input.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/types.h>
  13. #include <linux/input.h>
  14. #include <linux/module.h>
  15. #include <linux/random.h>
  16. #include <linux/major.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/sched.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/poll.h>
  21. #include <linux/device.h>
  22. #include <linux/mutex.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/smp_lock.h>
  25. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  26. MODULE_DESCRIPTION("Input core");
  27. MODULE_LICENSE("GPL");
  28. #define INPUT_DEVICES 256
  29. /*
  30. * EV_ABS events which should not be cached are listed here.
  31. */
  32. static unsigned int input_abs_bypass_init_data[] __initdata = {
  33. ABS_MT_TOUCH_MAJOR,
  34. ABS_MT_TOUCH_MINOR,
  35. ABS_MT_WIDTH_MAJOR,
  36. ABS_MT_WIDTH_MINOR,
  37. ABS_MT_ORIENTATION,
  38. ABS_MT_POSITION_X,
  39. ABS_MT_POSITION_Y,
  40. ABS_MT_TOOL_TYPE,
  41. ABS_MT_BLOB_ID,
  42. ABS_MT_TRACKING_ID,
  43. 0
  44. };
  45. static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
  46. static LIST_HEAD(input_dev_list);
  47. static LIST_HEAD(input_handler_list);
  48. /*
  49. * input_mutex protects access to both input_dev_list and input_handler_list.
  50. * This also causes input_[un]register_device and input_[un]register_handler
  51. * be mutually exclusive which simplifies locking in drivers implementing
  52. * input handlers.
  53. */
  54. static DEFINE_MUTEX(input_mutex);
  55. static struct input_handler *input_table[8];
  56. static inline int is_event_supported(unsigned int code,
  57. unsigned long *bm, unsigned int max)
  58. {
  59. return code <= max && test_bit(code, bm);
  60. }
  61. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  62. {
  63. if (fuzz) {
  64. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  65. return old_val;
  66. if (value > old_val - fuzz && value < old_val + fuzz)
  67. return (old_val * 3 + value) / 4;
  68. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  69. return (old_val + value) / 2;
  70. }
  71. return value;
  72. }
  73. /*
  74. * Pass event through all open handles. This function is called with
  75. * dev->event_lock held and interrupts disabled.
  76. */
  77. static void input_pass_event(struct input_dev *dev,
  78. unsigned int type, unsigned int code, int value)
  79. {
  80. struct input_handle *handle;
  81. rcu_read_lock();
  82. handle = rcu_dereference(dev->grab);
  83. if (handle)
  84. handle->handler->event(handle, type, code, value);
  85. else
  86. list_for_each_entry_rcu(handle, &dev->h_list, d_node)
  87. if (handle->open)
  88. handle->handler->event(handle,
  89. type, code, value);
  90. rcu_read_unlock();
  91. }
  92. /*
  93. * Generate software autorepeat event. Note that we take
  94. * dev->event_lock here to avoid racing with input_event
  95. * which may cause keys get "stuck".
  96. */
  97. static void input_repeat_key(unsigned long data)
  98. {
  99. struct input_dev *dev = (void *) data;
  100. unsigned long flags;
  101. spin_lock_irqsave(&dev->event_lock, flags);
  102. if (test_bit(dev->repeat_key, dev->key) &&
  103. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  104. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  105. if (dev->sync) {
  106. /*
  107. * Only send SYN_REPORT if we are not in a middle
  108. * of driver parsing a new hardware packet.
  109. * Otherwise assume that the driver will send
  110. * SYN_REPORT once it's done.
  111. */
  112. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  113. }
  114. if (dev->rep[REP_PERIOD])
  115. mod_timer(&dev->timer, jiffies +
  116. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  117. }
  118. spin_unlock_irqrestore(&dev->event_lock, flags);
  119. }
  120. static void input_start_autorepeat(struct input_dev *dev, int code)
  121. {
  122. if (test_bit(EV_REP, dev->evbit) &&
  123. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  124. dev->timer.data) {
  125. dev->repeat_key = code;
  126. mod_timer(&dev->timer,
  127. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  128. }
  129. }
  130. static void input_stop_autorepeat(struct input_dev *dev)
  131. {
  132. del_timer(&dev->timer);
  133. }
  134. #define INPUT_IGNORE_EVENT 0
  135. #define INPUT_PASS_TO_HANDLERS 1
  136. #define INPUT_PASS_TO_DEVICE 2
  137. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  138. static void input_handle_event(struct input_dev *dev,
  139. unsigned int type, unsigned int code, int value)
  140. {
  141. int disposition = INPUT_IGNORE_EVENT;
  142. switch (type) {
  143. case EV_SYN:
  144. switch (code) {
  145. case SYN_CONFIG:
  146. disposition = INPUT_PASS_TO_ALL;
  147. break;
  148. case SYN_REPORT:
  149. if (!dev->sync) {
  150. dev->sync = 1;
  151. disposition = INPUT_PASS_TO_HANDLERS;
  152. }
  153. break;
  154. case SYN_MT_REPORT:
  155. dev->sync = 0;
  156. disposition = INPUT_PASS_TO_HANDLERS;
  157. break;
  158. }
  159. break;
  160. case EV_KEY:
  161. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  162. !!test_bit(code, dev->key) != value) {
  163. if (value != 2) {
  164. __change_bit(code, dev->key);
  165. if (value)
  166. input_start_autorepeat(dev, code);
  167. else
  168. input_stop_autorepeat(dev);
  169. }
  170. disposition = INPUT_PASS_TO_HANDLERS;
  171. }
  172. break;
  173. case EV_SW:
  174. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  175. !!test_bit(code, dev->sw) != value) {
  176. __change_bit(code, dev->sw);
  177. disposition = INPUT_PASS_TO_HANDLERS;
  178. }
  179. break;
  180. case EV_ABS:
  181. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  182. if (test_bit(code, input_abs_bypass)) {
  183. disposition = INPUT_PASS_TO_HANDLERS;
  184. break;
  185. }
  186. value = input_defuzz_abs_event(value,
  187. dev->abs[code], dev->absfuzz[code]);
  188. if (dev->abs[code] != value) {
  189. dev->abs[code] = value;
  190. disposition = INPUT_PASS_TO_HANDLERS;
  191. }
  192. }
  193. break;
  194. case EV_REL:
  195. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  196. disposition = INPUT_PASS_TO_HANDLERS;
  197. break;
  198. case EV_MSC:
  199. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  200. disposition = INPUT_PASS_TO_ALL;
  201. break;
  202. case EV_LED:
  203. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  204. !!test_bit(code, dev->led) != value) {
  205. __change_bit(code, dev->led);
  206. disposition = INPUT_PASS_TO_ALL;
  207. }
  208. break;
  209. case EV_SND:
  210. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  211. if (!!test_bit(code, dev->snd) != !!value)
  212. __change_bit(code, dev->snd);
  213. disposition = INPUT_PASS_TO_ALL;
  214. }
  215. break;
  216. case EV_REP:
  217. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  218. dev->rep[code] = value;
  219. disposition = INPUT_PASS_TO_ALL;
  220. }
  221. break;
  222. case EV_FF:
  223. if (value >= 0)
  224. disposition = INPUT_PASS_TO_ALL;
  225. break;
  226. case EV_PWR:
  227. disposition = INPUT_PASS_TO_ALL;
  228. break;
  229. }
  230. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  231. dev->sync = 0;
  232. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  233. dev->event(dev, type, code, value);
  234. if (disposition & INPUT_PASS_TO_HANDLERS)
  235. input_pass_event(dev, type, code, value);
  236. }
  237. /**
  238. * input_event() - report new input event
  239. * @dev: device that generated the event
  240. * @type: type of the event
  241. * @code: event code
  242. * @value: value of the event
  243. *
  244. * This function should be used by drivers implementing various input
  245. * devices. See also input_inject_event().
