asb100.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991
  1. /*
  2. asb100.c - Part of lm_sensors, Linux kernel modules for hardware
  3. monitoring
  4. Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
  5. (derived from w83781d.c)
  6. Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>,
  7. Philip Edelbrock <phil@netroedge.com>, and
  8. Mark Studebaker <mdsxyz123@yahoo.com>
  9. This program is free software; you can redistribute it and/or modify
  10. it under the terms of the GNU General Public License as published by
  11. the Free Software Foundation; either version 2 of the License, or
  12. (at your option) any later version.
  13. This program is distributed in the hope that it will be useful,
  14. but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. GNU General Public License for more details.
  17. You should have received a copy of the GNU General Public License
  18. along with this program; if not, write to the Free Software
  19. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20. */
  21. /*
  22. This driver supports the hardware sensor chips: Asus ASB100 and
  23. ASB100-A "BACH".
  24. ASB100-A supports pwm1, while plain ASB100 does not. There is no known
  25. way for the driver to tell which one is there.
  26. Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
  27. asb100 7 3 1 4 0x31 0x0694 yes no
  28. */
  29. #include <linux/module.h>
  30. #include <linux/slab.h>
  31. #include <linux/i2c.h>
  32. #include <linux/hwmon.h>
  33. #include <linux/hwmon-sysfs.h>
  34. #include <linux/hwmon-vid.h>
  35. #include <linux/err.h>
  36. #include <linux/init.h>
  37. #include <linux/jiffies.h>
  38. #include <linux/mutex.h>
  39. #include "lm75.h"
  40. /* I2C addresses to scan */
  41. static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
  42. /* Insmod parameters */
  43. I2C_CLIENT_INSMOD_1(asb100);
  44. static unsigned short force_subclients[4];
  45. module_param_array(force_subclients, short, NULL, 0);
  46. MODULE_PARM_DESC(force_subclients, "List of subclient addresses: "
  47. "{bus, clientaddr, subclientaddr1, subclientaddr2}");
  48. /* Voltage IN registers 0-6 */
  49. #define ASB100_REG_IN(nr) (0x20 + (nr))
  50. #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2))
  51. #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2))
  52. /* FAN IN registers 1-3 */
  53. #define ASB100_REG_FAN(nr) (0x28 + (nr))
  54. #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr))
  55. /* TEMPERATURE registers 1-4 */
  56. static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17};
  57. static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18};
  58. static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19};
  59. #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
  60. #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
  61. #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
  62. #define ASB100_REG_TEMP2_CONFIG 0x0152
  63. #define ASB100_REG_TEMP3_CONFIG 0x0252
  64. #define ASB100_REG_CONFIG 0x40
  65. #define ASB100_REG_ALARM1 0x41
  66. #define ASB100_REG_ALARM2 0x42
  67. #define ASB100_REG_SMIM1 0x43
  68. #define ASB100_REG_SMIM2 0x44
  69. #define ASB100_REG_VID_FANDIV 0x47
  70. #define ASB100_REG_I2C_ADDR 0x48
  71. #define ASB100_REG_CHIPID 0x49
  72. #define ASB100_REG_I2C_SUBADDR 0x4a
  73. #define ASB100_REG_PIN 0x4b
  74. #define ASB100_REG_IRQ 0x4c
  75. #define ASB100_REG_BANK 0x4e
  76. #define ASB100_REG_CHIPMAN 0x4f
  77. #define ASB100_REG_WCHIPID 0x58
  78. /* bit 7 -> enable, bits 0-3 -> duty cycle */
  79. #define ASB100_REG_PWM1 0x59
  80. /* CONVERSIONS
  81. Rounding and limit checking is only done on the TO_REG variants. */
  82. /* These constants are a guess, consistent w/ w83781d */
  83. #define ASB100_IN_MIN ( 0)
  84. #define ASB100_IN_MAX (4080)
  85. /* IN: 1/1000 V (0V to 4.08V)
  86. REG: 16mV/bit */
  87. static u8 IN_TO_REG(unsigned val)
  88. {
  89. unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX);
  90. return (nval + 8) / 16;
  91. }
  92. static unsigned IN_FROM_REG(u8 reg)
  93. {
