shdma.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784
  1. /*
  2. * Renesas SuperH DMA Engine support
  3. *
  4. * base is drivers/dma/flsdma.c
  5. *
  6. * Copyright (C) 2009 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>
  7. * Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved.
  8. * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
  9. *
  10. * This is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * - DMA of SuperH does not have Hardware DMA chain mode.
  16. * - MAX DMA size is 16MB.
  17. *
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/dmaengine.h>
  23. #include <linux/delay.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/dmapool.h>
  26. #include <linux/platform_device.h>
  27. #include <cpu/dma.h>
  28. #include <asm/dma-sh.h>
  29. #include "shdma.h"
  30. /* DMA descriptor control */
  31. #define DESC_LAST (-1)
  32. #define DESC_COMP (1)
  33. #define DESC_NCOMP (0)
  34. #define NR_DESCS_PER_CHANNEL 32
  35. /*
  36. * Define the default configuration for dual address memory-memory transfer.
  37. * The 0x400 value represents auto-request, external->external.
  38. *
  39. * And this driver set 4byte burst mode.
  40. * If you want to change mode, you need to change RS_DEFAULT of value.
  41. * (ex 1byte burst mode -> (RS_DUAL & ~TS_32)
  42. */
  43. #define RS_DEFAULT (RS_DUAL)
  44. #define SH_DMAC_CHAN_BASE(id) (dma_base_addr[id])
  45. static void sh_dmae_writel(struct sh_dmae_chan *sh_dc, u32 data, u32 reg)
  46. {
  47. ctrl_outl(data, (SH_DMAC_CHAN_BASE(sh_dc->id) + reg));
  48. }
  49. static u32 sh_dmae_readl(struct sh_dmae_chan *sh_dc, u32 reg)
  50. {
  51. return ctrl_inl((SH_DMAC_CHAN_BASE(sh_dc->id) + reg));
  52. }
  53. static void dmae_init(struct sh_dmae_chan *sh_chan)
  54. {
  55. u32 chcr = RS_DEFAULT; /* default is DUAL mode */
  56. sh_dmae_writel(sh_chan, chcr, CHCR);
  57. }
  58. /*
  59. * Reset DMA controller
  60. *
  61. * SH7780 has two DMAOR register
  62. */
  63. static void sh_dmae_ctl_stop(int id)
  64. {
  65. unsigned short dmaor = dmaor_read_reg(id);
  66. dmaor &= ~(DMAOR_NMIF | DMAOR_AE);
  67. dmaor_write_reg(id, dmaor);
  68. }
  69. static int sh_dmae_rst(int id)
  70. {
  71. unsigned short dmaor;
  72. sh_dmae_ctl_stop(id);
  73. dmaor = (dmaor_read_reg(id)|DMAOR_INIT);
  74. dmaor_write_reg(id, dmaor);
  75. if ((dmaor_read_reg(id) & (DMAOR_AE | DMAOR_NMIF))) {
  76. pr_warning(KERN_ERR "dma-sh: Can't initialize DMAOR.\n");
  77. return -EINVAL;
  78. }
  79. return 0;
  80. }
  81. static int dmae_is_idle(struct sh_dmae_chan *sh_chan)
  82. {
  83. u32 chcr = sh_dmae_readl(sh_chan, CHCR);
  84. if (chcr & CHCR_DE) {
  85. if (!(chcr & CHCR_TE))
  86. return -EBUSY; /* working */
  87. }
  88. return 0; /* waiting */
  89. }
  90. static inline unsigned int calc_xmit_shift(struct sh_dmae_chan *sh_chan)
  91. {
  92. u32 chcr = sh_dmae_readl(sh_chan, CHCR);
  93. return ts_shift[(chcr & CHCR_TS_MASK) >> CHCR_TS_SHIFT];
  94. }
  95. static void dmae_set_reg(struct sh_dmae_chan *sh_chan, struct sh_dmae_regs hw)
  96. {
  97. sh_dmae_writel(sh_chan, hw.sar, SAR);
