dispc.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091
  1. /*
  2. * linux/drivers/video/omap2/dss/dispc.c
  3. *
  4. * Copyright (C) 2009 Nokia Corporation
  5. * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
  6. *
  7. * Some code and ideas taken from drivers/video/omap/ driver
  8. * by Imre Deak.
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License version 2 as published by
  12. * the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but WITHOUT
  15. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  17. * more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along with
  20. * this program. If not, see <http://www.gnu.org/licenses/>.
  21. */
  22. #define DSS_SUBSYS_NAME "DISPC"
  23. #include <linux/kernel.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/clk.h>
  27. #include <linux/io.h>
  28. #include <linux/jiffies.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/delay.h>
  31. #include <linux/workqueue.h>
  32. #include <plat/sram.h>
  33. #include <plat/clock.h>
  34. #include <plat/display.h>
  35. #include "dss.h"
  36. /* DISPC */
  37. #define DISPC_BASE 0x48050400
  38. #define DISPC_SZ_REGS SZ_1K
  39. struct dispc_reg { u16 idx; };
  40. #define DISPC_REG(idx) ((const struct dispc_reg) { idx })
  41. /* DISPC common */
  42. #define DISPC_REVISION DISPC_REG(0x0000)
  43. #define DISPC_SYSCONFIG DISPC_REG(0x0010)
  44. #define DISPC_SYSSTATUS DISPC_REG(0x0014)
  45. #define DISPC_IRQSTATUS DISPC_REG(0x0018)
  46. #define DISPC_IRQENABLE DISPC_REG(0x001C)
  47. #define DISPC_CONTROL DISPC_REG(0x0040)
  48. #define DISPC_CONFIG DISPC_REG(0x0044)
  49. #define DISPC_CAPABLE DISPC_REG(0x0048)
  50. #define DISPC_DEFAULT_COLOR0 DISPC_REG(0x004C)
  51. #define DISPC_DEFAULT_COLOR1 DISPC_REG(0x0050)
  52. #define DISPC_TRANS_COLOR0 DISPC_REG(0x0054)
  53. #define DISPC_TRANS_COLOR1 DISPC_REG(0x0058)
  54. #define DISPC_LINE_STATUS DISPC_REG(0x005C)
  55. #define DISPC_LINE_NUMBER DISPC_REG(0x0060)
  56. #define DISPC_TIMING_H DISPC_REG(0x0064)
  57. #define DISPC_TIMING_V DISPC_REG(0x0068)
  58. #define DISPC_POL_FREQ DISPC_REG(0x006C)
  59. #define DISPC_DIVISOR DISPC_REG(0x0070)
  60. #define DISPC_GLOBAL_ALPHA DISPC_REG(0x0074)
  61. #define DISPC_SIZE_DIG DISPC_REG(0x0078)
  62. #define DISPC_SIZE_LCD DISPC_REG(0x007C)
  63. /* DISPC GFX plane */
  64. #define DISPC_GFX_BA0 DISPC_REG(0x0080)
  65. #define DISPC_GFX_BA1 DISPC_REG(0x0084)
  66. #define DISPC_GFX_POSITION DISPC_REG(0x0088)
  67. #define DISPC_GFX_SIZE DISPC_REG(0x008C)
  68. #define DISPC_GFX_ATTRIBUTES DISPC_REG(0x00A0)
  69. #define DISPC_GFX_FIFO_THRESHOLD DISPC_REG(0x00A4)
  70. #define DISPC_GFX_FIFO_SIZE_STATUS DISPC_REG(0x00A8)
  71. #define DISPC_GFX_ROW_INC DISPC_REG(0x00AC)
  72. #define DISPC_GFX_PIXEL_INC DISPC_REG(0x00B0)
  73. #define DISPC_GFX_WINDOW_SKIP DISPC_REG(0x00B4)
  74. #define DISPC_GFX_TABLE_BA DISPC_REG(0x00B8)
  75. #define DISPC_DATA_CYCLE1 DISPC_REG(0x01D4)
  76. #define DISPC_DATA_CYCLE2 DISPC_REG(0x01D8)
  77. #define DISPC_DATA_CYCLE3 DISPC_REG(0x01DC)
  78. #define DISPC_CPR_COEF_R DISPC_REG(0x0220)
  79. #define DISPC_CPR_COEF_G DISPC_REG(0x0224)
  80. #define DISPC_CPR_COEF_B DISPC_REG(0x0228)
  81. #define DISPC_GFX_PRELOAD DISPC_REG(0x022C)
  82. /* DISPC Video plane, n = 0 for VID1 and n = 1 for VID2 */
  83. #define DISPC_VID_REG(n, idx) DISPC_REG(0x00BC + (n)*0x90 + idx)
  84. #define DISPC_VID_BA0(n) DISPC_VID_REG(n, 0x0000)
  85. #define DISPC_VID_BA1(n) DISPC_VID_REG(n, 0x0004)
  86. #define DISPC_VID_POSITION(n) DISPC_VID_REG(n, 0x0008)
  87. #define DISPC_VID_SIZE(n) DISPC_VID_REG(n, 0x000C)
  88. #define DISPC_VID_ATTRIBUTES(n) DISPC_VID_REG(n, 0x0010)
  89. #define DISPC_VID_FIFO_THRESHOLD(n) DISPC_VID_REG(n, 0x0014)
  90. #define DISPC_VID_FIFO_SIZE_STATUS(n) DISPC_VID_REG(n, 0x0018)
  91. #define DISPC_VID_ROW_INC(n) DISPC_VID_REG(n, 0x001C)
  92. #define DISPC_VID_PIXEL_INC(n) DISPC_VID_REG(n, 0x0020)
  93. #define DISPC_VID_FIR(n) DISPC_VID_REG(n, 0x0024)
  94. #define DISPC_VID_PICTURE_SIZE(n) DISPC_VID_REG(n, 0x0028)
  95. #define DISPC_VID_ACCU0(n) DISPC_VID_REG(n, 0x002C)
  96. #define DISPC_VID_ACCU1(n) DISPC_VID_REG(n, 0x0030)
  97. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  98. #define DISPC_VID_FIR_COEF_H(n, i) DISPC_REG(0x00F0 + (n)*0x90 + (i)*0x8)
  99. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  100. #define DISPC_VID_FIR_COEF_HV(n, i) DISPC_REG(0x00F4 + (n)*0x90 + (i)*0x8)
  101. /* coef index i = {0, 1, 2, 3, 4} */
  102. #define DISPC_VID_CONV_COEF(n, i) DISPC_REG(0x0130 + (n)*0x90 + (i)*0x4)
  103. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  104. #define DISPC_VID_FIR_COEF_V(n, i) DISPC_REG(0x01E0 + (n)*0x20 + (i)*0x4)
  105. #define DISPC_VID_PRELOAD(n) DISPC_REG(0x230 + (n)*0x04)
  106. #define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
  107. DISPC_IRQ_OCP_ERR | \
  108. DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
  109. DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
  110. DISPC_IRQ_SYNC_LOST | \
  111. DISPC_IRQ_SYNC_LOST_DIGIT)
  112. #define DISPC_MAX_NR_ISRS 8
  113. struct omap_dispc_isr_data {
  114. omap_dispc_isr_t isr;
  115. void *arg;
  116. u32 mask;
  117. };
  118. #define REG_GET(idx, start, end) \
  119. FLD_GET(dispc_read_reg(idx), start, end)
  120. #define REG_FLD_MOD(idx, val, start, end) \
  121. dispc_write_reg(idx, FLD_MOD(dispc_read_reg(idx), val, start, end))
  122. static const struct dispc_reg dispc_reg_att[] = { DISPC_GFX_ATTRIBUTES,
  123. DISPC_VID_ATTRIBUTES(0),
  124. DISPC_VID_ATTRIBUTES(1) };
  125. static struct {
  126. void __iomem *base;
  127. u32 fifo_size[3];
  128. spinlock_t irq_lock;
  129. u32 irq_error_mask;
  130. struct omap_dispc_isr_data registered_isr[DISPC_MAX_NR_ISRS];
  131. u32 error_irqs;
  132. struct work_struct error_work;
  133. u32 ctx[DISPC_SZ_REGS / sizeof(u32)];
  134. } dispc;
  135. static void _omap_dispc_set_irqs(void);
  136. static inline void dispc_write_reg(const struct dispc_reg idx, u32 val)
  137. {
  138. __raw_writel(val, dispc.base + idx.idx);
  139. }
  140. static inline u32 dispc_read_reg(const struct dispc_reg idx)
  141. {
  142. return __raw_readl(dispc.base + idx.idx);
  143. }
  144. #define SR(reg) \
  145. dispc.ctx[(DISPC_##reg).idx / sizeof(u32)] = dispc_read_reg(DISPC_##reg)
  146. #define RR(reg) \
  147. dispc_write_reg(DISPC_##reg, dispc.ctx[(DISPC_##reg).idx / sizeof(u32)])
  148. void dispc_save_context(void)
  149. {
  150. if (cpu_is_omap24xx())
  151. return;
  152. SR(SYSCONFIG);
  153. SR(IRQENABLE);
  154. SR(CONTROL);
  155. SR(CONFIG);
  156. SR(DEFAULT_COLOR0);
  157. SR(DEFAULT_COLOR1);
  158. SR(TRANS_COLOR0);
  159. SR(TRANS_COLOR1);
  160. SR(LINE_NUMBER);
  161. SR(TIMING_H);
  162. SR(TIMING_V);
  163. SR(POL_FREQ);
  164. SR(DIVISOR);
  165. SR(GLOBAL_ALPHA);
  166. SR(SIZE_DIG);
  167. SR(SIZE_LCD);
  168. SR(GFX_BA0);
  169. SR(GFX_BA1);
  170. SR(GFX_POSITION);
  171. SR(GFX_SIZE);
  172. SR(GFX_ATTRIBUTES);
  173. SR(GFX_FIFO_THRESHOLD);
  174. SR(GFX_ROW_INC);
  175. SR(GFX_PIXEL_INC);
  176. SR(GFX_WINDOW_SKIP);
  177. SR(GFX_TABLE_BA);
  178. SR(DATA_CYCLE1);
  179. SR(DATA_CYCLE2);
  180. SR(DATA_CYCLE3);
  181. SR(CPR_COEF_R);
  182. SR(CPR_COEF_G);
  183. SR(CPR_COEF_B);
  184. SR(GFX_PRELOAD);
  185. /* VID1 */
  186. SR(VID_BA0(0));
  187. SR(VID_BA1(0));
  188. SR(VID_POSITION(0));
  189. SR(VID_SIZE(0));
  190. SR(VID_ATTRIBUTES(0));
  191. SR(VID_FIFO_THRESHOLD(0));
  192. SR(VID_ROW_INC(0));
  193. SR(VID_PIXEL_INC(0));
  194. SR(VID_FIR(0));
  195. SR(VID_PICTURE_SIZE(0));
  196. SR(VID_ACCU0(0));
  197. SR(VID_ACCU1(0));
  198. SR(VID_FIR_COEF_H(0, 0));
  199. SR(VID_FIR_COEF_H(0, 1));
  200. SR(VID_FIR_COEF_H(0, 2));
  201. SR(VID_FIR_COEF_H(0, 3));
  202. SR(VID_FIR_COEF_H(0, 4));
  203. SR(VID_FIR_COEF_H(0, 5));
  204. SR(VID_FIR_COEF_H(0, 6));
  205. SR(VID_FIR_COEF_H(0, 7));
  206. SR(VID_FIR_COEF_HV(0, 0));
  207. SR(VID_FIR_COEF_HV(0, 1));
  208. SR(VID_FIR_COEF_HV(0, 2));
  209. SR(VID_FIR_COEF_HV(0, 3));
  210. SR(VID_FIR_COEF_HV(0, 4));
  211. SR(VID_FIR_COEF_HV(0, 5));
  212. SR(VID_FIR_COEF_HV(0, 6));
  213. SR(VID_FIR_COEF_HV(0, 7));
  214. SR(VID_CONV_COEF(0, 0));
  215. SR(VID_CONV_COEF(0, 1));
  216. SR(VID_CONV_COEF(0, 2));
  217. SR(VID_CONV_COEF(0, 3));
  218. SR(VID_CONV_COEF(0, 4));
  219. SR(VID_FIR_COEF_V(0, 0));
  220. SR(VID_FIR_COEF_V(0, 1));
  221. SR(VID_FIR_COEF_V(0, 2));
  222. SR(VID_FIR_COEF_V(0, 3));
  223. SR(VID_FIR_COEF_V(0, 4));
  224. SR(VID_FIR_COEF_V(0, 5));
  225. SR(VID_FIR_COEF_V(0, 6));
  226. SR(VID_FIR_COEF_V(0, 7));
  227. SR(VID_PRELOAD(0));
  228. /* VID2 */
  229. SR(VID_BA0(1));
  230. SR(VID_BA1(1));
  231. SR(VID_POSITION(1));
  232. SR(VID_SIZE(1));
  233. SR(VID_ATTRIBUTES(1));
  234. SR(VID_FIFO_THRESHOLD(1));
  235. SR(VID_ROW_INC(1));
  236. SR(VID_PIXEL_INC(1));
  237. SR(VID_FIR(1));
  238. SR(VID_PICTURE_SIZE(1));
  239. SR(VID_ACCU0(1));
  240. SR(VID_ACCU1(1));
  241. SR(VID_FIR_COEF_H(1, 0));
  242. SR(VID_FIR_COEF_H(1, 1));
  243. SR(VID_FIR_COEF_H(1, 2));
  244. SR(VID_FIR_COEF_H(1, 3));
  245. SR(VID_FIR_COEF_H(1, 4));
  246. SR(VID_FIR_COEF_H(1, 5));
  247. SR(VID_FIR_COEF_H(1, 6));
  248. SR(VID_FIR_COEF_H(1, 7));
  249. SR(VID_FIR_COEF_HV(1, 0));
  250. SR(VID_FIR_COEF_HV(1, 1));
  251. SR(VID_FIR_COEF_HV(1, 2));
  252. SR(VID_FIR_COEF_HV(1, 3));
  253. SR(VID_FIR_COEF_HV(1, 4));
  254. SR(VID_FIR_COEF_HV(1, 5));
  255. SR(VID_FIR_COEF_HV(1, 6));
  256. SR(VID_FIR_COEF_HV(1, 7));
  257. SR(VID_CONV_COEF(1, 0));
  258. SR(VID_CONV_COEF(1, 1));
  259. SR(VID_CONV_COEF(1, 2));
  260. SR(VID_CONV_COEF(1, 3));
  261. SR(VID_CONV_COEF(1, 4));
  262. SR(VID_FIR_COEF_V(1, 0));
  263. SR(VID_FIR_COEF_V(1, 1));
  264. SR(VID_FIR_COEF_V(1, 2));
  265. SR(VID_FIR_COEF_V(1, 3));
  266. SR(VID_FIR_COEF_V(1, 4));
  267. SR(VID_FIR_COEF_V(1, 5));
  268. SR(VID_FIR_COEF_V(1, 6));
  269. SR(VID_FIR_COEF_V(1, 7));
  270. SR(VID_PRELOAD(1));
  271. }
  272. void dispc_restore_context(void)
  273. {
  274. RR(SYSCONFIG);
  275. RR(IRQENABLE);
