amd64_edac.c 84 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086
  1. #include "amd64_edac.h"
  2. #include <asm/k8.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. /* Lookup table for all possible MC control instances */
  13. struct amd64_pvt;
  14. static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
  15. static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
  16. /*
  17. * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
  18. * later.
  19. */
  20. static int ddr2_dbam_revCG[] = {
  21. [0] = 32,
  22. [1] = 64,
  23. [2] = 128,
  24. [3] = 256,
  25. [4] = 512,
  26. [5] = 1024,
  27. [6] = 2048,
  28. };
  29. static int ddr2_dbam_revD[] = {
  30. [0] = 32,
  31. [1] = 64,
  32. [2 ... 3] = 128,
  33. [4] = 256,
  34. [5] = 512,
  35. [6] = 256,
  36. [7] = 512,
  37. [8 ... 9] = 1024,
  38. [10] = 2048,
  39. };
  40. static int ddr2_dbam[] = { [0] = 128,
  41. [1] = 256,
  42. [2 ... 4] = 512,
  43. [5 ... 6] = 1024,
  44. [7 ... 8] = 2048,
  45. [9 ... 10] = 4096,
  46. [11] = 8192,
  47. };
  48. static int ddr3_dbam[] = { [0] = -1,
  49. [1] = 256,
  50. [2] = 512,
  51. [3 ... 4] = -1,
  52. [5 ... 6] = 1024,
  53. [7 ... 8] = 2048,
  54. [9 ... 10] = 4096,
  55. [11] = 8192,
  56. };
  57. /*
  58. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  59. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  60. * or higher value'.
  61. *
  62. *FIXME: Produce a better mapping/linearisation.
  63. */
  64. struct scrubrate scrubrates[] = {
  65. { 0x01, 1600000000UL},
  66. { 0x02, 800000000UL},
  67. { 0x03, 400000000UL},
  68. { 0x04, 200000000UL},
  69. { 0x05, 100000000UL},
  70. { 0x06, 50000000UL},
  71. { 0x07, 25000000UL},
  72. { 0x08, 12284069UL},
  73. { 0x09, 6274509UL},
  74. { 0x0A, 3121951UL},
  75. { 0x0B, 1560975UL},
  76. { 0x0C, 781440UL},
  77. { 0x0D, 390720UL},
  78. { 0x0E, 195300UL},
  79. { 0x0F, 97650UL},
  80. { 0x10, 48854UL},
  81. { 0x11, 24427UL},
  82. { 0x12, 12213UL},
  83. { 0x13, 6101UL},
  84. { 0x14, 3051UL},
  85. { 0x15, 1523UL},
  86. { 0x16, 761UL},
  87. { 0x00, 0UL}, /* scrubbing off */
  88. };
  89. /*
  90. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  91. * hardware and can involve L2 cache, dcache as well as the main memory. With
  92. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  93. * functionality.
  94. *
  95. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  96. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  97. * bytes/sec for the setting.
  98. *
  99. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  100. * other archs, we might not have access to the caches directly.
  101. */
  102. /*
  103. * scan the scrub rate mapping table for a close or matching bandwidth value to
  104. * issue. If requested is too big, then use last maximum value found.
  105. */
  106. static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
  107. u32 min_scrubrate)
  108. {
  109. u32 scrubval;
  110. int i;
  111. /*
  112. * map the configured rate (new_bw) to a value specific to the AMD64
  113. * memory controller and apply to register. Search for the first
  114. * bandwidth entry that is greater or equal than the setting requested
  115. * and program that. If at last entry, turn off DRAM scrubbing.
  116. */
  117. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  118. /*
  119. * skip scrub rates which aren't recommended
  120. * (see F10 BKDG, F3x58)
  121. */
  122. if (scrubrates[i].scrubval < min_scrubrate)
  123. continue;
  124. if (scrubrates[i].bandwidth <= new_bw)
  125. break;
  126. /*
  127. * if no suitable bandwidth found, turn off DRAM scrubbing
  128. * entirely by falling back to the last element in the
  129. * scrubrates array.
  130. */
  131. }
  132. scrubval = scrubrates[i].scrubval;
  133. if (scrubval)
  134. edac_printk(KERN_DEBUG, EDAC_MC,
  135. "Setting scrub rate bandwidth: %u\n",
  136. scrubrates[i].bandwidth);
  137. else
  138. edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
  139. pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
  140. return 0;
  141. }
  142. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
  143. {
  144. struct amd64_pvt *pvt = mci->pvt_info;
  145. u32 min_scrubrate = 0x0;
  146. switch (boot_cpu_data.x86) {
  147. case 0xf:
  148. min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
  149. break;
  150. case 0x10:
  151. min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
  152. break;
  153. case 0x11:
  154. min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
  155. break;
  156. default:
  157. amd64_printk(KERN_ERR, "Unsupported family!\n");
  158. break;
  159. }
  160. return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
  161. min_scrubrate);
  162. }
  163. static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
  164. {
  165. struct amd64_pvt *pvt = mci->pvt_info;
  166. u32 scrubval = 0;
  167. int status = -1, i;
  168. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
  169. scrubval = scrubval & 0x001F;
  170. edac_printk(KERN_DEBUG, EDAC_MC,
  171. "pci-read, sdram scrub control value: %d \n", scrubval);
  172. for (i = 0; ARRAY_SIZE(scrubrates); i++) {
  173. if (scrubrates[i].scrubval == scrubval) {
  174. *bw = scrubrates[i].bandwidth;
  175. status = 0;
  176. break;
  177. }
  178. }
  179. return status;
  180. }
  181. /* Map from a CSROW entry to the mask entry that operates on it */
  182. static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
  183. {
  184. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
  185. return csrow;
  186. else
  187. return csrow >> 1;
  188. }
  189. /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
  190. static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
  191. {
  192. if (dct == 0)
  193. return pvt->dcsb0[csrow];
  194. else
  195. return pvt->dcsb1[csrow];
  196. }
  197. /*
  198. * Return the 'mask' address the i'th CS entry. This function is needed because
  199. * there number of DCSM registers on Rev E and prior vs Rev F and later is
  200. * different.
  201. */
  202. static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
  203. {
  204. if (dct == 0)
  205. return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
  206. else
  207. return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
  208. }
  209. /*
  210. * In *base and *limit, pass back the full 40-bit base and limit physical
  211. * addresses for the node given by node_id. This information is obtained from
  212. * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
  213. * base and limit addresses are of type SysAddr, as defined at the start of
  214. * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
  215. * in the address range they represent.
  216. */
  217. static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
  218. u64 *base, u64 *limit)
  219. {
  220. *base = pvt->dram_base[node_id];
  221. *limit = pvt->dram_limit[node_id];
  222. }
  223. /*
  224. * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
  225. * with node_id
  226. */
  227. static int amd64_base_limit_match(struct amd64_pvt *pvt,
  228. u64 sys_addr, int node_id)
  229. {
  230. u64 base, limit, addr;
  231. amd64_get_base_and_limit(pvt, node_id, &base, &limit);
  232. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  233. * all ones if the most significant implemented address bit is 1.
  234. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  235. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  236. * Application Programming.
  237. */
  238. addr = sys_addr & 0x000000ffffffffffull;
  239. return (addr >= base) && (addr <= limit);
  240. }
  241. /*
  242. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  243. * mem_ctl_info structure for the node that the SysAddr maps to.
  244. *
  245. * On failure, return NULL.
  246. */
  247. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  248. u64 sys_addr)
  249. {
  250. struct amd64_pvt *pvt;
  251. int node_id;
  252. u32 intlv_en, bits;
  253. /*
  254. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  255. * 3.4.4.2) registers to map the SysAddr to a node ID.
  256. */
  257. pvt = mci->pvt_info;
  258. /*
  259. * The value of this field should be the same for all DRAM Base
  260. * registers. Therefore we arbitrarily choose to read it from the
  261. * register for node 0.
  262. */
  263. intlv_en = pvt->dram_IntlvEn[0];
  264. if (intlv_en == 0) {
  265. for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
  266. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  267. goto found;
  268. }
  269. goto err_no_match;
  270. }
  271. if (unlikely((intlv_en != 0x01) &&
  272. (intlv_en != 0x03) &&
  273. (intlv_en != 0x07))) {
  274. amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
  275. "IntlvEn field of DRAM Base Register for node 0: "
  276. "this probably indicates a BIOS bug.\n", intlv_en);
  277. return NULL;
  278. }
  279. bits = (((u32) sys_addr) >> 12) & intlv_en;
  280. for (node_id = 0; ; ) {
  281. if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
  282. break; /* intlv_sel field matches */
  283. if (++node_id >= DRAM_REG_COUNT)
  284. goto err_no_match;
  285. }
  286. /* sanity test for sys_addr */
  287. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  288. amd64_printk(KERN_WARNING,
  289. "%s(): sys_addr 0x%llx falls outside base/limit "
  290. "address range for node %d with node interleaving "
  291. "enabled.\n",
  292. __func__, sys_addr, node_id);
  293. return NULL;
  294. }
  295. found:
  296. return edac_mc_find(node_id);
  297. err_no_match:
  298. debugf2("sys_addr 0x%lx doesn't match any node\n",
  299. (unsigned long)sys_addr);
  300. return NULL;
  301. }
  302. /*
  303. * Extract the DRAM CS base address from selected csrow register.
  304. */
  305. static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
  306. {
  307. return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
  308. pvt->dcs_shift;
  309. }
  310. /*
  311. * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
  312. */
  313. static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
  314. {
  315. u64 dcsm_bits, other_bits;
  316. u64 mask;
  317. /* Extract bits from DRAM CS Mask. */
  318. dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
  319. other_bits = pvt->dcsm_mask;
  320. other_bits = ~(other_bits << pvt->dcs_shift);
  321. /*
  322. * The extracted bits from DCSM belong in the spaces represented by
  323. * the cleared bits in other_bits.
  324. */
  325. mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
  326. return mask;
  327. }
  328. /*
  329. * @input_addr is an InputAddr associated with the node given by mci. Return the
  330. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  331. */
  332. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  333. {
  334. struct amd64_pvt *pvt;
  335. int csrow;
  336. u64 base, mask;
  337. pvt = mci->pvt_info;
  338. /*
  339. * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
  340. * base/mask register pair, test the condition shown near the start of
  341. * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
  342. */
  343. for (csrow = 0; csrow < pvt->cs_count; csrow++) {
  344. /* This DRAM chip select is disabled on this node */
  345. if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
  346. continue;
  347. base = base_from_dct_base(pvt, csrow);
  348. mask = ~mask_from_dct_mask(pvt, csrow);
  349. if ((input_addr & mask) == (base & mask)) {
  350. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  351. (unsigned long)input_addr, csrow,
  352. pvt->mc_node_id);
  353. return csrow;
  354. }
  355. }
  356. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  357. (unsigned long)input_addr, pvt->mc_node_id);
  358. return -1;
  359. }
  360. /*
  361. * Return the base value defined by the DRAM Base register for the node
  362. * represented by mci. This function returns the full 40-bit value despite the
  363. * fact that the register only stores bits 39-24 of the value. See section
  364. * 3.4.4.1 (BKDG #26094, K8, revA-E)
  365. */
  366. static inline u64 get_dram_base(struct mem_ctl_info *mci)
  367. {
  368. struct amd64_pvt *pvt = mci->pvt_info;
  369. return pvt->dram_base[pvt->mc_node_id];
  370. }
  371. /*
  372. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  373. * for the node represented by mci. Info is passed back in *hole_base,
  374. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  375. * info is invalid. Info may be invalid for either of the following reasons:
  376. *
  377. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  378. * Address Register does not exist.
