cfq-iosched.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/blkdev.h>
  11. #include <linux/elevator.h>
  12. #include <linux/jiffies.h>
  13. #include <linux/rbtree.h>
  14. #include <linux/ioprio.h>
  15. #include <linux/blktrace_api.h>
  16. #include "blk-cgroup.h"
  17. /*
  18. * tunables
  19. */
  20. /* max queue in one round of service */
  21. static const int cfq_quantum = 4;
  22. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  23. /* maximum backwards seek, in KiB */
  24. static const int cfq_back_max = 16 * 1024;
  25. /* penalty of a backwards seek */
  26. static const int cfq_back_penalty = 2;
  27. static const int cfq_slice_sync = HZ / 10;
  28. static int cfq_slice_async = HZ / 25;
  29. static const int cfq_slice_async_rq = 2;
  30. static int cfq_slice_idle = HZ / 125;
  31. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  32. static const int cfq_hist_divisor = 4;
  33. /*
  34. * offset from end of service tree
  35. */
  36. #define CFQ_IDLE_DELAY (HZ / 5)
  37. /*
  38. * below this threshold, we consider thinktime immediate
  39. */
  40. #define CFQ_MIN_TT (2)
  41. /*
  42. * Allow merged cfqqs to perform this amount of seeky I/O before
  43. * deciding to break the queues up again.
  44. */
  45. #define CFQQ_COOP_TOUT (HZ)
  46. #define CFQ_SLICE_SCALE (5)
  47. #define CFQ_HW_QUEUE_MIN (5)
  48. #define CFQ_SERVICE_SHIFT 12
  49. #define RQ_CIC(rq) \
  50. ((struct cfq_io_context *) (rq)->elevator_private)
  51. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  52. static struct kmem_cache *cfq_pool;
  53. static struct kmem_cache *cfq_ioc_pool;
  54. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  55. static struct completion *ioc_gone;
  56. static DEFINE_SPINLOCK(ioc_gone_lock);
  57. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  58. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  59. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  60. #define sample_valid(samples) ((samples) > 80)
  61. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  62. /*
  63. * Most of our rbtree usage is for sorting with min extraction, so
  64. * if we cache the leftmost node we don't have to walk down the tree
  65. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  66. * move this into the elevator for the rq sorting as well.
  67. */
  68. struct cfq_rb_root {
  69. struct rb_root rb;
  70. struct rb_node *left;
  71. unsigned count;
  72. u64 min_vdisktime;
  73. struct rb_node *active;
  74. unsigned total_weight;
  75. };
  76. #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
  77. /*
  78. * Per process-grouping structure
  79. */
  80. struct cfq_queue {
  81. /* reference count */
  82. atomic_t ref;
  83. /* various state flags, see below */
  84. unsigned int flags;
  85. /* parent cfq_data */
  86. struct cfq_data *cfqd;
  87. /* service_tree member */
  88. struct rb_node rb_node;
  89. /* service_tree key */
  90. unsigned long rb_key;
  91. /* prio tree member */
  92. struct rb_node p_node;
  93. /* prio tree root we belong to, if any */
  94. struct rb_root *p_root;
  95. /* sorted list of pending requests */
  96. struct rb_root sort_list;
  97. /* if fifo isn't expired, next request to serve */
  98. struct request *next_rq;
  99. /* requests queued in sort_list */
  100. int queued[2];
  101. /* currently allocated requests */
  102. int allocated[2];
  103. /* fifo list of requests in sort_list */
  104. struct list_head fifo;
  105. /* time when queue got scheduled in to dispatch first request. */
  106. unsigned long dispatch_start;
  107. unsigned int allocated_slice;
  108. /* time when first request from queue completed and slice started. */
  109. unsigned long slice_start;
  110. unsigned long slice_end;
  111. long slice_resid;
  112. unsigned int slice_dispatch;
  113. /* pending metadata requests */
  114. int meta_pending;
  115. /* number of requests that are on the dispatch list or inside driver */
  116. int dispatched;
  117. /* io prio of this group */
  118. unsigned short ioprio, org_ioprio;
  119. unsigned short ioprio_class, org_ioprio_class;
  120. unsigned int seek_samples;
  121. u64 seek_total;
  122. sector_t seek_mean;
  123. sector_t last_request_pos;
  124. unsigned long seeky_start;
  125. pid_t pid;
  126. struct cfq_rb_root *service_tree;
  127. struct cfq_queue *new_cfqq;
  128. struct cfq_group *cfqg;
  129. struct cfq_group *orig_cfqg;
  130. /* Sectors dispatched in current dispatch round */
  131. unsigned long nr_sectors;
  132. };
  133. /*
  134. * First index in the service_trees.
  135. * IDLE is handled separately, so it has negative index
  136. */
  137. enum wl_prio_t {
  138. BE_WORKLOAD = 0,
  139. RT_WORKLOAD = 1,
  140. IDLE_WORKLOAD = 2,
  141. };
  142. /*
  143. * Second index in the service_trees.
  144. */
  145. enum wl_type_t {
  146. ASYNC_WORKLOAD = 0,
  147. SYNC_NOIDLE_WORKLOAD = 1,
  148. SYNC_WORKLOAD = 2
  149. };
  150. /* This is per cgroup per device grouping structure */
  151. struct cfq_group {
  152. /* group service_tree member */
  153. struct rb_node rb_node;
  154. /* group service_tree key */
  155. u64 vdisktime;
  156. unsigned int weight;
  157. bool on_st;
  158. /* number of cfqq currently on this group */
  159. int nr_cfqq;
  160. /* Per group busy queus average. Useful for workload slice calc. */
  161. unsigned int busy_queues_avg[2];
  162. /*
  163. * rr lists of queues with requests, onle rr for each priority class.
  164. * Counts are embedded in the cfq_rb_root
  165. */
  166. struct cfq_rb_root service_trees[2][3];
  167. struct cfq_rb_root service_tree_idle;
  168. unsigned long saved_workload_slice;
  169. enum wl_type_t saved_workload;
  170. enum wl_prio_t saved_serving_prio;
  171. struct blkio_group blkg;
  172. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  173. struct hlist_node cfqd_node;
  174. atomic_t ref;
  175. #endif
  176. };
  177. /*
  178. * Per block device queue structure
  179. */
  180. struct cfq_data {
  181. struct request_queue *queue;
  182. /* Root service tree for cfq_groups */
  183. struct cfq_rb_root grp_service_tree;
  184. struct cfq_group root_group;
  185. /* Number of active cfq groups on group service tree */
  186. int nr_groups;
  187. /*
  188. * The priority currently being served
  189. */
  190. enum wl_prio_t serving_prio;
  191. enum wl_type_t serving_type;
  192. unsigned long workload_expires;
  193. struct cfq_group *serving_group;
  194. bool noidle_tree_requires_idle;
  195. /*
  196. * Each priority tree is sorted by next_request position. These
  197. * trees are used when determining if two or more queues are
  198. * interleaving requests (see cfq_close_cooperator).
  199. */
  200. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  201. unsigned int busy_queues;
  202. int rq_in_driver[2];
  203. int sync_flight;
  204. /*
  205. * queue-depth detection
  206. */
  207. int rq_queued;
  208. int hw_tag;
  209. /*
  210. * hw_tag can be
  211. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  212. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  213. * 0 => no NCQ
  214. */
  215. int hw_tag_est_depth;
  216. unsigned int hw_tag_samples;
  217. /*
  218. * idle window management
  219. */
  220. struct timer_list idle_slice_timer;
  221. struct work_struct unplug_work;
  222. struct cfq_queue *active_queue;
  223. struct cfq_io_context *active_cic;
  224. /*
  225. * async queue for each priority case
  226. */
  227. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  228. struct cfq_queue *async_idle_cfqq;
  229. sector_t last_position;
  230. /*
  231. * tunables, see top of file
  232. */
  233. unsigned int cfq_quantum;
  234. unsigned int cfq_fifo_expire[2];
  235. unsigned int cfq_back_penalty;
  236. unsigned int cfq_back_max;
  237. unsigned int cfq_slice[2];
  238. unsigned int cfq_slice_async_rq;
  239. unsigned int cfq_slice_idle;
  240. unsigned int cfq_latency;
  241. unsigned int cfq_group_isolation;
  242. struct list_head cic_list;
  243. /*
  244. * Fallback dummy cfqq for extreme OOM conditions
  245. */
  246. struct cfq_queue oom_cfqq;
  247. unsigned long last_end_sync_rq;
  248. /* List of cfq groups being managed on this device*/
  249. struct hlist_head cfqg_list;
  250. struct rcu_head rcu;
  251. };
  252. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  253. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  254. enum wl_prio_t prio,
  255. enum wl_type_t type,
  256. struct cfq_data *cfqd)
  257. {
  258. if (!cfqg)
  259. return NULL;
  260. if (prio == IDLE_WORKLOAD)
  261. return &cfqg->service_tree_idle;
  262. return &cfqg->service_trees[prio][type];
  263. }
  264. enum cfqq_state_flags {
  265. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  266. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  267. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  268. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  269. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  270. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  271. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  272. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  273. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  274. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  275. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  276. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  277. CFQ_CFQQ_FLAG_wait_busy_done, /* Got new request. Expire the queue */
  278. };
  279. #define CFQ_CFQQ_FNS(name) \
  280. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  281. { \
  282. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  283. } \
  284. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  285. { \
  286. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  287. } \
  288. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  289. { \
  290. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  291. }
  292. CFQ_CFQQ_FNS(on_rr);
  293. CFQ_CFQQ_FNS(wait_request);
  294. CFQ_CFQQ_FNS(must_dispatch);
  295. CFQ_CFQQ_FNS(must_alloc_slice);
  296. CFQ_CFQQ_FNS(fifo_expire);
  297. CFQ_CFQQ_FNS(idle_window);
  298. CFQ_CFQQ_FNS(prio_changed);
  299. CFQ_CFQQ_FNS(slice_new);
  300. CFQ_CFQQ_FNS(sync);
  301. CFQ_CFQQ_FNS(coop);
  302. CFQ_CFQQ_FNS(deep);
  303. CFQ_CFQQ_FNS(wait_busy);
  304. CFQ_CFQQ_FNS(wait_busy_done);
  305. #undef CFQ_CFQQ_FNS
  306. #ifdef CONFIG_DEBUG_CFQ_IOSCHED
  307. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  308. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  309. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  310. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  311. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  312. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  313. blkg_path(&(cfqg)->blkg), ##args); \
  314. #else
  315. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  316. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  317. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  318. #endif
  319. #define cfq_log(cfqd, fmt, args...) \
  320. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  321. /* Traverses through cfq group service trees */
  322. #define for_each_cfqg_st(cfqg, i, j, st) \
  323. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  324. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  325. : &cfqg->service_tree_idle; \
  326. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  327. (i == IDLE_WORKLOAD && j == 0); \
  328. j++, st = i < IDLE_WORKLOAD ? \
  329. &cfqg->service_trees[i][j]: NULL) \
  330. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  331. {
  332. if (cfq_class_idle(cfqq))
  333. return IDLE_WORKLOAD;
  334. if (cfq_class_rt(cfqq))
  335. return RT_WORKLOAD;
  336. return BE_WORKLOAD;
  337. }
  338. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  339. {
  340. if (!cfq_cfqq_sync(cfqq))
  341. return ASYNC_WORKLOAD;
  342. if (!cfq_cfqq_idle_window(cfqq))
  343. return SYNC_NOIDLE_WORKLOAD;
  344. return SYNC_WORKLOAD;
  345. }
  346. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  347. struct cfq_data *cfqd,
  348. struct cfq_group *cfqg)
  349. {
  350. if (wl == IDLE_WORKLOAD)
  351. return cfqg->service_tree_idle.count;
  352. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  353. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  354. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  355. }
  356. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  357. struct cfq_group *cfqg)
  358. {
  359. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  360. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  361. }
  362. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  363. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  364. struct io_context *, gfp_t);
  365. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  366. struct io_context *);
  367. static inline int rq_in_driver(struct cfq_data *cfqd)
  368. {
  369. return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
  370. }
  371. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  372. bool is_sync)
  373. {
  374. return cic->cfqq[is_sync];
  375. }
  376. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  377. struct cfq_queue *cfqq, bool is_sync)
  378. {
  379. cic->cfqq[is_sync] = cfqq;
  380. }
  381. /*
  382. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  383. * set (in which case it could also be direct WRITE).
  384. */
  385. static inline bool cfq_bio_sync(struct bio *bio)
  386. {
  387. return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
  388. }
  389. /*
  390. * scheduler run of queue, if there are requests pending and no one in the
  391. * driver that will restart queueing
  392. */
  393. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  394. {
  395. if (cfqd->busy_queues) {
  396. cfq_log(cfqd, "schedule dispatch");
  397. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  398. }
  399. }
  400. static int cfq_queue_empty(struct request_queue *q)
  401. {
  402. struct cfq_data *cfqd = q->elevator->elevator_data;
  403. return !cfqd->rq_queued;
  404. }
  405. /*
  406. * Scale schedule slice based on io priority. Use the sync time slice only
  407. * if a queue is marked sync and has sync io queued. A sync queue with async
  408. * io only, should not get full sync slice length.
