sched.c 165 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <asm/tlb.h>
  64. /*
  65. * Scheduler clock - returns current time in nanosec units.
  66. * This is default implementation.
  67. * Architectures and sub-architectures can override this.
  68. */
  69. unsigned long long __attribute__((weak)) sched_clock(void)
  70. {
  71. return (unsigned long long)jiffies * (1000000000 / HZ);
  72. }
  73. /*
  74. * Convert user-nice values [ -20 ... 0 ... 19 ]
  75. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  76. * and back.
  77. */
  78. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  79. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  80. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  81. /*
  82. * 'User priority' is the nice value converted to something we
  83. * can work with better when scaling various scheduler parameters,
  84. * it's a [ 0 ... 39 ] range.
  85. */
  86. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  87. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  88. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  89. /*
  90. * Some helpers for converting nanosecond timing to jiffy resolution
  91. */
  92. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  93. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  94. #define NICE_0_LOAD SCHED_LOAD_SCALE
  95. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  96. /*
  97. * These are the 'tuning knobs' of the scheduler:
  98. *
  99. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  100. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. #ifdef CONFIG_SMP
  106. /*
  107. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  108. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  109. */
  110. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  111. {
  112. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  113. }
  114. /*
  115. * Each time a sched group cpu_power is changed,
  116. * we must compute its reciprocal value
  117. */
  118. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  119. {
  120. sg->__cpu_power += val;
  121. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  122. }
  123. #endif
  124. #define SCALE_PRIO(x, prio) \
  125. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  126. /*
  127. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  128. * to time slice values: [800ms ... 100ms ... 5ms]
  129. */
  130. static unsigned int static_prio_timeslice(int static_prio)
  131. {
  132. if (static_prio == NICE_TO_PRIO(19))
  133. return 1;
  134. if (static_prio < NICE_TO_PRIO(0))
  135. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  136. else
  137. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  138. }
  139. static inline int rt_policy(int policy)
  140. {
  141. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  142. return 1;
  143. return 0;
  144. }
  145. static inline int task_has_rt_policy(struct task_struct *p)
  146. {
  147. return rt_policy(p->policy);
  148. }
  149. /*
  150. * This is the priority-queue data structure of the RT scheduling class:
  151. */
  152. struct rt_prio_array {
  153. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  154. struct list_head queue[MAX_RT_PRIO];
  155. };
  156. struct load_stat {
  157. struct load_weight load;
  158. u64 load_update_start, load_update_last;
  159. unsigned long delta_fair, delta_exec, delta_stat;
  160. };
  161. /* CFS-related fields in a runqueue */
  162. struct cfs_rq {
  163. struct load_weight load;
  164. unsigned long nr_running;
  165. s64 fair_clock;
  166. u64 exec_clock;
  167. s64 wait_runtime;
  168. u64 sleeper_bonus;
  169. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  170. struct rb_root tasks_timeline;
  171. struct rb_node *rb_leftmost;
  172. struct rb_node *rb_load_balance_curr;
  173. #ifdef CONFIG_FAIR_GROUP_SCHED
  174. /* 'curr' points to currently running entity on this cfs_rq.
  175. * It is set to NULL otherwise (i.e when none are currently running).
  176. */
  177. struct sched_entity *curr;
  178. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  179. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  180. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  181. * (like users, containers etc.)
  182. *
  183. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  184. * list is used during load balance.
  185. */
  186. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  187. #endif
  188. };
  189. /* Real-Time classes' related field in a runqueue: */
  190. struct rt_rq {
  191. struct rt_prio_array active;
  192. int rt_load_balance_idx;
  193. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  194. };
  195. /*
  196. * This is the main, per-CPU runqueue data structure.
  197. *
  198. * Locking rule: those places that want to lock multiple runqueues
  199. * (such as the load balancing or the thread migration code), lock
  200. * acquire operations must be ordered by ascending &runqueue.
  201. */
  202. struct rq {
  203. spinlock_t lock; /* runqueue lock */
  204. /*
  205. * nr_running and cpu_load should be in the same cacheline because
  206. * remote CPUs use both these fields when doing load calculation.
  207. */
  208. unsigned long nr_running;
  209. #define CPU_LOAD_IDX_MAX 5
  210. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  211. unsigned char idle_at_tick;
  212. #ifdef CONFIG_NO_HZ
  213. unsigned char in_nohz_recently;
  214. #endif
  215. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  216. unsigned long nr_load_updates;
  217. u64 nr_switches;
  218. struct cfs_rq cfs;
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  221. #endif
  222. struct rt_rq rt;
  223. /*
  224. * This is part of a global counter where only the total sum
  225. * over all CPUs matters. A task can increase this counter on
  226. * one CPU and if it got migrated afterwards it may decrease
  227. * it on another CPU. Always updated under the runqueue lock:
  228. */
  229. unsigned long nr_uninterruptible;
  230. struct task_struct *curr, *idle;
  231. unsigned long next_balance;
  232. struct mm_struct *prev_mm;
  233. u64 clock, prev_clock_raw;
  234. s64 clock_max_delta;
  235. unsigned int clock_warps, clock_overflows;
  236. unsigned int clock_unstable_events;
  237. atomic_t nr_iowait;
  238. #ifdef CONFIG_SMP
  239. struct sched_domain *sd;
  240. /* For active balancing */
  241. int active_balance;
  242. int push_cpu;
  243. int cpu; /* cpu of this runqueue */
  244. struct task_struct *migration_thread;
  245. struct list_head migration_queue;
  246. #endif
  247. #ifdef CONFIG_SCHEDSTATS
  248. /* latency stats */
  249. struct sched_info rq_sched_info;
  250. /* sys_sched_yield() stats */
  251. unsigned long yld_exp_empty;
  252. unsigned long yld_act_empty;
  253. unsigned long yld_both_empty;
  254. unsigned long yld_cnt;
  255. /* schedule() stats */
  256. unsigned long sched_switch;
  257. unsigned long sched_cnt;
  258. unsigned long sched_goidle;
  259. /* try_to_wake_up() stats */
  260. unsigned long ttwu_cnt;
  261. unsigned long ttwu_local;
  262. #endif
  263. struct lock_class_key rq_lock_key;
  264. };
  265. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  266. static DEFINE_MUTEX(sched_hotcpu_mutex);
  267. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  268. {
  269. rq->curr->sched_class->check_preempt_curr(rq, p);
  270. }
  271. static inline int cpu_of(struct rq *rq)
  272. {
  273. #ifdef CONFIG_SMP
  274. return rq->cpu;
  275. #else
  276. return 0;
  277. #endif
  278. }
  279. /*
  280. * Update the per-runqueue clock, as finegrained as the platform can give
  281. * us, but without assuming monotonicity, etc.:
  282. */
  283. static void __update_rq_clock(struct rq *rq)
  284. {
  285. u64 prev_raw = rq->prev_clock_raw;
  286. u64 now = sched_clock();
  287. s64 delta = now - prev_raw;
  288. u64 clock = rq->clock;
  289. #ifdef CONFIG_SCHED_DEBUG
  290. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  291. #endif
  292. /*
  293. * Protect against sched_clock() occasionally going backwards:
  294. */
  295. if (unlikely(delta < 0)) {
  296. clock++;
  297. rq->clock_warps++;
  298. } else {
  299. /*
  300. * Catch too large forward jumps too:
  301. */
  302. if (unlikely(delta > 2*TICK_NSEC)) {
  303. clock++;
  304. rq->clock_overflows++;
  305. } else {
  306. if (unlikely(delta > rq->clock_max_delta))
  307. rq->clock_max_delta = delta;
  308. clock += delta;
  309. }
  310. }
  311. rq->prev_clock_raw = now;
  312. rq->clock = clock;
  313. }
  314. static void update_rq_clock(struct rq *rq)
  315. {
  316. if (likely(smp_processor_id() == cpu_of(rq)))
  317. __update_rq_clock(rq);
  318. }
  319. /*
  320. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  321. * See detach_destroy_domains: synchronize_sched for details.
  322. *
  323. * The domain tree of any CPU may only be accessed from within
  324. * preempt-disabled sections.
  325. */
  326. #define for_each_domain(cpu, __sd) \
  327. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  328. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  329. #define this_rq() (&__get_cpu_var(runqueues))
  330. #define task_rq(p) cpu_rq(task_cpu(p))
  331. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  332. /*
  333. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  334. * clock constructed from sched_clock():
  335. */
  336. unsigned long long cpu_clock(int cpu)
  337. {
  338. unsigned long long now;
  339. unsigned long flags;
  340. struct rq *rq;
  341. local_irq_save(flags);
  342. rq = cpu_rq(cpu);
  343. update_rq_clock(rq);
  344. now = rq->clock;
  345. local_irq_restore(flags);
  346. return now;
  347. }
  348. #ifdef CONFIG_FAIR_GROUP_SCHED
  349. /* Change a task's ->cfs_rq if it moves across CPUs */
  350. static inline void set_task_cfs_rq(struct task_struct *p)
  351. {
  352. p->se.cfs_rq = &task_rq(p)->cfs;
  353. }
  354. #else
  355. static inline void set_task_cfs_rq(struct task_struct *p)
  356. {
  357. }
  358. #endif
  359. #ifndef prepare_arch_switch
  360. # define prepare_arch_switch(next) do { } while (0)
  361. #endif
  362. #ifndef finish_arch_switch
  363. # define finish_arch_switch(prev) do { } while (0)
  364. #endif
  365. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  366. static inline int task_running(struct rq *rq, struct task_struct *p)
  367. {
  368. return rq->curr == p;
  369. }
  370. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  371. {
  372. }
  373. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  374. {
  375. #ifdef CONFIG_DEBUG_SPINLOCK
  376. /* this is a valid case when another task releases the spinlock */
  377. rq->lock.owner = current;
  378. #endif
  379. /*
  380. * If we are tracking spinlock dependencies then we have to
  381. * fix up the runqueue lock - which gets 'carried over' from
  382. * prev into current:
  383. */
  384. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  385. spin_unlock_irq(&rq->lock);
  386. }
  387. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  388. static inline int task_running(struct rq *rq, struct task_struct *p)
  389. {
  390. #ifdef CONFIG_SMP
  391. return p->oncpu;
  392. #else
  393. return rq->curr == p;
  394. #endif
  395. }
  396. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  397. {
  398. #ifdef CONFIG_SMP
  399. /*
  400. * We can optimise this out completely for !SMP, because the
  401. * SMP rebalancing from interrupt is the only thing that cares
  402. * here.