  276. /*RR(CONTROL);*/
  277. RR(CONFIG);
  278. RR(DEFAULT_COLOR0);
  279. RR(DEFAULT_COLOR1);
  280. RR(TRANS_COLOR0);
  281. RR(TRANS_COLOR1);
  282. RR(LINE_NUMBER);
  283. RR(TIMING_H);
  284. RR(TIMING_V);
  285. RR(POL_FREQ);
  286. RR(DIVISOR);
  287. RR(GLOBAL_ALPHA);
  288. RR(SIZE_DIG);
  289. RR(SIZE_LCD);
  290. RR(GFX_BA0);
  291. RR(GFX_BA1);
  292. RR(GFX_POSITION);
  293. RR(GFX_SIZE);
  294. RR(GFX_ATTRIBUTES);
  295. RR(GFX_FIFO_THRESHOLD);
  296. RR(GFX_ROW_INC);
  297. RR(GFX_PIXEL_INC);
  298. RR(GFX_WINDOW_SKIP);
  299. RR(GFX_TABLE_BA);
  300. RR(DATA_CYCLE1);
  301. RR(DATA_CYCLE2);
  302. RR(DATA_CYCLE3);
  303. RR(CPR_COEF_R);
  304. RR(CPR_COEF_G);
  305. RR(CPR_COEF_B);
  306. RR(GFX_PRELOAD);
  307. /* VID1 */
  308. RR(VID_BA0(0));
  309. RR(VID_BA1(0));
  310. RR(VID_POSITION(0));
  311. RR(VID_SIZE(0));
  312. RR(VID_ATTRIBUTES(0));
  313. RR(VID_FIFO_THRESHOLD(0));
  314. RR(VID_ROW_INC(0));
  315. RR(VID_PIXEL_INC(0));
  316. RR(VID_FIR(0));
  317. RR(VID_PICTURE_SIZE(0));
  318. RR(VID_ACCU0(0));
  319. RR(VID_ACCU1(0));
  320. RR(VID_FIR_COEF_H(0, 0));
  321. RR(VID_FIR_COEF_H(0, 1));
  322. RR(VID_FIR_COEF_H(0, 2));
  323. RR(VID_FIR_COEF_H(0, 3));
  324. RR(VID_FIR_COEF_H(0, 4));
  325. RR(VID_FIR_COEF_H(0, 5));
  326. RR(VID_FIR_COEF_H(0, 6));
  327. RR(VID_FIR_COEF_H(0, 7));
  328. RR(VID_FIR_COEF_HV(0, 0));
  329. RR(VID_FIR_COEF_HV(0, 1));
  330. RR(VID_FIR_COEF_HV(0, 2));
  331. RR(VID_FIR_COEF_HV(0, 3));
  332. RR(VID_FIR_COEF_HV(0, 4));
  333. RR(VID_FIR_COEF_HV(0, 5));
  334. RR(VID_FIR_COEF_HV(0, 6));
  335. RR(VID_FIR_COEF_HV(0, 7));
  336. RR(VID_CONV_COEF(0, 0));
  337. RR(VID_CONV_COEF(0, 1));
  338. RR(VID_CONV_COEF(0, 2));
  339. RR(VID_CONV_COEF(0, 3));
  340. RR(VID_CONV_COEF(0, 4));
  341. RR(VID_FIR_COEF_V(0, 0));
  342. RR(VID_FIR_COEF_V(0, 1));
  343. RR(VID_FIR_COEF_V(0, 2));
  344. RR(VID_FIR_COEF_V(0, 3));
  345. RR(VID_FIR_COEF_V(0, 4));
  346. RR(VID_FIR_COEF_V(0, 5));
  347. RR(VID_FIR_COEF_V(0, 6));
  348. RR(VID_FIR_COEF_V(0, 7));
  349. RR(VID_PRELOAD(0));
  350. /* VID2 */
  351. RR(VID_BA0(1));
  352. RR(VID_BA1(1));
  353. RR(VID_POSITION(1));
  354. RR(VID_SIZE(1));
  355. RR(VID_ATTRIBUTES(1));
  356. RR(VID_FIFO_THRESHOLD(1));
  357. RR(VID_ROW_INC(1));
  358. RR(VID_PIXEL_INC(1));
  359. RR(VID_FIR(1));
  360. RR(VID_PICTURE_SIZE(1));
  361. RR(VID_ACCU0(1));
  362. RR(VID_ACCU1(1));
  363. RR(VID_FIR_COEF_H(1, 0));
  364. RR(VID_FIR_COEF_H(1, 1));
  365. RR(VID_FIR_COEF_H(1, 2));
  366. RR(VID_FIR_COEF_H(1, 3));
  367. RR(VID_FIR_COEF_H(1, 4));
  368. RR(VID_FIR_COEF_H(1, 5));
  369. RR(VID_FIR_COEF_H(1, 6));
  370. RR(VID_FIR_COEF_H(1, 7));
  371. RR(VID_FIR_COEF_HV(1, 0));
  372. RR(VID_FIR_COEF_HV(1, 1));
  373. RR(VID_FIR_COEF_HV(1, 2));
  374. RR(VID_FIR_COEF_HV(1, 3));
  375. RR(VID_FIR_COEF_HV(1, 4));
  376. RR(VID_FIR_COEF_HV(1, 5));
  377. RR(VID_FIR_COEF_HV(1, 6));
  378. RR(VID_FIR_COEF_HV(1, 7));
  379. RR(VID_CONV_COEF(1, 0));
  380. RR(VID_CONV_COEF(1, 1));
  381. RR(VID_CONV_COEF(1, 2));
  382. RR(VID_CONV_COEF(1, 3));
  383. RR(VID_CONV_COEF(1, 4));
  384. RR(VID_FIR_COEF_V(1, 0));
  385. RR(VID_FIR_COEF_V(1, 1));
  386. RR(VID_FIR_COEF_V(1, 2));
  387. RR(VID_FIR_COEF_V(1, 3));
  388. RR(VID_FIR_COEF_V(1, 4));
  389. RR(VID_FIR_COEF_V(1, 5));
  390. RR(VID_FIR_COEF_V(1, 6));
  391. RR(VID_FIR_COEF_V(1, 7));
  392. RR(VID_PRELOAD(1));
  393. /* enable last, because LCD & DIGIT enable are here */
  394. RR(CONTROL);
  395. }
  396. #undef SR
  397. #undef RR
  398. static inline void enable_clocks(bool enable)
  399. {
  400. if (enable)
  401. dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
  402. else
  403. dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
  404. }
  405. bool dispc_go_busy(enum omap_channel channel)
  406. {
  407. int bit;
  408. if (channel == OMAP_DSS_CHANNEL_LCD)
  409. bit = 5; /* GOLCD */
  410. else
  411. bit = 6; /* GODIGIT */
  412. return REG_GET(DISPC_CONTROL, bit, bit) == 1;
  413. }
  414. void dispc_go(enum omap_channel channel)
  415. {
  416. int bit;
  417. enable_clocks(1);
  418. if (channel == OMAP_DSS_CHANNEL_LCD)
  419. bit = 0; /* LCDENABLE */
  420. else
  421. bit = 1; /* DIGITALENABLE */
  422. /* if the channel is not enabled, we don't need GO */
  423. if (REG_GET(DISPC_CONTROL, bit, bit) == 0)
  424. goto end;
  425. if (channel == OMAP_DSS_CHANNEL_LCD)
  426. bit = 5; /* GOLCD */
  427. else
  428. bit = 6; /* GODIGIT */
  429. if (REG_GET(DISPC_CONTROL, bit, bit) == 1) {
  430. DSSERR("GO bit not down for channel %d\n", channel);
  431. goto end;
  432. }
  433. DSSDBG("GO %s\n", channel == OMAP_DSS_CHANNEL_LCD ? "LCD" : "DIGIT");
  434. REG_FLD_MOD(DISPC_CONTROL, 1, bit, bit);
  435. end:
  436. enable_clocks(0);
  437. }
  438. static void _dispc_write_firh_reg(enum omap_plane plane, int reg, u32 value)
  439. {
  440. BUG_ON(plane == OMAP_DSS_GFX);
  441. dispc_write_reg(DISPC_VID_FIR_COEF_H(plane-1, reg), value);
  442. }
  443. static void _dispc_write_firhv_reg(enum omap_plane plane, int reg, u32 value)
  444. {
  445. BUG_ON(plane == OMAP_DSS_GFX);
  446. dispc_write_reg(DISPC_VID_FIR_COEF_HV(plane-1, reg), value);
  447. }
  448. static void _dispc_write_firv_reg(enum omap_plane plane, int reg, u32 value)
  449. {
  450. BUG_ON(plane == OMAP_DSS_GFX);
  451. dispc_write_reg(DISPC_VID_FIR_COEF_V(plane-1, reg), value);
  452. }
  453. static void _dispc_set_scale_coef(enum omap_plane plane, int hscaleup,
  454. int vscaleup, int five_taps)
  455. {
  456. /* Coefficients for horizontal up-sampling */
  457. static const u32 coef_hup[8] = {
  458. 0x00800000,
  459. 0x0D7CF800,
  460. 0x1E70F5FF,
  461. 0x335FF5FE,
  462. 0xF74949F7,
  463. 0xF55F33FB,
  464. 0xF5701EFE,
  465. 0xF87C0DFF,
  466. };
  467. /* Coefficients for horizontal down-sampling */
  468. static const u32 coef_hdown[8] = {
  469. 0x24382400,
  470. 0x28371FFE,
  471. 0x2C361BFB,
  472. 0x303516F9,
  473. 0x11343311,
  474. 0x1635300C,
  475. 0x1B362C08,
  476. 0x1F372804,
  477. };
  478. /* Coefficients for horizontal and vertical up-sampling */
  479. static const u32 coef_hvup[2][8] = {
  480. {
  481. 0x00800000,
  482. 0x037B02FF,
  483. 0x0C6F05FE,
  484. 0x205907FB,
  485. 0x00404000,
  486. 0x075920FE,
  487. 0x056F0CFF,
  488. 0x027B0300,
  489. },
  490. {
  491. 0x00800000,
  492. 0x0D7CF8FF,
  493. 0x1E70F5FE,
  494. 0x335FF5FB,
  495. 0xF7404000,
  496. 0xF55F33FE,
  497. 0xF5701EFF,
  498. 0xF87C0D00,
  499. },
  500. };
  501. /* Coefficients for horizontal and vertical down-sampling */
  502. static const u32 coef_hvdown[2][8] = {
  503. {
  504. 0x24382400,
  505. 0x28391F04,
  506. 0x2D381B08,
  507. 0x3237170C,
  508. 0x123737F7,
  509. 0x173732F9,
  510. 0x1B382DFB,
  511. 0x1F3928FE,
  512. },
  513. {
  514. 0x24382400,
  515. 0x28371F04,
  516. 0x2C361B08,
  517. 0x3035160C,
  518. 0x113433F7,
  519. 0x163530F9,
  520. 0x1B362CFB,
  521. 0x1F3728FE,
  522. },
  523. };
  524. /* Coefficients for vertical up-sampling */
  525. static const u32 coef_vup[8] = {
  526. 0x00000000,
  527. 0x0000FF00,
  528. 0x0000FEFF,
  529. 0x0000FBFE,
  530. 0x000000F7,
  531. 0x0000FEFB,
  532. 0x0000FFFE,
  533. 0x000000FF,
  534. };
  535. /* Coefficients for vertical down-sampling */
  536. static const u32 coef_vdown[8] = {
  537. 0x00000000,
  538. 0x000004FE,
  539. 0x000008FB,
  540. 0x00000CF9,
  541. 0x0000F711,
  542. 0x0000F90C,
  543. 0x0000FB08,
  544. 0x0000FE04,
  545. };
  546. const u32 *h_coef;
  547. const u32 *hv_coef;
  548. const u32 *hv_coef_mod;
  549. const u32 *v_coef;
  550. int i;
  551. if (hscaleup)
  552. h_coef = coef_hup;
  553. else
  554. h_coef = coef_hdown;
  555. if (vscaleup) {
  556. hv_coef = coef_hvup[five_taps];
  557. v_coef = coef_vup;
  558. if (hscaleup)
  559. hv_coef_mod = NULL;
  560. else
  561. hv_coef_mod = coef_hvdown[five_taps];
  562. } else {
  563. hv_coef = coef_hvdown[five_taps];
  564. v_coef = coef_vdown;
  565. if (hscaleup)
  566. hv_coef_mod = coef_hvup[five_taps];
  567. else
  568. hv_coef_mod = NULL;
  569. }
  570. for (i = 0; i < 8; i++) {
  571. u32 h, hv;
  572. h = h_coef[i];
  573. hv = hv_coef[i];
  574. if (hv_coef_mod) {
  575. hv &= 0xffffff00;
  576. hv |= (hv_coef_mod[i] & 0xff);
  577. }
  578. _dispc_write_firh_reg(plane, i, h);
  579. _dispc_write_firhv_reg(plane, i, hv);
  580. }
  581. if (!five_taps)
  582. return;
  583. for (i = 0; i < 8; i++) {
  584. u32 v;
  585. v = v_coef[i];
  586. _dispc_write_firv_reg(plane, i, v);
  587. }
  588. }
  589. static void _dispc_setup_color_conv_coef(void)
  590. {
  591. const struct color_conv_coef {
  592. int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
  593. int full_range;
  594. } ctbl_bt601_5 = {
  595. 298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
  596. };
  597. const struct color_conv_coef *ct;
  598. #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
  599. ct = &ctbl_bt601_5;
  600. dispc_write_reg(DISPC_VID_CONV_COEF(0, 0), CVAL(ct->rcr, ct->ry));
  601. dispc_write_reg(DISPC_VID_CONV_COEF(0, 1), CVAL(ct->gy, ct->rcb));
  602. dispc_write_reg(DISPC_VID_CONV_COEF(0, 2), CVAL(ct->gcb, ct->gcr));
  603. dispc_write_reg(DISPC_VID_CONV_COEF(0, 3), CVAL(ct->bcr, ct->by));
  604. dispc_write_reg(DISPC_VID_CONV_COEF(0, 4), CVAL(0, ct->bcb));
  605. dispc_write_reg(DISPC_VID_CONV_COEF(1, 0), CVAL(ct->rcr, ct->ry));
  606. dispc_write_reg(DISPC_VID_CONV_COEF(1, 1), CVAL(ct->gy, ct->rcb));
  607. dispc_write_reg(DISPC_VID_CONV_COEF(1, 2), CVAL(ct->gcb, ct->gcr));
  608. dispc_write_reg(DISPC_VID_CONV_COEF(1, 3), CVAL(ct->bcr, ct->by));
  609. dispc_write_reg(DISPC_VID_CONV_COEF(1, 4), CVAL(0, ct->bcb));
  610. #undef CVAL
  611. REG_FLD_MOD(DISPC_VID_ATTRIBUTES(0), ct->full_range, 11, 11);
  612. REG_FLD_MOD(DISPC_VID_ATTRIBUTES(1), ct->full_range, 11, 11);
  613. }
  614. static void _dispc_set_plane_ba0(enum omap_plane plane, u32 paddr)
  615. {
  616. const struct dispc_reg ba0_reg[] = { DISPC_GFX_BA0,
  617. DISPC_VID_BA0(0),
  618. DISPC_VID_BA0(1) };