  409. */
  410. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  411. unsigned short prio)
  412. {
  413. const int base_slice = cfqd->cfq_slice[sync];
  414. WARN_ON(prio >= IOPRIO_BE_NR);
  415. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  416. }
  417. static inline int
  418. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  419. {
  420. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  421. }
  422. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  423. {
  424. u64 d = delta << CFQ_SERVICE_SHIFT;
  425. d = d * BLKIO_WEIGHT_DEFAULT;
  426. do_div(d, cfqg->weight);
  427. return d;
  428. }
  429. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  430. {
  431. s64 delta = (s64)(vdisktime - min_vdisktime);
  432. if (delta > 0)
  433. min_vdisktime = vdisktime;
  434. return min_vdisktime;
  435. }
  436. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  437. {
  438. s64 delta = (s64)(vdisktime - min_vdisktime);
  439. if (delta < 0)
  440. min_vdisktime = vdisktime;
  441. return min_vdisktime;
  442. }
  443. static void update_min_vdisktime(struct cfq_rb_root *st)
  444. {
  445. u64 vdisktime = st->min_vdisktime;
  446. struct cfq_group *cfqg;
  447. if (st->active) {
  448. cfqg = rb_entry_cfqg(st->active);
  449. vdisktime = cfqg->vdisktime;
  450. }
  451. if (st->left) {
  452. cfqg = rb_entry_cfqg(st->left);
  453. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  454. }
  455. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  456. }
  457. /*
  458. * get averaged number of queues of RT/BE priority.
  459. * average is updated, with a formula that gives more weight to higher numbers,
  460. * to quickly follows sudden increases and decrease slowly
  461. */
  462. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  463. struct cfq_group *cfqg, bool rt)
  464. {
  465. unsigned min_q, max_q;
  466. unsigned mult = cfq_hist_divisor - 1;
  467. unsigned round = cfq_hist_divisor / 2;
  468. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  469. min_q = min(cfqg->busy_queues_avg[rt], busy);
  470. max_q = max(cfqg->busy_queues_avg[rt], busy);
  471. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  472. cfq_hist_divisor;
  473. return cfqg->busy_queues_avg[rt];
  474. }
  475. static inline unsigned
  476. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  477. {
  478. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  479. return cfq_target_latency * cfqg->weight / st->total_weight;
  480. }
  481. static inline void
  482. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  483. {
  484. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  485. if (cfqd->cfq_latency) {
  486. /*
  487. * interested queues (we consider only the ones with the same
  488. * priority class in the cfq group)
  489. */
  490. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  491. cfq_class_rt(cfqq));
  492. unsigned sync_slice = cfqd->cfq_slice[1];
  493. unsigned expect_latency = sync_slice * iq;
  494. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  495. if (expect_latency > group_slice) {
  496. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  497. /* scale low_slice according to IO priority
  498. * and sync vs async */
  499. unsigned low_slice =
  500. min(slice, base_low_slice * slice / sync_slice);
  501. /* the adapted slice value is scaled to fit all iqs
  502. * into the target latency */
  503. slice = max(slice * group_slice / expect_latency,
  504. low_slice);
  505. }
  506. }
  507. cfqq->slice_start = jiffies;
  508. cfqq->slice_end = jiffies + slice;
  509. cfqq->allocated_slice = slice;
  510. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  511. }
  512. /*
  513. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  514. * isn't valid until the first request from the dispatch is activated
  515. * and the slice time set.
  516. */
  517. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  518. {
  519. if (cfq_cfqq_slice_new(cfqq))
  520. return 0;
  521. if (time_before(jiffies, cfqq->slice_end))
  522. return 0;
  523. return 1;
  524. }
  525. /*
  526. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  527. * We choose the request that is closest to the head right now. Distance
  528. * behind the head is penalized and only allowed to a certain extent.
  529. */
  530. static struct request *
  531. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  532. {
  533. sector_t s1, s2, d1 = 0, d2 = 0;
  534. unsigned long back_max;
  535. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  536. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  537. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  538. if (rq1 == NULL || rq1 == rq2)
  539. return rq2;
  540. if (rq2 == NULL)
  541. return rq1;
  542. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  543. return rq1;
  544. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  545. return rq2;
  546. if (rq_is_meta(rq1) && !rq_is_meta(rq2))
  547. return rq1;
  548. else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
  549. return rq2;
  550. s1 = blk_rq_pos(rq1);
  551. s2 = blk_rq_pos(rq2);
  552. /*
  553. * by definition, 1KiB is 2 sectors
  554. */
  555. back_max = cfqd->cfq_back_max * 2;
  556. /*
  557. * Strict one way elevator _except_ in the case where we allow
  558. * short backward seeks which are biased as twice the cost of a
  559. * similar forward seek.
  560. */
  561. if (s1 >= last)
  562. d1 = s1 - last;
  563. else if (s1 + back_max >= last)
  564. d1 = (last - s1) * cfqd->cfq_back_penalty;
  565. else
  566. wrap |= CFQ_RQ1_WRAP;
  567. if (s2 >= last)
  568. d2 = s2 - last;
  569. else if (s2 + back_max >= last)
  570. d2 = (last - s2) * cfqd->cfq_back_penalty;
  571. else
  572. wrap |= CFQ_RQ2_WRAP;
  573. /* Found required data */
  574. /*
  575. * By doing switch() on the bit mask "wrap" we avoid having to
  576. * check two variables for all permutations: --> faster!
  577. */
  578. switch (wrap) {
  579. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  580. if (d1 < d2)
  581. return rq1;
  582. else if (d2 < d1)
  583. return rq2;
  584. else {
  585. if (s1 >= s2)
  586. return rq1;
  587. else
  588. return rq2;
  589. }
  590. case CFQ_RQ2_WRAP:
  591. return rq1;
  592. case CFQ_RQ1_WRAP:
  593. return rq2;
  594. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  595. default:
  596. /*
  597. * Since both rqs are wrapped,
  598. * start with the one that's further behind head
  599. * (--> only *one* back seek required),
  600. * since back seek takes more time than forward.
  601. */
  602. if (s1 <= s2)
  603. return rq1;
  604. else
  605. return rq2;
  606. }
  607. }
  608. /*
  609. * The below is leftmost cache rbtree addon
  610. */
  611. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  612. {
  613. /* Service tree is empty */
  614. if (!root->count)
  615. return NULL;
  616. if (!root->left)
  617. root->left = rb_first(&root->rb);
  618. if (root->left)
  619. return rb_entry(root->left, struct cfq_queue, rb_node);
  620. return NULL;
  621. }
  622. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  623. {
  624. if (!root->left)
  625. root->left = rb_first(&root->rb);
  626. if (root->left)
  627. return rb_entry_cfqg(root->left);
  628. return NULL;
  629. }
  630. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  631. {
  632. rb_erase(n, root);
  633. RB_CLEAR_NODE(n);
  634. }
  635. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  636. {
  637. if (root->left == n)
  638. root->left = NULL;
  639. rb_erase_init(n, &root->rb);
  640. --root->count;
  641. }
  642. /*
  643. * would be nice to take fifo expire time into account as well
  644. */
  645. static struct request *
  646. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  647. struct request *last)
  648. {
  649. struct rb_node *rbnext = rb_next(&last->rb_node);
  650. struct rb_node *rbprev = rb_prev(&last->rb_node);
  651. struct request *next = NULL, *prev = NULL;
  652. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  653. if (rbprev)
  654. prev = rb_entry_rq(rbprev);
  655. if (rbnext)
  656. next = rb_entry_rq(rbnext);
  657. else {
  658. rbnext = rb_first(&cfqq->sort_list);
  659. if (rbnext && rbnext != &last->rb_node)
  660. next = rb_entry_rq(rbnext);
  661. }
  662. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  663. }
  664. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  665. struct cfq_queue *cfqq)
  666. {
  667. /*
  668. * just an approximation, should be ok.
  669. */
  670. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  671. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  672. }
  673. static inline s64
  674. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  675. {
  676. return cfqg->vdisktime - st->min_vdisktime;
  677. }
  678. static void
  679. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  680. {
  681. struct rb_node **node = &st->rb.rb_node;
  682. struct rb_node *parent = NULL;
  683. struct cfq_group *__cfqg;
  684. s64 key = cfqg_key(st, cfqg);
  685. int left = 1;
  686. while (*node != NULL) {
  687. parent = *node;
  688. __cfqg = rb_entry_cfqg(parent);
  689. if (key < cfqg_key(st, __cfqg))
  690. node = &parent->rb_left;
  691. else {
  692. node = &parent->rb_right;
  693. left = 0;
  694. }
  695. }
  696. if (left)
  697. st->left = &cfqg->rb_node;
  698. rb_link_node(&cfqg->rb_node, parent, node);
  699. rb_insert_color(&cfqg->rb_node, &st->rb);
  700. }
  701. static void
  702. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  703. {
  704. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  705. struct cfq_group *__cfqg;
  706. struct rb_node *n;
  707. cfqg->nr_cfqq++;
  708. if (cfqg->on_st)
  709. return;
  710. /*
  711. * Currently put the group at the end. Later implement something
  712. * so that groups get lesser vtime based on their weights, so that
  713. * if group does not loose all if it was not continously backlogged.
  714. */
  715. n = rb_last(&st->rb);
  716. if (n) {
  717. __cfqg = rb_entry_cfqg(n);
  718. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  719. } else
  720. cfqg->vdisktime = st->min_vdisktime;
  721. __cfq_group_service_tree_add(st, cfqg);
  722. cfqg->on_st = true;
  723. cfqd->nr_groups++;
  724. st->total_weight += cfqg->weight;
  725. }
  726. static void
  727. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  728. {
  729. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  730. if (st->active == &cfqg->rb_node)
  731. st->active = NULL;
  732. BUG_ON(cfqg->nr_cfqq < 1);
  733. cfqg->nr_cfqq--;
  734. /* If there are other cfq queues under this group, don't delete it */
  735. if (cfqg->nr_cfqq)
  736. return;
  737. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  738. cfqg->on_st = false;
  739. cfqd->nr_groups--;
  740. st->total_weight -= cfqg->weight;
  741. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  742. cfq_rb_erase(&cfqg->rb_node, st);
  743. cfqg->saved_workload_slice = 0;
  744. blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
  745. }
  746. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  747. {
  748. unsigned int slice_used;
  749. /*
  750. * Queue got expired before even a single request completed or
  751. * got expired immediately after first request completion.
  752. */
  753. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  754. /*
  755. * Also charge the seek time incurred to the group, otherwise
  756. * if there are mutiple queues in the group, each can dispatch
  757. * a single request on seeky media and cause lots of seek time
  758. * and group will never know it.
  759. */
  760. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  761. 1);
  762. } else {
  763. slice_used = jiffies - cfqq->slice_start;
  764. if (slice_used > cfqq->allocated_slice)
  765. slice_used = cfqq->allocated_slice;
  766. }
  767. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
  768. cfqq->nr_sectors);
  769. return slice_used;
  770. }
  771. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  772. struct cfq_queue *cfqq)
  773. {
  774. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  775. unsigned int used_sl, charge_sl;
  776. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  777. - cfqg->service_tree_idle.count;
  778. BUG_ON(nr_sync < 0);
  779. used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
  780. if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  781. charge_sl = cfqq->allocated_slice;
  782. /* Can't update vdisktime while group is on service tree */
  783. cfq_rb_erase(&cfqg->rb_node, st);
  784. cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
  785. __cfq_group_service_tree_add(st, cfqg);
  786. /* This group is being expired. Save the context */
  787. if (time_after(cfqd->workload_expires, jiffies)) {
  788. cfqg->saved_workload_slice = cfqd->workload_expires
  789. - jiffies;
  790. cfqg->saved_workload = cfqd->serving_type;
  791. cfqg->saved_serving_prio = cfqd->serving_prio;
  792. } else
  793. cfqg->saved_workload_slice = 0;
  794. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  795. st->min_vdisktime);
  796. blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
  797. cfqq->nr_sectors);
  798. }
  799. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  800. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  801. {
  802. if (blkg)
  803. return container_of(blkg, struct cfq_group, blkg);
  804. return NULL;
  805. }
  806. void
  807. cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
  808. {
  809. cfqg_of_blkg(blkg)->weight = weight;
  810. }
  811. static struct cfq_group *
  812. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  813. {
  814. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  815. struct cfq_group *cfqg = NULL;
  816. void *key = cfqd;
  817. int i, j;
  818. struct cfq_rb_root *st;
  819. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  820. unsigned int major, minor;
  821. /* Do we need to take this reference */
  822. if (!blkiocg_css_tryget(blkcg))
  823. return NULL;;
  824. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  825. if (cfqg || !create)
  826. goto done;
  827. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  828. if (!cfqg)
  829. goto done;
  830. cfqg->weight = blkcg->weight;
  831. for_each_cfqg_st(cfqg, i, j, st)
  832. *st = CFQ_RB_ROOT;
  833. RB_CLEAR_NODE(&cfqg->rb_node);
  834. /*
  835. * Take the initial reference that will be released on destroy
  836. * This can be thought of a joint reference by cgroup and
  837. * elevator which will be dropped by either elevator exit
  838. * or cgroup deletion path depending on who is exiting first.
  839. */
  840. atomic_set(&cfqg->ref, 1);
  841. /* Add group onto cgroup list */
  842. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  843. blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  844. MKDEV(major, minor));
  845. /* Add group on cfqd list */
  846. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  847. done:
  848. blkiocg_css_put(blkcg);
  849. return cfqg;
  850. }
  851. /*
  852. * Search for the cfq group current task belongs to. If create = 1, then also
  853. * create the cfq group if it does not exist. request_queue lock must be held.
  854. */
  855. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  856. {
  857. struct cgroup *cgroup;
  858. struct cfq_group *cfqg = NULL;
  859. rcu_read_lock();
  860. cgroup = task_cgroup(current, blkio_subsys_id);
  861. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  862. if (!cfqg && create)
  863. cfqg = &cfqd->root_group;
  864. rcu_read_unlock();
  865. return cfqg;
  866. }
  867. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  868. {
  869. /* Currently, all async queues are mapped to root group */
  870. if (!cfq_cfqq_sync(cfqq))
  871. cfqg = &cfqq->cfqd->root_group;
  872. cfqq->cfqg = cfqg;
  873. /* cfqq reference on cfqg */
  874. atomic_inc(&cfqq->cfqg->ref);
  875. }
  876. static void cfq_put_cfqg(struct cfq_group *cfqg)
  877. {
  878. struct cfq_rb_root *st;
  879. int i, j;
  880. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  881. if (!atomic_dec_and_test(&cfqg->ref))
  882. return;
  883. for_each_cfqg_st(cfqg, i, j, st)
  884. BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
  885. kfree(cfqg);
  886. }
  887. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  888. {
  889. /* Something wrong if we are trying to remove same group twice */
  890. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  891. hlist_del_init(&cfqg->cfqd_node);
  892. /*
  893. * Put the reference taken at the time of creation so that when all
  894. * queues are gone, group can be destroyed.