  94. return reg * 16;
  95. }
  96. static u8 FAN_TO_REG(long rpm, int div)
  97. {
  98. if (rpm == -1)
  99. return 0;
  100. if (rpm == 0)
  101. return 255;
  102. rpm = SENSORS_LIMIT(rpm, 1, 1000000);
  103. return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
  104. }
  105. static int FAN_FROM_REG(u8 val, int div)
  106. {
  107. return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div);
  108. }
  109. /* These constants are a guess, consistent w/ w83781d */
  110. #define ASB100_TEMP_MIN (-128000)
  111. #define ASB100_TEMP_MAX ( 127000)
  112. /* TEMP: 0.001C/bit (-128C to +127C)
  113. REG: 1C/bit, two's complement */
  114. static u8 TEMP_TO_REG(long temp)
  115. {
  116. int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
  117. ntemp += (ntemp<0 ? -500 : 500);
  118. return (u8)(ntemp / 1000);
  119. }
  120. static int TEMP_FROM_REG(u8 reg)
  121. {
  122. return (s8)reg * 1000;
  123. }
  124. /* PWM: 0 - 255 per sensors documentation
  125. REG: (6.25% duty cycle per bit) */
  126. static u8 ASB100_PWM_TO_REG(int pwm)
  127. {
  128. pwm = SENSORS_LIMIT(pwm, 0, 255);
  129. return (u8)(pwm / 16);
  130. }
  131. static int ASB100_PWM_FROM_REG(u8 reg)
  132. {
  133. return reg * 16;
  134. }
  135. #define DIV_FROM_REG(val) (1 << (val))
  136. /* FAN DIV: 1, 2, 4, or 8 (defaults to 2)
  137. REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */
  138. static u8 DIV_TO_REG(long val)
  139. {
  140. return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1;
  141. }
  142. /* For each registered client, we need to keep some data in memory. That
  143. data is pointed to by client->data. The structure itself is
  144. dynamically allocated, at the same time the client itself is allocated. */
  145. struct asb100_data {
  146. struct device *hwmon_dev;
  147. struct mutex lock;
  148. struct mutex update_lock;
  149. unsigned long last_updated; /* In jiffies */
  150. /* array of 2 pointers to subclients */
  151. struct i2c_client *lm75[2];
  152. char valid; /* !=0 if following fields are valid */
  153. u8 in[7]; /* Register value */
  154. u8 in_max[7]; /* Register value */
  155. u8 in_min[7]; /* Register value */
  156. u8 fan[3]; /* Register value */
  157. u8 fan_min[3]; /* Register value */
  158. u16 temp[4]; /* Register value (0 and 3 are u8 only) */
  159. u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */
  160. u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */
  161. u8 fan_div[3]; /* Register encoding, right justified */
  162. u8 pwm; /* Register encoding */
  163. u8 vid; /* Register encoding, combined */
  164. u32 alarms; /* Register encoding, combined */
  165. u8 vrm;
  166. };
  167. static int asb100_read_value(struct i2c_client *client, u16 reg);
  168. static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
  169. static int asb100_probe(struct i2c_client *client,
  170. const struct i2c_device_id *id);
  171. static int asb100_detect(struct i2c_client *client, int kind,
  172. struct i2c_board_info *info);
  173. static int asb100_remove(struct i2c_client *client);
  174. static struct asb100_data *asb100_update_device(struct device *dev);
  175. static void asb100_init_client(struct i2c_client *client);
  176. static const struct i2c_device_id asb100_id[] = {
  177. { "asb100", asb100 },
  178. { }
  179. };
  180. MODULE_DEVICE_TABLE(i2c, asb100_id);
  181. static struct i2c_driver asb100_driver = {
  182. .class = I2C_CLASS_HWMON,
  183. .driver = {
  184. .name = "asb100",
  185. },
  186. .probe = asb100_probe,
  187. .remove = asb100_remove,
  188. .id_table = asb100_id,
  189. .detect = asb100_detect,
  190. .address_data = &addr_data,
  191. };
  192. /* 7 Voltages */
  193. #define show_in_reg(reg) \
  194. static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
  195. char *buf) \
  196. { \
  197. int nr = to_sensor_dev_attr(attr)->index; \
  198. struct asb100_data *data = asb100_update_device(dev); \
  199. return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
  200. }
  201. show_in_reg(in)
  202. show_in_reg(in_min)
