753. unsigned long free;
  754. free = stack_not_used(current);
  755. if (free >= lowest_to_date)
  756. return;
  757. spin_lock(&low_water_lock);
  758. if (free < lowest_to_date) {
  759. printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
  760. "left\n",
  761. current->comm, free);
  762. lowest_to_date = free;
  763. }
  764. spin_unlock(&low_water_lock);
  765. }
  766. #else
  767. static inline void check_stack_usage(void) {}
  768. #endif
  769. NORET_TYPE void do_exit(long code)
  770. {
  771. struct task_struct *tsk = current;
  772. int group_dead;
  773. profile_task_exit(tsk);
  774. WARN_ON(atomic_read(&tsk->fs_excl));
  775. if (unlikely(in_interrupt()))
  776. panic("Aiee, killing interrupt handler!");
  777. if (unlikely(!tsk->pid))
  778. panic("Attempted to kill the idle task!");
  779. tracehook_report_exit(&code);
  780. validate_creds_for_do_exit(tsk);
  781. /*
  782. * We're taking recursive faults here in do_exit. Safest is to just
  783. * leave this task alone and wait for reboot.
  784. */
  785. if (unlikely(tsk->flags & PF_EXITING)) {
  786. printk(KERN_ALERT
  787. "Fixing recursive fault but reboot is needed!\n");
  788. /*
  789. * We can do this unlocked here. The futex code uses
  790. * this flag just to verify whether the pi state
  791. * cleanup has been done or not. In the worst case it
  792. * loops once more. We pretend that the cleanup was
  793. * done as there is no way to return. Either the
  794. * OWNER_DIED bit is set by now or we push the blocked
  795. * task into the wait for ever nirwana as well.
  796. */
  797. tsk->flags |= PF_EXITPIDONE;
  798. set_current_state(TASK_UNINTERRUPTIBLE);
  799. schedule();
  800. }
  801. exit_irq_thread();
  802. exit_signals(tsk); /* sets PF_EXITING */
  803. /*
  804. * tsk->flags are checked in the futex code to protect against
  805. * an exiting task cleaning up the robust pi futexes.
  806. */
  807. smp_mb();
  808. spin_unlock_wait(&tsk->pi_lock);
  809. if (unlikely(in_atomic()))
  810. printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
  811. current->comm, task_pid_nr(current),
  812. preempt_count());
  813. acct_update_integrals(tsk);
  814. group_dead = atomic_dec_and_test(&tsk->signal->live);
  815. if (group_dead) {
  816. hrtimer_cancel(&tsk->signal->real_timer);
  817. exit_itimers(tsk->signal);
  818. if (tsk->mm)
  819. setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
  820. }
  821. acct_collect(code, group_dead);
  822. if (group_dead)
  823. tty_audit_exit();
  824. if (unlikely(tsk->audit_context))
  825. audit_free(tsk);
  826. tsk->exit_code = code;
  827. taskstats_exit(tsk, group_dead);
  828. exit_mm(tsk);
  829. if (group_dead)
  830. acct_process();
  831. trace_sched_process_exit(tsk);
  832. exit_sem(tsk);
  833. exit_files(tsk);
  834. exit_fs(tsk);
  835. check_stack_usage();
  836. exit_thread();
  837. cgroup_exit(tsk, 1);
  838. if (group_dead)
  839. disassociate_ctty(1);
  840. module_put(task_thread_info(tsk)->exec_domain->module);
  841. proc_exit_connector(tsk);
  842. /*
  843. * FIXME: do that only when needed, using sched_exit tracepoint
  844. */
  845. flush_ptrace_hw_breakpoint(tsk);
  846. /*
  847. * Flush inherited counters to the parent - before the parent
  848. * gets woken up by child-exit notifications.
  849. */
  850. perf_event_exit_task(tsk);
  851. exit_notify(tsk, group_dead);
  852. #ifdef CONFIG_NUMA
  853. mpol_put(tsk->mempolicy);
  854. tsk->mempolicy = NULL;
  855. #endif
  856. #ifdef CONFIG_FUTEX
  857. if (unlikely(current->pi_state_cache))
  858. kfree(current->pi_state_cache);
  859. #endif
  860. /*
  861. * Make sure we are holding no locks:
  862. */
  863. debug_check_no_locks_held(tsk);
  864. /*
  865. * We can do this unlocked here. The futex code uses this flag
  866. * just to verify whether the pi state cleanup has been done
  867. * or not. In the worst case it loops once more.
