dm-thin-metadata.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513
  1. /*
  2. * Copyright (C) 2011 Red Hat, Inc.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "persistent-data/dm-btree.h"
  8. #include "persistent-data/dm-space-map.h"
  9. #include "persistent-data/dm-space-map-disk.h"
  10. #include "persistent-data/dm-transaction-manager.h"
  11. #include <linux/list.h>
  12. #include <linux/device-mapper.h>
  13. #include <linux/workqueue.h>
  14. /*--------------------------------------------------------------------------
  15. * As far as the metadata goes, there is:
  16. *
  17. * - A superblock in block zero, taking up fewer than 512 bytes for
  18. * atomic writes.
  19. *
  20. * - A space map managing the metadata blocks.
  21. *
  22. * - A space map managing the data blocks.
  23. *
  24. * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  25. *
  26. * - A hierarchical btree, with 2 levels which effectively maps (thin
  27. * dev id, virtual block) -> block_time. Block time is a 64-bit
  28. * field holding the time in the low 24 bits, and block in the top 48
  29. * bits.
  30. *
  31. * BTrees consist solely of btree_nodes, that fill a block. Some are
  32. * internal nodes, as such their values are a __le64 pointing to other
  33. * nodes. Leaf nodes can store data of any reasonable size (ie. much
  34. * smaller than the block size). The nodes consist of the header,
  35. * followed by an array of keys, followed by an array of values. We have
  36. * to binary search on the keys so they're all held together to help the
  37. * cpu cache.
  38. *
  39. * Space maps have 2 btrees:
  40. *
  41. * - One maps a uint64_t onto a struct index_entry. Which points to a
  42. * bitmap block, and has some details about how many free entries there
  43. * are etc.
  44. *
  45. * - The bitmap blocks have a header (for the checksum). Then the rest
  46. * of the block is pairs of bits. With the meaning being:
  47. *
  48. * 0 - ref count is 0
  49. * 1 - ref count is 1
  50. * 2 - ref count is 2
  51. * 3 - ref count is higher than 2
  52. *
  53. * - If the count is higher than 2 then the ref count is entered in a
  54. * second btree that directly maps the block_address to a uint32_t ref
  55. * count.
  56. *
  57. * The space map metadata variant doesn't have a bitmaps btree. Instead
  58. * it has one single blocks worth of index_entries. This avoids
  59. * recursive issues with the bitmap btree needing to allocate space in
  60. * order to insert. With a small data block size such as 64k the
  61. * metadata support data devices that are hundreds of terrabytes.
  62. *
  63. * The space maps allocate space linearly from front to back. Space that
  64. * is freed in a transaction is never recycled within that transaction.
  65. * To try and avoid fragmenting _free_ space the allocator always goes
  66. * back and fills in gaps.
  67. *
  68. * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  69. * from the block manager.
  70. *--------------------------------------------------------------------------*/
  71. #define DM_MSG_PREFIX "thin metadata"
  72. #define THIN_SUPERBLOCK_MAGIC 27022010
  73. #define THIN_SUPERBLOCK_LOCATION 0
  74. #define THIN_VERSION 1
  75. #define THIN_METADATA_CACHE_SIZE 64
  76. #define SECTOR_TO_BLOCK_SHIFT 3
  77. /*
  78. * 3 for btree insert +
  79. * 2 for btree lookup used within space map
  80. */
  81. #define THIN_MAX_CONCURRENT_LOCKS 5
  82. /* This should be plenty */
  83. #define SPACE_MAP_ROOT_SIZE 128
  84. /*
  85. * Little endian on-disk superblock and device details.
  86. */
  87. struct thin_disk_superblock {
  88. __le32 csum; /* Checksum of superblock except for this field. */
  89. __le32 flags;
  90. __le64 blocknr; /* This block number, dm_block_t. */
  91. __u8 uuid[16];
  92. __le64 magic;
  93. __le32 version;
  94. __le32 time;
  95. __le64 trans_id;
  96. /*
  97. * Root held by userspace transactions.
  98. */
  99. __le64 held_root;
  100. __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
  101. __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
  102. /*
  103. * 2-level btree mapping (dev_id, (dev block, time)) -> data block
  104. */
  105. __le64 data_mapping_root;
  106. /*
  107. * Device detail root mapping dev_id -> device_details
  108. */
  109. __le64 device_details_root;
  110. __le32 data_block_size; /* In 512-byte sectors. */
  111. __le32 metadata_block_size; /* In 512-byte sectors. */
  112. __le64 metadata_nr_blocks;
  113. __le32 compat_flags;
  114. __le32 compat_ro_flags;
  115. __le32 incompat_flags;
  116. } __packed;
  117. struct disk_device_details {
  118. __le64 mapped_blocks;
  119. __le64 transaction_id; /* When created. */
  120. __le32 creation_time;
  121. __le32 snapshotted_time;
  122. } __packed;
  123. struct dm_pool_metadata {
  124. struct hlist_node hash;
  125. struct block_device *bdev;
  126. struct dm_block_manager *bm;
  127. struct dm_space_map *metadata_sm;
  128. struct dm_space_map *data_sm;
  129. struct dm_transaction_manager *tm;
  130. struct dm_transaction_manager *nb_tm;
  131. /*
  132. * Two-level btree.
  133. * First level holds thin_dev_t.
  134. * Second level holds mappings.
  135. */
  136. struct dm_btree_info info;
  137. /*
  138. * Non-blocking version of the above.