  203. show_in_reg(in_max)
  204. #define set_in_reg(REG, reg) \
  205. static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
  206. const char *buf, size_t count) \
  207. { \
  208. int nr = to_sensor_dev_attr(attr)->index; \
  209. struct i2c_client *client = to_i2c_client(dev); \
  210. struct asb100_data *data = i2c_get_clientdata(client); \
  211. unsigned long val = simple_strtoul(buf, NULL, 10); \
  212. \
  213. mutex_lock(&data->update_lock); \
  214. data->in_##reg[nr] = IN_TO_REG(val); \
  215. asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
  216. data->in_##reg[nr]); \
  217. mutex_unlock(&data->update_lock); \
  218. return count; \
  219. }
  220. set_in_reg(MIN, min)
  221. set_in_reg(MAX, max)
  222. #define sysfs_in(offset) \
  223. static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
  224. show_in, NULL, offset); \
  225. static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
  226. show_in_min, set_in_min, offset); \
  227. static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
  228. show_in_max, set_in_max, offset)
  229. sysfs_in(0);
  230. sysfs_in(1);
  231. sysfs_in(2);
  232. sysfs_in(3);
  233. sysfs_in(4);
  234. sysfs_in(5);
  235. sysfs_in(6);
  236. /* 3 Fans */
  237. static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
  238. char *buf)
  239. {
  240. int nr = to_sensor_dev_attr(attr)->index;
  241. struct asb100_data *data = asb100_update_device(dev);
  242. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
  243. DIV_FROM_REG(data->fan_div[nr])));
  244. }
  245. static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
  246. char *buf)
  247. {
  248. int nr = to_sensor_dev_attr(attr)->index;
  249. struct asb100_data *data = asb100_update_device(dev);
  250. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
  251. DIV_FROM_REG(data->fan_div[nr])));
  252. }
  253. static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
  254. char *buf)
  255. {
  256. int nr = to_sensor_dev_attr(attr)->index;
  257. struct asb100_data *data = asb100_update_device(dev);
  258. return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
  259. }
  260. static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
  261. const char *buf, size_t count)
  262. {
  263. int nr = to_sensor_dev_attr(attr)->index;
  264. struct i2c_client *client = to_i2c_client(dev);
  265. struct asb100_data *data = i2c_get_clientdata(client);
  266. u32 val = simple_strtoul(buf, NULL, 10);
  267. mutex_lock(&data->update_lock);
  268. data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
  269. asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
  270. mutex_unlock(&data->update_lock);
  271. return count;
  272. }
  273. /* Note: we save and restore the fan minimum here, because its value is
  274. determined in part by the fan divisor. This follows the principle of
  275. least surprise; the user doesn't expect the fan minimum to change just
  276. because the divisor changed. */
  277. static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
  278. const char *buf, size_t count)
  279. {
  280. int nr = to_sensor_dev_attr(attr)->index;
  281. struct i2c_client *client = to_i2c_client(dev);
  282. struct asb100_data *data = i2c_get_clientdata(client);
  283. unsigned long min;
  284. unsigned long val = simple_strtoul(buf, NULL, 10);
  285. int reg;
  286. mutex_lock(&data->update_lock);
  287. min = FAN_FROM_REG(data->fan_min[nr],
  288. DIV_FROM_REG(data->fan_div[nr]));
  289. data->fan_div[nr] = DIV_TO_REG(val);
  290. switch (nr) {
  291. case 0: /* fan 1 */
  292. reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
  293. reg = (reg & 0xcf) | (data->fan_div[0] << 4);
  294. asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
  295. break;
  296. case 1: /* fan 2 */
  297. reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
  298. reg = (reg & 0x3f) | (data->fan_div[1] << 6);
  299. asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
  300. break;
  301. case 2: /* fan 3 */
  302. reg = asb100_read_value(client, ASB100_REG_PIN);