  895. */
  896. cfq_put_cfqg(cfqg);
  897. }
  898. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  899. {
  900. struct hlist_node *pos, *n;
  901. struct cfq_group *cfqg;
  902. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  903. /*
  904. * If cgroup removal path got to blk_group first and removed
  905. * it from cgroup list, then it will take care of destroying
  906. * cfqg also.
  907. */
  908. if (!blkiocg_del_blkio_group(&cfqg->blkg))
  909. cfq_destroy_cfqg(cfqd, cfqg);
  910. }
  911. }
  912. /*
  913. * Blk cgroup controller notification saying that blkio_group object is being
  914. * delinked as associated cgroup object is going away. That also means that
  915. * no new IO will come in this group. So get rid of this group as soon as
  916. * any pending IO in the group is finished.
  917. *
  918. * This function is called under rcu_read_lock(). key is the rcu protected
  919. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  920. * read lock.
  921. *
  922. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  923. * it should not be NULL as even if elevator was exiting, cgroup deltion
  924. * path got to it first.
  925. */
  926. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  927. {
  928. unsigned long flags;
  929. struct cfq_data *cfqd = key;
  930. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  931. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  932. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  933. }
  934. #else /* GROUP_IOSCHED */
  935. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  936. {
  937. return &cfqd->root_group;
  938. }
  939. static inline void
  940. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  941. cfqq->cfqg = cfqg;
  942. }
  943. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  944. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  945. #endif /* GROUP_IOSCHED */
  946. /*
  947. * The cfqd->service_trees holds all pending cfq_queue's that have
  948. * requests waiting to be processed. It is sorted in the order that
  949. * we will service the queues.
  950. */
  951. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  952. bool add_front)
  953. {
  954. struct rb_node **p, *parent;
  955. struct cfq_queue *__cfqq;
  956. unsigned long rb_key;
  957. struct cfq_rb_root *service_tree;
  958. int left;
  959. int new_cfqq = 1;
  960. int group_changed = 0;
  961. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  962. if (!cfqd->cfq_group_isolation
  963. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  964. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  965. /* Move this cfq to root group */
  966. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  967. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  968. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  969. cfqq->orig_cfqg = cfqq->cfqg;
  970. cfqq->cfqg = &cfqd->root_group;
  971. atomic_inc(&cfqd->root_group.ref);
  972. group_changed = 1;
  973. } else if (!cfqd->cfq_group_isolation
  974. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  975. /* cfqq is sequential now needs to go to its original group */
  976. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  977. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  978. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  979. cfq_put_cfqg(cfqq->cfqg);
  980. cfqq->cfqg = cfqq->orig_cfqg;
  981. cfqq->orig_cfqg = NULL;
  982. group_changed = 1;
  983. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  984. }
  985. #endif
  986. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  987. cfqq_type(cfqq), cfqd);
  988. if (cfq_class_idle(cfqq)) {
  989. rb_key = CFQ_IDLE_DELAY;
  990. parent = rb_last(&service_tree->rb);
  991. if (parent && parent != &cfqq->rb_node) {
  992. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  993. rb_key += __cfqq->rb_key;
  994. } else
  995. rb_key += jiffies;
  996. } else if (!add_front) {
  997. /*
  998. * Get our rb key offset. Subtract any residual slice
  999. * value carried from last service. A negative resid
  1000. * count indicates slice overrun, and this should position
  1001. * the next service time further away in the tree.
  1002. */
  1003. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1004. rb_key -= cfqq->slice_resid;
  1005. cfqq->slice_resid = 0;
  1006. } else {
  1007. rb_key = -HZ;
  1008. __cfqq = cfq_rb_first(service_tree);
  1009. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1010. }
  1011. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1012. new_cfqq = 0;
  1013. /*
  1014. * same position, nothing more to do
  1015. */
  1016. if (rb_key == cfqq->rb_key &&
  1017. cfqq->service_tree == service_tree)
  1018. return;
  1019. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1020. cfqq->service_tree = NULL;
  1021. }
  1022. left = 1;
  1023. parent = NULL;
  1024. cfqq->service_tree = service_tree;
  1025. p = &service_tree->rb.rb_node;
  1026. while (*p) {
  1027. struct rb_node **n;
  1028. parent = *p;
  1029. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1030. /*
  1031. * sort by key, that represents service time.
  1032. */
  1033. if (time_before(rb_key, __cfqq->rb_key))
  1034. n = &(*p)->rb_left;
  1035. else {
  1036. n = &(*p)->rb_right;
  1037. left = 0;
  1038. }
  1039. p = n;
  1040. }
  1041. if (left)
  1042. service_tree->left = &cfqq->rb_node;
  1043. cfqq->rb_key = rb_key;
  1044. rb_link_node(&cfqq->rb_node, parent, p);
  1045. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1046. service_tree->count++;
  1047. if ((add_front || !new_cfqq) && !group_changed)
  1048. return;
  1049. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1050. }
  1051. static struct cfq_queue *
  1052. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1053. sector_t sector, struct rb_node **ret_parent,
  1054. struct rb_node ***rb_link)
  1055. {
  1056. struct rb_node **p, *parent;
  1057. struct cfq_queue *cfqq = NULL;
  1058. parent = NULL;
  1059. p = &root->rb_node;
  1060. while (*p) {
  1061. struct rb_node **n;
  1062. parent = *p;
  1063. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1064. /*
  1065. * Sort strictly based on sector. Smallest to the left,
  1066. * largest to the right.
  1067. */
  1068. if (sector > blk_rq_pos(cfqq->next_rq))
  1069. n = &(*p)->rb_right;
  1070. else if (sector < blk_rq_pos(cfqq->next_rq))
  1071. n = &(*p)->rb_left;
  1072. else
  1073. break;
  1074. p = n;
  1075. cfqq = NULL;
  1076. }
  1077. *ret_parent = parent;
  1078. if (rb_link)
  1079. *rb_link = p;
  1080. return cfqq;
  1081. }
  1082. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1083. {
  1084. struct rb_node **p, *parent;
  1085. struct cfq_queue *__cfqq;
  1086. if (cfqq->p_root) {
  1087. rb_erase(&cfqq->p_node, cfqq->p_root);
  1088. cfqq->p_root = NULL;
  1089. }
  1090. if (cfq_class_idle(cfqq))
  1091. return;
  1092. if (!cfqq->next_rq)
  1093. return;
  1094. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1095. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1096. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1097. if (!__cfqq) {
  1098. rb_link_node(&cfqq->p_node, parent, p);
  1099. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1100. } else
  1101. cfqq->p_root = NULL;
  1102. }
  1103. /*
  1104. * Update cfqq's position in the service tree.
  1105. */
  1106. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1107. {
  1108. /*
  1109. * Resorting requires the cfqq to be on the RR list already.
  1110. */
  1111. if (cfq_cfqq_on_rr(cfqq)) {
  1112. cfq_service_tree_add(cfqd, cfqq, 0);
  1113. cfq_prio_tree_add(cfqd, cfqq);
  1114. }
  1115. }
  1116. /*
  1117. * add to busy list of queues for service, trying to be fair in ordering
  1118. * the pending list according to last request service
  1119. */
  1120. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1121. {
  1122. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1123. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1124. cfq_mark_cfqq_on_rr(cfqq);
  1125. cfqd->busy_queues++;
  1126. cfq_resort_rr_list(cfqd, cfqq);
  1127. }
  1128. /*
  1129. * Called when the cfqq no longer has requests pending, remove it from
  1130. * the service tree.
  1131. */
  1132. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1133. {
  1134. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1135. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1136. cfq_clear_cfqq_on_rr(cfqq);
  1137. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1138. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1139. cfqq->service_tree = NULL;
  1140. }
  1141. if (cfqq->p_root) {
  1142. rb_erase(&cfqq->p_node, cfqq->p_root);
  1143. cfqq->p_root = NULL;
  1144. }
  1145. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1146. BUG_ON(!cfqd->busy_queues);
  1147. cfqd->busy_queues--;
  1148. }
  1149. /*
  1150. * rb tree support functions
  1151. */
  1152. static void cfq_del_rq_rb(struct request *rq)
  1153. {
  1154. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1155. const int sync = rq_is_sync(rq);
  1156. BUG_ON(!cfqq->queued[sync]);
  1157. cfqq->queued[sync]--;
  1158. elv_rb_del(&cfqq->sort_list, rq);
  1159. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1160. /*
  1161. * Queue will be deleted from service tree when we actually
  1162. * expire it later. Right now just remove it from prio tree
  1163. * as it is empty.
  1164. */
  1165. if (cfqq->p_root) {
  1166. rb_erase(&cfqq->p_node, cfqq->p_root);
  1167. cfqq->p_root = NULL;
  1168. }
  1169. }
  1170. }
  1171. static void cfq_add_rq_rb(struct request *rq)
  1172. {
  1173. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1174. struct cfq_data *cfqd = cfqq->cfqd;
  1175. struct request *__alias, *prev;
  1176. cfqq->queued[rq_is_sync(rq)]++;
  1177. /*
  1178. * looks a little odd, but the first insert might return an alias.
  1179. * if that happens, put the alias on the dispatch list
  1180. */
  1181. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1182. cfq_dispatch_insert(cfqd->queue, __alias);
  1183. if (!cfq_cfqq_on_rr(cfqq))
  1184. cfq_add_cfqq_rr(cfqd, cfqq);
  1185. /*
  1186. * check if this request is a better next-serve candidate
  1187. */
  1188. prev = cfqq->next_rq;
  1189. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1190. /*
  1191. * adjust priority tree position, if ->next_rq changes
  1192. */
  1193. if (prev != cfqq->next_rq)
  1194. cfq_prio_tree_add(cfqd, cfqq);
  1195. BUG_ON(!cfqq->next_rq);
  1196. }
  1197. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1198. {
  1199. elv_rb_del(&cfqq->sort_list, rq);
  1200. cfqq->queued[rq_is_sync(rq)]--;
  1201. cfq_add_rq_rb(rq);
  1202. }
  1203. static struct request *
  1204. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1205. {
  1206. struct task_struct *tsk = current;
  1207. struct cfq_io_context *cic;
  1208. struct cfq_queue *cfqq;
  1209. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1210. if (!cic)
  1211. return NULL;
  1212. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1213. if (cfqq) {
  1214. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1215. return elv_rb_find(&cfqq->sort_list, sector);
  1216. }
  1217. return NULL;
  1218. }
  1219. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1220. {
  1221. struct cfq_data *cfqd = q->elevator->elevator_data;
  1222. cfqd->rq_in_driver[rq_is_sync(rq)]++;
  1223. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1224. rq_in_driver(cfqd));
  1225. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1226. }
  1227. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1228. {
  1229. struct cfq_data *cfqd = q->elevator->elevator_data;
  1230. const int sync = rq_is_sync(rq);
  1231. WARN_ON(!cfqd->rq_in_driver[sync]);
  1232. cfqd->rq_in_driver[sync]--;
  1233. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1234. rq_in_driver(cfqd));
  1235. }
  1236. static void cfq_remove_request(struct request *rq)
  1237. {
  1238. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1239. if (cfqq->next_rq == rq)
  1240. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1241. list_del_init(&rq->queuelist);
  1242. cfq_del_rq_rb(rq);
  1243. cfqq->cfqd->rq_queued--;
  1244. if (rq_is_meta(rq)) {
  1245. WARN_ON(!cfqq->meta_pending);
  1246. cfqq->meta_pending--;
  1247. }
  1248. }
  1249. static int cfq_merge(struct request_queue *q, struct request **req,
  1250. struct bio *bio)
  1251. {
  1252. struct cfq_data *cfqd = q->elevator->elevator_data;
  1253. struct request *__rq;
  1254. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1255. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1256. *req = __rq;
  1257. return ELEVATOR_FRONT_MERGE;
  1258. }
  1259. return ELEVATOR_NO_MERGE;
  1260. }
  1261. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1262. int type)
  1263. {
  1264. if (type == ELEVATOR_FRONT_MERGE) {
  1265. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1266. cfq_reposition_rq_rb(cfqq, req);
  1267. }
  1268. }
  1269. static void
  1270. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1271. struct request *next)
  1272. {
  1273. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1274. /*
  1275. * reposition in fifo if next is older than rq
  1276. */
  1277. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1278. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1279. list_move(&rq->queuelist, &next->queuelist);
  1280. rq_set_fifo_time(rq, rq_fifo_time(next));
  1281. }
  1282. if (cfqq->next_rq == next)
  1283. cfqq->next_rq = rq;
  1284. cfq_remove_request(next);
  1285. }
  1286. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1287. struct bio *bio)
  1288. {
  1289. struct cfq_data *cfqd = q->elevator->elevator_data;
  1290. struct cfq_io_context *cic;
  1291. struct cfq_queue *cfqq;
  1292. /* Deny merge if bio and rq don't belong to same cfq group */
  1293. if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
  1294. return false;
  1295. /*
  1296. * Disallow merge of a sync bio into an async request.
  1297. */
  1298. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1299. return false;
  1300. /*
  1301. * Lookup the cfqq that this bio will be queued with. Allow
  1302. * merge only if rq is queued there.