  98. sh_dmae_writel(sh_chan, hw.dar, DAR);
  99. sh_dmae_writel(sh_chan,
  100. (hw.tcr >> calc_xmit_shift(sh_chan)), TCR);
  101. }
  102. static void dmae_start(struct sh_dmae_chan *sh_chan)
  103. {
  104. u32 chcr = sh_dmae_readl(sh_chan, CHCR);
  105. chcr |= (CHCR_DE|CHCR_IE);
  106. sh_dmae_writel(sh_chan, chcr, CHCR);
  107. }
  108. static void dmae_halt(struct sh_dmae_chan *sh_chan)
  109. {
  110. u32 chcr = sh_dmae_readl(sh_chan, CHCR);
  111. chcr &= ~(CHCR_DE | CHCR_TE | CHCR_IE);
  112. sh_dmae_writel(sh_chan, chcr, CHCR);
  113. }
  114. static int dmae_set_chcr(struct sh_dmae_chan *sh_chan, u32 val)
  115. {
  116. int ret = dmae_is_idle(sh_chan);
  117. /* When DMA was working, can not set data to CHCR */
  118. if (ret)
  119. return ret;
  120. sh_dmae_writel(sh_chan, val, CHCR);
  121. return 0;
  122. }
  123. #define DMARS1_ADDR 0x04
  124. #define DMARS2_ADDR 0x08
  125. #define DMARS_SHIFT 8
  126. #define DMARS_CHAN_MSK 0x01
  127. static int dmae_set_dmars(struct sh_dmae_chan *sh_chan, u16 val)
  128. {
  129. u32 addr;
  130. int shift = 0;
  131. int ret = dmae_is_idle(sh_chan);
  132. if (ret)
  133. return ret;
  134. if (sh_chan->id & DMARS_CHAN_MSK)
  135. shift = DMARS_SHIFT;
  136. switch (sh_chan->id) {
  137. /* DMARS0 */
  138. case 0:
  139. case 1:
  140. addr = SH_DMARS_BASE;
  141. break;
  142. /* DMARS1 */
  143. case 2:
  144. case 3:
  145. addr = (SH_DMARS_BASE + DMARS1_ADDR);
  146. break;
  147. /* DMARS2 */
  148. case 4:
  149. case 5:
  150. addr = (SH_DMARS_BASE + DMARS2_ADDR);
  151. break;
  152. default:
  153. return -EINVAL;
  154. }
  155. ctrl_outw((val << shift) |
  156. (ctrl_inw(addr) & (shift ? 0xFF00 : 0x00FF)),
  157. addr);
  158. return 0;
  159. }
  160. static dma_cookie_t sh_dmae_tx_submit(struct dma_async_tx_descriptor *tx)
  161. {
  162. struct sh_desc *desc = tx_to_sh_desc(tx);
  163. struct sh_dmae_chan *sh_chan = to_sh_chan(tx->chan);
  164. dma_cookie_t cookie;
  165. spin_lock_bh(&sh_chan->desc_lock);
  166. cookie = sh_chan->common.cookie;
  167. cookie++;
  168. if (cookie < 0)
  169. cookie = 1;
  170. /* If desc only in the case of 1 */
  171. if (desc->async_tx.cookie != -EBUSY)
  172. desc->async_tx.cookie = cookie;
  173. sh_chan->common.cookie = desc->async_tx.cookie;
  174. list_splice_init(&desc->tx_list, sh_chan->ld_queue.prev);
  175. spin_unlock_bh(&sh_chan->desc_lock);
  176. return cookie;
  177. }
  178. static struct sh_desc *sh_dmae_get_desc(struct sh_dmae_chan *sh_chan)
  179. {
  180. struct sh_desc *desc, *_desc, *ret = NULL;
  181. spin_lock_bh(&sh_chan->desc_lock);
  182. list_for_each_entry_safe(desc, _desc, &sh_chan->ld_free, node) {
  183. if (async_tx_test_ack(&desc->async_tx)) {
  184. list_del(&desc->node);
  185. ret = desc;
  186. break;
  187. }
  188. }
  189. spin_unlock_bh(&sh_chan->desc_lock);
  190. return ret;
  191. }
  192. static void sh_dmae_put_desc(struct sh_dmae_chan *sh_chan, struct sh_desc *desc)
  193. {
  194. if (desc) {
  195. spin_lock_bh(&sh_chan->desc_lock);
  196. list_splice_init(&desc->tx_list, &sh_chan->ld_free);