  868. */
  869. tsk->flags |= PF_EXITPIDONE;
  870. if (tsk->io_context)
  871. exit_io_context(tsk);
  872. if (tsk->splice_pipe)
  873. __free_pipe_info(tsk->splice_pipe);
  874. validate_creds_for_do_exit(tsk);
  875. preempt_disable();
  876. exit_rcu();
  877. /* causes final put_task_struct in finish_task_switch(). */
  878. tsk->state = TASK_DEAD;
  879. schedule();
  880. BUG();
  881. /* Avoid "noreturn function does return". */
  882. for (;;)
  883. cpu_relax(); /* For when BUG is null */
  884. }
  885. EXPORT_SYMBOL_GPL(do_exit);
  886. NORET_TYPE void complete_and_exit(struct completion *comp, long code)
  887. {
  888. if (comp)
  889. complete(comp);
  890. do_exit(code);
  891. }
  892. EXPORT_SYMBOL(complete_and_exit);
  893. SYSCALL_DEFINE1(exit, int, error_code)
  894. {
  895. do_exit((error_code&0xff)<<8);
  896. }
  897. /*
  898. * Take down every thread in the group. This is called by fatal signals
  899. * as well as by sys_exit_group (below).
  900. */
  901. NORET_TYPE void
  902. do_group_exit(int exit_code)
  903. {
  904. struct signal_struct *sig = current->signal;
  905. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  906. if (signal_group_exit(sig))
  907. exit_code = sig->group_exit_code;
  908. else if (!thread_group_empty(current)) {
  909. struct sighand_struct *const sighand = current->sighand;
  910. spin_lock_irq(&sighand->siglock);
  911. if (signal_group_exit(sig))
  912. /* Another thread got here before we took the lock. */
  913. exit_code = sig->group_exit_code;
  914. else {
  915. sig->group_exit_code = exit_code;
  916. sig->flags = SIGNAL_GROUP_EXIT;
  917. zap_other_threads(current);
  918. }
  919. spin_unlock_irq(&sighand->siglock);
  920. }
  921. do_exit(exit_code);
  922. /* NOTREACHED */
  923. }
  924. /*
  925. * this kills every thread in the thread group. Note that any externally
  926. * wait4()-ing process will get the correct exit code - even if this
  927. * thread is not the thread group leader.
  928. */
  929. SYSCALL_DEFINE1(exit_group, int, error_code)
  930. {
  931. do_group_exit((error_code & 0xff) << 8);
  932. /* NOTREACHED */
  933. return 0;
  934. }
  935. struct wait_opts {
  936. enum pid_type wo_type;
  937. int wo_flags;
  938. struct pid *wo_pid;
  939. struct siginfo __user *wo_info;
  940. int __user *wo_stat;
  941. struct rusage __user *wo_rusage;
  942. wait_queue_t child_wait;
  943. int notask_error;
  944. };
  945. static inline
  946. struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  947. {
  948. if (type != PIDTYPE_PID)
  949. task = task->group_leader;
  950. return task->pids[type].pid;
  951. }
  952. static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
  953. {
  954. return wo->wo_type == PIDTYPE_MAX ||
  955. task_pid_type(p, wo->wo_type) == wo->wo_pid;
  956. }
  957. static int eligible_child(struct wait_opts *wo, struct task_struct *p)
  958. {
  959. if (!eligible_pid(wo, p))
  960. return 0;
  961. /* Wait for all children (clone and not) if __WALL is set;
  962. * otherwise, wait for clone children *only* if __WCLONE is
  963. * set; otherwise, wait for non-clone children *only*. (Note:
  964. * A "clone" child here is one that reports to its parent
  965. * using a signal other than SIGCHLD.) */
  966. if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
  967. && !(wo->wo_flags & __WALL))
  968. return 0;
  969. return 1;
  970. }
  971. static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
  972. pid_t pid, uid_t uid, int why, int status)
  973. {
  974. struct siginfo __user *infop;
  975. int retval = wo->wo_rusage
  976. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  977. put_task_struct(p);
  978. infop = wo->wo_info;
  979. if (infop) {
  980. if (!retval)
  981. retval = put_user(SIGCHLD, &infop->si_signo);
  982. if (!retval)
  983. retval = put_user(0, &infop->si_errno);
  984. if (!retval)
  985. retval = put_user((short)why, &infop->si_code);
  986. if (!retval)
  987. retval = put_user(pid, &infop->si_pid);
  988. if (!retval)
  989. retval = put_user(uid, &infop->si_uid);
  990. if (!retval)
  991. retval = put_user(status, &infop->si_status);
  992. }
  993. if (!retval)
  994. retval = pid;
  995. return retval;
  996. }
  997. /*
  998. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  999. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1000. * the lock and this task is uninteresting. If we return nonzero, we have
  1001. * released the lock and the system call should return.
