fs-writeback.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256
  1. /*
  2. * fs/fs-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * Contains all the functions related to writing back and waiting
  7. * upon dirty inodes against superblocks, and writing back dirty
  8. * pages against inodes. ie: data writeback. Writeout of the
  9. * inode itself is not handled here.
  10. *
  11. * 10Apr2002 Andrew Morton
  12. * Split out of fs/inode.c
  13. * Additions for address_space-based writeback
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/sched.h>
  19. #include <linux/fs.h>
  20. #include <linux/mm.h>
  21. #include <linux/kthread.h>
  22. #include <linux/freezer.h>
  23. #include <linux/writeback.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/backing-dev.h>
  26. #include <linux/buffer_head.h>
  27. #include "internal.h"
  28. #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
  29. /*
  30. * We don't actually have pdflush, but this one is exported though /proc...
  31. */
  32. int nr_pdflush_threads;
  33. /*
  34. * Passed into wb_writeback(), essentially a subset of writeback_control
  35. */
  36. struct wb_writeback_args {
  37. long nr_pages;
  38. struct super_block *sb;
  39. enum writeback_sync_modes sync_mode;
  40. int for_kupdate:1;
  41. int range_cyclic:1;
  42. int for_background:1;
  43. };
  44. /*
  45. * Work items for the bdi_writeback threads
  46. */
  47. struct bdi_work {
  48. struct list_head list; /* pending work list */
  49. struct rcu_head rcu_head; /* for RCU free/clear of work */
  50. unsigned long seen; /* threads that have seen this work */
  51. atomic_t pending; /* number of threads still to do work */
  52. struct wb_writeback_args args; /* writeback arguments */
  53. unsigned long state; /* flag bits, see WS_* */
  54. };
  55. enum {
  56. WS_USED_B = 0,
  57. WS_ONSTACK_B,
  58. };
  59. #define WS_USED (1 << WS_USED_B)
  60. #define WS_ONSTACK (1 << WS_ONSTACK_B)
  61. static inline bool bdi_work_on_stack(struct bdi_work *work)
  62. {
  63. return test_bit(WS_ONSTACK_B, &work->state);
  64. }
  65. static inline void bdi_work_init(struct bdi_work *work,
  66. struct wb_writeback_args *args)
  67. {
  68. INIT_RCU_HEAD(&work->rcu_head);
  69. work->args = *args;
  70. work->state = WS_USED;
  71. }
  72. /**
  73. * writeback_in_progress - determine whether there is writeback in progress
  74. * @bdi: the device's backing_dev_info structure.
  75. *
  76. * Determine whether there is writeback waiting to be handled against a
  77. * backing device.
  78. */
  79. int writeback_in_progress(struct backing_dev_info *bdi)
  80. {
  81. return !list_empty(&bdi->work_list);
  82. }
  83. static void bdi_work_clear(struct bdi_work *work)
  84. {
  85. clear_bit(WS_USED_B, &work->state);
  86. smp_mb__after_clear_bit();
  87. /*
  88. * work can have disappeared at this point. bit waitq functions
  89. * should be able to tolerate this, provided bdi_sched_wait does
  90. * not dereference it's pointer argument.
  91. */
  92. wake_up_bit(&work->state, WS_USED_B);
  93. }
  94. static void bdi_work_free(struct rcu_head *head)
  95. {
  96. struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
  97. if (!bdi_work_on_stack(work))
  98. kfree(work);
  99. else
  100. bdi_work_clear(work);
  101. }
  102. static void wb_work_complete(struct bdi_work *work)
  103. {
  104. const enum writeback_sync_modes sync_mode = work->args.sync_mode;
  105. int onstack = bdi_work_on_stack(work);
  106. /*
  107. * For allocated work, we can clear the done/seen bit right here.
  108. * For on-stack work, we need to postpone both the clear and free
  109. * to after the RCU grace period, since the stack could be invalidated
  110. * as soon as bdi_work_clear() has done the wakeup.
  111. */
  112. if (!onstack)
  113. bdi_work_clear(work);
  114. if (sync_mode == WB_SYNC_NONE || onstack)
  115. call_rcu(&work->rcu_head, bdi_work_free);
  116. }
  117. static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
  118. {
  119. /*
  120. * The caller has retrieved the work arguments from this work,
  121. * drop our reference. If this is the last ref, delete and free it
  122. */
  123. if (atomic_dec_and_test(&work->pending)) {
  124. struct backing_dev_info *bdi = wb->bdi;
  125. spin_lock(&bdi->wb_lock);
  126. list_del_rcu(&work->list);
  127. spin_unlock(&bdi->wb_lock);
  128. wb_work_complete(work);
  129. }
  130. }
  131. static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
  132. {
  133. work->seen = bdi->wb_mask;
  134. BUG_ON(!work->seen);
  135. atomic_set(&work->pending, bdi->wb_cnt);
  136. BUG_ON(!bdi->wb_cnt);
  137. /*
  138. * list_add_tail_rcu() contains the necessary barriers to
  139. * make sure the above stores are seen before the item is
  140. * noticed on the list
  141. */
  142. spin_lock(&bdi->wb_lock);
  143. list_add_tail_rcu(&work->list, &bdi->work_list);
  144. spin_unlock(&bdi->wb_lock);
  145. /*
  146. * If the default thread isn't there, make sure we add it. When
  147. * it gets created and wakes up, we'll run this work.
