adm1031.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028
  1. /*
  2. adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
  3. monitoring
  4. Based on lm75.c and lm85.c
  5. Supports adm1030 / adm1031
  6. Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
  7. Reworked by Jean Delvare <khali@linux-fr.org>
  8. This program is free software; you can redistribute it and/or modify
  9. it under the terms of the GNU General Public License as published by
  10. the Free Software Foundation; either version 2 of the License, or
  11. (at your option) any later version.
  12. This program is distributed in the hope that it will be useful,
  13. but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. GNU General Public License for more details.
  16. You should have received a copy of the GNU General Public License
  17. along with this program; if not, write to the Free Software
  18. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/module.h>
  21. #include <linux/init.h>
  22. #include <linux/slab.h>
  23. #include <linux/jiffies.h>
  24. #include <linux/i2c.h>
  25. #include <linux/hwmon.h>
  26. #include <linux/hwmon-sysfs.h>
  27. #include <linux/err.h>
  28. #include <linux/mutex.h>
  29. /* Following macros takes channel parameter starting from 0 to 2 */
  30. #define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr))
  31. #define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr))
  32. #define ADM1031_REG_PWM (0x22)
  33. #define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr))
  34. #define ADM1031_REG_TEMP_OFFSET(nr) (0x0d + (nr))
  35. #define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4 * (nr))
  36. #define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4 * (nr))
  37. #define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4 * (nr))
  38. #define ADM1031_REG_TEMP(nr) (0x0a + (nr))
  39. #define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr))
  40. #define ADM1031_REG_STATUS(nr) (0x2 + (nr))
  41. #define ADM1031_REG_CONF1 0x00
  42. #define ADM1031_REG_CONF2 0x01
  43. #define ADM1031_REG_EXT_TEMP 0x06
  44. #define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */
  45. #define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */
  46. #define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */
  47. #define ADM1031_CONF2_PWM1_ENABLE 0x01
  48. #define ADM1031_CONF2_PWM2_ENABLE 0x02
  49. #define ADM1031_CONF2_TACH1_ENABLE 0x04
  50. #define ADM1031_CONF2_TACH2_ENABLE 0x08
  51. #define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan))
  52. /* Addresses to scan */
  53. static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  54. /* Insmod parameters */
  55. I2C_CLIENT_INSMOD_2(adm1030, adm1031);
  56. typedef u8 auto_chan_table_t[8][2];
  57. /* Each client has this additional data */
  58. struct adm1031_data {
  59. struct device *hwmon_dev;
  60. struct mutex update_lock;
  61. int chip_type;
  62. char valid; /* !=0 if following fields are valid */
  63. unsigned long last_updated; /* In jiffies */
  64. /* The chan_select_table contains the possible configurations for
  65. * auto fan control.
  66. */
  67. const auto_chan_table_t *chan_select_table;
  68. u16 alarm;
  69. u8 conf1;
  70. u8 conf2;
  71. u8 fan[2];
  72. u8 fan_div[2];
  73. u8 fan_min[2];
  74. u8 pwm[2];
  75. u8 old_pwm[2];
  76. s8 temp[3];
  77. u8 ext_temp[3];
  78. u8 auto_temp[3];
  79. u8 auto_temp_min[3];
  80. u8 auto_temp_off[3];
  81. u8 auto_temp_max[3];
  82. s8 temp_offset[3];
  83. s8 temp_min[3];
  84. s8 temp_max[3];
  85. s8 temp_crit[3];
  86. };
  87. static int adm1031_probe(struct i2c_client *client,
  88. const struct i2c_device_id *id);
  89. static int adm1031_detect(struct i2c_client *client, int kind,
  90. struct i2c_board_info *info);
  91. static void adm1031_init_client(struct i2c_client *client);
  92. static int adm1031_remove(struct i2c_client *client);
  93. static struct adm1031_data *adm1031_update_device(struct device *dev);