  403. */
  404. next->oncpu = 1;
  405. #endif
  406. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  407. spin_unlock_irq(&rq->lock);
  408. #else
  409. spin_unlock(&rq->lock);
  410. #endif
  411. }
  412. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  413. {
  414. #ifdef CONFIG_SMP
  415. /*
  416. * After ->oncpu is cleared, the task can be moved to a different CPU.
  417. * We must ensure this doesn't happen until the switch is completely
  418. * finished.
  419. */
  420. smp_wmb();
  421. prev->oncpu = 0;
  422. #endif
  423. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  424. local_irq_enable();
  425. #endif
  426. }
  427. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  428. /*
  429. * __task_rq_lock - lock the runqueue a given task resides on.
  430. * Must be called interrupts disabled.
  431. */
  432. static inline struct rq *__task_rq_lock(struct task_struct *p)
  433. __acquires(rq->lock)
  434. {
  435. struct rq *rq;
  436. repeat_lock_task:
  437. rq = task_rq(p);
  438. spin_lock(&rq->lock);
  439. if (unlikely(rq != task_rq(p))) {
  440. spin_unlock(&rq->lock);
  441. goto repeat_lock_task;
  442. }
  443. return rq;
  444. }
  445. /*
  446. * task_rq_lock - lock the runqueue a given task resides on and disable
  447. * interrupts. Note the ordering: we can safely lookup the task_rq without
  448. * explicitly disabling preemption.
  449. */
  450. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  451. __acquires(rq->lock)
  452. {
  453. struct rq *rq;
  454. repeat_lock_task:
  455. local_irq_save(*flags);
  456. rq = task_rq(p);
  457. spin_lock(&rq->lock);
  458. if (unlikely(rq != task_rq(p))) {
  459. spin_unlock_irqrestore(&rq->lock, *flags);
  460. goto repeat_lock_task;
  461. }
  462. return rq;
  463. }
  464. static inline void __task_rq_unlock(struct rq *rq)
  465. __releases(rq->lock)
  466. {
  467. spin_unlock(&rq->lock);
  468. }
  469. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  470. __releases(rq->lock)
  471. {
  472. spin_unlock_irqrestore(&rq->lock, *flags);
  473. }
  474. /*
  475. * this_rq_lock - lock this runqueue and disable interrupts.
  476. */
  477. static inline struct rq *this_rq_lock(void)
  478. __acquires(rq->lock)
  479. {
  480. struct rq *rq;
  481. local_irq_disable();
  482. rq = this_rq();
  483. spin_lock(&rq->lock);
  484. return rq;
  485. }
  486. /*
  487. * CPU frequency is/was unstable - start new by setting prev_clock_raw:
  488. */
  489. void sched_clock_unstable_event(void)
  490. {
  491. unsigned long flags;
  492. struct rq *rq;
  493. rq = task_rq_lock(current, &flags);
  494. rq->prev_clock_raw = sched_clock();
  495. rq->clock_unstable_events++;
  496. task_rq_unlock(rq, &flags);
  497. }
  498. /*
  499. * resched_task - mark a task 'to be rescheduled now'.
  500. *
  501. * On UP this means the setting of the need_resched flag, on SMP it
  502. * might also involve a cross-CPU call to trigger the scheduler on
  503. * the target CPU.
  504. */
  505. #ifdef CONFIG_SMP
  506. #ifndef tsk_is_polling
  507. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  508. #endif
  509. static void resched_task(struct task_struct *p)
  510. {
  511. int cpu;
  512. assert_spin_locked(&task_rq(p)->lock);
  513. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  514. return;
  515. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  516. cpu = task_cpu(p);
  517. if (cpu == smp_processor_id())
  518. return;
  519. /* NEED_RESCHED must be visible before we test polling */
  520. smp_mb();
  521. if (!tsk_is_polling(p))
  522. smp_send_reschedule(cpu);
  523. }
  524. static void resched_cpu(int cpu)
  525. {
  526. struct rq *rq = cpu_rq(cpu);
  527. unsigned long flags;
  528. if (!spin_trylock_irqsave(&rq->lock, flags))
  529. return;
  530. resched_task(cpu_curr(cpu));
  531. spin_unlock_irqrestore(&rq->lock, flags);
  532. }
  533. #else
  534. static inline void resched_task(struct task_struct *p)
  535. {
  536. assert_spin_locked(&task_rq(p)->lock);
  537. set_tsk_need_resched(p);
  538. }
  539. #endif
  540. static u64 div64_likely32(u64 divident, unsigned long divisor)
  541. {
  542. #if BITS_PER_LONG == 32
  543. if (likely(divident <= 0xffffffffULL))
  544. return (u32)divident / divisor;
  545. do_div(divident, divisor);
  546. return divident;
  547. #else
  548. return divident / divisor;
  549. #endif
  550. }
  551. #if BITS_PER_LONG == 32
  552. # define WMULT_CONST (~0UL)
  553. #else
  554. # define WMULT_CONST (1UL << 32)
  555. #endif
  556. #define WMULT_SHIFT 32
  557. static unsigned long
  558. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  559. struct load_weight *lw)
  560. {
  561. u64 tmp;
  562. if (unlikely(!lw->inv_weight))
  563. lw->inv_weight = WMULT_CONST / lw->weight;
  564. tmp = (u64)delta_exec * weight;
  565. /*
  566. * Check whether we'd overflow the 64-bit multiplication:
  567. */
  568. if (unlikely(tmp > WMULT_CONST)) {
  569. tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
  570. >> (WMULT_SHIFT/2);
  571. } else {
  572. tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
  573. }
  574. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  575. }
  576. static inline unsigned long
  577. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  578. {
  579. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  580. }
  581. static void update_load_add(struct load_weight *lw, unsigned long inc)
  582. {
  583. lw->weight += inc;
  584. lw->inv_weight = 0;
  585. }
  586. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  587. {
  588. lw->weight -= dec;
  589. lw->inv_weight = 0;
  590. }
  591. /*
  592. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  593. * of tasks with abnormal "nice" values across CPUs the contribution that
  594. * each task makes to its run queue's load is weighted according to its
  595. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  596. * scaled version of the new time slice allocation that they receive on time
  597. * slice expiry etc.
  598. */
  599. #define WEIGHT_IDLEPRIO 2
  600. #define WMULT_IDLEPRIO (1 << 31)
  601. /*
  602. * Nice levels are multiplicative, with a gentle 10% change for every
  603. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  604. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  605. * that remained on nice 0.
  606. *
  607. * The "10% effect" is relative and cumulative: from _any_ nice level,
  608. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  609. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  610. * If a task goes up by ~10% and another task goes down by ~10% then
  611. * the relative distance between them is ~25%.)
  612. */
  613. static const int prio_to_weight[40] = {
  614. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  615. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  616. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  617. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  618. /* 0 */ 1024, 820, 655, 526, 423,
  619. /* 5 */ 335, 272, 215, 172, 137,
  620. /* 10 */ 110, 87, 70, 56, 45,
  621. /* 15 */ 36, 29, 23, 18, 15,
  622. };
  623. /*
  624. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  625. *
  626. * In cases where the weight does not change often, we can use the
  627. * precalculated inverse to speed up arithmetics by turning divisions
  628. * into multiplications:
  629. */
  630. static const u32 prio_to_wmult[40] = {
  631. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  632. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  633. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  634. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  635. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  636. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  637. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  638. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  639. };
  640. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  641. /*
  642. * runqueue iterator, to support SMP load-balancing between different
  643. * scheduling classes, without having to expose their internal data
  644. * structures to the load-balancing proper:
  645. */
  646. struct rq_iterator {
  647. void *arg;
  648. struct task_struct *(*start)(void *);
  649. struct task_struct *(*next)(void *);
  650. };
  651. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  652. unsigned long max_nr_move, unsigned long max_load_move,
  653. struct sched_domain *sd, enum cpu_idle_type idle,
  654. int *all_pinned, unsigned long *load_moved,
  655. int *this_best_prio, struct rq_iterator *iterator);
  656. #include "sched_stats.h"
  657. #include "sched_rt.c"
  658. #include "sched_fair.c"
  659. #include "sched_idletask.c"
  660. #ifdef CONFIG_SCHED_DEBUG
  661. # include "sched_debug.c"
  662. #endif
  663. #define sched_class_highest (&rt_sched_class)
  664. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  665. {
  666. if (rq->curr != rq->idle && ls->load.weight) {
  667. ls->delta_exec += ls->delta_stat;
  668. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  669. ls->delta_stat = 0;
  670. }
  671. }
  672. /*
  673. * Update delta_exec, delta_fair fields for rq.
  674. *
  675. * delta_fair clock advances at a rate inversely proportional to
  676. * total load (rq->ls.load.weight) on the runqueue, while
  677. * delta_exec advances at the same rate as wall-clock (provided
  678. * cpu is not idle).
  679. *
  680. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  681. * runqueue over any given interval. This (smoothened) load is used
  682. * during load balance.
  683. *
  684. * This function is called /before/ updating rq->ls.load
  685. * and when switching tasks.
  686. */
  687. static void update_curr_load(struct rq *rq)
  688. {
  689. struct load_stat *ls = &rq->ls;
  690. u64 start;
  691. start = ls->load_update_start;
  692. ls->load_update_start = rq->clock;
  693. ls->delta_stat += rq->clock - start;
  694. /*
  695. * Stagger updates to ls->delta_fair. Very frequent updates
  696. * can be expensive.