  303. reg = (reg & 0x3f) | (data->fan_div[2] << 6);
  304. asb100_write_value(client, ASB100_REG_PIN, reg);
  305. break;
  306. }
  307. data->fan_min[nr] =
  308. FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
  309. asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
  310. mutex_unlock(&data->update_lock);
  311. return count;
  312. }
  313. #define sysfs_fan(offset) \
  314. static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
  315. show_fan, NULL, offset - 1); \
  316. static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
  317. show_fan_min, set_fan_min, offset - 1); \
  318. static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
  319. show_fan_div, set_fan_div, offset - 1)
  320. sysfs_fan(1);
  321. sysfs_fan(2);
  322. sysfs_fan(3);
  323. /* 4 Temp. Sensors */
  324. static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
  325. {
  326. int ret = 0;
  327. switch (nr) {
  328. case 1: case 2:
  329. ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
  330. break;
  331. case 0: case 3: default:
  332. ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
  333. break;
  334. }
  335. return ret;
  336. }
  337. #define show_temp_reg(reg) \
  338. static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
  339. char *buf) \
  340. { \
  341. int nr = to_sensor_dev_attr(attr)->index; \
  342. struct asb100_data *data = asb100_update_device(dev); \
  343. return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
  344. }
  345. show_temp_reg(temp);
  346. show_temp_reg(temp_max);
  347. show_temp_reg(temp_hyst);
  348. #define set_temp_reg(REG, reg) \
  349. static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
  350. const char *buf, size_t count) \
  351. { \
  352. int nr = to_sensor_dev_attr(attr)->index; \
  353. struct i2c_client *client = to_i2c_client(dev); \
  354. struct asb100_data *data = i2c_get_clientdata(client); \
  355. long val = simple_strtol(buf, NULL, 10); \
  356. \
  357. mutex_lock(&data->update_lock); \
  358. switch (nr) { \
  359. case 1: case 2: \
  360. data->reg[nr] = LM75_TEMP_TO_REG(val); \
  361. break; \
  362. case 0: case 3: default: \
  363. data->reg[nr] = TEMP_TO_REG(val); \
  364. break; \
  365. } \
  366. asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
  367. data->reg[nr]); \
  368. mutex_unlock(&data->update_lock); \
  369. return count; \
  370. }
  371. set_temp_reg(MAX, temp_max);
  372. set_temp_reg(HYST, temp_hyst);
  373. #define sysfs_temp(num) \
  374. static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
  375. show_temp, NULL, num - 1); \
  376. static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
  377. show_temp_max, set_temp_max, num - 1); \
  378. static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
  379. show_temp_hyst, set_temp_hyst, num - 1)
  380. sysfs_temp(1);
  381. sysfs_temp(2);
  382. sysfs_temp(3);
  383. sysfs_temp(4);
  384. /* VID */
  385. static ssize_t show_vid(struct device *dev, struct device_attribute *attr,
  386. char *buf)
  387. {
  388. struct asb100_data *data = asb100_update_device(dev);
  389. return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
  390. }
  391. static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
  392. /* VRM */
  393. static ssize_t show_vrm(struct device *dev, struct device_attribute *attr,
  394. char *buf)
  395. {
  396. struct asb100_data *data = dev_get_drvdata(dev);
  397. return sprintf(buf, "%d\n", data->vrm);
  398. }
  399. static ssize_t set_vrm(struct device *dev, struct device_attribute *attr,
  400. const char *buf, size_t count)
  401. {
  402. struct asb100_data *data = dev_get_drvdata(dev);
  403. data->vrm = simple_strtoul(buf, NULL, 10);
  404. return count;
  405. }
  406. /* Alarms */
  407. static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
  408. static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
  409. char *buf)
  410. {
  411. struct asb100_data *data = asb100_update_device(dev);
  412. return sprintf(buf, "%u\n", data->alarms);
  413. }
  414. static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