  139. */
  140. struct dm_btree_info nb_info;
  141. /*
  142. * Just the top level for deleting whole devices.
  143. */
  144. struct dm_btree_info tl_info;
  145. /*
  146. * Just the bottom level for creating new devices.
  147. */
  148. struct dm_btree_info bl_info;
  149. /*
  150. * Describes the device details btree.
  151. */
  152. struct dm_btree_info details_info;
  153. struct rw_semaphore root_lock;
  154. uint32_t time;
  155. dm_block_t root;
  156. dm_block_t details_root;
  157. struct list_head thin_devices;
  158. uint64_t trans_id;
  159. unsigned long flags;
  160. sector_t data_block_size;
  161. };
  162. struct dm_thin_device {
  163. struct list_head list;
  164. struct dm_pool_metadata *pmd;
  165. dm_thin_id id;
  166. int open_count;
  167. int changed;
  168. uint64_t mapped_blocks;
  169. uint64_t transaction_id;
  170. uint32_t creation_time;
  171. uint32_t snapshotted_time;
  172. };
  173. /*----------------------------------------------------------------
  174. * superblock validator
  175. *--------------------------------------------------------------*/
  176. #define SUPERBLOCK_CSUM_XOR 160774
  177. static void sb_prepare_for_write(struct dm_block_validator *v,
  178. struct dm_block *b,
  179. size_t block_size)
  180. {
  181. struct thin_disk_superblock *disk_super = dm_block_data(b);
  182. disk_super->blocknr = cpu_to_le64(dm_block_location(b));
  183. disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  184. block_size - sizeof(__le32),
  185. SUPERBLOCK_CSUM_XOR));
  186. }
  187. static int sb_check(struct dm_block_validator *v,
  188. struct dm_block *b,
  189. size_t block_size)
  190. {
  191. struct thin_disk_superblock *disk_super = dm_block_data(b);
  192. __le32 csum_le;
  193. if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
  194. DMERR("sb_check failed: blocknr %llu: "
  195. "wanted %llu", le64_to_cpu(disk_super->blocknr),
  196. (unsigned long long)dm_block_location(b));
  197. return -ENOTBLK;
  198. }
  199. if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
  200. DMERR("sb_check failed: magic %llu: "
  201. "wanted %llu", le64_to_cpu(disk_super->magic),
  202. (unsigned long long)THIN_SUPERBLOCK_MAGIC);
  203. return -EILSEQ;
  204. }
  205. csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  206. block_size - sizeof(__le32),
  207. SUPERBLOCK_CSUM_XOR));
  208. if (csum_le != disk_super->csum) {
  209. DMERR("sb_check failed: csum %u: wanted %u",
  210. le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
  211. return -EILSEQ;
  212. }
  213. return 0;
  214. }
  215. static struct dm_block_validator sb_validator = {
  216. .name = "superblock",
  217. .prepare_for_write = sb_prepare_for_write,
  218. .check = sb_check
  219. };
  220. /*----------------------------------------------------------------
  221. * Methods for the btree value types
  222. *--------------------------------------------------------------*/
  223. static uint64_t pack_block_time(dm_block_t b, uint32_t t)
  224. {
  225. return (b << 24) | t;
  226. }
  227. static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
  228. {
  229. *b = v >> 24;
  230. *t = v & ((1 << 24) - 1);
  231. }
  232. static void data_block_inc(void *context, void *value_le)
  233. {
  234. struct dm_space_map *sm = context;
  235. __le64 v_le;
  236. uint64_t b;
  237. uint32_t t;
  238. memcpy(&v_le, value_le, sizeof(v_le));
  239. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  240. dm_sm_inc_block(sm, b);
  241. }
  242. static void data_block_dec(void *context, void *value_le)
  243. {
  244. struct dm_space_map *sm = context;
  245. __le64 v_le;
  246. uint64_t b;
  247. uint32_t t;
  248. memcpy(&v_le, value_le, sizeof(v_le));
  249. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  250. dm_sm_dec_block(sm, b);
  251. }
  252. static int data_block_equal(void *context, void *value1_le, void *value2_le)
  253. {
  254. __le64 v1_le, v2_le;
  255. uint64_t b1, b2;
  256. uint32_t t;
  257. memcpy(&v1_le, value1_le, sizeof(v1_le));
  258. memcpy(&v2_le, value2_le, sizeof(v2_le));
  259. unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
  260. unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
  261. return b1 == b2;
  262. }
  263. static void subtree_inc(void *context, void *value)
  264. {
  265. struct dm_btree_info *info = context;
  266. __le64 root_le;
  267. uint64_t root;
  268. memcpy(&root_le, value, sizeof(root_le));
  269. root = le64_to_cpu(root_le);
  270. dm_tm_inc(info->tm, root);
  271. }
  272. static void subtree_dec(void *context, void *value)
  273. {
  274. struct dm_btree_info *info = context;
  275. __le64 root_le;
  276. uint64_t root;
  277. memcpy(&root_le, value, sizeof(root_le));
  278. root = le64_to_cpu(root_le);
  279. if (dm_btree_del(info, root))
  280. DMERR("btree delete failed\n");
  281. }
  282. static int subtree_equal(void *context, void *value1_le, void *value2_le)
  283. {
  284. __le64 v1_le, v2_le;
  285. memcpy(&v1_le, value1_le, sizeof(v1_le));
  286. memcpy(&v2_le, value2_le, sizeof(v2_le));
  287. return v1_le == v2_le;
  288. }
  289. /*----------------------------------------------------------------*/
  290. static int superblock_lock_zero(struct dm_pool_metadata *pmd,
  291. struct dm_block **sblock)
  292. {
  293. return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  294. &sb_validator, sblock);
  295. }
  296. static int superblock_lock(struct dm_pool_metadata *pmd,
  297. struct dm_block **sblock)
  298. {
  299. return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  300. &sb_validator, sblock);
  301. }
  302. static int superblock_all_zeroes(struct dm_block_manager *bm, int *result)
  303. {
  304. int r;
  305. unsigned i;
  306. struct dm_block *b;
  307. __le64 *data_le, zero = cpu_to_le64(0);
  308. unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
  309. /*
  310. * We can't use a validator here - it may be all zeroes.
