hp_sdc_rtc.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712
  1. /*
  2. * HP i8042 SDC + MSM-58321 BBRTC driver.
  3. *
  4. * Copyright (c) 2001 Brian S. Julin
  5. * All rights reserved.
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions
  9. * are met:
  10. * 1. Redistributions of source code must retain the above copyright
  11. * notice, this list of conditions, and the following disclaimer,
  12. * without modification.
  13. * 2. The name of the author may not be used to endorse or promote products
  14. * derived from this software without specific prior written permission.
  15. *
  16. * Alternatively, this software may be distributed under the terms of the
  17. * GNU General Public License ("GPL").
  18. *
  19. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  20. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  21. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  22. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
  23. * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  24. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  25. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  26. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  27. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  28. *
  29. * References:
  30. * System Device Controller Microprocessor Firmware Theory of Operation
  31. * for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2
  32. * efirtc.c by Stephane Eranian/Hewlett Packard
  33. *
  34. */
  35. #include <linux/hp_sdc.h>
  36. #include <linux/errno.h>
  37. #include <linux/types.h>
  38. #include <linux/init.h>
  39. #include <linux/module.h>
  40. #include <linux/time.h>
  41. #include <linux/miscdevice.h>
  42. #include <linux/proc_fs.h>
  43. #include <linux/poll.h>
  44. #include <linux/rtc.h>
  45. #include <linux/semaphore.h>
  46. MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
  47. MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
  48. MODULE_LICENSE("Dual BSD/GPL");
  49. #define RTC_VERSION "1.10d"
  50. static unsigned long epoch = 2000;
  51. static struct semaphore i8042tregs;
  52. static hp_sdc_irqhook hp_sdc_rtc_isr;
  53. static struct fasync_struct *hp_sdc_rtc_async_queue;
  54. static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait);
  55. static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
  56. size_t count, loff_t *ppos);
  57. static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file,
  58. unsigned int cmd, unsigned long arg);
  59. static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait);
  60. static int hp_sdc_rtc_open(struct inode *inode, struct file *file);
  61. static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on);
  62. static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
  63. int count, int *eof, void *data);
  64. static void hp_sdc_rtc_isr (int irq, void *dev_id,
  65. uint8_t status, uint8_t data)
  66. {
  67. return;
  68. }
  69. static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
  70. {
  71. struct semaphore tsem;
  72. hp_sdc_transaction t;
  73. uint8_t tseq[91];
  74. int i;
  75. i = 0;
  76. while (i < 91) {
  77. tseq[i++] = HP_SDC_ACT_DATAREG |
  78. HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN;
  79. tseq[i++] = 0x01; /* write i8042[0x70] */
  80. tseq[i] = i / 7; /* BBRTC reg address */
  81. i++;
  82. tseq[i++] = HP_SDC_CMD_DO_RTCR; /* Trigger command */
  83. tseq[i++] = 2; /* expect 1 stat/dat pair back. */
  84. i++; i++; /* buffer for stat/dat pair */
  85. }
  86. tseq[84] |= HP_SDC_ACT_SEMAPHORE;
  87. t.endidx = 91;
  88. t.seq = tseq;
  89. t.act.semaphore = &tsem;
  90. init_MUTEX_LOCKED(&tsem);
  91. if (hp_sdc_enqueue_transaction(&t)) return -1;
  92. down_interruptible(&tsem); /* Put ourselves to sleep for results. */
  93. /* Check for nonpresence of BBRTC */
  94. if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
  95. tseq[55] | tseq[62] | tseq[34] | tseq[41] |
  96. tseq[20] | tseq[27] | tseq[6] | tseq[13]) & 0x0f))
  97. return -1;
  98. memset(rtctm, 0, sizeof(struct rtc_time));
  99. rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
  100. rtctm->tm_mon = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
  101. rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
  102. rtctm->tm_wday = (tseq[48] & 0x0f);
