intel_cacheinfo.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009
  1. /*
  2. * Routines to indentify caches on Intel CPU.
  3. *
  4. * Changes:
  5. * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
  6. * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
  7. * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
  8. */
  9. #include <linux/init.h>
  10. #include <linux/slab.h>
  11. #include <linux/device.h>
  12. #include <linux/compiler.h>
  13. #include <linux/cpu.h>
  14. #include <linux/sched.h>
  15. #include <linux/pci.h>
  16. #include <asm/processor.h>
  17. #include <linux/smp.h>
  18. #include <asm/k8.h>
  19. #define LVL_1_INST 1
  20. #define LVL_1_DATA 2
  21. #define LVL_2 3
  22. #define LVL_3 4
  23. #define LVL_TRACE 5
  24. struct _cache_table {
  25. unsigned char descriptor;
  26. char cache_type;
  27. short size;
  28. };
  29. /* All the cache descriptor types we care about (no TLB or
  30. trace cache entries) */
  31. static const struct _cache_table __cpuinitconst cache_table[] =
  32. {
  33. { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
  34. { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
  35. { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */
  36. { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
  37. { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
  38. { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */
  39. { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */
  40. { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  41. { 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  42. { 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  43. { 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  44. { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
  45. { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
  46. { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  47. { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
  48. { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
  49. { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  50. { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
  51. { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  52. { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */
  53. { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
  54. { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
  55. { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
  56. { 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */
  57. { 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */
  58. { 0x46, LVL_3, 4096 }, /* 4-way set assoc, 64 byte line size */
  59. { 0x47, LVL_3, 8192 }, /* 8-way set assoc, 64 byte line size */
  60. { 0x49, LVL_3, 4096 }, /* 16-way set assoc, 64 byte line size */
  61. { 0x4a, LVL_3, 6144 }, /* 12-way set assoc, 64 byte line size */
  62. { 0x4b, LVL_3, 8192 }, /* 16-way set assoc, 64 byte line size */
  63. { 0x4c, LVL_3, 12288 }, /* 12-way set assoc, 64 byte line size */
  64. { 0x4d, LVL_3, 16384 }, /* 16-way set assoc, 64 byte line size */
  65. { 0x4e, LVL_2, 6144 }, /* 24-way set assoc, 64 byte line size */
  66. { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  67. { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  68. { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  69. { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  70. { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
  71. { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
  72. { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
  73. { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
  74. { 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */
  75. { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  76. { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  77. { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  78. { 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  79. { 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */
  80. { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
  81. { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
  82. { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
  83. { 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */
  84. { 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */
  85. { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
  86. { 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */
  87. { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */
  88. { 0xd1, LVL_3, 1024 }, /* 4-way set assoc, 64 byte line size */
  89. { 0xd2, LVL_3, 2048 }, /* 4-way set assoc, 64 byte line size */
  90. { 0xd6, LVL_3, 1024 }, /* 8-way set assoc, 64 byte line size */
  91. { 0xd7, LVL_3, 2048 }, /* 8-way set assoc, 64 byte line size */
  92. { 0xd8, LVL_3, 4096 }, /* 12-way set assoc, 64 byte line size */
  93. { 0xdc, LVL_3, 2048 }, /* 12-way set assoc, 64 byte line size */
  94. { 0xdd, LVL_3, 4096 }, /* 12-way set assoc, 64 byte line size */
  95. { 0xde, LVL_3, 8192 }, /* 12-way set assoc, 64 byte line size */
  96. { 0xe2, LVL_3, 2048 }, /* 16-way set assoc, 64 byte line size */
  97. { 0xe3, LVL_3, 4096 }, /* 16-way set assoc, 64 byte line size */
  98. { 0xe4, LVL_3, 8192 }, /* 16-way set assoc, 64 byte line size */
  99. { 0xea, LVL_3, 12288 }, /* 24-way set assoc, 64 byte line size */
  100. { 0xeb, LVL_3, 18432 }, /* 24-way set assoc, 64 byte line size */
  101. { 0xec, LVL_3, 24576 }, /* 24-way set assoc, 64 byte line size */
  102. { 0x00, 0, 0}
  103. };
  104. enum _cache_type {
  105. CACHE_TYPE_NULL = 0,
  106. CACHE_TYPE_DATA = 1,
  107. CACHE_TYPE_INST = 2,
  108. CACHE_TYPE_UNIFIED = 3
  109. };
  110. union _cpuid4_leaf_eax {
  111. struct {
  112. enum _cache_type type:5;
  113. unsigned int level:3;
  114. unsigned int is_self_initializing:1;
  115. unsigned int is_fully_associative:1;
  116. unsigned int reserved:4;
  117. unsigned int num_threads_sharing:12;
  118. unsigned int num_cores_on_die:6;
  119. } split;
  120. u32 full;
  121. };
  122. union _cpuid4_leaf_ebx {
  123. struct {
  124. unsigned int coherency_line_size:12;
  125. unsigned int physical_line_partition:10;
  126. unsigned int ways_of_associativity:10;
  127. } split;
  128. u32 full;
  129. };
  130. union _cpuid4_leaf_ecx {
  131. struct {
  132. unsigned int number_of_sets:32;
  133. } split;
  134. u32 full;
  135. };
  136. struct _cpuid4_info {
  137. union _cpuid4_leaf_eax eax;
  138. union _cpuid4_leaf_ebx ebx;
  139. union _cpuid4_leaf_ecx ecx;
  140. unsigned long size;
  141. unsigned long can_disable;
  142. DECLARE_BITMAP(shared_cpu_map, NR_CPUS);
  143. };
  144. /* subset of above _cpuid4_info w/o shared_cpu_map */
  145. struct _cpuid4_info_regs {
  146. union _cpuid4_leaf_eax eax;
  147. union _cpuid4_leaf_ebx ebx;
  148. union _cpuid4_leaf_ecx ecx;
  149. unsigned long size;
  150. unsigned long can_disable;
  151. };
  152. unsigned short num_cache_leaves;
  153. /* AMD doesn't have CPUID4. Emulate it here to report the same
  154. information to the user. This makes some assumptions about the machine:
  155. L2 not shared, no SMT etc. that is currently true on AMD CPUs.
  156. In theory the TLBs could be reported as fake type (they are in "dummy").
  157. Maybe later */
  158. union l1_cache {
  159. struct {
  160. unsigned line_size:8;
  161. unsigned lines_per_tag:8;
  162. unsigned assoc:8;
  163. unsigned size_in_kb:8;
  164. };
  165. unsigned val;
  166. };
  167. union l2_cache {
  168. struct {
  169. unsigned line_size:8;
  170. unsigned lines_per_tag:4;
  171. unsigned assoc:4;
  172. unsigned size_in_kb:16;
  173. };
  174. unsigned val;
  175. };
  176. union l3_cache {
  177. struct {
  178. unsigned line_size:8;
  179. unsigned lines_per_tag:4;
  180. unsigned assoc:4;
  181. unsigned res:2;
  182. unsigned size_encoded:14;
  183. };
  184. unsigned val;
  185. };
  186. static const unsigned short __cpuinitconst assocs[] = {
  187. [1] = 1,
  188. [2] = 2,
  189. [4] = 4,
  190. [6] = 8,
  191. [8] = 16,
  192. [0xa] = 32,
  193. [0xb] = 48,
  194. [0xc] = 64,
  195. [0xd] = 96,
  196. [0xe] = 128,
  197. [0xf] = 0xffff /* fully associative - no way to show this currently */
  198. };
  199. static const unsigned char __cpuinitconst levels[] = { 1, 1, 2, 3 };
  200. static const unsigned char __cpuinitconst types[] = { 1, 2, 3, 3 };
  201. static void __cpuinit
  202. amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
  203. union _cpuid4_leaf_ebx *ebx,
  204. union _cpuid4_leaf_ecx *ecx)
  205. {