  311. */
  312. r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
  313. if (r)
  314. return r;
  315. data_le = dm_block_data(b);
  316. *result = 1;
  317. for (i = 0; i < block_size; i++) {
  318. if (data_le[i] != zero) {
  319. *result = 0;
  320. break;
  321. }
  322. }
  323. return dm_bm_unlock(b);
  324. }
  325. static void __setup_btree_details(struct dm_pool_metadata *pmd)
  326. {
  327. pmd->info.tm = pmd->tm;
  328. pmd->info.levels = 2;
  329. pmd->info.value_type.context = pmd->data_sm;
  330. pmd->info.value_type.size = sizeof(__le64);
  331. pmd->info.value_type.inc = data_block_inc;
  332. pmd->info.value_type.dec = data_block_dec;
  333. pmd->info.value_type.equal = data_block_equal;
  334. memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
  335. pmd->nb_info.tm = pmd->nb_tm;
  336. pmd->tl_info.tm = pmd->tm;
  337. pmd->tl_info.levels = 1;
  338. pmd->tl_info.value_type.context = &pmd->info;
  339. pmd->tl_info.value_type.size = sizeof(__le64);
  340. pmd->tl_info.value_type.inc = subtree_inc;
  341. pmd->tl_info.value_type.dec = subtree_dec;
  342. pmd->tl_info.value_type.equal = subtree_equal;
  343. pmd->bl_info.tm = pmd->tm;
  344. pmd->bl_info.levels = 1;
  345. pmd->bl_info.value_type.context = pmd->data_sm;
  346. pmd->bl_info.value_type.size = sizeof(__le64);
  347. pmd->bl_info.value_type.inc = data_block_inc;
  348. pmd->bl_info.value_type.dec = data_block_dec;
  349. pmd->bl_info.value_type.equal = data_block_equal;
  350. pmd->details_info.tm = pmd->tm;
  351. pmd->details_info.levels = 1;
  352. pmd->details_info.value_type.context = NULL;
  353. pmd->details_info.value_type.size = sizeof(struct disk_device_details);
  354. pmd->details_info.value_type.inc = NULL;
  355. pmd->details_info.value_type.dec = NULL;
  356. pmd->details_info.value_type.equal = NULL;
  357. }
  358. static int init_pmd(struct dm_pool_metadata *pmd,
  359. struct dm_block_manager *bm,
  360. dm_block_t nr_blocks, int create)
  361. {
  362. int r;
  363. struct dm_space_map *sm, *data_sm;
  364. struct dm_transaction_manager *tm;
  365. struct dm_block *sblock;
  366. if (create) {
  367. r = dm_tm_create_with_sm(bm, THIN_SUPERBLOCK_LOCATION, &tm, &sm);
  368. if (r < 0) {
  369. DMERR("tm_create_with_sm failed");
  370. return r;
  371. }
  372. data_sm = dm_sm_disk_create(tm, nr_blocks);
  373. if (IS_ERR(data_sm)) {
  374. DMERR("sm_disk_create failed");
  375. r = PTR_ERR(data_sm);
  376. goto bad;
  377. }
  378. } else {
  379. struct thin_disk_superblock *disk_super;
  380. r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION,
  381. &sb_validator, &sblock);
  382. if (r < 0) {
  383. DMERR("couldn't read superblock");
  384. return r;
  385. }
  386. disk_super = dm_block_data(sblock);
  387. r = dm_tm_open_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
  388. disk_super->metadata_space_map_root,
  389. sizeof(disk_super->metadata_space_map_root),
  390. &tm, &sm);
  391. if (r < 0) {
  392. DMERR("tm_open_with_sm failed");
  393. dm_bm_unlock(sblock);
  394. return r;
  395. }
  396. data_sm = dm_sm_disk_open(tm, disk_super->data_space_map_root,
  397. sizeof(disk_super->data_space_map_root));
  398. if (IS_ERR(data_sm)) {
  399. DMERR("sm_disk_open failed");
  400. dm_bm_unlock(sblock);
  401. r = PTR_ERR(data_sm);
  402. goto bad;
  403. }
  404. dm_bm_unlock(sblock);
  405. }
  406. pmd->bm = bm;
  407. pmd->metadata_sm = sm;
  408. pmd->data_sm = data_sm;
  409. pmd->tm = tm;
  410. pmd->nb_tm = dm_tm_create_non_blocking_clone(tm);
  411. if (!pmd->nb_tm) {
  412. DMERR("could not create clone tm");
  413. r = -ENOMEM;
  414. goto bad_data_sm;
  415. }
  416. __setup_btree_details(pmd);
  417. pmd->root = 0;
  418. init_rwsem(&pmd->root_lock);
  419. pmd->time = 0;
  420. pmd->details_root = 0;
  421. pmd->trans_id = 0;
  422. pmd->flags = 0;
  423. INIT_LIST_HEAD(&pmd->thin_devices);
  424. return 0;
  425. bad_data_sm:
  426. dm_sm_destroy(data_sm);
  427. bad:
  428. dm_tm_destroy(tm);
  429. dm_sm_destroy(sm);
  430. return r;
  431. }
  432. static int __begin_transaction(struct dm_pool_metadata *pmd)
  433. {
  434. int r;
  435. u32 features;
  436. struct thin_disk_superblock *disk_super;
  437. struct dm_block *sblock;
  438. /*
  439. * We re-read the superblock every time. Shouldn't need to do this
  440. * really.