  619. dispc_write_reg(ba0_reg[plane], paddr);
  620. }
  621. static void _dispc_set_plane_ba1(enum omap_plane plane, u32 paddr)
  622. {
  623. const struct dispc_reg ba1_reg[] = { DISPC_GFX_BA1,
  624. DISPC_VID_BA1(0),
  625. DISPC_VID_BA1(1) };
  626. dispc_write_reg(ba1_reg[plane], paddr);
  627. }
  628. static void _dispc_set_plane_pos(enum omap_plane plane, int x, int y)
  629. {
  630. const struct dispc_reg pos_reg[] = { DISPC_GFX_POSITION,
  631. DISPC_VID_POSITION(0),
  632. DISPC_VID_POSITION(1) };
  633. u32 val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
  634. dispc_write_reg(pos_reg[plane], val);
  635. }
  636. static void _dispc_set_pic_size(enum omap_plane plane, int width, int height)
  637. {
  638. const struct dispc_reg siz_reg[] = { DISPC_GFX_SIZE,
  639. DISPC_VID_PICTURE_SIZE(0),
  640. DISPC_VID_PICTURE_SIZE(1) };
  641. u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  642. dispc_write_reg(siz_reg[plane], val);
  643. }
  644. static void _dispc_set_vid_size(enum omap_plane plane, int width, int height)
  645. {
  646. u32 val;
  647. const struct dispc_reg vsi_reg[] = { DISPC_VID_SIZE(0),
  648. DISPC_VID_SIZE(1) };
  649. BUG_ON(plane == OMAP_DSS_GFX);
  650. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  651. dispc_write_reg(vsi_reg[plane-1], val);
  652. }
  653. static void _dispc_setup_global_alpha(enum omap_plane plane, u8 global_alpha)
  654. {
  655. BUG_ON(plane == OMAP_DSS_VIDEO1);
  656. if (cpu_is_omap24xx())
  657. return;
  658. if (plane == OMAP_DSS_GFX)
  659. REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, 7, 0);
  660. else if (plane == OMAP_DSS_VIDEO2)
  661. REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, 23, 16);
  662. }
  663. static void _dispc_set_pix_inc(enum omap_plane plane, s32 inc)
  664. {
  665. const struct dispc_reg ri_reg[] = { DISPC_GFX_PIXEL_INC,
  666. DISPC_VID_PIXEL_INC(0),
  667. DISPC_VID_PIXEL_INC(1) };
  668. dispc_write_reg(ri_reg[plane], inc);
  669. }
  670. static void _dispc_set_row_inc(enum omap_plane plane, s32 inc)
  671. {
  672. const struct dispc_reg ri_reg[] = { DISPC_GFX_ROW_INC,
  673. DISPC_VID_ROW_INC(0),
  674. DISPC_VID_ROW_INC(1) };
  675. dispc_write_reg(ri_reg[plane], inc);
  676. }
  677. static void _dispc_set_color_mode(enum omap_plane plane,
  678. enum omap_color_mode color_mode)
  679. {
  680. u32 m = 0;
  681. switch (color_mode) {
  682. case OMAP_DSS_COLOR_CLUT1:
  683. m = 0x0; break;
  684. case OMAP_DSS_COLOR_CLUT2:
  685. m = 0x1; break;
  686. case OMAP_DSS_COLOR_CLUT4:
  687. m = 0x2; break;
  688. case OMAP_DSS_COLOR_CLUT8:
  689. m = 0x3; break;
  690. case OMAP_DSS_COLOR_RGB12U:
  691. m = 0x4; break;
  692. case OMAP_DSS_COLOR_ARGB16:
  693. m = 0x5; break;
  694. case OMAP_DSS_COLOR_RGB16:
  695. m = 0x6; break;
  696. case OMAP_DSS_COLOR_RGB24U:
  697. m = 0x8; break;
  698. case OMAP_DSS_COLOR_RGB24P:
  699. m = 0x9; break;
  700. case OMAP_DSS_COLOR_YUV2:
  701. m = 0xa; break;
  702. case OMAP_DSS_COLOR_UYVY:
  703. m = 0xb; break;
  704. case OMAP_DSS_COLOR_ARGB32:
  705. m = 0xc; break;
  706. case OMAP_DSS_COLOR_RGBA32:
  707. m = 0xd; break;
  708. case OMAP_DSS_COLOR_RGBX32:
  709. m = 0xe; break;
  710. default:
  711. BUG(); break;
  712. }
  713. REG_FLD_MOD(dispc_reg_att[plane], m, 4, 1);
  714. }
  715. static void _dispc_set_channel_out(enum omap_plane plane,
  716. enum omap_channel channel)
  717. {
  718. int shift;
  719. u32 val;
  720. switch (plane) {
  721. case OMAP_DSS_GFX:
  722. shift = 8;
  723. break;
  724. case OMAP_DSS_VIDEO1:
  725. case OMAP_DSS_VIDEO2:
  726. shift = 16;
  727. break;
  728. default:
  729. BUG();
  730. return;
  731. }
  732. val = dispc_read_reg(dispc_reg_att[plane]);
  733. val = FLD_MOD(val, channel, shift, shift);
  734. dispc_write_reg(dispc_reg_att[plane], val);
  735. }
  736. void dispc_set_burst_size(enum omap_plane plane,
  737. enum omap_burst_size burst_size)
  738. {
  739. int shift;
  740. u32 val;
  741. enable_clocks(1);
  742. switch (plane) {
  743. case OMAP_DSS_GFX:
  744. shift = 6;
  745. break;
  746. case OMAP_DSS_VIDEO1:
  747. case OMAP_DSS_VIDEO2:
  748. shift = 14;
  749. break;
  750. default:
  751. BUG();
  752. return;
  753. }
  754. val = dispc_read_reg(dispc_reg_att[plane]);
  755. val = FLD_MOD(val, burst_size, shift+1, shift);
  756. dispc_write_reg(dispc_reg_att[plane], val);
  757. enable_clocks(0);
  758. }
  759. static void _dispc_set_vid_color_conv(enum omap_plane plane, bool enable)
  760. {
  761. u32 val;
  762. BUG_ON(plane == OMAP_DSS_GFX);
  763. val = dispc_read_reg(dispc_reg_att[plane]);
  764. val = FLD_MOD(val, enable, 9, 9);
  765. dispc_write_reg(dispc_reg_att[plane], val);
  766. }
  767. void dispc_enable_replication(enum omap_plane plane, bool enable)
  768. {
  769. int bit;
  770. if (plane == OMAP_DSS_GFX)
  771. bit = 5;
  772. else
  773. bit = 10;
  774. enable_clocks(1);
  775. REG_FLD_MOD(dispc_reg_att[plane], enable, bit, bit);
  776. enable_clocks(0);
  777. }
  778. void dispc_set_lcd_size(u16 width, u16 height)
  779. {
  780. u32 val;
  781. BUG_ON((width > (1 << 11)) || (height > (1 << 11)));
  782. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  783. enable_clocks(1);
  784. dispc_write_reg(DISPC_SIZE_LCD, val);
  785. enable_clocks(0);
  786. }
  787. void dispc_set_digit_size(u16 width, u16 height)
  788. {
  789. u32 val;
  790. BUG_ON((width > (1 << 11)) || (height > (1 << 11)));
  791. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  792. enable_clocks(1);
  793. dispc_write_reg(DISPC_SIZE_DIG, val);
  794. enable_clocks(0);
  795. }
  796. static void dispc_read_plane_fifo_sizes(void)
  797. {
  798. const struct dispc_reg fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
  799. DISPC_VID_FIFO_SIZE_STATUS(0),
  800. DISPC_VID_FIFO_SIZE_STATUS(1) };
  801. u32 size;
  802. int plane;
  803. enable_clocks(1);
  804. for (plane = 0; plane < ARRAY_SIZE(dispc.fifo_size); ++plane) {
  805. if (cpu_is_omap24xx())
  806. size = FLD_GET(dispc_read_reg(fsz_reg[plane]), 8, 0);
  807. else if (cpu_is_omap34xx())
  808. size = FLD_GET(dispc_read_reg(fsz_reg[plane]), 10, 0);
  809. else
  810. BUG();
  811. dispc.fifo_size[plane] = size;
  812. }
  813. enable_clocks(0);
  814. }
  815. u32 dispc_get_plane_fifo_size(enum omap_plane plane)
  816. {
  817. return dispc.fifo_size[plane];
  818. }
  819. void dispc_setup_plane_fifo(enum omap_plane plane, u32 low, u32 high)
  820. {
  821. const struct dispc_reg ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
  822. DISPC_VID_FIFO_THRESHOLD(0),
  823. DISPC_VID_FIFO_THRESHOLD(1) };
  824. enable_clocks(1);
  825. DSSDBG("fifo(%d) low/high old %u/%u, new %u/%u\n",
  826. plane,
  827. REG_GET(ftrs_reg[plane], 11, 0),
  828. REG_GET(ftrs_reg[plane], 27, 16),
  829. low, high);
  830. if (cpu_is_omap24xx())
  831. dispc_write_reg(ftrs_reg[plane],
  832. FLD_VAL(high, 24, 16) | FLD_VAL(low, 8, 0));
  833. else
  834. dispc_write_reg(ftrs_reg[plane],
  835. FLD_VAL(high, 27, 16) | FLD_VAL(low, 11, 0));
  836. enable_clocks(0);
  837. }
  838. void dispc_enable_fifomerge(bool enable)
  839. {
  840. enable_clocks(1);
  841. DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
  842. REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 14, 14);
  843. enable_clocks(0);
  844. }
  845. static void _dispc_set_fir(enum omap_plane plane, int hinc, int vinc)
  846. {
  847. u32 val;
  848. const struct dispc_reg fir_reg[] = { DISPC_VID_FIR(0),
  849. DISPC_VID_FIR(1) };
  850. BUG_ON(plane == OMAP_DSS_GFX);
  851. if (cpu_is_omap24xx())
  852. val = FLD_VAL(vinc, 27, 16) | FLD_VAL(hinc, 11, 0);
  853. else
  854. val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
  855. dispc_write_reg(fir_reg[plane-1], val);
  856. }
  857. static void _dispc_set_vid_accu0(enum omap_plane plane, int haccu, int vaccu)
  858. {
  859. u32 val;
  860. const struct dispc_reg ac0_reg[] = { DISPC_VID_ACCU0(0),
  861. DISPC_VID_ACCU0(1) };
  862. BUG_ON(plane == OMAP_DSS_GFX);
  863. val = FLD_VAL(vaccu, 25, 16) | FLD_VAL(haccu, 9, 0);
  864. dispc_write_reg(ac0_reg[plane-1], val);
  865. }
  866. static void _dispc_set_vid_accu1(enum omap_plane plane, int haccu, int vaccu)
  867. {
  868. u32 val;
  869. const struct dispc_reg ac1_reg[] = { DISPC_VID_ACCU1(0),
  870. DISPC_VID_ACCU1(1) };
  871. BUG_ON(plane == OMAP_DSS_GFX);
  872. val = FLD_VAL(vaccu, 25, 16) | FLD_VAL(haccu, 9, 0);
  873. dispc_write_reg(ac1_reg[plane-1], val);
  874. }
  875. static void _dispc_set_scaling(enum omap_plane plane,
  876. u16 orig_width, u16 orig_height,
  877. u16 out_width, u16 out_height,
  878. bool ilace, bool five_taps,
  879. bool fieldmode)
  880. {
  881. int fir_hinc;
  882. int fir_vinc;
  883. int hscaleup, vscaleup;
  884. int accu0 = 0;
  885. int accu1 = 0;
  886. u32 l;
  887. BUG_ON(plane == OMAP_DSS_GFX);
  888. hscaleup = orig_width <= out_width;
  889. vscaleup = orig_height <= out_height;
  890. _dispc_set_scale_coef(plane, hscaleup, vscaleup, five_taps);
  891. if (!orig_width || orig_width == out_width)
  892. fir_hinc = 0;
  893. else
  894. fir_hinc = 1024 * orig_width / out_width;
  895. if (!orig_height || orig_height == out_height)
  896. fir_vinc = 0;
  897. else
  898. fir_vinc = 1024 * orig_height / out_height;
  899. _dispc_set_fir(plane, fir_hinc, fir_vinc);
  900. l = dispc_read_reg(dispc_reg_att[plane]);
  901. l &= ~((0x0f << 5) | (0x3 << 21));
  902. l |= fir_hinc ? (1 << 5) : 0;
  903. l |= fir_vinc ? (1 << 6) : 0;
  904. l |= hscaleup ? 0 : (1 << 7);
  905. l |= vscaleup ? 0 : (1 << 8);
  906. l |= five_taps ? (1 << 21) : 0;
  907. l |= five_taps ? (1 << 22) : 0;
  908. dispc_write_reg(dispc_reg_att[plane], l);
  909. /*
  910. * field 0 = even field = bottom field
  911. * field 1 = odd field = top field
  912. */
  913. if (ilace && !fieldmode) {
  914. accu1 = 0;
  915. accu0 = (fir_vinc / 2) & 0x3ff;
  916. if (accu0 >= 1024/2) {
  917. accu1 = 1024/2;
  918. accu0 -= accu1;
  919. }
  920. }
  921. _dispc_set_vid_accu0(plane, 0, accu0);