  246. */
  247. void input_event(struct input_dev *dev,
  248. unsigned int type, unsigned int code, int value)
  249. {
  250. unsigned long flags;
  251. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  252. spin_lock_irqsave(&dev->event_lock, flags);
  253. add_input_randomness(type, code, value);
  254. input_handle_event(dev, type, code, value);
  255. spin_unlock_irqrestore(&dev->event_lock, flags);
  256. }
  257. }
  258. EXPORT_SYMBOL(input_event);
  259. /**
  260. * input_inject_event() - send input event from input handler
  261. * @handle: input handle to send event through
  262. * @type: type of the event
  263. * @code: event code
  264. * @value: value of the event
  265. *
  266. * Similar to input_event() but will ignore event if device is
  267. * "grabbed" and handle injecting event is not the one that owns
  268. * the device.
  269. */
  270. void input_inject_event(struct input_handle *handle,
  271. unsigned int type, unsigned int code, int value)
  272. {
  273. struct input_dev *dev = handle->dev;
  274. struct input_handle *grab;
  275. unsigned long flags;
  276. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  277. spin_lock_irqsave(&dev->event_lock, flags);
  278. rcu_read_lock();
  279. grab = rcu_dereference(dev->grab);
  280. if (!grab || grab == handle)
  281. input_handle_event(dev, type, code, value);
  282. rcu_read_unlock();
  283. spin_unlock_irqrestore(&dev->event_lock, flags);
  284. }
  285. }
  286. EXPORT_SYMBOL(input_inject_event);
  287. /**
  288. * input_grab_device - grabs device for exclusive use
  289. * @handle: input handle that wants to own the device
  290. *
  291. * When a device is grabbed by an input handle all events generated by
  292. * the device are delivered only to this handle. Also events injected
  293. * by other input handles are ignored while device is grabbed.
  294. */
  295. int input_grab_device(struct input_handle *handle)
  296. {
  297. struct input_dev *dev = handle->dev;
  298. int retval;
  299. retval = mutex_lock_interruptible(&dev->mutex);
  300. if (retval)
  301. return retval;
  302. if (dev->grab) {
  303. retval = -EBUSY;
  304. goto out;
  305. }
  306. rcu_assign_pointer(dev->grab, handle);
  307. synchronize_rcu();
  308. out:
  309. mutex_unlock(&dev->mutex);
  310. return retval;
  311. }
  312. EXPORT_SYMBOL(input_grab_device);
  313. static void __input_release_device(struct input_handle *handle)
  314. {
  315. struct input_dev *dev = handle->dev;
  316. if (dev->grab == handle) {
  317. rcu_assign_pointer(dev->grab, NULL);
  318. /* Make sure input_pass_event() notices that grab is gone */
  319. synchronize_rcu();
  320. list_for_each_entry(handle, &dev->h_list, d_node)
  321. if (handle->open && handle->handler->start)
  322. handle->handler->start(handle);
  323. }
  324. }
  325. /**
  326. * input_release_device - release previously grabbed device
  327. * @handle: input handle that owns the device
  328. *
  329. * Releases previously grabbed device so that other input handles can
  330. * start receiving input events. Upon release all handlers attached
  331. * to the device have their start() method called so they have a change
  332. * to synchronize device state with the rest of the system.
  333. */
  334. void input_release_device(struct input_handle *handle)
  335. {
  336. struct input_dev *dev = handle->dev;
  337. mutex_lock(&dev->mutex);
  338. __input_release_device(handle);
  339. mutex_unlock(&dev->mutex);
  340. }
  341. EXPORT_SYMBOL(input_release_device);
  342. /**
  343. * input_open_device - open input device
  344. * @handle: handle through which device is being accessed
  345. *
  346. * This function should be called by input handlers when they
  347. * want to start receive events from given input device.
  348. */
  349. int input_open_device(struct input_handle *handle)
  350. {
  351. struct input_dev *dev = handle->dev;
  352. int retval;
  353. retval = mutex_lock_interruptible(&dev->mutex);
  354. if (retval)
  355. return retval;
  356. if (dev->going_away) {
  357. retval = -ENODEV;
  358. goto out;
  359. }
  360. handle->open++;
  361. if (!dev->users++ && dev->open)
  362. retval = dev->open(dev);
  363. if (retval) {
  364. dev->users--;
  365. if (!--handle->open) {
  366. /*
  367. * Make sure we are not delivering any more events
  368. * through this handle
  369. */
  370. synchronize_rcu();
  371. }
  372. }
  373. out:
  374. mutex_unlock(&dev->mutex);
  375. return retval;
  376. }
  377. EXPORT_SYMBOL(input_open_device);
  378. int input_flush_device(struct input_handle *handle, struct file *file)
  379. {
  380. struct input_dev *dev = handle->dev;
  381. int retval;
  382. retval = mutex_lock_interruptible(&dev->mutex);
  383. if (retval)
  384. return retval;
  385. if (dev->flush)
  386. retval = dev->flush(dev, file);
  387. mutex_unlock(&dev->mutex);
  388. return retval;
  389. }
  390. EXPORT_SYMBOL(input_flush_device);
  391. /**
  392. * input_close_device - close input device
  393. * @handle: handle through which device is being accessed
  394. *
  395. * This function should be called by input handlers when they
  396. * want to stop receive events from given input device.