  441. */
  442. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  443. &sb_validator, &sblock);
  444. if (r)
  445. return r;
  446. disk_super = dm_block_data(sblock);
  447. pmd->time = le32_to_cpu(disk_super->time);
  448. pmd->root = le64_to_cpu(disk_super->data_mapping_root);
  449. pmd->details_root = le64_to_cpu(disk_super->device_details_root);
  450. pmd->trans_id = le64_to_cpu(disk_super->trans_id);
  451. pmd->flags = le32_to_cpu(disk_super->flags);
  452. pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
  453. features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
  454. if (features) {
  455. DMERR("could not access metadata due to "
  456. "unsupported optional features (%lx).",
  457. (unsigned long)features);
  458. r = -EINVAL;
  459. goto out;
  460. }
  461. /*
  462. * Check for read-only metadata to skip the following RDWR checks.
  463. */
  464. if (get_disk_ro(pmd->bdev->bd_disk))
  465. goto out;
  466. features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
  467. if (features) {
  468. DMERR("could not access metadata RDWR due to "
  469. "unsupported optional features (%lx).",
  470. (unsigned long)features);
  471. r = -EINVAL;
  472. }
  473. out:
  474. dm_bm_unlock(sblock);
  475. return r;
  476. }
  477. static int __write_changed_details(struct dm_pool_metadata *pmd)
  478. {
  479. int r;
  480. struct dm_thin_device *td, *tmp;
  481. struct disk_device_details details;
  482. uint64_t key;
  483. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  484. if (!td->changed)
  485. continue;
  486. key = td->id;
  487. details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
  488. details.transaction_id = cpu_to_le64(td->transaction_id);
  489. details.creation_time = cpu_to_le32(td->creation_time);
  490. details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
  491. __dm_bless_for_disk(&details);
  492. r = dm_btree_insert(&pmd->details_info, pmd->details_root,
  493. &key, &details, &pmd->details_root);
  494. if (r)
  495. return r;
  496. if (td->open_count)
  497. td->changed = 0;
  498. else {
  499. list_del(&td->list);
  500. kfree(td);
  501. }
  502. }
  503. return 0;
  504. }
  505. static int __commit_transaction(struct dm_pool_metadata *pmd)
  506. {
  507. /*
  508. * FIXME: Associated pool should be made read-only on failure.
  509. */
  510. int r;
  511. size_t metadata_len, data_len;
  512. struct thin_disk_superblock *disk_super;
  513. struct dm_block *sblock;
  514. /*
  515. * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
  516. */
  517. BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
  518. r = __write_changed_details(pmd);
  519. if (r < 0)
  520. return r;
  521. r = dm_sm_commit(pmd->data_sm);
  522. if (r < 0)
  523. return r;
  524. r = dm_tm_pre_commit(pmd->tm);
  525. if (r < 0)
  526. return r;
  527. r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
  528. if (r < 0)
  529. return r;
  530. r = dm_sm_root_size(pmd->data_sm, &data_len);
  531. if (r < 0)
  532. return r;
  533. r = superblock_lock(pmd, &sblock);
  534. if (r)
  535. return r;
  536. disk_super = dm_block_data(sblock);
  537. disk_super->time = cpu_to_le32(pmd->time);
  538. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  539. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  540. disk_super->trans_id = cpu_to_le64(pmd->trans_id);
  541. disk_super->flags = cpu_to_le32(pmd->flags);
  542. r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
  543. metadata_len);
  544. if (r < 0)
  545. goto out_locked;
  546. r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
  547. data_len);
  548. if (r < 0)
  549. goto out_locked;
  550. return dm_tm_commit(pmd->tm, sblock);
  551. out_locked:
  552. dm_bm_unlock(sblock);
  553. return r;
  554. }
  555. struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
  556. sector_t data_block_size)
  557. {
  558. int r;
  559. struct thin_disk_superblock *disk_super;
  560. struct dm_pool_metadata *pmd;
  561. sector_t bdev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
  562. struct dm_block_manager *bm;
  563. int create;
  564. struct dm_block *sblock;
  565. pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
  566. if (!pmd) {
  567. DMERR("could not allocate metadata struct");
  568. return ERR_PTR(-ENOMEM);
  569. }
  570. bm = dm_block_manager_create(bdev, THIN_METADATA_BLOCK_SIZE,
  571. THIN_METADATA_CACHE_SIZE,
  572. THIN_MAX_CONCURRENT_LOCKS);
  573. if (IS_ERR(bm)) {
  574. r = PTR_ERR(bm);
  575. DMERR("could not create block manager");
  576. kfree(pmd);
  577. return ERR_PTR(r);
  578. }
  579. r = superblock_all_zeroes(bm, &create);
  580. if (r) {
  581. dm_block_manager_destroy(bm);
  582. kfree(pmd);
  583. return ERR_PTR(r);
  584. }
  585. r = init_pmd(pmd, bm, 0, create);
  586. if (r) {
  587. dm_block_manager_destroy(bm);
  588. kfree(pmd);
  589. return ERR_PTR(r);
  590. }
  591. pmd->bdev = bdev;
  592. if (!create) {
  593. r = __begin_transaction(pmd);
  594. if (r < 0)
  595. goto bad;
  596. return pmd;
  597. }
  598. /*
  599. * Create.