  379. *
  380. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  381. * indicating that its contents are not valid.
  382. *
  383. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  384. * complete 32-bit values despite the fact that the bitfields in the DHAR
  385. * only represent bits 31-24 of the base and offset values.
  386. */
  387. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  388. u64 *hole_offset, u64 *hole_size)
  389. {
  390. struct amd64_pvt *pvt = mci->pvt_info;
  391. u64 base;
  392. /* only revE and later have the DRAM Hole Address Register */
  393. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
  394. debugf1(" revision %d for node %d does not support DHAR\n",
  395. pvt->ext_model, pvt->mc_node_id);
  396. return 1;
  397. }
  398. /* only valid for Fam10h */
  399. if (boot_cpu_data.x86 == 0x10 &&
  400. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
  401. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  402. return 1;
  403. }
  404. if ((pvt->dhar & DHAR_VALID) == 0) {
  405. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  406. pvt->mc_node_id);
  407. return 1;
  408. }
  409. /* This node has Memory Hoisting */
  410. /* +------------------+--------------------+--------------------+-----
  411. * | memory | DRAM hole | relocated |
  412. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  413. * | | | DRAM hole |
  414. * | | | [0x100000000, |
  415. * | | | (0x100000000+ |
  416. * | | | (0xffffffff-x))] |
  417. * +------------------+--------------------+--------------------+-----
  418. *
  419. * Above is a diagram of physical memory showing the DRAM hole and the
  420. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  421. * starts at address x (the base address) and extends through address
  422. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  423. * addresses in the hole so that they start at 0x100000000.
  424. */
  425. base = dhar_base(pvt->dhar);
  426. *hole_base = base;
  427. *hole_size = (0x1ull << 32) - base;
  428. if (boot_cpu_data.x86 > 0xf)
  429. *hole_offset = f10_dhar_offset(pvt->dhar);
  430. else
  431. *hole_offset = k8_dhar_offset(pvt->dhar);
  432. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  433. pvt->mc_node_id, (unsigned long)*hole_base,
  434. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  435. return 0;
  436. }
  437. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  438. /*
  439. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  440. * assumed that sys_addr maps to the node given by mci.
  441. *
  442. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  443. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  444. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  445. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  446. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  447. * These parts of the documentation are unclear. I interpret them as follows:
  448. *
  449. * When node n receives a SysAddr, it processes the SysAddr as follows:
  450. *
  451. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  452. * Limit registers for node n. If the SysAddr is not within the range
  453. * specified by the base and limit values, then node n ignores the Sysaddr
  454. * (since it does not map to node n). Otherwise continue to step 2 below.
  455. *
  456. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  457. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  458. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  459. * hole. If not, skip to step 3 below. Else get the value of the
  460. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  461. * offset defined by this value from the SysAddr.
  462. *
  463. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  464. * Base register for node n. To obtain the DramAddr, subtract the base
  465. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  466. */
  467. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  468. {
  469. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  470. int ret = 0;
  471. dram_base = get_dram_base(mci);
  472. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  473. &hole_size);
  474. if (!ret) {
  475. if ((sys_addr >= (1ull << 32)) &&
  476. (sys_addr < ((1ull << 32) + hole_size))) {
  477. /* use DHAR to translate SysAddr to DramAddr */
  478. dram_addr = sys_addr - hole_offset;
  479. debugf2("using DHAR to translate SysAddr 0x%lx to "
  480. "DramAddr 0x%lx\n",
  481. (unsigned long)sys_addr,
  482. (unsigned long)dram_addr);
  483. return dram_addr;
  484. }
  485. }
  486. /*
  487. * Translate the SysAddr to a DramAddr as shown near the start of
  488. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  489. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  490. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  491. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  492. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  493. * Programmer's Manual Volume 1 Application Programming.
  494. */
  495. dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
  496. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  497. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  498. (unsigned long)dram_addr);
  499. return dram_addr;
  500. }
  501. /*
  502. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  503. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  504. * for node interleaving.
  505. */
  506. static int num_node_interleave_bits(unsigned intlv_en)
  507. {
  508. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  509. int n;
  510. BUG_ON(intlv_en > 7);
  511. n = intlv_shift_table[intlv_en];
  512. return n;
  513. }
  514. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  515. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  516. {
  517. struct amd64_pvt *pvt;
  518. int intlv_shift;
  519. u64 input_addr;
  520. pvt = mci->pvt_info;
  521. /*
  522. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  523. * concerning translating a DramAddr to an InputAddr.
  524. */
  525. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  526. input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
  527. (dram_addr & 0xfff);
  528. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  529. intlv_shift, (unsigned long)dram_addr,
  530. (unsigned long)input_addr);
  531. return input_addr;
  532. }
  533. /*
  534. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  535. * assumed that @sys_addr maps to the node given by mci.
  536. */
  537. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  538. {
  539. u64 input_addr;
  540. input_addr =
  541. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  542. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  543. (unsigned long)sys_addr, (unsigned long)input_addr);
  544. return input_addr;
  545. }
  546. /*
  547. * @input_addr is an InputAddr associated with the node represented by mci.
  548. * Translate @input_addr to a DramAddr and return the result.
  549. */
  550. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  551. {
  552. struct amd64_pvt *pvt;
  553. int node_id, intlv_shift;
  554. u64 bits, dram_addr;
  555. u32 intlv_sel;
  556. /*
  557. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  558. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  559. * this procedure. When translating from a DramAddr to an InputAddr, the
  560. * bits used for node interleaving are discarded. Here we recover these
  561. * bits from the IntlvSel field of the DRAM Limit register (section
  562. * 3.4.4.2) for the node that input_addr is associated with.
  563. */
  564. pvt = mci->pvt_info;
  565. node_id = pvt->mc_node_id;
  566. BUG_ON((node_id < 0) || (node_id > 7));
  567. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  568. if (intlv_shift == 0) {
  569. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  570. "same value\n", (unsigned long)input_addr);
  571. return input_addr;
  572. }
  573. bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
  574. (input_addr & 0xfff);
  575. intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
  576. dram_addr = bits + (intlv_sel << 12);
  577. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  578. "(%d node interleave bits)\n", (unsigned long)input_addr,
  579. (unsigned long)dram_addr, intlv_shift);
  580. return dram_addr;
  581. }
  582. /*
  583. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  584. * @dram_addr to a SysAddr.
  585. */
  586. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  587. {
  588. struct amd64_pvt *pvt = mci->pvt_info;
  589. u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
  590. int ret = 0;
  591. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  592. &hole_size);
  593. if (!ret) {
  594. if ((dram_addr >= hole_base) &&
  595. (dram_addr < (hole_base + hole_size))) {
  596. sys_addr = dram_addr + hole_offset;
  597. debugf1("using DHAR to translate DramAddr 0x%lx to "
  598. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  599. (unsigned long)sys_addr);
  600. return sys_addr;
  601. }
  602. }
  603. amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
  604. sys_addr = dram_addr + base;
  605. /*
  606. * The sys_addr we have computed up to this point is a 40-bit value
  607. * because the k8 deals with 40-bit values. However, the value we are
  608. * supposed to return is a full 64-bit physical address. The AMD
  609. * x86-64 architecture specifies that the most significant implemented
  610. * address bit through bit 63 of a physical address must be either all
  611. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  612. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  613. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  614. * Programming.
  615. */
  616. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  617. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  618. pvt->mc_node_id, (unsigned long)dram_addr,
  619. (unsigned long)sys_addr);
  620. return sys_addr;
  621. }
  622. /*
  623. * @input_addr is an InputAddr associated with the node given by mci. Translate
  624. * @input_addr to a SysAddr.
  625. */
  626. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  627. u64 input_addr)
  628. {
  629. return dram_addr_to_sys_addr(mci,
  630. input_addr_to_dram_addr(mci, input_addr));
  631. }
  632. /*
  633. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  634. * Pass back these values in *input_addr_min and *input_addr_max.
  635. */
  636. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  637. u64 *input_addr_min, u64 *input_addr_max)
  638. {
  639. struct amd64_pvt *pvt;
  640. u64 base, mask;
  641. pvt = mci->pvt_info;
  642. BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
  643. base = base_from_dct_base(pvt, csrow);
  644. mask = mask_from_dct_mask(pvt, csrow);
  645. *input_addr_min = base & ~mask;
  646. *input_addr_max = base | mask | pvt->dcs_mask_notused;
  647. }
  648. /* Map the Error address to a PAGE and PAGE OFFSET. */
  649. static inline void error_address_to_page_and_offset(u64 error_address,
  650. u32 *page, u32 *offset)
  651. {
  652. *page = (u32) (error_address >> PAGE_SHIFT);
  653. *offset = ((u32) error_address) & ~PAGE_MASK;
  654. }
  655. /*
  656. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  657. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  658. * of a node that detected an ECC memory error. mci represents the node that
  659. * the error address maps to (possibly different from the node that detected
  660. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  661. * error.
  662. */
  663. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  664. {
  665. int csrow;
  666. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  667. if (csrow == -1)
  668. amd64_mc_printk(mci, KERN_ERR,
  669. "Failed to translate InputAddr to csrow for "
  670. "address 0x%lx\n", (unsigned long)sys_addr);
  671. return csrow;
  672. }
  673. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  674. static void amd64_cpu_display_info(struct amd64_pvt *pvt)
  675. {
  676. if (boot_cpu_data.x86 == 0x11)
  677. edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
  678. else if (boot_cpu_data.x86 == 0x10)
  679. edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
  680. else if (boot_cpu_data.x86 == 0xf)
  681. edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
  682. (pvt->ext_model >= K8_REV_F) ?
  683. "Rev F or later" : "Rev E or earlier");
  684. else
  685. /* we'll hardly ever ever get here */
  686. edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
  687. }
  688. /*
  689. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  690. * are ECC capable.