  922. _dispc_set_vid_accu1(plane, 0, accu1);
  923. }
  924. static void _dispc_set_rotation_attrs(enum omap_plane plane, u8 rotation,
  925. bool mirroring, enum omap_color_mode color_mode)
  926. {
  927. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  928. color_mode == OMAP_DSS_COLOR_UYVY) {
  929. int vidrot = 0;
  930. if (mirroring) {
  931. switch (rotation) {
  932. case OMAP_DSS_ROT_0:
  933. vidrot = 2;
  934. break;
  935. case OMAP_DSS_ROT_90:
  936. vidrot = 1;
  937. break;
  938. case OMAP_DSS_ROT_180:
  939. vidrot = 0;
  940. break;
  941. case OMAP_DSS_ROT_270:
  942. vidrot = 3;
  943. break;
  944. }
  945. } else {
  946. switch (rotation) {
  947. case OMAP_DSS_ROT_0:
  948. vidrot = 0;
  949. break;
  950. case OMAP_DSS_ROT_90:
  951. vidrot = 1;
  952. break;
  953. case OMAP_DSS_ROT_180:
  954. vidrot = 2;
  955. break;
  956. case OMAP_DSS_ROT_270:
  957. vidrot = 3;
  958. break;
  959. }
  960. }
  961. REG_FLD_MOD(dispc_reg_att[plane], vidrot, 13, 12);
  962. if (rotation == OMAP_DSS_ROT_90 || rotation == OMAP_DSS_ROT_270)
  963. REG_FLD_MOD(dispc_reg_att[plane], 0x1, 18, 18);
  964. else
  965. REG_FLD_MOD(dispc_reg_att[plane], 0x0, 18, 18);
  966. } else {
  967. REG_FLD_MOD(dispc_reg_att[plane], 0, 13, 12);
  968. REG_FLD_MOD(dispc_reg_att[plane], 0, 18, 18);
  969. }
  970. }
  971. static int color_mode_to_bpp(enum omap_color_mode color_mode)
  972. {
  973. switch (color_mode) {
  974. case OMAP_DSS_COLOR_CLUT1:
  975. return 1;
  976. case OMAP_DSS_COLOR_CLUT2:
  977. return 2;
  978. case OMAP_DSS_COLOR_CLUT4:
  979. return 4;
  980. case OMAP_DSS_COLOR_CLUT8:
  981. return 8;
  982. case OMAP_DSS_COLOR_RGB12U:
  983. case OMAP_DSS_COLOR_RGB16:
  984. case OMAP_DSS_COLOR_ARGB16:
  985. case OMAP_DSS_COLOR_YUV2:
  986. case OMAP_DSS_COLOR_UYVY:
  987. return 16;
  988. case OMAP_DSS_COLOR_RGB24P:
  989. return 24;
  990. case OMAP_DSS_COLOR_RGB24U:
  991. case OMAP_DSS_COLOR_ARGB32:
  992. case OMAP_DSS_COLOR_RGBA32:
  993. case OMAP_DSS_COLOR_RGBX32:
  994. return 32;
  995. default:
  996. BUG();
  997. }
  998. }
  999. static s32 pixinc(int pixels, u8 ps)
  1000. {
  1001. if (pixels == 1)
  1002. return 1;
  1003. else if (pixels > 1)
  1004. return 1 + (pixels - 1) * ps;
  1005. else if (pixels < 0)
  1006. return 1 - (-pixels + 1) * ps;
  1007. else
  1008. BUG();
  1009. }
  1010. static void calc_vrfb_rotation_offset(u8 rotation, bool mirror,
  1011. u16 screen_width,
  1012. u16 width, u16 height,
  1013. enum omap_color_mode color_mode, bool fieldmode,
  1014. unsigned int field_offset,
  1015. unsigned *offset0, unsigned *offset1,
  1016. s32 *row_inc, s32 *pix_inc)
  1017. {
  1018. u8 ps;
  1019. /* FIXME CLUT formats */
  1020. switch (color_mode) {
  1021. case OMAP_DSS_COLOR_CLUT1:
  1022. case OMAP_DSS_COLOR_CLUT2:
  1023. case OMAP_DSS_COLOR_CLUT4:
  1024. case OMAP_DSS_COLOR_CLUT8:
  1025. BUG();
  1026. return;
  1027. case OMAP_DSS_COLOR_YUV2:
  1028. case OMAP_DSS_COLOR_UYVY:
  1029. ps = 4;
  1030. break;
  1031. default:
  1032. ps = color_mode_to_bpp(color_mode) / 8;
  1033. break;
  1034. }
  1035. DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
  1036. width, height);
  1037. /*
  1038. * field 0 = even field = bottom field
  1039. * field 1 = odd field = top field
  1040. */
  1041. switch (rotation + mirror * 4) {
  1042. case OMAP_DSS_ROT_0:
  1043. case OMAP_DSS_ROT_180:
  1044. /*
  1045. * If the pixel format is YUV or UYVY divide the width
  1046. * of the image by 2 for 0 and 180 degree rotation.
  1047. */
  1048. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1049. color_mode == OMAP_DSS_COLOR_UYVY)
  1050. width = width >> 1;
  1051. case OMAP_DSS_ROT_90:
  1052. case OMAP_DSS_ROT_270:
  1053. *offset1 = 0;
  1054. if (field_offset)
  1055. *offset0 = field_offset * screen_width * ps;
  1056. else
  1057. *offset0 = 0;
  1058. *row_inc = pixinc(1 + (screen_width - width) +
  1059. (fieldmode ? screen_width : 0),
  1060. ps);
  1061. *pix_inc = pixinc(1, ps);
  1062. break;
  1063. case OMAP_DSS_ROT_0 + 4:
  1064. case OMAP_DSS_ROT_180 + 4:
  1065. /* If the pixel format is YUV or UYVY divide the width
  1066. * of the image by 2 for 0 degree and 180 degree
  1067. */
  1068. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1069. color_mode == OMAP_DSS_COLOR_UYVY)
  1070. width = width >> 1;
  1071. case OMAP_DSS_ROT_90 + 4:
  1072. case OMAP_DSS_ROT_270 + 4:
  1073. *offset1 = 0;
  1074. if (field_offset)
  1075. *offset0 = field_offset * screen_width * ps;
  1076. else
  1077. *offset0 = 0;
  1078. *row_inc = pixinc(1 - (screen_width + width) -
  1079. (fieldmode ? screen_width : 0),
  1080. ps);
  1081. *pix_inc = pixinc(1, ps);
  1082. break;
  1083. default:
  1084. BUG();
  1085. }
  1086. }
  1087. static void calc_dma_rotation_offset(u8 rotation, bool mirror,
  1088. u16 screen_width,
  1089. u16 width, u16 height,
  1090. enum omap_color_mode color_mode, bool fieldmode,
  1091. unsigned int field_offset,
  1092. unsigned *offset0, unsigned *offset1,
  1093. s32 *row_inc, s32 *pix_inc)
  1094. {
  1095. u8 ps;
  1096. u16 fbw, fbh;
  1097. /* FIXME CLUT formats */
  1098. switch (color_mode) {
  1099. case OMAP_DSS_COLOR_CLUT1:
  1100. case OMAP_DSS_COLOR_CLUT2:
  1101. case OMAP_DSS_COLOR_CLUT4:
  1102. case OMAP_DSS_COLOR_CLUT8:
  1103. BUG();
  1104. return;
  1105. default:
  1106. ps = color_mode_to_bpp(color_mode) / 8;
  1107. break;
  1108. }
  1109. DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
  1110. width, height);
  1111. /* width & height are overlay sizes, convert to fb sizes */
  1112. if (rotation == OMAP_DSS_ROT_0 || rotation == OMAP_DSS_ROT_180) {
  1113. fbw = width;
  1114. fbh = height;
  1115. } else {
  1116. fbw = height;
  1117. fbh = width;
  1118. }
  1119. /*
  1120. * field 0 = even field = bottom field
  1121. * field 1 = odd field = top field
  1122. */
  1123. switch (rotation + mirror * 4) {
  1124. case OMAP_DSS_ROT_0:
  1125. *offset1 = 0;
  1126. if (field_offset)
  1127. *offset0 = *offset1 + field_offset * screen_width * ps;
  1128. else
  1129. *offset0 = *offset1;
  1130. *row_inc = pixinc(1 + (screen_width - fbw) +
  1131. (fieldmode ? screen_width : 0),
  1132. ps);
  1133. *pix_inc = pixinc(1, ps);
  1134. break;
  1135. case OMAP_DSS_ROT_90:
  1136. *offset1 = screen_width * (fbh - 1) * ps;
  1137. if (field_offset)
  1138. *offset0 = *offset1 + field_offset * ps;
  1139. else
  1140. *offset0 = *offset1;
  1141. *row_inc = pixinc(screen_width * (fbh - 1) + 1 +
  1142. (fieldmode ? 1 : 0), ps);
  1143. *pix_inc = pixinc(-screen_width, ps);
  1144. break;
  1145. case OMAP_DSS_ROT_180:
  1146. *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
  1147. if (field_offset)
  1148. *offset0 = *offset1 - field_offset * screen_width * ps;
  1149. else
  1150. *offset0 = *offset1;
  1151. *row_inc = pixinc(-1 -
  1152. (screen_width - fbw) -
  1153. (fieldmode ? screen_width : 0),
  1154. ps);
  1155. *pix_inc = pixinc(-1, ps);
  1156. break;
  1157. case OMAP_DSS_ROT_270:
  1158. *offset1 = (fbw - 1) * ps;
  1159. if (field_offset)
  1160. *offset0 = *offset1 - field_offset * ps;
  1161. else
  1162. *offset0 = *offset1;
  1163. *row_inc = pixinc(-screen_width * (fbh - 1) - 1 -
  1164. (fieldmode ? 1 : 0), ps);
  1165. *pix_inc = pixinc(screen_width, ps);
  1166. break;
  1167. /* mirroring */
  1168. case OMAP_DSS_ROT_0 + 4:
  1169. *offset1 = (fbw - 1) * ps;
  1170. if (field_offset)
  1171. *offset0 = *offset1 + field_offset * screen_width * ps;
  1172. else
  1173. *offset0 = *offset1;
  1174. *row_inc = pixinc(screen_width * 2 - 1 +
  1175. (fieldmode ? screen_width : 0),
  1176. ps);
  1177. *pix_inc = pixinc(-1, ps);
  1178. break;
  1179. case OMAP_DSS_ROT_90 + 4:
  1180. *offset1 = 0;
  1181. if (field_offset)
  1182. *offset0 = *offset1 + field_offset * ps;
  1183. else
  1184. *offset0 = *offset1;
  1185. *row_inc = pixinc(-screen_width * (fbh - 1) + 1 +
  1186. (fieldmode ? 1 : 0),
  1187. ps);
  1188. *pix_inc = pixinc(screen_width, ps);
  1189. break;
  1190. case OMAP_DSS_ROT_180 + 4:
  1191. *offset1 = screen_width * (fbh - 1) * ps;
  1192. if (field_offset)
  1193. *offset0 = *offset1 - field_offset * screen_width * ps;
  1194. else
  1195. *offset0 = *offset1;
  1196. *row_inc = pixinc(1 - screen_width * 2 -
  1197. (fieldmode ? screen_width : 0),
  1198. ps);
  1199. *pix_inc = pixinc(1, ps);
  1200. break;
  1201. case OMAP_DSS_ROT_270 + 4:
  1202. *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
  1203. if (field_offset)
  1204. *offset0 = *offset1 - field_offset * ps;
  1205. else
  1206. *offset0 = *offset1;
  1207. *row_inc = pixinc(screen_width * (fbh - 1) - 1 -
  1208. (fieldmode ? 1 : 0),
  1209. ps);
  1210. *pix_inc = pixinc(-screen_width, ps);
  1211. break;
  1212. default:
  1213. BUG();
  1214. }
  1215. }
  1216. static unsigned long calc_fclk_five_taps(u16 width, u16 height,
  1217. u16 out_width, u16 out_height, enum omap_color_mode color_mode)
  1218. {
  1219. u32 fclk = 0;
  1220. /* FIXME venc pclk? */
  1221. u64 tmp, pclk = dispc_pclk_rate();
  1222. if (height > out_height) {
  1223. /* FIXME get real display PPL */
  1224. unsigned int ppl = 800;
  1225. tmp = pclk * height * out_width;
  1226. do_div(tmp, 2 * out_height * ppl);
  1227. fclk = tmp;
  1228. if (height > 2 * out_height && ppl != out_width) {
  1229. tmp = pclk * (height - 2 * out_height) * out_width;
  1230. do_div(tmp, 2 * out_height * (ppl - out_width));
  1231. fclk = max(fclk, (u32) tmp);
  1232. }
  1233. }
  1234. if (width > out_width) {
  1235. tmp = pclk * width;
  1236. do_div(tmp, out_width);
  1237. fclk = max(fclk, (u32) tmp);
  1238. if (color_mode == OMAP_DSS_COLOR_RGB24U)
  1239. fclk <<= 1;
  1240. }
  1241. return fclk;
  1242. }
  1243. static unsigned long calc_fclk(u16 width, u16 height,
  1244. u16 out_width, u16 out_height)
  1245. {
  1246. unsigned int hf, vf;
  1247. /*
  1248. * FIXME how to determine the 'A' factor
  1249. * for the no downscaling case ?