  600. */
  601. r = superblock_lock_zero(pmd, &sblock);
  602. if (r)
  603. goto bad;
  604. if (bdev_size > THIN_METADATA_MAX_SECTORS)
  605. bdev_size = THIN_METADATA_MAX_SECTORS;
  606. disk_super = dm_block_data(sblock);
  607. disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
  608. disk_super->version = cpu_to_le32(THIN_VERSION);
  609. disk_super->time = 0;
  610. disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
  611. disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
  612. disk_super->data_block_size = cpu_to_le32(data_block_size);
  613. r = dm_bm_unlock(sblock);
  614. if (r < 0)
  615. goto bad;
  616. r = dm_btree_empty(&pmd->info, &pmd->root);
  617. if (r < 0)
  618. goto bad;
  619. r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
  620. if (r < 0) {
  621. DMERR("couldn't create devices root");
  622. goto bad;
  623. }
  624. pmd->flags = 0;
  625. r = dm_pool_commit_metadata(pmd);
  626. if (r < 0) {
  627. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  628. __func__, r);
  629. goto bad;
  630. }
  631. return pmd;
  632. bad:
  633. if (dm_pool_metadata_close(pmd) < 0)
  634. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  635. return ERR_PTR(r);
  636. }
  637. int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
  638. {
  639. int r;
  640. unsigned open_devices = 0;
  641. struct dm_thin_device *td, *tmp;
  642. down_read(&pmd->root_lock);
  643. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  644. if (td->open_count)
  645. open_devices++;
  646. else {
  647. list_del(&td->list);
  648. kfree(td);
  649. }
  650. }
  651. up_read(&pmd->root_lock);
  652. if (open_devices) {
  653. DMERR("attempt to close pmd when %u device(s) are still open",
  654. open_devices);
  655. return -EBUSY;
  656. }
  657. r = __commit_transaction(pmd);
  658. if (r < 0)
  659. DMWARN("%s: __commit_transaction() failed, error = %d",
  660. __func__, r);
  661. dm_tm_destroy(pmd->tm);
  662. dm_tm_destroy(pmd->nb_tm);
  663. dm_block_manager_destroy(pmd->bm);
  664. dm_sm_destroy(pmd->metadata_sm);
  665. dm_sm_destroy(pmd->data_sm);
  666. kfree(pmd);
  667. return 0;
  668. }
  669. /*
  670. * __open_device: Returns @td corresponding to device with id @dev,
  671. * creating it if @create is set and incrementing @td->open_count.
  672. * On failure, @td is undefined.
  673. */
  674. static int __open_device(struct dm_pool_metadata *pmd,
  675. dm_thin_id dev, int create,
  676. struct dm_thin_device **td)
  677. {
  678. int r, changed = 0;
  679. struct dm_thin_device *td2;
  680. uint64_t key = dev;
  681. struct disk_device_details details_le;
  682. /*
  683. * If the device is already open, return it.
  684. */
  685. list_for_each_entry(td2, &pmd->thin_devices, list)
  686. if (td2->id == dev) {
  687. /*
  688. * May not create an already-open device.
  689. */
  690. if (create)
  691. return -EEXIST;
  692. td2->open_count++;
  693. *td = td2;
  694. return 0;
  695. }
  696. /*
  697. * Check the device exists.
  698. */
  699. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  700. &key, &details_le);
  701. if (r) {
  702. if (r != -ENODATA || !create)
  703. return r;
  704. /*
  705. * Create new device.
  706. */
  707. changed = 1;
  708. details_le.mapped_blocks = 0;
  709. details_le.transaction_id = cpu_to_le64(pmd->trans_id);
  710. details_le.creation_time = cpu_to_le32(pmd->time);
  711. details_le.snapshotted_time = cpu_to_le32(pmd->time);
  712. }
  713. *td = kmalloc(sizeof(**td), GFP_NOIO);
  714. if (!*td)
  715. return -ENOMEM;
  716. (*td)->pmd = pmd;
  717. (*td)->id = dev;
  718. (*td)->open_count = 1;
  719. (*td)->changed = changed;
  720. (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
  721. (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
  722. (*td)->creation_time = le32_to_cpu(details_le.creation_time);
  723. (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
  724. list_add(&(*td)->list, &pmd->thin_devices);
  725. return 0;
  726. }
  727. static void __close_device(struct dm_thin_device *td)
  728. {
  729. --td->open_count;
  730. }
  731. static int __create_thin(struct dm_pool_metadata *pmd,
  732. dm_thin_id dev)
  733. {
  734. int r;
  735. dm_block_t dev_root;
  736. uint64_t key = dev;
  737. struct disk_device_details details_le;
  738. struct dm_thin_device *td;
  739. __le64 value;
  740. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  741. &key, &details_le);
  742. if (!r)
  743. return -EEXIST;
  744. /*
  745. * Create an empty btree for the mappings.
