common.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673
  1. /*
  2. * Low-Level PCI Support for PC
  3. *
  4. * (c) 1999--2000 Martin Mares <mj@ucw.cz>
  5. */
  6. #include <linux/sched.h>
  7. #include <linux/pci.h>
  8. #include <linux/ioport.h>
  9. #include <linux/init.h>
  10. #include <linux/dmi.h>
  11. #include <asm/acpi.h>
  12. #include <asm/segment.h>
  13. #include <asm/io.h>
  14. #include <asm/smp.h>
  15. #include <asm/pci_x86.h>
  16. unsigned int pci_probe = PCI_PROBE_BIOS | PCI_PROBE_CONF1 | PCI_PROBE_CONF2 |
  17. PCI_PROBE_MMCONF;
  18. unsigned int pci_early_dump_regs;
  19. static int pci_bf_sort;
  20. int pci_routeirq;
  21. int noioapicquirk;
  22. #ifdef CONFIG_X86_REROUTE_FOR_BROKEN_BOOT_IRQS
  23. int noioapicreroute = 0;
  24. #else
  25. int noioapicreroute = 1;
  26. #endif
  27. int pcibios_last_bus = -1;
  28. unsigned long pirq_table_addr;
  29. struct pci_bus *pci_root_bus;
  30. struct pci_raw_ops *raw_pci_ops;
  31. struct pci_raw_ops *raw_pci_ext_ops;
  32. int raw_pci_read(unsigned int domain, unsigned int bus, unsigned int devfn,
  33. int reg, int len, u32 *val)
  34. {
  35. if (domain == 0 && reg < 256 && raw_pci_ops)
  36. return raw_pci_ops->read(domain, bus, devfn, reg, len, val);
  37. if (raw_pci_ext_ops)
  38. return raw_pci_ext_ops->read(domain, bus, devfn, reg, len, val);
  39. return -EINVAL;
  40. }
  41. int raw_pci_write(unsigned int domain, unsigned int bus, unsigned int devfn,
  42. int reg, int len, u32 val)
  43. {
  44. if (domain == 0 && reg < 256 && raw_pci_ops)
  45. return raw_pci_ops->write(domain, bus, devfn, reg, len, val);
  46. if (raw_pci_ext_ops)
  47. return raw_pci_ext_ops->write(domain, bus, devfn, reg, len, val);
  48. return -EINVAL;
  49. }
  50. static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
  51. {
  52. return raw_pci_read(pci_domain_nr(bus), bus->number,
  53. devfn, where, size, value);
  54. }
  55. static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
  56. {
  57. return raw_pci_write(pci_domain_nr(bus), bus->number,
  58. devfn, where, size, value);
  59. }
  60. struct pci_ops pci_root_ops = {
  61. .read = pci_read,
  62. .write = pci_write,
  63. };
  64. /*
  65. * legacy, numa, and acpi all want to call pcibios_scan_root
  66. * from their initcalls. This flag prevents that.
  67. */
  68. int pcibios_scanned;
  69. /*
  70. * This interrupt-safe spinlock protects all accesses to PCI
  71. * configuration space.
  72. */
  73. DEFINE_SPINLOCK(pci_config_lock);
  74. static int __devinit can_skip_ioresource_align(const struct dmi_system_id *d)
  75. {
  76. pci_probe |= PCI_CAN_SKIP_ISA_ALIGN;
  77. printk(KERN_INFO "PCI: %s detected, can skip ISA alignment\n", d->ident);
  78. return 0;
  79. }
  80. static const struct dmi_system_id can_skip_pciprobe_dmi_table[] __devinitconst = {
  81. /*
  82. * Systems where PCI IO resource ISA alignment can be skipped
  83. * when the ISA enable bit in the bridge control is not set
  84. */
  85. {
  86. .callback = can_skip_ioresource_align,
  87. .ident = "IBM System x3800",
  88. .matches = {
  89. DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
  90. DMI_MATCH(DMI_PRODUCT_NAME, "x3800"),
  91. },
  92. },
  93. {
  94. .callback = can_skip_ioresource_align,
  95. .ident = "IBM System x3850",
  96. .matches = {
  97. DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
  98. DMI_MATCH(DMI_PRODUCT_NAME, "x3850"),
  99. },
  100. },
  101. {
  102. .callback = can_skip_ioresource_align,
  103. .ident = "IBM System x3950",
  104. .matches = {
  105. DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
  106. DMI_MATCH(DMI_PRODUCT_NAME, "x3950"),
  107. },
  108. },
  109. {}
  110. };
  111. void __init dmi_check_skip_isa_align(void)
  112. {
  113. dmi_check_system(can_skip_pciprobe_dmi_table);
  114. }
  115. static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
  116. {
  117. struct resource *rom_r = &dev->resource[PCI_ROM_RESOURCE];
  118. if (pci_probe & PCI_NOASSIGN_ROMS) {
  119. if (rom_r->parent)
  120. return;
  121. if (rom_r->start) {
  122. /* we deal with BIOS assigned ROM later */
  123. return;
  124. }
  125. rom_r->start = rom_r->end = rom_r->flags = 0;
  126. }
  127. }
  128. /*
  129. * Called after each bus is probed, but before its children
  130. * are examined.