  397. */
  398. void input_close_device(struct input_handle *handle)
  399. {
  400. struct input_dev *dev = handle->dev;
  401. mutex_lock(&dev->mutex);
  402. __input_release_device(handle);
  403. if (!--dev->users && dev->close)
  404. dev->close(dev);
  405. if (!--handle->open) {
  406. /*
  407. * synchronize_rcu() makes sure that input_pass_event()
  408. * completed and that no more input events are delivered
  409. * through this handle
  410. */
  411. synchronize_rcu();
  412. }
  413. mutex_unlock(&dev->mutex);
  414. }
  415. EXPORT_SYMBOL(input_close_device);
  416. /*
  417. * Prepare device for unregistering
  418. */
  419. static void input_disconnect_device(struct input_dev *dev)
  420. {
  421. struct input_handle *handle;
  422. int code;
  423. /*
  424. * Mark device as going away. Note that we take dev->mutex here
  425. * not to protect access to dev->going_away but rather to ensure
  426. * that there are no threads in the middle of input_open_device()
  427. */
  428. mutex_lock(&dev->mutex);
  429. dev->going_away = true;
  430. mutex_unlock(&dev->mutex);
  431. spin_lock_irq(&dev->event_lock);
  432. /*
  433. * Simulate keyup events for all pressed keys so that handlers
  434. * are not left with "stuck" keys. The driver may continue
  435. * generate events even after we done here but they will not
  436. * reach any handlers.
  437. */
  438. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  439. for (code = 0; code <= KEY_MAX; code++) {
  440. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  441. __test_and_clear_bit(code, dev->key)) {
  442. input_pass_event(dev, EV_KEY, code, 0);
  443. }
  444. }
  445. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  446. }
  447. list_for_each_entry(handle, &dev->h_list, d_node)
  448. handle->open = 0;
  449. spin_unlock_irq(&dev->event_lock);
  450. }
  451. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  452. {
  453. switch (dev->keycodesize) {
  454. case 1:
  455. return ((u8 *)dev->keycode)[scancode];
  456. case 2:
  457. return ((u16 *)dev->keycode)[scancode];
  458. default:
  459. return ((u32 *)dev->keycode)[scancode];
  460. }
  461. }
  462. static int input_default_getkeycode(struct input_dev *dev,
  463. int scancode, int *keycode)
  464. {
  465. if (!dev->keycodesize)
  466. return -EINVAL;
  467. if (scancode >= dev->keycodemax)
  468. return -EINVAL;
  469. *keycode = input_fetch_keycode(dev, scancode);
  470. return 0;
  471. }
  472. static int input_default_setkeycode(struct input_dev *dev,
  473. int scancode, int keycode)
  474. {
  475. int old_keycode;
  476. int i;
  477. if (scancode >= dev->keycodemax)
  478. return -EINVAL;
  479. if (!dev->keycodesize)
  480. return -EINVAL;
  481. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  482. return -EINVAL;
  483. switch (dev->keycodesize) {
  484. case 1: {
  485. u8 *k = (u8 *)dev->keycode;
  486. old_keycode = k[scancode];
  487. k[scancode] = keycode;
  488. break;
  489. }
  490. case 2: {
  491. u16 *k = (u16 *)dev->keycode;
  492. old_keycode = k[scancode];
  493. k[scancode] = keycode;
  494. break;
  495. }
  496. default: {
  497. u32 *k = (u32 *)dev->keycode;
  498. old_keycode = k[scancode];
  499. k[scancode] = keycode;
  500. break;
  501. }
  502. }
  503. clear_bit(old_keycode, dev->keybit);
  504. set_bit(keycode, dev->keybit);
  505. for (i = 0; i < dev->keycodemax; i++) {
  506. if (input_fetch_keycode(dev, i) == old_keycode) {
  507. set_bit(old_keycode, dev->keybit);
  508. break; /* Setting the bit twice is useless, so break */
  509. }
  510. }
  511. return 0;
  512. }
  513. /**
  514. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  515. * @dev: input device which keymap is being queried
  516. * @scancode: scancode (or its equivalent for device in question) for which
  517. * keycode is needed
  518. * @keycode: result
  519. *
  520. * This function should be called by anyone interested in retrieving current
  521. * keymap. Presently keyboard and evdev handlers use it.
  522. */
  523. int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
  524. {
  525. if (scancode < 0)
  526. return -EINVAL;
  527. return dev->getkeycode(dev, scancode, keycode);
  528. }
  529. EXPORT_SYMBOL(input_get_keycode);
  530. /**
  531. * input_get_keycode - assign new keycode to a given scancode
  532. * @dev: input device which keymap is being updated
  533. * @scancode: scancode (or its equivalent for device in question)
  534. * @keycode: new keycode to be assigned to the scancode
  535. *
  536. * This function should be called by anyone needing to update current
  537. * keymap. Presently keyboard and evdev handlers use it.