  697. */
  698. if (ls->delta_stat >= sysctl_sched_stat_granularity)
  699. __update_curr_load(rq, ls);
  700. }
  701. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  702. {
  703. update_curr_load(rq);
  704. update_load_add(&rq->ls.load, p->se.load.weight);
  705. }
  706. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  707. {
  708. update_curr_load(rq);
  709. update_load_sub(&rq->ls.load, p->se.load.weight);
  710. }
  711. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  712. {
  713. rq->nr_running++;
  714. inc_load(rq, p);
  715. }
  716. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  717. {
  718. rq->nr_running--;
  719. dec_load(rq, p);
  720. }
  721. static void set_load_weight(struct task_struct *p)
  722. {
  723. task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
  724. p->se.wait_runtime = 0;
  725. if (task_has_rt_policy(p)) {
  726. p->se.load.weight = prio_to_weight[0] * 2;
  727. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  728. return;
  729. }
  730. /*
  731. * SCHED_IDLE tasks get minimal weight:
  732. */
  733. if (p->policy == SCHED_IDLE) {
  734. p->se.load.weight = WEIGHT_IDLEPRIO;
  735. p->se.load.inv_weight = WMULT_IDLEPRIO;
  736. return;
  737. }
  738. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  739. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  740. }
  741. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  742. {
  743. sched_info_queued(p);
  744. p->sched_class->enqueue_task(rq, p, wakeup);
  745. p->se.on_rq = 1;
  746. }
  747. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  748. {
  749. p->sched_class->dequeue_task(rq, p, sleep);
  750. p->se.on_rq = 0;
  751. }
  752. /*
  753. * __normal_prio - return the priority that is based on the static prio
  754. */
  755. static inline int __normal_prio(struct task_struct *p)
  756. {
  757. return p->static_prio;
  758. }
  759. /*
  760. * Calculate the expected normal priority: i.e. priority
  761. * without taking RT-inheritance into account. Might be
  762. * boosted by interactivity modifiers. Changes upon fork,
  763. * setprio syscalls, and whenever the interactivity
  764. * estimator recalculates.
  765. */
  766. static inline int normal_prio(struct task_struct *p)
  767. {
  768. int prio;
  769. if (task_has_rt_policy(p))
  770. prio = MAX_RT_PRIO-1 - p->rt_priority;
  771. else
  772. prio = __normal_prio(p);
  773. return prio;
  774. }
  775. /*
  776. * Calculate the current priority, i.e. the priority
  777. * taken into account by the scheduler. This value might
  778. * be boosted by RT tasks, or might be boosted by
  779. * interactivity modifiers. Will be RT if the task got
  780. * RT-boosted. If not then it returns p->normal_prio.
  781. */
  782. static int effective_prio(struct task_struct *p)
  783. {
  784. p->normal_prio = normal_prio(p);
  785. /*
  786. * If we are RT tasks or we were boosted to RT priority,
  787. * keep the priority unchanged. Otherwise, update priority
  788. * to the normal priority:
  789. */
  790. if (!rt_prio(p->prio))
  791. return p->normal_prio;
  792. return p->prio;
  793. }
  794. /*
  795. * activate_task - move a task to the runqueue.
  796. */
  797. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  798. {
  799. if (p->state == TASK_UNINTERRUPTIBLE)
  800. rq->nr_uninterruptible--;
  801. enqueue_task(rq, p, wakeup);
  802. inc_nr_running(p, rq);
  803. }
  804. /*
  805. * activate_idle_task - move idle task to the _front_ of runqueue.
  806. */
  807. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  808. {
  809. update_rq_clock(rq);
  810. if (p->state == TASK_UNINTERRUPTIBLE)
  811. rq->nr_uninterruptible--;
  812. enqueue_task(rq, p, 0);
  813. inc_nr_running(p, rq);
  814. }
  815. /*
  816. * deactivate_task - remove a task from the runqueue.
  817. */
  818. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  819. {
  820. if (p->state == TASK_UNINTERRUPTIBLE)
  821. rq->nr_uninterruptible++;
  822. dequeue_task(rq, p, sleep);
  823. dec_nr_running(p, rq);
  824. }
  825. /**
  826. * task_curr - is this task currently executing on a CPU?
  827. * @p: the task in question.
  828. */
  829. inline int task_curr(const struct task_struct *p)
  830. {
  831. return cpu_curr(task_cpu(p)) == p;
  832. }
  833. /* Used instead of source_load when we know the type == 0 */
  834. unsigned long weighted_cpuload(const int cpu)
  835. {
  836. return cpu_rq(cpu)->ls.load.weight;
  837. }
  838. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  839. {
  840. #ifdef CONFIG_SMP
  841. task_thread_info(p)->cpu = cpu;
  842. set_task_cfs_rq(p);
  843. #endif
  844. }
  845. #ifdef CONFIG_SMP
  846. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  847. {
  848. int old_cpu = task_cpu(p);
  849. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  850. u64 clock_offset, fair_clock_offset;
  851. clock_offset = old_rq->clock - new_rq->clock;
  852. fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
  853. if (p->se.wait_start_fair)
  854. p->se.wait_start_fair -= fair_clock_offset;
  855. if (p->se.sleep_start_fair)
  856. p->se.sleep_start_fair -= fair_clock_offset;
  857. #ifdef CONFIG_SCHEDSTATS
  858. if (p->se.wait_start)
  859. p->se.wait_start -= clock_offset;
  860. if (p->se.sleep_start)
  861. p->se.sleep_start -= clock_offset;
  862. if (p->se.block_start)
  863. p->se.block_start -= clock_offset;
  864. #endif
  865. __set_task_cpu(p, new_cpu);
  866. }
  867. struct migration_req {
  868. struct list_head list;
  869. struct task_struct *task;
  870. int dest_cpu;
  871. struct completion done;
  872. };
  873. /*
  874. * The task's runqueue lock must be held.
  875. * Returns true if you have to wait for migration thread.
  876. */
  877. static int
  878. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  879. {
  880. struct rq *rq = task_rq(p);
  881. /*
  882. * If the task is not on a runqueue (and not running), then
  883. * it is sufficient to simply update the task's cpu field.
  884. */
  885. if (!p->se.on_rq && !task_running(rq, p)) {
  886. set_task_cpu(p, dest_cpu);
  887. return 0;
  888. }
  889. init_completion(&req->done);
  890. req->task = p;
  891. req->dest_cpu = dest_cpu;
  892. list_add(&req->list, &rq->migration_queue);
  893. return 1;
  894. }
  895. /*
  896. * wait_task_inactive - wait for a thread to unschedule.
  897. *
  898. * The caller must ensure that the task *will* unschedule sometime soon,
  899. * else this function might spin for a *long* time. This function can't
  900. * be called with interrupts off, or it may introduce deadlock with
  901. * smp_call_function() if an IPI is sent by the same process we are
  902. * waiting to become inactive.
  903. */
  904. void wait_task_inactive(struct task_struct *p)
  905. {
  906. unsigned long flags;
  907. int running, on_rq;
  908. struct rq *rq;
  909. repeat:
  910. /*
  911. * We do the initial early heuristics without holding
  912. * any task-queue locks at all. We'll only try to get
  913. * the runqueue lock when things look like they will
  914. * work out!
  915. */
  916. rq = task_rq(p);
  917. /*
  918. * If the task is actively running on another CPU
  919. * still, just relax and busy-wait without holding
  920. * any locks.
  921. *
  922. * NOTE! Since we don't hold any locks, it's not
  923. * even sure that "rq" stays as the right runqueue!
  924. * But we don't care, since "task_running()" will
  925. * return false if the runqueue has changed and p
  926. * is actually now running somewhere else!
  927. */
  928. while (task_running(rq, p))
  929. cpu_relax();
  930. /*
  931. * Ok, time to look more closely! We need the rq
  932. * lock now, to be *sure*. If we're wrong, we'll
  933. * just go back and repeat.
  934. */
  935. rq = task_rq_lock(p, &flags);
  936. running = task_running(rq, p);
  937. on_rq = p->se.on_rq;
  938. task_rq_unlock(rq, &flags);
  939. /*
  940. * Was it really running after all now that we
  941. * checked with the proper locks actually held?
  942. *
  943. * Oops. Go back and try again..
  944. */
  945. if (unlikely(running)) {
  946. cpu_relax();
  947. goto repeat;
  948. }
  949. /*
  950. * It's not enough that it's not actively running,
  951. * it must be off the runqueue _entirely_, and not
  952. * preempted!
  953. *
  954. * So if it wa still runnable (but just not actively
  955. * running right now), it's preempted, and we should
  956. * yield - it could be a while.
  957. */
  958. if (unlikely(on_rq)) {
  959. yield();
  960. goto repeat;
  961. }
  962. /*
  963. * Ahh, all good. It wasn't running, and it wasn't
  964. * runnable, which means that it will never become
  965. * running in the future either. We're all done!
  966. */
  967. }
  968. /***
  969. * kick_process - kick a running thread to enter/exit the kernel
  970. * @p: the to-be-kicked thread
  971. *
  972. * Cause a process which is running on another CPU to enter
  973. * kernel-mode, without any delay. (to get signals handled.)
  974. *
  975. * NOTE: this function doesnt have to take the runqueue lock,
  976. * because all it wants to ensure is that the remote task enters
  977. * the kernel. If the IPI races and the task has been migrated
  978. * to another CPU then no harm is done and the purpose has been
  979. * achieved as well.
  980. */
  981. void kick_process(struct task_struct *p)
  982. {
  983. int cpu;
  984. preempt_disable();
  985. cpu = task_cpu(p);
  986. if ((cpu != smp_processor_id()) && task_curr(p))
  987. smp_send_reschedule(cpu);
  988. preempt_enable();
  989. }
  990. /*
  991. * Return a low guess at the load of a migration-source cpu weighted
  992. * according to the scheduling class and "nice" value.
  993. *
  994. * We want to under-estimate the load of migration sources, to
  995. * balance conservatively.
  996. */
  997. static inline unsigned long source_load(int cpu, int type)
  998. {
  999. struct rq *rq = cpu_rq(cpu);
  1000. unsigned long total = weighted_cpuload(cpu);
  1001. if (type == 0)
  1002. return total;
  1003. return min(rq->cpu_load[type-1], total);
  1004. }
  1005. /*
  1006. * Return a high guess at the load of a migration-target cpu weighted
  1007. * according to the scheduling class and "nice" value.