  94. static const struct i2c_device_id adm1031_id[] = {
  95. { "adm1030", adm1030 },
  96. { "adm1031", adm1031 },
  97. { }
  98. };
  99. MODULE_DEVICE_TABLE(i2c, adm1031_id);
  100. /* This is the driver that will be inserted */
  101. static struct i2c_driver adm1031_driver = {
  102. .class = I2C_CLASS_HWMON,
  103. .driver = {
  104. .name = "adm1031",
  105. },
  106. .probe = adm1031_probe,
  107. .remove = adm1031_remove,
  108. .id_table = adm1031_id,
  109. .detect = adm1031_detect,
  110. .address_data = &addr_data,
  111. };
  112. static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
  113. {
  114. return i2c_smbus_read_byte_data(client, reg);
  115. }
  116. static inline int
  117. adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
  118. {
  119. return i2c_smbus_write_byte_data(client, reg, value);
  120. }
  121. #define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \
  122. ((val + 500) / 1000)))
  123. #define TEMP_FROM_REG(val) ((val) * 1000)
  124. #define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125)
  125. #define TEMP_OFFSET_TO_REG(val) (TEMP_TO_REG(val) & 0x8f)
  126. #define TEMP_OFFSET_FROM_REG(val) TEMP_FROM_REG((val) < 0 ? \
  127. (val) | 0x70 : (val))
  128. #define FAN_FROM_REG(reg, div) ((reg) ? (11250 * 60) / ((reg) * (div)) : 0)
  129. static int FAN_TO_REG(int reg, int div)
  130. {
  131. int tmp;
  132. tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div);
  133. return tmp > 255 ? 255 : tmp;
  134. }
  135. #define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6))
  136. #define PWM_TO_REG(val) (SENSORS_LIMIT((val), 0, 255) >> 4)
  137. #define PWM_FROM_REG(val) ((val) << 4)
  138. #define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7)
  139. #define FAN_CHAN_TO_REG(val, reg) \
  140. (((reg) & 0x1F) | (((val) << 5) & 0xe0))
  141. #define AUTO_TEMP_MIN_TO_REG(val, reg) \
  142. ((((val)/500) & 0xf8)|((reg) & 0x7))
  143. #define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1<< ((reg)&0x7)))
  144. #define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2))
  145. #define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2)
  146. #define AUTO_TEMP_OFF_FROM_REG(reg) \
  147. (AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
  148. #define AUTO_TEMP_MAX_FROM_REG(reg) \
  149. (AUTO_TEMP_RANGE_FROM_REG(reg) + \
  150. AUTO_TEMP_MIN_FROM_REG(reg))
  151. static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
  152. {
  153. int ret;
  154. int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
  155. range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
  156. ret = ((reg & 0xf8) |
  157. (range < 10000 ? 0 :
  158. range < 20000 ? 1 :
  159. range < 40000 ? 2 : range < 80000 ? 3 : 4));
  160. return ret;
  161. }
  162. /* FAN auto control */
  163. #define GET_FAN_AUTO_BITFIELD(data, idx) \
  164. (*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx%2]
  165. /* The tables below contains the possible values for the auto fan
  166. * control bitfields. the index in the table is the register value.
  167. * MSb is the auto fan control enable bit, so the four first entries
  168. * in the table disables auto fan control when both bitfields are zero.
  169. */
  170. static const auto_chan_table_t auto_channel_select_table_adm1031 = {
  171. { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
  172. { 2 /* 0b010 */ , 4 /* 0b100 */ },
  173. { 2 /* 0b010 */ , 2 /* 0b010 */ },
  174. { 4 /* 0b100 */ , 4 /* 0b100 */ },
  175. { 7 /* 0b111 */ , 7 /* 0b111 */ },
  176. };
  177. static const auto_chan_table_t auto_channel_select_table_adm1030 = {
  178. { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
  179. { 2 /* 0b10 */ , 0 },
  180. { 0xff /* invalid */ , 0 },
  181. { 0xff /* invalid */ , 0 },
  182. { 3 /* 0b11 */ , 0 },
  183. };
  184. /* That function checks if a bitfield is valid and returns the other bitfield
  185. * nearest match if no exact match where found.