  538. */
  539. int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
  540. {
  541. unsigned long flags;
  542. int old_keycode;
  543. int retval;
  544. if (scancode < 0)
  545. return -EINVAL;
  546. if (keycode < 0 || keycode > KEY_MAX)
  547. return -EINVAL;
  548. spin_lock_irqsave(&dev->event_lock, flags);
  549. retval = dev->getkeycode(dev, scancode, &old_keycode);
  550. if (retval)
  551. goto out;
  552. retval = dev->setkeycode(dev, scancode, keycode);
  553. if (retval)
  554. goto out;
  555. /*
  556. * Simulate keyup event if keycode is not present
  557. * in the keymap anymore
  558. */
  559. if (test_bit(EV_KEY, dev->evbit) &&
  560. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  561. __test_and_clear_bit(old_keycode, dev->key)) {
  562. input_pass_event(dev, EV_KEY, old_keycode, 0);
  563. if (dev->sync)
  564. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  565. }
  566. out:
  567. spin_unlock_irqrestore(&dev->event_lock, flags);
  568. return retval;
  569. }
  570. EXPORT_SYMBOL(input_set_keycode);
  571. #define MATCH_BIT(bit, max) \
  572. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  573. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  574. break; \
  575. if (i != BITS_TO_LONGS(max)) \
  576. continue;
  577. static const struct input_device_id *input_match_device(const struct input_device_id *id,
  578. struct input_dev *dev)
  579. {
  580. int i;
  581. for (; id->flags || id->driver_info; id++) {
  582. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  583. if (id->bustype != dev->id.bustype)
  584. continue;
  585. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  586. if (id->vendor != dev->id.vendor)
  587. continue;
  588. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  589. if (id->product != dev->id.product)
  590. continue;
  591. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  592. if (id->version != dev->id.version)
  593. continue;
  594. MATCH_BIT(evbit, EV_MAX);
  595. MATCH_BIT(keybit, KEY_MAX);
  596. MATCH_BIT(relbit, REL_MAX);
  597. MATCH_BIT(absbit, ABS_MAX);
  598. MATCH_BIT(mscbit, MSC_MAX);
  599. MATCH_BIT(ledbit, LED_MAX);
  600. MATCH_BIT(sndbit, SND_MAX);
  601. MATCH_BIT(ffbit, FF_MAX);
  602. MATCH_BIT(swbit, SW_MAX);
  603. return id;
  604. }
  605. return NULL;
  606. }
  607. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  608. {
  609. const struct input_device_id *id;
  610. int error;
  611. if (handler->blacklist && input_match_device(handler->blacklist, dev))
  612. return -ENODEV;
  613. id = input_match_device(handler->id_table, dev);
  614. if (!id)
  615. return -ENODEV;
  616. error = handler->connect(handler, dev, id);
  617. if (error && error != -ENODEV)
  618. printk(KERN_ERR
  619. "input: failed to attach handler %s to device %s, "
  620. "error: %d\n",
  621. handler->name, kobject_name(&dev->dev.kobj), error);
  622. return error;
  623. }
  624. #ifdef CONFIG_PROC_FS
  625. static struct proc_dir_entry *proc_bus_input_dir;
  626. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  627. static int input_devices_state;
  628. static inline void input_wakeup_procfs_readers(void)
  629. {
  630. input_devices_state++;
  631. wake_up(&input_devices_poll_wait);
  632. }
  633. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  634. {
  635. poll_wait(file, &input_devices_poll_wait, wait);
  636. if (file->f_version != input_devices_state) {
  637. file->f_version = input_devices_state;
  638. return POLLIN | POLLRDNORM;
  639. }
  640. return 0;
  641. }
  642. union input_seq_state {
  643. struct {
  644. unsigned short pos;
  645. bool mutex_acquired;
  646. };
  647. void *p;
  648. };
  649. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  650. {
  651. union input_seq_state *state = (union input_seq_state *)&seq->private;
  652. int error;
  653. /* We need to fit into seq->private pointer */
  654. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  655. error = mutex_lock_interruptible(&input_mutex);
  656. if (error) {
  657. state->mutex_acquired = false;
  658. return ERR_PTR(error);
  659. }
  660. state->mutex_acquired = true;
  661. return seq_list_start(&input_dev_list, *pos);
  662. }
  663. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  664. {
  665. return seq_list_next(v, &input_dev_list, pos);
  666. }
  667. static void input_seq_stop(struct seq_file *seq, void *v)
  668. {
  669. union input_seq_state *state = (union input_seq_state *)&seq->private;
  670. if (state->mutex_acquired)
  671. mutex_unlock(&input_mutex);
  672. }
  673. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  674. unsigned long *bitmap, int max)
  675. {
  676. int i;
  677. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  678. if (bitmap[i])
  679. break;
  680. seq_printf(seq, "B: %s=", name);
  681. for (; i >= 0; i--)
  682. seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
  683. seq_putc(seq, '\n');
  684. }
  685. static int input_devices_seq_show(struct seq_file *seq, void *v)
  686. {
  687. struct input_dev *dev = container_of(v, struct input_dev, node);
  688. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  689. struct input_handle *handle;
  690. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  691. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  692. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  693. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  694. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  695. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  696. seq_printf(seq, "H: Handlers=");
  697. list_for_each_entry(handle, &dev->h_list, d_node)
  698. seq_printf(seq, "%s ", handle->name);
  699. seq_putc(seq, '\n');
  700. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  701. if (test_bit(EV_KEY, dev->evbit))
  702. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  703. if (test_bit(EV_REL, dev->evbit))
  704. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  705. if (test_bit(EV_ABS, dev->evbit))
  706. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  707. if (test_bit(EV_MSC, dev->evbit))
  708. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  709. if (test_bit(EV_LED, dev->evbit))
  710. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  711. if (test_bit(EV_SND, dev->evbit))
  712. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  713. if (test_bit(EV_FF, dev->evbit))
  714. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  715. if (test_bit(EV_SW, dev->evbit))
  716. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  717. seq_putc(seq, '\n');
  718. kfree(path);
  719. return 0;
  720. }
  721. static const struct seq_operations input_devices_seq_ops = {
  722. .start = input_devices_seq_start,
  723. .next = input_devices_seq_next,
  724. .stop = input_seq_stop,
  725. .show = input_devices_seq_show,
  726. };
  727. static int input_proc_devices_open(struct inode *inode, struct file *file)
  728. {
  729. return seq_open(file, &input_devices_seq_ops);
  730. }
  731. static const struct file_operations input_devices_fileops = {
  732. .owner = THIS_MODULE,
  733. .open = input_proc_devices_open,
  734. .poll = input_proc_devices_poll,
  735. .read = seq_read,
  736. .llseek = seq_lseek,
  737. .release = seq_release,
  738. };
  739. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  740. {
  741. union input_seq_state *state = (union input_seq_state *)&seq->private;
  742. int error;
  743. /* We need to fit into seq->private pointer */
  744. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  745. error = mutex_lock_interruptible(&input_mutex);
  746. if (error) {
  747. state->mutex_acquired = false;
  748. return ERR_PTR(error);
  749. }
  750. state->mutex_acquired = true;
  751. state->pos = *pos;
  752. return seq_list_start(&input_handler_list, *pos);
  753. }
  754. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  755. {
  756. union input_seq_state *state = (union input_seq_state *)&seq->private;
  757. state->pos = *pos + 1;
  758. return seq_list_next(v, &input_handler_list, pos);
  759. }