  103. rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
  104. rtctm->tm_min = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
  105. rtctm->tm_sec = (tseq[6] & 0x0f) + (tseq[13] & 0x0f) * 10;
  106. return 0;
  107. }
  108. static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
  109. {
  110. struct rtc_time tm, tm_last;
  111. int i = 0;
  112. /* MSM-58321 has no read latch, so must read twice and compare. */
  113. if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
  114. if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
  115. while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
  116. if (i++ > 4) return -1;
  117. memcpy(&tm_last, &tm, sizeof(struct rtc_time));
  118. if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
  119. }
  120. memcpy(rtctm, &tm, sizeof(struct rtc_time));
  121. return 0;
  122. }
  123. static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
  124. {
  125. hp_sdc_transaction t;
  126. uint8_t tseq[26] = {
  127. HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
  128. 0,
  129. HP_SDC_CMD_READ_T1, 2, 0, 0,
  130. HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
  131. HP_SDC_CMD_READ_T2, 2, 0, 0,
  132. HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
  133. HP_SDC_CMD_READ_T3, 2, 0, 0,
  134. HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
  135. HP_SDC_CMD_READ_T4, 2, 0, 0,
  136. HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
  137. HP_SDC_CMD_READ_T5, 2, 0, 0
  138. };
  139. t.endidx = numreg * 5;
  140. tseq[1] = loadcmd;
  141. tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */
  142. t.seq = tseq;
  143. t.act.semaphore = &i8042tregs;
  144. down_interruptible(&i8042tregs); /* Sleep if output regs in use. */
  145. if (hp_sdc_enqueue_transaction(&t)) return -1;
  146. down_interruptible(&i8042tregs); /* Sleep until results come back. */
  147. up(&i8042tregs);
  148. return (tseq[5] |
  149. ((uint64_t)(tseq[10]) << 8) | ((uint64_t)(tseq[15]) << 16) |
  150. ((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
  151. }
  152. /* Read the i8042 real-time clock */
  153. static inline int hp_sdc_rtc_read_rt(struct timeval *res) {
  154. int64_t raw;
  155. uint32_t tenms;
  156. unsigned int days;
  157. raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
  158. if (raw < 0) return -1;
  159. tenms = (uint32_t)raw & 0xffffff;
  160. days = (unsigned int)(raw >> 24) & 0xffff;
  161. res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
  162. res->tv_sec = (time_t)(tenms / 100) + days * 86400;
  163. return 0;
  164. }
  165. /* Read the i8042 fast handshake timer */
  166. static inline int hp_sdc_rtc_read_fhs(struct timeval *res) {
  167. int64_t raw;
  168. unsigned int tenms;
  169. raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
  170. if (raw < 0) return -1;
  171. tenms = (unsigned int)raw & 0xffff;
  172. res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
  173. res->tv_sec = (time_t)(tenms / 100);
  174. return 0;
  175. }
  176. /* Read the i8042 match timer (a.k.a. alarm) */
  177. static inline int hp_sdc_rtc_read_mt(struct timeval *res) {
  178. int64_t raw;
  179. uint32_t tenms;
  180. raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
  181. if (raw < 0) return -1;
  182. tenms = (uint32_t)raw & 0xffffff;
  183. res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
  184. res->tv_sec = (time_t)(tenms / 100);
  185. return 0;
  186. }
  187. /* Read the i8042 delay timer */
  188. static inline int hp_sdc_rtc_read_dt(struct timeval *res) {
  189. int64_t raw;
  190. uint32_t tenms;
  191. raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
  192. if (raw < 0) return -1;
  193. tenms = (uint32_t)raw & 0xffffff;
  194. res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
  195. res->tv_sec = (time_t)(tenms / 100);
  196. return 0;
  197. }
  198. /* Read the i8042 cycle timer (a.k.a. periodic) */
  199. static inline int hp_sdc_rtc_read_ct(struct timeval *res) {
  200. int64_t raw;
  201. uint32_t tenms;
  202. raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
  203. if (raw < 0) return -1;
  204. tenms = (uint32_t)raw & 0xffffff;
  205. res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
  206. res->tv_sec = (time_t)(tenms / 100);
  207. return 0;
  208. }
  209. /* Set the i8042 real-time clock */