  691. */
  692. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  693. {
  694. int bit;
  695. enum dev_type edac_cap = EDAC_FLAG_NONE;
  696. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
  697. ? 19
  698. : 17;
  699. if (pvt->dclr0 & BIT(bit))
  700. edac_cap = EDAC_FLAG_SECDED;
  701. return edac_cap;
  702. }
  703. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
  704. static void amd64_dump_dramcfg_low(u32 dclr, int chan)
  705. {
  706. debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  707. debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  708. (dclr & BIT(16)) ? "un" : "",
  709. (dclr & BIT(19)) ? "yes" : "no");
  710. debugf1(" PAR/ERR parity: %s\n",
  711. (dclr & BIT(8)) ? "enabled" : "disabled");
  712. debugf1(" DCT 128bit mode width: %s\n",
  713. (dclr & BIT(11)) ? "128b" : "64b");
  714. debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  715. (dclr & BIT(12)) ? "yes" : "no",
  716. (dclr & BIT(13)) ? "yes" : "no",
  717. (dclr & BIT(14)) ? "yes" : "no",
  718. (dclr & BIT(15)) ? "yes" : "no");
  719. }
  720. /* Display and decode various NB registers for debug purposes. */
  721. static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
  722. {
  723. int ganged;
  724. debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  725. debugf1(" NB two channel DRAM capable: %s\n",
  726. (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
  727. debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
  728. (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
  729. (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
  730. amd64_dump_dramcfg_low(pvt->dclr0, 0);
  731. debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  732. debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
  733. "offset: 0x%08x\n",
  734. pvt->dhar,
  735. dhar_base(pvt->dhar),
  736. (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
  737. : f10_dhar_offset(pvt->dhar));
  738. debugf1(" DramHoleValid: %s\n",
  739. (pvt->dhar & DHAR_VALID) ? "yes" : "no");
  740. /* everything below this point is Fam10h and above */
  741. if (boot_cpu_data.x86 == 0xf) {
  742. amd64_debug_display_dimm_sizes(0, pvt);
  743. return;
  744. }
  745. /* Only if NOT ganged does dclr1 have valid info */
  746. if (!dct_ganging_enabled(pvt))
  747. amd64_dump_dramcfg_low(pvt->dclr1, 1);
  748. /*
  749. * Determine if ganged and then dump memory sizes for first controller,
  750. * and if NOT ganged dump info for 2nd controller.
  751. */
  752. ganged = dct_ganging_enabled(pvt);
  753. amd64_debug_display_dimm_sizes(0, pvt);
  754. if (!ganged)
  755. amd64_debug_display_dimm_sizes(1, pvt);
  756. }
  757. /* Read in both of DBAM registers */
  758. static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
  759. {
  760. amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
  761. if (boot_cpu_data.x86 >= 0x10)
  762. amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
  763. }
  764. /*
  765. * NOTE: CPU Revision Dependent code: Rev E and Rev F
  766. *
  767. * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
  768. * set the shift factor for the DCSB and DCSM values.
  769. *
  770. * ->dcs_mask_notused, RevE:
  771. *
  772. * To find the max InputAddr for the csrow, start with the base address and set
  773. * all bits that are "don't care" bits in the test at the start of section
  774. * 3.5.4 (p. 84).
  775. *
  776. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  777. * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
  778. * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
  779. * gaps.
  780. *
  781. * ->dcs_mask_notused, RevF and later:
  782. *
  783. * To find the max InputAddr for the csrow, start with the base address and set
  784. * all bits that are "don't care" bits in the test at the start of NPT section
  785. * 4.5.4 (p. 87).
  786. *
  787. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  788. * between bit ranges [36:27] and [21:13].
  789. *
  790. * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
  791. * which are all bits in the above-mentioned gaps.
  792. */
  793. static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
  794. {
  795. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  796. pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
  797. pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
  798. pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
  799. pvt->dcs_shift = REV_E_DCS_SHIFT;
  800. pvt->cs_count = 8;
  801. pvt->num_dcsm = 8;
  802. } else {
  803. pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
  804. pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
  805. pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
  806. pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
  807. if (boot_cpu_data.x86 == 0x11) {
  808. pvt->cs_count = 4;
  809. pvt->num_dcsm = 2;
  810. } else {
  811. pvt->cs_count = 8;
  812. pvt->num_dcsm = 4;
  813. }
  814. }
  815. }
  816. /*
  817. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
  818. */
  819. static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
  820. {
  821. int cs, reg;
  822. amd64_set_dct_base_and_mask(pvt);
  823. for (cs = 0; cs < pvt->cs_count; cs++) {
  824. reg = K8_DCSB0 + (cs * 4);
  825. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
  826. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  827. cs, pvt->dcsb0[cs], reg);
  828. /* If DCT are NOT ganged, then read in DCT1's base */
  829. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  830. reg = F10_DCSB1 + (cs * 4);
  831. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
  832. &pvt->dcsb1[cs]))
  833. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  834. cs, pvt->dcsb1[cs], reg);
  835. } else {
  836. pvt->dcsb1[cs] = 0;
  837. }
  838. }
  839. for (cs = 0; cs < pvt->num_dcsm; cs++) {
  840. reg = K8_DCSM0 + (cs * 4);
  841. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
  842. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  843. cs, pvt->dcsm0[cs], reg);
  844. /* If DCT are NOT ganged, then read in DCT1's mask */
  845. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  846. reg = F10_DCSM1 + (cs * 4);
  847. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
  848. &pvt->dcsm1[cs]))
  849. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  850. cs, pvt->dcsm1[cs], reg);
  851. } else {
  852. pvt->dcsm1[cs] = 0;
  853. }
  854. }
  855. }
  856. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
  857. {
  858. enum mem_type type;
  859. if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
  860. if (pvt->dchr0 & DDR3_MODE)
  861. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  862. else
  863. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  864. } else {
  865. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  866. }
  867. debugf1(" Memory type is: %s\n", edac_mem_types[type]);
  868. return type;
  869. }
  870. /*
  871. * Read the DRAM Configuration Low register. It differs between CG, D & E revs
  872. * and the later RevF memory controllers (DDR vs DDR2)
  873. *
  874. * Return:
  875. * number of memory channels in operation
  876. * Pass back:
  877. * contents of the DCL0_LOW register
  878. */
  879. static int k8_early_channel_count(struct amd64_pvt *pvt)
  880. {
  881. int flag, err = 0;
  882. err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  883. if (err)
  884. return err;
  885. if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
  886. /* RevF (NPT) and later */
  887. flag = pvt->dclr0 & F10_WIDTH_128;
  888. } else {
  889. /* RevE and earlier */
  890. flag = pvt->dclr0 & REVE_WIDTH_128;
  891. }
  892. /* not used */
  893. pvt->dclr1 = 0;
  894. return (flag) ? 2 : 1;
  895. }
  896. /* extract the ERROR ADDRESS for the K8 CPUs */
  897. static u64 k8_get_error_address(struct mem_ctl_info *mci,
  898. struct err_regs *info)
  899. {
  900. return (((u64) (info->nbeah & 0xff)) << 32) +
  901. (info->nbeal & ~0x03);
  902. }
  903. /*
  904. * Read the Base and Limit registers for K8 based Memory controllers; extract
  905. * fields from the 'raw' reg into separate data fields
  906. *
  907. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
  908. */
  909. static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  910. {
  911. u32 low;
  912. u32 off = dram << 3; /* 8 bytes between DRAM entries */
  913. amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
  914. /* Extract parts into separate data entries */
  915. pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
  916. pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
  917. pvt->dram_rw_en[dram] = (low & 0x3);
  918. amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
  919. /*
  920. * Extract parts into separate data entries. Limit is the HIGHEST memory
  921. * location of the region, so lower 24 bits need to be all ones
  922. */
  923. pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
  924. pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
  925. pvt->dram_DstNode[dram] = (low & 0x7);
  926. }
  927. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  928. struct err_regs *info,
  929. u64 sys_addr)
  930. {
  931. struct mem_ctl_info *src_mci;
  932. unsigned short syndrome;
  933. int channel, csrow;
  934. u32 page, offset;
  935. /* Extract the syndrome parts and form a 16-bit syndrome */
  936. syndrome = HIGH_SYNDROME(info->nbsl) << 8;
  937. syndrome |= LOW_SYNDROME(info->nbsh);
  938. /* CHIPKILL enabled */
  939. if (info->nbcfg & K8_NBCFG_CHIPKILL) {
  940. channel = get_channel_from_ecc_syndrome(mci, syndrome);
  941. if (channel < 0) {
  942. /*
  943. * Syndrome didn't map, so we don't know which of the
  944. * 2 DIMMs is in error. So we need to ID 'both' of them
  945. * as suspect.
  946. */
  947. amd64_mc_printk(mci, KERN_WARNING,
  948. "unknown syndrome 0x%x - possible error "
  949. "reporting race\n", syndrome);
  950. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  951. return;
  952. }
  953. } else {
  954. /*
  955. * non-chipkill ecc mode
  956. *
  957. * The k8 documentation is unclear about how to determine the
  958. * channel number when using non-chipkill memory. This method
  959. * was obtained from email communication with someone at AMD.
  960. * (Wish the email was placed in this comment - norsk)
  961. */
  962. channel = ((sys_addr & BIT(3)) != 0);
  963. }
  964. /*
  965. * Find out which node the error address belongs to. This may be
  966. * different from the node that detected the error.
  967. */
  968. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  969. if (!src_mci) {
  970. amd64_mc_printk(mci, KERN_ERR,
  971. "failed to map error address 0x%lx to a node\n",
  972. (unsigned long)sys_addr);
  973. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  974. return;
  975. }
  976. /* Now map the sys_addr to a CSROW */
  977. csrow = sys_addr_to_csrow(src_mci, sys_addr);
  978. if (csrow < 0) {
  979. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  980. } else {
  981. error_address_to_page_and_offset(sys_addr, &page, &offset);
  982. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  983. channel, EDAC_MOD_STR);
  984. }
  985. }
  986. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
  987. {
  988. int *dbam_map;
  989. if (pvt->ext_model >= K8_REV_F)
  990. dbam_map = ddr2_dbam;
  991. else if (pvt->ext_model >= K8_REV_D)
  992. dbam_map = ddr2_dbam_revD;
  993. else
  994. dbam_map = ddr2_dbam_revCG;
  995. return dbam_map[cs_mode];
  996. }
  997. /*
  998. * Get the number of DCT channels in use.
  999. *
  1000. * Return:
  1001. * number of Memory Channels in operation
  1002. * Pass back:
  1003. * contents of the DCL0_LOW register
  1004. */
  1005. static int f10_early_channel_count(struct amd64_pvt *pvt)
  1006. {
  1007. int dbams[] = { DBAM0, DBAM1 };
  1008. int i, j, channels = 0;
  1009. u32 dbam;
  1010. /* If we are in 128 bit mode, then we are using 2 channels */
  1011. if (pvt->dclr0 & F10_WIDTH_128) {
  1012. channels = 2;
  1013. return channels;
  1014. }
  1015. /*
  1016. * Need to check if in unganged mode: In such, there are 2 channels,
  1017. * but they are not in 128 bit mode and thus the above 'dclr0' status
  1018. * bit will be OFF.
  1019. *
  1020. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  1021. * their CSEnable bit on. If so, then SINGLE DIMM case.
