process_32.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. *
  4. * Pentium III FXSR, SSE support
  5. * Gareth Hughes <gareth@valinux.com>, May 2000
  6. */
  7. /*
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <linux/stackprotector.h>
  11. #include <linux/cpu.h>
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/fs.h>
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/elfcore.h>
  18. #include <linux/smp.h>
  19. #include <linux/stddef.h>
  20. #include <linux/slab.h>
  21. #include <linux/vmalloc.h>
  22. #include <linux/user.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/delay.h>
  25. #include <linux/reboot.h>
  26. #include <linux/init.h>
  27. #include <linux/mc146818rtc.h>
  28. #include <linux/module.h>
  29. #include <linux/kallsyms.h>
  30. #include <linux/ptrace.h>
  31. #include <linux/personality.h>
  32. #include <linux/tick.h>
  33. #include <linux/percpu.h>
  34. #include <linux/prctl.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/uaccess.h>
  37. #include <linux/io.h>
  38. #include <linux/kdebug.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/system.h>
  41. #include <asm/ldt.h>
  42. #include <asm/processor.h>
  43. #include <asm/i387.h>
  44. #include <asm/desc.h>
  45. #ifdef CONFIG_MATH_EMULATION
  46. #include <asm/math_emu.h>
  47. #endif
  48. #include <linux/err.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/cpu.h>
  51. #include <asm/idle.h>
  52. #include <asm/syscalls.h>
  53. #include <asm/ds.h>
  54. #include <asm/debugreg.h>
  55. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  56. /*
  57. * Return saved PC of a blocked thread.
  58. */
  59. unsigned long thread_saved_pc(struct task_struct *tsk)
  60. {
  61. return ((unsigned long *)tsk->thread.sp)[3];
  62. }
  63. #ifndef CONFIG_SMP
  64. static inline void play_dead(void)
  65. {
  66. BUG();
  67. }
  68. #endif
  69. /*
  70. * The idle thread. There's no useful work to be
  71. * done, so just try to conserve power and have a
  72. * low exit latency (ie sit in a loop waiting for
  73. * somebody to say that they'd like to reschedule)
  74. */
  75. void cpu_idle(void)
  76. {
  77. int cpu = smp_processor_id();
  78. /*
  79. * If we're the non-boot CPU, nothing set the stack canary up
  80. * for us. CPU0 already has it initialized but no harm in
  81. * doing it again. This is a good place for updating it, as
  82. * we wont ever return from this function (so the invalid
  83. * canaries already on the stack wont ever trigger).
  84. */
  85. boot_init_stack_canary();
  86. current_thread_info()->status |= TS_POLLING;
  87. /* endless idle loop with no priority at all */
  88. while (1) {
  89. tick_nohz_stop_sched_tick(1);
  90. while (!need_resched()) {
  91. check_pgt_cache();
  92. rmb();
  93. if (cpu_is_offline(cpu))
  94. play_dead();
  95. local_irq_disable();
  96. /* Don't trace irqs off for idle */
  97. stop_critical_timings();
  98. pm_idle();
  99. start_critical_timings();
  100. }
  101. tick_nohz_restart_sched_tick();
  102. preempt_enable_no_resched();
  103. schedule();
  104. preempt_disable();
  105. }
  106. }
  107. void __show_regs(struct pt_regs *regs, int all)
  108. {
  109. unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  110. unsigned long d0, d1, d2, d3, d6, d7;
  111. unsigned long sp;
  112. unsigned short ss, gs;
  113. if (user_mode_vm(regs)) {
  114. sp = regs->sp;
  115. ss = regs->ss & 0xffff;
  116. gs = get_user_gs(regs);
  117. } else {
  118. sp = kernel_stack_pointer(regs);
  119. savesegment(ss, ss);
  120. savesegment(gs, gs);
  121. }
  122. show_regs_common();
  123. printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
  124. (u16)regs->cs, regs->ip, regs->flags,
  125. smp_processor_id());
  126. print_symbol("EIP is at %s\n", regs->ip);
  127. printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  128. regs->ax, regs->bx, regs->cx, regs->dx);
  129. printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
  130. regs->si, regs->di, regs->bp, sp);
  131. printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
  132. (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
  133. if (!all)
  134. return;
  135. cr0 = read_cr0();
  136. cr2 = read_cr2();
  137. cr3 = read_cr3();
  138. cr4 = read_cr4_safe();
  139. printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
  140. cr0, cr2, cr3, cr4);
  141. get_debugreg(d0, 0);
  142. get_debugreg(d1, 1);
  143. get_debugreg(d2, 2);
  144. get_debugreg(d3, 3);
  145. printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
  146. d0, d1, d2, d3);
  147. get_debugreg(d6, 6);
  148. get_debugreg(d7, 7);
  149. printk("DR6: %08lx DR7: %08lx\n",
  150. d6, d7);
  151. }
  152. void show_regs(struct pt_regs *regs)
  153. {
  154. show_registers(regs);
  155. show_trace(NULL, regs, &regs->sp, regs->bp);
  156. }
  157. /*
  158. * This gets run with %bx containing the
  159. * function to call, and %dx containing
  160. * the "args".