  206. unsigned dummy;
  207. unsigned line_size, lines_per_tag, assoc, size_in_kb;
  208. union l1_cache l1i, l1d;
  209. union l2_cache l2;
  210. union l3_cache l3;
  211. union l1_cache *l1 = &l1d;
  212. eax->full = 0;
  213. ebx->full = 0;
  214. ecx->full = 0;
  215. cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
  216. cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
  217. switch (leaf) {
  218. case 1:
  219. l1 = &l1i;
  220. case 0:
  221. if (!l1->val)
  222. return;
  223. assoc = assocs[l1->assoc];
  224. line_size = l1->line_size;
  225. lines_per_tag = l1->lines_per_tag;
  226. size_in_kb = l1->size_in_kb;
  227. break;
  228. case 2:
  229. if (!l2.val)
  230. return;
  231. assoc = assocs[l2.assoc];
  232. line_size = l2.line_size;
  233. lines_per_tag = l2.lines_per_tag;
  234. /* cpu_data has errata corrections for K7 applied */
  235. size_in_kb = current_cpu_data.x86_cache_size;
  236. break;
  237. case 3:
  238. if (!l3.val)
  239. return;
  240. assoc = assocs[l3.assoc];
  241. line_size = l3.line_size;
  242. lines_per_tag = l3.lines_per_tag;
  243. size_in_kb = l3.size_encoded * 512;
  244. if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
  245. size_in_kb = size_in_kb >> 1;
  246. assoc = assoc >> 1;
  247. }
  248. break;
  249. default:
  250. return;
  251. }
  252. eax->split.is_self_initializing = 1;
  253. eax->split.type = types[leaf];
  254. eax->split.level = levels[leaf];
  255. eax->split.num_threads_sharing = 0;
  256. eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1;
  257. if (assoc == 0xffff)
  258. eax->split.is_fully_associative = 1;
  259. ebx->split.coherency_line_size = line_size - 1;
  260. ebx->split.ways_of_associativity = assoc - 1;
  261. ebx->split.physical_line_partition = lines_per_tag - 1;
  262. ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
  263. (ebx->split.ways_of_associativity + 1) - 1;
  264. }
  265. static void __cpuinit
  266. amd_check_l3_disable(int index, struct _cpuid4_info_regs *this_leaf)
  267. {
  268. if (index < 3)
  269. return;
  270. if (boot_cpu_data.x86 == 0x11)
  271. return;
  272. /* see erratum #382 */
  273. if ((boot_cpu_data.x86 == 0x10) && (boot_cpu_data.x86_model < 0x8))
  274. return;
  275. this_leaf->can_disable = 1;
  276. }
  277. static int
  278. __cpuinit cpuid4_cache_lookup_regs(int index,
  279. struct _cpuid4_info_regs *this_leaf)
  280. {
  281. union _cpuid4_leaf_eax eax;
  282. union _cpuid4_leaf_ebx ebx;
  283. union _cpuid4_leaf_ecx ecx;
  284. unsigned edx;
  285. if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
  286. amd_cpuid4(index, &eax, &ebx, &ecx);
  287. if (boot_cpu_data.x86 >= 0x10)
  288. amd_check_l3_disable(index, this_leaf);
  289. } else {
  290. cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
  291. }
  292. if (eax.split.type == CACHE_TYPE_NULL)
  293. return -EIO; /* better error ? */
  294. this_leaf->eax = eax;
  295. this_leaf->ebx = ebx;
  296. this_leaf->ecx = ecx;
  297. this_leaf->size = (ecx.split.number_of_sets + 1) *
  298. (ebx.split.coherency_line_size + 1) *
  299. (ebx.split.physical_line_partition + 1) *
  300. (ebx.split.ways_of_associativity + 1);
  301. return 0;
  302. }
  303. static int __cpuinit find_num_cache_leaves(void)
  304. {
  305. unsigned int eax, ebx, ecx, edx;
  306. union _cpuid4_leaf_eax cache_eax;
  307. int i = -1;
  308. do {
  309. ++i;
  310. /* Do cpuid(4) loop to find out num_cache_leaves */
  311. cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
  312. cache_eax.full = eax;
  313. } while (cache_eax.split.type != CACHE_TYPE_NULL);
  314. return i;
  315. }
  316. unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
  317. {
  318. /* Cache sizes */
  319. unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0;
  320. unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
  321. unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
  322. unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
  323. #ifdef CONFIG_X86_HT
  324. unsigned int cpu = c->cpu_index;
  325. #endif
  326. if (c->cpuid_level > 3) {
  327. static int is_initialized;
  328. if (is_initialized == 0) {
  329. /* Init num_cache_leaves from boot CPU */
  330. num_cache_leaves = find_num_cache_leaves();
  331. is_initialized++;