  148. */
  149. if (unlikely(list_empty_careful(&bdi->wb_list)))
  150. wake_up_process(default_backing_dev_info.wb.task);
  151. else {
  152. struct bdi_writeback *wb = &bdi->wb;
  153. if (wb->task)
  154. wake_up_process(wb->task);
  155. }
  156. }
  157. /*
  158. * Used for on-stack allocated work items. The caller needs to wait until
  159. * the wb threads have acked the work before it's safe to continue.
  160. */
  161. static void bdi_wait_on_work_clear(struct bdi_work *work)
  162. {
  163. wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
  164. TASK_UNINTERRUPTIBLE);
  165. }
  166. static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
  167. struct wb_writeback_args *args)
  168. {
  169. struct bdi_work *work;
  170. /*
  171. * This is WB_SYNC_NONE writeback, so if allocation fails just
  172. * wakeup the thread for old dirty data writeback
  173. */
  174. work = kmalloc(sizeof(*work), GFP_ATOMIC);
  175. if (work) {
  176. bdi_work_init(work, args);
  177. bdi_queue_work(bdi, work);
  178. } else {
  179. struct bdi_writeback *wb = &bdi->wb;
  180. if (wb->task)
  181. wake_up_process(wb->task);
  182. }
  183. }
  184. /**
  185. * bdi_sync_writeback - start and wait for writeback
  186. * @bdi: the backing device to write from
  187. * @sb: write inodes from this super_block
  188. *
  189. * Description:
  190. * This does WB_SYNC_ALL data integrity writeback and waits for the
  191. * IO to complete. Callers must hold the sb s_umount semaphore for
  192. * reading, to avoid having the super disappear before we are done.
  193. */
  194. static void bdi_sync_writeback(struct backing_dev_info *bdi,
  195. struct super_block *sb)
  196. {
  197. struct wb_writeback_args args = {
  198. .sb = sb,
  199. .sync_mode = WB_SYNC_ALL,
  200. .nr_pages = LONG_MAX,
  201. .range_cyclic = 0,
  202. };
  203. struct bdi_work work;
  204. bdi_work_init(&work, &args);
  205. work.state |= WS_ONSTACK;
  206. bdi_queue_work(bdi, &work);
  207. bdi_wait_on_work_clear(&work);
  208. }
  209. /**
  210. * bdi_start_writeback - start writeback
  211. * @bdi: the backing device to write from
  212. * @nr_pages: the number of pages to write
  213. *
  214. * Description:
  215. * This does WB_SYNC_NONE opportunistic writeback. The IO is only
  216. * started when this function returns, we make no guarentees on
  217. * completion. Caller need not hold sb s_umount semaphore.
  218. *
  219. */
  220. void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
  221. long nr_pages)
  222. {
  223. struct wb_writeback_args args = {
  224. .sb = sb,
  225. .sync_mode = WB_SYNC_NONE,
  226. .nr_pages = nr_pages,
  227. .range_cyclic = 1,
  228. };
  229. /*
  230. * We treat @nr_pages=0 as the special case to do background writeback,
  231. * ie. to sync pages until the background dirty threshold is reached.
  232. */
  233. if (!nr_pages) {
  234. args.nr_pages = LONG_MAX;
  235. args.for_background = 1;
  236. }
  237. bdi_alloc_queue_work(bdi, &args);
  238. }
  239. /*
  240. * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
  241. * furthest end of its superblock's dirty-inode list.
  242. *
  243. * Before stamping the inode's ->dirtied_when, we check to see whether it is
  244. * already the most-recently-dirtied inode on the b_dirty list. If that is
  245. * the case then the inode must have been redirtied while it was being written
  246. * out and we don't reset its dirtied_when.
  247. */
  248. static void redirty_tail(struct inode *inode)
  249. {
  250. struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
  251. if (!list_empty(&wb->b_dirty)) {
  252. struct inode *tail;
  253. tail = list_entry(wb->b_dirty.next, struct inode, i_list);
  254. if (time_before(inode->dirtied_when, tail->dirtied_when))
  255. inode->dirtied_when = jiffies;
  256. }
  257. list_move(&inode->i_list, &wb->b_dirty);
  258. }
  259. /*
  260. * requeue inode for re-scanning after bdi->b_io list is exhausted.
  261. */
  262. static void requeue_io(struct inode *inode)
  263. {
  264. struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
  265. list_move(&inode->i_list, &wb->b_more_io);
  266. }
  267. static void inode_sync_complete(struct inode *inode)
  268. {
  269. /*
  270. * Prevent speculative execution through spin_unlock(&inode_lock);
  271. */
  272. smp_mb();
  273. wake_up_bit(&inode->i_state, __I_SYNC);
  274. }
  275. static bool inode_dirtied_after(struct inode *inode, unsigned long t)
  276. {
  277. bool ret = time_after(inode->dirtied_when, t);
  278. #ifndef CONFIG_64BIT
  279. /*
  280. * For inodes being constantly redirtied, dirtied_when can get stuck.