  415. static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
  416. char *buf)
  417. {
  418. int bitnr = to_sensor_dev_attr(attr)->index;
  419. struct asb100_data *data = asb100_update_device(dev);
  420. return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
  421. }
  422. static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
  423. static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
  424. static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
  425. static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
  426. static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
  427. static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
  428. static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
  429. static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
  430. static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
  431. static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
  432. static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
  433. /* 1 PWM */
  434. static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr,
  435. char *buf)
  436. {
  437. struct asb100_data *data = asb100_update_device(dev);
  438. return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
  439. }
  440. static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr,
  441. const char *buf, size_t count)
  442. {
  443. struct i2c_client *client = to_i2c_client(dev);
  444. struct asb100_data *data = i2c_get_clientdata(client);
  445. unsigned long val = simple_strtoul(buf, NULL, 10);
  446. mutex_lock(&data->update_lock);
  447. data->pwm &= 0x80; /* keep the enable bit */
  448. data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
  449. asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
  450. mutex_unlock(&data->update_lock);
  451. return count;
  452. }
  453. static ssize_t show_pwm_enable1(struct device *dev,
  454. struct device_attribute *attr, char *buf)
  455. {
  456. struct asb100_data *data = asb100_update_device(dev);
  457. return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
  458. }
  459. static ssize_t set_pwm_enable1(struct device *dev,
  460. struct device_attribute *attr, const char *buf, size_t count)
  461. {
  462. struct i2c_client *client = to_i2c_client(dev);
  463. struct asb100_data *data = i2c_get_clientdata(client);
  464. unsigned long val = simple_strtoul(buf, NULL, 10);
  465. mutex_lock(&data->update_lock);
  466. data->pwm &= 0x0f; /* keep the duty cycle bits */
  467. data->pwm |= (val ? 0x80 : 0x00);
  468. asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
  469. mutex_unlock(&data->update_lock);
  470. return count;
  471. }
  472. static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1);
  473. static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR,
  474. show_pwm_enable1, set_pwm_enable1);
  475. static struct attribute *asb100_attributes[] = {
  476. &sensor_dev_attr_in0_input.dev_attr.attr,
  477. &sensor_dev_attr_in0_min.dev_attr.attr,
  478. &sensor_dev_attr_in0_max.dev_attr.attr,
  479. &sensor_dev_attr_in1_input.dev_attr.attr,
  480. &sensor_dev_attr_in1_min.dev_attr.attr,
  481. &sensor_dev_attr_in1_max.dev_attr.attr,
  482. &sensor_dev_attr_in2_input.dev_attr.attr,
  483. &sensor_dev_attr_in2_min.dev_attr.attr,
  484. &sensor_dev_attr_in2_max.dev_attr.attr,
  485. &sensor_dev_attr_in3_input.dev_attr.attr,
  486. &sensor_dev_attr_in3_min.dev_attr.attr,
  487. &sensor_dev_attr_in3_max.dev_attr.attr,
  488. &sensor_dev_attr_in4_input.dev_attr.attr,
  489. &sensor_dev_attr_in4_min.dev_attr.attr,
  490. &sensor_dev_attr_in4_max.dev_attr.attr,
  491. &sensor_dev_attr_in5_input.dev_attr.attr,
  492. &sensor_dev_attr_in5_min.dev_attr.attr,
  493. &sensor_dev_attr_in5_max.dev_attr.attr,
  494. &sensor_dev_attr_in6_input.dev_attr.attr,
  495. &sensor_dev_attr_in6_min.dev_attr.attr,
  496. &sensor_dev_attr_in6_max.dev_attr.attr,
  497. &sensor_dev_attr_fan1_input.dev_attr.attr,
  498. &sensor_dev_attr_fan1_min.dev_attr.attr,
  499. &sensor_dev_attr_fan1_div.dev_attr.attr,