  332. }
  333. /*
  334. * Whenever possible use cpuid(4), deterministic cache
  335. * parameters cpuid leaf to find the cache details
  336. */
  337. for (i = 0; i < num_cache_leaves; i++) {
  338. struct _cpuid4_info_regs this_leaf;
  339. int retval;
  340. retval = cpuid4_cache_lookup_regs(i, &this_leaf);
  341. if (retval >= 0) {
  342. switch (this_leaf.eax.split.level) {
  343. case 1:
  344. if (this_leaf.eax.split.type ==
  345. CACHE_TYPE_DATA)
  346. new_l1d = this_leaf.size/1024;
  347. else if (this_leaf.eax.split.type ==
  348. CACHE_TYPE_INST)
  349. new_l1i = this_leaf.size/1024;
  350. break;
  351. case 2:
  352. new_l2 = this_leaf.size/1024;
  353. num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
  354. index_msb = get_count_order(num_threads_sharing);
  355. l2_id = c->apicid >> index_msb;
  356. break;
  357. case 3:
  358. new_l3 = this_leaf.size/1024;
  359. num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
  360. index_msb = get_count_order(
  361. num_threads_sharing);
  362. l3_id = c->apicid >> index_msb;
  363. break;
  364. default:
  365. break;
  366. }
  367. }
  368. }
  369. }
  370. /*
  371. * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
  372. * trace cache
  373. */
  374. if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
  375. /* supports eax=2 call */
  376. int j, n;
  377. unsigned int regs[4];
  378. unsigned char *dp = (unsigned char *)regs;
  379. int only_trace = 0;
  380. if (num_cache_leaves != 0 && c->x86 == 15)
  381. only_trace = 1;
  382. /* Number of times to iterate */
  383. n = cpuid_eax(2) & 0xFF;
  384. for (i = 0 ; i < n ; i++) {
  385. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  386. /* If bit 31 is set, this is an unknown format */
  387. for (j = 0 ; j < 3 ; j++)
  388. if (regs[j] & (1 << 31))
  389. regs[j] = 0;
  390. /* Byte 0 is level count, not a descriptor */
  391. for (j = 1 ; j < 16 ; j++) {
  392. unsigned char des = dp[j];
  393. unsigned char k = 0;
  394. /* look up this descriptor in the table */
  395. while (cache_table[k].descriptor != 0) {
  396. if (cache_table[k].descriptor == des) {
  397. if (only_trace && cache_table[k].cache_type != LVL_TRACE)
  398. break;
  399. switch (cache_table[k].cache_type) {
  400. case LVL_1_INST:
  401. l1i += cache_table[k].size;
  402. break;
  403. case LVL_1_DATA:
  404. l1d += cache_table[k].size;
  405. break;
  406. case LVL_2:
  407. l2 += cache_table[k].size;
  408. break;
  409. case LVL_3:
  410. l3 += cache_table[k].size;
  411. break;
  412. case LVL_TRACE:
  413. trace += cache_table[k].size;
  414. break;
  415. }
  416. break;
  417. }
  418. k++;
  419. }
  420. }
  421. }
  422. }
  423. if (new_l1d)
  424. l1d = new_l1d;
  425. if (new_l1i)
  426. l1i = new_l1i;
  427. if (new_l2) {
  428. l2 = new_l2;
  429. #ifdef CONFIG_X86_HT
  430. per_cpu(cpu_llc_id, cpu) = l2_id;
  431. #endif
  432. }
  433. if (new_l3) {
  434. l3 = new_l3;
  435. #ifdef CONFIG_X86_HT
  436. per_cpu(cpu_llc_id, cpu) = l3_id;
  437. #endif
  438. }
  439. c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
  440. return l2;
  441. }
  442. #ifdef CONFIG_SYSFS
  443. /* pointer to _cpuid4_info array (for each cache leaf) */
  444. static DEFINE_PER_CPU(struct _cpuid4_info *, cpuid4_info);
  445. #define CPUID4_INFO_IDX(x, y) (&((per_cpu(cpuid4_info, x))[y]))
  446. #ifdef CONFIG_SMP
  447. static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
  448. {
  449. struct _cpuid4_info *this_leaf, *sibling_leaf;
  450. unsigned long num_threads_sharing;
  451. int index_msb, i;
  452. struct cpuinfo_x86 *c = &cpu_data(cpu);
  453. if ((index == 3) && (c->x86_vendor == X86_VENDOR_AMD)) {
  454. struct cpuinfo_x86 *d;
  455. for_each_online_cpu(i) {
  456. if (!per_cpu(cpuid4_info, i))
  457. continue;
  458. d = &cpu_data(i);
  459. this_leaf = CPUID4_INFO_IDX(i, index);
  460. cpumask_copy(to_cpumask(this_leaf->shared_cpu_map),
  461. d->llc_shared_map);
  462. }
  463. return;
  464. }
  465. this_leaf = CPUID4_INFO_IDX(cpu, index);
  466. num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
  467. if (num_threads_sharing == 1)
  468. cpumask_set_cpu(cpu, to_cpumask(this_leaf->shared_cpu_map));
  469. else {
  470. index_msb = get_count_order(num_threads_sharing);