  197. list_add(&desc->node, &sh_chan->ld_free);
  198. spin_unlock_bh(&sh_chan->desc_lock);
  199. }
  200. }
  201. static int sh_dmae_alloc_chan_resources(struct dma_chan *chan)
  202. {
  203. struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
  204. struct sh_desc *desc;
  205. spin_lock_bh(&sh_chan->desc_lock);
  206. while (sh_chan->descs_allocated < NR_DESCS_PER_CHANNEL) {
  207. spin_unlock_bh(&sh_chan->desc_lock);
  208. desc = kzalloc(sizeof(struct sh_desc), GFP_KERNEL);
  209. if (!desc) {
  210. spin_lock_bh(&sh_chan->desc_lock);
  211. break;
  212. }
  213. dma_async_tx_descriptor_init(&desc->async_tx,
  214. &sh_chan->common);
  215. desc->async_tx.tx_submit = sh_dmae_tx_submit;
  216. desc->async_tx.flags = DMA_CTRL_ACK;
  217. INIT_LIST_HEAD(&desc->tx_list);
  218. sh_dmae_put_desc(sh_chan, desc);
  219. spin_lock_bh(&sh_chan->desc_lock);
  220. sh_chan->descs_allocated++;
  221. }
  222. spin_unlock_bh(&sh_chan->desc_lock);
  223. return sh_chan->descs_allocated;
  224. }
  225. /*
  226. * sh_dma_free_chan_resources - Free all resources of the channel.
  227. */
  228. static void sh_dmae_free_chan_resources(struct dma_chan *chan)
  229. {
  230. struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
  231. struct sh_desc *desc, *_desc;
  232. LIST_HEAD(list);
  233. BUG_ON(!list_empty(&sh_chan->ld_queue));
  234. spin_lock_bh(&sh_chan->desc_lock);
  235. list_splice_init(&sh_chan->ld_free, &list);
  236. sh_chan->descs_allocated = 0;
  237. spin_unlock_bh(&sh_chan->desc_lock);
  238. list_for_each_entry_safe(desc, _desc, &list, node)
  239. kfree(desc);
  240. }
  241. static struct dma_async_tx_descriptor *sh_dmae_prep_memcpy(
  242. struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
  243. size_t len, unsigned long flags)
  244. {
  245. struct sh_dmae_chan *sh_chan;
  246. struct sh_desc *first = NULL, *prev = NULL, *new;
  247. size_t copy_size;
  248. if (!chan)
  249. return NULL;
  250. if (!len)
  251. return NULL;
  252. sh_chan = to_sh_chan(chan);
  253. do {
  254. /* Allocate the link descriptor from DMA pool */
  255. new = sh_dmae_get_desc(sh_chan);
  256. if (!new) {
  257. dev_err(sh_chan->dev,
  258. "No free memory for link descriptor\n");
  259. goto err_get_desc;
  260. }
  261. copy_size = min(len, (size_t)SH_DMA_TCR_MAX);
  262. new->hw.sar = dma_src;
  263. new->hw.dar = dma_dest;
  264. new->hw.tcr = copy_size;
  265. if (!first)
  266. first = new;
  267. new->mark = DESC_NCOMP;
  268. async_tx_ack(&new->async_tx);
  269. prev = new;
  270. len -= copy_size;
  271. dma_src += copy_size;
  272. dma_dest += copy_size;
  273. /* Insert the link descriptor to the LD ring */
  274. list_add_tail(&new->node, &first->tx_list);
  275. } while (len);
  276. new->async_tx.flags = flags; /* client is in control of this ack */
  277. new->async_tx.cookie = -EBUSY; /* Last desc */
  278. return &first->async_tx;
  279. err_get_desc:
  280. sh_dmae_put_desc(sh_chan, first);
  281. return NULL;
  282. }
  283. /*
  284. * sh_chan_ld_cleanup - Clean up link descriptors
  285. *
  286. * This function clean up the ld_queue of DMA channel.