  281. * It _appears_ to be in the future, but is actually in distant past.
  282. * This test is necessary to prevent such wrapped-around relative times
  283. * from permanently stopping the whole bdi writeback.
  284. */
  285. ret = ret && time_before_eq(inode->dirtied_when, jiffies);
  286. #endif
  287. return ret;
  288. }
  289. /*
  290. * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
  291. */
  292. static void move_expired_inodes(struct list_head *delaying_queue,
  293. struct list_head *dispatch_queue,
  294. unsigned long *older_than_this)
  295. {
  296. LIST_HEAD(tmp);
  297. struct list_head *pos, *node;
  298. struct super_block *sb = NULL;
  299. struct inode *inode;
  300. int do_sb_sort = 0;
  301. while (!list_empty(delaying_queue)) {
  302. inode = list_entry(delaying_queue->prev, struct inode, i_list);
  303. if (older_than_this &&
  304. inode_dirtied_after(inode, *older_than_this))
  305. break;
  306. if (sb && sb != inode->i_sb)
  307. do_sb_sort = 1;
  308. sb = inode->i_sb;
  309. list_move(&inode->i_list, &tmp);
  310. }
  311. /* just one sb in list, splice to dispatch_queue and we're done */
  312. if (!do_sb_sort) {
  313. list_splice(&tmp, dispatch_queue);
  314. return;
  315. }
  316. /* Move inodes from one superblock together */
  317. while (!list_empty(&tmp)) {
  318. inode = list_entry(tmp.prev, struct inode, i_list);
  319. sb = inode->i_sb;
  320. list_for_each_prev_safe(pos, node, &tmp) {
  321. inode = list_entry(pos, struct inode, i_list);
  322. if (inode->i_sb == sb)
  323. list_move(&inode->i_list, dispatch_queue);
  324. }
  325. }
  326. }
  327. /*
  328. * Queue all expired dirty inodes for io, eldest first.
  329. */
  330. static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
  331. {
  332. list_splice_init(&wb->b_more_io, wb->b_io.prev);
  333. move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
  334. }
  335. static int write_inode(struct inode *inode, int sync)
  336. {
  337. if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
  338. return inode->i_sb->s_op->write_inode(inode, sync);
  339. return 0;
  340. }
  341. /*
  342. * Wait for writeback on an inode to complete.
  343. */
  344. static void inode_wait_for_writeback(struct inode *inode)
  345. {
  346. DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
  347. wait_queue_head_t *wqh;
  348. wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
  349. do {
  350. spin_unlock(&inode_lock);
  351. __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
  352. spin_lock(&inode_lock);
  353. } while (inode->i_state & I_SYNC);
  354. }
  355. /*
  356. * Write out an inode's dirty pages. Called under inode_lock. Either the
  357. * caller has ref on the inode (either via __iget or via syscall against an fd)
  358. * or the inode has I_WILL_FREE set (via generic_forget_inode)
  359. *
  360. * If `wait' is set, wait on the writeout.
  361. *
  362. * The whole writeout design is quite complex and fragile. We want to avoid
  363. * starvation of particular inodes when others are being redirtied, prevent
  364. * livelocks, etc.
  365. *
  366. * Called under inode_lock.
  367. */
  368. static int
  369. writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
  370. {
  371. struct address_space *mapping = inode->i_mapping;
  372. int wait = wbc->sync_mode == WB_SYNC_ALL;
  373. unsigned dirty;
  374. int ret;
  375. if (!atomic_read(&inode->i_count))
  376. WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
  377. else
  378. WARN_ON(inode->i_state & I_WILL_FREE);
  379. if (inode->i_state & I_SYNC) {
  380. /*
  381. * If this inode is locked for writeback and we are not doing
  382. * writeback-for-data-integrity, move it to b_more_io so that
  383. * writeback can proceed with the other inodes on s_io.
  384. *
  385. * We'll have another go at writing back this inode when we
  386. * completed a full scan of b_io.
  387. */
  388. if (!wait) {
  389. requeue_io(inode);
  390. return 0;
  391. }
  392. /*
  393. * It's a data-integrity sync. We must wait.
  394. */
  395. inode_wait_for_writeback(inode);
  396. }
  397. BUG_ON(inode->i_state & I_SYNC);
  398. /* Set I_SYNC, reset I_DIRTY */
  399. dirty = inode->i_state & I_DIRTY;
  400. inode->i_state |= I_SYNC;
  401. inode->i_state &= ~I_DIRTY;
  402. spin_unlock(&inode_lock);
  403. ret = do_writepages(mapping, wbc);
  404. /* Don't write the inode if only I_DIRTY_PAGES was set */
  405. if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
  406. int err = write_inode(inode, wait);
  407. if (ret == 0)
  408. ret = err;
  409. }
  410. if (wait) {
  411. int err = filemap_fdatawait(mapping);
  412. if (ret == 0)
  413. ret = err;
  414. }
  415. spin_lock(&inode_lock);
  416. inode->i_state &= ~I_SYNC;
  417. if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
  418. if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
  419. /*
  420. * More pages get dirtied by a fast dirtier.