  1303. */
  1304. cic = cfq_cic_lookup(cfqd, current->io_context);
  1305. if (!cic)
  1306. return false;
  1307. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1308. return cfqq == RQ_CFQQ(rq);
  1309. }
  1310. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1311. struct cfq_queue *cfqq)
  1312. {
  1313. if (cfqq) {
  1314. cfq_log_cfqq(cfqd, cfqq, "set_active");
  1315. cfqq->slice_start = 0;
  1316. cfqq->dispatch_start = jiffies;
  1317. cfqq->allocated_slice = 0;
  1318. cfqq->slice_end = 0;
  1319. cfqq->slice_dispatch = 0;
  1320. cfqq->nr_sectors = 0;
  1321. cfq_clear_cfqq_wait_request(cfqq);
  1322. cfq_clear_cfqq_must_dispatch(cfqq);
  1323. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1324. cfq_clear_cfqq_fifo_expire(cfqq);
  1325. cfq_mark_cfqq_slice_new(cfqq);
  1326. del_timer(&cfqd->idle_slice_timer);
  1327. }
  1328. cfqd->active_queue = cfqq;
  1329. }
  1330. /*
  1331. * current cfqq expired its slice (or was too idle), select new one
  1332. */
  1333. static void
  1334. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1335. bool timed_out)
  1336. {
  1337. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1338. if (cfq_cfqq_wait_request(cfqq))
  1339. del_timer(&cfqd->idle_slice_timer);
  1340. cfq_clear_cfqq_wait_request(cfqq);
  1341. cfq_clear_cfqq_wait_busy(cfqq);
  1342. cfq_clear_cfqq_wait_busy_done(cfqq);
  1343. /*
  1344. * store what was left of this slice, if the queue idled/timed out
  1345. */
  1346. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1347. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1348. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1349. }
  1350. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1351. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1352. cfq_del_cfqq_rr(cfqd, cfqq);
  1353. cfq_resort_rr_list(cfqd, cfqq);
  1354. if (cfqq == cfqd->active_queue)
  1355. cfqd->active_queue = NULL;
  1356. if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
  1357. cfqd->grp_service_tree.active = NULL;
  1358. if (cfqd->active_cic) {
  1359. put_io_context(cfqd->active_cic->ioc);
  1360. cfqd->active_cic = NULL;
  1361. }
  1362. }
  1363. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1364. {
  1365. struct cfq_queue *cfqq = cfqd->active_queue;
  1366. if (cfqq)
  1367. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1368. }
  1369. /*
  1370. * Get next queue for service. Unless we have a queue preemption,
  1371. * we'll simply select the first cfqq in the service tree.
  1372. */
  1373. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1374. {
  1375. struct cfq_rb_root *service_tree =
  1376. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1377. cfqd->serving_type, cfqd);
  1378. if (!cfqd->rq_queued)
  1379. return NULL;
  1380. /* There is nothing to dispatch */
  1381. if (!service_tree)
  1382. return NULL;
  1383. if (RB_EMPTY_ROOT(&service_tree->rb))
  1384. return NULL;
  1385. return cfq_rb_first(service_tree);
  1386. }
  1387. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1388. {
  1389. struct cfq_group *cfqg;
  1390. struct cfq_queue *cfqq;
  1391. int i, j;
  1392. struct cfq_rb_root *st;
  1393. if (!cfqd->rq_queued)
  1394. return NULL;
  1395. cfqg = cfq_get_next_cfqg(cfqd);
  1396. if (!cfqg)
  1397. return NULL;
  1398. for_each_cfqg_st(cfqg, i, j, st)
  1399. if ((cfqq = cfq_rb_first(st)) != NULL)
  1400. return cfqq;
  1401. return NULL;
  1402. }
  1403. /*
  1404. * Get and set a new active queue for service.
  1405. */
  1406. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1407. struct cfq_queue *cfqq)
  1408. {
  1409. if (!cfqq)
  1410. cfqq = cfq_get_next_queue(cfqd);
  1411. __cfq_set_active_queue(cfqd, cfqq);
  1412. return cfqq;
  1413. }
  1414. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1415. struct request *rq)
  1416. {
  1417. if (blk_rq_pos(rq) >= cfqd->last_position)
  1418. return blk_rq_pos(rq) - cfqd->last_position;
  1419. else
  1420. return cfqd->last_position - blk_rq_pos(rq);
  1421. }
  1422. #define CFQQ_SEEK_THR 8 * 1024
  1423. #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
  1424. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1425. struct request *rq)
  1426. {
  1427. sector_t sdist = cfqq->seek_mean;
  1428. if (!sample_valid(cfqq->seek_samples))
  1429. sdist = CFQQ_SEEK_THR;
  1430. return cfq_dist_from_last(cfqd, rq) <= sdist;
  1431. }
  1432. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1433. struct cfq_queue *cur_cfqq)
  1434. {
  1435. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1436. struct rb_node *parent, *node;
  1437. struct cfq_queue *__cfqq;
  1438. sector_t sector = cfqd->last_position;
  1439. if (RB_EMPTY_ROOT(root))
  1440. return NULL;
  1441. /*
  1442. * First, if we find a request starting at the end of the last
  1443. * request, choose it.
  1444. */
  1445. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1446. if (__cfqq)
  1447. return __cfqq;
  1448. /*
  1449. * If the exact sector wasn't found, the parent of the NULL leaf
  1450. * will contain the closest sector.
  1451. */
  1452. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1453. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1454. return __cfqq;
  1455. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1456. node = rb_next(&__cfqq->p_node);
  1457. else
  1458. node = rb_prev(&__cfqq->p_node);
  1459. if (!node)
  1460. return NULL;
  1461. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1462. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1463. return __cfqq;
  1464. return NULL;
  1465. }
  1466. /*
  1467. * cfqd - obvious
  1468. * cur_cfqq - passed in so that we don't decide that the current queue is
  1469. * closely cooperating with itself.
  1470. *
  1471. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1472. * one request, and that cfqd->last_position reflects a position on the disk
  1473. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1474. * assumption.
  1475. */
  1476. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1477. struct cfq_queue *cur_cfqq)
  1478. {
  1479. struct cfq_queue *cfqq;
  1480. if (!cfq_cfqq_sync(cur_cfqq))
  1481. return NULL;
  1482. if (CFQQ_SEEKY(cur_cfqq))
  1483. return NULL;
  1484. /*
  1485. * We should notice if some of the queues are cooperating, eg
  1486. * working closely on the same area of the disk. In that case,
  1487. * we can group them together and don't waste time idling.
  1488. */
  1489. cfqq = cfqq_close(cfqd, cur_cfqq);
  1490. if (!cfqq)
  1491. return NULL;
  1492. /* If new queue belongs to different cfq_group, don't choose it */
  1493. if (cur_cfqq->cfqg != cfqq->cfqg)
  1494. return NULL;
  1495. /*
  1496. * It only makes sense to merge sync queues.
  1497. */
  1498. if (!cfq_cfqq_sync(cfqq))
  1499. return NULL;
  1500. if (CFQQ_SEEKY(cfqq))
  1501. return NULL;
  1502. /*
  1503. * Do not merge queues of different priority classes
  1504. */
  1505. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1506. return NULL;
  1507. return cfqq;
  1508. }
  1509. /*
  1510. * Determine whether we should enforce idle window for this queue.
  1511. */
  1512. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1513. {
  1514. enum wl_prio_t prio = cfqq_prio(cfqq);
  1515. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1516. BUG_ON(!service_tree);
  1517. BUG_ON(!service_tree->count);
  1518. /* We never do for idle class queues. */
  1519. if (prio == IDLE_WORKLOAD)
  1520. return false;
  1521. /* We do for queues that were marked with idle window flag. */
  1522. if (cfq_cfqq_idle_window(cfqq) &&
  1523. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1524. return true;
  1525. /*
  1526. * Otherwise, we do only if they are the last ones
  1527. * in their service tree.
  1528. */
  1529. return service_tree->count == 1;
  1530. }
  1531. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1532. {
  1533. struct cfq_queue *cfqq = cfqd->active_queue;
  1534. struct cfq_io_context *cic;
  1535. unsigned long sl;
  1536. /*
  1537. * SSD device without seek penalty, disable idling. But only do so
  1538. * for devices that support queuing, otherwise we still have a problem
  1539. * with sync vs async workloads.
  1540. */
  1541. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1542. return;
  1543. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1544. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1545. /*
  1546. * idle is disabled, either manually or by past process history
  1547. */
  1548. if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
  1549. return;
  1550. /*
  1551. * still active requests from this queue, don't idle
  1552. */
  1553. if (cfqq->dispatched)
  1554. return;
  1555. /*
  1556. * task has exited, don't wait
  1557. */
  1558. cic = cfqd->active_cic;
  1559. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1560. return;
  1561. /*
  1562. * If our average think time is larger than the remaining time
  1563. * slice, then don't idle. This avoids overrunning the allotted
  1564. * time slice.
  1565. */
  1566. if (sample_valid(cic->ttime_samples) &&
  1567. (cfqq->slice_end - jiffies < cic->ttime_mean))
  1568. return;
  1569. cfq_mark_cfqq_wait_request(cfqq);
  1570. sl = cfqd->cfq_slice_idle;
  1571. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1572. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
  1573. }
  1574. /*
  1575. * Move request from internal lists to the request queue dispatch list.
  1576. */
  1577. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1578. {
  1579. struct cfq_data *cfqd = q->elevator->elevator_data;
  1580. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1581. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1582. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1583. cfq_remove_request(rq);
  1584. cfqq->dispatched++;
  1585. elv_dispatch_sort(q, rq);
  1586. if (cfq_cfqq_sync(cfqq))
  1587. cfqd->sync_flight++;
  1588. cfqq->nr_sectors += blk_rq_sectors(rq);
  1589. }
  1590. /*
  1591. * return expired entry, or NULL to just start from scratch in rbtree
  1592. */
  1593. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1594. {
  1595. struct request *rq = NULL;
  1596. if (cfq_cfqq_fifo_expire(cfqq))
  1597. return NULL;
  1598. cfq_mark_cfqq_fifo_expire(cfqq);
  1599. if (list_empty(&cfqq->fifo))
  1600. return NULL;
  1601. rq = rq_entry_fifo(cfqq->fifo.next);
  1602. if (time_before(jiffies, rq_fifo_time(rq)))
  1603. rq = NULL;
  1604. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1605. return rq;
  1606. }
  1607. static inline int
  1608. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1609. {
  1610. const int base_rq = cfqd->cfq_slice_async_rq;
  1611. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1612. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1613. }
  1614. /*
  1615. * Must be called with the queue_lock held.
  1616. */
  1617. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1618. {
  1619. int process_refs, io_refs;
  1620. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1621. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1622. BUG_ON(process_refs < 0);
  1623. return process_refs;
  1624. }
  1625. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1626. {
  1627. int process_refs, new_process_refs;
  1628. struct cfq_queue *__cfqq;
  1629. /* Avoid a circular list and skip interim queue merges */
  1630. while ((__cfqq = new_cfqq->new_cfqq)) {
  1631. if (__cfqq == cfqq)
  1632. return;
  1633. new_cfqq = __cfqq;
  1634. }
  1635. process_refs = cfqq_process_refs(cfqq);
  1636. /*
  1637. * If the process for the cfqq has gone away, there is no
  1638. * sense in merging the queues.
  1639. */
  1640. if (process_refs == 0)
  1641. return;
  1642. /*
  1643. * Merge in the direction of the lesser amount of work.
  1644. */
  1645. new_process_refs = cfqq_process_refs(new_cfqq);
  1646. if (new_process_refs >= process_refs) {
  1647. cfqq->new_cfqq = new_cfqq;
  1648. atomic_add(process_refs, &new_cfqq->ref);
  1649. } else {
  1650. new_cfqq->new_cfqq = cfqq;
  1651. atomic_add(new_process_refs, &cfqq->ref);
  1652. }
  1653. }
  1654. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1655. struct cfq_group *cfqg, enum wl_prio_t prio,
  1656. bool prio_changed)
  1657. {
  1658. struct cfq_queue *queue;
  1659. int i;
  1660. bool key_valid = false;
  1661. unsigned long lowest_key = 0;
  1662. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1663. if (prio_changed) {
  1664. /*
  1665. * When priorities switched, we prefer starting
  1666. * from SYNC_NOIDLE (first choice), or just SYNC
  1667. * over ASYNC
  1668. */
  1669. if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
  1670. return cur_best;
  1671. cur_best = SYNC_WORKLOAD;
  1672. if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
  1673. return cur_best;
  1674. return ASYNC_WORKLOAD;
  1675. }
  1676. for (i = 0; i < 3; ++i) {
  1677. /* otherwise, select the one with lowest rb_key */
  1678. queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
  1679. if (queue &&
  1680. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1681. lowest_key = queue->rb_key;
  1682. cur_best = i;
  1683. key_valid = true;
  1684. }
  1685. }
  1686. return cur_best;
  1687. }
  1688. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1689. {
  1690. enum wl_prio_t previous_prio = cfqd->serving_prio;
  1691. bool prio_changed;
  1692. unsigned slice;
  1693. unsigned count;
  1694. struct cfq_rb_root *st;
  1695. unsigned group_slice;
  1696. if (!cfqg) {
  1697. cfqd->serving_prio = IDLE_WORKLOAD;
  1698. cfqd->workload_expires = jiffies + 1;
  1699. return;
  1700. }
  1701. /* Choose next priority. RT > BE > IDLE */
  1702. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1703. cfqd->serving_prio = RT_WORKLOAD;
  1704. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1705. cfqd->serving_prio = BE_WORKLOAD;
  1706. else {
  1707. cfqd->serving_prio = IDLE_WORKLOAD;
  1708. cfqd->workload_expires = jiffies + 1;
  1709. return;
  1710. }
  1711. /*
  1712. * For RT and BE, we have to choose also the type
  1713. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1714. * expiration time
  1715. */
  1716. prio_changed = (cfqd->serving_prio != previous_prio);
  1717. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
  1718. cfqd);
  1719. count = st->count;
  1720. /*
  1721. * If priority didn't change, check workload expiration,
  1722. * and that we still have other queues ready
  1723. */
  1724. if (!prio_changed && count &&
  1725. !time_after(jiffies, cfqd->workload_expires))
  1726. return;
  1727. /* otherwise select new workload type */
  1728. cfqd->serving_type =
  1729. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
  1730. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
  1731. cfqd);
  1732. count = st->count;
  1733. /*
  1734. * the workload slice is computed as a fraction of target latency
  1735. * proportional to the number of queues in that workload, over
  1736. * all the queues in the same priority class
  1737. */
  1738. group_slice = cfq_group_slice(cfqd, cfqg);
  1739. slice = group_slice * count /
  1740. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1741. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1742. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1743. unsigned int tmp;
  1744. /*
  1745. * Async queues are currently system wide. Just taking
  1746. * proportion of queues with-in same group will lead to higher
  1747. * async ratio system wide as generally root group is going
  1748. * to have higher weight. A more accurate thing would be to
  1749. * calculate system wide asnc/sync ratio.