  1008. */
  1009. static inline unsigned long target_load(int cpu, int type)
  1010. {
  1011. struct rq *rq = cpu_rq(cpu);
  1012. unsigned long total = weighted_cpuload(cpu);
  1013. if (type == 0)
  1014. return total;
  1015. return max(rq->cpu_load[type-1], total);
  1016. }
  1017. /*
  1018. * Return the average load per task on the cpu's run queue
  1019. */
  1020. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1021. {
  1022. struct rq *rq = cpu_rq(cpu);
  1023. unsigned long total = weighted_cpuload(cpu);
  1024. unsigned long n = rq->nr_running;
  1025. return n ? total / n : SCHED_LOAD_SCALE;
  1026. }
  1027. /*
  1028. * find_idlest_group finds and returns the least busy CPU group within the
  1029. * domain.
  1030. */
  1031. static struct sched_group *
  1032. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1033. {
  1034. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1035. unsigned long min_load = ULONG_MAX, this_load = 0;
  1036. int load_idx = sd->forkexec_idx;
  1037. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1038. do {
  1039. unsigned long load, avg_load;
  1040. int local_group;
  1041. int i;
  1042. /* Skip over this group if it has no CPUs allowed */
  1043. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1044. goto nextgroup;
  1045. local_group = cpu_isset(this_cpu, group->cpumask);
  1046. /* Tally up the load of all CPUs in the group */
  1047. avg_load = 0;
  1048. for_each_cpu_mask(i, group->cpumask) {
  1049. /* Bias balancing toward cpus of our domain */
  1050. if (local_group)
  1051. load = source_load(i, load_idx);
  1052. else
  1053. load = target_load(i, load_idx);
  1054. avg_load += load;
  1055. }
  1056. /* Adjust by relative CPU power of the group */
  1057. avg_load = sg_div_cpu_power(group,
  1058. avg_load * SCHED_LOAD_SCALE);
  1059. if (local_group) {
  1060. this_load = avg_load;
  1061. this = group;
  1062. } else if (avg_load < min_load) {
  1063. min_load = avg_load;
  1064. idlest = group;
  1065. }
  1066. nextgroup:
  1067. group = group->next;
  1068. } while (group != sd->groups);
  1069. if (!idlest || 100*this_load < imbalance*min_load)
  1070. return NULL;
  1071. return idlest;
  1072. }
  1073. /*
  1074. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1075. */
  1076. static int
  1077. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1078. {
  1079. cpumask_t tmp;
  1080. unsigned long load, min_load = ULONG_MAX;
  1081. int idlest = -1;
  1082. int i;
  1083. /* Traverse only the allowed CPUs */
  1084. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1085. for_each_cpu_mask(i, tmp) {
  1086. load = weighted_cpuload(i);
  1087. if (load < min_load || (load == min_load && i == this_cpu)) {
  1088. min_load = load;
  1089. idlest = i;
  1090. }
  1091. }
  1092. return idlest;
  1093. }
  1094. /*
  1095. * sched_balance_self: balance the current task (running on cpu) in domains
  1096. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1097. * SD_BALANCE_EXEC.
  1098. *
  1099. * Balance, ie. select the least loaded group.
  1100. *
  1101. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1102. *
  1103. * preempt must be disabled.
  1104. */
  1105. static int sched_balance_self(int cpu, int flag)
  1106. {
  1107. struct task_struct *t = current;
  1108. struct sched_domain *tmp, *sd = NULL;
  1109. for_each_domain(cpu, tmp) {
  1110. /*
  1111. * If power savings logic is enabled for a domain, stop there.
  1112. */
  1113. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1114. break;
  1115. if (tmp->flags & flag)
  1116. sd = tmp;
  1117. }
  1118. while (sd) {
  1119. cpumask_t span;
  1120. struct sched_group *group;
  1121. int new_cpu, weight;
  1122. if (!(sd->flags & flag)) {
  1123. sd = sd->child;
  1124. continue;
  1125. }
  1126. span = sd->span;
  1127. group = find_idlest_group(sd, t, cpu);
  1128. if (!group) {
  1129. sd = sd->child;
  1130. continue;
  1131. }
  1132. new_cpu = find_idlest_cpu(group, t, cpu);
  1133. if (new_cpu == -1 || new_cpu == cpu) {
  1134. /* Now try balancing at a lower domain level of cpu */
  1135. sd = sd->child;
  1136. continue;
  1137. }
  1138. /* Now try balancing at a lower domain level of new_cpu */
  1139. cpu = new_cpu;
  1140. sd = NULL;
  1141. weight = cpus_weight(span);
  1142. for_each_domain(cpu, tmp) {
  1143. if (weight <= cpus_weight(tmp->span))
  1144. break;
  1145. if (tmp->flags & flag)
  1146. sd = tmp;
  1147. }
  1148. /* while loop will break here if sd == NULL */
  1149. }
  1150. return cpu;
  1151. }
  1152. #endif /* CONFIG_SMP */
  1153. /*
  1154. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1155. * not idle and an idle cpu is available. The span of cpus to
  1156. * search starts with cpus closest then further out as needed,
  1157. * so we always favor a closer, idle cpu.
  1158. *
  1159. * Returns the CPU we should wake onto.
  1160. */
  1161. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1162. static int wake_idle(int cpu, struct task_struct *p)
  1163. {
  1164. cpumask_t tmp;
  1165. struct sched_domain *sd;
  1166. int i;
  1167. /*
  1168. * If it is idle, then it is the best cpu to run this task.
  1169. *
  1170. * This cpu is also the best, if it has more than one task already.
  1171. * Siblings must be also busy(in most cases) as they didn't already
  1172. * pickup the extra load from this cpu and hence we need not check
  1173. * sibling runqueue info. This will avoid the checks and cache miss
  1174. * penalities associated with that.
  1175. */
  1176. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1177. return cpu;
  1178. for_each_domain(cpu, sd) {
  1179. if (sd->flags & SD_WAKE_IDLE) {
  1180. cpus_and(tmp, sd->span, p->cpus_allowed);
  1181. for_each_cpu_mask(i, tmp) {
  1182. if (idle_cpu(i))
  1183. return i;
  1184. }
  1185. } else {
  1186. break;
  1187. }
  1188. }
  1189. return cpu;
  1190. }
  1191. #else
  1192. static inline int wake_idle(int cpu, struct task_struct *p)
  1193. {
  1194. return cpu;
  1195. }
  1196. #endif
  1197. /***
  1198. * try_to_wake_up - wake up a thread
  1199. * @p: the to-be-woken-up thread
  1200. * @state: the mask of task states that can be woken
  1201. * @sync: do a synchronous wakeup?
  1202. *
  1203. * Put it on the run-queue if it's not already there. The "current"
  1204. * thread is always on the run-queue (except when the actual
  1205. * re-schedule is in progress), and as such you're allowed to do
  1206. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1207. * runnable without the overhead of this.
  1208. *
  1209. * returns failure only if the task is already active.
  1210. */
  1211. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1212. {
  1213. int cpu, this_cpu, success = 0;
  1214. unsigned long flags;
  1215. long old_state;
  1216. struct rq *rq;
  1217. #ifdef CONFIG_SMP
  1218. struct sched_domain *sd, *this_sd = NULL;
  1219. unsigned long load, this_load;
  1220. int new_cpu;
  1221. #endif
  1222. rq = task_rq_lock(p, &flags);
  1223. old_state = p->state;
  1224. if (!(old_state & state))
  1225. goto out;
  1226. if (p->se.on_rq)
  1227. goto out_running;
  1228. cpu = task_cpu(p);
  1229. this_cpu = smp_processor_id();
  1230. #ifdef CONFIG_SMP
  1231. if (unlikely(task_running(rq, p)))
  1232. goto out_activate;
  1233. new_cpu = cpu;
  1234. schedstat_inc(rq, ttwu_cnt);
  1235. if (cpu == this_cpu) {
  1236. schedstat_inc(rq, ttwu_local);
  1237. goto out_set_cpu;
  1238. }
  1239. for_each_domain(this_cpu, sd) {
  1240. if (cpu_isset(cpu, sd->span)) {
  1241. schedstat_inc(sd, ttwu_wake_remote);
  1242. this_sd = sd;
  1243. break;
  1244. }
  1245. }
  1246. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1247. goto out_set_cpu;
  1248. /*
  1249. * Check for affine wakeup and passive balancing possibilities.
  1250. */
  1251. if (this_sd) {
  1252. int idx = this_sd->wake_idx;
  1253. unsigned int imbalance;
  1254. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1255. load = source_load(cpu, idx);
  1256. this_load = target_load(this_cpu, idx);
  1257. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1258. if (this_sd->flags & SD_WAKE_AFFINE) {
  1259. unsigned long tl = this_load;
  1260. unsigned long tl_per_task;
  1261. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1262. /*
  1263. * If sync wakeup then subtract the (maximum possible)
  1264. * effect of the currently running task from the load
  1265. * of the current CPU:
  1266. */
  1267. if (sync)
  1268. tl -= current->se.load.weight;
  1269. if ((tl <= load &&
  1270. tl + target_load(cpu, idx) <= tl_per_task) ||
  1271. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1272. /*
  1273. * This domain has SD_WAKE_AFFINE and
  1274. * p is cache cold in this domain, and
  1275. * there is no bad imbalance.
  1276. */
  1277. schedstat_inc(this_sd, ttwu_move_affine);
  1278. goto out_set_cpu;
  1279. }
  1280. }
  1281. /*
  1282. * Start passive balancing when half the imbalance_pct
  1283. * limit is reached.