  1022. */
  1023. debugf0("Data width is not 128 bits - need more decoding\n");
  1024. /*
  1025. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  1026. * is more than just one DIMM present in unganged mode. Need to check
  1027. * both controllers since DIMMs can be placed in either one.
  1028. */
  1029. for (i = 0; i < ARRAY_SIZE(dbams); i++) {
  1030. if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
  1031. goto err_reg;
  1032. for (j = 0; j < 4; j++) {
  1033. if (DBAM_DIMM(j, dbam) > 0) {
  1034. channels++;
  1035. break;
  1036. }
  1037. }
  1038. }
  1039. if (channels > 2)
  1040. channels = 2;
  1041. debugf0("MCT channel count: %d\n", channels);
  1042. return channels;
  1043. err_reg:
  1044. return -1;
  1045. }
  1046. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
  1047. {
  1048. int *dbam_map;
  1049. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  1050. dbam_map = ddr3_dbam;
  1051. else
  1052. dbam_map = ddr2_dbam;
  1053. return dbam_map[cs_mode];
  1054. }
  1055. /* Enable extended configuration access via 0xCF8 feature */
  1056. static void amd64_setup(struct amd64_pvt *pvt)
  1057. {
  1058. u32 reg;
  1059. amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1060. pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
  1061. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1062. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1063. }
  1064. /* Restore the extended configuration access via 0xCF8 feature */
  1065. static void amd64_teardown(struct amd64_pvt *pvt)
  1066. {
  1067. u32 reg;
  1068. amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1069. reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1070. if (pvt->flags.cf8_extcfg)
  1071. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1072. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1073. }
  1074. static u64 f10_get_error_address(struct mem_ctl_info *mci,
  1075. struct err_regs *info)
  1076. {
  1077. return (((u64) (info->nbeah & 0xffff)) << 32) +
  1078. (info->nbeal & ~0x01);
  1079. }
  1080. /*
  1081. * Read the Base and Limit registers for F10 based Memory controllers. Extract
  1082. * fields from the 'raw' reg into separate data fields.
  1083. *
  1084. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
  1085. */
  1086. static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  1087. {
  1088. u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
  1089. low_offset = K8_DRAM_BASE_LOW + (dram << 3);
  1090. high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
  1091. /* read the 'raw' DRAM BASE Address register */
  1092. amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
  1093. /* Read from the ECS data register */
  1094. amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
  1095. /* Extract parts into separate data entries */
  1096. pvt->dram_rw_en[dram] = (low_base & 0x3);
  1097. if (pvt->dram_rw_en[dram] == 0)
  1098. return;
  1099. pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
  1100. pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
  1101. (((u64)low_base & 0xFFFF0000) << 8);
  1102. low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
  1103. high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
  1104. /* read the 'raw' LIMIT registers */
  1105. amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
  1106. /* Read from the ECS data register for the HIGH portion */
  1107. amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
  1108. pvt->dram_DstNode[dram] = (low_limit & 0x7);
  1109. pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
  1110. /*
  1111. * Extract address values and form a LIMIT address. Limit is the HIGHEST
  1112. * memory location of the region, so low 24 bits need to be all ones.
  1113. */
  1114. pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
  1115. (((u64) low_limit & 0xFFFF0000) << 8) |
  1116. 0x00FFFFFF;
  1117. }
  1118. static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
  1119. {
  1120. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
  1121. &pvt->dram_ctl_select_low)) {
  1122. debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
  1123. "High range addresses at: 0x%x\n",
  1124. pvt->dram_ctl_select_low,
  1125. dct_sel_baseaddr(pvt));
  1126. debugf0(" DCT mode: %s, All DCTs on: %s\n",
  1127. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
  1128. (dct_dram_enabled(pvt) ? "yes" : "no"));
  1129. if (!dct_ganging_enabled(pvt))
  1130. debugf0(" Address range split per DCT: %s\n",
  1131. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  1132. debugf0(" DCT data interleave for ECC: %s, "
  1133. "DRAM cleared since last warm reset: %s\n",
  1134. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  1135. (dct_memory_cleared(pvt) ? "yes" : "no"));
  1136. debugf0(" DCT channel interleave: %s, "
  1137. "DCT interleave bits selector: 0x%x\n",
  1138. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  1139. dct_sel_interleave_addr(pvt));
  1140. }
  1141. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
  1142. &pvt->dram_ctl_select_high);
  1143. }
  1144. /*
  1145. * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1146. * Interleaving Modes.
  1147. */
  1148. static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1149. int hi_range_sel, u32 intlv_en)
  1150. {
  1151. u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
  1152. if (dct_ganging_enabled(pvt))
  1153. cs = 0;
  1154. else if (hi_range_sel)
  1155. cs = dct_sel_high;
  1156. else if (dct_interleave_enabled(pvt)) {
  1157. /*
  1158. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1159. */
  1160. if (dct_sel_interleave_addr(pvt) == 0)
  1161. cs = sys_addr >> 6 & 1;
  1162. else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
  1163. temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1164. if (dct_sel_interleave_addr(pvt) & 1)
  1165. cs = (sys_addr >> 9 & 1) ^ temp;
  1166. else
  1167. cs = (sys_addr >> 6 & 1) ^ temp;
  1168. } else if (intlv_en & 4)
  1169. cs = sys_addr >> 15 & 1;
  1170. else if (intlv_en & 2)
  1171. cs = sys_addr >> 14 & 1;
  1172. else if (intlv_en & 1)
  1173. cs = sys_addr >> 13 & 1;
  1174. else
  1175. cs = sys_addr >> 12 & 1;
  1176. } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
  1177. cs = ~dct_sel_high & 1;
  1178. else
  1179. cs = 0;
  1180. return cs;
  1181. }
  1182. static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
  1183. {
  1184. if (intlv_en == 1)
  1185. return 1;
  1186. else if (intlv_en == 3)
  1187. return 2;
  1188. else if (intlv_en == 7)
  1189. return 3;
  1190. return 0;
  1191. }
  1192. /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
  1193. static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
  1194. u32 dct_sel_base_addr,
  1195. u64 dct_sel_base_off,
  1196. u32 hole_valid, u32 hole_off,
  1197. u64 dram_base)
  1198. {
  1199. u64 chan_off;
  1200. if (hi_range_sel) {
  1201. if (!(dct_sel_base_addr & 0xFFFFF800) &&
  1202. hole_valid && (sys_addr >= 0x100000000ULL))
  1203. chan_off = hole_off << 16;
  1204. else
  1205. chan_off = dct_sel_base_off;
  1206. } else {
  1207. if (hole_valid && (sys_addr >= 0x100000000ULL))
  1208. chan_off = hole_off << 16;
  1209. else
  1210. chan_off = dram_base & 0xFFFFF8000000ULL;
  1211. }
  1212. return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
  1213. (chan_off & 0x0000FFFFFF800000ULL);
  1214. }
  1215. /* Hack for the time being - Can we get this from BIOS?? */
  1216. #define CH0SPARE_RANK 0
  1217. #define CH1SPARE_RANK 1
  1218. /*
  1219. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1220. * spare row
  1221. */
  1222. static inline int f10_process_possible_spare(int csrow,
  1223. u32 cs, struct amd64_pvt *pvt)
  1224. {
  1225. u32 swap_done;
  1226. u32 bad_dram_cs;
  1227. /* Depending on channel, isolate respective SPARING info */
  1228. if (cs) {
  1229. swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
  1230. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
  1231. if (swap_done && (csrow == bad_dram_cs))
  1232. csrow = CH1SPARE_RANK;
  1233. } else {
  1234. swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
  1235. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
  1236. if (swap_done && (csrow == bad_dram_cs))
  1237. csrow = CH0SPARE_RANK;
  1238. }
  1239. return csrow;
  1240. }
  1241. /*
  1242. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1243. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1244. *
  1245. * Return:
  1246. * -EINVAL: NOT FOUND
  1247. * 0..csrow = Chip-Select Row
  1248. */
  1249. static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
  1250. {
  1251. struct mem_ctl_info *mci;
  1252. struct amd64_pvt *pvt;
  1253. u32 cs_base, cs_mask;
  1254. int cs_found = -EINVAL;
  1255. int csrow;
  1256. mci = mci_lookup[nid];
  1257. if (!mci)
  1258. return cs_found;
  1259. pvt = mci->pvt_info;
  1260. debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
  1261. for (csrow = 0; csrow < pvt->cs_count; csrow++) {
  1262. cs_base = amd64_get_dct_base(pvt, cs, csrow);
  1263. if (!(cs_base & K8_DCSB_CS_ENABLE))
  1264. continue;
  1265. /*
  1266. * We have an ENABLED CSROW, Isolate just the MASK bits of the
  1267. * target: [28:19] and [13:5], which map to [36:27] and [21:13]
  1268. * of the actual address.
  1269. */
  1270. cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
  1271. /*
  1272. * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
  1273. * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
  1274. */
  1275. cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
  1276. debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
  1277. csrow, cs_base, cs_mask);
  1278. cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
  1279. debugf1(" Final CSMask=0x%x\n", cs_mask);
  1280. debugf1(" (InputAddr & ~CSMask)=0x%x "
  1281. "(CSBase & ~CSMask)=0x%x\n",
  1282. (in_addr & ~cs_mask), (cs_base & ~cs_mask));
  1283. if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
  1284. cs_found = f10_process_possible_spare(csrow, cs, pvt);
  1285. debugf1(" MATCH csrow=%d\n", cs_found);
  1286. break;
  1287. }
  1288. }
  1289. return cs_found;
  1290. }
  1291. /* For a given @dram_range, check if @sys_addr falls within it. */
  1292. static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
  1293. u64 sys_addr, int *nid, int *chan_sel)
  1294. {
  1295. int node_id, cs_found = -EINVAL, high_range = 0;
  1296. u32 intlv_en, intlv_sel, intlv_shift, hole_off;
  1297. u32 hole_valid, tmp, dct_sel_base, channel;
  1298. u64 dram_base, chan_addr, dct_sel_base_off;
  1299. dram_base = pvt->dram_base[dram_range];
  1300. intlv_en = pvt->dram_IntlvEn[dram_range];
  1301. node_id = pvt->dram_DstNode[dram_range];
  1302. intlv_sel = pvt->dram_IntlvSel[dram_range];
  1303. debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
  1304. dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
  1305. /*
  1306. * This assumes that one node's DHAR is the same as all the other
  1307. * nodes' DHAR.
  1308. */
  1309. hole_off = (pvt->dhar & 0x0000FF80);
  1310. hole_valid = (pvt->dhar & 0x1);
  1311. dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
  1312. debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
  1313. hole_off, hole_valid, intlv_sel);
  1314. if (intlv_en ||
  1315. (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1316. return -EINVAL;
  1317. dct_sel_base = dct_sel_baseaddr(pvt);
  1318. /*
  1319. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1320. * select between DCT0 and DCT1.