  1002. */
  1003. static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
  1004. {
  1005. unsigned long state;
  1006. int retval, status, traced;
  1007. pid_t pid = task_pid_vnr(p);
  1008. uid_t uid = __task_cred(p)->uid;
  1009. struct siginfo __user *infop;
  1010. if (!likely(wo->wo_flags & WEXITED))
  1011. return 0;
  1012. if (unlikely(wo->wo_flags & WNOWAIT)) {
  1013. int exit_code = p->exit_code;
  1014. int why, status;
  1015. get_task_struct(p);
  1016. read_unlock(&tasklist_lock);
  1017. if ((exit_code & 0x7f) == 0) {
  1018. why = CLD_EXITED;
  1019. status = exit_code >> 8;
  1020. } else {
  1021. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1022. status = exit_code & 0x7f;
  1023. }
  1024. return wait_noreap_copyout(wo, p, pid, uid, why, status);
  1025. }
  1026. /*
  1027. * Try to move the task's state to DEAD
  1028. * only one thread is allowed to do this:
  1029. */
  1030. state = xchg(&p->exit_state, EXIT_DEAD);
  1031. if (state != EXIT_ZOMBIE) {
  1032. BUG_ON(state != EXIT_DEAD);
  1033. return 0;
  1034. }
  1035. traced = ptrace_reparented(p);
  1036. /*
  1037. * It can be ptraced but not reparented, check
  1038. * !task_detached() to filter out sub-threads.
  1039. */
  1040. if (likely(!traced) && likely(!task_detached(p))) {
  1041. struct signal_struct *psig;
  1042. struct signal_struct *sig;
  1043. unsigned long maxrss;
  1044. cputime_t tgutime, tgstime;
  1045. /*
  1046. * The resource counters for the group leader are in its
  1047. * own task_struct. Those for dead threads in the group
  1048. * are in its signal_struct, as are those for the child
  1049. * processes it has previously reaped. All these
  1050. * accumulate in the parent's signal_struct c* fields.
  1051. *
  1052. * We don't bother to take a lock here to protect these
  1053. * p->signal fields, because they are only touched by
  1054. * __exit_signal, which runs with tasklist_lock
  1055. * write-locked anyway, and so is excluded here. We do
  1056. * need to protect the access to parent->signal fields,
  1057. * as other threads in the parent group can be right
  1058. * here reaping other children at the same time.
  1059. *
  1060. * We use thread_group_times() to get times for the thread
  1061. * group, which consolidates times for all threads in the
  1062. * group including the group leader.