  1284. */
  1285. if (this_sd->flags & SD_WAKE_BALANCE) {
  1286. if (imbalance*this_load <= 100*load) {
  1287. schedstat_inc(this_sd, ttwu_move_balance);
  1288. goto out_set_cpu;
  1289. }
  1290. }
  1291. }
  1292. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1293. out_set_cpu:
  1294. new_cpu = wake_idle(new_cpu, p);
  1295. if (new_cpu != cpu) {
  1296. set_task_cpu(p, new_cpu);
  1297. task_rq_unlock(rq, &flags);
  1298. /* might preempt at this point */
  1299. rq = task_rq_lock(p, &flags);
  1300. old_state = p->state;
  1301. if (!(old_state & state))
  1302. goto out;
  1303. if (p->se.on_rq)
  1304. goto out_running;
  1305. this_cpu = smp_processor_id();
  1306. cpu = task_cpu(p);
  1307. }
  1308. out_activate:
  1309. #endif /* CONFIG_SMP */
  1310. update_rq_clock(rq);
  1311. activate_task(rq, p, 1);
  1312. /*
  1313. * Sync wakeups (i.e. those types of wakeups where the waker
  1314. * has indicated that it will leave the CPU in short order)
  1315. * don't trigger a preemption, if the woken up task will run on
  1316. * this cpu. (in this case the 'I will reschedule' promise of
  1317. * the waker guarantees that the freshly woken up task is going
  1318. * to be considered on this CPU.)
  1319. */
  1320. if (!sync || cpu != this_cpu)
  1321. check_preempt_curr(rq, p);
  1322. success = 1;
  1323. out_running:
  1324. p->state = TASK_RUNNING;
  1325. out:
  1326. task_rq_unlock(rq, &flags);
  1327. return success;
  1328. }
  1329. int fastcall wake_up_process(struct task_struct *p)
  1330. {
  1331. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1332. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1333. }
  1334. EXPORT_SYMBOL(wake_up_process);
  1335. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1336. {
  1337. return try_to_wake_up(p, state, 0);
  1338. }
  1339. /*
  1340. * Perform scheduler related setup for a newly forked process p.
  1341. * p is forked by current.
  1342. *
  1343. * __sched_fork() is basic setup used by init_idle() too:
  1344. */
  1345. static void __sched_fork(struct task_struct *p)
  1346. {
  1347. p->se.wait_start_fair = 0;
  1348. p->se.exec_start = 0;
  1349. p->se.sum_exec_runtime = 0;
  1350. p->se.delta_exec = 0;
  1351. p->se.delta_fair_run = 0;
  1352. p->se.delta_fair_sleep = 0;
  1353. p->se.wait_runtime = 0;
  1354. p->se.sleep_start_fair = 0;
  1355. #ifdef CONFIG_SCHEDSTATS
  1356. p->se.wait_start = 0;
  1357. p->se.sum_wait_runtime = 0;
  1358. p->se.sum_sleep_runtime = 0;
  1359. p->se.sleep_start = 0;
  1360. p->se.block_start = 0;
  1361. p->se.sleep_max = 0;
  1362. p->se.block_max = 0;
  1363. p->se.exec_max = 0;
  1364. p->se.wait_max = 0;
  1365. p->se.wait_runtime_overruns = 0;
  1366. p->se.wait_runtime_underruns = 0;
  1367. #endif
  1368. INIT_LIST_HEAD(&p->run_list);
  1369. p->se.on_rq = 0;
  1370. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1371. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1372. #endif
  1373. /*
  1374. * We mark the process as running here, but have not actually
  1375. * inserted it onto the runqueue yet. This guarantees that
  1376. * nobody will actually run it, and a signal or other external
  1377. * event cannot wake it up and insert it on the runqueue either.
  1378. */
  1379. p->state = TASK_RUNNING;
  1380. }
  1381. /*
  1382. * fork()/clone()-time setup:
  1383. */
  1384. void sched_fork(struct task_struct *p, int clone_flags)
  1385. {
  1386. int cpu = get_cpu();
  1387. __sched_fork(p);
  1388. #ifdef CONFIG_SMP
  1389. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1390. #endif
  1391. __set_task_cpu(p, cpu);
  1392. /*
  1393. * Make sure we do not leak PI boosting priority to the child:
  1394. */
  1395. p->prio = current->normal_prio;
  1396. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1397. if (likely(sched_info_on()))
  1398. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1399. #endif
  1400. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1401. p->oncpu = 0;
  1402. #endif
  1403. #ifdef CONFIG_PREEMPT
  1404. /* Want to start with kernel preemption disabled. */
  1405. task_thread_info(p)->preempt_count = 1;
  1406. #endif
  1407. put_cpu();
  1408. }
  1409. /*
  1410. * After fork, child runs first. (default) If set to 0 then
  1411. * parent will (try to) run first.
  1412. */
  1413. unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
  1414. /*
  1415. * wake_up_new_task - wake up a newly created task for the first time.
  1416. *
  1417. * This function will do some initial scheduler statistics housekeeping
  1418. * that must be done for every newly created context, then puts the task
  1419. * on the runqueue and wakes it.
  1420. */
  1421. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1422. {
  1423. unsigned long flags;
  1424. struct rq *rq;
  1425. int this_cpu;
  1426. rq = task_rq_lock(p, &flags);
  1427. BUG_ON(p->state != TASK_RUNNING);
  1428. this_cpu = smp_processor_id(); /* parent's CPU */
  1429. update_rq_clock(rq);
  1430. p->prio = effective_prio(p);
  1431. if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
  1432. (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
  1433. !current->se.on_rq) {
  1434. activate_task(rq, p, 0);
  1435. } else {
  1436. /*
  1437. * Let the scheduling class do new task startup
  1438. * management (if any):
  1439. */
  1440. p->sched_class->task_new(rq, p);
  1441. inc_nr_running(p, rq);
  1442. }
  1443. check_preempt_curr(rq, p);
  1444. task_rq_unlock(rq, &flags);
  1445. }
  1446. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1447. /**
  1448. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1449. * @notifier: notifier struct to register
  1450. */
  1451. void preempt_notifier_register(struct preempt_notifier *notifier)
  1452. {
  1453. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1454. }
  1455. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1456. /**
  1457. * preempt_notifier_unregister - no longer interested in preemption notifications
  1458. * @notifier: notifier struct to unregister
  1459. *
  1460. * This is safe to call from within a preemption notifier.
  1461. */
  1462. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1463. {
  1464. hlist_del(&notifier->link);
  1465. }
  1466. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1467. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1468. {
  1469. struct preempt_notifier *notifier;
  1470. struct hlist_node *node;
  1471. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1472. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1473. }
  1474. static void
  1475. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1476. struct task_struct *next)
  1477. {
  1478. struct preempt_notifier *notifier;
  1479. struct hlist_node *node;
  1480. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1481. notifier->ops->sched_out(notifier, next);
  1482. }
  1483. #else
  1484. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1485. {
  1486. }
  1487. static void
  1488. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1489. struct task_struct *next)
  1490. {
  1491. }
  1492. #endif
  1493. /**
  1494. * prepare_task_switch - prepare to switch tasks
  1495. * @rq: the runqueue preparing to switch
  1496. * @prev: the current task that is being switched out
  1497. * @next: the task we are going to switch to.
  1498. *
  1499. * This is called with the rq lock held and interrupts off. It must
  1500. * be paired with a subsequent finish_task_switch after the context
  1501. * switch.
  1502. *
  1503. * prepare_task_switch sets up locking and calls architecture specific
  1504. * hooks.
  1505. */
  1506. static inline void
  1507. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1508. struct task_struct *next)
  1509. {
  1510. fire_sched_out_preempt_notifiers(prev, next);
  1511. prepare_lock_switch(rq, next);
  1512. prepare_arch_switch(next);
  1513. }
  1514. /**
  1515. * finish_task_switch - clean up after a task-switch
  1516. * @rq: runqueue associated with task-switch
  1517. * @prev: the thread we just switched away from.
  1518. *
  1519. * finish_task_switch must be called after the context switch, paired
  1520. * with a prepare_task_switch call before the context switch.
  1521. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1522. * and do any other architecture-specific cleanup actions.
  1523. *
  1524. * Note that we may have delayed dropping an mm in context_switch(). If
  1525. * so, we finish that here outside of the runqueue lock. (Doing it
  1526. * with the lock held can cause deadlocks; see schedule() for
  1527. * details.)
  1528. */
  1529. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1530. __releases(rq->lock)
  1531. {
  1532. struct mm_struct *mm = rq->prev_mm;
  1533. long prev_state;
  1534. rq->prev_mm = NULL;
  1535. /*
  1536. * A task struct has one reference for the use as "current".
  1537. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1538. * schedule one last time. The schedule call will never return, and
  1539. * the scheduled task must drop that reference.
  1540. * The test for TASK_DEAD must occur while the runqueue locks are
  1541. * still held, otherwise prev could be scheduled on another cpu, die
  1542. * there before we look at prev->state, and then the reference would
  1543. * be dropped twice.
  1544. * Manfred Spraul <manfred@colorfullife.com>
  1545. */
  1546. prev_state = prev->state;
  1547. finish_arch_switch(prev);
  1548. finish_lock_switch(rq, prev);
  1549. fire_sched_in_preempt_notifiers(current);
  1550. if (mm)
  1551. mmdrop(mm);
  1552. if (unlikely(prev_state == TASK_DEAD)) {
  1553. /*
  1554. * Remove function-return probe instances associated with this
  1555. * task and put them back on the free list.
  1556. */
  1557. kprobe_flush_task(prev);
  1558. put_task_struct(prev);
  1559. }
  1560. }
  1561. /**
  1562. * schedule_tail - first thing a freshly forked thread must call.
  1563. * @prev: the thread we just switched away from.
  1564. */
  1565. asmlinkage void schedule_tail(struct task_struct *prev)
  1566. __releases(rq->lock)
  1567. {
  1568. struct rq *rq = this_rq();
  1569. finish_task_switch(rq, prev);
  1570. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1571. /* In this case, finish_task_switch does not reenable preemption */
  1572. preempt_enable();
  1573. #endif
  1574. if (current->set_child_tid)
  1575. put_user(current->pid, current->set_child_tid);
  1576. }
  1577. /*
  1578. * context_switch - switch to the new MM and the new
  1579. * thread's register state.
  1580. */
  1581. static inline void
  1582. context_switch(struct rq *rq, struct task_struct *prev,
  1583. struct task_struct *next)
  1584. {
  1585. struct mm_struct *mm, *oldmm;
  1586. prepare_task_switch(rq, prev, next);
  1587. mm = next->mm;
  1588. oldmm = prev->active_mm;
  1589. /*
  1590. * For paravirt, this is coupled with an exit in switch_to to
  1591. * combine the page table reload and the switch backend into
  1592. * one hypercall.