  500. &sensor_dev_attr_fan2_input.dev_attr.attr,
  501. &sensor_dev_attr_fan2_min.dev_attr.attr,
  502. &sensor_dev_attr_fan2_div.dev_attr.attr,
  503. &sensor_dev_attr_fan3_input.dev_attr.attr,
  504. &sensor_dev_attr_fan3_min.dev_attr.attr,
  505. &sensor_dev_attr_fan3_div.dev_attr.attr,
  506. &sensor_dev_attr_temp1_input.dev_attr.attr,
  507. &sensor_dev_attr_temp1_max.dev_attr.attr,
  508. &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
  509. &sensor_dev_attr_temp2_input.dev_attr.attr,
  510. &sensor_dev_attr_temp2_max.dev_attr.attr,
  511. &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
  512. &sensor_dev_attr_temp3_input.dev_attr.attr,
  513. &sensor_dev_attr_temp3_max.dev_attr.attr,
  514. &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
  515. &sensor_dev_attr_temp4_input.dev_attr.attr,
  516. &sensor_dev_attr_temp4_max.dev_attr.attr,
  517. &sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
  518. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  519. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  520. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  521. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  522. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  523. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  524. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  525. &sensor_dev_attr_fan3_alarm.dev_attr.attr,
  526. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  527. &sensor_dev_attr_temp2_alarm.dev_attr.attr,
  528. &sensor_dev_attr_temp3_alarm.dev_attr.attr,
  529. &dev_attr_cpu0_vid.attr,
  530. &dev_attr_vrm.attr,
  531. &dev_attr_alarms.attr,
  532. &dev_attr_pwm1.attr,
  533. &dev_attr_pwm1_enable.attr,
  534. NULL
  535. };
  536. static const struct attribute_group asb100_group = {
  537. .attrs = asb100_attributes,
  538. };
  539. static int asb100_detect_subclients(struct i2c_client *client)
  540. {
  541. int i, id, err;
  542. int address = client->addr;
  543. unsigned short sc_addr[2];
  544. struct asb100_data *data = i2c_get_clientdata(client);
  545. struct i2c_adapter *adapter = client->adapter;
  546. id = i2c_adapter_id(adapter);
  547. if (force_subclients[0] == id && force_subclients[1] == address) {
  548. for (i = 2; i <= 3; i++) {
  549. if (force_subclients[i] < 0x48 ||
  550. force_subclients[i] > 0x4f) {
  551. dev_err(&client->dev, "invalid subclient "
  552. "address %d; must be 0x48-0x4f\n",
  553. force_subclients[i]);
  554. err = -ENODEV;
  555. goto ERROR_SC_2;
  556. }
  557. }
  558. asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
  559. (force_subclients[2] & 0x07) |
  560. ((force_subclients[3] & 0x07) << 4));
  561. sc_addr[0] = force_subclients[2];
  562. sc_addr[1] = force_subclients[3];
  563. } else {
  564. int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
  565. sc_addr[0] = 0x48 + (val & 0x07);
  566. sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
  567. }
  568. if (sc_addr[0] == sc_addr[1]) {
  569. dev_err(&client->dev, "duplicate addresses 0x%x "
  570. "for subclients\n", sc_addr[0]);
  571. err = -ENODEV;
  572. goto ERROR_SC_2;
  573. }
  574. data->lm75[0] = i2c_new_dummy(adapter, sc_addr[0]);
  575. if (!data->lm75[0]) {
  576. dev_err(&client->dev, "subclient %d registration "
  577. "at address 0x%x failed.\n", 1, sc_addr[0]);
  578. err = -ENOMEM;
  579. goto ERROR_SC_2;
  580. }
  581. data->lm75[1] = i2c_new_dummy(adapter, sc_addr[1]);
  582. if (!data->lm75[1]) {
  583. dev_err(&client->dev, "subclient %d registration "
  584. "at address 0x%x failed.\n", 2, sc_addr[1]);
  585. err = -ENOMEM;
  586. goto ERROR_SC_3;
  587. }
  588. return 0;
  589. /* Undo inits in case of errors */
  590. ERROR_SC_3:
  591. i2c_unregister_device(data->lm75[0]);
  592. ERROR_SC_2:
  593. return err;
  594. }
  595. /* Return 0 if detection is successful, -ENODEV otherwise */
  596. static int asb100_detect(struct i2c_client *client, int kind,
  597. struct i2c_board_info *info)
  598. {
  599. struct i2c_adapter *adapter = client->adapter;
  600. int val1, val2;