  287. */
  288. static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan)
  289. {
  290. struct sh_desc *desc, *_desc;
  291. spin_lock_bh(&sh_chan->desc_lock);
  292. list_for_each_entry_safe(desc, _desc, &sh_chan->ld_queue, node) {
  293. dma_async_tx_callback callback;
  294. void *callback_param;
  295. /* non send data */
  296. if (desc->mark == DESC_NCOMP)
  297. break;
  298. /* send data sesc */
  299. callback = desc->async_tx.callback;
  300. callback_param = desc->async_tx.callback_param;
  301. /* Remove from ld_queue list */
  302. list_splice_init(&desc->tx_list, &sh_chan->ld_free);
  303. dev_dbg(sh_chan->dev, "link descriptor %p will be recycle.\n",
  304. desc);
  305. list_move(&desc->node, &sh_chan->ld_free);
  306. /* Run the link descriptor callback function */
  307. if (callback) {
  308. spin_unlock_bh(&sh_chan->desc_lock);
  309. dev_dbg(sh_chan->dev, "link descriptor %p callback\n",
  310. desc);
  311. callback(callback_param);
  312. spin_lock_bh(&sh_chan->desc_lock);
  313. }
  314. }
  315. spin_unlock_bh(&sh_chan->desc_lock);
  316. }
  317. static void sh_chan_xfer_ld_queue(struct sh_dmae_chan *sh_chan)
  318. {
  319. struct list_head *ld_node;
  320. struct sh_dmae_regs hw;
  321. /* DMA work check */
  322. if (dmae_is_idle(sh_chan))
  323. return;
  324. /* Find the first un-transfer desciptor */
  325. for (ld_node = sh_chan->ld_queue.next;
  326. (ld_node != &sh_chan->ld_queue)
  327. && (to_sh_desc(ld_node)->mark == DESC_COMP);
  328. ld_node = ld_node->next)
  329. cpu_relax();
  330. if (ld_node != &sh_chan->ld_queue) {
  331. /* Get the ld start address from ld_queue */
  332. hw = to_sh_desc(ld_node)->hw;
  333. dmae_set_reg(sh_chan, hw);
  334. dmae_start(sh_chan);
  335. }
  336. }
  337. static void sh_dmae_memcpy_issue_pending(struct dma_chan *chan)
  338. {
  339. struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
  340. sh_chan_xfer_ld_queue(sh_chan);
  341. }
  342. static enum dma_status sh_dmae_is_complete(struct dma_chan *chan,
  343. dma_cookie_t cookie,
  344. dma_cookie_t *done,
  345. dma_cookie_t *used)
  346. {
  347. struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
  348. dma_cookie_t last_used;
  349. dma_cookie_t last_complete;
  350. sh_dmae_chan_ld_cleanup(sh_chan);
  351. last_used = chan->cookie;
  352. last_complete = sh_chan->completed_cookie;
  353. if (last_complete == -EBUSY)
  354. last_complete = last_used;
  355. if (done)
  356. *done = last_complete;
  357. if (used)
  358. *used = last_used;
  359. return dma_async_is_complete(cookie, last_complete, last_used);
  360. }
  361. static irqreturn_t sh_dmae_interrupt(int irq, void *data)
  362. {
  363. irqreturn_t ret = IRQ_NONE;
  364. struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data;
  365. u32 chcr = sh_dmae_readl(sh_chan, CHCR);
  366. if (chcr & CHCR_TE) {
  367. /* DMA stop */
  368. dmae_halt(sh_chan);
  369. ret = IRQ_HANDLED;
  370. tasklet_schedule(&sh_chan->tasklet);
  371. }
  372. return ret;