  210. static int hp_sdc_rtc_set_rt (struct timeval *setto)
  211. {
  212. uint32_t tenms;
  213. unsigned int days;
  214. hp_sdc_transaction t;
  215. uint8_t tseq[11] = {
  216. HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
  217. HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0,
  218. HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
  219. HP_SDC_CMD_SET_RTD, 2, 0, 0
  220. };
  221. t.endidx = 10;
  222. if (0xffff < setto->tv_sec / 86400) return -1;
  223. days = setto->tv_sec / 86400;
  224. if (0xffff < setto->tv_usec / 1000000 / 86400) return -1;
  225. days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400;
  226. if (days > 0xffff) return -1;
  227. if (0xffffff < setto->tv_sec) return -1;
  228. tenms = setto->tv_sec * 100;
  229. if (0xffffff < setto->tv_usec / 10000) return -1;
  230. tenms += setto->tv_usec / 10000;
  231. if (tenms > 0xffffff) return -1;
  232. tseq[3] = (uint8_t)(tenms & 0xff);
  233. tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
  234. tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
  235. tseq[9] = (uint8_t)(days & 0xff);
  236. tseq[10] = (uint8_t)((days >> 8) & 0xff);
  237. t.seq = tseq;
  238. if (hp_sdc_enqueue_transaction(&t)) return -1;
  239. return 0;
  240. }
  241. /* Set the i8042 fast handshake timer */
  242. static int hp_sdc_rtc_set_fhs (struct timeval *setto)
  243. {
  244. uint32_t tenms;
  245. hp_sdc_transaction t;
  246. uint8_t tseq[5] = {
  247. HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
  248. HP_SDC_CMD_SET_FHS, 2, 0, 0
  249. };
  250. t.endidx = 4;
  251. if (0xffff < setto->tv_sec) return -1;
  252. tenms = setto->tv_sec * 100;
  253. if (0xffff < setto->tv_usec / 10000) return -1;
  254. tenms += setto->tv_usec / 10000;
  255. if (tenms > 0xffff) return -1;
  256. tseq[3] = (uint8_t)(tenms & 0xff);
  257. tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
  258. t.seq = tseq;
  259. if (hp_sdc_enqueue_transaction(&t)) return -1;
  260. return 0;
  261. }
  262. /* Set the i8042 match timer (a.k.a. alarm) */
  263. #define hp_sdc_rtc_set_mt (setto) \
  264. hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT)
  265. /* Set the i8042 delay timer */
  266. #define hp_sdc_rtc_set_dt (setto) \
  267. hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT)
  268. /* Set the i8042 cycle timer (a.k.a. periodic) */
  269. #define hp_sdc_rtc_set_ct (setto) \
  270. hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT)
  271. /* Set one of the i8042 3-byte wide timers */
  272. static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd)
  273. {
  274. uint32_t tenms;
  275. hp_sdc_transaction t;
  276. uint8_t tseq[6] = {
  277. HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
  278. 0, 3, 0, 0, 0
  279. };
  280. t.endidx = 6;
  281. if (0xffffff < setto->tv_sec) return -1;
  282. tenms = setto->tv_sec * 100;
  283. if (0xffffff < setto->tv_usec / 10000) return -1;
  284. tenms += setto->tv_usec / 10000;
  285. if (tenms > 0xffffff) return -1;
  286. tseq[1] = setcmd;
  287. tseq[3] = (uint8_t)(tenms & 0xff);
  288. tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
  289. tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
  290. t.seq = tseq;
  291. if (hp_sdc_enqueue_transaction(&t)) {
  292. return -1;
  293. }
  294. return 0;
  295. }
  296. static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
  297. size_t count, loff_t *ppos) {
  298. ssize_t retval;
  299. if (count < sizeof(unsigned long))
  300. return -EINVAL;
  301. retval = put_user(68, (unsigned long __user *)buf);
  302. return retval;
  303. }
  304. static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait)
  305. {
  306. unsigned long l;
  307. l = 0;
  308. if (l != 0)
  309. return POLLIN | POLLRDNORM;
  310. return 0;
  311. }
  312. static int hp_sdc_rtc_open(struct inode *inode, struct file *file)
  313. {
  314. return 0;
  315. }
  316. static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on)
  317. {
  318. return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue);
  319. }
  320. static int hp_sdc_rtc_proc_output (char *buf)
  321. {
  322. #define YN(bit) ("no")
  323. #define NY(bit) ("yes")
  324. char *p;
  325. struct rtc_time tm;
  326. struct timeval tv;
  327. memset(&tm, 0, sizeof(struct rtc_time));
  328. p = buf;
  329. if (hp_sdc_rtc_read_bbrtc(&tm)) {