  1321. */
  1322. if (dct_high_range_enabled(pvt) &&
  1323. !dct_ganging_enabled(pvt) &&
  1324. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1325. high_range = 1;
  1326. channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1327. chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
  1328. dct_sel_base_off, hole_valid,
  1329. hole_off, dram_base);
  1330. intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
  1331. /* remove Node ID (in case of memory interleaving) */
  1332. tmp = chan_addr & 0xFC0;
  1333. chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
  1334. /* remove channel interleave and hash */
  1335. if (dct_interleave_enabled(pvt) &&
  1336. !dct_high_range_enabled(pvt) &&
  1337. !dct_ganging_enabled(pvt)) {
  1338. if (dct_sel_interleave_addr(pvt) != 1)
  1339. chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
  1340. else {
  1341. tmp = chan_addr & 0xFC0;
  1342. chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
  1343. | tmp;
  1344. }
  1345. }
  1346. debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
  1347. chan_addr, (u32)(chan_addr >> 8));
  1348. cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
  1349. if (cs_found >= 0) {
  1350. *nid = node_id;
  1351. *chan_sel = channel;
  1352. }
  1353. return cs_found;
  1354. }
  1355. static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1356. int *node, int *chan_sel)
  1357. {
  1358. int dram_range, cs_found = -EINVAL;
  1359. u64 dram_base, dram_limit;
  1360. for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
  1361. if (!pvt->dram_rw_en[dram_range])
  1362. continue;
  1363. dram_base = pvt->dram_base[dram_range];
  1364. dram_limit = pvt->dram_limit[dram_range];
  1365. if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
  1366. cs_found = f10_match_to_this_node(pvt, dram_range,
  1367. sys_addr, node,
  1368. chan_sel);
  1369. if (cs_found >= 0)
  1370. break;
  1371. }
  1372. }
  1373. return cs_found;
  1374. }
  1375. /*
  1376. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1377. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1378. *
  1379. * The @sys_addr is usually an error address received from the hardware
  1380. * (MCX_ADDR).
  1381. */
  1382. static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  1383. struct err_regs *info,
  1384. u64 sys_addr)
  1385. {
  1386. struct amd64_pvt *pvt = mci->pvt_info;
  1387. u32 page, offset;
  1388. unsigned short syndrome;
  1389. int nid, csrow, chan = 0;
  1390. csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1391. if (csrow < 0) {
  1392. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1393. return;
  1394. }
  1395. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1396. syndrome = HIGH_SYNDROME(info->nbsl) << 8;
  1397. syndrome |= LOW_SYNDROME(info->nbsh);
  1398. /*
  1399. * We need the syndromes for channel detection only when we're
  1400. * ganged. Otherwise @chan should already contain the channel at
  1401. * this point.
  1402. */
  1403. if (dct_ganging_enabled(pvt) && pvt->nbcfg & K8_NBCFG_CHIPKILL)
  1404. chan = get_channel_from_ecc_syndrome(mci, syndrome);
  1405. if (chan >= 0)
  1406. edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
  1407. EDAC_MOD_STR);
  1408. else
  1409. /*
  1410. * Channel unknown, report all channels on this CSROW as failed.
  1411. */
  1412. for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
  1413. edac_mc_handle_ce(mci, page, offset, syndrome,
  1414. csrow, chan, EDAC_MOD_STR);
  1415. }
  1416. /*
  1417. * debug routine to display the memory sizes of all logical DIMMs and its
  1418. * CSROWs as well
  1419. */
  1420. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
  1421. {
  1422. int dimm, size0, size1;
  1423. u32 dbam;
  1424. u32 *dcsb;
  1425. if (boot_cpu_data.x86 == 0xf) {
  1426. /* K8 families < revF not supported yet */
  1427. if (pvt->ext_model < K8_REV_F)
  1428. return;
  1429. else
  1430. WARN_ON(ctrl != 0);
  1431. }
  1432. debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
  1433. ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
  1434. dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1435. dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
  1436. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1437. /* Dump memory sizes for DIMM and its CSROWs */
  1438. for (dimm = 0; dimm < 4; dimm++) {
  1439. size0 = 0;
  1440. if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
  1441. size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
  1442. size1 = 0;
  1443. if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
  1444. size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
  1445. edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
  1446. dimm * 2, size0, dimm * 2 + 1, size1);
  1447. }
  1448. }
  1449. /*
  1450. * There currently are 3 types type of MC devices for AMD Athlon/Opterons
  1451. * (as per PCI DEVICE_IDs):
  1452. *
  1453. * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
  1454. * DEVICE ID, even though there is differences between the different Revisions
  1455. * (CG,D,E,F).
  1456. *
  1457. * Family F10h and F11h.
  1458. *
  1459. */
  1460. static struct amd64_family_type amd64_family_types[] = {
  1461. [K8_CPUS] = {
  1462. .ctl_name = "RevF",
  1463. .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1464. .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1465. .ops = {
  1466. .early_channel_count = k8_early_channel_count,
  1467. .get_error_address = k8_get_error_address,
  1468. .read_dram_base_limit = k8_read_dram_base_limit,
  1469. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1470. .dbam_to_cs = k8_dbam_to_chip_select,
  1471. }
  1472. },
  1473. [F10_CPUS] = {
  1474. .ctl_name = "Family 10h",
  1475. .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1476. .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1477. .ops = {
  1478. .early_channel_count = f10_early_channel_count,
  1479. .get_error_address = f10_get_error_address,
  1480. .read_dram_base_limit = f10_read_dram_base_limit,
  1481. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1482. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1483. .dbam_to_cs = f10_dbam_to_chip_select,
  1484. }
  1485. },
  1486. [F11_CPUS] = {
  1487. .ctl_name = "Family 11h",
  1488. .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
  1489. .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
  1490. .ops = {
  1491. .early_channel_count = f10_early_channel_count,
  1492. .get_error_address = f10_get_error_address,
  1493. .read_dram_base_limit = f10_read_dram_base_limit,
  1494. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1495. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1496. .dbam_to_cs = f10_dbam_to_chip_select,
  1497. }
  1498. },
  1499. };
  1500. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1501. unsigned int device,
  1502. struct pci_dev *related)
  1503. {
  1504. struct pci_dev *dev = NULL;
  1505. dev = pci_get_device(vendor, device, dev);
  1506. while (dev) {
  1507. if ((dev->bus->number == related->bus->number) &&
  1508. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1509. break;
  1510. dev = pci_get_device(vendor, device, dev);
  1511. }
  1512. return dev;
  1513. }
  1514. /*
  1515. * These are tables of eigenvectors (one per line) which can be used for the
  1516. * construction of the syndrome tables. The modified syndrome search algorithm
  1517. * uses those to find the symbol in error and thus the DIMM.
  1518. *
  1519. * Algorithm courtesy of Ross LaFetra from AMD.
  1520. */
  1521. static u16 x4_vectors[] = {
  1522. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1523. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1524. 0x0001, 0x0002, 0x0004, 0x0008,
  1525. 0x1013, 0x3032, 0x4044, 0x8088,
  1526. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1527. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1528. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1529. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1530. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1531. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1532. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1533. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1534. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1535. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1536. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1537. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1538. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1539. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1540. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1541. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1542. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1543. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1544. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1545. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1546. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1547. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1548. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1549. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1550. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1551. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1552. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1553. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1554. 0x4807, 0xc40e, 0x130c, 0x3208,
  1555. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1556. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1557. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1558. };
  1559. static u16 x8_vectors[] = {
  1560. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1561. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1562. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1563. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1564. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1565. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1566. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1567. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1568. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1569. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1570. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1571. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1572. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1573. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1574. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1575. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1576. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1577. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1578. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1579. };
  1580. static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
  1581. int v_dim)
  1582. {
  1583. unsigned int i, err_sym;
  1584. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1585. u16 s = syndrome;
  1586. int v_idx = err_sym * v_dim;
  1587. int v_end = (err_sym + 1) * v_dim;
  1588. /* walk over all 16 bits of the syndrome */
  1589. for (i = 1; i < (1U << 16); i <<= 1) {
  1590. /* if bit is set in that eigenvector... */
  1591. if (v_idx < v_end && vectors[v_idx] & i) {
  1592. u16 ev_comp = vectors[v_idx++];
  1593. /* ... and bit set in the modified syndrome, */
  1594. if (s & i) {
  1595. /* remove it. */
  1596. s ^= ev_comp;
  1597. if (!s)
  1598. return err_sym;
  1599. }
  1600. } else if (s & i)
  1601. /* can't get to zero, move to next symbol */
  1602. break;
  1603. }
  1604. }
  1605. debugf0("syndrome(%x) not found\n", syndrome);
  1606. return -1;
  1607. }
  1608. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1609. {
  1610. if (sym_size == 4)
  1611. switch (err_sym) {
  1612. case 0x20:
  1613. case 0x21:
  1614. return 0;
  1615. break;
  1616. case 0x22:
  1617. case 0x23:
  1618. return 1;
  1619. break;
  1620. default:
  1621. return err_sym >> 4;
  1622. break;
  1623. }
  1624. /* x8 symbols */
  1625. else
  1626. switch (err_sym) {
  1627. /* imaginary bits not in a DIMM */
  1628. case 0x10:
  1629. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1630. err_sym);
  1631. return -1;
  1632. break;
  1633. case 0x11:
  1634. return 0;
  1635. break;
  1636. case 0x12:
  1637. return 1;
  1638. break;
  1639. default:
  1640. return err_sym >> 3;
  1641. break;
  1642. }
  1643. return -1;
  1644. }
  1645. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1646. {
  1647. struct amd64_pvt *pvt = mci->pvt_info;
  1648. u32 value = 0;
  1649. int err_sym = 0;
  1650. amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value);
  1651. /* F3x180[EccSymbolSize]=1, x8 symbols */
  1652. if (boot_cpu_data.x86 == 0x10 &&
  1653. boot_cpu_data.x86_model > 7 &&
  1654. value & BIT(25)) {
  1655. err_sym = decode_syndrome(syndrome, x8_vectors,
  1656. ARRAY_SIZE(x8_vectors), 8);
  1657. return map_err_sym_to_channel(err_sym, 8);
  1658. } else {
  1659. err_sym = decode_syndrome(syndrome, x4_vectors,
  1660. ARRAY_SIZE(x4_vectors), 4);
  1661. return map_err_sym_to_channel(err_sym, 4);
  1662. }
  1663. }
  1664. /*
  1665. * Check for valid error in the NB Status High register. If so, proceed to read
  1666. * NB Status Low, NB Address Low and NB Address High registers and store data
  1667. * into error structure.
  1668. *
  1669. * Returns:
  1670. * - 1: if hardware regs contains valid error info
  1671. * - 0: if no valid error is indicated
  1672. */
  1673. static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
  1674. struct err_regs *regs)
  1675. {
  1676. struct amd64_pvt *pvt;
  1677. struct pci_dev *misc_f3_ctl;
  1678. pvt = mci->pvt_info;
  1679. misc_f3_ctl = pvt->misc_f3_ctl;
  1680. if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
  1681. return 0;
  1682. if (!(regs->nbsh & K8_NBSH_VALID_BIT))
  1683. return 0;
  1684. /* valid error, read remaining error information registers */
  1685. if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
  1686. amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
  1687. amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
  1688. amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
  1689. return 0;
  1690. return 1;
  1691. }
  1692. /*
  1693. * This function is called to retrieve the error data from hardware and store it
  1694. * in the info structure.