  186. */
  187. static int
  188. get_fan_auto_nearest(struct adm1031_data *data,
  189. int chan, u8 val, u8 reg, u8 * new_reg)
  190. {
  191. int i;
  192. int first_match = -1, exact_match = -1;
  193. u8 other_reg_val =
  194. (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
  195. if (val == 0) {
  196. *new_reg = 0;
  197. return 0;
  198. }
  199. for (i = 0; i < 8; i++) {
  200. if ((val == (*data->chan_select_table)[i][chan]) &&
  201. ((*data->chan_select_table)[i][chan ? 0 : 1] ==
  202. other_reg_val)) {
  203. /* We found an exact match */
  204. exact_match = i;
  205. break;
  206. } else if (val == (*data->chan_select_table)[i][chan] &&
  207. first_match == -1) {
  208. /* Save the first match in case of an exact match has
  209. * not been found
  210. */
  211. first_match = i;
  212. }
  213. }
  214. if (exact_match >= 0) {
  215. *new_reg = exact_match;
  216. } else if (first_match >= 0) {
  217. *new_reg = first_match;
  218. } else {
  219. return -EINVAL;
  220. }
  221. return 0;
  222. }
  223. static ssize_t show_fan_auto_channel(struct device *dev,
  224. struct device_attribute *attr, char *buf)
  225. {
  226. int nr = to_sensor_dev_attr(attr)->index;
  227. struct adm1031_data *data = adm1031_update_device(dev);
  228. return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
  229. }
  230. static ssize_t
  231. set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
  232. const char *buf, size_t count)
  233. {
  234. struct i2c_client *client = to_i2c_client(dev);
  235. struct adm1031_data *data = i2c_get_clientdata(client);
  236. int nr = to_sensor_dev_attr(attr)->index;
  237. int val = simple_strtol(buf, NULL, 10);
  238. u8 reg;
  239. int ret;
  240. u8 old_fan_mode;
  241. old_fan_mode = data->conf1;
  242. mutex_lock(&data->update_lock);
  243. if ((ret = get_fan_auto_nearest(data, nr, val, data->conf1, &reg))) {
  244. mutex_unlock(&data->update_lock);
  245. return ret;
  246. }
  247. data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
  248. if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
  249. (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
  250. if (data->conf1 & ADM1031_CONF1_AUTO_MODE){
  251. /* Switch to Auto Fan Mode
  252. * Save PWM registers
  253. * Set PWM registers to 33% Both */
  254. data->old_pwm[0] = data->pwm[0];
  255. data->old_pwm[1] = data->pwm[1];
  256. adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
  257. } else {
  258. /* Switch to Manual Mode */
  259. data->pwm[0] = data->old_pwm[0];
  260. data->pwm[1] = data->old_pwm[1];
  261. /* Restore PWM registers */
  262. adm1031_write_value(client, ADM1031_REG_PWM,
  263. data->pwm[0] | (data->pwm[1] << 4));
  264. }
  265. }
  266. data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
  267. adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
  268. mutex_unlock(&data->update_lock);
  269. return count;
  270. }
  271. static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
  272. show_fan_auto_channel, set_fan_auto_channel, 0);
  273. static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
  274. show_fan_auto_channel, set_fan_auto_channel, 1);
  275. /* Auto Temps */
  276. static ssize_t show_auto_temp_off(struct device *dev,
  277. struct device_attribute *attr, char *buf)
  278. {
  279. int nr = to_sensor_dev_attr(attr)->index;
  280. struct adm1031_data *data = adm1031_update_device(dev);
  281. return sprintf(buf, "%d\n",
  282. AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
  283. }
  284. static ssize_t show_auto_temp_min(struct device *dev,
  285. struct device_attribute *attr, char *buf)
  286. {
  287. int nr = to_sensor_dev_attr(attr)->index;
  288. struct adm1031_data *data = adm1031_update_device(dev);
  289. return sprintf(buf, "%d\n",
  290. AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
  291. }
  292. static ssize_t
  293. set_auto_temp_min(struct device *dev, struct device_attribute *attr,
  294. const char *buf, size_t count)
  295. {
  296. struct i2c_client *client = to_i2c_client(dev);
  297. struct adm1031_data *data = i2c_get_clientdata(client);
  298. int nr = to_sensor_dev_attr(attr)->index;
  299. int val = simple_strtol(buf, NULL, 10);
  300. mutex_lock(&data->update_lock);
  301. data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
  302. adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
  303. data->auto_temp[nr]);
  304. mutex_unlock(&data->update_lock);
  305. return count;
  306. }
  307. static ssize_t show_auto_temp_max(struct device *dev,
  308. struct device_attribute *attr, char *buf)
  309. {
  310. int nr = to_sensor_dev_attr(attr)->index;
  311. struct adm1031_data *data = adm1031_update_device(dev);
  312. return sprintf(buf, "%d\n",