  330. p += sprintf(p, "BBRTC\t\t: READ FAILED!\n");
  331. } else {
  332. p += sprintf(p,
  333. "rtc_time\t: %02d:%02d:%02d\n"
  334. "rtc_date\t: %04d-%02d-%02d\n"
  335. "rtc_epoch\t: %04lu\n",
  336. tm.tm_hour, tm.tm_min, tm.tm_sec,
  337. tm.tm_year + 1900, tm.tm_mon + 1,
  338. tm.tm_mday, epoch);
  339. }
  340. if (hp_sdc_rtc_read_rt(&tv)) {
  341. p += sprintf(p, "i8042 rtc\t: READ FAILED!\n");
  342. } else {
  343. p += sprintf(p, "i8042 rtc\t: %ld.%02d seconds\n",
  344. tv.tv_sec, (int)tv.tv_usec/1000);
  345. }
  346. if (hp_sdc_rtc_read_fhs(&tv)) {
  347. p += sprintf(p, "handshake\t: READ FAILED!\n");
  348. } else {
  349. p += sprintf(p, "handshake\t: %ld.%02d seconds\n",
  350. tv.tv_sec, (int)tv.tv_usec/1000);
  351. }
  352. if (hp_sdc_rtc_read_mt(&tv)) {
  353. p += sprintf(p, "alarm\t\t: READ FAILED!\n");
  354. } else {
  355. p += sprintf(p, "alarm\t\t: %ld.%02d seconds\n",
  356. tv.tv_sec, (int)tv.tv_usec/1000);
  357. }
  358. if (hp_sdc_rtc_read_dt(&tv)) {
  359. p += sprintf(p, "delay\t\t: READ FAILED!\n");
  360. } else {
  361. p += sprintf(p, "delay\t\t: %ld.%02d seconds\n",
  362. tv.tv_sec, (int)tv.tv_usec/1000);
  363. }
  364. if (hp_sdc_rtc_read_ct(&tv)) {
  365. p += sprintf(p, "periodic\t: READ FAILED!\n");
  366. } else {
  367. p += sprintf(p, "periodic\t: %ld.%02d seconds\n",
  368. tv.tv_sec, (int)tv.tv_usec/1000);
  369. }
  370. p += sprintf(p,
  371. "DST_enable\t: %s\n"
  372. "BCD\t\t: %s\n"
  373. "24hr\t\t: %s\n"
  374. "square_wave\t: %s\n"
  375. "alarm_IRQ\t: %s\n"
  376. "update_IRQ\t: %s\n"
  377. "periodic_IRQ\t: %s\n"
  378. "periodic_freq\t: %ld\n"
  379. "batt_status\t: %s\n",
  380. YN(RTC_DST_EN),
  381. NY(RTC_DM_BINARY),
  382. YN(RTC_24H),
  383. YN(RTC_SQWE),
  384. YN(RTC_AIE),
  385. YN(RTC_UIE),
  386. YN(RTC_PIE),
  387. 1UL,
  388. 1 ? "okay" : "dead");
  389. return p - buf;
  390. #undef YN
  391. #undef NY
  392. }
  393. static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
  394. int count, int *eof, void *data)
  395. {
  396. int len = hp_sdc_rtc_proc_output (page);
  397. if (len <= off+count) *eof = 1;
  398. *start = page + off;
  399. len -= off;
  400. if (len>count) len = count;
  401. if (len<0) len = 0;
  402. return len;
  403. }
  404. static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file,
  405. unsigned int cmd, unsigned long arg)
  406. {
  407. #if 1
  408. return -EINVAL;
  409. #else
  410. struct rtc_time wtime;
  411. struct timeval ttime;
  412. int use_wtime = 0;
  413. /* This needs major work. */
  414. switch (cmd) {
  415. case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
  416. case RTC_AIE_ON: /* Allow alarm interrupts. */
  417. case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
  418. case RTC_PIE_ON: /* Allow periodic ints */
  419. case RTC_UIE_ON: /* Allow ints for RTC updates. */
  420. case RTC_UIE_OFF: /* Allow ints for RTC updates. */
  421. {
  422. /* We cannot mask individual user timers and we
  423. cannot tell them apart when they occur, so it
  424. would be disingenuous to succeed these IOCTLs */
  425. return -EINVAL;
  426. }
  427. case RTC_ALM_READ: /* Read the present alarm time */
  428. {
  429. if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT;
  430. if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
  431. wtime.tm_hour = ttime.tv_sec / 3600; ttime.tv_sec %= 3600;
  432. wtime.tm_min = ttime.tv_sec / 60; ttime.tv_sec %= 60;
  433. wtime.tm_sec = ttime.tv_sec;
  434. break;
  435. }
  436. case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
  437. {
  438. return put_user(hp_sdc_rtc_freq, (unsigned long *)arg);
  439. }
  440. case RTC_IRQP_SET: /* Set periodic IRQ rate. */
  441. {
  442. /*
  443. * The max we can do is 100Hz.
  444. */
  445. if ((arg < 1) || (arg > 100)) return -EINVAL;
  446. ttime.tv_sec = 0;
  447. ttime.tv_usec = 1000000 / arg;
  448. if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT;
  449. hp_sdc_rtc_freq = arg;
  450. return 0;
  451. }
  452. case RTC_ALM_SET: /* Store a time into the alarm */
  453. {
  454. /*
  455. * This expects a struct hp_sdc_rtc_time. Writing 0xff means
  456. * "don't care" or "match all" for PC timers. The HP SDC
  457. * does not support that perk, but it could be emulated fairly
  458. * easily. Only the tm_hour, tm_min and tm_sec are used.