  760. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  761. {
  762. struct input_handler *handler = container_of(v, struct input_handler, node);
  763. union input_seq_state *state = (union input_seq_state *)&seq->private;
  764. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  765. if (handler->fops)
  766. seq_printf(seq, " Minor=%d", handler->minor);
  767. seq_putc(seq, '\n');
  768. return 0;
  769. }
  770. static const struct seq_operations input_handlers_seq_ops = {
  771. .start = input_handlers_seq_start,
  772. .next = input_handlers_seq_next,
  773. .stop = input_seq_stop,
  774. .show = input_handlers_seq_show,
  775. };
  776. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  777. {
  778. return seq_open(file, &input_handlers_seq_ops);
  779. }
  780. static const struct file_operations input_handlers_fileops = {
  781. .owner = THIS_MODULE,
  782. .open = input_proc_handlers_open,
  783. .read = seq_read,
  784. .llseek = seq_lseek,
  785. .release = seq_release,
  786. };
  787. static int __init input_proc_init(void)
  788. {
  789. struct proc_dir_entry *entry;
  790. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  791. if (!proc_bus_input_dir)
  792. return -ENOMEM;
  793. entry = proc_create("devices", 0, proc_bus_input_dir,
  794. &input_devices_fileops);
  795. if (!entry)
  796. goto fail1;
  797. entry = proc_create("handlers", 0, proc_bus_input_dir,
  798. &input_handlers_fileops);
  799. if (!entry)
  800. goto fail2;
  801. return 0;
  802. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  803. fail1: remove_proc_entry("bus/input", NULL);
  804. return -ENOMEM;
  805. }
  806. static void input_proc_exit(void)
  807. {
  808. remove_proc_entry("devices", proc_bus_input_dir);
  809. remove_proc_entry("handlers", proc_bus_input_dir);
  810. remove_proc_entry("bus/input", NULL);
  811. }
  812. #else /* !CONFIG_PROC_FS */
  813. static inline void input_wakeup_procfs_readers(void) { }
  814. static inline int input_proc_init(void) { return 0; }
  815. static inline void input_proc_exit(void) { }
  816. #endif
  817. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  818. static ssize_t input_dev_show_##name(struct device *dev, \
  819. struct device_attribute *attr, \
  820. char *buf) \
  821. { \
  822. struct input_dev *input_dev = to_input_dev(dev); \
  823. \
  824. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  825. input_dev->name ? input_dev->name : ""); \
  826. } \
  827. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  828. INPUT_DEV_STRING_ATTR_SHOW(name);
  829. INPUT_DEV_STRING_ATTR_SHOW(phys);
  830. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  831. static int input_print_modalias_bits(char *buf, int size,
  832. char name, unsigned long *bm,
  833. unsigned int min_bit, unsigned int max_bit)
  834. {
  835. int len = 0, i;
  836. len += snprintf(buf, max(size, 0), "%c", name);
  837. for (i = min_bit; i < max_bit; i++)
  838. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  839. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  840. return len;
  841. }
  842. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  843. int add_cr)
  844. {
  845. int len;
  846. len = snprintf(buf, max(size, 0),
  847. "input:b%04Xv%04Xp%04Xe%04X-",
  848. id->id.bustype, id->id.vendor,
  849. id->id.product, id->id.version);
  850. len += input_print_modalias_bits(buf + len, size - len,
  851. 'e', id->evbit, 0, EV_MAX);
  852. len += input_print_modalias_bits(buf + len, size - len,
  853. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  854. len += input_print_modalias_bits(buf + len, size - len,
  855. 'r', id->relbit, 0, REL_MAX);
  856. len += input_print_modalias_bits(buf + len, size - len,
  857. 'a', id->absbit, 0, ABS_MAX);
  858. len += input_print_modalias_bits(buf + len, size - len,
  859. 'm', id->mscbit, 0, MSC_MAX);
  860. len += input_print_modalias_bits(buf + len, size - len,
  861. 'l', id->ledbit, 0, LED_MAX);
  862. len += input_print_modalias_bits(buf + len, size - len,
  863. 's', id->sndbit, 0, SND_MAX);
  864. len += input_print_modalias_bits(buf + len, size - len,
  865. 'f', id->ffbit, 0, FF_MAX);
  866. len += input_print_modalias_bits(buf + len, size - len,
  867. 'w', id->swbit, 0, SW_MAX);
  868. if (add_cr)
  869. len += snprintf(buf + len, max(size - len, 0), "\n");
  870. return len;
  871. }
  872. static ssize_t input_dev_show_modalias(struct device *dev,
  873. struct device_attribute *attr,
  874. char *buf)
  875. {
  876. struct input_dev *id = to_input_dev(dev);
  877. ssize_t len;
  878. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  879. return min_t(int, len, PAGE_SIZE);
  880. }
  881. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  882. static struct attribute *input_dev_attrs[] = {
  883. &dev_attr_name.attr,
  884. &dev_attr_phys.attr,
  885. &dev_attr_uniq.attr,
  886. &dev_attr_modalias.attr,
  887. NULL
  888. };
  889. static struct attribute_group input_dev_attr_group = {
  890. .attrs = input_dev_attrs,
  891. };
  892. #define INPUT_DEV_ID_ATTR(name) \
  893. static ssize_t input_dev_show_id_##name(struct device *dev, \
  894. struct device_attribute *attr, \
  895. char *buf) \
  896. { \
  897. struct input_dev *input_dev = to_input_dev(dev); \
  898. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  899. } \
  900. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  901. INPUT_DEV_ID_ATTR(bustype);
  902. INPUT_DEV_ID_ATTR(vendor);
  903. INPUT_DEV_ID_ATTR(product);
  904. INPUT_DEV_ID_ATTR(version);
  905. static struct attribute *input_dev_id_attrs[] = {
  906. &dev_attr_bustype.attr,
  907. &dev_attr_vendor.attr,
  908. &dev_attr_product.attr,
  909. &dev_attr_version.attr,
  910. NULL
  911. };
  912. static struct attribute_group input_dev_id_attr_group = {
  913. .name = "id",
  914. .attrs = input_dev_id_attrs,
  915. };
  916. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  917. int max, int add_cr)
  918. {
  919. int i;
  920. int len = 0;
  921. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  922. if (bitmap[i])
  923. break;
  924. for (; i >= 0; i--)
  925. len += snprintf(buf + len, max(buf_size - len, 0),
  926. "%lx%s", bitmap[i], i > 0 ? " " : "");
  927. if (add_cr)
  928. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  929. return len;
  930. }
  931. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  932. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  933. struct device_attribute *attr, \
  934. char *buf) \
  935. { \
  936. struct input_dev *input_dev = to_input_dev(dev); \
  937. int len = input_print_bitmap(buf, PAGE_SIZE, \
  938. input_dev->bm##bit, ev##_MAX, 1); \
  939. return min_t(int, len, PAGE_SIZE); \
  940. } \
  941. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  942. INPUT_DEV_CAP_ATTR(EV, ev);
  943. INPUT_DEV_CAP_ATTR(KEY, key);
  944. INPUT_DEV_CAP_ATTR(REL, rel);
  945. INPUT_DEV_CAP_ATTR(ABS, abs);
  946. INPUT_DEV_CAP_ATTR(MSC, msc);
  947. INPUT_DEV_CAP_ATTR(LED, led);
  948. INPUT_DEV_CAP_ATTR(SND, snd);
  949. INPUT_DEV_CAP_ATTR(FF, ff);
  950. INPUT_DEV_CAP_ATTR(SW, sw);
  951. static struct attribute *input_dev_caps_attrs[] = {
  952. &dev_attr_ev.attr,
  953. &dev_attr_key.attr,
  954. &dev_attr_rel.attr,
  955. &dev_attr_abs.attr,
  956. &dev_attr_msc.attr,
  957. &dev_attr_led.attr,
  958. &dev_attr_snd.attr,
  959. &dev_attr_ff.attr,
  960. &dev_attr_sw.attr,
  961. NULL
  962. };
  963. static struct attribute_group input_dev_caps_attr_group = {
  964. .name = "capabilities",
  965. .attrs = input_dev_caps_attrs,
  966. };
  967. static const struct attribute_group *input_dev_attr_groups[] = {
  968. &input_dev_attr_group,
  969. &input_dev_id_attr_group,
  970. &input_dev_caps_attr_group,
  971. NULL
  972. };
  973. static void input_dev_release(struct device *device)
  974. {
  975. struct input_dev *dev = to_input_dev(device);
  976. input_ff_destroy(dev);
  977. kfree(dev);
  978. module_put(THIS_MODULE);
  979. }
  980. /*
  981. * Input uevent interface - loading event handlers based on
  982. * device bitfields.