  1695. *
  1696. * Returns:
  1697. * - 1: if a valid error is found
  1698. * - 0: if no error is found
  1699. */
  1700. static int amd64_get_error_info(struct mem_ctl_info *mci,
  1701. struct err_regs *info)
  1702. {
  1703. struct amd64_pvt *pvt;
  1704. struct err_regs regs;
  1705. pvt = mci->pvt_info;
  1706. if (!amd64_get_error_info_regs(mci, info))
  1707. return 0;
  1708. /*
  1709. * Here's the problem with the K8's EDAC reporting: There are four
  1710. * registers which report pieces of error information. They are shared
  1711. * between CEs and UEs. Furthermore, contrary to what is stated in the
  1712. * BKDG, the overflow bit is never used! Every error always updates the
  1713. * reporting registers.
  1714. *
  1715. * Can you see the race condition? All four error reporting registers
  1716. * must be read before a new error updates them! There is no way to read
  1717. * all four registers atomically. The best than can be done is to detect
  1718. * that a race has occured and then report the error without any kind of
  1719. * precision.
  1720. *
  1721. * What is still positive is that errors are still reported and thus
  1722. * problems can still be detected - just not localized because the
  1723. * syndrome and address are spread out across registers.
  1724. *
  1725. * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
  1726. * UEs and CEs should have separate register sets with proper overflow
  1727. * bits that are used! At very least the problem can be fixed by
  1728. * honoring the ErrValid bit in 'nbsh' and not updating registers - just
  1729. * set the overflow bit - unless the current error is CE and the new
  1730. * error is UE which would be the only situation for overwriting the
  1731. * current values.
  1732. */
  1733. regs = *info;
  1734. /* Use info from the second read - most current */
  1735. if (unlikely(!amd64_get_error_info_regs(mci, info)))
  1736. return 0;
  1737. /* clear the error bits in hardware */
  1738. pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
  1739. /* Check for the possible race condition */
  1740. if ((regs.nbsh != info->nbsh) ||
  1741. (regs.nbsl != info->nbsl) ||
  1742. (regs.nbeah != info->nbeah) ||
  1743. (regs.nbeal != info->nbeal)) {
  1744. amd64_mc_printk(mci, KERN_WARNING,
  1745. "hardware STATUS read access race condition "
  1746. "detected!\n");
  1747. return 0;
  1748. }
  1749. return 1;
  1750. }
  1751. /*
  1752. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1753. * ADDRESS and process.
  1754. */
  1755. static void amd64_handle_ce(struct mem_ctl_info *mci,
  1756. struct err_regs *info)
  1757. {
  1758. struct amd64_pvt *pvt = mci->pvt_info;
  1759. u64 sys_addr;
  1760. /* Ensure that the Error Address is VALID */
  1761. if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
  1762. amd64_mc_printk(mci, KERN_ERR,
  1763. "HW has no ERROR_ADDRESS available\n");
  1764. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1765. return;
  1766. }
  1767. sys_addr = pvt->ops->get_error_address(mci, info);
  1768. amd64_mc_printk(mci, KERN_ERR,
  1769. "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
  1770. pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
  1771. }
  1772. /* Handle any Un-correctable Errors (UEs) */
  1773. static void amd64_handle_ue(struct mem_ctl_info *mci,
  1774. struct err_regs *info)
  1775. {
  1776. struct amd64_pvt *pvt = mci->pvt_info;
  1777. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1778. int csrow;
  1779. u64 sys_addr;
  1780. u32 page, offset;
  1781. log_mci = mci;
  1782. if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
  1783. amd64_mc_printk(mci, KERN_CRIT,
  1784. "HW has no ERROR_ADDRESS available\n");
  1785. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1786. return;
  1787. }
  1788. sys_addr = pvt->ops->get_error_address(mci, info);
  1789. /*
  1790. * Find out which node the error address belongs to. This may be
  1791. * different from the node that detected the error.
  1792. */
  1793. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  1794. if (!src_mci) {
  1795. amd64_mc_printk(mci, KERN_CRIT,
  1796. "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
  1797. (unsigned long)sys_addr);
  1798. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1799. return;
  1800. }
  1801. log_mci = src_mci;
  1802. csrow = sys_addr_to_csrow(log_mci, sys_addr);
  1803. if (csrow < 0) {
  1804. amd64_mc_printk(mci, KERN_CRIT,
  1805. "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
  1806. (unsigned long)sys_addr);
  1807. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1808. } else {
  1809. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1810. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1811. }
  1812. }
  1813. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1814. struct err_regs *info)
  1815. {
  1816. u32 ec = ERROR_CODE(info->nbsl);
  1817. u32 xec = EXT_ERROR_CODE(info->nbsl);
  1818. int ecc_type = (info->nbsh >> 13) & 0x3;
  1819. /* Bail early out if this was an 'observed' error */
  1820. if (PP(ec) == K8_NBSL_PP_OBS)
  1821. return;
  1822. /* Do only ECC errors */
  1823. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1824. return;
  1825. if (ecc_type == 2)
  1826. amd64_handle_ce(mci, info);
  1827. else if (ecc_type == 1)
  1828. amd64_handle_ue(mci, info);
  1829. /*
  1830. * If main error is CE then overflow must be CE. If main error is UE
  1831. * then overflow is unknown. We'll call the overflow a CE - if
  1832. * panic_on_ue is set then we're already panic'ed and won't arrive
  1833. * here. Else, then apparently someone doesn't think that UE's are
  1834. * catastrophic.
  1835. */
  1836. if (info->nbsh & K8_NBSH_OVERFLOW)
  1837. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
  1838. }
  1839. void amd64_decode_bus_error(int node_id, struct err_regs *regs)
  1840. {
  1841. struct mem_ctl_info *mci = mci_lookup[node_id];
  1842. __amd64_decode_bus_error(mci, regs);
  1843. /*
  1844. * Check the UE bit of the NB status high register, if set generate some
  1845. * logs. If NOT a GART error, then process the event as a NO-INFO event.
  1846. * If it was a GART error, skip that process.
  1847. *
  1848. * FIXME: this should go somewhere else, if at all.
  1849. */
  1850. if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
  1851. edac_mc_handle_ue_no_info(mci, "UE bit is set");
  1852. }
  1853. /*
  1854. * The main polling 'check' function, called FROM the edac core to perform the
  1855. * error checking and if an error is encountered, error processing.
  1856. */
  1857. static void amd64_check(struct mem_ctl_info *mci)
  1858. {
  1859. struct err_regs regs;
  1860. if (amd64_get_error_info(mci, &regs)) {
  1861. struct amd64_pvt *pvt = mci->pvt_info;
  1862. amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
  1863. }
  1864. }
  1865. /*
  1866. * Input:
  1867. * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
  1868. * 2) AMD Family index value
  1869. *
  1870. * Ouput:
  1871. * Upon return of 0, the following filled in:
  1872. *
  1873. * struct pvt->addr_f1_ctl
  1874. * struct pvt->misc_f3_ctl
  1875. *
  1876. * Filled in with related device funcitions of 'dram_f2_ctl'
  1877. * These devices are "reserved" via the pci_get_device()
  1878. *
  1879. * Upon return of 1 (error status):
  1880. *
  1881. * Nothing reserved
  1882. */
  1883. static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
  1884. {
  1885. const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
  1886. /* Reserve the ADDRESS MAP Device */
  1887. pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
  1888. amd64_dev->addr_f1_ctl,
  1889. pvt->dram_f2_ctl);
  1890. if (!pvt->addr_f1_ctl) {
  1891. amd64_printk(KERN_ERR, "error address map device not found: "
  1892. "vendor %x device 0x%x (broken BIOS?)\n",
  1893. PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
  1894. return 1;
  1895. }
  1896. /* Reserve the MISC Device */
  1897. pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
  1898. amd64_dev->misc_f3_ctl,
  1899. pvt->dram_f2_ctl);
  1900. if (!pvt->misc_f3_ctl) {
  1901. pci_dev_put(pvt->addr_f1_ctl);
  1902. pvt->addr_f1_ctl = NULL;
  1903. amd64_printk(KERN_ERR, "error miscellaneous device not found: "
  1904. "vendor %x device 0x%x (broken BIOS?)\n",
  1905. PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
  1906. return 1;
  1907. }
  1908. debugf1(" Addr Map device PCI Bus ID:\t%s\n",
  1909. pci_name(pvt->addr_f1_ctl));
  1910. debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
  1911. pci_name(pvt->dram_f2_ctl));
  1912. debugf1(" Misc device PCI Bus ID:\t%s\n",
  1913. pci_name(pvt->misc_f3_ctl));
  1914. return 0;
  1915. }
  1916. static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
  1917. {
  1918. pci_dev_put(pvt->addr_f1_ctl);
  1919. pci_dev_put(pvt->misc_f3_ctl);
  1920. }
  1921. /*
  1922. * Retrieve the hardware registers of the memory controller (this includes the
  1923. * 'Address Map' and 'Misc' device regs)
  1924. */
  1925. static void amd64_read_mc_registers(struct amd64_pvt *pvt)
  1926. {
  1927. u64 msr_val;
  1928. int dram;
  1929. /*
  1930. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1931. * those are Read-As-Zero
  1932. */
  1933. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1934. debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1935. /* check first whether TOP_MEM2 is enabled */
  1936. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1937. if (msr_val & (1U << 21)) {
  1938. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1939. debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1940. } else
  1941. debugf0(" TOP_MEM2 disabled.\n");
  1942. amd64_cpu_display_info(pvt);
  1943. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
  1944. if (pvt->ops->read_dram_ctl_register)
  1945. pvt->ops->read_dram_ctl_register(pvt);
  1946. for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
  1947. /*
  1948. * Call CPU specific READ function to get the DRAM Base and
  1949. * Limit values from the DCT.
  1950. */
  1951. pvt->ops->read_dram_base_limit(pvt, dram);
  1952. /*
  1953. * Only print out debug info on rows with both R and W Enabled.
  1954. * Normal processing, compiler should optimize this whole 'if'
  1955. * debug output block away.
  1956. */
  1957. if (pvt->dram_rw_en[dram] != 0) {
  1958. debugf1(" DRAM-BASE[%d]: 0x%016llx "
  1959. "DRAM-LIMIT: 0x%016llx\n",
  1960. dram,
  1961. pvt->dram_base[dram],
  1962. pvt->dram_limit[dram]);
  1963. debugf1(" IntlvEn=%s %s %s "
  1964. "IntlvSel=%d DstNode=%d\n",
  1965. pvt->dram_IntlvEn[dram] ?