  313. AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
  314. }
  315. static ssize_t
  316. set_auto_temp_max(struct device *dev, struct device_attribute *attr,
  317. const char *buf, size_t count)
  318. {
  319. struct i2c_client *client = to_i2c_client(dev);
  320. struct adm1031_data *data = i2c_get_clientdata(client);
  321. int nr = to_sensor_dev_attr(attr)->index;
  322. int val = simple_strtol(buf, NULL, 10);
  323. mutex_lock(&data->update_lock);
  324. data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], data->pwm[nr]);
  325. adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
  326. data->temp_max[nr]);
  327. mutex_unlock(&data->update_lock);
  328. return count;
  329. }
  330. #define auto_temp_reg(offset) \
  331. static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO, \
  332. show_auto_temp_off, NULL, offset - 1); \
  333. static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR, \
  334. show_auto_temp_min, set_auto_temp_min, offset - 1); \
  335. static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR, \
  336. show_auto_temp_max, set_auto_temp_max, offset - 1)
  337. auto_temp_reg(1);
  338. auto_temp_reg(2);
  339. auto_temp_reg(3);
  340. /* pwm */
  341. static ssize_t show_pwm(struct device *dev,
  342. struct device_attribute *attr, char *buf)
  343. {
  344. int nr = to_sensor_dev_attr(attr)->index;
  345. struct adm1031_data *data = adm1031_update_device(dev);
  346. return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
  347. }
  348. static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
  349. const char *buf, size_t count)
  350. {
  351. struct i2c_client *client = to_i2c_client(dev);
  352. struct adm1031_data *data = i2c_get_clientdata(client);
  353. int nr = to_sensor_dev_attr(attr)->index;
  354. int val = simple_strtol(buf, NULL, 10);
  355. int reg;
  356. mutex_lock(&data->update_lock);
  357. if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
  358. (((val>>4) & 0xf) != 5)) {
  359. /* In automatic mode, the only PWM accepted is 33% */
  360. mutex_unlock(&data->update_lock);
  361. return -EINVAL;
  362. }
  363. data->pwm[nr] = PWM_TO_REG(val);
  364. reg = adm1031_read_value(client, ADM1031_REG_PWM);
  365. adm1031_write_value(client, ADM1031_REG_PWM,
  366. nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
  367. : (data->pwm[nr] & 0xf) | (reg & 0xf0));
  368. mutex_unlock(&data->update_lock);
  369. return count;
  370. }
  371. static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
  372. static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
  373. static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
  374. show_pwm, set_pwm, 0);
  375. static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
  376. show_pwm, set_pwm, 1);
  377. /* Fans */
  378. /*
  379. * That function checks the cases where the fan reading is not
  380. * relevant. It is used to provide 0 as fan reading when the fan is
  381. * not supposed to run
  382. */
  383. static int trust_fan_readings(struct adm1031_data *data, int chan)
  384. {
  385. int res = 0;
  386. if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
  387. switch (data->conf1 & 0x60) {
  388. case 0x00: /* remote temp1 controls fan1 remote temp2 controls fan2 */
  389. res = data->temp[chan+1] >=
  390. AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
  391. break;
  392. case 0x20: /* remote temp1 controls both fans */
  393. res =
  394. data->temp[1] >=
  395. AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
  396. break;
  397. case 0x40: /* remote temp2 controls both fans */
  398. res =
  399. data->temp[2] >=
  400. AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
  401. break;
  402. case 0x60: /* max controls both fans */
  403. res =
  404. data->temp[0] >=
  405. AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
  406. || data->temp[1] >=
  407. AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
  408. || (data->chip_type == adm1031
  409. && data->temp[2] >=
  410. AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
  411. break;
  412. }
  413. } else {
  414. res = data->pwm[chan] > 0;
  415. }
  416. return res;
  417. }
  418. static ssize_t show_fan(struct device *dev,
  419. struct device_attribute *attr, char *buf)
  420. {
  421. int nr = to_sensor_dev_attr(attr)->index;
  422. struct adm1031_data *data = adm1031_update_device(dev);
  423. int value;
  424. value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
  425. FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
  426. return sprintf(buf, "%d\n", value);
  427. }
  428. static ssize_t show_fan_div(struct device *dev,
  429. struct device_attribute *attr, char *buf)
  430. {
  431. int nr = to_sensor_dev_attr(attr)->index;