  983. */
  984. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  985. const char *name, unsigned long *bitmap, int max)
  986. {
  987. int len;
  988. if (add_uevent_var(env, "%s=", name))
  989. return -ENOMEM;
  990. len = input_print_bitmap(&env->buf[env->buflen - 1],
  991. sizeof(env->buf) - env->buflen,
  992. bitmap, max, 0);
  993. if (len >= (sizeof(env->buf) - env->buflen))
  994. return -ENOMEM;
  995. env->buflen += len;
  996. return 0;
  997. }
  998. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  999. struct input_dev *dev)
  1000. {
  1001. int len;
  1002. if (add_uevent_var(env, "MODALIAS="))
  1003. return -ENOMEM;
  1004. len = input_print_modalias(&env->buf[env->buflen - 1],
  1005. sizeof(env->buf) - env->buflen,
  1006. dev, 0);
  1007. if (len >= (sizeof(env->buf) - env->buflen))
  1008. return -ENOMEM;
  1009. env->buflen += len;
  1010. return 0;
  1011. }
  1012. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1013. do { \
  1014. int err = add_uevent_var(env, fmt, val); \
  1015. if (err) \
  1016. return err; \
  1017. } while (0)
  1018. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1019. do { \
  1020. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1021. if (err) \
  1022. return err; \
  1023. } while (0)
  1024. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1025. do { \
  1026. int err = input_add_uevent_modalias_var(env, dev); \
  1027. if (err) \
  1028. return err; \
  1029. } while (0)
  1030. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1031. {
  1032. struct input_dev *dev = to_input_dev(device);
  1033. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1034. dev->id.bustype, dev->id.vendor,
  1035. dev->id.product, dev->id.version);
  1036. if (dev->name)
  1037. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1038. if (dev->phys)
  1039. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1040. if (dev->uniq)
  1041. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1042. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1043. if (test_bit(EV_KEY, dev->evbit))
  1044. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1045. if (test_bit(EV_REL, dev->evbit))
  1046. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1047. if (test_bit(EV_ABS, dev->evbit))
  1048. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1049. if (test_bit(EV_MSC, dev->evbit))
  1050. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1051. if (test_bit(EV_LED, dev->evbit))
  1052. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1053. if (test_bit(EV_SND, dev->evbit))
  1054. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1055. if (test_bit(EV_FF, dev->evbit))
  1056. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1057. if (test_bit(EV_SW, dev->evbit))
  1058. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1059. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1060. return 0;
  1061. }
  1062. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1063. do { \
  1064. int i; \
  1065. bool active; \
  1066. \
  1067. if (!test_bit(EV_##type, dev->evbit)) \
  1068. break; \
  1069. \
  1070. for (i = 0; i < type##_MAX; i++) { \
  1071. if (!test_bit(i, dev->bits##bit)) \
  1072. continue; \
  1073. \
  1074. active = test_bit(i, dev->bits); \
  1075. if (!active && !on) \
  1076. continue; \
  1077. \
  1078. dev->event(dev, EV_##type, i, on ? active : 0); \
  1079. } \
  1080. } while (0)
  1081. #ifdef CONFIG_PM
  1082. static void input_dev_reset(struct input_dev *dev, bool activate)
  1083. {
  1084. if (!dev->event)
  1085. return;
  1086. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1087. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1088. if (activate && test_bit(EV_REP, dev->evbit)) {
  1089. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1090. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1091. }
  1092. }
  1093. static int input_dev_suspend(struct device *dev)
  1094. {
  1095. struct input_dev *input_dev = to_input_dev(dev);
  1096. mutex_lock(&input_dev->mutex);
  1097. input_dev_reset(input_dev, false);
  1098. mutex_unlock(&input_dev->mutex);
  1099. return 0;
  1100. }
  1101. static int input_dev_resume(struct device *dev)
  1102. {
  1103. struct input_dev *input_dev = to_input_dev(dev);
  1104. mutex_lock(&input_dev->mutex);
  1105. input_dev_reset(input_dev, true);
  1106. mutex_unlock(&input_dev->mutex);
  1107. return 0;
  1108. }
  1109. static const struct dev_pm_ops input_dev_pm_ops = {
  1110. .suspend = input_dev_suspend,
  1111. .resume = input_dev_resume,
  1112. .poweroff = input_dev_suspend,
  1113. .restore = input_dev_resume,
  1114. };
  1115. #endif /* CONFIG_PM */
  1116. static struct device_type input_dev_type = {
  1117. .groups = input_dev_attr_groups,
  1118. .release = input_dev_release,
  1119. .uevent = input_dev_uevent,
  1120. #ifdef CONFIG_PM
  1121. .pm = &input_dev_pm_ops,
  1122. #endif
  1123. };
  1124. static char *input_devnode(struct device *dev, mode_t *mode)
  1125. {
  1126. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1127. }
  1128. struct class input_class = {
  1129. .name = "input",
  1130. .devnode = input_devnode,
  1131. };
  1132. EXPORT_SYMBOL_GPL(input_class);
  1133. /**
  1134. * input_allocate_device - allocate memory for new input device
  1135. *
  1136. * Returns prepared struct input_dev or NULL.
  1137. *
  1138. * NOTE: Use input_free_device() to free devices that have not been
  1139. * registered; input_unregister_device() should be used for already
  1140. * registered devices.