  1750. */
  1751. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1752. tmp = tmp/cfqd->busy_queues;
  1753. slice = min_t(unsigned, slice, tmp);
  1754. /* async workload slice is scaled down according to
  1755. * the sync/async slice ratio. */
  1756. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1757. } else
  1758. /* sync workload slice is at least 2 * cfq_slice_idle */
  1759. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1760. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1761. cfqd->workload_expires = jiffies + slice;
  1762. cfqd->noidle_tree_requires_idle = false;
  1763. }
  1764. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1765. {
  1766. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1767. struct cfq_group *cfqg;
  1768. if (RB_EMPTY_ROOT(&st->rb))
  1769. return NULL;
  1770. cfqg = cfq_rb_first_group(st);
  1771. st->active = &cfqg->rb_node;
  1772. update_min_vdisktime(st);
  1773. return cfqg;
  1774. }
  1775. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1776. {
  1777. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1778. cfqd->serving_group = cfqg;
  1779. /* Restore the workload type data */
  1780. if (cfqg->saved_workload_slice) {
  1781. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1782. cfqd->serving_type = cfqg->saved_workload;
  1783. cfqd->serving_prio = cfqg->saved_serving_prio;
  1784. }
  1785. choose_service_tree(cfqd, cfqg);
  1786. }
  1787. /*
  1788. * Select a queue for service. If we have a current active queue,
  1789. * check whether to continue servicing it, or retrieve and set a new one.
  1790. */
  1791. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1792. {
  1793. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1794. cfqq = cfqd->active_queue;
  1795. if (!cfqq)
  1796. goto new_queue;
  1797. if (!cfqd->rq_queued)
  1798. return NULL;
  1799. /*
  1800. * The active queue has run out of time, expire it and select new.
  1801. */
  1802. if ((cfq_slice_used(cfqq) || cfq_cfqq_wait_busy_done(cfqq))
  1803. && !cfq_cfqq_must_dispatch(cfqq))
  1804. goto expire;
  1805. /*
  1806. * The active queue has requests and isn't expired, allow it to
  1807. * dispatch.
  1808. */
  1809. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1810. goto keep_queue;
  1811. /*
  1812. * If another queue has a request waiting within our mean seek
  1813. * distance, let it run. The expire code will check for close
  1814. * cooperators and put the close queue at the front of the service
  1815. * tree. If possible, merge the expiring queue with the new cfqq.
  1816. */
  1817. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1818. if (new_cfqq) {
  1819. if (!cfqq->new_cfqq)
  1820. cfq_setup_merge(cfqq, new_cfqq);
  1821. goto expire;
  1822. }
  1823. /*
  1824. * No requests pending. If the active queue still has requests in
  1825. * flight or is idling for a new request, allow either of these
  1826. * conditions to happen (or time out) before selecting a new queue.
  1827. */
  1828. if (timer_pending(&cfqd->idle_slice_timer) ||
  1829. (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
  1830. cfqq = NULL;
  1831. goto keep_queue;
  1832. }
  1833. expire:
  1834. cfq_slice_expired(cfqd, 0);
  1835. new_queue:
  1836. /*
  1837. * Current queue expired. Check if we have to switch to a new
  1838. * service tree
  1839. */
  1840. if (!new_cfqq)
  1841. cfq_choose_cfqg(cfqd);
  1842. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1843. keep_queue:
  1844. return cfqq;
  1845. }
  1846. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1847. {
  1848. int dispatched = 0;
  1849. while (cfqq->next_rq) {
  1850. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1851. dispatched++;
  1852. }
  1853. BUG_ON(!list_empty(&cfqq->fifo));
  1854. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1855. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1856. return dispatched;
  1857. }
  1858. /*
  1859. * Drain our current requests. Used for barriers and when switching
  1860. * io schedulers on-the-fly.
  1861. */
  1862. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1863. {
  1864. struct cfq_queue *cfqq;
  1865. int dispatched = 0;
  1866. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
  1867. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1868. cfq_slice_expired(cfqd, 0);
  1869. BUG_ON(cfqd->busy_queues);
  1870. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1871. return dispatched;
  1872. }
  1873. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1874. {
  1875. unsigned int max_dispatch;
  1876. /*
  1877. * Drain async requests before we start sync IO
  1878. */
  1879. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
  1880. return false;
  1881. /*
  1882. * If this is an async queue and we have sync IO in flight, let it wait
  1883. */
  1884. if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
  1885. return false;
  1886. max_dispatch = cfqd->cfq_quantum;
  1887. if (cfq_class_idle(cfqq))
  1888. max_dispatch = 1;
  1889. /*
  1890. * Does this cfqq already have too much IO in flight?
  1891. */
  1892. if (cfqq->dispatched >= max_dispatch) {
  1893. /*
  1894. * idle queue must always only have a single IO in flight
  1895. */
  1896. if (cfq_class_idle(cfqq))
  1897. return false;
  1898. /*
  1899. * We have other queues, don't allow more IO from this one
  1900. */
  1901. if (cfqd->busy_queues > 1)
  1902. return false;
  1903. /*
  1904. * Sole queue user, no limit
  1905. */
  1906. max_dispatch = -1;
  1907. }
  1908. /*
  1909. * Async queues must wait a bit before being allowed dispatch.
  1910. * We also ramp up the dispatch depth gradually for async IO,
  1911. * based on the last sync IO we serviced
  1912. */
  1913. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  1914. unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
  1915. unsigned int depth;
  1916. depth = last_sync / cfqd->cfq_slice[1];
  1917. if (!depth && !cfqq->dispatched)
  1918. depth = 1;
  1919. if (depth < max_dispatch)
  1920. max_dispatch = depth;
  1921. }
  1922. /*
  1923. * If we're below the current max, allow a dispatch
  1924. */
  1925. return cfqq->dispatched < max_dispatch;
  1926. }
  1927. /*
  1928. * Dispatch a request from cfqq, moving them to the request queue
  1929. * dispatch list.
  1930. */
  1931. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1932. {
  1933. struct request *rq;
  1934. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  1935. if (!cfq_may_dispatch(cfqd, cfqq))
  1936. return false;
  1937. /*
  1938. * follow expired path, else get first next available
  1939. */
  1940. rq = cfq_check_fifo(cfqq);
  1941. if (!rq)
  1942. rq = cfqq->next_rq;
  1943. /*
  1944. * insert request into driver dispatch list
  1945. */
  1946. cfq_dispatch_insert(cfqd->queue, rq);
  1947. if (!cfqd->active_cic) {
  1948. struct cfq_io_context *cic = RQ_CIC(rq);
  1949. atomic_long_inc(&cic->ioc->refcount);
  1950. cfqd->active_cic = cic;
  1951. }
  1952. return true;
  1953. }
  1954. /*
  1955. * Find the cfqq that we need to service and move a request from that to the
  1956. * dispatch list
  1957. */
  1958. static int cfq_dispatch_requests(struct request_queue *q, int force)
  1959. {
  1960. struct cfq_data *cfqd = q->elevator->elevator_data;
  1961. struct cfq_queue *cfqq;
  1962. if (!cfqd->busy_queues)
  1963. return 0;
  1964. if (unlikely(force))
  1965. return cfq_forced_dispatch(cfqd);
  1966. cfqq = cfq_select_queue(cfqd);
  1967. if (!cfqq)
  1968. return 0;
  1969. /*
  1970. * Dispatch a request from this cfqq, if it is allowed
  1971. */
  1972. if (!cfq_dispatch_request(cfqd, cfqq))
  1973. return 0;
  1974. cfqq->slice_dispatch++;
  1975. cfq_clear_cfqq_must_dispatch(cfqq);
  1976. /*
  1977. * expire an async queue immediately if it has used up its slice. idle
  1978. * queue always expire after 1 dispatch round.
  1979. */
  1980. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  1981. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  1982. cfq_class_idle(cfqq))) {
  1983. cfqq->slice_end = jiffies + 1;
  1984. cfq_slice_expired(cfqd, 0);
  1985. }
  1986. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  1987. return 1;
  1988. }
  1989. /*
  1990. * task holds one reference to the queue, dropped when task exits. each rq
  1991. * in-flight on this queue also holds a reference, dropped when rq is freed.
  1992. *
  1993. * Each cfq queue took a reference on the parent group. Drop it now.
  1994. * queue lock must be held here.
  1995. */
  1996. static void cfq_put_queue(struct cfq_queue *cfqq)
  1997. {
  1998. struct cfq_data *cfqd = cfqq->cfqd;
  1999. struct cfq_group *cfqg, *orig_cfqg;
  2000. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  2001. if (!atomic_dec_and_test(&cfqq->ref))
  2002. return;
  2003. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2004. BUG_ON(rb_first(&cfqq->sort_list));
  2005. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2006. cfqg = cfqq->cfqg;
  2007. orig_cfqg = cfqq->orig_cfqg;
  2008. if (unlikely(cfqd->active_queue == cfqq)) {
  2009. __cfq_slice_expired(cfqd, cfqq, 0);
  2010. cfq_schedule_dispatch(cfqd);
  2011. }
  2012. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2013. kmem_cache_free(cfq_pool, cfqq);
  2014. cfq_put_cfqg(cfqg);
  2015. if (orig_cfqg)
  2016. cfq_put_cfqg(orig_cfqg);
  2017. }
  2018. /*
  2019. * Must always be called with the rcu_read_lock() held
  2020. */
  2021. static void
  2022. __call_for_each_cic(struct io_context *ioc,
  2023. void (*func)(struct io_context *, struct cfq_io_context *))
  2024. {
  2025. struct cfq_io_context *cic;
  2026. struct hlist_node *n;
  2027. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2028. func(ioc, cic);
  2029. }
  2030. /*
  2031. * Call func for each cic attached to this ioc.
  2032. */
  2033. static void
  2034. call_for_each_cic(struct io_context *ioc,
  2035. void (*func)(struct io_context *, struct cfq_io_context *))
  2036. {
  2037. rcu_read_lock();
  2038. __call_for_each_cic(ioc, func);
  2039. rcu_read_unlock();
  2040. }
  2041. static void cfq_cic_free_rcu(struct rcu_head *head)
  2042. {
  2043. struct cfq_io_context *cic;
  2044. cic = container_of(head, struct cfq_io_context, rcu_head);
  2045. kmem_cache_free(cfq_ioc_pool, cic);
  2046. elv_ioc_count_dec(cfq_ioc_count);
  2047. if (ioc_gone) {
  2048. /*
  2049. * CFQ scheduler is exiting, grab exit lock and check
  2050. * the pending io context count. If it hits zero,
  2051. * complete ioc_gone and set it back to NULL
  2052. */
  2053. spin_lock(&ioc_gone_lock);
  2054. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2055. complete(ioc_gone);
  2056. ioc_gone = NULL;
  2057. }
  2058. spin_unlock(&ioc_gone_lock);
  2059. }
  2060. }
  2061. static void cfq_cic_free(struct cfq_io_context *cic)
  2062. {
  2063. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2064. }
  2065. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2066. {
  2067. unsigned long flags;
  2068. BUG_ON(!cic->dead_key);
  2069. spin_lock_irqsave(&ioc->lock, flags);
  2070. radix_tree_delete(&ioc->radix_root, cic->dead_key);
  2071. hlist_del_rcu(&cic->cic_list);
  2072. spin_unlock_irqrestore(&ioc->lock, flags);
  2073. cfq_cic_free(cic);
  2074. }
  2075. /*
  2076. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2077. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2078. * and ->trim() which is called with the task lock held
  2079. */
  2080. static void cfq_free_io_context(struct io_context *ioc)
  2081. {
  2082. /*
  2083. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2084. * so no more cic's are allowed to be linked into this ioc. So it
  2085. * should be ok to iterate over the known list, we will see all cic's
  2086. * since no new ones are added.