  1250. */
  1251. if (width > 3 * out_width)
  1252. hf = 4;
  1253. else if (width > 2 * out_width)
  1254. hf = 3;
  1255. else if (width > out_width)
  1256. hf = 2;
  1257. else
  1258. hf = 1;
  1259. if (height > out_height)
  1260. vf = 2;
  1261. else
  1262. vf = 1;
  1263. /* FIXME venc pclk? */
  1264. return dispc_pclk_rate() * vf * hf;
  1265. }
  1266. void dispc_set_channel_out(enum omap_plane plane, enum omap_channel channel_out)
  1267. {
  1268. enable_clocks(1);
  1269. _dispc_set_channel_out(plane, channel_out);
  1270. enable_clocks(0);
  1271. }
  1272. static int _dispc_setup_plane(enum omap_plane plane,
  1273. u32 paddr, u16 screen_width,
  1274. u16 pos_x, u16 pos_y,
  1275. u16 width, u16 height,
  1276. u16 out_width, u16 out_height,
  1277. enum omap_color_mode color_mode,
  1278. bool ilace,
  1279. enum omap_dss_rotation_type rotation_type,
  1280. u8 rotation, int mirror,
  1281. u8 global_alpha)
  1282. {
  1283. const int maxdownscale = cpu_is_omap34xx() ? 4 : 2;
  1284. bool five_taps = 0;
  1285. bool fieldmode = 0;
  1286. int cconv = 0;
  1287. unsigned offset0, offset1;
  1288. s32 row_inc;
  1289. s32 pix_inc;
  1290. u16 frame_height = height;
  1291. unsigned int field_offset = 0;
  1292. if (paddr == 0)
  1293. return -EINVAL;
  1294. if (ilace && height == out_height)
  1295. fieldmode = 1;
  1296. if (ilace) {
  1297. if (fieldmode)
  1298. height /= 2;
  1299. pos_y /= 2;
  1300. out_height /= 2;
  1301. DSSDBG("adjusting for ilace: height %d, pos_y %d, "
  1302. "out_height %d\n",
  1303. height, pos_y, out_height);
  1304. }
  1305. if (plane == OMAP_DSS_GFX) {
  1306. if (width != out_width || height != out_height)
  1307. return -EINVAL;
  1308. switch (color_mode) {
  1309. case OMAP_DSS_COLOR_ARGB16:
  1310. case OMAP_DSS_COLOR_ARGB32:
  1311. case OMAP_DSS_COLOR_RGBA32:
  1312. case OMAP_DSS_COLOR_RGBX32:
  1313. if (cpu_is_omap24xx())
  1314. return -EINVAL;
  1315. /* fall through */
  1316. case OMAP_DSS_COLOR_RGB12U:
  1317. case OMAP_DSS_COLOR_RGB16:
  1318. case OMAP_DSS_COLOR_RGB24P:
  1319. case OMAP_DSS_COLOR_RGB24U:
  1320. break;
  1321. default:
  1322. return -EINVAL;
  1323. }
  1324. } else {
  1325. /* video plane */
  1326. unsigned long fclk = 0;
  1327. if (out_width < width / maxdownscale ||
  1328. out_width > width * 8)
  1329. return -EINVAL;
  1330. if (out_height < height / maxdownscale ||
  1331. out_height > height * 8)
  1332. return -EINVAL;
  1333. switch (color_mode) {
  1334. case OMAP_DSS_COLOR_RGBX32:
  1335. case OMAP_DSS_COLOR_RGB12U:
  1336. if (cpu_is_omap24xx())
  1337. return -EINVAL;
  1338. /* fall through */
  1339. case OMAP_DSS_COLOR_RGB16:
  1340. case OMAP_DSS_COLOR_RGB24P:
  1341. case OMAP_DSS_COLOR_RGB24U:
  1342. break;
  1343. case OMAP_DSS_COLOR_ARGB16:
  1344. case OMAP_DSS_COLOR_ARGB32:
  1345. case OMAP_DSS_COLOR_RGBA32:
  1346. if (cpu_is_omap24xx())
  1347. return -EINVAL;
  1348. if (plane == OMAP_DSS_VIDEO1)
  1349. return -EINVAL;
  1350. break;
  1351. case OMAP_DSS_COLOR_YUV2:
  1352. case OMAP_DSS_COLOR_UYVY:
  1353. cconv = 1;
  1354. break;
  1355. default:
  1356. return -EINVAL;
  1357. }
  1358. /* Must use 5-tap filter? */
  1359. five_taps = height > out_height * 2;
  1360. if (!five_taps) {
  1361. fclk = calc_fclk(width, height,
  1362. out_width, out_height);
  1363. /* Try 5-tap filter if 3-tap fclk is too high */
  1364. if (cpu_is_omap34xx() && height > out_height &&
  1365. fclk > dispc_fclk_rate())
  1366. five_taps = true;
  1367. }
  1368. if (width > (2048 >> five_taps)) {
  1369. DSSERR("failed to set up scaling, fclk too low\n");
  1370. return -EINVAL;
  1371. }
  1372. if (five_taps)
  1373. fclk = calc_fclk_five_taps(width, height,
  1374. out_width, out_height, color_mode);
  1375. DSSDBG("required fclk rate = %lu Hz\n", fclk);
  1376. DSSDBG("current fclk rate = %lu Hz\n", dispc_fclk_rate());
  1377. if (fclk > dispc_fclk_rate()) {
  1378. DSSERR("failed to set up scaling, "
  1379. "required fclk rate = %lu Hz, "
  1380. "current fclk rate = %lu Hz\n",
  1381. fclk, dispc_fclk_rate());
  1382. return -EINVAL;
  1383. }
  1384. }
  1385. if (ilace && !fieldmode) {
  1386. /*
  1387. * when downscaling the bottom field may have to start several
  1388. * source lines below the top field. Unfortunately ACCUI
  1389. * registers will only hold the fractional part of the offset
  1390. * so the integer part must be added to the base address of the
  1391. * bottom field.
  1392. */
  1393. if (!height || height == out_height)
  1394. field_offset = 0;
  1395. else
  1396. field_offset = height / out_height / 2;
  1397. }
  1398. /* Fields are independent but interleaved in memory. */
  1399. if (fieldmode)
  1400. field_offset = 1;
  1401. if (rotation_type == OMAP_DSS_ROT_DMA)
  1402. calc_dma_rotation_offset(rotation, mirror,
  1403. screen_width, width, frame_height, color_mode,
  1404. fieldmode, field_offset,
  1405. &offset0, &offset1, &row_inc, &pix_inc);
  1406. else
  1407. calc_vrfb_rotation_offset(rotation, mirror,
  1408. screen_width, width, frame_height, color_mode,
  1409. fieldmode, field_offset,
  1410. &offset0, &offset1, &row_inc, &pix_inc);
  1411. DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
  1412. offset0, offset1, row_inc, pix_inc);
  1413. _dispc_set_color_mode(plane, color_mode);
  1414. _dispc_set_plane_ba0(plane, paddr + offset0);
  1415. _dispc_set_plane_ba1(plane, paddr + offset1);
  1416. _dispc_set_row_inc(plane, row_inc);
  1417. _dispc_set_pix_inc(plane, pix_inc);
  1418. DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, width, height,
  1419. out_width, out_height);
  1420. _dispc_set_plane_pos(plane, pos_x, pos_y);
  1421. _dispc_set_pic_size(plane, width, height);
  1422. if (plane != OMAP_DSS_GFX) {
  1423. _dispc_set_scaling(plane, width, height,
  1424. out_width, out_height,
  1425. ilace, five_taps, fieldmode);
  1426. _dispc_set_vid_size(plane, out_width, out_height);
  1427. _dispc_set_vid_color_conv(plane, cconv);
  1428. }
  1429. _dispc_set_rotation_attrs(plane, rotation, mirror, color_mode);
  1430. if (plane != OMAP_DSS_VIDEO1)
  1431. _dispc_setup_global_alpha(plane, global_alpha);
  1432. return 0;
  1433. }
  1434. static void _dispc_enable_plane(enum omap_plane plane, bool enable)
  1435. {
  1436. REG_FLD_MOD(dispc_reg_att[plane], enable ? 1 : 0, 0, 0);
  1437. }
  1438. static void dispc_disable_isr(void *data, u32 mask)
  1439. {
  1440. struct completion *compl = data;
  1441. complete(compl);
  1442. }
  1443. static void _enable_lcd_out(bool enable)
  1444. {
  1445. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 0, 0);
  1446. }
  1447. void dispc_enable_lcd_out(bool enable)
  1448. {
  1449. struct completion frame_done_completion;
  1450. bool is_on;
  1451. int r;
  1452. enable_clocks(1);
  1453. /* When we disable LCD output, we need to wait until frame is done.
  1454. * Otherwise the DSS is still working, and turning off the clocks
  1455. * prevents DSS from going to OFF mode */
  1456. is_on = REG_GET(DISPC_CONTROL, 0, 0);
  1457. if (!enable && is_on) {
  1458. init_completion(&frame_done_completion);
  1459. r = omap_dispc_register_isr(dispc_disable_isr,
  1460. &frame_done_completion,
  1461. DISPC_IRQ_FRAMEDONE);
  1462. if (r)
  1463. DSSERR("failed to register FRAMEDONE isr\n");
  1464. }
  1465. _enable_lcd_out(enable);
  1466. if (!enable && is_on) {
  1467. if (!wait_for_completion_timeout(&frame_done_completion,
  1468. msecs_to_jiffies(100)))
  1469. DSSERR("timeout waiting for FRAME DONE\n");
  1470. r = omap_dispc_unregister_isr(dispc_disable_isr,
  1471. &frame_done_completion,
  1472. DISPC_IRQ_FRAMEDONE);
  1473. if (r)
  1474. DSSERR("failed to unregister FRAMEDONE isr\n");
  1475. }
  1476. enable_clocks(0);
  1477. }
  1478. static void _enable_digit_out(bool enable)
  1479. {
  1480. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 1, 1);
  1481. }
  1482. void dispc_enable_digit_out(bool enable)
  1483. {
  1484. struct completion frame_done_completion;
  1485. int r;
  1486. enable_clocks(1);
  1487. if (REG_GET(DISPC_CONTROL, 1, 1) == enable) {
  1488. enable_clocks(0);
  1489. return;
  1490. }
  1491. if (enable) {
  1492. unsigned long flags;
  1493. /* When we enable digit output, we'll get an extra digit
  1494. * sync lost interrupt, that we need to ignore */
  1495. spin_lock_irqsave(&dispc.irq_lock, flags);
  1496. dispc.irq_error_mask &= ~DISPC_IRQ_SYNC_LOST_DIGIT;
  1497. _omap_dispc_set_irqs();
  1498. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  1499. }
  1500. /* When we disable digit output, we need to wait until fields are done.
  1501. * Otherwise the DSS is still working, and turning off the clocks
  1502. * prevents DSS from going to OFF mode. And when enabling, we need to
  1503. * wait for the extra sync losts */
  1504. init_completion(&frame_done_completion);
  1505. r = omap_dispc_register_isr(dispc_disable_isr, &frame_done_completion,
  1506. DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD);
  1507. if (r)
  1508. DSSERR("failed to register EVSYNC isr\n");
  1509. _enable_digit_out(enable);
  1510. /* XXX I understand from TRM that we should only wait for the
  1511. * current field to complete. But it seems we have to wait
  1512. * for both fields */
  1513. if (!wait_for_completion_timeout(&frame_done_completion,
  1514. msecs_to_jiffies(100)))
  1515. DSSERR("timeout waiting for EVSYNC\n");
  1516. if (!wait_for_completion_timeout(&frame_done_completion,
  1517. msecs_to_jiffies(100)))
  1518. DSSERR("timeout waiting for EVSYNC\n");
  1519. r = omap_dispc_unregister_isr(dispc_disable_isr,
  1520. &frame_done_completion,
  1521. DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD);
  1522. if (r)
  1523. DSSERR("failed to unregister EVSYNC isr\n");
  1524. if (enable) {
  1525. unsigned long flags;
  1526. spin_lock_irqsave(&dispc.irq_lock, flags);
  1527. dispc.irq_error_mask = DISPC_IRQ_MASK_ERROR;
  1528. dispc_write_reg(DISPC_IRQSTATUS, DISPC_IRQ_SYNC_LOST_DIGIT);
  1529. _omap_dispc_set_irqs();
  1530. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  1531. }
  1532. enable_clocks(0);
  1533. }
  1534. void dispc_lcd_enable_signal_polarity(bool act_high)
  1535. {
  1536. enable_clocks(1);
  1537. REG_FLD_MOD(DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
  1538. enable_clocks(0);
  1539. }