  471. for_each_online_cpu(i) {
  472. if (cpu_data(i).apicid >> index_msb ==
  473. c->apicid >> index_msb) {
  474. cpumask_set_cpu(i,
  475. to_cpumask(this_leaf->shared_cpu_map));
  476. if (i != cpu && per_cpu(cpuid4_info, i)) {
  477. sibling_leaf =
  478. CPUID4_INFO_IDX(i, index);
  479. cpumask_set_cpu(cpu, to_cpumask(
  480. sibling_leaf->shared_cpu_map));
  481. }
  482. }
  483. }
  484. }
  485. }
  486. static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
  487. {
  488. struct _cpuid4_info *this_leaf, *sibling_leaf;
  489. int sibling;
  490. this_leaf = CPUID4_INFO_IDX(cpu, index);
  491. for_each_cpu(sibling, to_cpumask(this_leaf->shared_cpu_map)) {
  492. sibling_leaf = CPUID4_INFO_IDX(sibling, index);
  493. cpumask_clear_cpu(cpu,
  494. to_cpumask(sibling_leaf->shared_cpu_map));
  495. }
  496. }
  497. #else
  498. static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
  499. {
  500. }
  501. static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
  502. {
  503. }
  504. #endif
  505. static void __cpuinit free_cache_attributes(unsigned int cpu)
  506. {
  507. int i;
  508. for (i = 0; i < num_cache_leaves; i++)
  509. cache_remove_shared_cpu_map(cpu, i);
  510. kfree(per_cpu(cpuid4_info, cpu));
  511. per_cpu(cpuid4_info, cpu) = NULL;
  512. }
  513. static int
  514. __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
  515. {
  516. struct _cpuid4_info_regs *leaf_regs =
  517. (struct _cpuid4_info_regs *)this_leaf;
  518. return cpuid4_cache_lookup_regs(index, leaf_regs);
  519. }
  520. static void __cpuinit get_cpu_leaves(void *_retval)
  521. {
  522. int j, *retval = _retval, cpu = smp_processor_id();
  523. /* Do cpuid and store the results */
  524. for (j = 0; j < num_cache_leaves; j++) {
  525. struct _cpuid4_info *this_leaf;
  526. this_leaf = CPUID4_INFO_IDX(cpu, j);
  527. *retval = cpuid4_cache_lookup(j, this_leaf);
  528. if (unlikely(*retval < 0)) {
  529. int i;
  530. for (i = 0; i < j; i++)
  531. cache_remove_shared_cpu_map(cpu, i);
  532. break;
  533. }
  534. cache_shared_cpu_map_setup(cpu, j);
  535. }
  536. }
  537. static int __cpuinit detect_cache_attributes(unsigned int cpu)
  538. {
  539. int retval;
  540. if (num_cache_leaves == 0)
  541. return -ENOENT;
  542. per_cpu(cpuid4_info, cpu) = kzalloc(
  543. sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
  544. if (per_cpu(cpuid4_info, cpu) == NULL)
  545. return -ENOMEM;
  546. smp_call_function_single(cpu, get_cpu_leaves, &retval, true);
  547. if (retval) {
  548. kfree(per_cpu(cpuid4_info, cpu));
  549. per_cpu(cpuid4_info, cpu) = NULL;
  550. }
  551. return retval;
  552. }
  553. #include <linux/kobject.h>
  554. #include <linux/sysfs.h>
  555. extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
  556. /* pointer to kobject for cpuX/cache */
  557. static DEFINE_PER_CPU(struct kobject *, cache_kobject);
  558. struct _index_kobject {
  559. struct kobject kobj;
  560. unsigned int cpu;
  561. unsigned short index;
  562. };
  563. /* pointer to array of kobjects for cpuX/cache/indexY */
  564. static DEFINE_PER_CPU(struct _index_kobject *, index_kobject);
  565. #define INDEX_KOBJECT_PTR(x, y) (&((per_cpu(index_kobject, x))[y]))
  566. #define show_one_plus(file_name, object, val) \
  567. static ssize_t show_##file_name \
  568. (struct _cpuid4_info *this_leaf, char *buf) \
  569. { \
  570. return sprintf(buf, "%lu\n", (unsigned long)this_leaf->object + val); \
  571. }
  572. show_one_plus(level, eax.split.level, 0);
  573. show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
  574. show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
  575. show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
  576. show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
  577. static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
  578. {
  579. return sprintf(buf, "%luK\n", this_leaf->size / 1024);
  580. }
  581. static ssize_t show_shared_cpu_map_func(struct _cpuid4_info *this_leaf,
  582. int type, char *buf)
  583. {
  584. ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
  585. int n = 0;
  586. if (len > 1) {
  587. const struct cpumask *mask;
  588. mask = to_cpumask(this_leaf->shared_cpu_map);
  589. n = type ?