  161. */
  162. extern void kernel_thread_helper(void);
  163. /*
  164. * Create a kernel thread
  165. */
  166. int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  167. {
  168. struct pt_regs regs;
  169. memset(&regs, 0, sizeof(regs));
  170. regs.bx = (unsigned long) fn;
  171. regs.dx = (unsigned long) arg;
  172. regs.ds = __USER_DS;
  173. regs.es = __USER_DS;
  174. regs.fs = __KERNEL_PERCPU;
  175. regs.gs = __KERNEL_STACK_CANARY;
  176. regs.orig_ax = -1;
  177. regs.ip = (unsigned long) kernel_thread_helper;
  178. regs.cs = __KERNEL_CS | get_kernel_rpl();
  179. regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
  180. /* Ok, create the new process.. */
  181. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  182. }
  183. EXPORT_SYMBOL(kernel_thread);
  184. void release_thread(struct task_struct *dead_task)
  185. {
  186. BUG_ON(dead_task->mm);
  187. release_vm86_irqs(dead_task);
  188. }
  189. /*
  190. * This gets called before we allocate a new thread and copy
  191. * the current task into it.
  192. */
  193. void prepare_to_copy(struct task_struct *tsk)
  194. {
  195. unlazy_fpu(tsk);
  196. }
  197. int copy_thread(unsigned long clone_flags, unsigned long sp,
  198. unsigned long unused,
  199. struct task_struct *p, struct pt_regs *regs)
  200. {
  201. struct pt_regs *childregs;
  202. struct task_struct *tsk;
  203. int err;
  204. childregs = task_pt_regs(p);
  205. *childregs = *regs;
  206. childregs->ax = 0;
  207. childregs->sp = sp;
  208. p->thread.sp = (unsigned long) childregs;
  209. p->thread.sp0 = (unsigned long) (childregs+1);
  210. p->thread.ip = (unsigned long) ret_from_fork;
  211. task_user_gs(p) = get_user_gs(regs);
  212. p->thread.io_bitmap_ptr = NULL;
  213. tsk = current;
  214. err = -ENOMEM;
  215. memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
  216. if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
  217. p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
  218. IO_BITMAP_BYTES, GFP_KERNEL);
  219. if (!p->thread.io_bitmap_ptr) {
  220. p->thread.io_bitmap_max = 0;
  221. return -ENOMEM;
  222. }
  223. set_tsk_thread_flag(p, TIF_IO_BITMAP);
  224. }
  225. err = 0;
  226. /*
  227. * Set a new TLS for the child thread?
  228. */
  229. if (clone_flags & CLONE_SETTLS)
  230. err = do_set_thread_area(p, -1,
  231. (struct user_desc __user *)childregs->si, 0);
  232. if (err && p->thread.io_bitmap_ptr) {
  233. kfree(p->thread.io_bitmap_ptr);
  234. p->thread.io_bitmap_max = 0;
  235. }
  236. clear_tsk_thread_flag(p, TIF_DS_AREA_MSR);
  237. p->thread.ds_ctx = NULL;
  238. clear_tsk_thread_flag(p, TIF_DEBUGCTLMSR);
  239. p->thread.debugctlmsr = 0;
  240. return err;
  241. }
  242. void
  243. start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
  244. {
  245. set_user_gs(regs, 0);
  246. regs->fs = 0;
  247. set_fs(USER_DS);
  248. regs->ds = __USER_DS;
  249. regs->es = __USER_DS;
  250. regs->ss = __USER_DS;
  251. regs->cs = __USER_CS;
  252. regs->ip = new_ip;
  253. regs->sp = new_sp;
  254. /*
  255. * Free the old FP and other extended state
  256. */
  257. free_thread_xstate(current);
  258. }
  259. EXPORT_SYMBOL_GPL(start_thread);
  260. /*
  261. * switch_to(x,yn) should switch tasks from x to y.
  262. *
  263. * We fsave/fwait so that an exception goes off at the right time
  264. * (as a call from the fsave or fwait in effect) rather than to
  265. * the wrong process. Lazy FP saving no longer makes any sense
  266. * with modern CPU's, and this simplifies a lot of things (SMP
  267. * and UP become the same).
  268. *
  269. * NOTE! We used to use the x86 hardware context switching. The
  270. * reason for not using it any more becomes apparent when you
  271. * try to recover gracefully from saved state that is no longer
  272. * valid (stale segment register values in particular). With the
  273. * hardware task-switch, there is no way to fix up bad state in
  274. * a reasonable manner.
  275. *
  276. * The fact that Intel documents the hardware task-switching to
  277. * be slow is a fairly red herring - this code is not noticeably
  278. * faster. However, there _is_ some room for improvement here,
  279. * so the performance issues may eventually be a valid point.
  280. * More important, however, is the fact that this allows us much
  281. * more flexibility.
  282. *
  283. * The return value (in %ax) will be the "prev" task after
  284. * the task-switch, and shows up in ret_from_fork in entry.S,
  285. * for example.