  421. */
  422. goto select_queue;
  423. } else if (inode->i_state & I_DIRTY) {
  424. /*
  425. * At least XFS will redirty the inode during the
  426. * writeback (delalloc) and on io completion (isize).
  427. */
  428. redirty_tail(inode);
  429. } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
  430. /*
  431. * We didn't write back all the pages. nfs_writepages()
  432. * sometimes bales out without doing anything. Redirty
  433. * the inode; Move it from b_io onto b_more_io/b_dirty.
  434. */
  435. /*
  436. * akpm: if the caller was the kupdate function we put
  437. * this inode at the head of b_dirty so it gets first
  438. * consideration. Otherwise, move it to the tail, for
  439. * the reasons described there. I'm not really sure
  440. * how much sense this makes. Presumably I had a good
  441. * reasons for doing it this way, and I'd rather not
  442. * muck with it at present.
  443. */
  444. if (wbc->for_kupdate) {
  445. /*
  446. * For the kupdate function we move the inode
  447. * to b_more_io so it will get more writeout as
  448. * soon as the queue becomes uncongested.
  449. */
  450. inode->i_state |= I_DIRTY_PAGES;
  451. select_queue:
  452. if (wbc->nr_to_write <= 0) {
  453. /*
  454. * slice used up: queue for next turn
  455. */
  456. requeue_io(inode);
  457. } else {
  458. /*
  459. * somehow blocked: retry later
  460. */
  461. redirty_tail(inode);
  462. }
  463. } else {
  464. /*
  465. * Otherwise fully redirty the inode so that
  466. * other inodes on this superblock will get some
  467. * writeout. Otherwise heavy writing to one
  468. * file would indefinitely suspend writeout of
  469. * all the other files.
  470. */
  471. inode->i_state |= I_DIRTY_PAGES;
  472. redirty_tail(inode);
  473. }
  474. } else if (atomic_read(&inode->i_count)) {
  475. /*
  476. * The inode is clean, inuse
  477. */
  478. list_move(&inode->i_list, &inode_in_use);
  479. } else {
  480. /*
  481. * The inode is clean, unused
  482. */
  483. list_move(&inode->i_list, &inode_unused);
  484. }
  485. }
  486. inode_sync_complete(inode);
  487. return ret;
  488. }
  489. static void unpin_sb_for_writeback(struct super_block **psb)
  490. {
  491. struct super_block *sb = *psb;
  492. if (sb) {
  493. up_read(&sb->s_umount);
  494. put_super(sb);
  495. *psb = NULL;
  496. }
  497. }
  498. /*
  499. * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
  500. * before calling writeback. So make sure that we do pin it, so it doesn't
  501. * go away while we are writing inodes from it.
  502. *
  503. * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
  504. * 1 if we failed.
  505. */
  506. static int pin_sb_for_writeback(struct writeback_control *wbc,
  507. struct inode *inode, struct super_block **psb)
  508. {
  509. struct super_block *sb = inode->i_sb;
  510. /*
  511. * If this sb is already pinned, nothing more to do. If not and
  512. * *psb is non-NULL, unpin the old one first
  513. */
  514. if (sb == *psb)
  515. return 0;
  516. else if (*psb)
  517. unpin_sb_for_writeback(psb);
  518. /*
  519. * Caller must already hold the ref for this
  520. */
  521. if (wbc->sync_mode == WB_SYNC_ALL) {
  522. WARN_ON(!rwsem_is_locked(&sb->s_umount));
  523. return 0;
  524. }
  525. spin_lock(&sb_lock);
  526. sb->s_count++;
  527. if (down_read_trylock(&sb->s_umount)) {
  528. if (sb->s_root) {
  529. spin_unlock(&sb_lock);
  530. goto pinned;
  531. }
  532. /*
  533. * umounted, drop rwsem again and fall through to failure
  534. */
  535. up_read(&sb->s_umount);
  536. }
  537. sb->s_count--;
  538. spin_unlock(&sb_lock);
  539. return 1;
  540. pinned:
  541. *psb = sb;
  542. return 0;
  543. }
  544. static void writeback_inodes_wb(struct bdi_writeback *wb,
  545. struct writeback_control *wbc)
  546. {
  547. struct super_block *sb = wbc->sb, *pin_sb = NULL;
  548. const unsigned long start = jiffies; /* livelock avoidance */
  549. spin_lock(&inode_lock);
  550. if (!wbc->for_kupdate || list_empty(&wb->b_io))
  551. queue_io(wb, wbc->older_than_this);
  552. while (!list_empty(&wb->b_io)) {
  553. struct inode *inode = list_entry(wb->b_io.prev,
  554. struct inode, i_list);
  555. long pages_skipped;
  556. /*
  557. * super block given and doesn't match, skip this inode
  558. */
  559. if (sb && sb != inode->i_sb) {
  560. redirty_tail(inode);
  561. continue;
  562. }
  563. if (inode->i_state & (I_NEW | I_WILL_FREE)) {
  564. requeue_io(inode);
  565. continue;
  566. }
  567. /*
  568. * Was this inode dirtied after sync_sb_inodes was called?