  1540. void dispc_lcd_enable_signal(bool enable)
  1541. {
  1542. enable_clocks(1);
  1543. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 28, 28);
  1544. enable_clocks(0);
  1545. }
  1546. void dispc_pck_free_enable(bool enable)
  1547. {
  1548. enable_clocks(1);
  1549. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 27, 27);
  1550. enable_clocks(0);
  1551. }
  1552. void dispc_enable_fifohandcheck(bool enable)
  1553. {
  1554. enable_clocks(1);
  1555. REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 16, 16);
  1556. enable_clocks(0);
  1557. }
  1558. void dispc_set_lcd_display_type(enum omap_lcd_display_type type)
  1559. {
  1560. int mode;
  1561. switch (type) {
  1562. case OMAP_DSS_LCD_DISPLAY_STN:
  1563. mode = 0;
  1564. break;
  1565. case OMAP_DSS_LCD_DISPLAY_TFT:
  1566. mode = 1;
  1567. break;
  1568. default:
  1569. BUG();
  1570. return;
  1571. }
  1572. enable_clocks(1);
  1573. REG_FLD_MOD(DISPC_CONTROL, mode, 3, 3);
  1574. enable_clocks(0);
  1575. }
  1576. void dispc_set_loadmode(enum omap_dss_load_mode mode)
  1577. {
  1578. enable_clocks(1);
  1579. REG_FLD_MOD(DISPC_CONFIG, mode, 2, 1);
  1580. enable_clocks(0);
  1581. }
  1582. void dispc_set_default_color(enum omap_channel channel, u32 color)
  1583. {
  1584. const struct dispc_reg def_reg[] = { DISPC_DEFAULT_COLOR0,
  1585. DISPC_DEFAULT_COLOR1 };
  1586. enable_clocks(1);
  1587. dispc_write_reg(def_reg[channel], color);
  1588. enable_clocks(0);
  1589. }
  1590. u32 dispc_get_default_color(enum omap_channel channel)
  1591. {
  1592. const struct dispc_reg def_reg[] = { DISPC_DEFAULT_COLOR0,
  1593. DISPC_DEFAULT_COLOR1 };
  1594. u32 l;
  1595. BUG_ON(channel != OMAP_DSS_CHANNEL_DIGIT &&
  1596. channel != OMAP_DSS_CHANNEL_LCD);
  1597. enable_clocks(1);
  1598. l = dispc_read_reg(def_reg[channel]);
  1599. enable_clocks(0);
  1600. return l;
  1601. }
  1602. void dispc_set_trans_key(enum omap_channel ch,
  1603. enum omap_dss_trans_key_type type,
  1604. u32 trans_key)
  1605. {
  1606. const struct dispc_reg tr_reg[] = {
  1607. DISPC_TRANS_COLOR0, DISPC_TRANS_COLOR1 };
  1608. enable_clocks(1);
  1609. if (ch == OMAP_DSS_CHANNEL_LCD)
  1610. REG_FLD_MOD(DISPC_CONFIG, type, 11, 11);
  1611. else /* OMAP_DSS_CHANNEL_DIGIT */
  1612. REG_FLD_MOD(DISPC_CONFIG, type, 13, 13);
  1613. dispc_write_reg(tr_reg[ch], trans_key);
  1614. enable_clocks(0);
  1615. }
  1616. void dispc_get_trans_key(enum omap_channel ch,
  1617. enum omap_dss_trans_key_type *type,
  1618. u32 *trans_key)
  1619. {
  1620. const struct dispc_reg tr_reg[] = {
  1621. DISPC_TRANS_COLOR0, DISPC_TRANS_COLOR1 };
  1622. enable_clocks(1);
  1623. if (type) {
  1624. if (ch == OMAP_DSS_CHANNEL_LCD)
  1625. *type = REG_GET(DISPC_CONFIG, 11, 11);
  1626. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1627. *type = REG_GET(DISPC_CONFIG, 13, 13);
  1628. else
  1629. BUG();
  1630. }
  1631. if (trans_key)
  1632. *trans_key = dispc_read_reg(tr_reg[ch]);
  1633. enable_clocks(0);
  1634. }
  1635. void dispc_enable_trans_key(enum omap_channel ch, bool enable)
  1636. {
  1637. enable_clocks(1);
  1638. if (ch == OMAP_DSS_CHANNEL_LCD)
  1639. REG_FLD_MOD(DISPC_CONFIG, enable, 10, 10);
  1640. else /* OMAP_DSS_CHANNEL_DIGIT */
  1641. REG_FLD_MOD(DISPC_CONFIG, enable, 12, 12);
  1642. enable_clocks(0);
  1643. }
  1644. void dispc_enable_alpha_blending(enum omap_channel ch, bool enable)
  1645. {
  1646. if (cpu_is_omap24xx())
  1647. return;
  1648. enable_clocks(1);
  1649. if (ch == OMAP_DSS_CHANNEL_LCD)
  1650. REG_FLD_MOD(DISPC_CONFIG, enable, 18, 18);
  1651. else /* OMAP_DSS_CHANNEL_DIGIT */
  1652. REG_FLD_MOD(DISPC_CONFIG, enable, 19, 19);
  1653. enable_clocks(0);
  1654. }
  1655. bool dispc_alpha_blending_enabled(enum omap_channel ch)
  1656. {
  1657. bool enabled;
  1658. if (cpu_is_omap24xx())
  1659. return false;
  1660. enable_clocks(1);
  1661. if (ch == OMAP_DSS_CHANNEL_LCD)
  1662. enabled = REG_GET(DISPC_CONFIG, 18, 18);
  1663. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1664. enabled = REG_GET(DISPC_CONFIG, 18, 18);
  1665. else
  1666. BUG();
  1667. enable_clocks(0);
  1668. return enabled;
  1669. }
  1670. bool dispc_trans_key_enabled(enum omap_channel ch)
  1671. {
  1672. bool enabled;
  1673. enable_clocks(1);
  1674. if (ch == OMAP_DSS_CHANNEL_LCD)
  1675. enabled = REG_GET(DISPC_CONFIG, 10, 10);
  1676. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1677. enabled = REG_GET(DISPC_CONFIG, 12, 12);
  1678. else
  1679. BUG();
  1680. enable_clocks(0);
  1681. return enabled;
  1682. }
  1683. void dispc_set_tft_data_lines(u8 data_lines)
  1684. {
  1685. int code;
  1686. switch (data_lines) {
  1687. case 12:
  1688. code = 0;
  1689. break;
  1690. case 16:
  1691. code = 1;
  1692. break;
  1693. case 18:
  1694. code = 2;
  1695. break;
  1696. case 24:
  1697. code = 3;
  1698. break;
  1699. default:
  1700. BUG();
  1701. return;
  1702. }
  1703. enable_clocks(1);
  1704. REG_FLD_MOD(DISPC_CONTROL, code, 9, 8);
  1705. enable_clocks(0);
  1706. }
  1707. void dispc_set_parallel_interface_mode(enum omap_parallel_interface_mode mode)
  1708. {
  1709. u32 l;
  1710. int stallmode;
  1711. int gpout0 = 1;
  1712. int gpout1;
  1713. switch (mode) {
  1714. case OMAP_DSS_PARALLELMODE_BYPASS:
  1715. stallmode = 0;
  1716. gpout1 = 1;
  1717. break;
  1718. case OMAP_DSS_PARALLELMODE_RFBI:
  1719. stallmode = 1;
  1720. gpout1 = 0;
  1721. break;
  1722. case OMAP_DSS_PARALLELMODE_DSI:
  1723. stallmode = 1;
  1724. gpout1 = 1;
  1725. break;
  1726. default:
  1727. BUG();
  1728. return;
  1729. }
  1730. enable_clocks(1);
  1731. l = dispc_read_reg(DISPC_CONTROL);
  1732. l = FLD_MOD(l, stallmode, 11, 11);
  1733. l = FLD_MOD(l, gpout0, 15, 15);
  1734. l = FLD_MOD(l, gpout1, 16, 16);
  1735. dispc_write_reg(DISPC_CONTROL, l);
  1736. enable_clocks(0);
  1737. }
  1738. static bool _dispc_lcd_timings_ok(int hsw, int hfp, int hbp,
  1739. int vsw, int vfp, int vbp)
  1740. {
  1741. if (cpu_is_omap24xx() || omap_rev() < OMAP3430_REV_ES3_0) {
  1742. if (hsw < 1 || hsw > 64 ||
  1743. hfp < 1 || hfp > 256 ||
  1744. hbp < 1 || hbp > 256 ||
  1745. vsw < 1 || vsw > 64 ||
  1746. vfp < 0 || vfp > 255 ||
  1747. vbp < 0 || vbp > 255)
  1748. return false;
  1749. } else {
  1750. if (hsw < 1 || hsw > 256 ||
  1751. hfp < 1 || hfp > 4096 ||
  1752. hbp < 1 || hbp > 4096 ||
  1753. vsw < 1 || vsw > 256 ||
  1754. vfp < 0 || vfp > 4095 ||
  1755. vbp < 0 || vbp > 4095)
  1756. return false;
  1757. }
  1758. return true;
  1759. }
  1760. bool dispc_lcd_timings_ok(struct omap_video_timings *timings)
  1761. {
  1762. return _dispc_lcd_timings_ok(timings->hsw, timings->hfp,
  1763. timings->hbp, timings->vsw,
  1764. timings->vfp, timings->vbp);
  1765. }
  1766. static void _dispc_set_lcd_timings(int hsw, int hfp, int hbp,
  1767. int vsw, int vfp, int vbp)
  1768. {
  1769. u32 timing_h, timing_v;
  1770. if (cpu_is_omap24xx() || omap_rev() < OMAP3430_REV_ES3_0) {
  1771. timing_h = FLD_VAL(hsw-1, 5, 0) | FLD_VAL(hfp-1, 15, 8) |
  1772. FLD_VAL(hbp-1, 27, 20);
  1773. timing_v = FLD_VAL(vsw-1, 5, 0) | FLD_VAL(vfp, 15, 8) |
  1774. FLD_VAL(vbp, 27, 20);
  1775. } else {
  1776. timing_h = FLD_VAL(hsw-1, 7, 0) | FLD_VAL(hfp-1, 19, 8) |
  1777. FLD_VAL(hbp-1, 31, 20);
  1778. timing_v = FLD_VAL(vsw-1, 7, 0) | FLD_VAL(vfp, 19, 8) |
  1779. FLD_VAL(vbp, 31, 20);
  1780. }
  1781. enable_clocks(1);
  1782. dispc_write_reg(DISPC_TIMING_H, timing_h);
  1783. dispc_write_reg(DISPC_TIMING_V, timing_v);
  1784. enable_clocks(0);
  1785. }
  1786. /* change name to mode? */
  1787. void dispc_set_lcd_timings(struct omap_video_timings *timings)
  1788. {
  1789. unsigned xtot, ytot;
  1790. unsigned long ht, vt;
  1791. if (!_dispc_lcd_timings_ok(timings->hsw, timings->hfp,
  1792. timings->hbp, timings->vsw,
  1793. timings->vfp, timings->vbp))
  1794. BUG();
  1795. _dispc_set_lcd_timings(timings->hsw, timings->hfp, timings->hbp,
  1796. timings->vsw, timings->vfp, timings->vbp);
  1797. dispc_set_lcd_size(timings->x_res, timings->y_res);
  1798. xtot = timings->x_res + timings->hfp + timings->hsw + timings->hbp;
  1799. ytot = timings->y_res + timings->vfp + timings->vsw + timings->vbp;
  1800. ht = (timings->pixel_clock * 1000) / xtot;
  1801. vt = (timings->pixel_clock * 1000) / xtot / ytot;
  1802. DSSDBG("xres %u yres %u\n", timings->x_res, timings->y_res);
  1803. DSSDBG("pck %u\n", timings->pixel_clock);
  1804. DSSDBG("hsw %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
  1805. timings->hsw, timings->hfp, timings->hbp,
  1806. timings->vsw, timings->vfp, timings->vbp);
  1807. DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
  1808. }
  1809. static void dispc_set_lcd_divisor(u16 lck_div, u16 pck_div)
  1810. {
  1811. BUG_ON(lck_div < 1);
  1812. BUG_ON(pck_div < 2);
  1813. enable_clocks(1);
  1814. dispc_write_reg(DISPC_DIVISOR,
  1815. FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
  1816. enable_clocks(0);
  1817. }
  1818. static void dispc_get_lcd_divisor(int *lck_div, int *pck_div)
  1819. {
  1820. u32 l;
  1821. l = dispc_read_reg(DISPC_DIVISOR);
  1822. *lck_div = FLD_GET(l, 23, 16);
  1823. *pck_div = FLD_GET(l, 7, 0);
  1824. }
  1825. unsigned long dispc_fclk_rate(void)
  1826. {
  1827. unsigned long r = 0;
  1828. if (dss_get_dispc_clk_source() == 0)
  1829. r = dss_clk_get_rate(DSS_CLK_FCK1);
  1830. else
  1831. #ifdef CONFIG_OMAP2_DSS_DSI
  1832. r = dsi_get_dsi1_pll_rate();
  1833. #else
  1834. BUG();
  1835. #endif
  1836. return r;
  1837. }
  1838. unsigned long dispc_lclk_rate(void)
  1839. {
  1840. int lcd;
  1841. unsigned long r;
  1842. u32 l;
  1843. l = dispc_read_reg(DISPC_DIVISOR);
  1844. lcd = FLD_GET(l, 23, 16);
  1845. r = dispc_fclk_rate();
  1846. return r / lcd;
  1847. }
  1848. unsigned long dispc_pclk_rate(void)
  1849. {
  1850. int lcd, pcd;
  1851. unsigned long r;
  1852. u32 l;
  1853. l = dispc_read_reg(DISPC_DIVISOR);
  1854. lcd = FLD_GET(l, 23, 16);
  1855. pcd = FLD_GET(l, 7, 0);
  1856. r = dispc_fclk_rate();
  1857. return r / lcd / pcd;
  1858. }
  1859. void dispc_dump_clocks(struct seq_file *s)
  1860. {
  1861. int lcd, pcd;
  1862. enable_clocks(1);
  1863. dispc_get_lcd_divisor(&lcd, &pcd);
  1864. seq_printf(s, "- DISPC -\n");
  1865. seq_printf(s, "dispc fclk source = %s\n",
  1866. dss_get_dispc_clk_source() == 0 ?