  590. cpulist_scnprintf(buf, len-2, mask) :
  591. cpumask_scnprintf(buf, len-2, mask);
  592. buf[n++] = '\n';
  593. buf[n] = '\0';
  594. }
  595. return n;
  596. }
  597. static inline ssize_t show_shared_cpu_map(struct _cpuid4_info *leaf, char *buf)
  598. {
  599. return show_shared_cpu_map_func(leaf, 0, buf);
  600. }
  601. static inline ssize_t show_shared_cpu_list(struct _cpuid4_info *leaf, char *buf)
  602. {
  603. return show_shared_cpu_map_func(leaf, 1, buf);
  604. }
  605. static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf)
  606. {
  607. switch (this_leaf->eax.split.type) {
  608. case CACHE_TYPE_DATA:
  609. return sprintf(buf, "Data\n");
  610. case CACHE_TYPE_INST:
  611. return sprintf(buf, "Instruction\n");
  612. case CACHE_TYPE_UNIFIED:
  613. return sprintf(buf, "Unified\n");
  614. default:
  615. return sprintf(buf, "Unknown\n");
  616. }
  617. }
  618. #define to_object(k) container_of(k, struct _index_kobject, kobj)
  619. #define to_attr(a) container_of(a, struct _cache_attr, attr)
  620. static ssize_t show_cache_disable(struct _cpuid4_info *this_leaf, char *buf,
  621. unsigned int index)
  622. {
  623. int cpu = cpumask_first(to_cpumask(this_leaf->shared_cpu_map));
  624. int node = cpu_to_node(cpu);
  625. struct pci_dev *dev = node_to_k8_nb_misc(node);
  626. unsigned int reg = 0;
  627. if (!this_leaf->can_disable)
  628. return -EINVAL;
  629. if (!dev)
  630. return -EINVAL;
  631. pci_read_config_dword(dev, 0x1BC + index * 4, &reg);
  632. return sprintf(buf, "%x\n", reg);
  633. }
  634. #define SHOW_CACHE_DISABLE(index) \
  635. static ssize_t \
  636. show_cache_disable_##index(struct _cpuid4_info *this_leaf, char *buf) \
  637. { \
  638. return show_cache_disable(this_leaf, buf, index); \
  639. }
  640. SHOW_CACHE_DISABLE(0)
  641. SHOW_CACHE_DISABLE(1)
  642. static ssize_t store_cache_disable(struct _cpuid4_info *this_leaf,
  643. const char *buf, size_t count, unsigned int index)
  644. {
  645. int cpu = cpumask_first(to_cpumask(this_leaf->shared_cpu_map));
  646. int node = cpu_to_node(cpu);
  647. struct pci_dev *dev = node_to_k8_nb_misc(node);
  648. unsigned long val = 0;
  649. unsigned int scrubber = 0;
  650. if (!this_leaf->can_disable)
  651. return -EINVAL;
  652. if (!capable(CAP_SYS_ADMIN))
  653. return -EPERM;
  654. if (!dev)
  655. return -EINVAL;
  656. if (strict_strtoul(buf, 10, &val) < 0)
  657. return -EINVAL;
  658. val |= 0xc0000000;
  659. pci_read_config_dword(dev, 0x58, &scrubber);
  660. scrubber &= ~0x1f000000;
  661. pci_write_config_dword(dev, 0x58, scrubber);
  662. pci_write_config_dword(dev, 0x1BC + index * 4, val & ~0x40000000);
  663. wbinvd();
  664. pci_write_config_dword(dev, 0x1BC + index * 4, val);
  665. return count;
  666. }
  667. #define STORE_CACHE_DISABLE(index) \
  668. static ssize_t \
  669. store_cache_disable_##index(struct _cpuid4_info *this_leaf, \
  670. const char *buf, size_t count) \
  671. { \
  672. return store_cache_disable(this_leaf, buf, count, index); \
  673. }
  674. STORE_CACHE_DISABLE(0)
  675. STORE_CACHE_DISABLE(1)
  676. struct _cache_attr {
  677. struct attribute attr;