  432. struct adm1031_data *data = adm1031_update_device(dev);
  433. return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
  434. }
  435. static ssize_t show_fan_min(struct device *dev,
  436. struct device_attribute *attr, char *buf)
  437. {
  438. int nr = to_sensor_dev_attr(attr)->index;
  439. struct adm1031_data *data = adm1031_update_device(dev);
  440. return sprintf(buf, "%d\n",
  441. FAN_FROM_REG(data->fan_min[nr],
  442. FAN_DIV_FROM_REG(data->fan_div[nr])));
  443. }
  444. static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
  445. const char *buf, size_t count)
  446. {
  447. struct i2c_client *client = to_i2c_client(dev);
  448. struct adm1031_data *data = i2c_get_clientdata(client);
  449. int nr = to_sensor_dev_attr(attr)->index;
  450. int val = simple_strtol(buf, NULL, 10);
  451. mutex_lock(&data->update_lock);
  452. if (val) {
  453. data->fan_min[nr] =
  454. FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
  455. } else {
  456. data->fan_min[nr] = 0xff;
  457. }
  458. adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
  459. mutex_unlock(&data->update_lock);
  460. return count;
  461. }
  462. static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
  463. const char *buf, size_t count)
  464. {
  465. struct i2c_client *client = to_i2c_client(dev);
  466. struct adm1031_data *data = i2c_get_clientdata(client);
  467. int nr = to_sensor_dev_attr(attr)->index;
  468. int val = simple_strtol(buf, NULL, 10);
  469. u8 tmp;
  470. int old_div;
  471. int new_min;
  472. tmp = val == 8 ? 0xc0 :
  473. val == 4 ? 0x80 :
  474. val == 2 ? 0x40 :
  475. val == 1 ? 0x00 :
  476. 0xff;
  477. if (tmp == 0xff)
  478. return -EINVAL;
  479. mutex_lock(&data->update_lock);
  480. /* Get fresh readings */
  481. data->fan_div[nr] = adm1031_read_value(client,
  482. ADM1031_REG_FAN_DIV(nr));
  483. data->fan_min[nr] = adm1031_read_value(client,
  484. ADM1031_REG_FAN_MIN(nr));
  485. /* Write the new clock divider and fan min */
  486. old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
  487. data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
  488. new_min = data->fan_min[nr] * old_div / val;
  489. data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
  490. adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
  491. data->fan_div[nr]);
  492. adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
  493. data->fan_min[nr]);
  494. /* Invalidate the cache: fan speed is no longer valid */
  495. data->valid = 0;
  496. mutex_unlock(&data->update_lock);
  497. return count;
  498. }
  499. #define fan_offset(offset) \
  500. static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
  501. show_fan, NULL, offset - 1); \
  502. static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
  503. show_fan_min, set_fan_min, offset - 1); \
  504. static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
  505. show_fan_div, set_fan_div, offset - 1)
  506. fan_offset(1);
  507. fan_offset(2);
  508. /* Temps */
  509. static ssize_t show_temp(struct device *dev,
  510. struct device_attribute *attr, char *buf)
  511. {
  512. int nr = to_sensor_dev_attr(attr)->index;
  513. struct adm1031_data *data = adm1031_update_device(dev);
  514. int ext;
  515. ext = nr == 0 ?
  516. ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
  517. (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
  518. return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
  519. }
  520. static ssize_t show_temp_offset(struct device *dev,
  521. struct device_attribute *attr, char *buf)
  522. {
  523. int nr = to_sensor_dev_attr(attr)->index;
  524. struct adm1031_data *data = adm1031_update_device(dev);
  525. return sprintf(buf, "%d\n",
  526. TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
  527. }
  528. static ssize_t show_temp_min(struct device *dev,
  529. struct device_attribute *attr, char *buf)
  530. {
  531. int nr = to_sensor_dev_attr(attr)->index;
  532. struct adm1031_data *data = adm1031_update_device(dev);
  533. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
  534. }
  535. static ssize_t show_temp_max(struct device *dev,
  536. struct device_attribute *attr, char *buf)
  537. {
  538. int nr = to_sensor_dev_attr(attr)->index;
  539. struct adm1031_data *data = adm1031_update_device(dev);
  540. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
  541. }
  542. static ssize_t show_temp_crit(struct device *dev,
  543. struct device_attribute *attr, char *buf)
  544. {
  545. int nr = to_sensor_dev_attr(attr)->index;
  546. struct adm1031_data *data = adm1031_update_device(dev);
  547. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
  548. }
  549. static ssize_t set_temp_offset(struct device *dev,
  550. struct device_attribute *attr, const char *buf,