  459. * We could do it with 10ms accuracy with the HP SDC, if the
  460. * rtc interface left us a way to do that.
  461. */
  462. struct hp_sdc_rtc_time alm_tm;
  463. if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg,
  464. sizeof(struct hp_sdc_rtc_time)))
  465. return -EFAULT;
  466. if (alm_tm.tm_hour > 23) return -EINVAL;
  467. if (alm_tm.tm_min > 59) return -EINVAL;
  468. if (alm_tm.tm_sec > 59) return -EINVAL;
  469. ttime.sec = alm_tm.tm_hour * 3600 +
  470. alm_tm.tm_min * 60 + alm_tm.tm_sec;
  471. ttime.usec = 0;
  472. if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT;
  473. return 0;
  474. }
  475. case RTC_RD_TIME: /* Read the time/date from RTC */
  476. {
  477. if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
  478. break;
  479. }
  480. case RTC_SET_TIME: /* Set the RTC */
  481. {
  482. struct rtc_time hp_sdc_rtc_tm;
  483. unsigned char mon, day, hrs, min, sec, leap_yr;
  484. unsigned int yrs;
  485. if (!capable(CAP_SYS_TIME))
  486. return -EACCES;
  487. if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg,
  488. sizeof(struct rtc_time)))
  489. return -EFAULT;
  490. yrs = hp_sdc_rtc_tm.tm_year + 1900;
  491. mon = hp_sdc_rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
  492. day = hp_sdc_rtc_tm.tm_mday;
  493. hrs = hp_sdc_rtc_tm.tm_hour;
  494. min = hp_sdc_rtc_tm.tm_min;
  495. sec = hp_sdc_rtc_tm.tm_sec;
  496. if (yrs < 1970)
  497. return -EINVAL;
  498. leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
  499. if ((mon > 12) || (day == 0))
  500. return -EINVAL;
  501. if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
  502. return -EINVAL;
  503. if ((hrs >= 24) || (min >= 60) || (sec >= 60))
  504. return -EINVAL;
  505. if ((yrs -= eH) > 255) /* They are unsigned */
  506. return -EINVAL;
  507. return 0;
  508. }
  509. case RTC_EPOCH_READ: /* Read the epoch. */
  510. {
  511. return put_user (epoch, (unsigned long *)arg);
  512. }
  513. case RTC_EPOCH_SET: /* Set the epoch. */
  514. {
  515. /*
  516. * There were no RTC clocks before 1900.
  517. */
  518. if (arg < 1900)
  519. return -EINVAL;
  520. if (!capable(CAP_SYS_TIME))
  521. return -EACCES;
  522. epoch = arg;
  523. return 0;
  524. }
  525. default:
  526. return -EINVAL;
  527. }
  528. return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
  529. #endif
  530. }
  531. static const struct file_operations hp_sdc_rtc_fops = {
  532. .owner = THIS_MODULE,
  533. .llseek = no_llseek,
  534. .read = hp_sdc_rtc_read,
  535. .poll = hp_sdc_rtc_poll,
  536. .ioctl = hp_sdc_rtc_ioctl,
  537. .open = hp_sdc_rtc_open,
  538. .fasync = hp_sdc_rtc_fasync,
  539. };
  540. static struct miscdevice hp_sdc_rtc_dev = {
  541. .minor = RTC_MINOR,
  542. .name = "rtc_HIL",
  543. .fops = &hp_sdc_rtc_fops
  544. };
  545. static int __init hp_sdc_rtc_init(void)
  546. {
  547. int ret;
  548. #ifdef __mc68000__
  549. if (!MACH_IS_HP300)
  550. return -ENODEV;
  551. #endif
  552. init_MUTEX(&i8042tregs);
  553. if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
  554. return ret;
  555. if (misc_register(&hp_sdc_rtc_dev) != 0)
  556. printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n");
  557. create_proc_read_entry ("driver/rtc", 0, NULL,
  558. hp_sdc_rtc_read_proc, NULL);
  559. printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
  560. "(RTC v " RTC_VERSION ")\n");
  561. return 0;
  562. }
  563. static void __exit hp_sdc_rtc_exit(void)
  564. {
  565. remove_proc_entry ("driver/rtc", NULL);
  566. misc_deregister(&hp_sdc_rtc_dev);
  567. hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
  568. printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
  569. }
  570. module_init(hp_sdc_rtc_init);
  571. module_exit(hp_sdc_rtc_exit);