  678. ssize_t (*show)(struct _cpuid4_info *, char *);
  679. ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
  680. };
  681. #define define_one_ro(_name) \
  682. static struct _cache_attr _name = \
  683. __ATTR(_name, 0444, show_##_name, NULL)
  684. define_one_ro(level);
  685. define_one_ro(type);
  686. define_one_ro(coherency_line_size);
  687. define_one_ro(physical_line_partition);
  688. define_one_ro(ways_of_associativity);
  689. define_one_ro(number_of_sets);
  690. define_one_ro(size);
  691. define_one_ro(shared_cpu_map);
  692. define_one_ro(shared_cpu_list);
  693. static struct _cache_attr cache_disable_0 = __ATTR(cache_disable_0, 0644,
  694. show_cache_disable_0, store_cache_disable_0);
  695. static struct _cache_attr cache_disable_1 = __ATTR(cache_disable_1, 0644,
  696. show_cache_disable_1, store_cache_disable_1);
  697. static struct attribute *default_attrs[] = {
  698. &type.attr,
  699. &level.attr,
  700. &coherency_line_size.attr,
  701. &physical_line_partition.attr,
  702. &ways_of_associativity.attr,
  703. &number_of_sets.attr,
  704. &size.attr,
  705. &shared_cpu_map.attr,
  706. &shared_cpu_list.attr,
  707. &cache_disable_0.attr,
  708. &cache_disable_1.attr,
  709. NULL
  710. };
  711. static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
  712. {
  713. struct _cache_attr *fattr = to_attr(attr);
  714. struct _index_kobject *this_leaf = to_object(kobj);
  715. ssize_t ret;
  716. ret = fattr->show ?
  717. fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
  718. buf) :
  719. 0;
  720. return ret;
  721. }
  722. static ssize_t store(struct kobject *kobj, struct attribute *attr,
  723. const char *buf, size_t count)
  724. {
  725. struct _cache_attr *fattr = to_attr(attr);
  726. struct _index_kobject *this_leaf = to_object(kobj);
  727. ssize_t ret;
  728. ret = fattr->store ?
  729. fattr->store(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
  730. buf, count) :
  731. 0;
  732. return ret;
  733. }
  734. static struct sysfs_ops sysfs_ops = {
  735. .show = show,
  736. .store = store,
  737. };
  738. static struct kobj_type ktype_cache = {
  739. .sysfs_ops = &sysfs_ops,
  740. .default_attrs = default_attrs,
  741. };
  742. static struct kobj_type ktype_percpu_entry = {
  743. .sysfs_ops = &sysfs_ops,
  744. };
  745. static void __cpuinit cpuid4_cache_sysfs_exit(unsigned int cpu)
  746. {
  747. kfree(per_cpu(cache_kobject, cpu));
  748. kfree(per_cpu(index_kobject, cpu));
  749. per_cpu(cache_kobject, cpu) = NULL;
  750. per_cpu(index_kobject, cpu) = NULL;
  751. free_cache_attributes(cpu);
  752. }
  753. static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
  754. {
  755. int err;
  756. if (num_cache_leaves == 0)
  757. return -ENOENT;
  758. err = detect_cache_attributes(cpu);
  759. if (err)
  760. return err;
  761. /* Allocate all required memory */
  762. per_cpu(cache_kobject, cpu) =
  763. kzalloc(sizeof(struct kobject), GFP_KERNEL);
  764. if (unlikely(per_cpu(cache_kobject, cpu) == NULL))
  765. goto err_out;
  766. per_cpu(index_kobject, cpu) = kzalloc(
  767. sizeof(struct _index_kobject) * num_cache_leaves, GFP_KERNEL);