  1593. */
  1594. arch_enter_lazy_cpu_mode();
  1595. if (unlikely(!mm)) {
  1596. next->active_mm = oldmm;
  1597. atomic_inc(&oldmm->mm_count);
  1598. enter_lazy_tlb(oldmm, next);
  1599. } else
  1600. switch_mm(oldmm, mm, next);
  1601. if (unlikely(!prev->mm)) {
  1602. prev->active_mm = NULL;
  1603. rq->prev_mm = oldmm;
  1604. }
  1605. /*
  1606. * Since the runqueue lock will be released by the next
  1607. * task (which is an invalid locking op but in the case
  1608. * of the scheduler it's an obvious special-case), so we
  1609. * do an early lockdep release here:
  1610. */
  1611. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1612. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1613. #endif
  1614. /* Here we just switch the register state and the stack. */
  1615. switch_to(prev, next, prev);
  1616. barrier();
  1617. /*
  1618. * this_rq must be evaluated again because prev may have moved
  1619. * CPUs since it called schedule(), thus the 'rq' on its stack
  1620. * frame will be invalid.
  1621. */
  1622. finish_task_switch(this_rq(), prev);
  1623. }
  1624. /*
  1625. * nr_running, nr_uninterruptible and nr_context_switches:
  1626. *
  1627. * externally visible scheduler statistics: current number of runnable
  1628. * threads, current number of uninterruptible-sleeping threads, total
  1629. * number of context switches performed since bootup.
  1630. */
  1631. unsigned long nr_running(void)
  1632. {
  1633. unsigned long i, sum = 0;
  1634. for_each_online_cpu(i)
  1635. sum += cpu_rq(i)->nr_running;
  1636. return sum;
  1637. }
  1638. unsigned long nr_uninterruptible(void)
  1639. {
  1640. unsigned long i, sum = 0;
  1641. for_each_possible_cpu(i)
  1642. sum += cpu_rq(i)->nr_uninterruptible;
  1643. /*
  1644. * Since we read the counters lockless, it might be slightly
  1645. * inaccurate. Do not allow it to go below zero though:
  1646. */
  1647. if (unlikely((long)sum < 0))
  1648. sum = 0;
  1649. return sum;
  1650. }
  1651. unsigned long long nr_context_switches(void)
  1652. {
  1653. int i;
  1654. unsigned long long sum = 0;
  1655. for_each_possible_cpu(i)
  1656. sum += cpu_rq(i)->nr_switches;
  1657. return sum;
  1658. }
  1659. unsigned long nr_iowait(void)
  1660. {
  1661. unsigned long i, sum = 0;
  1662. for_each_possible_cpu(i)
  1663. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1664. return sum;
  1665. }
  1666. unsigned long nr_active(void)
  1667. {
  1668. unsigned long i, running = 0, uninterruptible = 0;
  1669. for_each_online_cpu(i) {
  1670. running += cpu_rq(i)->nr_running;
  1671. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1672. }
  1673. if (unlikely((long)uninterruptible < 0))
  1674. uninterruptible = 0;
  1675. return running + uninterruptible;
  1676. }
  1677. /*
  1678. * Update rq->cpu_load[] statistics. This function is usually called every
  1679. * scheduler tick (TICK_NSEC).
  1680. */
  1681. static void update_cpu_load(struct rq *this_rq)
  1682. {
  1683. u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
  1684. unsigned long total_load = this_rq->ls.load.weight;
  1685. unsigned long this_load = total_load;
  1686. struct load_stat *ls = &this_rq->ls;
  1687. int i, scale;
  1688. this_rq->nr_load_updates++;
  1689. if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
  1690. goto do_avg;
  1691. /* Update delta_fair/delta_exec fields first */
  1692. update_curr_load(this_rq);
  1693. fair_delta64 = ls->delta_fair + 1;
  1694. ls->delta_fair = 0;
  1695. exec_delta64 = ls->delta_exec + 1;
  1696. ls->delta_exec = 0;
  1697. sample_interval64 = this_rq->clock - ls->load_update_last;
  1698. ls->load_update_last = this_rq->clock;
  1699. if ((s64)sample_interval64 < (s64)TICK_NSEC)
  1700. sample_interval64 = TICK_NSEC;
  1701. if (exec_delta64 > sample_interval64)
  1702. exec_delta64 = sample_interval64;
  1703. idle_delta64 = sample_interval64 - exec_delta64;
  1704. tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
  1705. tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
  1706. this_load = (unsigned long)tmp64;
  1707. do_avg:
  1708. /* Update our load: */
  1709. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1710. unsigned long old_load, new_load;
  1711. /* scale is effectively 1 << i now, and >> i divides by scale */
  1712. old_load = this_rq->cpu_load[i];
  1713. new_load = this_load;
  1714. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1715. }
  1716. }
  1717. #ifdef CONFIG_SMP
  1718. /*
  1719. * double_rq_lock - safely lock two runqueues
  1720. *
  1721. * Note this does not disable interrupts like task_rq_lock,
  1722. * you need to do so manually before calling.
  1723. */
  1724. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1725. __acquires(rq1->lock)
  1726. __acquires(rq2->lock)
  1727. {
  1728. BUG_ON(!irqs_disabled());
  1729. if (rq1 == rq2) {
  1730. spin_lock(&rq1->lock);
  1731. __acquire(rq2->lock); /* Fake it out ;) */
  1732. } else {
  1733. if (rq1 < rq2) {
  1734. spin_lock(&rq1->lock);
  1735. spin_lock(&rq2->lock);
  1736. } else {
  1737. spin_lock(&rq2->lock);
  1738. spin_lock(&rq1->lock);
  1739. }
  1740. }
  1741. update_rq_clock(rq1);
  1742. update_rq_clock(rq2);
  1743. }
  1744. /*
  1745. * double_rq_unlock - safely unlock two runqueues
  1746. *
  1747. * Note this does not restore interrupts like task_rq_unlock,
  1748. * you need to do so manually after calling.
  1749. */
  1750. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1751. __releases(rq1->lock)
  1752. __releases(rq2->lock)
  1753. {
  1754. spin_unlock(&rq1->lock);
  1755. if (rq1 != rq2)
  1756. spin_unlock(&rq2->lock);
  1757. else
  1758. __release(rq2->lock);
  1759. }
  1760. /*
  1761. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1762. */
  1763. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1764. __releases(this_rq->lock)
  1765. __acquires(busiest->lock)
  1766. __acquires(this_rq->lock)
  1767. {
  1768. if (unlikely(!irqs_disabled())) {
  1769. /* printk() doesn't work good under rq->lock */
  1770. spin_unlock(&this_rq->lock);
  1771. BUG_ON(1);
  1772. }
  1773. if (unlikely(!spin_trylock(&busiest->lock))) {
  1774. if (busiest < this_rq) {
  1775. spin_unlock(&this_rq->lock);
  1776. spin_lock(&busiest->lock);
  1777. spin_lock(&this_rq->lock);
  1778. } else
  1779. spin_lock(&busiest->lock);
  1780. }
  1781. }
  1782. /*
  1783. * If dest_cpu is allowed for this process, migrate the task to it.
  1784. * This is accomplished by forcing the cpu_allowed mask to only
  1785. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1786. * the cpu_allowed mask is restored.
  1787. */
  1788. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1789. {
  1790. struct migration_req req;
  1791. unsigned long flags;
  1792. struct rq *rq;
  1793. rq = task_rq_lock(p, &flags);
  1794. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1795. || unlikely(cpu_is_offline(dest_cpu)))
  1796. goto out;
  1797. /* force the process onto the specified CPU */
  1798. if (migrate_task(p, dest_cpu, &req)) {
  1799. /* Need to wait for migration thread (might exit: take ref). */
  1800. struct task_struct *mt = rq->migration_thread;
  1801. get_task_struct(mt);
  1802. task_rq_unlock(rq, &flags);
  1803. wake_up_process(mt);
  1804. put_task_struct(mt);
  1805. wait_for_completion(&req.done);
  1806. return;
  1807. }
  1808. out:
  1809. task_rq_unlock(rq, &flags);
  1810. }
  1811. /*
  1812. * sched_exec - execve() is a valuable balancing opportunity, because at
  1813. * this point the task has the smallest effective memory and cache footprint.
  1814. */
  1815. void sched_exec(void)
  1816. {
  1817. int new_cpu, this_cpu = get_cpu();
  1818. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1819. put_cpu();
  1820. if (new_cpu != this_cpu)
  1821. sched_migrate_task(current, new_cpu);
  1822. }
  1823. /*
  1824. * pull_task - move a task from a remote runqueue to the local runqueue.
  1825. * Both runqueues must be locked.
  1826. */
  1827. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1828. struct rq *this_rq, int this_cpu)
  1829. {
  1830. deactivate_task(src_rq, p, 0);
  1831. set_task_cpu(p, this_cpu);
  1832. activate_task(this_rq, p, 0);
  1833. /*
  1834. * Note that idle threads have a prio of MAX_PRIO, for this test
  1835. * to be always true for them.
  1836. */
  1837. check_preempt_curr(this_rq, p);
  1838. }
  1839. /*
  1840. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1841. */
  1842. static
  1843. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1844. struct sched_domain *sd, enum cpu_idle_type idle,
  1845. int *all_pinned)
  1846. {
  1847. /*
  1848. * We do not migrate tasks that are:
  1849. * 1) running (obviously), or
  1850. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1851. * 3) are cache-hot on their current CPU.