  2087. */
  2088. __call_for_each_cic(ioc, cic_free_func);
  2089. }
  2090. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2091. {
  2092. struct cfq_queue *__cfqq, *next;
  2093. if (unlikely(cfqq == cfqd->active_queue)) {
  2094. __cfq_slice_expired(cfqd, cfqq, 0);
  2095. cfq_schedule_dispatch(cfqd);
  2096. }
  2097. /*
  2098. * If this queue was scheduled to merge with another queue, be
  2099. * sure to drop the reference taken on that queue (and others in
  2100. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2101. */
  2102. __cfqq = cfqq->new_cfqq;
  2103. while (__cfqq) {
  2104. if (__cfqq == cfqq) {
  2105. WARN(1, "cfqq->new_cfqq loop detected\n");
  2106. break;
  2107. }
  2108. next = __cfqq->new_cfqq;
  2109. cfq_put_queue(__cfqq);
  2110. __cfqq = next;
  2111. }
  2112. cfq_put_queue(cfqq);
  2113. }
  2114. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2115. struct cfq_io_context *cic)
  2116. {
  2117. struct io_context *ioc = cic->ioc;
  2118. list_del_init(&cic->queue_list);
  2119. /*
  2120. * Make sure key == NULL is seen for dead queues
  2121. */
  2122. smp_wmb();
  2123. cic->dead_key = (unsigned long) cic->key;
  2124. cic->key = NULL;
  2125. if (ioc->ioc_data == cic)
  2126. rcu_assign_pointer(ioc->ioc_data, NULL);
  2127. if (cic->cfqq[BLK_RW_ASYNC]) {
  2128. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2129. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2130. }
  2131. if (cic->cfqq[BLK_RW_SYNC]) {
  2132. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2133. cic->cfqq[BLK_RW_SYNC] = NULL;
  2134. }
  2135. }
  2136. static void cfq_exit_single_io_context(struct io_context *ioc,
  2137. struct cfq_io_context *cic)
  2138. {
  2139. struct cfq_data *cfqd = cic->key;
  2140. if (cfqd) {
  2141. struct request_queue *q = cfqd->queue;
  2142. unsigned long flags;
  2143. spin_lock_irqsave(q->queue_lock, flags);
  2144. /*
  2145. * Ensure we get a fresh copy of the ->key to prevent
  2146. * race between exiting task and queue
  2147. */
  2148. smp_read_barrier_depends();
  2149. if (cic->key)
  2150. __cfq_exit_single_io_context(cfqd, cic);
  2151. spin_unlock_irqrestore(q->queue_lock, flags);
  2152. }
  2153. }
  2154. /*
  2155. * The process that ioc belongs to has exited, we need to clean up
  2156. * and put the internal structures we have that belongs to that process.
  2157. */
  2158. static void cfq_exit_io_context(struct io_context *ioc)
  2159. {
  2160. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2161. }
  2162. static struct cfq_io_context *
  2163. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2164. {
  2165. struct cfq_io_context *cic;
  2166. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2167. cfqd->queue->node);
  2168. if (cic) {
  2169. cic->last_end_request = jiffies;
  2170. INIT_LIST_HEAD(&cic->queue_list);
  2171. INIT_HLIST_NODE(&cic->cic_list);
  2172. cic->dtor = cfq_free_io_context;
  2173. cic->exit = cfq_exit_io_context;
  2174. elv_ioc_count_inc(cfq_ioc_count);
  2175. }
  2176. return cic;
  2177. }
  2178. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2179. {
  2180. struct task_struct *tsk = current;
  2181. int ioprio_class;
  2182. if (!cfq_cfqq_prio_changed(cfqq))
  2183. return;
  2184. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2185. switch (ioprio_class) {
  2186. default:
  2187. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2188. case IOPRIO_CLASS_NONE:
  2189. /*
  2190. * no prio set, inherit CPU scheduling settings
  2191. */
  2192. cfqq->ioprio = task_nice_ioprio(tsk);
  2193. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2194. break;
  2195. case IOPRIO_CLASS_RT:
  2196. cfqq->ioprio = task_ioprio(ioc);
  2197. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2198. break;
  2199. case IOPRIO_CLASS_BE:
  2200. cfqq->ioprio = task_ioprio(ioc);
  2201. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2202. break;
  2203. case IOPRIO_CLASS_IDLE:
  2204. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2205. cfqq->ioprio = 7;
  2206. cfq_clear_cfqq_idle_window(cfqq);
  2207. break;
  2208. }
  2209. /*
  2210. * keep track of original prio settings in case we have to temporarily
  2211. * elevate the priority of this queue
  2212. */
  2213. cfqq->org_ioprio = cfqq->ioprio;
  2214. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2215. cfq_clear_cfqq_prio_changed(cfqq);
  2216. }
  2217. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2218. {
  2219. struct cfq_data *cfqd = cic->key;
  2220. struct cfq_queue *cfqq;
  2221. unsigned long flags;
  2222. if (unlikely(!cfqd))
  2223. return;
  2224. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2225. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2226. if (cfqq) {
  2227. struct cfq_queue *new_cfqq;
  2228. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2229. GFP_ATOMIC);
  2230. if (new_cfqq) {
  2231. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2232. cfq_put_queue(cfqq);
  2233. }
  2234. }
  2235. cfqq = cic->cfqq[BLK_RW_SYNC];
  2236. if (cfqq)
  2237. cfq_mark_cfqq_prio_changed(cfqq);
  2238. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2239. }
  2240. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2241. {
  2242. call_for_each_cic(ioc, changed_ioprio);
  2243. ioc->ioprio_changed = 0;
  2244. }
  2245. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2246. pid_t pid, bool is_sync)
  2247. {
  2248. RB_CLEAR_NODE(&cfqq->rb_node);
  2249. RB_CLEAR_NODE(&cfqq->p_node);
  2250. INIT_LIST_HEAD(&cfqq->fifo);
  2251. atomic_set(&cfqq->ref, 0);
  2252. cfqq->cfqd = cfqd;
  2253. cfq_mark_cfqq_prio_changed(cfqq);
  2254. if (is_sync) {
  2255. if (!cfq_class_idle(cfqq))
  2256. cfq_mark_cfqq_idle_window(cfqq);
  2257. cfq_mark_cfqq_sync(cfqq);
  2258. }
  2259. cfqq->pid = pid;
  2260. }
  2261. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2262. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2263. {
  2264. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2265. struct cfq_data *cfqd = cic->key;
  2266. unsigned long flags;
  2267. struct request_queue *q;
  2268. if (unlikely(!cfqd))
  2269. return;
  2270. q = cfqd->queue;
  2271. spin_lock_irqsave(q->queue_lock, flags);
  2272. if (sync_cfqq) {
  2273. /*
  2274. * Drop reference to sync queue. A new sync queue will be
  2275. * assigned in new group upon arrival of a fresh request.
  2276. */
  2277. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2278. cic_set_cfqq(cic, NULL, 1);
  2279. cfq_put_queue(sync_cfqq);
  2280. }
  2281. spin_unlock_irqrestore(q->queue_lock, flags);
  2282. }
  2283. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2284. {
  2285. call_for_each_cic(ioc, changed_cgroup);
  2286. ioc->cgroup_changed = 0;
  2287. }
  2288. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2289. static struct cfq_queue *
  2290. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2291. struct io_context *ioc, gfp_t gfp_mask)
  2292. {
  2293. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2294. struct cfq_io_context *cic;
  2295. struct cfq_group *cfqg;
  2296. retry:
  2297. cfqg = cfq_get_cfqg(cfqd, 1);
  2298. cic = cfq_cic_lookup(cfqd, ioc);
  2299. /* cic always exists here */
  2300. cfqq = cic_to_cfqq(cic, is_sync);
  2301. /*
  2302. * Always try a new alloc if we fell back to the OOM cfqq
  2303. * originally, since it should just be a temporary situation.
  2304. */
  2305. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2306. cfqq = NULL;
  2307. if (new_cfqq) {
  2308. cfqq = new_cfqq;
  2309. new_cfqq = NULL;
  2310. } else if (gfp_mask & __GFP_WAIT) {
  2311. spin_unlock_irq(cfqd->queue->queue_lock);
  2312. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2313. gfp_mask | __GFP_ZERO,
  2314. cfqd->queue->node);
  2315. spin_lock_irq(cfqd->queue->queue_lock);
  2316. if (new_cfqq)
  2317. goto retry;
  2318. } else {
  2319. cfqq = kmem_cache_alloc_node(cfq_pool,
  2320. gfp_mask | __GFP_ZERO,
  2321. cfqd->queue->node);
  2322. }
  2323. if (cfqq) {
  2324. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2325. cfq_init_prio_data(cfqq, ioc);
  2326. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2327. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2328. } else
  2329. cfqq = &cfqd->oom_cfqq;
  2330. }
  2331. if (new_cfqq)
  2332. kmem_cache_free(cfq_pool, new_cfqq);
  2333. return cfqq;
  2334. }
  2335. static struct cfq_queue **
  2336. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2337. {
  2338. switch (ioprio_class) {
  2339. case IOPRIO_CLASS_RT:
  2340. return &cfqd->async_cfqq[0][ioprio];
  2341. case IOPRIO_CLASS_BE:
  2342. return &cfqd->async_cfqq[1][ioprio];
  2343. case IOPRIO_CLASS_IDLE:
  2344. return &cfqd->async_idle_cfqq;
  2345. default:
  2346. BUG();
  2347. }
  2348. }
  2349. static struct cfq_queue *
  2350. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2351. gfp_t gfp_mask)
  2352. {
  2353. const int ioprio = task_ioprio(ioc);
  2354. const int ioprio_class = task_ioprio_class(ioc);
  2355. struct cfq_queue **async_cfqq = NULL;
  2356. struct cfq_queue *cfqq = NULL;
  2357. if (!is_sync) {
  2358. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2359. cfqq = *async_cfqq;
  2360. }
  2361. if (!cfqq)
  2362. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2363. /*
  2364. * pin the queue now that it's allocated, scheduler exit will prune it
  2365. */
  2366. if (!is_sync && !(*async_cfqq)) {
  2367. atomic_inc(&cfqq->ref);
  2368. *async_cfqq = cfqq;
  2369. }
  2370. atomic_inc(&cfqq->ref);
  2371. return cfqq;
  2372. }
  2373. /*
  2374. * We drop cfq io contexts lazily, so we may find a dead one.
  2375. */
  2376. static void
  2377. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2378. struct cfq_io_context *cic)
  2379. {
  2380. unsigned long flags;
  2381. WARN_ON(!list_empty(&cic->queue_list));
  2382. spin_lock_irqsave(&ioc->lock, flags);
  2383. BUG_ON(ioc->ioc_data == cic);
  2384. radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
  2385. hlist_del_rcu(&cic->cic_list);
  2386. spin_unlock_irqrestore(&ioc->lock, flags);
  2387. cfq_cic_free(cic);
  2388. }
  2389. static struct cfq_io_context *
  2390. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2391. {
  2392. struct cfq_io_context *cic;
  2393. unsigned long flags;
  2394. void *k;
  2395. if (unlikely(!ioc))
  2396. return NULL;
  2397. rcu_read_lock();
  2398. /*
  2399. * we maintain a last-hit cache, to avoid browsing over the tree
  2400. */
  2401. cic = rcu_dereference(ioc->ioc_data);
  2402. if (cic && cic->key == cfqd) {
  2403. rcu_read_unlock();
  2404. return cic;
  2405. }
  2406. do {
  2407. cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
  2408. rcu_read_unlock();
  2409. if (!cic)
  2410. break;
  2411. /* ->key must be copied to avoid race with cfq_exit_queue() */
  2412. k = cic->key;
  2413. if (unlikely(!k)) {
  2414. cfq_drop_dead_cic(cfqd, ioc, cic);
  2415. rcu_read_lock();
  2416. continue;
  2417. }
  2418. spin_lock_irqsave(&ioc->lock, flags);
  2419. rcu_assign_pointer(ioc->ioc_data, cic);
  2420. spin_unlock_irqrestore(&ioc->lock, flags);
  2421. break;
  2422. } while (1);
  2423. return cic;
  2424. }
  2425. /*
  2426. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2427. * the process specific cfq io context when entered from the block layer.
  2428. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2429. */
  2430. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2431. struct cfq_io_context *cic, gfp_t gfp_mask)
  2432. {
  2433. unsigned long flags;
  2434. int ret;
  2435. ret = radix_tree_preload(gfp_mask);
  2436. if (!ret) {
  2437. cic->ioc = ioc;
  2438. cic->key = cfqd;
  2439. spin_lock_irqsave(&ioc->lock, flags);
  2440. ret = radix_tree_insert(&ioc->radix_root,
  2441. (unsigned long) cfqd, cic);
  2442. if (!ret)
  2443. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2444. spin_unlock_irqrestore(&ioc->lock, flags);
  2445. radix_tree_preload_end();
  2446. if (!ret) {
  2447. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2448. list_add(&cic->queue_list, &cfqd->cic_list);
  2449. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2450. }
  2451. }
  2452. if (ret)
  2453. printk(KERN_ERR "cfq: cic link failed!\n");
  2454. return ret;
  2455. }
  2456. /*
  2457. * Setup general io context and cfq io context. There can be several cfq
  2458. * io contexts per general io context, if this process is doing io to more
  2459. * than one device managed by cfq.
  2460. */
  2461. static struct cfq_io_context *
  2462. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2463. {
  2464. struct io_context *ioc = NULL;
  2465. struct cfq_io_context *cic;
  2466. might_sleep_if(gfp_mask & __GFP_WAIT);
  2467. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2468. if (!ioc)
  2469. return NULL;
  2470. cic = cfq_cic_lookup(cfqd, ioc);
  2471. if (cic)
  2472. goto out;
  2473. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2474. if (cic == NULL)
  2475. goto err;
  2476. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2477. goto err_free;
  2478. out:
  2479. smp_read_barrier_depends();
  2480. if (unlikely(ioc->ioprio_changed))
  2481. cfq_ioc_set_ioprio(ioc);
  2482. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2483. if (unlikely(ioc->cgroup_changed))
  2484. cfq_ioc_set_cgroup(ioc);
  2485. #endif
  2486. return cic;
  2487. err_free:
  2488. cfq_cic_free(cic);
  2489. err:
  2490. put_io_context(ioc);
  2491. return NULL;
  2492. }
  2493. static void
  2494. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2495. {
  2496. unsigned long elapsed = jiffies - cic->last_end_request;
  2497. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2498. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2499. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2500. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2501. }
  2502. static void
  2503. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2504. struct request *rq)
  2505. {
  2506. sector_t sdist;
  2507. u64 total;
  2508. if (!cfqq->last_request_pos)
  2509. sdist = 0;
  2510. else if (cfqq->last_request_pos < blk_rq_pos(rq))
  2511. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2512. else
  2513. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2514. /*
  2515. * Don't allow the seek distance to get too large from the
  2516. * odd fragment, pagein, etc
  2517. */
  2518. if (cfqq->seek_samples <= 60) /* second&third seek */
  2519. sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
  2520. else
  2521. sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
  2522. cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
  2523. cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
  2524. total = cfqq->seek_total + (cfqq->seek_samples/2);
  2525. do_div(total, cfqq->seek_samples);
  2526. cfqq->seek_mean = (sector_t)total;
  2527. /*
  2528. * If this cfqq is shared between multiple processes, check to
  2529. * make sure that those processes are still issuing I/Os within
  2530. * the mean seek distance. If not, it may be time to break the
  2531. * queues apart again.