  768. if (unlikely(per_cpu(index_kobject, cpu) == NULL))
  769. goto err_out;
  770. return 0;
  771. err_out:
  772. cpuid4_cache_sysfs_exit(cpu);
  773. return -ENOMEM;
  774. }
  775. static DECLARE_BITMAP(cache_dev_map, NR_CPUS);
  776. /* Add/Remove cache interface for CPU device */
  777. static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
  778. {
  779. unsigned int cpu = sys_dev->id;
  780. unsigned long i, j;
  781. struct _index_kobject *this_object;
  782. int retval;
  783. retval = cpuid4_cache_sysfs_init(cpu);
  784. if (unlikely(retval < 0))
  785. return retval;
  786. retval = kobject_init_and_add(per_cpu(cache_kobject, cpu),
  787. &ktype_percpu_entry,
  788. &sys_dev->kobj, "%s", "cache");
  789. if (retval < 0) {
  790. cpuid4_cache_sysfs_exit(cpu);
  791. return retval;
  792. }
  793. for (i = 0; i < num_cache_leaves; i++) {
  794. this_object = INDEX_KOBJECT_PTR(cpu, i);
  795. this_object->cpu = cpu;
  796. this_object->index = i;
  797. retval = kobject_init_and_add(&(this_object->kobj),
  798. &ktype_cache,
  799. per_cpu(cache_kobject, cpu),
  800. "index%1lu", i);
  801. if (unlikely(retval)) {
  802. for (j = 0; j < i; j++)
  803. kobject_put(&(INDEX_KOBJECT_PTR(cpu, j)->kobj));
  804. kobject_put(per_cpu(cache_kobject, cpu));
  805. cpuid4_cache_sysfs_exit(cpu);
  806. return retval;
  807. }
  808. kobject_uevent(&(this_object->kobj), KOBJ_ADD);
  809. }
  810. cpumask_set_cpu(cpu, to_cpumask(cache_dev_map));
  811. kobject_uevent(per_cpu(cache_kobject, cpu), KOBJ_ADD);
  812. return 0;
  813. }
  814. static void __cpuinit cache_remove_dev(struct sys_device * sys_dev)
  815. {
  816. unsigned int cpu = sys_dev->id;
  817. unsigned long i;
  818. if (per_cpu(cpuid4_info, cpu) == NULL)
  819. return;
  820. if (!cpumask_test_cpu(cpu, to_cpumask(cache_dev_map)))
  821. return;
  822. cpumask_clear_cpu(cpu, to_cpumask(cache_dev_map));
  823. for (i = 0; i < num_cache_leaves; i++)
  824. kobject_put(&(INDEX_KOBJECT_PTR(cpu, i)->kobj));
  825. kobject_put(per_cpu(cache_kobject, cpu));
  826. cpuid4_cache_sysfs_exit(cpu);
  827. }
  828. static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
  829. unsigned long action, void *hcpu)
  830. {
  831. unsigned int cpu = (unsigned long)hcpu;
  832. struct sys_device *sys_dev;
  833. sys_dev = get_cpu_sysdev(cpu);
  834. switch (action) {
  835. case CPU_ONLINE:
  836. case CPU_ONLINE_FROZEN:
  837. cache_add_dev(sys_dev);
  838. break;
  839. case CPU_DEAD:
  840. case CPU_DEAD_FROZEN:
  841. cache_remove_dev(sys_dev);
  842. break;
  843. }
  844. return NOTIFY_OK;
  845. }
  846. static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier = {
  847. .notifier_call = cacheinfo_cpu_callback,
  848. };
  849. static int __cpuinit cache_sysfs_init(void)
  850. {
  851. int i;
  852. if (num_cache_leaves == 0)
  853. return 0;
  854. for_each_online_cpu(i) {
  855. int err;
  856. struct sys_device *sys_dev = get_cpu_sysdev(i);
  857. err = cache_add_dev(sys_dev);
  858. if (err)
  859. return err;
  860. }
  861. register_hotcpu_notifier(&cacheinfo_cpu_notifier);
  862. return 0;
  863. }
  864. device_initcall(cache_sysfs_init);
  865. #endif