  551. size_t count)
  552. {
  553. struct i2c_client *client = to_i2c_client(dev);
  554. struct adm1031_data *data = i2c_get_clientdata(client);
  555. int nr = to_sensor_dev_attr(attr)->index;
  556. int val;
  557. val = simple_strtol(buf, NULL, 10);
  558. val = SENSORS_LIMIT(val, -15000, 15000);
  559. mutex_lock(&data->update_lock);
  560. data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
  561. adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
  562. data->temp_offset[nr]);
  563. mutex_unlock(&data->update_lock);
  564. return count;
  565. }
  566. static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
  567. const char *buf, size_t count)
  568. {
  569. struct i2c_client *client = to_i2c_client(dev);
  570. struct adm1031_data *data = i2c_get_clientdata(client);
  571. int nr = to_sensor_dev_attr(attr)->index;
  572. int val;
  573. val = simple_strtol(buf, NULL, 10);
  574. val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
  575. mutex_lock(&data->update_lock);
  576. data->temp_min[nr] = TEMP_TO_REG(val);
  577. adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
  578. data->temp_min[nr]);
  579. mutex_unlock(&data->update_lock);
  580. return count;
  581. }
  582. static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
  583. const char *buf, size_t count)
  584. {
  585. struct i2c_client *client = to_i2c_client(dev);
  586. struct adm1031_data *data = i2c_get_clientdata(client);
  587. int nr = to_sensor_dev_attr(attr)->index;
  588. int val;
  589. val = simple_strtol(buf, NULL, 10);
  590. val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
  591. mutex_lock(&data->update_lock);
  592. data->temp_max[nr] = TEMP_TO_REG(val);
  593. adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
  594. data->temp_max[nr]);
  595. mutex_unlock(&data->update_lock);
  596. return count;
  597. }
  598. static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
  599. const char *buf, size_t count)
  600. {
  601. struct i2c_client *client = to_i2c_client(dev);
  602. struct adm1031_data *data = i2c_get_clientdata(client);
  603. int nr = to_sensor_dev_attr(attr)->index;
  604. int val;
  605. val = simple_strtol(buf, NULL, 10);
  606. val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
  607. mutex_lock(&data->update_lock);
  608. data->temp_crit[nr] = TEMP_TO_REG(val);
  609. adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
  610. data->temp_crit[nr]);
  611. mutex_unlock(&data->update_lock);
  612. return count;
  613. }
  614. #define temp_reg(offset) \
  615. static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
  616. show_temp, NULL, offset - 1); \
  617. static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR, \
  618. show_temp_offset, set_temp_offset, offset - 1); \
  619. static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
  620. show_temp_min, set_temp_min, offset - 1); \
  621. static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
  622. show_temp_max, set_temp_max, offset - 1); \
  623. static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR, \
  624. show_temp_crit, set_temp_crit, offset - 1)
  625. temp_reg(1);
  626. temp_reg(2);
  627. temp_reg(3);
  628. /* Alarms */
  629. static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
  630. {
  631. struct adm1031_data *data = adm1031_update_device(dev);
  632. return sprintf(buf, "%d\n", data->alarm);
  633. }
  634. static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
  635. static ssize_t show_alarm(struct device *dev,
  636. struct device_attribute *attr, char *buf)
  637. {
  638. int bitnr = to_sensor_dev_attr(attr)->index;
  639. struct adm1031_data *data = adm1031_update_device(dev);
  640. return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
  641. }
  642. static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
  643. static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
  644. static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
  645. static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
  646. static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
  647. static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
  648. static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
  649. static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
  650. static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
  651. static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
  652. static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
  653. static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
  654. static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
  655. static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
  656. static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