  1063. */
  1064. thread_group_times(p, &tgutime, &tgstime);
  1065. spin_lock_irq(&p->real_parent->sighand->siglock);
  1066. psig = p->real_parent->signal;
  1067. sig = p->signal;
  1068. psig->cutime =
  1069. cputime_add(psig->cutime,
  1070. cputime_add(tgutime,
  1071. sig->cutime));
  1072. psig->cstime =
  1073. cputime_add(psig->cstime,
  1074. cputime_add(tgstime,
  1075. sig->cstime));
  1076. psig->cgtime =
  1077. cputime_add(psig->cgtime,
  1078. cputime_add(p->gtime,
  1079. cputime_add(sig->gtime,
  1080. sig->cgtime)));
  1081. psig->cmin_flt +=
  1082. p->min_flt + sig->min_flt + sig->cmin_flt;
  1083. psig->cmaj_flt +=
  1084. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  1085. psig->cnvcsw +=
  1086. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  1087. psig->cnivcsw +=
  1088. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  1089. psig->cinblock +=
  1090. task_io_get_inblock(p) +
  1091. sig->inblock + sig->cinblock;
  1092. psig->coublock +=
  1093. task_io_get_oublock(p) +
  1094. sig->oublock + sig->coublock;
  1095. maxrss = max(sig->maxrss, sig->cmaxrss);
  1096. if (psig->cmaxrss < maxrss)
  1097. psig->cmaxrss = maxrss;
  1098. task_io_accounting_add(&psig->ioac, &p->ioac);
  1099. task_io_accounting_add(&psig->ioac, &sig->ioac);
  1100. spin_unlock_irq(&p->real_parent->sighand->siglock);
  1101. }
  1102. /*
  1103. * Now we are sure this task is interesting, and no other
  1104. * thread can reap it because we set its state to EXIT_DEAD.
  1105. */
  1106. read_unlock(&tasklist_lock);
  1107. retval = wo->wo_rusage
  1108. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1109. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  1110. ? p->signal->group_exit_code : p->exit_code;
  1111. if (!retval && wo->wo_stat)
  1112. retval = put_user(status, wo->wo_stat);
  1113. infop = wo->wo_info;
  1114. if (!retval && infop)
  1115. retval = put_user(SIGCHLD, &infop->si_signo);
  1116. if (!retval && infop)
  1117. retval = put_user(0, &infop->si_errno);
  1118. if (!retval && infop) {
  1119. int why;
  1120. if ((status & 0x7f) == 0) {
  1121. why = CLD_EXITED;
  1122. status >>= 8;
  1123. } else {
  1124. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1125. status &= 0x7f;
  1126. }
  1127. retval = put_user((short)why, &infop->si_code);
  1128. if (!retval)
  1129. retval = put_user(status, &infop->si_status);
  1130. }
  1131. if (!retval && infop)
  1132. retval = put_user(pid, &infop->si_pid);
  1133. if (!retval && infop)
  1134. retval = put_user(uid, &infop->si_uid);
  1135. if (!retval)
  1136. retval = pid;
  1137. if (traced) {
  1138. write_lock_irq(&tasklist_lock);
  1139. /* We dropped tasklist, ptracer could die and untrace */
  1140. ptrace_unlink(p);
  1141. /*
  1142. * If this is not a detached task, notify the parent.
  1143. * If it's still not detached after that, don't release
  1144. * it now.
  1145. */
  1146. if (!task_detached(p)) {
  1147. do_notify_parent(p, p->exit_signal);
  1148. if (!task_detached(p)) {
  1149. p->exit_state = EXIT_ZOMBIE;
  1150. p = NULL;
  1151. }
  1152. }
  1153. write_unlock_irq(&tasklist_lock);
  1154. }
  1155. if (p != NULL)
  1156. release_task(p);
  1157. return retval;
  1158. }
  1159. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  1160. {
  1161. if (ptrace) {
  1162. if (task_is_stopped_or_traced(p))
  1163. return &p->exit_code;
  1164. } else {
  1165. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  1166. return &p->signal->group_exit_code;
  1167. }
  1168. return NULL;
  1169. }
  1170. /*
  1171. * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
  1172. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1173. * the lock and this task is uninteresting. If we return nonzero, we have
  1174. * released the lock and the system call should return.
  1175. */
  1176. static int wait_task_stopped(struct wait_opts *wo,
  1177. int ptrace, struct task_struct *p)
  1178. {
  1179. struct siginfo __user *infop;
  1180. int retval, exit_code, *p_code, why;
  1181. uid_t uid = 0; /* unneeded, required by compiler */
  1182. pid_t pid;
  1183. /*
  1184. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1185. */
  1186. if (!ptrace && !(wo->wo_flags & WUNTRACED))
  1187. return 0;
  1188. exit_code = 0;
  1189. spin_lock_irq(&p->sighand->siglock);
  1190. p_code = task_stopped_code(p, ptrace);
  1191. if (unlikely(!p_code))
  1192. goto unlock_sig;
  1193. exit_code = *p_code;
  1194. if (!exit_code)
  1195. goto unlock_sig;
  1196. if (!unlikely(wo->wo_flags & WNOWAIT))
  1197. *p_code = 0;
  1198. /* don't need the RCU readlock here as we're holding a spinlock */
  1199. uid = __task_cred(p)->uid;
  1200. unlock_sig:
  1201. spin_unlock_irq(&p->sighand->siglock);
  1202. if (!exit_code)
  1203. return 0;
  1204. /*
  1205. * Now we are pretty sure this task is interesting.