  2532. */
  2533. if (cfq_cfqq_coop(cfqq)) {
  2534. if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
  2535. cfqq->seeky_start = jiffies;
  2536. else if (!CFQQ_SEEKY(cfqq))
  2537. cfqq->seeky_start = 0;
  2538. }
  2539. }
  2540. /*
  2541. * Disable idle window if the process thinks too long or seeks so much that
  2542. * it doesn't matter
  2543. */
  2544. static void
  2545. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2546. struct cfq_io_context *cic)
  2547. {
  2548. int old_idle, enable_idle;
  2549. /*
  2550. * Don't idle for async or idle io prio class
  2551. */
  2552. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2553. return;
  2554. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2555. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2556. cfq_mark_cfqq_deep(cfqq);
  2557. if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2558. (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
  2559. && CFQQ_SEEKY(cfqq)))
  2560. enable_idle = 0;
  2561. else if (sample_valid(cic->ttime_samples)) {
  2562. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2563. enable_idle = 0;
  2564. else
  2565. enable_idle = 1;
  2566. }
  2567. if (old_idle != enable_idle) {
  2568. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2569. if (enable_idle)
  2570. cfq_mark_cfqq_idle_window(cfqq);
  2571. else
  2572. cfq_clear_cfqq_idle_window(cfqq);
  2573. }
  2574. }
  2575. /*
  2576. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2577. * no or if we aren't sure, a 1 will cause a preempt.
  2578. */
  2579. static bool
  2580. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2581. struct request *rq)
  2582. {
  2583. struct cfq_queue *cfqq;
  2584. cfqq = cfqd->active_queue;
  2585. if (!cfqq)
  2586. return false;
  2587. if (cfq_class_idle(new_cfqq))
  2588. return false;
  2589. if (cfq_class_idle(cfqq))
  2590. return true;
  2591. /*
  2592. * if the new request is sync, but the currently running queue is
  2593. * not, let the sync request have priority.
  2594. */
  2595. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2596. return true;
  2597. if (new_cfqq->cfqg != cfqq->cfqg)
  2598. return false;
  2599. if (cfq_slice_used(cfqq))
  2600. return true;
  2601. /* Allow preemption only if we are idling on sync-noidle tree */
  2602. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2603. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2604. new_cfqq->service_tree->count == 2 &&
  2605. RB_EMPTY_ROOT(&cfqq->sort_list))
  2606. return true;
  2607. /*
  2608. * So both queues are sync. Let the new request get disk time if
  2609. * it's a metadata request and the current queue is doing regular IO.
  2610. */
  2611. if (rq_is_meta(rq) && !cfqq->meta_pending)
  2612. return true;
  2613. /*
  2614. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2615. */
  2616. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2617. return true;
  2618. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2619. return false;
  2620. /*
  2621. * if this request is as-good as one we would expect from the
  2622. * current cfqq, let it preempt
  2623. */
  2624. if (cfq_rq_close(cfqd, cfqq, rq))
  2625. return true;
  2626. return false;
  2627. }
  2628. /*
  2629. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2630. * let it have half of its nominal slice.
  2631. */
  2632. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2633. {
  2634. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2635. cfq_slice_expired(cfqd, 1);
  2636. /*
  2637. * Put the new queue at the front of the of the current list,
  2638. * so we know that it will be selected next.
  2639. */
  2640. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2641. cfq_service_tree_add(cfqd, cfqq, 1);
  2642. cfqq->slice_end = 0;
  2643. cfq_mark_cfqq_slice_new(cfqq);
  2644. }
  2645. /*
  2646. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2647. * something we should do about it
  2648. */
  2649. static void
  2650. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2651. struct request *rq)
  2652. {
  2653. struct cfq_io_context *cic = RQ_CIC(rq);
  2654. cfqd->rq_queued++;
  2655. if (rq_is_meta(rq))
  2656. cfqq->meta_pending++;
  2657. cfq_update_io_thinktime(cfqd, cic);
  2658. cfq_update_io_seektime(cfqd, cfqq, rq);
  2659. cfq_update_idle_window(cfqd, cfqq, cic);
  2660. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2661. if (cfqq == cfqd->active_queue) {
  2662. if (cfq_cfqq_wait_busy(cfqq)) {
  2663. cfq_clear_cfqq_wait_busy(cfqq);
  2664. cfq_mark_cfqq_wait_busy_done(cfqq);
  2665. }
  2666. /*
  2667. * Remember that we saw a request from this process, but
  2668. * don't start queuing just yet. Otherwise we risk seeing lots
  2669. * of tiny requests, because we disrupt the normal plugging
  2670. * and merging. If the request is already larger than a single
  2671. * page, let it rip immediately. For that case we assume that
  2672. * merging is already done. Ditto for a busy system that
  2673. * has other work pending, don't risk delaying until the
  2674. * idle timer unplug to continue working.
  2675. */
  2676. if (cfq_cfqq_wait_request(cfqq)) {
  2677. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2678. cfqd->busy_queues > 1) {
  2679. del_timer(&cfqd->idle_slice_timer);
  2680. __blk_run_queue(cfqd->queue);
  2681. } else
  2682. cfq_mark_cfqq_must_dispatch(cfqq);
  2683. }
  2684. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2685. /*
  2686. * not the active queue - expire current slice if it is
  2687. * idle and has expired it's mean thinktime or this new queue
  2688. * has some old slice time left and is of higher priority or
  2689. * this new queue is RT and the current one is BE
  2690. */
  2691. cfq_preempt_queue(cfqd, cfqq);
  2692. __blk_run_queue(cfqd->queue);
  2693. }
  2694. }
  2695. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2696. {
  2697. struct cfq_data *cfqd = q->elevator->elevator_data;
  2698. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2699. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2700. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2701. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2702. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2703. cfq_add_rq_rb(rq);
  2704. cfq_rq_enqueued(cfqd, cfqq, rq);
  2705. }
  2706. /*
  2707. * Update hw_tag based on peak queue depth over 50 samples under
  2708. * sufficient load.
  2709. */
  2710. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2711. {
  2712. struct cfq_queue *cfqq = cfqd->active_queue;
  2713. if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
  2714. cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
  2715. if (cfqd->hw_tag == 1)
  2716. return;
  2717. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2718. rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
  2719. return;
  2720. /*
  2721. * If active queue hasn't enough requests and can idle, cfq might not
  2722. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2723. * case
  2724. */
  2725. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2726. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2727. CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
  2728. return;
  2729. if (cfqd->hw_tag_samples++ < 50)
  2730. return;
  2731. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2732. cfqd->hw_tag = 1;
  2733. else
  2734. cfqd->hw_tag = 0;
  2735. }
  2736. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2737. {
  2738. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2739. struct cfq_data *cfqd = cfqq->cfqd;
  2740. const int sync = rq_is_sync(rq);
  2741. unsigned long now;
  2742. now = jiffies;
  2743. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
  2744. cfq_update_hw_tag(cfqd);
  2745. WARN_ON(!cfqd->rq_in_driver[sync]);
  2746. WARN_ON(!cfqq->dispatched);
  2747. cfqd->rq_in_driver[sync]--;
  2748. cfqq->dispatched--;
  2749. if (cfq_cfqq_sync(cfqq))
  2750. cfqd->sync_flight--;
  2751. if (sync) {
  2752. RQ_CIC(rq)->last_end_request = now;
  2753. cfqd->last_end_sync_rq = now;
  2754. }
  2755. /*
  2756. * If this is the active queue, check if it needs to be expired,
  2757. * or if we want to idle in case it has no pending requests.
  2758. */
  2759. if (cfqd->active_queue == cfqq) {
  2760. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2761. if (cfq_cfqq_slice_new(cfqq)) {
  2762. cfq_set_prio_slice(cfqd, cfqq);
  2763. cfq_clear_cfqq_slice_new(cfqq);
  2764. }
  2765. /*
  2766. * If this queue consumed its slice and this is last queue
  2767. * in the group, wait for next request before we expire
  2768. * the queue
  2769. */
  2770. if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
  2771. cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
  2772. cfq_mark_cfqq_wait_busy(cfqq);
  2773. }
  2774. /*
  2775. * Idling is not enabled on:
  2776. * - expired queues
  2777. * - idle-priority queues
  2778. * - async queues
  2779. * - queues with still some requests queued
  2780. * - when there is a close cooperator
  2781. */
  2782. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2783. cfq_slice_expired(cfqd, 1);
  2784. else if (sync && cfqq_empty &&
  2785. !cfq_close_cooperator(cfqd, cfqq)) {
  2786. cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
  2787. /*
  2788. * Idling is enabled for SYNC_WORKLOAD.
  2789. * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
  2790. * only if we processed at least one !rq_noidle request
  2791. */
  2792. if (cfqd->serving_type == SYNC_WORKLOAD
  2793. || cfqd->noidle_tree_requires_idle
  2794. || cfqq->cfqg->nr_cfqq == 1)
  2795. cfq_arm_slice_timer(cfqd);
  2796. }
  2797. }
  2798. if (!rq_in_driver(cfqd))
  2799. cfq_schedule_dispatch(cfqd);
  2800. }
  2801. /*
  2802. * we temporarily boost lower priority queues if they are holding fs exclusive
  2803. * resources. they are boosted to normal prio (CLASS_BE/4)
  2804. */
  2805. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2806. {
  2807. if (has_fs_excl()) {
  2808. /*
  2809. * boost idle prio on transactions that would lock out other
  2810. * users of the filesystem
  2811. */
  2812. if (cfq_class_idle(cfqq))
  2813. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2814. if (cfqq->ioprio > IOPRIO_NORM)
  2815. cfqq->ioprio = IOPRIO_NORM;
  2816. } else {
  2817. /*
  2818. * unboost the queue (if needed)
  2819. */
  2820. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2821. cfqq->ioprio = cfqq->org_ioprio;
  2822. }
  2823. }
  2824. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2825. {
  2826. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2827. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2828. return ELV_MQUEUE_MUST;
  2829. }
  2830. return ELV_MQUEUE_MAY;
  2831. }
  2832. static int cfq_may_queue(struct request_queue *q, int rw)
  2833. {
  2834. struct cfq_data *cfqd = q->elevator->elevator_data;
  2835. struct task_struct *tsk = current;
  2836. struct cfq_io_context *cic;
  2837. struct cfq_queue *cfqq;
  2838. /*
  2839. * don't force setup of a queue from here, as a call to may_queue
  2840. * does not necessarily imply that a request actually will be queued.
  2841. * so just lookup a possibly existing queue, or return 'may queue'
  2842. * if that fails
  2843. */
  2844. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2845. if (!cic)
  2846. return ELV_MQUEUE_MAY;
  2847. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2848. if (cfqq) {
  2849. cfq_init_prio_data(cfqq, cic->ioc);
  2850. cfq_prio_boost(cfqq);
  2851. return __cfq_may_queue(cfqq);
  2852. }
  2853. return ELV_MQUEUE_MAY;
  2854. }
  2855. /*
  2856. * queue lock held here
  2857. */
  2858. static void cfq_put_request(struct request *rq)
  2859. {
  2860. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2861. if (cfqq) {
  2862. const int rw = rq_data_dir(rq);
  2863. BUG_ON(!cfqq->allocated[rw]);
  2864. cfqq->allocated[rw]--;
  2865. put_io_context(RQ_CIC(rq)->ioc);
  2866. rq->elevator_private = NULL;
  2867. rq->elevator_private2 = NULL;
  2868. cfq_put_queue(cfqq);
  2869. }
  2870. }
  2871. static struct cfq_queue *
  2872. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  2873. struct cfq_queue *cfqq)
  2874. {
  2875. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2876. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2877. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2878. cfq_put_queue(cfqq);
  2879. return cic_to_cfqq(cic, 1);
  2880. }
  2881. static int should_split_cfqq(struct cfq_queue *cfqq)
  2882. {
  2883. if (cfqq->seeky_start &&
  2884. time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
  2885. return 1;
  2886. return 0;
  2887. }
  2888. /*
  2889. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2890. * was the last process referring to said cfqq.
  2891. */
  2892. static struct cfq_queue *
  2893. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  2894. {
  2895. if (cfqq_process_refs(cfqq) == 1) {
  2896. cfqq->seeky_start = 0;
  2897. cfqq->pid = current->pid;
  2898. cfq_clear_cfqq_coop(cfqq);
  2899. return cfqq;
  2900. }
  2901. cic_set_cfqq(cic, NULL, 1);
  2902. cfq_put_queue(cfqq);
  2903. return NULL;
  2904. }
  2905. /*
  2906. * Allocate cfq data structures associated with this request.