  601. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
  602. pr_debug("asb100.o: detect failed, "
  603. "smbus byte data not supported!\n");
  604. return -ENODEV;
  605. }
  606. val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
  607. val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
  608. /* If we're in bank 0 */
  609. if ((!(val1 & 0x07)) &&
  610. /* Check for ASB100 ID (low byte) */
  611. (((!(val1 & 0x80)) && (val2 != 0x94)) ||
  612. /* Check for ASB100 ID (high byte ) */
  613. ((val1 & 0x80) && (val2 != 0x06)))) {
  614. pr_debug("asb100: detect failed, bad chip id 0x%02x!\n", val2);
  615. return -ENODEV;
  616. }
  617. /* Put it now into bank 0 and Vendor ID High Byte */
  618. i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
  619. (i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
  620. | 0x80);
  621. /* Determine the chip type. */
  622. val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
  623. val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
  624. if (val1 != 0x31 || val2 != 0x06)
  625. return -ENODEV;
  626. strlcpy(info->type, "asb100", I2C_NAME_SIZE);
  627. return 0;
  628. }
  629. static int asb100_probe(struct i2c_client *client,
  630. const struct i2c_device_id *id)
  631. {
  632. int err;
  633. struct asb100_data *data;
  634. data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL);
  635. if (!data) {
  636. pr_debug("asb100.o: probe failed, kzalloc failed!\n");
  637. err = -ENOMEM;
  638. goto ERROR0;
  639. }
  640. i2c_set_clientdata(client, data);
  641. mutex_init(&data->lock);
  642. mutex_init(&data->update_lock);
  643. /* Attach secondary lm75 clients */
  644. err = asb100_detect_subclients(client);
  645. if (err)
  646. goto ERROR1;
  647. /* Initialize the chip */
  648. asb100_init_client(client);
  649. /* A few vars need to be filled upon startup */
  650. data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
  651. data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
  652. data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
  653. /* Register sysfs hooks */
  654. if ((err = sysfs_create_group(&client->dev.kobj, &asb100_group)))
  655. goto ERROR3;
  656. data->hwmon_dev = hwmon_device_register(&client->dev);
  657. if (IS_ERR(data->hwmon_dev)) {
  658. err = PTR_ERR(data->hwmon_dev);
  659. goto ERROR4;
  660. }
  661. return 0;
  662. ERROR4:
  663. sysfs_remove_group(&client->dev.kobj, &asb100_group);
  664. ERROR3:
  665. i2c_unregister_device(data->lm75[1]);
  666. i2c_unregister_device(data->lm75[0]);
  667. ERROR1:
  668. kfree(data);
  669. ERROR0:
  670. return err;
  671. }
  672. static int asb100_remove(struct i2c_client *client)
  673. {
  674. struct asb100_data *data = i2c_get_clientdata(client);
  675. hwmon_device_unregister(data->hwmon_dev);
  676. sysfs_remove_group(&client->dev.kobj, &asb100_group);
  677. i2c_unregister_device(data->lm75[1]);
  678. i2c_unregister_device(data->lm75[0]);
  679. kfree(data);
  680. return 0;
  681. }
  682. /* The SMBus locks itself, usually, but nothing may access the chip between
  683. bank switches. */
  684. static int asb100_read_value(struct i2c_client *client, u16 reg)
  685. {
  686. struct asb100_data *data = i2c_get_clientdata(client);
  687. struct i2c_client *cl;
  688. int res, bank;
  689. mutex_lock(&data->lock);
  690. bank = (reg >> 8) & 0x0f;
  691. if (bank > 2)
  692. /* switch banks */
  693. i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
  694. if (bank == 0 || bank > 2) {
  695. res = i2c_smbus_read_byte_data(client, reg & 0xff);
  696. } else {
  697. /* switch to subclient */
  698. cl = data->lm75[bank - 1];
  699. /* convert from ISA to LM75 I2C addresses */
  700. switch (reg & 0xff) {
  701. case 0x50: /* TEMP */
  702. res = swab16(i2c_smbus_read_word_data(cl, 0));
  703. break;
  704. case 0x52: /* CONFIG */
  705. res = i2c_smbus_read_byte_data(cl, 1);
  706. break;
  707. case 0x53: /* HYST */
  708. res = swab16(i2c_smbus_read_word_data(cl, 2));
  709. break;
  710. case 0x55: /* MAX */
  711. default:
  712. res = swab16(i2c_smbus_read_word_data(cl, 3));
  713. break;
  714. }
  715. }
  716. if (bank > 2)
  717. i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
  718. mutex_unlock(&data->lock);
  719. return res;
  720. }
  721. static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
  722. {
  723. struct asb100_data *data = i2c_get_clientdata(client);
  724. struct i2c_client *cl;
  725. int bank;
  726. mutex_lock(&data->lock);
  727. bank = (reg >> 8) & 0x0f;
  728. if (bank > 2)
  729. /* switch banks */
  730. i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
  731. if (bank == 0 || bank > 2) {
  732. i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
  733. } else {
  734. /* switch to subclient */
  735. cl = data->lm75[bank - 1];
  736. /* convert from ISA to LM75 I2C addresses */
  737. switch (reg & 0xff) {
  738. case 0x52: /* CONFIG */
  739. i2c_smbus_write_byte_data(cl, 1, value & 0xff);
  740. break;
  741. case 0x53: /* HYST */
  742. i2c_smbus_write_word_data(cl, 2, swab16(value));
  743. break;
  744. case 0x55: /* MAX */
  745. i2c_smbus_write_word_data(cl, 3, swab16(value));
  746. break;
  747. }
  748. }
  749. if (bank > 2)
  750. i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
  751. mutex_unlock(&data->lock);
  752. }
  753. static void asb100_init_client(struct i2c_client *client)
  754. {
  755. struct asb100_data *data = i2c_get_clientdata(client);
  756. data->vrm = vid_which_vrm();
  757. /* Start monitoring */
  758. asb100_write_value(client, ASB100_REG_CONFIG,
  759. (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
  760. }
  761. static struct asb100_data *asb100_update_device(struct device *dev)
  762. {
  763. struct i2c_client *client = to_i2c_client(dev);
  764. struct asb100_data *data = i2c_get_clientdata(client);
  765. int i;
  766. mutex_lock(&data->update_lock);
  767. if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
  768. || !data->valid) {
  769. dev_dbg(&client->dev, "starting device update...\n");
  770. /* 7 voltage inputs */
  771. for (i = 0; i < 7; i++) {
  772. data->in[i] = asb100_read_value(client,
  773. ASB100_REG_IN(i));
  774. data->in_min[i] = asb100_read_value(client,
  775. ASB100_REG_IN_MIN(i));
  776. data->in_max[i] = asb100_read_value(client,
  777. ASB100_REG_IN_MAX(i));
  778. }
  779. /* 3 fan inputs */
  780. for (i = 0; i < 3; i++) {
  781. data->fan[i] = asb100_read_value(client,
  782. ASB100_REG_FAN(i));
  783. data->fan_min[i] = asb100_read_value(client,
  784. ASB100_REG_FAN_MIN(i));
  785. }
  786. /* 4 temperature inputs */
  787. for (i = 1; i <= 4; i++) {
  788. data->temp[i-1] = asb100_read_value(client,
  789. ASB100_REG_TEMP(i));
  790. data->temp_max[i-1] = asb100_read_value(client,
  791. ASB100_REG_TEMP_MAX(i));
  792. data->temp_hyst[i-1] = asb100_read_value(client,
  793. ASB100_REG_TEMP_HYST(i));
  794. }
  795. /* VID and fan divisors */
  796. i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
  797. data->vid = i & 0x0f;
  798. data->vid |= (asb100_read_value(client,
  799. ASB100_REG_CHIPID) & 0x01) << 4;
  800. data->fan_div[0] = (i >> 4) & 0x03;
  801. data->fan_div[1] = (i >> 6) & 0x03;
  802. data->fan_div[2] = (asb100_read_value(client,
  803. ASB100_REG_PIN) >> 6) & 0x03;
  804. /* PWM */
  805. data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
  806. /* alarms */
  807. data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
  808. (asb100_read_value(client, ASB100_REG_ALARM2) << 8);
  809. data->last_updated = jiffies;
  810. data->valid = 1;
  811. dev_dbg(&client->dev, "... device update complete\n");
  812. }
  813. mutex_unlock(&data->update_lock);
  814. return data;
  815. }
  816. static int __init asb100_init(void)
  817. {
  818. return i2c_add_driver(&asb100_driver);
  819. }
  820. static void __exit asb100_exit(void)
  821. {
  822. i2c_del_driver(&asb100_driver);
  823. }
  824. MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
  825. MODULE_DESCRIPTION("ASB100 Bach driver");
  826. MODULE_LICENSE("GPL");
  827. module_init(asb100_init);
  828. module_exit(asb100_exit);