  1852. */
  1853. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1854. return 0;
  1855. *all_pinned = 0;
  1856. if (task_running(rq, p))
  1857. return 0;
  1858. /*
  1859. * Aggressive migration if too many balance attempts have failed:
  1860. */
  1861. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1862. return 1;
  1863. return 1;
  1864. }
  1865. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1866. unsigned long max_nr_move, unsigned long max_load_move,
  1867. struct sched_domain *sd, enum cpu_idle_type idle,
  1868. int *all_pinned, unsigned long *load_moved,
  1869. int *this_best_prio, struct rq_iterator *iterator)
  1870. {
  1871. int pulled = 0, pinned = 0, skip_for_load;
  1872. struct task_struct *p;
  1873. long rem_load_move = max_load_move;
  1874. if (max_nr_move == 0 || max_load_move == 0)
  1875. goto out;
  1876. pinned = 1;
  1877. /*
  1878. * Start the load-balancing iterator:
  1879. */
  1880. p = iterator->start(iterator->arg);
  1881. next:
  1882. if (!p)
  1883. goto out;
  1884. /*
  1885. * To help distribute high priority tasks accross CPUs we don't
  1886. * skip a task if it will be the highest priority task (i.e. smallest
  1887. * prio value) on its new queue regardless of its load weight
  1888. */
  1889. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1890. SCHED_LOAD_SCALE_FUZZ;
  1891. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1892. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1893. p = iterator->next(iterator->arg);
  1894. goto next;
  1895. }
  1896. pull_task(busiest, p, this_rq, this_cpu);
  1897. pulled++;
  1898. rem_load_move -= p->se.load.weight;
  1899. /*
  1900. * We only want to steal up to the prescribed number of tasks
  1901. * and the prescribed amount of weighted load.
  1902. */
  1903. if (pulled < max_nr_move && rem_load_move > 0) {
  1904. if (p->prio < *this_best_prio)
  1905. *this_best_prio = p->prio;
  1906. p = iterator->next(iterator->arg);
  1907. goto next;
  1908. }
  1909. out:
  1910. /*
  1911. * Right now, this is the only place pull_task() is called,
  1912. * so we can safely collect pull_task() stats here rather than
  1913. * inside pull_task().
  1914. */
  1915. schedstat_add(sd, lb_gained[idle], pulled);
  1916. if (all_pinned)
  1917. *all_pinned = pinned;
  1918. *load_moved = max_load_move - rem_load_move;
  1919. return pulled;
  1920. }
  1921. /*
  1922. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1923. * this_rq, as part of a balancing operation within domain "sd".
  1924. * Returns 1 if successful and 0 otherwise.
  1925. *
  1926. * Called with both runqueues locked.
  1927. */
  1928. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1929. unsigned long max_load_move,
  1930. struct sched_domain *sd, enum cpu_idle_type idle,
  1931. int *all_pinned)
  1932. {
  1933. struct sched_class *class = sched_class_highest;
  1934. unsigned long total_load_moved = 0;
  1935. int this_best_prio = this_rq->curr->prio;
  1936. do {
  1937. total_load_moved +=
  1938. class->load_balance(this_rq, this_cpu, busiest,
  1939. ULONG_MAX, max_load_move - total_load_moved,
  1940. sd, idle, all_pinned, &this_best_prio);
  1941. class = class->next;
  1942. } while (class && max_load_move > total_load_moved);
  1943. return total_load_moved > 0;
  1944. }
  1945. /*
  1946. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1947. * part of active balancing operations within "domain".
  1948. * Returns 1 if successful and 0 otherwise.
  1949. *
  1950. * Called with both runqueues locked.
  1951. */
  1952. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1953. struct sched_domain *sd, enum cpu_idle_type idle)
  1954. {
  1955. struct sched_class *class;
  1956. int this_best_prio = MAX_PRIO;
  1957. for (class = sched_class_highest; class; class = class->next)
  1958. if (class->load_balance(this_rq, this_cpu, busiest,
  1959. 1, ULONG_MAX, sd, idle, NULL,
  1960. &this_best_prio))
  1961. return 1;
  1962. return 0;
  1963. }
  1964. /*
  1965. * find_busiest_group finds and returns the busiest CPU group within the
  1966. * domain. It calculates and returns the amount of weighted load which
  1967. * should be moved to restore balance via the imbalance parameter.
  1968. */
  1969. static struct sched_group *
  1970. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1971. unsigned long *imbalance, enum cpu_idle_type idle,
  1972. int *sd_idle, cpumask_t *cpus, int *balance)
  1973. {
  1974. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1975. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1976. unsigned long max_pull;
  1977. unsigned long busiest_load_per_task, busiest_nr_running;
  1978. unsigned long this_load_per_task, this_nr_running;
  1979. int load_idx;
  1980. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1981. int power_savings_balance = 1;
  1982. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1983. unsigned long min_nr_running = ULONG_MAX;
  1984. struct sched_group *group_min = NULL, *group_leader = NULL;
  1985. #endif
  1986. max_load = this_load = total_load = total_pwr = 0;
  1987. busiest_load_per_task = busiest_nr_running = 0;
  1988. this_load_per_task = this_nr_running = 0;
  1989. if (idle == CPU_NOT_IDLE)
  1990. load_idx = sd->busy_idx;
  1991. else if (idle == CPU_NEWLY_IDLE)
  1992. load_idx = sd->newidle_idx;
  1993. else
  1994. load_idx = sd->idle_idx;
  1995. do {
  1996. unsigned long load, group_capacity;
  1997. int local_group;
  1998. int i;
  1999. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2000. unsigned long sum_nr_running, sum_weighted_load;
  2001. local_group = cpu_isset(this_cpu, group->cpumask);
  2002. if (local_group)
  2003. balance_cpu = first_cpu(group->cpumask);
  2004. /* Tally up the load of all CPUs in the group */
  2005. sum_weighted_load = sum_nr_running = avg_load = 0;
  2006. for_each_cpu_mask(i, group->cpumask) {
  2007. struct rq *rq;
  2008. if (!cpu_isset(i, *cpus))
  2009. continue;
  2010. rq = cpu_rq(i);
  2011. if (*sd_idle && rq->nr_running)
  2012. *sd_idle = 0;
  2013. /* Bias balancing toward cpus of our domain */
  2014. if (local_group) {
  2015. if (idle_cpu(i) && !first_idle_cpu) {
  2016. first_idle_cpu = 1;
  2017. balance_cpu = i;
  2018. }
  2019. load = target_load(i, load_idx);
  2020. } else
  2021. load = source_load(i, load_idx);
  2022. avg_load += load;
  2023. sum_nr_running += rq->nr_running;
  2024. sum_weighted_load += weighted_cpuload(i);
  2025. }
  2026. /*
  2027. * First idle cpu or the first cpu(busiest) in this sched group
  2028. * is eligible for doing load balancing at this and above
  2029. * domains. In the newly idle case, we will allow all the cpu's
  2030. * to do the newly idle load balance.
  2031. */
  2032. if (idle != CPU_NEWLY_IDLE && local_group &&
  2033. balance_cpu != this_cpu && balance) {
  2034. *balance = 0;
  2035. goto ret;
  2036. }
  2037. total_load += avg_load;
  2038. total_pwr += group->__cpu_power;
  2039. /* Adjust by relative CPU power of the group */
  2040. avg_load = sg_div_cpu_power(group,
  2041. avg_load * SCHED_LOAD_SCALE);
  2042. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2043. if (local_group) {
  2044. this_load = avg_load;
  2045. this = group;
  2046. this_nr_running = sum_nr_running;
  2047. this_load_per_task = sum_weighted_load;
  2048. } else if (avg_load > max_load &&
  2049. sum_nr_running > group_capacity) {
  2050. max_load = avg_load;
  2051. busiest = group;
  2052. busiest_nr_running = sum_nr_running;
  2053. busiest_load_per_task = sum_weighted_load;
  2054. }
  2055. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2056. /*
  2057. * Busy processors will not participate in power savings
  2058. * balance.
  2059. */
  2060. if (idle == CPU_NOT_IDLE ||
  2061. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2062. goto group_next;
  2063. /*
  2064. * If the local group is idle or completely loaded
  2065. * no need to do power savings balance at this domain
  2066. */
  2067. if (local_group && (this_nr_running >= group_capacity ||
  2068. !this_nr_running))
  2069. power_savings_balance = 0;
  2070. /*
  2071. * If a group is already running at full capacity or idle,
  2072. * don't include that group in power savings calculations
  2073. */
  2074. if (!power_savings_balance || sum_nr_running >= group_capacity
  2075. || !sum_nr_running)
  2076. goto group_next;
  2077. /*
  2078. * Calculate the group which has the least non-idle load.
  2079. * This is the group from where we need to pick up the load
  2080. * for saving power
  2081. */
  2082. if ((sum_nr_running < min_nr_running) ||
  2083. (sum_nr_running == min_nr_running &&
  2084. first_cpu(group->cpumask) <
  2085. first_cpu(group_min->cpumask))) {
  2086. group_min = group;
  2087. min_nr_running = sum_nr_running;
  2088. min_load_per_task = sum_weighted_load /
  2089. sum_nr_running;
  2090. }
  2091. /*
  2092. * Calculate the group which is almost near its
  2093. * capacity but still has some space to pick up some load
  2094. * from other group and save more power
  2095. */
  2096. if (sum_nr_running <= group_capacity - 1) {
  2097. if (sum_nr_running > leader_nr_running ||
  2098. (sum_nr_running == leader_nr_running &&
  2099. first_cpu(group->cpumask) >
  2100. first_cpu(group_leader->cpumask))) {
  2101. group_leader = group;
  2102. leader_nr_running = sum_nr_running;
  2103. }
  2104. }
  2105. group_next:
  2106. #endif
  2107. group = group->next;
  2108. } while (group != sd->groups);
  2109. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2110. goto out_balanced;
  2111. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2112. if (this_load >= avg_load ||
  2113. 100*max_load <= sd->imbalance_pct*this_load)
  2114. goto out_balanced;
  2115. busiest_load_per_task /= busiest_nr_running;
  2116. /*
  2117. * We're trying to get all the cpus to the average_load, so we don't
  2118. * want to push ourselves above the average load, nor do we wish to
  2119. * reduce the max loaded cpu below the average load, as either of these
  2120. * actions would just result in more rebalancing later, and ping-pong
  2121. * tasks around. Thus we look for the minimum possible imbalance.
  2122. * Negative imbalances (*we* are more loaded than anyone else) will
  2123. * be counted as no imbalance for these purposes -- we can't fix that
  2124. * by pulling tasks to us. Be careful of negative numbers as they'll
  2125. * appear as very large values with unsigned longs.