  657. static struct attribute *adm1031_attributes[] = {
  658. &sensor_dev_attr_fan1_input.dev_attr.attr,
  659. &sensor_dev_attr_fan1_div.dev_attr.attr,
  660. &sensor_dev_attr_fan1_min.dev_attr.attr,
  661. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  662. &sensor_dev_attr_fan1_fault.dev_attr.attr,
  663. &sensor_dev_attr_pwm1.dev_attr.attr,
  664. &sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
  665. &sensor_dev_attr_temp1_input.dev_attr.attr,
  666. &sensor_dev_attr_temp1_offset.dev_attr.attr,
  667. &sensor_dev_attr_temp1_min.dev_attr.attr,
  668. &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
  669. &sensor_dev_attr_temp1_max.dev_attr.attr,
  670. &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
  671. &sensor_dev_attr_temp1_crit.dev_attr.attr,
  672. &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
  673. &sensor_dev_attr_temp2_input.dev_attr.attr,
  674. &sensor_dev_attr_temp2_offset.dev_attr.attr,
  675. &sensor_dev_attr_temp2_min.dev_attr.attr,
  676. &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
  677. &sensor_dev_attr_temp2_max.dev_attr.attr,
  678. &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
  679. &sensor_dev_attr_temp2_crit.dev_attr.attr,
  680. &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
  681. &sensor_dev_attr_temp2_fault.dev_attr.attr,
  682. &sensor_dev_attr_auto_temp1_off.dev_attr.attr,
  683. &sensor_dev_attr_auto_temp1_min.dev_attr.attr,
  684. &sensor_dev_attr_auto_temp1_max.dev_attr.attr,
  685. &sensor_dev_attr_auto_temp2_off.dev_attr.attr,
  686. &sensor_dev_attr_auto_temp2_min.dev_attr.attr,
  687. &sensor_dev_attr_auto_temp2_max.dev_attr.attr,
  688. &sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
  689. &dev_attr_alarms.attr,
  690. NULL
  691. };
  692. static const struct attribute_group adm1031_group = {
  693. .attrs = adm1031_attributes,
  694. };
  695. static struct attribute *adm1031_attributes_opt[] = {
  696. &sensor_dev_attr_fan2_input.dev_attr.attr,
  697. &sensor_dev_attr_fan2_div.dev_attr.attr,
  698. &sensor_dev_attr_fan2_min.dev_attr.attr,
  699. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  700. &sensor_dev_attr_fan2_fault.dev_attr.attr,
  701. &sensor_dev_attr_pwm2.dev_attr.attr,
  702. &sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
  703. &sensor_dev_attr_temp3_input.dev_attr.attr,
  704. &sensor_dev_attr_temp3_offset.dev_attr.attr,
  705. &sensor_dev_attr_temp3_min.dev_attr.attr,
  706. &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
  707. &sensor_dev_attr_temp3_max.dev_attr.attr,
  708. &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
  709. &sensor_dev_attr_temp3_crit.dev_attr.attr,
  710. &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
  711. &sensor_dev_attr_temp3_fault.dev_attr.attr,
  712. &sensor_dev_attr_auto_temp3_off.dev_attr.attr,
  713. &sensor_dev_attr_auto_temp3_min.dev_attr.attr,
  714. &sensor_dev_attr_auto_temp3_max.dev_attr.attr,
  715. &sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
  716. NULL
  717. };
  718. static const struct attribute_group adm1031_group_opt = {
  719. .attrs = adm1031_attributes_opt,
  720. };
  721. /* Return 0 if detection is successful, -ENODEV otherwise */
  722. static int adm1031_detect(struct i2c_client *client, int kind,
  723. struct i2c_board_info *info)
  724. {
  725. struct i2c_adapter *adapter = client->adapter;
  726. const char *name;
  727. int id, co;
  728. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
  729. return -ENODEV;
  730. id = i2c_smbus_read_byte_data(client, 0x3d);
  731. co = i2c_smbus_read_byte_data(client, 0x3e);
  732. if (!((id == 0x31 || id == 0x30) && co == 0x41))
  733. return -ENODEV;
  734. name = (id == 0x30) ? "adm1030" : "adm1031";
  735. strlcpy(info->type, name, I2C_NAME_SIZE);
  736. return 0;
  737. }
  738. static int adm1031_probe(struct i2c_client *client,
  739. const struct i2c_device_id *id)
  740. {
  741. struct adm1031_data *data;
  742. int err;
  743. data = kzalloc(sizeof(struct adm1031_data), GFP_KERNEL);
  744. if (!data) {
  745. err = -ENOMEM;
  746. goto exit;
  747. }
  748. i2c_set_clientdata(client, data);
  749. data->chip_type = id->driver_data;
  750. mutex_init(&data->update_lock);
  751. if (data->chip_type == adm1030)
  752. data->chan_select_table = &auto_channel_select_table_adm1030;
  753. else
  754. data->chan_select_table = &auto_channel_select_table_adm1031;
  755. /* Initialize the ADM1031 chip */
  756. adm1031_init_client(client);
  757. /* Register sysfs hooks */
  758. if ((err = sysfs_create_group(&client->dev.kobj, &adm1031_group)))
  759. goto exit_free;
  760. if (data->chip_type == adm1031) {
  761. if ((err = sysfs_create_group(&client->dev.kobj,
  762. &adm1031_group_opt)))