  2907. */
  2908. static int
  2909. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  2910. {
  2911. struct cfq_data *cfqd = q->elevator->elevator_data;
  2912. struct cfq_io_context *cic;
  2913. const int rw = rq_data_dir(rq);
  2914. const bool is_sync = rq_is_sync(rq);
  2915. struct cfq_queue *cfqq;
  2916. unsigned long flags;
  2917. might_sleep_if(gfp_mask & __GFP_WAIT);
  2918. cic = cfq_get_io_context(cfqd, gfp_mask);
  2919. spin_lock_irqsave(q->queue_lock, flags);
  2920. if (!cic)
  2921. goto queue_fail;
  2922. new_queue:
  2923. cfqq = cic_to_cfqq(cic, is_sync);
  2924. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2925. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  2926. cic_set_cfqq(cic, cfqq, is_sync);
  2927. } else {
  2928. /*
  2929. * If the queue was seeky for too long, break it apart.
  2930. */
  2931. if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
  2932. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  2933. cfqq = split_cfqq(cic, cfqq);
  2934. if (!cfqq)
  2935. goto new_queue;
  2936. }
  2937. /*
  2938. * Check to see if this queue is scheduled to merge with
  2939. * another, closely cooperating queue. The merging of
  2940. * queues happens here as it must be done in process context.
  2941. * The reference on new_cfqq was taken in merge_cfqqs.
  2942. */
  2943. if (cfqq->new_cfqq)
  2944. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  2945. }
  2946. cfqq->allocated[rw]++;
  2947. atomic_inc(&cfqq->ref);
  2948. spin_unlock_irqrestore(q->queue_lock, flags);
  2949. rq->elevator_private = cic;
  2950. rq->elevator_private2 = cfqq;
  2951. return 0;
  2952. queue_fail:
  2953. if (cic)
  2954. put_io_context(cic->ioc);
  2955. cfq_schedule_dispatch(cfqd);
  2956. spin_unlock_irqrestore(q->queue_lock, flags);
  2957. cfq_log(cfqd, "set_request fail");
  2958. return 1;
  2959. }
  2960. static void cfq_kick_queue(struct work_struct *work)
  2961. {
  2962. struct cfq_data *cfqd =
  2963. container_of(work, struct cfq_data, unplug_work);
  2964. struct request_queue *q = cfqd->queue;
  2965. spin_lock_irq(q->queue_lock);
  2966. __blk_run_queue(cfqd->queue);
  2967. spin_unlock_irq(q->queue_lock);
  2968. }
  2969. /*
  2970. * Timer running if the active_queue is currently idling inside its time slice
  2971. */
  2972. static void cfq_idle_slice_timer(unsigned long data)
  2973. {
  2974. struct cfq_data *cfqd = (struct cfq_data *) data;
  2975. struct cfq_queue *cfqq;
  2976. unsigned long flags;
  2977. int timed_out = 1;
  2978. cfq_log(cfqd, "idle timer fired");
  2979. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2980. cfqq = cfqd->active_queue;
  2981. if (cfqq) {
  2982. timed_out = 0;
  2983. /*
  2984. * We saw a request before the queue expired, let it through
  2985. */
  2986. if (cfq_cfqq_must_dispatch(cfqq))
  2987. goto out_kick;
  2988. /*
  2989. * expired
  2990. */
  2991. if (cfq_slice_used(cfqq))
  2992. goto expire;
  2993. /*
  2994. * only expire and reinvoke request handler, if there are
  2995. * other queues with pending requests
  2996. */
  2997. if (!cfqd->busy_queues)
  2998. goto out_cont;
  2999. /*
  3000. * not expired and it has a request pending, let it dispatch
  3001. */
  3002. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3003. goto out_kick;
  3004. /*
  3005. * Queue depth flag is reset only when the idle didn't succeed
  3006. */
  3007. cfq_clear_cfqq_deep(cfqq);
  3008. }
  3009. expire:
  3010. cfq_slice_expired(cfqd, timed_out);
  3011. out_kick:
  3012. cfq_schedule_dispatch(cfqd);
  3013. out_cont:
  3014. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3015. }
  3016. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3017. {
  3018. del_timer_sync(&cfqd->idle_slice_timer);
  3019. cancel_work_sync(&cfqd->unplug_work);
  3020. }
  3021. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3022. {
  3023. int i;
  3024. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3025. if (cfqd->async_cfqq[0][i])
  3026. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3027. if (cfqd->async_cfqq[1][i])
  3028. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3029. }
  3030. if (cfqd->async_idle_cfqq)
  3031. cfq_put_queue(cfqd->async_idle_cfqq);
  3032. }
  3033. static void cfq_cfqd_free(struct rcu_head *head)
  3034. {
  3035. kfree(container_of(head, struct cfq_data, rcu));
  3036. }
  3037. static void cfq_exit_queue(struct elevator_queue *e)
  3038. {
  3039. struct cfq_data *cfqd = e->elevator_data;
  3040. struct request_queue *q = cfqd->queue;
  3041. cfq_shutdown_timer_wq(cfqd);
  3042. spin_lock_irq(q->queue_lock);
  3043. if (cfqd->active_queue)
  3044. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3045. while (!list_empty(&cfqd->cic_list)) {
  3046. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3047. struct cfq_io_context,
  3048. queue_list);
  3049. __cfq_exit_single_io_context(cfqd, cic);
  3050. }
  3051. cfq_put_async_queues(cfqd);
  3052. cfq_release_cfq_groups(cfqd);
  3053. blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3054. spin_unlock_irq(q->queue_lock);
  3055. cfq_shutdown_timer_wq(cfqd);
  3056. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3057. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3058. }
  3059. static void *cfq_init_queue(struct request_queue *q)
  3060. {
  3061. struct cfq_data *cfqd;
  3062. int i, j;
  3063. struct cfq_group *cfqg;
  3064. struct cfq_rb_root *st;
  3065. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3066. if (!cfqd)
  3067. return NULL;
  3068. /* Init root service tree */
  3069. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3070. /* Init root group */
  3071. cfqg = &cfqd->root_group;
  3072. for_each_cfqg_st(cfqg, i, j, st)
  3073. *st = CFQ_RB_ROOT;
  3074. RB_CLEAR_NODE(&cfqg->rb_node);
  3075. /* Give preference to root group over other groups */
  3076. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3077. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3078. /*
  3079. * Take a reference to root group which we never drop. This is just
  3080. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3081. */
  3082. atomic_set(&cfqg->ref, 1);
  3083. blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
  3084. 0);
  3085. #endif
  3086. /*
  3087. * Not strictly needed (since RB_ROOT just clears the node and we
  3088. * zeroed cfqd on alloc), but better be safe in case someone decides
  3089. * to add magic to the rb code
  3090. */
  3091. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3092. cfqd->prio_trees[i] = RB_ROOT;
  3093. /*
  3094. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3095. * Grab a permanent reference to it, so that the normal code flow
  3096. * will not attempt to free it.
  3097. */
  3098. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3099. atomic_inc(&cfqd->oom_cfqq.ref);
  3100. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3101. INIT_LIST_HEAD(&cfqd->cic_list);
  3102. cfqd->queue = q;
  3103. init_timer(&cfqd->idle_slice_timer);
  3104. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3105. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3106. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3107. cfqd->cfq_quantum = cfq_quantum;
  3108. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3109. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3110. cfqd->cfq_back_max = cfq_back_max;
  3111. cfqd->cfq_back_penalty = cfq_back_penalty;
  3112. cfqd->cfq_slice[0] = cfq_slice_async;
  3113. cfqd->cfq_slice[1] = cfq_slice_sync;
  3114. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3115. cfqd->cfq_slice_idle = cfq_slice_idle;
  3116. cfqd->cfq_latency = 1;
  3117. cfqd->cfq_group_isolation = 0;
  3118. cfqd->hw_tag = -1;
  3119. cfqd->last_end_sync_rq = jiffies;
  3120. INIT_RCU_HEAD(&cfqd->rcu);
  3121. return cfqd;
  3122. }
  3123. static void cfq_slab_kill(void)
  3124. {
  3125. /*
  3126. * Caller already ensured that pending RCU callbacks are completed,
  3127. * so we should have no busy allocations at this point.
  3128. */
  3129. if (cfq_pool)
  3130. kmem_cache_destroy(cfq_pool);
  3131. if (cfq_ioc_pool)
  3132. kmem_cache_destroy(cfq_ioc_pool);
  3133. }
  3134. static int __init cfq_slab_setup(void)
  3135. {
  3136. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3137. if (!cfq_pool)
  3138. goto fail;
  3139. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3140. if (!cfq_ioc_pool)
  3141. goto fail;
  3142. return 0;
  3143. fail:
  3144. cfq_slab_kill();
  3145. return -ENOMEM;
  3146. }
  3147. /*
  3148. * sysfs parts below -->
  3149. */
  3150. static ssize_t
  3151. cfq_var_show(unsigned int var, char *page)
  3152. {
  3153. return sprintf(page, "%d\n", var);
  3154. }
  3155. static ssize_t
  3156. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3157. {
  3158. char *p = (char *) page;
  3159. *var = simple_strtoul(p, &p, 10);
  3160. return count;
  3161. }
  3162. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3163. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3164. { \
  3165. struct cfq_data *cfqd = e->elevator_data; \
  3166. unsigned int __data = __VAR; \
  3167. if (__CONV) \
  3168. __data = jiffies_to_msecs(__data); \
  3169. return cfq_var_show(__data, (page)); \
  3170. }
  3171. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3172. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3173. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3174. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3175. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3176. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3177. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3178. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3179. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3180. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3181. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3182. #undef SHOW_FUNCTION
  3183. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3184. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3185. { \
  3186. struct cfq_data *cfqd = e->elevator_data; \
  3187. unsigned int __data; \
  3188. int ret = cfq_var_store(&__data, (page), count); \
  3189. if (__data < (MIN)) \
  3190. __data = (MIN); \
  3191. else if (__data > (MAX)) \
  3192. __data = (MAX); \
  3193. if (__CONV) \
  3194. *(__PTR) = msecs_to_jiffies(__data); \
  3195. else \
  3196. *(__PTR) = __data; \
  3197. return ret; \
  3198. }
  3199. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3200. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3201. UINT_MAX, 1);
  3202. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3203. UINT_MAX, 1);
  3204. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3205. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3206. UINT_MAX, 0);
  3207. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3208. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3209. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3210. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3211. UINT_MAX, 0);
  3212. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3213. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3214. #undef STORE_FUNCTION
  3215. #define CFQ_ATTR(name) \
  3216. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3217. static struct elv_fs_entry cfq_attrs[] = {
  3218. CFQ_ATTR(quantum),
  3219. CFQ_ATTR(fifo_expire_sync),
  3220. CFQ_ATTR(fifo_expire_async),
  3221. CFQ_ATTR(back_seek_max),
  3222. CFQ_ATTR(back_seek_penalty),
  3223. CFQ_ATTR(slice_sync),
  3224. CFQ_ATTR(slice_async),
  3225. CFQ_ATTR(slice_async_rq),
  3226. CFQ_ATTR(slice_idle),
  3227. CFQ_ATTR(low_latency),
  3228. CFQ_ATTR(group_isolation),
  3229. __ATTR_NULL
  3230. };
  3231. static struct elevator_type iosched_cfq = {
  3232. .ops = {
  3233. .elevator_merge_fn = cfq_merge,
  3234. .elevator_merged_fn = cfq_merged_request,
  3235. .elevator_merge_req_fn = cfq_merged_requests,
  3236. .elevator_allow_merge_fn = cfq_allow_merge,
  3237. .elevator_dispatch_fn = cfq_dispatch_requests,
  3238. .elevator_add_req_fn = cfq_insert_request,
  3239. .elevator_activate_req_fn = cfq_activate_request,
  3240. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3241. .elevator_queue_empty_fn = cfq_queue_empty,
  3242. .elevator_completed_req_fn = cfq_completed_request,
  3243. .elevator_former_req_fn = elv_rb_former_request,
  3244. .elevator_latter_req_fn = elv_rb_latter_request,
  3245. .elevator_set_req_fn = cfq_set_request,
  3246. .elevator_put_req_fn = cfq_put_request,
  3247. .elevator_may_queue_fn = cfq_may_queue,
  3248. .elevator_init_fn = cfq_init_queue,
  3249. .elevator_exit_fn = cfq_exit_queue,
  3250. .trim = cfq_free_io_context,
  3251. },
  3252. .elevator_attrs = cfq_attrs,
  3253. .elevator_name = "cfq",
  3254. .elevator_owner = THIS_MODULE,
  3255. };
  3256. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3257. static struct blkio_policy_type blkio_policy_cfq = {
  3258. .ops = {
  3259. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3260. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3261. },
  3262. };
  3263. #else
  3264. static struct blkio_policy_type blkio_policy_cfq;
  3265. #endif
  3266. static int __init cfq_init(void)
  3267. {
  3268. /*
  3269. * could be 0 on HZ < 1000 setups
  3270. */
  3271. if (!cfq_slice_async)
  3272. cfq_slice_async = 1;
  3273. if (!cfq_slice_idle)
  3274. cfq_slice_idle = 1;
  3275. if (cfq_slab_setup())
  3276. return -ENOMEM;
  3277. elv_register(&iosched_cfq);
  3278. blkio_policy_register(&blkio_policy_cfq);
  3279. return 0;
  3280. }
  3281. static void __exit cfq_exit(void)
  3282. {
  3283. DECLARE_COMPLETION_ONSTACK(all_gone);
  3284. blkio_policy_unregister(&blkio_policy_cfq);
  3285. elv_unregister(&iosched_cfq);
  3286. ioc_gone = &all_gone;
  3287. /* ioc_gone's update must be visible before reading ioc_count */
  3288. smp_wmb();
  3289. /*
  3290. * this also protects us from entering cfq_slab_kill() with
  3291. * pending RCU callbacks
  3292. */
  3293. if (elv_ioc_count_read(cfq_ioc_count))
  3294. wait_for_completion(&all_gone);
  3295. cfq_slab_kill();
  3296. }
  3297. module_init(cfq_init);
  3298. module_exit(cfq_exit);
  3299. MODULE_AUTHOR("Jens Axboe");
  3300. MODULE_LICENSE("GPL");
  3301. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");