  1966. "Enabled" : "Disabled",
  1967. (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
  1968. (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
  1969. pvt->dram_IntlvSel[dram],
  1970. pvt->dram_DstNode[dram]);
  1971. }
  1972. }
  1973. amd64_read_dct_base_mask(pvt);
  1974. amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
  1975. amd64_read_dbam_reg(pvt);
  1976. amd64_read_pci_cfg(pvt->misc_f3_ctl,
  1977. F10_ONLINE_SPARE, &pvt->online_spare);
  1978. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  1979. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
  1980. if (!dct_ganging_enabled(pvt)) {
  1981. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
  1982. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
  1983. }
  1984. amd64_dump_misc_regs(pvt);
  1985. }
  1986. /*
  1987. * NOTE: CPU Revision Dependent code
  1988. *
  1989. * Input:
  1990. * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
  1991. * k8 private pointer to -->
  1992. * DRAM Bank Address mapping register
  1993. * node_id
  1994. * DCL register where dual_channel_active is
  1995. *
  1996. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1997. *
  1998. * Bits: CSROWs
  1999. * 0-3 CSROWs 0 and 1
  2000. * 4-7 CSROWs 2 and 3
  2001. * 8-11 CSROWs 4 and 5
  2002. * 12-15 CSROWs 6 and 7
  2003. *
  2004. * Values range from: 0 to 15
  2005. * The meaning of the values depends on CPU revision and dual-channel state,
  2006. * see relevant BKDG more info.
  2007. *
  2008. * The memory controller provides for total of only 8 CSROWs in its current
  2009. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  2010. * single channel or two (2) DIMMs in dual channel mode.
  2011. *
  2012. * The following code logic collapses the various tables for CSROW based on CPU
  2013. * revision.
  2014. *
  2015. * Returns:
  2016. * The number of PAGE_SIZE pages on the specified CSROW number it
  2017. * encompasses
  2018. *
  2019. */
  2020. static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
  2021. {
  2022. u32 cs_mode, nr_pages;
  2023. /*
  2024. * The math on this doesn't look right on the surface because x/2*4 can
  2025. * be simplified to x*2 but this expression makes use of the fact that
  2026. * it is integral math where 1/2=0. This intermediate value becomes the
  2027. * number of bits to shift the DBAM register to extract the proper CSROW
  2028. * field.
  2029. */
  2030. cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  2031. nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
  2032. /*
  2033. * If dual channel then double the memory size of single channel.
  2034. * Channel count is 1 or 2
  2035. */
  2036. nr_pages <<= (pvt->channel_count - 1);
  2037. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
  2038. debugf0(" nr_pages= %u channel-count = %d\n",
  2039. nr_pages, pvt->channel_count);
  2040. return nr_pages;
  2041. }
  2042. /*
  2043. * Initialize the array of csrow attribute instances, based on the values
  2044. * from pci config hardware registers.
  2045. */
  2046. static int amd64_init_csrows(struct mem_ctl_info *mci)
  2047. {
  2048. struct csrow_info *csrow;
  2049. struct amd64_pvt *pvt;
  2050. u64 input_addr_min, input_addr_max, sys_addr;
  2051. int i, empty = 1;
  2052. pvt = mci->pvt_info;
  2053. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
  2054. debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
  2055. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2056. (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
  2057. );
  2058. for (i = 0; i < pvt->cs_count; i++) {
  2059. csrow = &mci->csrows[i];
  2060. if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
  2061. debugf1("----CSROW %d EMPTY for node %d\n", i,
  2062. pvt->mc_node_id);
  2063. continue;
  2064. }
  2065. debugf1("----CSROW %d VALID for MC node %d\n",
  2066. i, pvt->mc_node_id);
  2067. empty = 0;
  2068. csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
  2069. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  2070. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  2071. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  2072. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  2073. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  2074. csrow->page_mask = ~mask_from_dct_mask(pvt, i);
  2075. /* 8 bytes of resolution */
  2076. csrow->mtype = amd64_determine_memory_type(pvt);
  2077. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  2078. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  2079. (unsigned long)input_addr_min,
  2080. (unsigned long)input_addr_max);
  2081. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  2082. (unsigned long)sys_addr, csrow->page_mask);
  2083. debugf1(" nr_pages: %u first_page: 0x%lx "
  2084. "last_page: 0x%lx\n",
  2085. (unsigned)csrow->nr_pages,
  2086. csrow->first_page, csrow->last_page);
  2087. /*
  2088. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  2089. */
  2090. if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
  2091. csrow->edac_mode =
  2092. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
  2093. EDAC_S4ECD4ED : EDAC_SECDED;
  2094. else
  2095. csrow->edac_mode = EDAC_NONE;
  2096. }
  2097. return empty;
  2098. }
  2099. /* get all cores on this DCT */
  2100. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
  2101. {
  2102. int cpu;
  2103. for_each_online_cpu(cpu)
  2104. if (amd_get_nb_id(cpu) == nid)
  2105. cpumask_set_cpu(cpu, mask);
  2106. }
  2107. /* check MCG_CTL on all the cpus on this node */
  2108. static bool amd64_nb_mce_bank_enabled_on_node(int nid)
  2109. {
  2110. cpumask_var_t mask;
  2111. struct msr *msrs;
  2112. int cpu, nbe, idx = 0;
  2113. bool ret = false;
  2114. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  2115. amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
  2116. __func__);
  2117. return false;
  2118. }
  2119. get_cpus_on_this_dct_cpumask(mask, nid);
  2120. msrs = kzalloc(sizeof(struct msr) * cpumask_weight(mask), GFP_KERNEL);
  2121. if (!msrs) {
  2122. amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
  2123. __func__);
  2124. free_cpumask_var(mask);
  2125. return false;
  2126. }
  2127. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  2128. for_each_cpu(cpu, mask) {
  2129. nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
  2130. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  2131. cpu, msrs[idx].q,
  2132. (nbe ? "enabled" : "disabled"));
  2133. if (!nbe)
  2134. goto out;
  2135. idx++;
  2136. }
  2137. ret = true;
  2138. out:
  2139. kfree(msrs);
  2140. free_cpumask_var(mask);
  2141. return ret;
  2142. }
  2143. static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
  2144. {
  2145. cpumask_var_t cmask;
  2146. struct msr *msrs = NULL;
  2147. int cpu, idx = 0;
  2148. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  2149. amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
  2150. __func__);
  2151. return false;
  2152. }
  2153. get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
  2154. msrs = kzalloc(sizeof(struct msr) * cpumask_weight(cmask), GFP_KERNEL);
  2155. if (!msrs) {
  2156. amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
  2157. __func__);
  2158. return -ENOMEM;
  2159. }
  2160. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  2161. for_each_cpu(cpu, cmask) {
  2162. if (on) {
  2163. if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
  2164. pvt->flags.ecc_report = 1;
  2165. msrs[idx].l |= K8_MSR_MCGCTL_NBE;
  2166. } else {
  2167. /*
  2168. * Turn off ECC reporting only when it was off before
  2169. */
  2170. if (!pvt->flags.ecc_report)
  2171. msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
  2172. }
  2173. idx++;
  2174. }
  2175. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  2176. kfree(msrs);
  2177. free_cpumask_var(cmask);
  2178. return 0;
  2179. }
  2180. /*
  2181. * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
  2182. * enable it.
  2183. */
  2184. static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
  2185. {
  2186. struct amd64_pvt *pvt = mci->pvt_info;
  2187. u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2188. if (!ecc_enable_override)
  2189. return;
  2190. amd64_printk(KERN_WARNING,
  2191. "'ecc_enable_override' parameter is active, "
  2192. "Enabling AMD ECC hardware now: CAUTION\n");
  2193. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
  2194. /* turn on UECCn and CECCEn bits */
  2195. pvt->old_nbctl = value & mask;
  2196. pvt->nbctl_mcgctl_saved = 1;
  2197. value |= mask;
  2198. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
  2199. if (amd64_toggle_ecc_err_reporting(pvt, ON))
  2200. amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
  2201. "MCGCTL!\n");
  2202. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2203. debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  2204. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2205. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  2206. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  2207. amd64_printk(KERN_WARNING,
  2208. "This node reports that DRAM ECC is "
  2209. "currently Disabled; ENABLING now\n");
  2210. /* Attempt to turn on DRAM ECC Enable */
  2211. value |= K8_NBCFG_ECC_ENABLE;
  2212. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
  2213. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2214. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  2215. amd64_printk(KERN_WARNING,
  2216. "Hardware rejects Enabling DRAM ECC checking\n"
  2217. "Check memory DIMM configuration\n");
  2218. } else {
  2219. amd64_printk(KERN_DEBUG,
  2220. "Hardware accepted DRAM ECC Enable\n");
  2221. }
  2222. }
  2223. debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  2224. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2225. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  2226. pvt->ctl_error_info.nbcfg = value;
  2227. }
  2228. static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
  2229. {
  2230. u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2231. if (!pvt->nbctl_mcgctl_saved)
  2232. return;
  2233. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
  2234. value &= ~mask;
  2235. value |= pvt->old_nbctl;
  2236. /* restore the NB Enable MCGCTL bit */
  2237. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
  2238. if (amd64_toggle_ecc_err_reporting(pvt, OFF))
  2239. amd64_printk(KERN_WARNING, "Error restoring ECC reporting over "
  2240. "MCGCTL!\n");
  2241. }
  2242. /*
  2243. * EDAC requires that the BIOS have ECC enabled before taking over the
  2244. * processing of ECC errors. This is because the BIOS can properly initialize
  2245. * the memory system completely. A command line option allows to force-enable
  2246. * hardware ECC later in amd64_enable_ecc_error_reporting().
  2247. */
  2248. static const char *ecc_warning =
  2249. "WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
  2250. " Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
  2251. " Also, use of the override can cause unknown side effects.\n";
  2252. static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
  2253. {
  2254. u32 value;
  2255. u8 ecc_enabled = 0;
  2256. bool nb_mce_en = false;
  2257. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2258. ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
  2259. if (!ecc_enabled)
  2260. amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
  2261. "is currently disabled, set F3x%x[22] (%s).\n",
  2262. K8_NBCFG, pci_name(pvt->misc_f3_ctl));
  2263. else
  2264. amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
  2265. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
  2266. if (!nb_mce_en)
  2267. amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
  2268. "0x%08x[4] on node %d to enable.\n",
  2269. MSR_IA32_MCG_CTL, pvt->mc_node_id);
  2270. if (!ecc_enabled || !nb_mce_en) {
  2271. if (!ecc_enable_override) {
  2272. amd64_printk(KERN_WARNING, "%s", ecc_warning);
  2273. return -ENODEV;
  2274. }
  2275. } else
  2276. /* CLEAR the override, since BIOS controlled it */
  2277. ecc_enable_override = 0;
  2278. return 0;
  2279. }
  2280. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  2281. ARRAY_SIZE(amd64_inj_attrs) +
  2282. 1];
  2283. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  2284. static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
  2285. {
  2286. unsigned int i = 0, j = 0;
  2287. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  2288. sysfs_attrs[i] = amd64_dbg_attrs[i];
  2289. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  2290. sysfs_attrs[i] = amd64_inj_attrs[j];
  2291. sysfs_attrs[i] = terminator;
  2292. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  2293. }
  2294. static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
  2295. {
  2296. struct amd64_pvt *pvt = mci->pvt_info;
  2297. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2298. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2299. if (pvt->nbcap & K8_NBCAP_SECDED)
  2300. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2301. if (pvt->nbcap & K8_NBCAP_CHIPKILL)
  2302. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2303. mci->edac_cap = amd64_determine_edac_cap(pvt);
  2304. mci->mod_name = EDAC_MOD_STR;
  2305. mci->mod_ver = EDAC_AMD64_VERSION;
  2306. mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
  2307. mci->dev_name = pci_name(pvt->dram_f2_ctl);
  2308. mci->ctl_page_to_phys = NULL;
  2309. /* IMPORTANT: Set the polling 'check' function in this module */
  2310. mci->edac_check = amd64_check;
  2311. /* memory scrubber interface */
  2312. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  2313. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  2314. }
  2315. /*
  2316. * Init stuff for this DRAM Controller device.