  569. * This keeps sync from extra jobs and livelock.
  570. */
  571. if (inode_dirtied_after(inode, start))
  572. break;
  573. if (pin_sb_for_writeback(wbc, inode, &pin_sb)) {
  574. requeue_io(inode);
  575. continue;
  576. }
  577. BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
  578. __iget(inode);
  579. pages_skipped = wbc->pages_skipped;
  580. writeback_single_inode(inode, wbc);
  581. if (wbc->pages_skipped != pages_skipped) {
  582. /*
  583. * writeback is not making progress due to locked
  584. * buffers. Skip this inode for now.
  585. */
  586. redirty_tail(inode);
  587. }
  588. spin_unlock(&inode_lock);
  589. iput(inode);
  590. cond_resched();
  591. spin_lock(&inode_lock);
  592. if (wbc->nr_to_write <= 0) {
  593. wbc->more_io = 1;
  594. break;
  595. }
  596. if (!list_empty(&wb->b_more_io))
  597. wbc->more_io = 1;
  598. }
  599. unpin_sb_for_writeback(&pin_sb);
  600. spin_unlock(&inode_lock);
  601. /* Leave any unwritten inodes on b_io */
  602. }
  603. void writeback_inodes_wbc(struct writeback_control *wbc)
  604. {
  605. struct backing_dev_info *bdi = wbc->bdi;
  606. writeback_inodes_wb(&bdi->wb, wbc);
  607. }
  608. /*
  609. * The maximum number of pages to writeout in a single bdi flush/kupdate
  610. * operation. We do this so we don't hold I_SYNC against an inode for
  611. * enormous amounts of time, which would block a userspace task which has
  612. * been forced to throttle against that inode. Also, the code reevaluates
  613. * the dirty each time it has written this many pages.
  614. */
  615. #define MAX_WRITEBACK_PAGES 1024
  616. static inline bool over_bground_thresh(void)
  617. {
  618. unsigned long background_thresh, dirty_thresh;
  619. get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
  620. return (global_page_state(NR_FILE_DIRTY) +
  621. global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
  622. }
  623. /*
  624. * Explicit flushing or periodic writeback of "old" data.
  625. *
  626. * Define "old": the first time one of an inode's pages is dirtied, we mark the
  627. * dirtying-time in the inode's address_space. So this periodic writeback code
  628. * just walks the superblock inode list, writing back any inodes which are
  629. * older than a specific point in time.
  630. *
  631. * Try to run once per dirty_writeback_interval. But if a writeback event
  632. * takes longer than a dirty_writeback_interval interval, then leave a
  633. * one-second gap.
  634. *
  635. * older_than_this takes precedence over nr_to_write. So we'll only write back
  636. * all dirty pages if they are all attached to "old" mappings.
  637. */
  638. static long wb_writeback(struct bdi_writeback *wb,
  639. struct wb_writeback_args *args)
  640. {
  641. struct writeback_control wbc = {
  642. .bdi = wb->bdi,
  643. .sb = args->sb,
  644. .sync_mode = args->sync_mode,
  645. .older_than_this = NULL,
  646. .for_kupdate = args->for_kupdate,
  647. .for_background = args->for_background,
  648. .range_cyclic = args->range_cyclic,
  649. };
  650. unsigned long oldest_jif;
  651. long wrote = 0;
  652. struct inode *inode;
  653. if (wbc.for_kupdate) {
  654. wbc.older_than_this = &oldest_jif;
  655. oldest_jif = jiffies -
  656. msecs_to_jiffies(dirty_expire_interval * 10);
  657. }
  658. if (!wbc.range_cyclic) {
  659. wbc.range_start = 0;
  660. wbc.range_end = LLONG_MAX;
  661. }
  662. for (;;) {
  663. /*
  664. * Stop writeback when nr_pages has been consumed
  665. */
  666. if (args->nr_pages <= 0)
  667. break;
  668. /*
  669. * For background writeout, stop when we are below the
  670. * background dirty threshold
  671. */
  672. if (args->for_background && !over_bground_thresh())
  673. break;
  674. wbc.more_io = 0;
  675. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  676. wbc.pages_skipped = 0;
  677. writeback_inodes_wb(wb, &wbc);
  678. args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  679. wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  680. /*
  681. * If we consumed everything, see if we have more
  682. */
  683. if (wbc.nr_to_write <= 0)
  684. continue;
  685. /*
  686. * Didn't write everything and we don't have more IO, bail
  687. */
  688. if (!wbc.more_io)
  689. break;
  690. /*
  691. * Did we write something? Try for more
  692. */
  693. if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
  694. continue;
  695. /*
  696. * Nothing written. Wait for some inode to
  697. * become available for writeback. Otherwise
  698. * we'll just busyloop.