  131. */
  132. void __devinit pcibios_fixup_bus(struct pci_bus *b)
  133. {
  134. struct pci_dev *dev;
  135. /* root bus? */
  136. if (!b->parent)
  137. x86_pci_root_bus_res_quirks(b);
  138. pci_read_bridge_bases(b);
  139. list_for_each_entry(dev, &b->devices, bus_list)
  140. pcibios_fixup_device_resources(dev);
  141. }
  142. /*
  143. * Only use DMI information to set this if nothing was passed
  144. * on the kernel command line (which was parsed earlier).
  145. */
  146. static int __devinit set_bf_sort(const struct dmi_system_id *d)
  147. {
  148. if (pci_bf_sort == pci_bf_sort_default) {
  149. pci_bf_sort = pci_dmi_bf;
  150. printk(KERN_INFO "PCI: %s detected, enabling pci=bfsort.\n", d->ident);
  151. }
  152. return 0;
  153. }
  154. /*
  155. * Enable renumbering of PCI bus# ranges to reach all PCI busses (Cardbus)
  156. */
  157. #ifdef __i386__
  158. static int __devinit assign_all_busses(const struct dmi_system_id *d)
  159. {
  160. pci_probe |= PCI_ASSIGN_ALL_BUSSES;
  161. printk(KERN_INFO "%s detected: enabling PCI bus# renumbering"
  162. " (pci=assign-busses)\n", d->ident);
  163. return 0;
  164. }
  165. #endif
  166. static const struct dmi_system_id __devinitconst pciprobe_dmi_table[] = {
  167. #ifdef __i386__
  168. /*
  169. * Laptops which need pci=assign-busses to see Cardbus cards
  170. */
  171. {
  172. .callback = assign_all_busses,
  173. .ident = "Samsung X20 Laptop",
  174. .matches = {
  175. DMI_MATCH(DMI_SYS_VENDOR, "Samsung Electronics"),
  176. DMI_MATCH(DMI_PRODUCT_NAME, "SX20S"),
  177. },
  178. },
  179. #endif /* __i386__ */
  180. {
  181. .callback = set_bf_sort,
  182. .ident = "Dell PowerEdge 1950",
  183. .matches = {
  184. DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
  185. DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 1950"),
  186. },
  187. },
  188. {
  189. .callback = set_bf_sort,
  190. .ident = "Dell PowerEdge 1955",
  191. .matches = {
  192. DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
  193. DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 1955"),
  194. },
  195. },
  196. {
  197. .callback = set_bf_sort,
  198. .ident = "Dell PowerEdge 2900",
  199. .matches = {
  200. DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
  201. DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 2900"),
  202. },
  203. },
  204. {
  205. .callback = set_bf_sort,
  206. .ident = "Dell PowerEdge 2950",
  207. .matches = {
  208. DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
  209. DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 2950"),
  210. },
  211. },
  212. {
  213. .callback = set_bf_sort,
  214. .ident = "Dell PowerEdge R900",
  215. .matches = {
  216. DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
  217. DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge R900"),
  218. },
  219. },
  220. {
  221. .callback = set_bf_sort,
  222. .ident = "HP ProLiant BL20p G3",
  223. .matches = {
  224. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  225. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL20p G3"),
  226. },
  227. },
  228. {
  229. .callback = set_bf_sort,
  230. .ident = "HP ProLiant BL20p G4",
  231. .matches = {
  232. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  233. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL20p G4"),
  234. },
  235. },
  236. {
  237. .callback = set_bf_sort,
  238. .ident = "HP ProLiant BL30p G1",
  239. .matches = {
  240. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  241. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL30p G1"),
  242. },
  243. },
  244. {
  245. .callback = set_bf_sort,
  246. .ident = "HP ProLiant BL25p G1",
  247. .matches = {
  248. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  249. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL25p G1"),
  250. },
  251. },
  252. {
  253. .callback = set_bf_sort,
  254. .ident = "HP ProLiant BL35p G1",
  255. .matches = {
  256. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  257. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL35p G1"),
  258. },
  259. },
  260. {
  261. .callback = set_bf_sort,
  262. .ident = "HP ProLiant BL45p G1",