  763. goto exit_remove;
  764. }
  765. data->hwmon_dev = hwmon_device_register(&client->dev);
  766. if (IS_ERR(data->hwmon_dev)) {
  767. err = PTR_ERR(data->hwmon_dev);
  768. goto exit_remove;
  769. }
  770. return 0;
  771. exit_remove:
  772. sysfs_remove_group(&client->dev.kobj, &adm1031_group);
  773. sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
  774. exit_free:
  775. kfree(data);
  776. exit:
  777. return err;
  778. }
  779. static int adm1031_remove(struct i2c_client *client)
  780. {
  781. struct adm1031_data *data = i2c_get_clientdata(client);
  782. hwmon_device_unregister(data->hwmon_dev);
  783. sysfs_remove_group(&client->dev.kobj, &adm1031_group);
  784. sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
  785. kfree(data);
  786. return 0;
  787. }
  788. static void adm1031_init_client(struct i2c_client *client)
  789. {
  790. unsigned int read_val;
  791. unsigned int mask;
  792. struct adm1031_data *data = i2c_get_clientdata(client);
  793. mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
  794. if (data->chip_type == adm1031) {
  795. mask |= (ADM1031_CONF2_PWM2_ENABLE |
  796. ADM1031_CONF2_TACH2_ENABLE);
  797. }
  798. /* Initialize the ADM1031 chip (enables fan speed reading ) */
  799. read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
  800. if ((read_val | mask) != read_val) {
  801. adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
  802. }
  803. read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
  804. if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
  805. adm1031_write_value(client, ADM1031_REG_CONF1, read_val |
  806. ADM1031_CONF1_MONITOR_ENABLE);
  807. }
  808. }
  809. static struct adm1031_data *adm1031_update_device(struct device *dev)
  810. {
  811. struct i2c_client *client = to_i2c_client(dev);
  812. struct adm1031_data *data = i2c_get_clientdata(client);
  813. int chan;
  814. mutex_lock(&data->update_lock);
  815. if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
  816. || !data->valid) {
  817. dev_dbg(&client->dev, "Starting adm1031 update\n");
  818. for (chan = 0;
  819. chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
  820. u8 oldh, newh;
  821. oldh =
  822. adm1031_read_value(client, ADM1031_REG_TEMP(chan));
  823. data->ext_temp[chan] =
  824. adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
  825. newh =
  826. adm1031_read_value(client, ADM1031_REG_TEMP(chan));
  827. if (newh != oldh) {
  828. data->ext_temp[chan] =
  829. adm1031_read_value(client,
  830. ADM1031_REG_EXT_TEMP);
  831. #ifdef DEBUG
  832. oldh =
  833. adm1031_read_value(client,
  834. ADM1031_REG_TEMP(chan));
  835. /* oldh is actually newer */
  836. if (newh != oldh)
  837. dev_warn(&client->dev,
  838. "Remote temperature may be "
  839. "wrong.\n");
  840. #endif
  841. }
  842. data->temp[chan] = newh;
  843. data->temp_offset[chan] =
  844. adm1031_read_value(client,
  845. ADM1031_REG_TEMP_OFFSET(chan));
  846. data->temp_min[chan] =
  847. adm1031_read_value(client,
  848. ADM1031_REG_TEMP_MIN(chan));
  849. data->temp_max[chan] =
  850. adm1031_read_value(client,
  851. ADM1031_REG_TEMP_MAX(chan));
  852. data->temp_crit[chan] =
  853. adm1031_read_value(client,
  854. ADM1031_REG_TEMP_CRIT(chan));
  855. data->auto_temp[chan] =
  856. adm1031_read_value(client,
  857. ADM1031_REG_AUTO_TEMP(chan));
  858. }
  859. data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
  860. data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
  861. data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
  862. | (adm1031_read_value(client, ADM1031_REG_STATUS(1))
  863. << 8);
  864. if (data->chip_type == adm1030) {
  865. data->alarm &= 0xc0ff;
  866. }
  867. for (chan=0; chan<(data->chip_type == adm1030 ? 1 : 2); chan++) {
  868. data->fan_div[chan] =
  869. adm1031_read_value(client, ADM1031_REG_FAN_DIV(chan));
  870. data->fan_min[chan] =
  871. adm1031_read_value(client, ADM1031_REG_FAN_MIN(chan));
  872. data->fan[chan] =
  873. adm1031_read_value(client, ADM1031_REG_FAN_SPEED(chan));
  874. data->pwm[chan] =
  875. 0xf & (adm1031_read_value(client, ADM1031_REG_PWM) >>
  876. (4*chan));
  877. }
  878. data->last_updated = jiffies;
  879. data->valid = 1;
  880. }
  881. mutex_unlock(&data->update_lock);
  882. return data;
  883. }
  884. static int __init sensors_adm1031_init(void)
  885. {
  886. return i2c_add_driver(&adm1031_driver);
  887. }
  888. static void __exit sensors_adm1031_exit(void)
  889. {
  890. i2c_del_driver(&adm1031_driver);
  891. }
  892. MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
  893. MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
  894. MODULE_LICENSE("GPL");
  895. module_init(sensors_adm1031_init);
  896. module_exit(sensors_adm1031_exit);