  699. */
  700. spin_lock(&inode_lock);
  701. if (!list_empty(&wb->b_more_io)) {
  702. inode = list_entry(wb->b_more_io.prev,
  703. struct inode, i_list);
  704. inode_wait_for_writeback(inode);
  705. }
  706. spin_unlock(&inode_lock);
  707. }
  708. return wrote;
  709. }
  710. /*
  711. * Return the next bdi_work struct that hasn't been processed by this
  712. * wb thread yet. ->seen is initially set for each thread that exists
  713. * for this device, when a thread first notices a piece of work it
  714. * clears its bit. Depending on writeback type, the thread will notify
  715. * completion on either receiving the work (WB_SYNC_NONE) or after
  716. * it is done (WB_SYNC_ALL).
  717. */
  718. static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
  719. struct bdi_writeback *wb)
  720. {
  721. struct bdi_work *work, *ret = NULL;
  722. rcu_read_lock();
  723. list_for_each_entry_rcu(work, &bdi->work_list, list) {
  724. if (!test_bit(wb->nr, &work->seen))
  725. continue;
  726. clear_bit(wb->nr, &work->seen);
  727. ret = work;
  728. break;
  729. }
  730. rcu_read_unlock();
  731. return ret;
  732. }
  733. static long wb_check_old_data_flush(struct bdi_writeback *wb)
  734. {
  735. unsigned long expired;
  736. long nr_pages;
  737. expired = wb->last_old_flush +
  738. msecs_to_jiffies(dirty_writeback_interval * 10);
  739. if (time_before(jiffies, expired))
  740. return 0;
  741. wb->last_old_flush = jiffies;
  742. nr_pages = global_page_state(NR_FILE_DIRTY) +
  743. global_page_state(NR_UNSTABLE_NFS) +
  744. (inodes_stat.nr_inodes - inodes_stat.nr_unused);
  745. if (nr_pages) {
  746. struct wb_writeback_args args = {
  747. .nr_pages = nr_pages,
  748. .sync_mode = WB_SYNC_NONE,
  749. .for_kupdate = 1,
  750. .range_cyclic = 1,
  751. };
  752. return wb_writeback(wb, &args);
  753. }
  754. return 0;
  755. }
  756. /*
  757. * Retrieve work items and do the writeback they describe
  758. */
  759. long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
  760. {
  761. struct backing_dev_info *bdi = wb->bdi;
  762. struct bdi_work *work;
  763. long wrote = 0;
  764. while ((work = get_next_work_item(bdi, wb)) != NULL) {
  765. struct wb_writeback_args args = work->args;
  766. /*
  767. * Override sync mode, in case we must wait for completion
  768. */
  769. if (force_wait)
  770. work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
  771. /*
  772. * If this isn't a data integrity operation, just notify
  773. * that we have seen this work and we are now starting it.
  774. */
  775. if (args.sync_mode == WB_SYNC_NONE)
  776. wb_clear_pending(wb, work);
  777. wrote += wb_writeback(wb, &args);
  778. /*
  779. * This is a data integrity writeback, so only do the
  780. * notification when we have completed the work.
  781. */
  782. if (args.sync_mode == WB_SYNC_ALL)
  783. wb_clear_pending(wb, work);
  784. }
  785. /*
  786. * Check for periodic writeback, kupdated() style
  787. */
  788. wrote += wb_check_old_data_flush(wb);
  789. return wrote;
  790. }
  791. /*
  792. * Handle writeback of dirty data for the device backed by this bdi. Also
  793. * wakes up periodically and does kupdated style flushing.
  794. */
  795. int bdi_writeback_task(struct bdi_writeback *wb)
  796. {
  797. unsigned long last_active = jiffies;
  798. unsigned long wait_jiffies = -1UL;
  799. long pages_written;
  800. while (!kthread_should_stop()) {
  801. pages_written = wb_do_writeback(wb, 0);
  802. if (pages_written)
  803. last_active = jiffies;
  804. else if (wait_jiffies != -1UL) {
  805. unsigned long max_idle;
  806. /*
  807. * Longest period of inactivity that we tolerate. If we
  808. * see dirty data again later, the task will get
  809. * recreated automatically.
  810. */
  811. max_idle = max(5UL * 60 * HZ, wait_jiffies);
  812. if (time_after(jiffies, max_idle + last_active))
  813. break;
  814. }
  815. wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
  816. schedule_timeout_interruptible(wait_jiffies);
  817. try_to_freeze();
  818. }
  819. return 0;
  820. }
  821. /*
  822. * Schedule writeback for all backing devices. This does WB_SYNC_NONE
  823. * writeback, for integrity writeback see bdi_sync_writeback().
  824. */
  825. static void bdi_writeback_all(struct super_block *sb, long nr_pages)
  826. {
  827. struct wb_writeback_args args = {
  828. .sb = sb,
  829. .nr_pages = nr_pages,
  830. .sync_mode = WB_SYNC_NONE,
  831. };
  832. struct backing_dev_info *bdi;
  833. rcu_read_lock();
  834. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
  835. if (!bdi_has_dirty_io(bdi))
  836. continue;
  837. bdi_alloc_queue_work(bdi, &args);
  838. }
  839. rcu_read_unlock();
  840. }
  841. /*
  842. * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
  843. * the whole world.