  1141. */
  1142. struct input_dev *input_allocate_device(void)
  1143. {
  1144. struct input_dev *dev;
  1145. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1146. if (dev) {
  1147. dev->dev.type = &input_dev_type;
  1148. dev->dev.class = &input_class;
  1149. device_initialize(&dev->dev);
  1150. mutex_init(&dev->mutex);
  1151. spin_lock_init(&dev->event_lock);
  1152. INIT_LIST_HEAD(&dev->h_list);
  1153. INIT_LIST_HEAD(&dev->node);
  1154. __module_get(THIS_MODULE);
  1155. }
  1156. return dev;
  1157. }
  1158. EXPORT_SYMBOL(input_allocate_device);
  1159. /**
  1160. * input_free_device - free memory occupied by input_dev structure
  1161. * @dev: input device to free
  1162. *
  1163. * This function should only be used if input_register_device()
  1164. * was not called yet or if it failed. Once device was registered
  1165. * use input_unregister_device() and memory will be freed once last
  1166. * reference to the device is dropped.
  1167. *
  1168. * Device should be allocated by input_allocate_device().
  1169. *
  1170. * NOTE: If there are references to the input device then memory
  1171. * will not be freed until last reference is dropped.
  1172. */
  1173. void input_free_device(struct input_dev *dev)
  1174. {
  1175. if (dev)
  1176. input_put_device(dev);
  1177. }
  1178. EXPORT_SYMBOL(input_free_device);
  1179. /**
  1180. * input_set_capability - mark device as capable of a certain event
  1181. * @dev: device that is capable of emitting or accepting event
  1182. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1183. * @code: event code
  1184. *
  1185. * In addition to setting up corresponding bit in appropriate capability
  1186. * bitmap the function also adjusts dev->evbit.
  1187. */
  1188. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1189. {
  1190. switch (type) {
  1191. case EV_KEY:
  1192. __set_bit(code, dev->keybit);
  1193. break;
  1194. case EV_REL:
  1195. __set_bit(code, dev->relbit);
  1196. break;
  1197. case EV_ABS:
  1198. __set_bit(code, dev->absbit);
  1199. break;
  1200. case EV_MSC:
  1201. __set_bit(code, dev->mscbit);
  1202. break;
  1203. case EV_SW:
  1204. __set_bit(code, dev->swbit);
  1205. break;
  1206. case EV_LED:
  1207. __set_bit(code, dev->ledbit);
  1208. break;
  1209. case EV_SND:
  1210. __set_bit(code, dev->sndbit);
  1211. break;
  1212. case EV_FF:
  1213. __set_bit(code, dev->ffbit);
  1214. break;
  1215. case EV_PWR:
  1216. /* do nothing */
  1217. break;
  1218. default:
  1219. printk(KERN_ERR
  1220. "input_set_capability: unknown type %u (code %u)\n",
  1221. type, code);
  1222. dump_stack();
  1223. return;
  1224. }
  1225. __set_bit(type, dev->evbit);
  1226. }
  1227. EXPORT_SYMBOL(input_set_capability);
  1228. /**
  1229. * input_register_device - register device with input core
  1230. * @dev: device to be registered
  1231. *
  1232. * This function registers device with input core. The device must be
  1233. * allocated with input_allocate_device() and all it's capabilities
  1234. * set up before registering.
  1235. * If function fails the device must be freed with input_free_device().
  1236. * Once device has been successfully registered it can be unregistered
  1237. * with input_unregister_device(); input_free_device() should not be
  1238. * called in this case.
  1239. */
  1240. int input_register_device(struct input_dev *dev)
  1241. {
  1242. static atomic_t input_no = ATOMIC_INIT(0);
  1243. struct input_handler *handler;
  1244. const char *path;
  1245. int error;
  1246. __set_bit(EV_SYN, dev->evbit);
  1247. /*
  1248. * If delay and period are pre-set by the driver, then autorepeating
  1249. * is handled by the driver itself and we don't do it in input.c.
  1250. */
  1251. init_timer(&dev->timer);
  1252. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1253. dev->timer.data = (long) dev;
  1254. dev->timer.function = input_repeat_key;
  1255. dev->rep[REP_DELAY] = 250;
  1256. dev->rep[REP_PERIOD] = 33;
  1257. }
  1258. if (!dev->getkeycode)
  1259. dev->getkeycode = input_default_getkeycode;
  1260. if (!dev->setkeycode)
  1261. dev->setkeycode = input_default_setkeycode;
  1262. dev_set_name(&dev->dev, "input%ld",
  1263. (unsigned long) atomic_inc_return(&input_no) - 1);
  1264. error = device_add(&dev->dev);
  1265. if (error)
  1266. return error;
  1267. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1268. printk(KERN_INFO "input: %s as %s\n",
  1269. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1270. kfree(path);
  1271. error = mutex_lock_interruptible(&input_mutex);
  1272. if (error) {
  1273. device_del(&dev->dev);
  1274. return error;
  1275. }
  1276. list_add_tail(&dev->node, &input_dev_list);
  1277. list_for_each_entry(handler, &input_handler_list, node)
  1278. input_attach_handler(dev, handler);
  1279. input_wakeup_procfs_readers();
  1280. mutex_unlock(&input_mutex);
  1281. return 0;
  1282. }
  1283. EXPORT_SYMBOL(input_register_device);
  1284. /**
  1285. * input_unregister_device - unregister previously registered device
  1286. * @dev: device to be unregistered
  1287. *
  1288. * This function unregisters an input device. Once device is unregistered
  1289. * the caller should not try to access it as it may get freed at any moment.
  1290. */
  1291. void input_unregister_device(struct input_dev *dev)
  1292. {
  1293. struct input_handle *handle, *next;
  1294. input_disconnect_device(dev);
  1295. mutex_lock(&input_mutex);
  1296. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1297. handle->handler->disconnect(handle);
  1298. WARN_ON(!list_empty(&dev->h_list));
  1299. del_timer_sync(&dev->timer);
  1300. list_del_init(&dev->node);
  1301. input_wakeup_procfs_readers();
  1302. mutex_unlock(&input_mutex);
  1303. device_unregister(&dev->dev);
  1304. }
  1305. EXPORT_SYMBOL(input_unregister_device);
  1306. /**
  1307. * input_register_handler - register a new input handler
  1308. * @handler: handler to be registered
  1309. *
  1310. * This function registers a new input handler (interface) for input
  1311. * devices in the system and attaches it to all input devices that
  1312. * are compatible with the handler.
  1313. */
  1314. int input_register_handler(struct input_handler *handler)
  1315. {
  1316. struct input_dev *dev;
  1317. int retval;
  1318. retval = mutex_lock_interruptible(&input_mutex);
  1319. if (retval)
  1320. return retval;
  1321. INIT_LIST_HEAD(&handler->h_list);
  1322. if (handler->fops != NULL) {
  1323. if (input_table[handler->minor >> 5]) {
  1324. retval = -EBUSY;
  1325. goto out;
  1326. }
  1327. input_table[handler->minor >> 5] = handler;
  1328. }
  1329. list_add_tail(&handler->node, &input_handler_list);
  1330. list_for_each_entry(dev, &input_dev_list, node)
  1331. input_attach_handler(dev, handler);
  1332. input_wakeup_procfs_readers();
  1333. out:
  1334. mutex_unlock(&input_mutex);
  1335. return retval;
  1336. }
  1337. EXPORT_SYMBOL(input_register_handler);
  1338. /**
  1339. * input_unregister_handler - unregisters an input handler
  1340. * @handler: handler to be unregistered
  1341. *
  1342. * This function disconnects a handler from its input devices and
  1343. * removes it from lists of known handlers.