  373. }
  374. #if defined(CONFIG_CPU_SH4)
  375. static irqreturn_t sh_dmae_err(int irq, void *data)
  376. {
  377. int err = 0;
  378. struct sh_dmae_device *shdev = (struct sh_dmae_device *)data;
  379. /* IRQ Multi */
  380. if (shdev->pdata.mode & SHDMA_MIX_IRQ) {
  381. int cnt = 0;
  382. switch (irq) {
  383. #if defined(DMTE6_IRQ) && defined(DMAE1_IRQ)
  384. case DMTE6_IRQ:
  385. cnt++;
  386. #endif
  387. case DMTE0_IRQ:
  388. if (dmaor_read_reg(cnt) & (DMAOR_NMIF | DMAOR_AE)) {
  389. disable_irq(irq);
  390. return IRQ_HANDLED;
  391. }
  392. default:
  393. return IRQ_NONE;
  394. }
  395. } else {
  396. /* reset dma controller */
  397. err = sh_dmae_rst(0);
  398. if (err)
  399. return err;
  400. if (shdev->pdata.mode & SHDMA_DMAOR1) {
  401. err = sh_dmae_rst(1);
  402. if (err)
  403. return err;
  404. }
  405. disable_irq(irq);
  406. return IRQ_HANDLED;
  407. }
  408. }
  409. #endif
  410. static void dmae_do_tasklet(unsigned long data)
  411. {
  412. struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data;
  413. struct sh_desc *desc, *_desc, *cur_desc = NULL;
  414. u32 sar_buf = sh_dmae_readl(sh_chan, SAR);
  415. list_for_each_entry_safe(desc, _desc,
  416. &sh_chan->ld_queue, node) {
  417. if ((desc->hw.sar + desc->hw.tcr) == sar_buf) {
  418. cur_desc = desc;
  419. break;
  420. }
  421. }
  422. if (cur_desc) {
  423. switch (cur_desc->async_tx.cookie) {
  424. case 0: /* other desc data */
  425. break;
  426. case -EBUSY: /* last desc */
  427. sh_chan->completed_cookie =
  428. cur_desc->async_tx.cookie;
  429. break;
  430. default: /* first desc ( 0 < )*/
  431. sh_chan->completed_cookie =
  432. cur_desc->async_tx.cookie - 1;
  433. break;
  434. }
  435. cur_desc->mark = DESC_COMP;
  436. }
  437. /* Next desc */
  438. sh_chan_xfer_ld_queue(sh_chan);
  439. sh_dmae_chan_ld_cleanup(sh_chan);
  440. }
  441. static unsigned int get_dmae_irq(unsigned int id)
  442. {
  443. unsigned int irq = 0;
  444. if (id < ARRAY_SIZE(dmte_irq_map))
  445. irq = dmte_irq_map[id];
  446. return irq;
  447. }
  448. static int __devinit sh_dmae_chan_probe(struct sh_dmae_device *shdev, int id)
  449. {
  450. int err;
  451. unsigned int irq = get_dmae_irq(id);
  452. unsigned long irqflags = IRQF_DISABLED;
  453. struct sh_dmae_chan *new_sh_chan;
  454. /* alloc channel */
  455. new_sh_chan = kzalloc(sizeof(struct sh_dmae_chan), GFP_KERNEL);
  456. if (!new_sh_chan) {
  457. dev_err(shdev->common.dev, "No free memory for allocating "
  458. "dma channels!\n");
  459. return -ENOMEM;
  460. }
  461. new_sh_chan->dev = shdev->common.dev;
  462. new_sh_chan->id = id;
  463. /* Init DMA tasklet */
  464. tasklet_init(&new_sh_chan->tasklet, dmae_do_tasklet,
  465. (unsigned long)new_sh_chan);
  466. /* Init the channel */
  467. dmae_init(new_sh_chan);
  468. spin_lock_init(&new_sh_chan->desc_lock);
  469. /* Init descripter manage list */
  470. INIT_LIST_HEAD(&new_sh_chan->ld_queue);
  471. INIT_LIST_HEAD(&new_sh_chan->ld_free);