  746. */
  747. r = dm_btree_empty(&pmd->bl_info, &dev_root);
  748. if (r)
  749. return r;
  750. /*
  751. * Insert it into the main mapping tree.
  752. */
  753. value = cpu_to_le64(dev_root);
  754. __dm_bless_for_disk(&value);
  755. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  756. if (r) {
  757. dm_btree_del(&pmd->bl_info, dev_root);
  758. return r;
  759. }
  760. r = __open_device(pmd, dev, 1, &td);
  761. if (r) {
  762. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  763. dm_btree_del(&pmd->bl_info, dev_root);
  764. return r;
  765. }
  766. __close_device(td);
  767. return r;
  768. }
  769. int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
  770. {
  771. int r;
  772. down_write(&pmd->root_lock);
  773. r = __create_thin(pmd, dev);
  774. up_write(&pmd->root_lock);
  775. return r;
  776. }
  777. static int __set_snapshot_details(struct dm_pool_metadata *pmd,
  778. struct dm_thin_device *snap,
  779. dm_thin_id origin, uint32_t time)
  780. {
  781. int r;
  782. struct dm_thin_device *td;
  783. r = __open_device(pmd, origin, 0, &td);
  784. if (r)
  785. return r;
  786. td->changed = 1;
  787. td->snapshotted_time = time;
  788. snap->mapped_blocks = td->mapped_blocks;
  789. snap->snapshotted_time = time;
  790. __close_device(td);
  791. return 0;
  792. }
  793. static int __create_snap(struct dm_pool_metadata *pmd,
  794. dm_thin_id dev, dm_thin_id origin)
  795. {
  796. int r;
  797. dm_block_t origin_root;
  798. uint64_t key = origin, dev_key = dev;
  799. struct dm_thin_device *td;
  800. struct disk_device_details details_le;
  801. __le64 value;
  802. /* check this device is unused */
  803. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  804. &dev_key, &details_le);
  805. if (!r)
  806. return -EEXIST;
  807. /* find the mapping tree for the origin */
  808. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
  809. if (r)
  810. return r;
  811. origin_root = le64_to_cpu(value);
  812. /* clone the origin, an inc will do */
  813. dm_tm_inc(pmd->tm, origin_root);
  814. /* insert into the main mapping tree */
  815. value = cpu_to_le64(origin_root);
  816. __dm_bless_for_disk(&value);
  817. key = dev;
  818. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  819. if (r) {
  820. dm_tm_dec(pmd->tm, origin_root);
  821. return r;
  822. }
  823. pmd->time++;
  824. r = __open_device(pmd, dev, 1, &td);
  825. if (r)
  826. goto bad;
  827. r = __set_snapshot_details(pmd, td, origin, pmd->time);
  828. __close_device(td);
  829. if (r)
  830. goto bad;
  831. return 0;
  832. bad:
  833. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  834. dm_btree_remove(&pmd->details_info, pmd->details_root,
  835. &key, &pmd->details_root);
  836. return r;
  837. }
  838. int dm_pool_create_snap(struct dm_pool_metadata *pmd,
  839. dm_thin_id dev,
  840. dm_thin_id origin)
  841. {
  842. int r;
  843. down_write(&pmd->root_lock);
  844. r = __create_snap(pmd, dev, origin);
  845. up_write(&pmd->root_lock);
  846. return r;
  847. }
  848. static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
  849. {
  850. int r;
  851. uint64_t key = dev;
  852. struct dm_thin_device *td;
  853. /* TODO: failure should mark the transaction invalid */
  854. r = __open_device(pmd, dev, 0, &td);
  855. if (r)
  856. return r;
  857. if (td->open_count > 1) {
  858. __close_device(td);
  859. return -EBUSY;
  860. }
  861. list_del(&td->list);
  862. kfree(td);
  863. r = dm_btree_remove(&pmd->details_info, pmd->details_root,
  864. &key, &pmd->details_root);
  865. if (r)
  866. return r;
  867. r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  868. if (r)
  869. return r;
  870. return 0;
  871. }
  872. int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
  873. dm_thin_id dev)
  874. {
  875. int r;
  876. down_write(&pmd->root_lock);
  877. r = __delete_device(pmd, dev);
  878. up_write(&pmd->root_lock);
  879. return r;
  880. }
  881. int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
  882. uint64_t current_id,
  883. uint64_t new_id)
  884. {
  885. down_write(&pmd->root_lock);
  886. if (pmd->trans_id != current_id) {
  887. up_write(&pmd->root_lock);
  888. DMERR("mismatched transaction id");
  889. return -EINVAL;
  890. }
  891. pmd->trans_id = new_id;
  892. up_write(&pmd->root_lock);
  893. return 0;
  894. }
  895. int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
  896. uint64_t *result)
  897. {
  898. down_read(&pmd->root_lock);
  899. *result = pmd->trans_id;
  900. up_read(&pmd->root_lock);
  901. return 0;
  902. }
  903. static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
  904. {
  905. int r, inc;
  906. struct thin_disk_superblock *disk_super;
  907. struct dm_block *copy, *sblock;
  908. dm_block_t held_root;
  909. /*
  910. * Copy the superblock.