  1344. */
  1345. void input_unregister_handler(struct input_handler *handler)
  1346. {
  1347. struct input_handle *handle, *next;
  1348. mutex_lock(&input_mutex);
  1349. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1350. handler->disconnect(handle);
  1351. WARN_ON(!list_empty(&handler->h_list));
  1352. list_del_init(&handler->node);
  1353. if (handler->fops != NULL)
  1354. input_table[handler->minor >> 5] = NULL;
  1355. input_wakeup_procfs_readers();
  1356. mutex_unlock(&input_mutex);
  1357. }
  1358. EXPORT_SYMBOL(input_unregister_handler);
  1359. /**
  1360. * input_handler_for_each_handle - handle iterator
  1361. * @handler: input handler to iterate
  1362. * @data: data for the callback
  1363. * @fn: function to be called for each handle
  1364. *
  1365. * Iterate over @bus's list of devices, and call @fn for each, passing
  1366. * it @data and stop when @fn returns a non-zero value. The function is
  1367. * using RCU to traverse the list and therefore may be usind in atonic
  1368. * contexts. The @fn callback is invoked from RCU critical section and
  1369. * thus must not sleep.
  1370. */
  1371. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1372. int (*fn)(struct input_handle *, void *))
  1373. {
  1374. struct input_handle *handle;
  1375. int retval = 0;
  1376. rcu_read_lock();
  1377. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1378. retval = fn(handle, data);
  1379. if (retval)
  1380. break;
  1381. }
  1382. rcu_read_unlock();
  1383. return retval;
  1384. }
  1385. EXPORT_SYMBOL(input_handler_for_each_handle);
  1386. /**
  1387. * input_register_handle - register a new input handle
  1388. * @handle: handle to register
  1389. *
  1390. * This function puts a new input handle onto device's
  1391. * and handler's lists so that events can flow through
  1392. * it once it is opened using input_open_device().
  1393. *
  1394. * This function is supposed to be called from handler's
  1395. * connect() method.
  1396. */
  1397. int input_register_handle(struct input_handle *handle)
  1398. {
  1399. struct input_handler *handler = handle->handler;
  1400. struct input_dev *dev = handle->dev;
  1401. int error;
  1402. /*
  1403. * We take dev->mutex here to prevent race with
  1404. * input_release_device().
  1405. */
  1406. error = mutex_lock_interruptible(&dev->mutex);
  1407. if (error)
  1408. return error;
  1409. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1410. mutex_unlock(&dev->mutex);
  1411. /*
  1412. * Since we are supposed to be called from ->connect()
  1413. * which is mutually exclusive with ->disconnect()
  1414. * we can't be racing with input_unregister_handle()
  1415. * and so separate lock is not needed here.
  1416. */
  1417. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1418. if (handler->start)
  1419. handler->start(handle);
  1420. return 0;
  1421. }
  1422. EXPORT_SYMBOL(input_register_handle);
  1423. /**
  1424. * input_unregister_handle - unregister an input handle
  1425. * @handle: handle to unregister
  1426. *
  1427. * This function removes input handle from device's
  1428. * and handler's lists.
  1429. *
  1430. * This function is supposed to be called from handler's
  1431. * disconnect() method.
  1432. */
  1433. void input_unregister_handle(struct input_handle *handle)
  1434. {
  1435. struct input_dev *dev = handle->dev;
  1436. list_del_rcu(&handle->h_node);
  1437. /*
  1438. * Take dev->mutex to prevent race with input_release_device().
  1439. */
  1440. mutex_lock(&dev->mutex);
  1441. list_del_rcu(&handle->d_node);
  1442. mutex_unlock(&dev->mutex);
  1443. synchronize_rcu();
  1444. }
  1445. EXPORT_SYMBOL(input_unregister_handle);
  1446. static int input_open_file(struct inode *inode, struct file *file)
  1447. {
  1448. struct input_handler *handler;
  1449. const struct file_operations *old_fops, *new_fops = NULL;
  1450. int err;
  1451. lock_kernel();
  1452. /* No load-on-demand here? */
  1453. handler = input_table[iminor(inode) >> 5];
  1454. if (!handler || !(new_fops = fops_get(handler->fops))) {
  1455. err = -ENODEV;
  1456. goto out;
  1457. }
  1458. /*
  1459. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1460. * not "no device". Oh, well...
  1461. */
  1462. if (!new_fops->open) {
  1463. fops_put(new_fops);
  1464. err = -ENODEV;
  1465. goto out;
  1466. }
  1467. old_fops = file->f_op;
  1468. file->f_op = new_fops;
  1469. err = new_fops->open(inode, file);
  1470. if (err) {
  1471. fops_put(file->f_op);
  1472. file->f_op = fops_get(old_fops);
  1473. }
  1474. fops_put(old_fops);
  1475. out:
  1476. unlock_kernel();
  1477. return err;
  1478. }
  1479. static const struct file_operations input_fops = {
  1480. .owner = THIS_MODULE,
  1481. .open = input_open_file,
  1482. };
  1483. static void __init input_init_abs_bypass(void)
  1484. {
  1485. const unsigned int *p;
  1486. for (p = input_abs_bypass_init_data; *p; p++)
  1487. input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
  1488. }
  1489. static int __init input_init(void)
  1490. {
  1491. int err;
  1492. input_init_abs_bypass();
  1493. err = class_register(&input_class);
  1494. if (err) {
  1495. printk(KERN_ERR "input: unable to register input_dev class\n");
  1496. return err;
  1497. }
  1498. err = input_proc_init();
  1499. if (err)
  1500. goto fail1;
  1501. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1502. if (err) {
  1503. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1504. goto fail2;
  1505. }
  1506. return 0;
  1507. fail2: input_proc_exit();
  1508. fail1: class_unregister(&input_class);
  1509. return err;
  1510. }
  1511. static void __exit input_exit(void)
  1512. {
  1513. input_proc_exit();
  1514. unregister_chrdev(INPUT_MAJOR, "input");
  1515. class_unregister(&input_class);
  1516. }
  1517. subsys_initcall(input_init);
  1518. module_exit(input_exit);