  1206. * Make sure it doesn't get reaped out from under us while we
  1207. * give up the lock and then examine it below. We don't want to
  1208. * keep holding onto the tasklist_lock while we call getrusage and
  1209. * possibly take page faults for user memory.
  1210. */
  1211. get_task_struct(p);
  1212. pid = task_pid_vnr(p);
  1213. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1214. read_unlock(&tasklist_lock);
  1215. if (unlikely(wo->wo_flags & WNOWAIT))
  1216. return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
  1217. retval = wo->wo_rusage
  1218. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1219. if (!retval && wo->wo_stat)
  1220. retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
  1221. infop = wo->wo_info;
  1222. if (!retval && infop)
  1223. retval = put_user(SIGCHLD, &infop->si_signo);
  1224. if (!retval && infop)
  1225. retval = put_user(0, &infop->si_errno);
  1226. if (!retval && infop)
  1227. retval = put_user((short)why, &infop->si_code);
  1228. if (!retval && infop)
  1229. retval = put_user(exit_code, &infop->si_status);
  1230. if (!retval && infop)
  1231. retval = put_user(pid, &infop->si_pid);
  1232. if (!retval && infop)
  1233. retval = put_user(uid, &infop->si_uid);
  1234. if (!retval)
  1235. retval = pid;
  1236. put_task_struct(p);
  1237. BUG_ON(!retval);
  1238. return retval;
  1239. }
  1240. /*
  1241. * Handle do_wait work for one task in a live, non-stopped state.
  1242. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1243. * the lock and this task is uninteresting. If we return nonzero, we have
  1244. * released the lock and the system call should return.
  1245. */
  1246. static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
  1247. {
  1248. int retval;
  1249. pid_t pid;
  1250. uid_t uid;
  1251. if (!unlikely(wo->wo_flags & WCONTINUED))
  1252. return 0;
  1253. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1254. return 0;
  1255. spin_lock_irq(&p->sighand->siglock);
  1256. /* Re-check with the lock held. */
  1257. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1258. spin_unlock_irq(&p->sighand->siglock);
  1259. return 0;
  1260. }
  1261. if (!unlikely(wo->wo_flags & WNOWAIT))
  1262. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1263. uid = __task_cred(p)->uid;
  1264. spin_unlock_irq(&p->sighand->siglock);
  1265. pid = task_pid_vnr(p);
  1266. get_task_struct(p);
  1267. read_unlock(&tasklist_lock);
  1268. if (!wo->wo_info) {
  1269. retval = wo->wo_rusage
  1270. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1271. put_task_struct(p);
  1272. if (!retval && wo->wo_stat)
  1273. retval = put_user(0xffff, wo->wo_stat);
  1274. if (!retval)
  1275. retval = pid;
  1276. } else {
  1277. retval = wait_noreap_copyout(wo, p, pid, uid,
  1278. CLD_CONTINUED, SIGCONT);
  1279. BUG_ON(retval == 0);
  1280. }
  1281. return retval;
  1282. }
  1283. /*
  1284. * Consider @p for a wait by @parent.
  1285. *
  1286. * -ECHILD should be in ->notask_error before the first call.
  1287. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1288. * Returns zero if the search for a child should continue;
  1289. * then ->notask_error is 0 if @p is an eligible child,
  1290. * or another error from security_task_wait(), or still -ECHILD.
  1291. */
  1292. static int wait_consider_task(struct wait_opts *wo, int ptrace,
  1293. struct task_struct *p)
  1294. {
  1295. int ret = eligible_child(wo, p);
  1296. if (!ret)
  1297. return ret;
  1298. ret = security_task_wait(p);
  1299. if (unlikely(ret < 0)) {
  1300. /*
  1301. * If we have not yet seen any eligible child,
  1302. * then let this error code replace -ECHILD.