  263. .matches = {
  264. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  265. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL45p G1"),
  266. },
  267. },
  268. {
  269. .callback = set_bf_sort,
  270. .ident = "HP ProLiant BL45p G2",
  271. .matches = {
  272. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  273. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL45p G2"),
  274. },
  275. },
  276. {
  277. .callback = set_bf_sort,
  278. .ident = "HP ProLiant BL460c G1",
  279. .matches = {
  280. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  281. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL460c G1"),
  282. },
  283. },
  284. {
  285. .callback = set_bf_sort,
  286. .ident = "HP ProLiant BL465c G1",
  287. .matches = {
  288. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  289. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL465c G1"),
  290. },
  291. },
  292. {
  293. .callback = set_bf_sort,
  294. .ident = "HP ProLiant BL480c G1",
  295. .matches = {
  296. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  297. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL480c G1"),
  298. },
  299. },
  300. {
  301. .callback = set_bf_sort,
  302. .ident = "HP ProLiant BL685c G1",
  303. .matches = {
  304. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  305. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL685c G1"),
  306. },
  307. },
  308. {
  309. .callback = set_bf_sort,
  310. .ident = "HP ProLiant DL360",
  311. .matches = {
  312. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  313. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL360"),
  314. },
  315. },
  316. {
  317. .callback = set_bf_sort,
  318. .ident = "HP ProLiant DL380",
  319. .matches = {
  320. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  321. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL380"),
  322. },
  323. },
  324. #ifdef __i386__
  325. {
  326. .callback = assign_all_busses,
  327. .ident = "Compaq EVO N800c",
  328. .matches = {
  329. DMI_MATCH(DMI_SYS_VENDOR, "Compaq"),
  330. DMI_MATCH(DMI_PRODUCT_NAME, "EVO N800c"),
  331. },
  332. },
  333. #endif
  334. {
  335. .callback = set_bf_sort,
  336. .ident = "HP ProLiant DL385 G2",
  337. .matches = {
  338. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  339. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL385 G2"),
  340. },
  341. },
  342. {
  343. .callback = set_bf_sort,
  344. .ident = "HP ProLiant DL585 G2",
  345. .matches = {
  346. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  347. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL585 G2"),
  348. },
  349. },
  350. {}
  351. };
  352. void __init dmi_check_pciprobe(void)
  353. {
  354. dmi_check_system(pciprobe_dmi_table);
  355. }
  356. struct pci_bus * __devinit pcibios_scan_root(int busnum)
  357. {
  358. struct pci_bus *bus = NULL;
  359. struct pci_sysdata *sd;
  360. while ((bus = pci_find_next_bus(bus)) != NULL) {
  361. if (bus->number == busnum) {
  362. /* Already scanned */
  363. return bus;
  364. }
  365. }
  366. /* Allocate per-root-bus (not per bus) arch-specific data.
  367. * TODO: leak; this memory is never freed.
  368. * It's arguable whether it's worth the trouble to care.
  369. */
  370. sd = kzalloc(sizeof(*sd), GFP_KERNEL);
  371. if (!sd) {
  372. printk(KERN_ERR "PCI: OOM, not probing PCI bus %02x\n", busnum);
  373. return NULL;
  374. }
  375. sd->node = get_mp_bus_to_node(busnum);
  376. printk(KERN_DEBUG "PCI: Probing PCI hardware (bus %02x)\n", busnum);
  377. bus = pci_scan_bus_parented(NULL, busnum, &pci_root_ops, sd);
  378. if (!bus)
  379. kfree(sd);
  380. return bus;
  381. }
  382. int __init pcibios_init(void)
  383. {
  384. struct cpuinfo_x86 *c = &boot_cpu_data;
  385. if (!raw_pci_ops) {
  386. printk(KERN_WARNING "PCI: System does not support PCI\n");
  387. return 0;
  388. }
  389. /*
  390. * Set PCI cacheline size to that of the CPU if the CPU has reported it.
  391. * (For older CPUs that don't support cpuid, we se it to 32 bytes
  392. * It's also good for 386/486s (which actually have 16)
  393. * as quite a few PCI devices do not support smaller values.