  911. */
  912. dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
  913. r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
  914. &sb_validator, &copy, &inc);
  915. if (r)
  916. return r;
  917. BUG_ON(!inc);
  918. held_root = dm_block_location(copy);
  919. disk_super = dm_block_data(copy);
  920. if (le64_to_cpu(disk_super->held_root)) {
  921. DMWARN("Pool metadata snapshot already exists: release this before taking another.");
  922. dm_tm_dec(pmd->tm, held_root);
  923. dm_tm_unlock(pmd->tm, copy);
  924. return -EBUSY;
  925. }
  926. /*
  927. * Wipe the spacemap since we're not publishing this.
  928. */
  929. memset(&disk_super->data_space_map_root, 0,
  930. sizeof(disk_super->data_space_map_root));
  931. memset(&disk_super->metadata_space_map_root, 0,
  932. sizeof(disk_super->metadata_space_map_root));
  933. /*
  934. * Increment the data structures that need to be preserved.
  935. */
  936. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
  937. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
  938. dm_tm_unlock(pmd->tm, copy);
  939. /*
  940. * Write the held root into the superblock.
  941. */
  942. r = superblock_lock(pmd, &sblock);
  943. if (r) {
  944. dm_tm_dec(pmd->tm, held_root);
  945. return r;
  946. }
  947. disk_super = dm_block_data(sblock);
  948. disk_super->held_root = cpu_to_le64(held_root);
  949. dm_bm_unlock(sblock);
  950. return 0;
  951. }
  952. int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
  953. {
  954. int r;
  955. down_write(&pmd->root_lock);
  956. r = __reserve_metadata_snap(pmd);
  957. up_write(&pmd->root_lock);
  958. return r;
  959. }
  960. static int __release_metadata_snap(struct dm_pool_metadata *pmd)
  961. {
  962. int r;
  963. struct thin_disk_superblock *disk_super;
  964. struct dm_block *sblock, *copy;
  965. dm_block_t held_root;
  966. r = superblock_lock(pmd, &sblock);
  967. if (r)
  968. return r;
  969. disk_super = dm_block_data(sblock);
  970. held_root = le64_to_cpu(disk_super->held_root);
  971. disk_super->held_root = cpu_to_le64(0);
  972. dm_bm_unlock(sblock);
  973. if (!held_root) {
  974. DMWARN("No pool metadata snapshot found: nothing to release.");
  975. return -EINVAL;
  976. }
  977. r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
  978. if (r)
  979. return r;
  980. disk_super = dm_block_data(copy);
  981. dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
  982. dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
  983. dm_sm_dec_block(pmd->metadata_sm, held_root);
  984. return dm_tm_unlock(pmd->tm, copy);
  985. }
  986. int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
  987. {
  988. int r;
  989. down_write(&pmd->root_lock);
  990. r = __release_metadata_snap(pmd);
  991. up_write(&pmd->root_lock);
  992. return r;
  993. }
  994. static int __get_metadata_snap(struct dm_pool_metadata *pmd,
  995. dm_block_t *result)
  996. {
  997. int r;
  998. struct thin_disk_superblock *disk_super;
  999. struct dm_block *sblock;
  1000. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  1001. &sb_validator, &sblock);
  1002. if (r)
  1003. return r;
  1004. disk_super = dm_block_data(sblock);
  1005. *result = le64_to_cpu(disk_super->held_root);
  1006. return dm_bm_unlock(sblock);
  1007. }
  1008. int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
  1009. dm_block_t *result)
  1010. {
  1011. int r;
  1012. down_read(&pmd->root_lock);
  1013. r = __get_metadata_snap(pmd, result);
  1014. up_read(&pmd->root_lock);
  1015. return r;
  1016. }
  1017. int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
  1018. struct dm_thin_device **td)
  1019. {
  1020. int r;
  1021. down_write(&pmd->root_lock);
  1022. r = __open_device(pmd, dev, 0, td);
  1023. up_write(&pmd->root_lock);
  1024. return r;
  1025. }
  1026. int dm_pool_close_thin_device(struct dm_thin_device *td)
  1027. {
  1028. down_write(&td->pmd->root_lock);
  1029. __close_device(td);
  1030. up_write(&td->pmd->root_lock);
  1031. return 0;
  1032. }
  1033. dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
  1034. {
  1035. return td->id;
  1036. }
  1037. static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
  1038. {
  1039. return td->snapshotted_time > time;
  1040. }
  1041. int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
  1042. int can_block, struct dm_thin_lookup_result *result)
  1043. {
  1044. int r;
  1045. uint64_t block_time = 0;
  1046. __le64 value;
  1047. struct dm_pool_metadata *pmd = td->pmd;
  1048. dm_block_t keys[2] = { td->id, block };
  1049. if (can_block) {
  1050. down_read(&pmd->root_lock);
  1051. r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
  1052. if (!r)
  1053. block_time = le64_to_cpu(value);
  1054. up_read(&pmd->root_lock);
  1055. } else if (down_read_trylock(&pmd->root_lock)) {
  1056. r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
  1057. if (!r)
  1058. block_time = le64_to_cpu(value);
  1059. up_read(&pmd->root_lock);
  1060. } else
  1061. return -EWOULDBLOCK;
  1062. if (!r) {
  1063. dm_block_t exception_block;
  1064. uint32_t exception_time;
  1065. unpack_block_time(block_time, &exception_block,