  844. */
  845. void wakeup_flusher_threads(long nr_pages)
  846. {
  847. if (nr_pages == 0)
  848. nr_pages = global_page_state(NR_FILE_DIRTY) +
  849. global_page_state(NR_UNSTABLE_NFS);
  850. bdi_writeback_all(NULL, nr_pages);
  851. }
  852. static noinline void block_dump___mark_inode_dirty(struct inode *inode)
  853. {
  854. if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
  855. struct dentry *dentry;
  856. const char *name = "?";
  857. dentry = d_find_alias(inode);
  858. if (dentry) {
  859. spin_lock(&dentry->d_lock);
  860. name = (const char *) dentry->d_name.name;
  861. }
  862. printk(KERN_DEBUG
  863. "%s(%d): dirtied inode %lu (%s) on %s\n",
  864. current->comm, task_pid_nr(current), inode->i_ino,
  865. name, inode->i_sb->s_id);
  866. if (dentry) {
  867. spin_unlock(&dentry->d_lock);
  868. dput(dentry);
  869. }
  870. }
  871. }
  872. /**
  873. * __mark_inode_dirty - internal function
  874. * @inode: inode to mark
  875. * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
  876. * Mark an inode as dirty. Callers should use mark_inode_dirty or
  877. * mark_inode_dirty_sync.
  878. *
  879. * Put the inode on the super block's dirty list.
  880. *
  881. * CAREFUL! We mark it dirty unconditionally, but move it onto the
  882. * dirty list only if it is hashed or if it refers to a blockdev.
  883. * If it was not hashed, it will never be added to the dirty list
  884. * even if it is later hashed, as it will have been marked dirty already.
  885. *
  886. * In short, make sure you hash any inodes _before_ you start marking
  887. * them dirty.
  888. *
  889. * This function *must* be atomic for the I_DIRTY_PAGES case -
  890. * set_page_dirty() is called under spinlock in several places.
  891. *
  892. * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
  893. * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
  894. * the kernel-internal blockdev inode represents the dirtying time of the
  895. * blockdev's pages. This is why for I_DIRTY_PAGES we always use
  896. * page->mapping->host, so the page-dirtying time is recorded in the internal
  897. * blockdev inode.
  898. */
  899. void __mark_inode_dirty(struct inode *inode, int flags)
  900. {
  901. struct super_block *sb = inode->i_sb;
  902. /*
  903. * Don't do this for I_DIRTY_PAGES - that doesn't actually
  904. * dirty the inode itself
  905. */
  906. if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
  907. if (sb->s_op->dirty_inode)
  908. sb->s_op->dirty_inode(inode);
  909. }
  910. /*
  911. * make sure that changes are seen by all cpus before we test i_state
  912. * -- mikulas
  913. */
  914. smp_mb();
  915. /* avoid the locking if we can */
  916. if ((inode->i_state & flags) == flags)
  917. return;
  918. if (unlikely(block_dump))
  919. block_dump___mark_inode_dirty(inode);
  920. spin_lock(&inode_lock);
  921. if ((inode->i_state & flags) != flags) {
  922. const int was_dirty = inode->i_state & I_DIRTY;
  923. inode->i_state |= flags;
  924. /*
  925. * If the inode is being synced, just update its dirty state.
  926. * The unlocker will place the inode on the appropriate
  927. * superblock list, based upon its state.
  928. */
  929. if (inode->i_state & I_SYNC)
  930. goto out;
  931. /*
  932. * Only add valid (hashed) inodes to the superblock's
  933. * dirty list. Add blockdev inodes as well.
  934. */
  935. if (!S_ISBLK(inode->i_mode)) {
  936. if (hlist_unhashed(&inode->i_hash))
  937. goto out;
  938. }
  939. if (inode->i_state & (I_FREEING|I_CLEAR))
  940. goto out;
  941. /*
  942. * If the inode was already on b_dirty/b_io/b_more_io, don't
  943. * reposition it (that would break b_dirty time-ordering).
  944. */
  945. if (!was_dirty) {
  946. struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
  947. struct backing_dev_info *bdi = wb->bdi;
  948. if (bdi_cap_writeback_dirty(bdi) &&
  949. !test_bit(BDI_registered, &bdi->state)) {
  950. WARN_ON(1);
  951. printk(KERN_ERR "bdi-%s not registered\n",
  952. bdi->name);
  953. }
  954. inode->dirtied_when = jiffies;
  955. list_move(&inode->i_list, &wb->b_dirty);
  956. }
  957. }
  958. out:
  959. spin_unlock(&inode_lock);
  960. }
  961. EXPORT_SYMBOL(__mark_inode_dirty);
  962. /*
  963. * Write out a superblock's list of dirty inodes. A wait will be performed
  964. * upon no inodes, all inodes or the final one, depending upon sync_mode.
  965. *
  966. * If older_than_this is non-NULL, then only write out inodes which
  967. * had their first dirtying at a time earlier than *older_than_this.
  968. *
  969. * If `bdi' is non-zero then we're being asked to writeback a specific queue.
  970. * This function assumes that the blockdev superblock's inodes are backed by
  971. * a variety of queues, so all inodes are searched. For other superblocks,
  972. * assume that all inodes are backed by the same queue.