  472. /* copy struct dma_device */
  473. new_sh_chan->common.device = &shdev->common;
  474. /* Add the channel to DMA device channel list */
  475. list_add_tail(&new_sh_chan->common.device_node,
  476. &shdev->common.channels);
  477. shdev->common.chancnt++;
  478. if (shdev->pdata.mode & SHDMA_MIX_IRQ) {
  479. irqflags = IRQF_SHARED;
  480. #if defined(DMTE6_IRQ)
  481. if (irq >= DMTE6_IRQ)
  482. irq = DMTE6_IRQ;
  483. else
  484. #endif
  485. irq = DMTE0_IRQ;
  486. }
  487. snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id),
  488. "sh-dmae%d", new_sh_chan->id);
  489. /* set up channel irq */
  490. err = request_irq(irq, &sh_dmae_interrupt,
  491. irqflags, new_sh_chan->dev_id, new_sh_chan);
  492. if (err) {
  493. dev_err(shdev->common.dev, "DMA channel %d request_irq error "
  494. "with return %d\n", id, err);
  495. goto err_no_irq;
  496. }
  497. /* CHCR register control function */
  498. new_sh_chan->set_chcr = dmae_set_chcr;
  499. /* DMARS register control function */
  500. new_sh_chan->set_dmars = dmae_set_dmars;
  501. shdev->chan[id] = new_sh_chan;
  502. return 0;
  503. err_no_irq:
  504. /* remove from dmaengine device node */
  505. list_del(&new_sh_chan->common.device_node);
  506. kfree(new_sh_chan);
  507. return err;
  508. }
  509. static void sh_dmae_chan_remove(struct sh_dmae_device *shdev)
  510. {
  511. int i;
  512. for (i = shdev->common.chancnt - 1 ; i >= 0 ; i--) {
  513. if (shdev->chan[i]) {
  514. struct sh_dmae_chan *shchan = shdev->chan[i];
  515. if (!(shdev->pdata.mode & SHDMA_MIX_IRQ))
  516. free_irq(dmte_irq_map[i], shchan);
  517. list_del(&shchan->common.device_node);
  518. kfree(shchan);
  519. shdev->chan[i] = NULL;
  520. }
  521. }
  522. shdev->common.chancnt = 0;
  523. }
  524. static int __init sh_dmae_probe(struct platform_device *pdev)
  525. {
  526. int err = 0, cnt, ecnt;
  527. unsigned long irqflags = IRQF_DISABLED;
  528. #if defined(CONFIG_CPU_SH4)
  529. int eirq[] = { DMAE0_IRQ,
  530. #if defined(DMAE1_IRQ)
  531. DMAE1_IRQ
  532. #endif
  533. };
  534. #endif
  535. struct sh_dmae_device *shdev;
  536. /* get platform data */
  537. if (!pdev->dev.platform_data)
  538. return -ENODEV;
  539. shdev = kzalloc(sizeof(struct sh_dmae_device), GFP_KERNEL);
  540. if (!shdev) {
  541. dev_err(&pdev->dev, "No enough memory\n");
  542. return -ENOMEM;
  543. }
  544. /* platform data */
  545. memcpy(&shdev->pdata, pdev->dev.platform_data,
  546. sizeof(struct sh_dmae_pdata));
  547. /* reset dma controller */
  548. err = sh_dmae_rst(0);
  549. if (err)
  550. goto rst_err;
  551. /* SH7780/85/23 has DMAOR1 */
  552. if (shdev->pdata.mode & SHDMA_DMAOR1) {
  553. err = sh_dmae_rst(1);
  554. if (err)
  555. goto rst_err;
  556. }
  557. INIT_LIST_HEAD(&shdev->common.channels);
  558. dma_cap_set(DMA_MEMCPY, shdev->common.cap_mask);
  559. shdev->common.device_alloc_chan_resources
  560. = sh_dmae_alloc_chan_resources;
  561. shdev->common.device_free_chan_resources = sh_dmae_free_chan_resources;