  394. */
  395. if (c->x86_clflush_size > 0) {
  396. pci_dfl_cache_line_size = c->x86_clflush_size >> 2;
  397. printk(KERN_DEBUG "PCI: pci_cache_line_size set to %d bytes\n",
  398. pci_dfl_cache_line_size << 2);
  399. } else {
  400. pci_dfl_cache_line_size = 32 >> 2;
  401. printk(KERN_DEBUG "PCI: Unknown cacheline size. Setting to 32 bytes\n");
  402. }
  403. pcibios_resource_survey();
  404. if (pci_bf_sort >= pci_force_bf)
  405. pci_sort_breadthfirst();
  406. return 0;
  407. }
  408. char * __devinit pcibios_setup(char *str)
  409. {
  410. if (!strcmp(str, "off")) {
  411. pci_probe = 0;
  412. return NULL;
  413. } else if (!strcmp(str, "bfsort")) {
  414. pci_bf_sort = pci_force_bf;
  415. return NULL;
  416. } else if (!strcmp(str, "nobfsort")) {
  417. pci_bf_sort = pci_force_nobf;
  418. return NULL;
  419. }
  420. #ifdef CONFIG_PCI_BIOS
  421. else if (!strcmp(str, "bios")) {
  422. pci_probe = PCI_PROBE_BIOS;
  423. return NULL;
  424. } else if (!strcmp(str, "nobios")) {
  425. pci_probe &= ~PCI_PROBE_BIOS;
  426. return NULL;
  427. } else if (!strcmp(str, "biosirq")) {
  428. pci_probe |= PCI_BIOS_IRQ_SCAN;
  429. return NULL;
  430. } else if (!strncmp(str, "pirqaddr=", 9)) {
  431. pirq_table_addr = simple_strtoul(str+9, NULL, 0);
  432. return NULL;
  433. }
  434. #endif
  435. #ifdef CONFIG_PCI_DIRECT
  436. else if (!strcmp(str, "conf1")) {
  437. pci_probe = PCI_PROBE_CONF1 | PCI_NO_CHECKS;
  438. return NULL;
  439. }
  440. else if (!strcmp(str, "conf2")) {
  441. pci_probe = PCI_PROBE_CONF2 | PCI_NO_CHECKS;
  442. return NULL;
  443. }
  444. #endif
  445. #ifdef CONFIG_PCI_MMCONFIG
  446. else if (!strcmp(str, "nommconf")) {
  447. pci_probe &= ~PCI_PROBE_MMCONF;
  448. return NULL;
  449. }
  450. else if (!strcmp(str, "check_enable_amd_mmconf")) {
  451. pci_probe |= PCI_CHECK_ENABLE_AMD_MMCONF;
  452. return NULL;
  453. }
  454. #endif
  455. else if (!strcmp(str, "noacpi")) {
  456. acpi_noirq_set();
  457. return NULL;
  458. }
  459. else if (!strcmp(str, "noearly")) {
  460. pci_probe |= PCI_PROBE_NOEARLY;
  461. return NULL;
  462. }
  463. #ifndef CONFIG_X86_VISWS
  464. else if (!strcmp(str, "usepirqmask")) {
  465. pci_probe |= PCI_USE_PIRQ_MASK;
  466. return NULL;
  467. } else if (!strncmp(str, "irqmask=", 8)) {
  468. pcibios_irq_mask = simple_strtol(str+8, NULL, 0);
  469. return NULL;
  470. } else if (!strncmp(str, "lastbus=", 8)) {
  471. pcibios_last_bus = simple_strtol(str+8, NULL, 0);
  472. return NULL;
  473. }
  474. #endif
  475. else if (!strcmp(str, "rom")) {
  476. pci_probe |= PCI_ASSIGN_ROMS;
  477. return NULL;
  478. } else if (!strcmp(str, "norom")) {
  479. pci_probe |= PCI_NOASSIGN_ROMS;
  480. return NULL;
  481. } else if (!strcmp(str, "assign-busses")) {
  482. pci_probe |= PCI_ASSIGN_ALL_BUSSES;
  483. return NULL;
  484. } else if (!strcmp(str, "use_crs")) {
  485. pci_probe |= PCI_USE__CRS;
  486. return NULL;
  487. } else if (!strcmp(str, "earlydump")) {
  488. pci_early_dump_regs = 1;
  489. return NULL;
  490. } else if (!strcmp(str, "routeirq")) {
  491. pci_routeirq = 1;
  492. return NULL;
  493. } else if (!strcmp(str, "skip_isa_align")) {
  494. pci_probe |= PCI_CAN_SKIP_ISA_ALIGN;
  495. return NULL;
  496. } else if (!strcmp(str, "noioapicquirk")) {
  497. noioapicquirk = 1;
  498. return NULL;
  499. } else if (!strcmp(str, "ioapicreroute")) {