  973. *
  974. * The inodes to be written are parked on bdi->b_io. They are moved back onto
  975. * bdi->b_dirty as they are selected for writing. This way, none can be missed
  976. * on the writer throttling path, and we get decent balancing between many
  977. * throttled threads: we don't want them all piling up on inode_sync_wait.
  978. */
  979. static void wait_sb_inodes(struct super_block *sb)
  980. {
  981. struct inode *inode, *old_inode = NULL;
  982. /*
  983. * We need to be protected against the filesystem going from
  984. * r/o to r/w or vice versa.
  985. */
  986. WARN_ON(!rwsem_is_locked(&sb->s_umount));
  987. spin_lock(&inode_lock);
  988. /*
  989. * Data integrity sync. Must wait for all pages under writeback,
  990. * because there may have been pages dirtied before our sync
  991. * call, but which had writeout started before we write it out.
  992. * In which case, the inode may not be on the dirty list, but
  993. * we still have to wait for that writeout.
  994. */
  995. list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
  996. struct address_space *mapping;
  997. if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
  998. continue;
  999. mapping = inode->i_mapping;
  1000. if (mapping->nrpages == 0)
  1001. continue;
  1002. __iget(inode);
  1003. spin_unlock(&inode_lock);
  1004. /*
  1005. * We hold a reference to 'inode' so it couldn't have
  1006. * been removed from s_inodes list while we dropped the
  1007. * inode_lock. We cannot iput the inode now as we can
  1008. * be holding the last reference and we cannot iput it
  1009. * under inode_lock. So we keep the reference and iput
  1010. * it later.
  1011. */
  1012. iput(old_inode);
  1013. old_inode = inode;
  1014. filemap_fdatawait(mapping);
  1015. cond_resched();
  1016. spin_lock(&inode_lock);
  1017. }
  1018. spin_unlock(&inode_lock);
  1019. iput(old_inode);
  1020. }
  1021. /**
  1022. * writeback_inodes_sb - writeback dirty inodes from given super_block
  1023. * @sb: the superblock
  1024. *
  1025. * Start writeback on some inodes on this super_block. No guarantees are made
  1026. * on how many (if any) will be written, and this function does not wait
  1027. * for IO completion of submitted IO. The number of pages submitted is
  1028. * returned.
  1029. */
  1030. void writeback_inodes_sb(struct super_block *sb)
  1031. {
  1032. unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
  1033. unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
  1034. long nr_to_write;
  1035. nr_to_write = nr_dirty + nr_unstable +
  1036. (inodes_stat.nr_inodes - inodes_stat.nr_unused);
  1037. bdi_start_writeback(sb->s_bdi, sb, nr_to_write);
  1038. }
  1039. EXPORT_SYMBOL(writeback_inodes_sb);
  1040. /**
  1041. * sync_inodes_sb - sync sb inode pages
  1042. * @sb: the superblock
  1043. *
  1044. * This function writes and waits on any dirty inode belonging to this
  1045. * super_block. The number of pages synced is returned.
  1046. */
  1047. void sync_inodes_sb(struct super_block *sb)
  1048. {
  1049. bdi_sync_writeback(sb->s_bdi, sb);
  1050. wait_sb_inodes(sb);
  1051. }
  1052. EXPORT_SYMBOL(sync_inodes_sb);
  1053. /**
  1054. * write_inode_now - write an inode to disk
  1055. * @inode: inode to write to disk
  1056. * @sync: whether the write should be synchronous or not
  1057. *
  1058. * This function commits an inode to disk immediately if it is dirty. This is
  1059. * primarily needed by knfsd.
  1060. *
  1061. * The caller must either have a ref on the inode or must have set I_WILL_FREE.
  1062. */
  1063. int write_inode_now(struct inode *inode, int sync)
  1064. {
  1065. int ret;
  1066. struct writeback_control wbc = {
  1067. .nr_to_write = LONG_MAX,
  1068. .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
  1069. .range_start = 0,
  1070. .range_end = LLONG_MAX,
  1071. };
  1072. if (!mapping_cap_writeback_dirty(inode->i_mapping))
  1073. wbc.nr_to_write = 0;
  1074. might_sleep();
  1075. spin_lock(&inode_lock);
  1076. ret = writeback_single_inode(inode, &wbc);
  1077. spin_unlock(&inode_lock);
  1078. if (sync)
  1079. inode_sync_wait(inode);
  1080. return ret;
  1081. }
  1082. EXPORT_SYMBOL(write_inode_now);
  1083. /**
  1084. * sync_inode - write an inode and its pages to disk.
  1085. * @inode: the inode to sync
  1086. * @wbc: controls the writeback mode
  1087. *
  1088. * sync_inode() will write an inode and its pages to disk. It will also
  1089. * correctly update the inode on its superblock's dirty inode lists and will
  1090. * update inode->i_state.
  1091. *
  1092. * The caller must have a ref on the inode.
  1093. */
  1094. int sync_inode(struct inode *inode, struct writeback_control *wbc)
  1095. {
  1096. int ret;
  1097. spin_lock(&inode_lock);
  1098. ret = writeback_single_inode(inode, wbc);
  1099. spin_unlock(&inode_lock);
  1100. return ret;
  1101. }
  1102. EXPORT_SYMBOL(sync_inode);