  2317. *
  2318. * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
  2319. * Space feature MUST be enabled on ALL Processors prior to actually reading
  2320. * from the ECS registers. Since the loading of the module can occur on any
  2321. * 'core', and cores don't 'see' all the other processors ECS data when the
  2322. * others are NOT enabled. Our solution is to first enable ECS access in this
  2323. * routine on all processors, gather some data in a amd64_pvt structure and
  2324. * later come back in a finish-setup function to perform that final
  2325. * initialization. See also amd64_init_2nd_stage() for that.
  2326. */
  2327. static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
  2328. int mc_type_index)
  2329. {
  2330. struct amd64_pvt *pvt = NULL;
  2331. int err = 0, ret;
  2332. ret = -ENOMEM;
  2333. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2334. if (!pvt)
  2335. goto err_exit;
  2336. pvt->mc_node_id = get_node_id(dram_f2_ctl);
  2337. pvt->dram_f2_ctl = dram_f2_ctl;
  2338. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2339. pvt->mc_type_index = mc_type_index;
  2340. pvt->ops = family_ops(mc_type_index);
  2341. /*
  2342. * We have the dram_f2_ctl device as an argument, now go reserve its
  2343. * sibling devices from the PCI system.
  2344. */
  2345. ret = -ENODEV;
  2346. err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
  2347. if (err)
  2348. goto err_free;
  2349. ret = -EINVAL;
  2350. err = amd64_check_ecc_enabled(pvt);
  2351. if (err)
  2352. goto err_put;
  2353. /*
  2354. * Key operation here: setup of HW prior to performing ops on it. Some
  2355. * setup is required to access ECS data. After this is performed, the
  2356. * 'teardown' function must be called upon error and normal exit paths.
  2357. */
  2358. if (boot_cpu_data.x86 >= 0x10)
  2359. amd64_setup(pvt);
  2360. /*
  2361. * Save the pointer to the private data for use in 2nd initialization
  2362. * stage
  2363. */
  2364. pvt_lookup[pvt->mc_node_id] = pvt;
  2365. return 0;
  2366. err_put:
  2367. amd64_free_mc_sibling_devices(pvt);
  2368. err_free:
  2369. kfree(pvt);
  2370. err_exit:
  2371. return ret;
  2372. }
  2373. /*
  2374. * This is the finishing stage of the init code. Needs to be performed after all
  2375. * MCs' hardware have been prepped for accessing extended config space.
  2376. */
  2377. static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
  2378. {
  2379. int node_id = pvt->mc_node_id;
  2380. struct mem_ctl_info *mci;
  2381. int ret = -ENODEV;
  2382. amd64_read_mc_registers(pvt);
  2383. /*
  2384. * We need to determine how many memory channels there are. Then use
  2385. * that information for calculating the size of the dynamic instance
  2386. * tables in the 'mci' structure
  2387. */
  2388. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2389. if (pvt->channel_count < 0)
  2390. goto err_exit;
  2391. ret = -ENOMEM;
  2392. mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
  2393. if (!mci)
  2394. goto err_exit;
  2395. mci->pvt_info = pvt;
  2396. mci->dev = &pvt->dram_f2_ctl->dev;
  2397. amd64_setup_mci_misc_attributes(mci);
  2398. if (amd64_init_csrows(mci))
  2399. mci->edac_cap = EDAC_FLAG_NONE;
  2400. amd64_enable_ecc_error_reporting(mci);
  2401. amd64_set_mc_sysfs_attributes(mci);
  2402. ret = -ENODEV;
  2403. if (edac_mc_add_mc(mci)) {
  2404. debugf1("failed edac_mc_add_mc()\n");
  2405. goto err_add_mc;
  2406. }
  2407. mci_lookup[node_id] = mci;
  2408. pvt_lookup[node_id] = NULL;
  2409. /* register stuff with EDAC MCE */
  2410. if (report_gart_errors)
  2411. amd_report_gart_errors(true);
  2412. amd_register_ecc_decoder(amd64_decode_bus_error);
  2413. return 0;
  2414. err_add_mc:
  2415. edac_mc_free(mci);
  2416. err_exit:
  2417. debugf0("failure to init 2nd stage: ret=%d\n", ret);
  2418. amd64_restore_ecc_error_reporting(pvt);
  2419. if (boot_cpu_data.x86 > 0xf)
  2420. amd64_teardown(pvt);
  2421. amd64_free_mc_sibling_devices(pvt);
  2422. kfree(pvt_lookup[pvt->mc_node_id]);
  2423. pvt_lookup[node_id] = NULL;
  2424. return ret;
  2425. }
  2426. static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
  2427. const struct pci_device_id *mc_type)
  2428. {
  2429. int ret = 0;
  2430. debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
  2431. get_amd_family_name(mc_type->driver_data));
  2432. ret = pci_enable_device(pdev);
  2433. if (ret < 0)
  2434. ret = -EIO;
  2435. else
  2436. ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
  2437. if (ret < 0)
  2438. debugf0("ret=%d\n", ret);
  2439. return ret;
  2440. }
  2441. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2442. {
  2443. struct mem_ctl_info *mci;
  2444. struct amd64_pvt *pvt;
  2445. /* Remove from EDAC CORE tracking list */
  2446. mci = edac_mc_del_mc(&pdev->dev);
  2447. if (!mci)
  2448. return;
  2449. pvt = mci->pvt_info;
  2450. amd64_restore_ecc_error_reporting(pvt);
  2451. if (boot_cpu_data.x86 > 0xf)
  2452. amd64_teardown(pvt);
  2453. amd64_free_mc_sibling_devices(pvt);
  2454. kfree(pvt);
  2455. mci->pvt_info = NULL;
  2456. mci_lookup[pvt->mc_node_id] = NULL;
  2457. /* unregister from EDAC MCE */
  2458. amd_report_gart_errors(false);
  2459. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2460. /* Free the EDAC CORE resources */
  2461. edac_mc_free(mci);
  2462. }
  2463. /*
  2464. * This table is part of the interface for loading drivers for PCI devices. The
  2465. * PCI core identifies what devices are on a system during boot, and then
  2466. * inquiry this table to see if this driver is for a given device found.
  2467. */
  2468. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2469. {
  2470. .vendor = PCI_VENDOR_ID_AMD,
  2471. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2472. .subvendor = PCI_ANY_ID,
  2473. .subdevice = PCI_ANY_ID,
  2474. .class = 0,
  2475. .class_mask = 0,
  2476. .driver_data = K8_CPUS
  2477. },
  2478. {
  2479. .vendor = PCI_VENDOR_ID_AMD,
  2480. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2481. .subvendor = PCI_ANY_ID,
  2482. .subdevice = PCI_ANY_ID,
  2483. .class = 0,
  2484. .class_mask = 0,
  2485. .driver_data = F10_CPUS
  2486. },
  2487. {
  2488. .vendor = PCI_VENDOR_ID_AMD,
  2489. .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
  2490. .subvendor = PCI_ANY_ID,
  2491. .subdevice = PCI_ANY_ID,
  2492. .class = 0,
  2493. .class_mask = 0,
  2494. .driver_data = F11_CPUS
  2495. },
  2496. {0, }
  2497. };
  2498. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2499. static struct pci_driver amd64_pci_driver = {
  2500. .name = EDAC_MOD_STR,
  2501. .probe = amd64_init_one_instance,
  2502. .remove = __devexit_p(amd64_remove_one_instance),
  2503. .id_table = amd64_pci_table,
  2504. };
  2505. static void amd64_setup_pci_device(void)
  2506. {
  2507. struct mem_ctl_info *mci;
  2508. struct amd64_pvt *pvt;
  2509. if (amd64_ctl_pci)
  2510. return;
  2511. mci = mci_lookup[0];
  2512. if (mci) {
  2513. pvt = mci->pvt_info;
  2514. amd64_ctl_pci =
  2515. edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
  2516. EDAC_MOD_STR);
  2517. if (!amd64_ctl_pci) {
  2518. pr_warning("%s(): Unable to create PCI control\n",
  2519. __func__);
  2520. pr_warning("%s(): PCI error report via EDAC not set\n",
  2521. __func__);
  2522. }
  2523. }
  2524. }
  2525. static int __init amd64_edac_init(void)
  2526. {
  2527. int nb, err = -ENODEV;
  2528. edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
  2529. opstate_init();
  2530. if (cache_k8_northbridges() < 0)
  2531. return err;
  2532. err = pci_register_driver(&amd64_pci_driver);
  2533. if (err)
  2534. return err;
  2535. /*
  2536. * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
  2537. * amd64_pvt structs. These will be used in the 2nd stage init function
  2538. * to finish initialization of the MC instances.
  2539. */
  2540. for (nb = 0; nb < num_k8_northbridges; nb++) {
  2541. if (!pvt_lookup[nb])
  2542. continue;
  2543. err = amd64_init_2nd_stage(pvt_lookup[nb]);
  2544. if (err)
  2545. goto err_2nd_stage;
  2546. }
  2547. amd64_setup_pci_device();
  2548. return 0;
  2549. err_2nd_stage:
  2550. debugf0("2nd stage failed\n");
  2551. pci_unregister_driver(&amd64_pci_driver);
  2552. return err;
  2553. }
  2554. static void __exit amd64_edac_exit(void)
  2555. {
  2556. if (amd64_ctl_pci)
  2557. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2558. pci_unregister_driver(&amd64_pci_driver);
  2559. }
  2560. module_init(amd64_edac_init);
  2561. module_exit(amd64_edac_exit);
  2562. MODULE_LICENSE("GPL");
  2563. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2564. "Dave Peterson, Thayne Harbaugh");
  2565. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2566. EDAC_AMD64_VERSION);
  2567. module_param(edac_op_state, int, 0444);
  2568. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");