  1303. * A permission error will give the user a clue
  1304. * to look for security policy problems, rather
  1305. * than for mysterious wait bugs.
  1306. */
  1307. if (wo->notask_error)
  1308. wo->notask_error = ret;
  1309. return 0;
  1310. }
  1311. if (likely(!ptrace) && unlikely(task_ptrace(p))) {
  1312. /*
  1313. * This child is hidden by ptrace.
  1314. * We aren't allowed to see it now, but eventually we will.
  1315. */
  1316. wo->notask_error = 0;
  1317. return 0;
  1318. }
  1319. if (p->exit_state == EXIT_DEAD)
  1320. return 0;
  1321. /*
  1322. * We don't reap group leaders with subthreads.
  1323. */
  1324. if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
  1325. return wait_task_zombie(wo, p);
  1326. /*
  1327. * It's stopped or running now, so it might
  1328. * later continue, exit, or stop again.
  1329. */
  1330. wo->notask_error = 0;
  1331. if (task_stopped_code(p, ptrace))
  1332. return wait_task_stopped(wo, ptrace, p);
  1333. return wait_task_continued(wo, p);
  1334. }
  1335. /*
  1336. * Do the work of do_wait() for one thread in the group, @tsk.
  1337. *
  1338. * -ECHILD should be in ->notask_error before the first call.
  1339. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1340. * Returns zero if the search for a child should continue; then
  1341. * ->notask_error is 0 if there were any eligible children,
  1342. * or another error from security_task_wait(), or still -ECHILD.
  1343. */
  1344. static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
  1345. {
  1346. struct task_struct *p;
  1347. list_for_each_entry(p, &tsk->children, sibling) {
  1348. /*
  1349. * Do not consider detached threads.
  1350. */
  1351. if (!task_detached(p)) {
  1352. int ret = wait_consider_task(wo, 0, p);
  1353. if (ret)
  1354. return ret;
  1355. }
  1356. }
  1357. return 0;
  1358. }
  1359. static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
  1360. {
  1361. struct task_struct *p;
  1362. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1363. int ret = wait_consider_task(wo, 1, p);
  1364. if (ret)
  1365. return ret;
  1366. }
  1367. return 0;
  1368. }
  1369. static int child_wait_callback(wait_queue_t *wait, unsigned mode,
  1370. int sync, void *key)
  1371. {
  1372. struct wait_opts *wo = container_of(wait, struct wait_opts,
  1373. child_wait);
  1374. struct task_struct *p = key;
  1375. if (!eligible_pid(wo, p))
  1376. return 0;
  1377. if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
  1378. return 0;
  1379. return default_wake_function(wait, mode, sync, key);
  1380. }
  1381. void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
  1382. {
  1383. __wake_up_sync_key(&parent->signal->wait_chldexit,
  1384. TASK_INTERRUPTIBLE, 1, p);
  1385. }
  1386. static long do_wait(struct wait_opts *wo)
  1387. {
  1388. struct task_struct *tsk;
  1389. int retval;
  1390. trace_sched_process_wait(wo->wo_pid);
  1391. init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
  1392. wo->child_wait.private = current;
  1393. add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1394. repeat:
  1395. /*
  1396. * If there is nothing that can match our critiera just get out.
  1397. * We will clear ->notask_error to zero if we see any child that
  1398. * might later match our criteria, even if we are not able to reap
  1399. * it yet.