  286. */
  287. __notrace_funcgraph struct task_struct *
  288. __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
  289. {
  290. struct thread_struct *prev = &prev_p->thread,
  291. *next = &next_p->thread;
  292. int cpu = smp_processor_id();
  293. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  294. bool preload_fpu;
  295. /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
  296. /*
  297. * If the task has used fpu the last 5 timeslices, just do a full
  298. * restore of the math state immediately to avoid the trap; the
  299. * chances of needing FPU soon are obviously high now
  300. */
  301. preload_fpu = tsk_used_math(next_p) && next_p->fpu_counter > 5;
  302. __unlazy_fpu(prev_p);
  303. /* we're going to use this soon, after a few expensive things */
  304. if (preload_fpu)
  305. prefetch(next->xstate);
  306. /*
  307. * Reload esp0.
  308. */
  309. load_sp0(tss, next);
  310. /*
  311. * Save away %gs. No need to save %fs, as it was saved on the
  312. * stack on entry. No need to save %es and %ds, as those are
  313. * always kernel segments while inside the kernel. Doing this
  314. * before setting the new TLS descriptors avoids the situation
  315. * where we temporarily have non-reloadable segments in %fs
  316. * and %gs. This could be an issue if the NMI handler ever
  317. * used %fs or %gs (it does not today), or if the kernel is
  318. * running inside of a hypervisor layer.
  319. */
  320. lazy_save_gs(prev->gs);
  321. /*
  322. * Load the per-thread Thread-Local Storage descriptor.
  323. */
  324. load_TLS(next, cpu);
  325. /*
  326. * Restore IOPL if needed. In normal use, the flags restore
  327. * in the switch assembly will handle this. But if the kernel
  328. * is running virtualized at a non-zero CPL, the popf will
  329. * not restore flags, so it must be done in a separate step.
  330. */
  331. if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
  332. set_iopl_mask(next->iopl);
  333. /*
  334. * Now maybe handle debug registers and/or IO bitmaps
  335. */
  336. if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
  337. task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
  338. __switch_to_xtra(prev_p, next_p, tss);
  339. /* If we're going to preload the fpu context, make sure clts
  340. is run while we're batching the cpu state updates. */
  341. if (preload_fpu)
  342. clts();
  343. /*
  344. * Leave lazy mode, flushing any hypercalls made here.
  345. * This must be done before restoring TLS segments so
  346. * the GDT and LDT are properly updated, and must be
  347. * done before math_state_restore, so the TS bit is up
  348. * to date.
  349. */
  350. arch_end_context_switch(next_p);
  351. if (preload_fpu)
  352. __math_state_restore();
  353. /*
  354. * Restore %gs if needed (which is common)
  355. */
  356. if (prev->gs | next->gs)
  357. lazy_load_gs(next->gs);
  358. percpu_write(current_task, next_p);
  359. return prev_p;
  360. }
  361. int sys_clone(struct pt_regs *regs)
  362. {
  363. unsigned long clone_flags;
  364. unsigned long newsp;
  365. int __user *parent_tidptr, *child_tidptr;
  366. clone_flags = regs->bx;
  367. newsp = regs->cx;
  368. parent_tidptr = (int __user *)regs->dx;
  369. child_tidptr = (int __user *)regs->di;
  370. if (!newsp)
  371. newsp = regs->sp;
  372. return do_fork(clone_flags, newsp, regs, 0, parent_tidptr, child_tidptr);
  373. }
  374. /*
  375. * sys_execve() executes a new program.
  376. */
  377. int sys_execve(struct pt_regs *regs)
  378. {
  379. int error;
  380. char *filename;
  381. filename = getname((char __user *) regs->bx);
  382. error = PTR_ERR(filename);
  383. if (IS_ERR(filename))
  384. goto out;
  385. error = do_execve(filename,
  386. (char __user * __user *) regs->cx,
  387. (char __user * __user *) regs->dx,
  388. regs);
  389. if (error == 0) {
  390. /* Make sure we don't return using sysenter.. */
  391. set_thread_flag(TIF_IRET);
  392. }
  393. putname(filename);
  394. out:
  395. return error;
  396. }
  397. #define top_esp (THREAD_SIZE - sizeof(unsigned long))
  398. #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
  399. unsigned long get_wchan(struct task_struct *p)
  400. {
  401. unsigned long bp, sp, ip;
  402. unsigned long stack_page;
  403. int count = 0;
  404. if (!p || p == current || p->state == TASK_RUNNING)
  405. return 0;
  406. stack_page = (unsigned long)task_stack_page(p);
  407. sp = p->thread.sp;
  408. if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
  409. return 0;
  410. /* include/asm-i386/system.h:switch_to() pushes bp last. */
  411. bp = *(unsigned long *) sp;
  412. do {
  413. if (bp < stack_page || bp > top_ebp+stack_page)
  414. return 0;
  415. ip = *(unsigned long *) (bp+4);
  416. if (!in_sched_functions(ip))
  417. return ip;
  418. bp = *(unsigned long *) bp;
  419. } while (count++ < 16);
  420. return 0;
  421. }