  1867. "dss1_alwon_fclk" : "dsi1_pll_fclk");
  1868. seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate());
  1869. seq_printf(s, "lck\t\t%-16lulck div\t%u\n", dispc_lclk_rate(), lcd);
  1870. seq_printf(s, "pck\t\t%-16lupck div\t%u\n", dispc_pclk_rate(), pcd);
  1871. enable_clocks(0);
  1872. }
  1873. void dispc_dump_regs(struct seq_file *s)
  1874. {
  1875. #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dispc_read_reg(r))
  1876. dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
  1877. DUMPREG(DISPC_REVISION);
  1878. DUMPREG(DISPC_SYSCONFIG);
  1879. DUMPREG(DISPC_SYSSTATUS);
  1880. DUMPREG(DISPC_IRQSTATUS);
  1881. DUMPREG(DISPC_IRQENABLE);
  1882. DUMPREG(DISPC_CONTROL);
  1883. DUMPREG(DISPC_CONFIG);
  1884. DUMPREG(DISPC_CAPABLE);
  1885. DUMPREG(DISPC_DEFAULT_COLOR0);
  1886. DUMPREG(DISPC_DEFAULT_COLOR1);
  1887. DUMPREG(DISPC_TRANS_COLOR0);
  1888. DUMPREG(DISPC_TRANS_COLOR1);
  1889. DUMPREG(DISPC_LINE_STATUS);
  1890. DUMPREG(DISPC_LINE_NUMBER);
  1891. DUMPREG(DISPC_TIMING_H);
  1892. DUMPREG(DISPC_TIMING_V);
  1893. DUMPREG(DISPC_POL_FREQ);
  1894. DUMPREG(DISPC_DIVISOR);
  1895. DUMPREG(DISPC_GLOBAL_ALPHA);
  1896. DUMPREG(DISPC_SIZE_DIG);
  1897. DUMPREG(DISPC_SIZE_LCD);
  1898. DUMPREG(DISPC_GFX_BA0);
  1899. DUMPREG(DISPC_GFX_BA1);
  1900. DUMPREG(DISPC_GFX_POSITION);
  1901. DUMPREG(DISPC_GFX_SIZE);
  1902. DUMPREG(DISPC_GFX_ATTRIBUTES);
  1903. DUMPREG(DISPC_GFX_FIFO_THRESHOLD);
  1904. DUMPREG(DISPC_GFX_FIFO_SIZE_STATUS);
  1905. DUMPREG(DISPC_GFX_ROW_INC);
  1906. DUMPREG(DISPC_GFX_PIXEL_INC);
  1907. DUMPREG(DISPC_GFX_WINDOW_SKIP);
  1908. DUMPREG(DISPC_GFX_TABLE_BA);
  1909. DUMPREG(DISPC_DATA_CYCLE1);
  1910. DUMPREG(DISPC_DATA_CYCLE2);
  1911. DUMPREG(DISPC_DATA_CYCLE3);
  1912. DUMPREG(DISPC_CPR_COEF_R);
  1913. DUMPREG(DISPC_CPR_COEF_G);
  1914. DUMPREG(DISPC_CPR_COEF_B);
  1915. DUMPREG(DISPC_GFX_PRELOAD);
  1916. DUMPREG(DISPC_VID_BA0(0));
  1917. DUMPREG(DISPC_VID_BA1(0));
  1918. DUMPREG(DISPC_VID_POSITION(0));
  1919. DUMPREG(DISPC_VID_SIZE(0));
  1920. DUMPREG(DISPC_VID_ATTRIBUTES(0));
  1921. DUMPREG(DISPC_VID_FIFO_THRESHOLD(0));
  1922. DUMPREG(DISPC_VID_FIFO_SIZE_STATUS(0));
  1923. DUMPREG(DISPC_VID_ROW_INC(0));
  1924. DUMPREG(DISPC_VID_PIXEL_INC(0));
  1925. DUMPREG(DISPC_VID_FIR(0));
  1926. DUMPREG(DISPC_VID_PICTURE_SIZE(0));
  1927. DUMPREG(DISPC_VID_ACCU0(0));
  1928. DUMPREG(DISPC_VID_ACCU1(0));
  1929. DUMPREG(DISPC_VID_BA0(1));
  1930. DUMPREG(DISPC_VID_BA1(1));
  1931. DUMPREG(DISPC_VID_POSITION(1));
  1932. DUMPREG(DISPC_VID_SIZE(1));
  1933. DUMPREG(DISPC_VID_ATTRIBUTES(1));
  1934. DUMPREG(DISPC_VID_FIFO_THRESHOLD(1));
  1935. DUMPREG(DISPC_VID_FIFO_SIZE_STATUS(1));
  1936. DUMPREG(DISPC_VID_ROW_INC(1));
  1937. DUMPREG(DISPC_VID_PIXEL_INC(1));
  1938. DUMPREG(DISPC_VID_FIR(1));
  1939. DUMPREG(DISPC_VID_PICTURE_SIZE(1));
  1940. DUMPREG(DISPC_VID_ACCU0(1));
  1941. DUMPREG(DISPC_VID_ACCU1(1));
  1942. DUMPREG(DISPC_VID_FIR_COEF_H(0, 0));
  1943. DUMPREG(DISPC_VID_FIR_COEF_H(0, 1));
  1944. DUMPREG(DISPC_VID_FIR_COEF_H(0, 2));
  1945. DUMPREG(DISPC_VID_FIR_COEF_H(0, 3));
  1946. DUMPREG(DISPC_VID_FIR_COEF_H(0, 4));
  1947. DUMPREG(DISPC_VID_FIR_COEF_H(0, 5));
  1948. DUMPREG(DISPC_VID_FIR_COEF_H(0, 6));
  1949. DUMPREG(DISPC_VID_FIR_COEF_H(0, 7));
  1950. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 0));
  1951. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 1));
  1952. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 2));
  1953. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 3));
  1954. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 4));
  1955. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 5));
  1956. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 6));
  1957. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 7));
  1958. DUMPREG(DISPC_VID_CONV_COEF(0, 0));
  1959. DUMPREG(DISPC_VID_CONV_COEF(0, 1));
  1960. DUMPREG(DISPC_VID_CONV_COEF(0, 2));
  1961. DUMPREG(DISPC_VID_CONV_COEF(0, 3));
  1962. DUMPREG(DISPC_VID_CONV_COEF(0, 4));
  1963. DUMPREG(DISPC_VID_FIR_COEF_V(0, 0));
  1964. DUMPREG(DISPC_VID_FIR_COEF_V(0, 1));
  1965. DUMPREG(DISPC_VID_FIR_COEF_V(0, 2));
  1966. DUMPREG(DISPC_VID_FIR_COEF_V(0, 3));
  1967. DUMPREG(DISPC_VID_FIR_COEF_V(0, 4));
  1968. DUMPREG(DISPC_VID_FIR_COEF_V(0, 5));
  1969. DUMPREG(DISPC_VID_FIR_COEF_V(0, 6));
  1970. DUMPREG(DISPC_VID_FIR_COEF_V(0, 7));
  1971. DUMPREG(DISPC_VID_FIR_COEF_H(1, 0));
  1972. DUMPREG(DISPC_VID_FIR_COEF_H(1, 1));
  1973. DUMPREG(DISPC_VID_FIR_COEF_H(1, 2));
  1974. DUMPREG(DISPC_VID_FIR_COEF_H(1, 3));
  1975. DUMPREG(DISPC_VID_FIR_COEF_H(1, 4));
  1976. DUMPREG(DISPC_VID_FIR_COEF_H(1, 5));
  1977. DUMPREG(DISPC_VID_FIR_COEF_H(1, 6));
  1978. DUMPREG(DISPC_VID_FIR_COEF_H(1, 7));
  1979. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 0));
  1980. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 1));
  1981. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 2));
  1982. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 3));
  1983. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 4));
  1984. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 5));
  1985. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 6));
  1986. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 7));
  1987. DUMPREG(DISPC_VID_CONV_COEF(1, 0));
  1988. DUMPREG(DISPC_VID_CONV_COEF(1, 1));
  1989. DUMPREG(DISPC_VID_CONV_COEF(1, 2));
  1990. DUMPREG(DISPC_VID_CONV_COEF(1, 3));
  1991. DUMPREG(DISPC_VID_CONV_COEF(1, 4));
  1992. DUMPREG(DISPC_VID_FIR_COEF_V(1, 0));
  1993. DUMPREG(DISPC_VID_FIR_COEF_V(1, 1));
  1994. DUMPREG(DISPC_VID_FIR_COEF_V(1, 2));
  1995. DUMPREG(DISPC_VID_FIR_COEF_V(1, 3));
  1996. DUMPREG(DISPC_VID_FIR_COEF_V(1, 4));
  1997. DUMPREG(DISPC_VID_FIR_COEF_V(1, 5));
  1998. DUMPREG(DISPC_VID_FIR_COEF_V(1, 6));
  1999. DUMPREG(DISPC_VID_FIR_COEF_V(1, 7));
  2000. DUMPREG(DISPC_VID_PRELOAD(0));
  2001. DUMPREG(DISPC_VID_PRELOAD(1));
  2002. dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
  2003. #undef DUMPREG
  2004. }
  2005. static void _dispc_set_pol_freq(bool onoff, bool rf, bool ieo, bool ipc,
  2006. bool ihs, bool ivs, u8 acbi, u8 acb)
  2007. {
  2008. u32 l = 0;
  2009. DSSDBG("onoff %d rf %d ieo %d ipc %d ihs %d ivs %d acbi %d acb %d\n",
  2010. onoff, rf, ieo, ipc, ihs, ivs, acbi, acb);
  2011. l |= FLD_VAL(onoff, 17, 17);
  2012. l |= FLD_VAL(rf, 16, 16);
  2013. l |= FLD_VAL(ieo, 15, 15);
  2014. l |= FLD_VAL(ipc, 14, 14);
  2015. l |= FLD_VAL(ihs, 13, 13);
  2016. l |= FLD_VAL(ivs, 12, 12);
  2017. l |= FLD_VAL(acbi, 11, 8);
  2018. l |= FLD_VAL(acb, 7, 0);
  2019. enable_clocks(1);
  2020. dispc_write_reg(DISPC_POL_FREQ, l);
  2021. enable_clocks(0);
  2022. }
  2023. void dispc_set_pol_freq(enum omap_panel_config config, u8 acbi, u8 acb)
  2024. {
  2025. _dispc_set_pol_freq((config & OMAP_DSS_LCD_ONOFF) != 0,
  2026. (config & OMAP_DSS_LCD_RF) != 0,
  2027. (config & OMAP_DSS_LCD_IEO) != 0,
  2028. (config & OMAP_DSS_LCD_IPC) != 0,
  2029. (config & OMAP_DSS_LCD_IHS) != 0,
  2030. (config & OMAP_DSS_LCD_IVS) != 0,
  2031. acbi, acb);
  2032. }
  2033. /* with fck as input clock rate, find dispc dividers that produce req_pck */
  2034. void dispc_find_clk_divs(bool is_tft, unsigned long req_pck, unsigned long fck,
  2035. struct dispc_clock_info *cinfo)
  2036. {
  2037. u16 pcd_min = is_tft ? 2 : 3;
  2038. unsigned long best_pck;
  2039. u16 best_ld, cur_ld;
  2040. u16 best_pd, cur_pd;
  2041. best_pck = 0;
  2042. best_ld = 0;
  2043. best_pd = 0;
  2044. for (cur_ld = 1; cur_ld <= 255; ++cur_ld) {
  2045. unsigned long lck = fck / cur_ld;
  2046. for (cur_pd = pcd_min; cur_pd <= 255; ++cur_pd) {
  2047. unsigned long pck = lck / cur_pd;
  2048. long old_delta = abs(best_pck - req_pck);
  2049. long new_delta = abs(pck - req_pck);
  2050. if (best_pck == 0 || new_delta < old_delta) {
  2051. best_pck = pck;
  2052. best_ld = cur_ld;
  2053. best_pd = cur_pd;
  2054. if (pck == req_pck)
  2055. goto found;
  2056. }
  2057. if (pck < req_pck)
  2058. break;
  2059. }
  2060. if (lck / pcd_min < req_pck)
  2061. break;
  2062. }
  2063. found:
  2064. cinfo->lck_div = best_ld;
  2065. cinfo->pck_div = best_pd;
  2066. cinfo->lck = fck / cinfo->lck_div;
  2067. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2068. }
  2069. /* calculate clock rates using dividers in cinfo */
  2070. int dispc_calc_clock_rates(unsigned long dispc_fclk_rate,
  2071. struct dispc_clock_info *cinfo)
  2072. {
  2073. if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
  2074. return -EINVAL;
  2075. if (cinfo->pck_div < 2 || cinfo->pck_div > 255)
  2076. return -EINVAL;
  2077. cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
  2078. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2079. return 0;
  2080. }
  2081. int dispc_set_clock_div(struct dispc_clock_info *cinfo)
  2082. {
  2083. DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
  2084. DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
  2085. dispc_set_lcd_divisor(cinfo->lck_div, cinfo->pck_div);
  2086. return 0;
  2087. }
  2088. int dispc_get_clock_div(struct dispc_clock_info *cinfo)
  2089. {
  2090. unsigned long fck;
  2091. fck = dispc_fclk_rate();
  2092. cinfo->lck_div = REG_GET(DISPC_DIVISOR, 23, 16);
  2093. cinfo->pck_div = REG_GET(DISPC_DIVISOR, 7, 0);
  2094. cinfo->lck = fck / cinfo->lck_div;
  2095. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2096. return 0;
  2097. }
  2098. /* dispc.irq_lock has to be locked by the caller */
  2099. static void _omap_dispc_set_irqs(void)
  2100. {
  2101. u32 mask;
  2102. u32 old_mask;
  2103. int i;
  2104. struct omap_dispc_isr_data *isr_data;
  2105. mask = dispc.irq_error_mask;
  2106. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2107. isr_data = &dispc.registered_isr[i];
  2108. if (isr_data->isr == NULL)
  2109. continue;
  2110. mask |= isr_data->mask;
  2111. }
  2112. enable_clocks(1);
  2113. old_mask = dispc_read_reg(DISPC_IRQENABLE);
  2114. /* clear the irqstatus for newly enabled irqs */
  2115. dispc_write_reg(DISPC_IRQSTATUS, (mask ^ old_mask) & mask);
  2116. dispc_write_reg(DISPC_IRQENABLE, mask);
  2117. enable_clocks(0);
  2118. }
  2119. int omap_dispc_register_isr(omap_dispc_isr_t isr, void *arg, u32 mask)
  2120. {
  2121. int i;
  2122. int ret;
  2123. unsigned long flags;
  2124. struct omap_dispc_isr_data *isr_data;
  2125. if (isr == NULL)
  2126. return -EINVAL;
  2127. spin_lock_irqsave(&dispc.irq_lock, flags);
  2128. /* check for duplicate entry */
  2129. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2130. isr_data = &dispc.registered_isr[i];
  2131. if (isr_data->isr == isr && isr_data->arg == arg &&
  2132. isr_data->mask == mask) {
  2133. ret = -EINVAL;
  2134. goto err;
  2135. }
  2136. }
  2137. isr_data = NULL;
  2138. ret = -EBUSY;
  2139. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2140. isr_data = &dispc.registered_isr[i];
  2141. if (isr_data->isr != NULL)
  2142. continue;
  2143. isr_data->isr = isr;
  2144. isr_data->arg = arg;
  2145. isr_data->mask = mask;
  2146. ret = 0;
  2147. break;
  2148. }
  2149. _omap_dispc_set_irqs();
  2150. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2151. return 0;
  2152. err:
  2153. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2154. return ret;
  2155. }
  2156. EXPORT_SYMBOL(omap_dispc_register_isr);
  2157. int omap_dispc_unregister_isr(omap_dispc_isr_t isr, void *arg, u32 mask)
  2158. {
  2159. int i;
  2160. unsigned long flags;
  2161. int ret = -EINVAL;
  2162. struct omap_dispc_isr_data *isr_data;
  2163. spin_lock_irqsave(&dispc.irq_lock, flags);
  2164. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2165. isr_data = &dispc.registered_isr[i];
  2166. if (isr_data->isr != isr || isr_data->arg != arg ||
  2167. isr_data->mask != mask)
  2168. continue;
  2169. /* found the correct isr */
  2170. isr_data->isr = NULL;
  2171. isr_data->arg = NULL;
  2172. isr_data->mask = 0;
  2173. ret = 0;
  2174. break;
  2175. }
  2176. if (ret == 0)
  2177. _omap_dispc_set_irqs();
  2178. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2179. return ret;
  2180. }
  2181. EXPORT_SYMBOL(omap_dispc_unregister_isr);