  1400. */
  1401. wo->notask_error = -ECHILD;
  1402. if ((wo->wo_type < PIDTYPE_MAX) &&
  1403. (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
  1404. goto notask;
  1405. set_current_state(TASK_INTERRUPTIBLE);
  1406. read_lock(&tasklist_lock);
  1407. tsk = current;
  1408. do {
  1409. retval = do_wait_thread(wo, tsk);
  1410. if (retval)
  1411. goto end;
  1412. retval = ptrace_do_wait(wo, tsk);
  1413. if (retval)
  1414. goto end;
  1415. if (wo->wo_flags & __WNOTHREAD)
  1416. break;
  1417. } while_each_thread(current, tsk);
  1418. read_unlock(&tasklist_lock);
  1419. notask:
  1420. retval = wo->notask_error;
  1421. if (!retval && !(wo->wo_flags & WNOHANG)) {
  1422. retval = -ERESTARTSYS;
  1423. if (!signal_pending(current)) {
  1424. schedule();
  1425. goto repeat;
  1426. }
  1427. }
  1428. end:
  1429. __set_current_state(TASK_RUNNING);
  1430. remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1431. return retval;
  1432. }
  1433. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1434. infop, int, options, struct rusage __user *, ru)
  1435. {
  1436. struct wait_opts wo;
  1437. struct pid *pid = NULL;
  1438. enum pid_type type;
  1439. long ret;
  1440. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
  1441. return -EINVAL;
  1442. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1443. return -EINVAL;
  1444. switch (which) {
  1445. case P_ALL:
  1446. type = PIDTYPE_MAX;
  1447. break;
  1448. case P_PID:
  1449. type = PIDTYPE_PID;
  1450. if (upid <= 0)
  1451. return -EINVAL;
  1452. break;
  1453. case P_PGID:
  1454. type = PIDTYPE_PGID;
  1455. if (upid <= 0)
  1456. return -EINVAL;
  1457. break;
  1458. default:
  1459. return -EINVAL;
  1460. }
  1461. if (type < PIDTYPE_MAX)
  1462. pid = find_get_pid(upid);
  1463. wo.wo_type = type;
  1464. wo.wo_pid = pid;
  1465. wo.wo_flags = options;
  1466. wo.wo_info = infop;
  1467. wo.wo_stat = NULL;
  1468. wo.wo_rusage = ru;
  1469. ret = do_wait(&wo);
  1470. if (ret > 0) {
  1471. ret = 0;
  1472. } else if (infop) {
  1473. /*
  1474. * For a WNOHANG return, clear out all the fields
  1475. * we would set so the user can easily tell the
  1476. * difference.
  1477. */
  1478. if (!ret)
  1479. ret = put_user(0, &infop->si_signo);
  1480. if (!ret)
  1481. ret = put_user(0, &infop->si_errno);
  1482. if (!ret)
  1483. ret = put_user(0, &infop->si_code);
  1484. if (!ret)
  1485. ret = put_user(0, &infop->si_pid);
  1486. if (!ret)
  1487. ret = put_user(0, &infop->si_uid);
  1488. if (!ret)
  1489. ret = put_user(0, &infop->si_status);
  1490. }
  1491. put_pid(pid);
  1492. /* avoid REGPARM breakage on x86: */
  1493. asmlinkage_protect(5, ret, which, upid, infop, options, ru);
  1494. return ret;
  1495. }
  1496. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1497. int, options, struct rusage __user *, ru)
  1498. {
  1499. struct wait_opts wo;
  1500. struct pid *pid = NULL;
  1501. enum pid_type type;
  1502. long ret;
  1503. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1504. __WNOTHREAD|__WCLONE|__WALL))
  1505. return -EINVAL;
  1506. if (upid == -1)
  1507. type = PIDTYPE_MAX;
  1508. else if (upid < 0) {
  1509. type = PIDTYPE_PGID;
  1510. pid = find_get_pid(-upid);
  1511. } else if (upid == 0) {
  1512. type = PIDTYPE_PGID;
  1513. pid = get_task_pid(current, PIDTYPE_PGID);
  1514. } else /* upid > 0 */ {
  1515. type = PIDTYPE_PID;
  1516. pid = find_get_pid(upid);
  1517. }
  1518. wo.wo_type = type;
  1519. wo.wo_pid = pid;
  1520. wo.wo_flags = options | WEXITED;
  1521. wo.wo_info = NULL;
  1522. wo.wo_stat = stat_addr;
  1523. wo.wo_rusage = ru;
  1524. ret = do_wait(&wo);
  1525. put_pid(pid);
  1526. /* avoid REGPARM breakage on x86: */
  1527. asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
  1528. return ret;
  1529. }
  1530. #ifdef __ARCH_WANT_SYS_WAITPID
  1531. /*
  1532. * sys_waitpid() remains for compatibility. waitpid() should be
  1533. * implemented by calling sys_wait4() from libc.a.
  1534. */
  1535. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1536. {
  1537. return sys_wait4(pid, stat_addr, options, NULL);
  1538. }
  1539. #endif