  500. if (noioapicreroute != -1)
  501. noioapicreroute = 0;
  502. return NULL;
  503. } else if (!strcmp(str, "noioapicreroute")) {
  504. if (noioapicreroute != -1)
  505. noioapicreroute = 1;
  506. return NULL;
  507. }
  508. return str;
  509. }
  510. unsigned int pcibios_assign_all_busses(void)
  511. {
  512. return (pci_probe & PCI_ASSIGN_ALL_BUSSES) ? 1 : 0;
  513. }
  514. int pcibios_enable_device(struct pci_dev *dev, int mask)
  515. {
  516. int err;
  517. if ((err = pci_enable_resources(dev, mask)) < 0)
  518. return err;
  519. if (!pci_dev_msi_enabled(dev))
  520. return pcibios_enable_irq(dev);
  521. return 0;
  522. }
  523. void pcibios_disable_device (struct pci_dev *dev)
  524. {
  525. if (!pci_dev_msi_enabled(dev) && pcibios_disable_irq)
  526. pcibios_disable_irq(dev);
  527. }
  528. int pci_ext_cfg_avail(struct pci_dev *dev)
  529. {
  530. if (raw_pci_ext_ops)
  531. return 1;
  532. else
  533. return 0;
  534. }
  535. struct pci_bus * __devinit pci_scan_bus_on_node(int busno, struct pci_ops *ops, int node)
  536. {
  537. struct pci_bus *bus = NULL;
  538. struct pci_sysdata *sd;
  539. /*
  540. * Allocate per-root-bus (not per bus) arch-specific data.
  541. * TODO: leak; this memory is never freed.
  542. * It's arguable whether it's worth the trouble to care.
  543. */
  544. sd = kzalloc(sizeof(*sd), GFP_KERNEL);
  545. if (!sd) {
  546. printk(KERN_ERR "PCI: OOM, skipping PCI bus %02x\n", busno);
  547. return NULL;
  548. }
  549. sd->node = node;
  550. bus = pci_scan_bus(busno, ops, sd);
  551. if (!bus)
  552. kfree(sd);
  553. return bus;
  554. }
  555. struct pci_bus * __devinit pci_scan_bus_with_sysdata(int busno)
  556. {
  557. return pci_scan_bus_on_node(busno, &pci_root_ops, -1);
  558. }
  559. /*
  560. * NUMA info for PCI busses
  561. *
  562. * Early arch code is responsible for filling in reasonable values here.
  563. * A node id of "-1" means "use current node". In other words, if a bus
  564. * has a -1 node id, it's not tightly coupled to any particular chunk
  565. * of memory (as is the case on some Nehalem systems).
  566. */
  567. #ifdef CONFIG_NUMA
  568. #define BUS_NR 256
  569. #ifdef CONFIG_X86_64
  570. static int mp_bus_to_node[BUS_NR] = {
  571. [0 ... BUS_NR - 1] = -1
  572. };
  573. void set_mp_bus_to_node(int busnum, int node)
  574. {
  575. if (busnum >= 0 && busnum < BUS_NR)
  576. mp_bus_to_node[busnum] = node;
  577. }
  578. int get_mp_bus_to_node(int busnum)
  579. {
  580. int node = -1;
  581. if (busnum < 0 || busnum > (BUS_NR - 1))
  582. return node;
  583. node = mp_bus_to_node[busnum];
  584. /*
  585. * let numa_node_id to decide it later in dma_alloc_pages
  586. * if there is no ram on that node
  587. */
  588. if (node != -1 && !node_online(node))
  589. node = -1;
  590. return node;
  591. }
  592. #else /* CONFIG_X86_32 */
  593. static int mp_bus_to_node[BUS_NR] = {
  594. [0 ... BUS_NR - 1] = -1
  595. };
  596. void set_mp_bus_to_node(int busnum, int node)
  597. {
  598. if (busnum >= 0 && busnum < BUS_NR)
  599. mp_bus_to_node[busnum] = (unsigned char) node;
  600. }
  601. int get_mp_bus_to_node(int busnum)
  602. {
  603. int node;
  604. if (busnum < 0 || busnum > (BUS_NR - 1))
  605. return 0;
  606. node = mp_bus_to_node[busnum];
  607. return node;
  608. }
  609. #endif /* CONFIG_X86_32 */
  610. #endif /* CONFIG_NUMA */