  562. shdev->common.device_prep_dma_memcpy = sh_dmae_prep_memcpy;
  563. shdev->common.device_is_tx_complete = sh_dmae_is_complete;
  564. shdev->common.device_issue_pending = sh_dmae_memcpy_issue_pending;
  565. shdev->common.dev = &pdev->dev;
  566. #if defined(CONFIG_CPU_SH4)
  567. /* Non Mix IRQ mode SH7722/SH7730 etc... */
  568. if (shdev->pdata.mode & SHDMA_MIX_IRQ) {
  569. irqflags = IRQF_SHARED;
  570. eirq[0] = DMTE0_IRQ;
  571. #if defined(DMTE6_IRQ) && defined(DMAE1_IRQ)
  572. eirq[1] = DMTE6_IRQ;
  573. #endif
  574. }
  575. for (ecnt = 0 ; ecnt < ARRAY_SIZE(eirq); ecnt++) {
  576. err = request_irq(eirq[ecnt], sh_dmae_err,
  577. irqflags, "DMAC Address Error", shdev);
  578. if (err) {
  579. dev_err(&pdev->dev, "DMA device request_irq"
  580. "error (irq %d) with return %d\n",
  581. eirq[ecnt], err);
  582. goto eirq_err;
  583. }
  584. }
  585. #endif /* CONFIG_CPU_SH4 */
  586. /* Create DMA Channel */
  587. for (cnt = 0 ; cnt < MAX_DMA_CHANNELS ; cnt++) {
  588. err = sh_dmae_chan_probe(shdev, cnt);
  589. if (err)
  590. goto chan_probe_err;
  591. }
  592. platform_set_drvdata(pdev, shdev);
  593. dma_async_device_register(&shdev->common);
  594. return err;
  595. chan_probe_err:
  596. sh_dmae_chan_remove(shdev);
  597. eirq_err:
  598. for (ecnt-- ; ecnt >= 0; ecnt--)
  599. free_irq(eirq[ecnt], shdev);
  600. rst_err:
  601. kfree(shdev);
  602. return err;
  603. }
  604. static int __exit sh_dmae_remove(struct platform_device *pdev)
  605. {
  606. struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
  607. dma_async_device_unregister(&shdev->common);
  608. if (shdev->pdata.mode & SHDMA_MIX_IRQ) {
  609. free_irq(DMTE0_IRQ, shdev);
  610. #if defined(DMTE6_IRQ)
  611. free_irq(DMTE6_IRQ, shdev);
  612. #endif
  613. }
  614. /* channel data remove */
  615. sh_dmae_chan_remove(shdev);
  616. if (!(shdev->pdata.mode & SHDMA_MIX_IRQ)) {
  617. free_irq(DMAE0_IRQ, shdev);
  618. #if defined(DMAE1_IRQ)
  619. free_irq(DMAE1_IRQ, shdev);
  620. #endif
  621. }
  622. kfree(shdev);
  623. return 0;
  624. }
  625. static void sh_dmae_shutdown(struct platform_device *pdev)
  626. {
  627. struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
  628. sh_dmae_ctl_stop(0);
  629. if (shdev->pdata.mode & SHDMA_DMAOR1)
  630. sh_dmae_ctl_stop(1);
  631. }
  632. static struct platform_driver sh_dmae_driver = {
  633. .remove = __exit_p(sh_dmae_remove),
  634. .shutdown = sh_dmae_shutdown,
  635. .driver = {
  636. .name = "sh-dma-engine",
  637. },
  638. };
  639. static int __init sh_dmae_init(void)
  640. {
  641. return platform_driver_probe(&sh_dmae_driver, sh_dmae_probe);
  642. }
  643. module_init(sh_dmae_init);
  644. static void __exit sh_dmae_exit(void)
  645. {
  646. platform_driver_unregister(&sh_dmae_driver);
  647. }
  648. module_exit(sh_dmae_exit);
  649. MODULE_AUTHOR("Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>");
  650. MODULE_DESCRIPTION("Renesas SH DMA Engine driver");
  651. MODULE_LICENSE("GPL");