  1066. &exception_time);
  1067. result->block = exception_block;
  1068. result->shared = __snapshotted_since(td, exception_time);
  1069. }
  1070. return r;
  1071. }
  1072. static int __insert(struct dm_thin_device *td, dm_block_t block,
  1073. dm_block_t data_block)
  1074. {
  1075. int r, inserted;
  1076. __le64 value;
  1077. struct dm_pool_metadata *pmd = td->pmd;
  1078. dm_block_t keys[2] = { td->id, block };
  1079. value = cpu_to_le64(pack_block_time(data_block, pmd->time));
  1080. __dm_bless_for_disk(&value);
  1081. r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
  1082. &pmd->root, &inserted);
  1083. if (r)
  1084. return r;
  1085. if (inserted) {
  1086. td->mapped_blocks++;
  1087. td->changed = 1;
  1088. }
  1089. return 0;
  1090. }
  1091. int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
  1092. dm_block_t data_block)
  1093. {
  1094. int r;
  1095. down_write(&td->pmd->root_lock);
  1096. r = __insert(td, block, data_block);
  1097. up_write(&td->pmd->root_lock);
  1098. return r;
  1099. }
  1100. static int __remove(struct dm_thin_device *td, dm_block_t block)
  1101. {
  1102. int r;
  1103. struct dm_pool_metadata *pmd = td->pmd;
  1104. dm_block_t keys[2] = { td->id, block };
  1105. r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
  1106. if (r)
  1107. return r;
  1108. td->mapped_blocks--;
  1109. td->changed = 1;
  1110. return 0;
  1111. }
  1112. int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
  1113. {
  1114. int r;
  1115. down_write(&td->pmd->root_lock);
  1116. r = __remove(td, block);
  1117. up_write(&td->pmd->root_lock);
  1118. return r;
  1119. }
  1120. int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
  1121. {
  1122. int r;
  1123. down_write(&pmd->root_lock);
  1124. r = dm_sm_new_block(pmd->data_sm, result);
  1125. up_write(&pmd->root_lock);
  1126. return r;
  1127. }
  1128. int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
  1129. {
  1130. int r;
  1131. down_write(&pmd->root_lock);
  1132. r = __commit_transaction(pmd);
  1133. if (r <= 0)
  1134. goto out;
  1135. /*
  1136. * Open the next transaction.
  1137. */
  1138. r = __begin_transaction(pmd);
  1139. out:
  1140. up_write(&pmd->root_lock);
  1141. return r;
  1142. }
  1143. int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
  1144. {
  1145. int r;
  1146. down_read(&pmd->root_lock);
  1147. r = dm_sm_get_nr_free(pmd->data_sm, result);
  1148. up_read(&pmd->root_lock);
  1149. return r;
  1150. }
  1151. int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
  1152. dm_block_t *result)
  1153. {
  1154. int r;
  1155. down_read(&pmd->root_lock);
  1156. r = dm_sm_get_nr_free(pmd->metadata_sm, result);
  1157. up_read(&pmd->root_lock);
  1158. return r;
  1159. }
  1160. int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
  1161. dm_block_t *result)
  1162. {
  1163. int r;
  1164. down_read(&pmd->root_lock);
  1165. r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
  1166. up_read(&pmd->root_lock);
  1167. return r;
  1168. }
  1169. int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
  1170. {
  1171. down_read(&pmd->root_lock);
  1172. *result = pmd->data_block_size;
  1173. up_read(&pmd->root_lock);
  1174. return 0;
  1175. }
  1176. int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
  1177. {
  1178. int r;
  1179. down_read(&pmd->root_lock);
  1180. r = dm_sm_get_nr_blocks(pmd->data_sm, result);
  1181. up_read(&pmd->root_lock);
  1182. return r;
  1183. }
  1184. int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
  1185. {
  1186. struct dm_pool_metadata *pmd = td->pmd;
  1187. down_read(&pmd->root_lock);
  1188. *result = td->mapped_blocks;
  1189. up_read(&pmd->root_lock);
  1190. return 0;
  1191. }
  1192. static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
  1193. {
  1194. int r;
  1195. __le64 value_le;
  1196. dm_block_t thin_root;
  1197. struct dm_pool_metadata *pmd = td->pmd;
  1198. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
  1199. if (r)
  1200. return r;
  1201. thin_root = le64_to_cpu(value_le);
  1202. return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
  1203. }
  1204. int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
  1205. dm_block_t *result)
  1206. {
  1207. int r;
  1208. struct dm_pool_metadata *pmd = td->pmd;
  1209. down_read(&pmd->root_lock);
  1210. r = __highest_block(td, result);
  1211. up_read(&pmd->root_lock);
  1212. return r;
  1213. }
  1214. static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1215. {
  1216. int r;
  1217. dm_block_t old_count;
  1218. r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
  1219. if (r)
  1220. return r;
  1221. if (new_count == old_count)
  1222. return 0;
  1223. if (new_count < old_count) {
  1224. DMERR("cannot reduce size of data device");
  1225. return -EINVAL;
  1226. }
  1227. return dm_sm_extend(pmd->data_sm, new_count - old_count);
  1228. }
  1229. int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1230. {
  1231. int r;
  1232. down_write(&pmd->root_lock);
  1233. r = __resize_data_dev(pmd, new_count);
  1234. up_write(&pmd->root_lock);
  1235. return r;
  1236. }