  2182. #ifdef DEBUG
  2183. static void print_irq_status(u32 status)
  2184. {
  2185. if ((status & dispc.irq_error_mask) == 0)
  2186. return;
  2187. printk(KERN_DEBUG "DISPC IRQ: 0x%x: ", status);
  2188. #define PIS(x) \
  2189. if (status & DISPC_IRQ_##x) \
  2190. printk(#x " ");
  2191. PIS(GFX_FIFO_UNDERFLOW);
  2192. PIS(OCP_ERR);
  2193. PIS(VID1_FIFO_UNDERFLOW);
  2194. PIS(VID2_FIFO_UNDERFLOW);
  2195. PIS(SYNC_LOST);
  2196. PIS(SYNC_LOST_DIGIT);
  2197. #undef PIS
  2198. printk("\n");
  2199. }
  2200. #endif
  2201. /* Called from dss.c. Note that we don't touch clocks here,
  2202. * but we presume they are on because we got an IRQ. However,
  2203. * an irq handler may turn the clocks off, so we may not have
  2204. * clock later in the function. */
  2205. void dispc_irq_handler(void)
  2206. {
  2207. int i;
  2208. u32 irqstatus;
  2209. u32 handledirqs = 0;
  2210. u32 unhandled_errors;
  2211. struct omap_dispc_isr_data *isr_data;
  2212. struct omap_dispc_isr_data registered_isr[DISPC_MAX_NR_ISRS];
  2213. spin_lock(&dispc.irq_lock);
  2214. irqstatus = dispc_read_reg(DISPC_IRQSTATUS);
  2215. #ifdef DEBUG
  2216. if (dss_debug)
  2217. print_irq_status(irqstatus);
  2218. #endif
  2219. /* Ack the interrupt. Do it here before clocks are possibly turned
  2220. * off */
  2221. dispc_write_reg(DISPC_IRQSTATUS, irqstatus);
  2222. /* flush posted write */
  2223. dispc_read_reg(DISPC_IRQSTATUS);
  2224. /* make a copy and unlock, so that isrs can unregister
  2225. * themselves */
  2226. memcpy(registered_isr, dispc.registered_isr,
  2227. sizeof(registered_isr));
  2228. spin_unlock(&dispc.irq_lock);
  2229. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2230. isr_data = &registered_isr[i];
  2231. if (!isr_data->isr)
  2232. continue;
  2233. if (isr_data->mask & irqstatus) {
  2234. isr_data->isr(isr_data->arg, irqstatus);
  2235. handledirqs |= isr_data->mask;
  2236. }
  2237. }
  2238. spin_lock(&dispc.irq_lock);
  2239. unhandled_errors = irqstatus & ~handledirqs & dispc.irq_error_mask;
  2240. if (unhandled_errors) {
  2241. dispc.error_irqs |= unhandled_errors;
  2242. dispc.irq_error_mask &= ~unhandled_errors;
  2243. _omap_dispc_set_irqs();
  2244. schedule_work(&dispc.error_work);
  2245. }
  2246. spin_unlock(&dispc.irq_lock);
  2247. }
  2248. static void dispc_error_worker(struct work_struct *work)
  2249. {
  2250. int i;
  2251. u32 errors;
  2252. unsigned long flags;
  2253. spin_lock_irqsave(&dispc.irq_lock, flags);
  2254. errors = dispc.error_irqs;
  2255. dispc.error_irqs = 0;
  2256. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2257. if (errors & DISPC_IRQ_GFX_FIFO_UNDERFLOW) {
  2258. DSSERR("GFX_FIFO_UNDERFLOW, disabling GFX\n");
  2259. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2260. struct omap_overlay *ovl;
  2261. ovl = omap_dss_get_overlay(i);
  2262. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2263. continue;
  2264. if (ovl->id == 0) {
  2265. dispc_enable_plane(ovl->id, 0);
  2266. dispc_go(ovl->manager->id);
  2267. mdelay(50);
  2268. break;
  2269. }
  2270. }
  2271. }
  2272. if (errors & DISPC_IRQ_VID1_FIFO_UNDERFLOW) {
  2273. DSSERR("VID1_FIFO_UNDERFLOW, disabling VID1\n");
  2274. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2275. struct omap_overlay *ovl;
  2276. ovl = omap_dss_get_overlay(i);
  2277. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2278. continue;
  2279. if (ovl->id == 1) {
  2280. dispc_enable_plane(ovl->id, 0);
  2281. dispc_go(ovl->manager->id);
  2282. mdelay(50);
  2283. break;
  2284. }
  2285. }
  2286. }
  2287. if (errors & DISPC_IRQ_VID2_FIFO_UNDERFLOW) {
  2288. DSSERR("VID2_FIFO_UNDERFLOW, disabling VID2\n");
  2289. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2290. struct omap_overlay *ovl;
  2291. ovl = omap_dss_get_overlay(i);
  2292. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2293. continue;
  2294. if (ovl->id == 2) {
  2295. dispc_enable_plane(ovl->id, 0);
  2296. dispc_go(ovl->manager->id);
  2297. mdelay(50);
  2298. break;
  2299. }
  2300. }
  2301. }
  2302. if (errors & DISPC_IRQ_SYNC_LOST) {
  2303. struct omap_overlay_manager *manager = NULL;
  2304. bool enable = false;
  2305. DSSERR("SYNC_LOST, disabling LCD\n");
  2306. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2307. struct omap_overlay_manager *mgr;
  2308. mgr = omap_dss_get_overlay_manager(i);
  2309. if (mgr->id == OMAP_DSS_CHANNEL_LCD) {
  2310. manager = mgr;
  2311. enable = mgr->device->state ==
  2312. OMAP_DSS_DISPLAY_ACTIVE;
  2313. mgr->device->disable(mgr->device);
  2314. break;
  2315. }
  2316. }
  2317. if (manager) {
  2318. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2319. struct omap_overlay *ovl;
  2320. ovl = omap_dss_get_overlay(i);
  2321. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2322. continue;
  2323. if (ovl->id != 0 && ovl->manager == manager)
  2324. dispc_enable_plane(ovl->id, 0);
  2325. }
  2326. dispc_go(manager->id);
  2327. mdelay(50);
  2328. if (enable)
  2329. manager->device->enable(manager->device);
  2330. }
  2331. }
  2332. if (errors & DISPC_IRQ_SYNC_LOST_DIGIT) {
  2333. struct omap_overlay_manager *manager = NULL;
  2334. bool enable = false;
  2335. DSSERR("SYNC_LOST_DIGIT, disabling TV\n");
  2336. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2337. struct omap_overlay_manager *mgr;
  2338. mgr = omap_dss_get_overlay_manager(i);
  2339. if (mgr->id == OMAP_DSS_CHANNEL_DIGIT) {
  2340. manager = mgr;
  2341. enable = mgr->device->state ==
  2342. OMAP_DSS_DISPLAY_ACTIVE;
  2343. mgr->device->disable(mgr->device);
  2344. break;
  2345. }
  2346. }
  2347. if (manager) {
  2348. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2349. struct omap_overlay *ovl;
  2350. ovl = omap_dss_get_overlay(i);
  2351. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2352. continue;
  2353. if (ovl->id != 0 && ovl->manager == manager)
  2354. dispc_enable_plane(ovl->id, 0);
  2355. }
  2356. dispc_go(manager->id);
  2357. mdelay(50);
  2358. if (enable)
  2359. manager->device->enable(manager->device);
  2360. }
  2361. }
  2362. if (errors & DISPC_IRQ_OCP_ERR) {
  2363. DSSERR("OCP_ERR\n");
  2364. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2365. struct omap_overlay_manager *mgr;
  2366. mgr = omap_dss_get_overlay_manager(i);
  2367. if (mgr->caps & OMAP_DSS_OVL_CAP_DISPC)
  2368. mgr->device->disable(mgr->device);
  2369. }
  2370. }
  2371. spin_lock_irqsave(&dispc.irq_lock, flags);
  2372. dispc.irq_error_mask |= errors;
  2373. _omap_dispc_set_irqs();
  2374. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2375. }
  2376. int omap_dispc_wait_for_irq_timeout(u32 irqmask, unsigned long timeout)
  2377. {
  2378. void dispc_irq_wait_handler(void *data, u32 mask)
  2379. {
  2380. complete((struct completion *)data);
  2381. }
  2382. int r;
  2383. DECLARE_COMPLETION_ONSTACK(completion);
  2384. r = omap_dispc_register_isr(dispc_irq_wait_handler, &completion,
  2385. irqmask);
  2386. if (r)
  2387. return r;
  2388. timeout = wait_for_completion_timeout(&completion, timeout);
  2389. omap_dispc_unregister_isr(dispc_irq_wait_handler, &completion, irqmask);
  2390. if (timeout == 0)
  2391. return -ETIMEDOUT;
  2392. if (timeout == -ERESTARTSYS)
  2393. return -ERESTARTSYS;
  2394. return 0;
  2395. }
  2396. int omap_dispc_wait_for_irq_interruptible_timeout(u32 irqmask,
  2397. unsigned long timeout)
  2398. {
  2399. void dispc_irq_wait_handler(void *data, u32 mask)
  2400. {
  2401. complete((struct completion *)data);
  2402. }
  2403. int r;
  2404. DECLARE_COMPLETION_ONSTACK(completion);
  2405. r = omap_dispc_register_isr(dispc_irq_wait_handler, &completion,
  2406. irqmask);
  2407. if (r)
  2408. return r;
  2409. timeout = wait_for_completion_interruptible_timeout(&completion,
  2410. timeout);
  2411. omap_dispc_unregister_isr(dispc_irq_wait_handler, &completion, irqmask);
  2412. if (timeout == 0)
  2413. return -ETIMEDOUT;
  2414. if (timeout == -ERESTARTSYS)
  2415. return -ERESTARTSYS;
  2416. return 0;
  2417. }
  2418. #ifdef CONFIG_OMAP2_DSS_FAKE_VSYNC
  2419. void dispc_fake_vsync_irq(void)
  2420. {
  2421. u32 irqstatus = DISPC_IRQ_VSYNC;
  2422. int i;
  2423. local_irq_disable();
  2424. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2425. struct omap_dispc_isr_data *isr_data;
  2426. isr_data = &dispc.registered_isr[i];
  2427. if (!isr_data->isr)
  2428. continue;
  2429. if (isr_data->mask & irqstatus)
  2430. isr_data->isr(isr_data->arg, irqstatus);
  2431. }
  2432. local_irq_enable();
  2433. }
  2434. #endif
  2435. static void _omap_dispc_initialize_irq(void)
  2436. {
  2437. unsigned long flags;
  2438. spin_lock_irqsave(&dispc.irq_lock, flags);
  2439. memset(dispc.registered_isr, 0, sizeof(dispc.registered_isr));
  2440. dispc.irq_error_mask = DISPC_IRQ_MASK_ERROR;
  2441. /* there's SYNC_LOST_DIGIT waiting after enabling the DSS,
  2442. * so clear it */
  2443. dispc_write_reg(DISPC_IRQSTATUS, dispc_read_reg(DISPC_IRQSTATUS));
  2444. _omap_dispc_set_irqs();
  2445. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2446. }
  2447. void dispc_enable_sidle(void)
  2448. {
  2449. REG_FLD_MOD(DISPC_SYSCONFIG, 2, 4, 3); /* SIDLEMODE: smart idle */
  2450. }
  2451. void dispc_disable_sidle(void)
  2452. {
  2453. REG_FLD_MOD(DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */
  2454. }
  2455. static void _omap_dispc_initial_config(void)
  2456. {
  2457. u32 l;
  2458. l = dispc_read_reg(DISPC_SYSCONFIG);
  2459. l = FLD_MOD(l, 2, 13, 12); /* MIDLEMODE: smart standby */
  2460. l = FLD_MOD(l, 2, 4, 3); /* SIDLEMODE: smart idle */
  2461. l = FLD_MOD(l, 1, 2, 2); /* ENWAKEUP */
  2462. l = FLD_MOD(l, 1, 0, 0); /* AUTOIDLE */
  2463. dispc_write_reg(DISPC_SYSCONFIG, l);
  2464. /* FUNCGATED */
  2465. REG_FLD_MOD(DISPC_CONFIG, 1, 9, 9);
  2466. /* L3 firewall setting: enable access to OCM RAM */
  2467. /* XXX this should be somewhere in plat-omap */
  2468. if (cpu_is_omap24xx())
  2469. __raw_writel(0x402000b0, OMAP2_L3_IO_ADDRESS(0x680050a0));
  2470. _dispc_setup_color_conv_coef();
  2471. dispc_set_loadmode(OMAP_DSS_LOAD_FRAME_ONLY);
  2472. dispc_read_plane_fifo_sizes();
  2473. }
  2474. int dispc_init(void)
  2475. {
  2476. u32 rev;
  2477. spin_lock_init(&dispc.irq_lock);
  2478. INIT_WORK(&dispc.error_work, dispc_error_worker);
  2479. dispc.base = ioremap(DISPC_BASE, DISPC_SZ_REGS);
  2480. if (!dispc.base) {
  2481. DSSERR("can't ioremap DISPC\n");
  2482. return -ENOMEM;
  2483. }
  2484. enable_clocks(1);
  2485. _omap_dispc_initial_config();
  2486. _omap_dispc_initialize_irq();
  2487. dispc_save_context();
  2488. rev = dispc_read_reg(DISPC_REVISION);
  2489. printk(KERN_INFO "OMAP DISPC rev %d.%d\n",
  2490. FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
  2491. enable_clocks(0);
  2492. return 0;
  2493. }
  2494. void dispc_exit(void)
  2495. {
  2496. iounmap(dispc.base);
  2497. }
  2498. int dispc_enable_plane(enum omap_plane plane, bool enable)
  2499. {
  2500. DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
  2501. enable_clocks(1);
  2502. _dispc_enable_plane(plane, enable);
  2503. enable_clocks(0);
  2504. return 0;
  2505. }
  2506. int dispc_setup_plane(enum omap_plane plane,
  2507. u32 paddr, u16 screen_width,
  2508. u16 pos_x, u16 pos_y,
  2509. u16 width, u16 height,
  2510. u16 out_width, u16 out_height,
  2511. enum omap_color_mode color_mode,
  2512. bool ilace,
  2513. enum omap_dss_rotation_type rotation_type,
  2514. u8 rotation, bool mirror, u8 global_alpha)
  2515. {
  2516. int r = 0;
  2517. DSSDBG("dispc_setup_plane %d, pa %x, sw %d, %d,%d, %dx%d -> "
  2518. "%dx%d, ilace %d, cmode %x, rot %d, mir %d\n",
  2519. plane, paddr, screen_width, pos_x, pos_y,
  2520. width, height,
  2521. out_width, out_height,
  2522. ilace, color_mode,
  2523. rotation, mirror);
  2524. enable_clocks(1);
  2525. r = _dispc_setup_plane(plane,
  2526. paddr, screen_width,
  2527. pos_x, pos_y,
  2528. width, height,
  2529. out_width, out_height,
  2530. color_mode, ilace,
  2531. rotation_type,
  2532. rotation, mirror,
  2533. global_alpha);
  2534. enable_clocks(0);
  2535. return r;
  2536. }