  2126. */
  2127. if (max_load <= busiest_load_per_task)
  2128. goto out_balanced;
  2129. /*
  2130. * In the presence of smp nice balancing, certain scenarios can have
  2131. * max load less than avg load(as we skip the groups at or below
  2132. * its cpu_power, while calculating max_load..)
  2133. */
  2134. if (max_load < avg_load) {
  2135. *imbalance = 0;
  2136. goto small_imbalance;
  2137. }
  2138. /* Don't want to pull so many tasks that a group would go idle */
  2139. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2140. /* How much load to actually move to equalise the imbalance */
  2141. *imbalance = min(max_pull * busiest->__cpu_power,
  2142. (avg_load - this_load) * this->__cpu_power)
  2143. / SCHED_LOAD_SCALE;
  2144. /*
  2145. * if *imbalance is less than the average load per runnable task
  2146. * there is no gaurantee that any tasks will be moved so we'll have
  2147. * a think about bumping its value to force at least one task to be
  2148. * moved
  2149. */
  2150. if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
  2151. unsigned long tmp, pwr_now, pwr_move;
  2152. unsigned int imbn;
  2153. small_imbalance:
  2154. pwr_move = pwr_now = 0;
  2155. imbn = 2;
  2156. if (this_nr_running) {
  2157. this_load_per_task /= this_nr_running;
  2158. if (busiest_load_per_task > this_load_per_task)
  2159. imbn = 1;
  2160. } else
  2161. this_load_per_task = SCHED_LOAD_SCALE;
  2162. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2163. busiest_load_per_task * imbn) {
  2164. *imbalance = busiest_load_per_task;
  2165. return busiest;
  2166. }
  2167. /*
  2168. * OK, we don't have enough imbalance to justify moving tasks,
  2169. * however we may be able to increase total CPU power used by
  2170. * moving them.
  2171. */
  2172. pwr_now += busiest->__cpu_power *
  2173. min(busiest_load_per_task, max_load);
  2174. pwr_now += this->__cpu_power *
  2175. min(this_load_per_task, this_load);
  2176. pwr_now /= SCHED_LOAD_SCALE;
  2177. /* Amount of load we'd subtract */
  2178. tmp = sg_div_cpu_power(busiest,
  2179. busiest_load_per_task * SCHED_LOAD_SCALE);
  2180. if (max_load > tmp)
  2181. pwr_move += busiest->__cpu_power *
  2182. min(busiest_load_per_task, max_load - tmp);
  2183. /* Amount of load we'd add */
  2184. if (max_load * busiest->__cpu_power <
  2185. busiest_load_per_task * SCHED_LOAD_SCALE)
  2186. tmp = sg_div_cpu_power(this,
  2187. max_load * busiest->__cpu_power);
  2188. else
  2189. tmp = sg_div_cpu_power(this,
  2190. busiest_load_per_task * SCHED_LOAD_SCALE);
  2191. pwr_move += this->__cpu_power *
  2192. min(this_load_per_task, this_load + tmp);
  2193. pwr_move /= SCHED_LOAD_SCALE;
  2194. /* Move if we gain throughput */
  2195. if (pwr_move <= pwr_now)
  2196. goto out_balanced;
  2197. *imbalance = busiest_load_per_task;
  2198. }
  2199. return busiest;
  2200. out_balanced:
  2201. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2202. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2203. goto ret;
  2204. if (this == group_leader && group_leader != group_min) {
  2205. *imbalance = min_load_per_task;
  2206. return group_min;
  2207. }
  2208. #endif
  2209. ret:
  2210. *imbalance = 0;
  2211. return NULL;
  2212. }
  2213. /*
  2214. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2215. */
  2216. static struct rq *
  2217. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2218. unsigned long imbalance, cpumask_t *cpus)
  2219. {
  2220. struct rq *busiest = NULL, *rq;
  2221. unsigned long max_load = 0;
  2222. int i;
  2223. for_each_cpu_mask(i, group->cpumask) {
  2224. unsigned long wl;
  2225. if (!cpu_isset(i, *cpus))
  2226. continue;
  2227. rq = cpu_rq(i);
  2228. wl = weighted_cpuload(i);
  2229. if (rq->nr_running == 1 && wl > imbalance)
  2230. continue;
  2231. if (wl > max_load) {
  2232. max_load = wl;
  2233. busiest = rq;
  2234. }
  2235. }
  2236. return busiest;
  2237. }
  2238. /*
  2239. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2240. * so long as it is large enough.
  2241. */
  2242. #define MAX_PINNED_INTERVAL 512
  2243. /*
  2244. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2245. * tasks if there is an imbalance.
  2246. */
  2247. static int load_balance(int this_cpu, struct rq *this_rq,
  2248. struct sched_domain *sd, enum cpu_idle_type idle,
  2249. int *balance)
  2250. {
  2251. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2252. struct sched_group *group;
  2253. unsigned long imbalance;
  2254. struct rq *busiest;
  2255. cpumask_t cpus = CPU_MASK_ALL;
  2256. unsigned long flags;
  2257. /*
  2258. * When power savings policy is enabled for the parent domain, idle
  2259. * sibling can pick up load irrespective of busy siblings. In this case,
  2260. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2261. * portraying it as CPU_NOT_IDLE.
  2262. */
  2263. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2264. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2265. sd_idle = 1;
  2266. schedstat_inc(sd, lb_cnt[idle]);
  2267. redo:
  2268. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2269. &cpus, balance);
  2270. if (*balance == 0)
  2271. goto out_balanced;
  2272. if (!group) {
  2273. schedstat_inc(sd, lb_nobusyg[idle]);
  2274. goto out_balanced;
  2275. }
  2276. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2277. if (!busiest) {
  2278. schedstat_inc(sd, lb_nobusyq[idle]);
  2279. goto out_balanced;
  2280. }
  2281. BUG_ON(busiest == this_rq);
  2282. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2283. ld_moved = 0;
  2284. if (busiest->nr_running > 1) {
  2285. /*
  2286. * Attempt to move tasks. If find_busiest_group has found
  2287. * an imbalance but busiest->nr_running <= 1, the group is
  2288. * still unbalanced. ld_moved simply stays zero, so it is
  2289. * correctly treated as an imbalance.
  2290. */
  2291. local_irq_save(flags);
  2292. double_rq_lock(this_rq, busiest);
  2293. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2294. imbalance, sd, idle, &all_pinned);
  2295. double_rq_unlock(this_rq, busiest);
  2296. local_irq_restore(flags);
  2297. /*
  2298. * some other cpu did the load balance for us.
  2299. */
  2300. if (ld_moved && this_cpu != smp_processor_id())
  2301. resched_cpu(this_cpu);
  2302. /* All tasks on this runqueue were pinned by CPU affinity */
  2303. if (unlikely(all_pinned)) {
  2304. cpu_clear(cpu_of(busiest), cpus);
  2305. if (!cpus_empty(cpus))
  2306. goto redo;
  2307. goto out_balanced;
  2308. }
  2309. }
  2310. if (!ld_moved) {
  2311. schedstat_inc(sd, lb_failed[idle]);
  2312. sd->nr_balance_failed++;
  2313. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2314. spin_lock_irqsave(&busiest->lock, flags);
  2315. /* don't kick the migration_thread, if the curr
  2316. * task on busiest cpu can't be moved to this_cpu
  2317. */
  2318. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2319. spin_unlock_irqrestore(&busiest->lock, flags);
  2320. all_pinned = 1;
  2321. goto out_one_pinned;
  2322. }
  2323. if (!busiest->active_balance) {
  2324. busiest->active_balance = 1;
  2325. busiest->push_cpu = this_cpu;
  2326. active_balance = 1;
  2327. }
  2328. spin_unlock_irqrestore(&busiest->lock, flags);
  2329. if (active_balance)
  2330. wake_up_process(busiest->migration_thread);
  2331. /*
  2332. * We've kicked active balancing, reset the failure
  2333. * counter.
  2334. */
  2335. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2336. }
  2337. } else
  2338. sd->nr_balance_failed = 0;
  2339. if (likely(!active_balance)) {
  2340. /* We were unbalanced, so reset the balancing interval */
  2341. sd->balance_interval = sd->min_interval;
  2342. } else {
  2343. /*
  2344. * If we've begun active balancing, start to back off. This
  2345. * case may not be covered by the all_pinned logic if there
  2346. * is only 1 task on the busy runqueue (because we don't call
  2347. * move_tasks).
  2348. */
  2349. if (sd->balance_interval < sd->max_interval)
  2350. sd->balance_interval *= 2;
  2351. }
  2352. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2353. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2354. return -1;
  2355. return ld_moved;
  2356. out_balanced:
  2357. schedstat_inc(sd, lb_balanced[idle]);
  2358. sd->nr_balance_failed = 0;
  2359. out_one_pinned:
  2360. /* tune up the balancing interval */
  2361. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2362. (sd->balance_interval < sd->max_interval))
  2363. sd->balance_interval *= 2;
  2364. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2365. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2366. return -1;
  2367. return 0;
  2368. }
  2369. /*
  2370. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2371. * tasks if there is an imbalance.
  2372. *
  2373. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2374. * this_rq is locked.
  2375. */
  2376. static int
  2377. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2378. {
  2379. struct sched_group *group;
  2380. struct rq *busiest = NULL;
  2381. unsigned long imbalance;
  2382. int ld_moved = 0;
  2383. int sd_idle = 0;
  2384. int all_pinned = 0;
  2385. cpumask_t cpus = CPU_MASK_ALL;
  2386. /*
  2387. * When power savings policy is enabled for the parent domain, idle
  2388. * sibling can pick up load irrespective of busy siblings. In this case,
  2389. * let the state of idle sibling percolate up as IDLE, instead of
  2390. * portraying it as CPU_NOT_IDLE.
  2391. */
  2392. if (sd->flags & SD_SHARE_CPUPOWER &&
  2393. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2394. sd_idle = 1;
  2395. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2396. redo:
  2397. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2398. &sd_idle, &cpus, NULL);
  2399. if (!group) {
  2400. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2401. goto out_balanced;
  2402. }
  2403. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2404. &cpus);
  2405. if (!busiest) {
  2406. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2407. goto out_balanced;
  2408. }
  2409. BUG_ON(busiest == this_rq);
  2410. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2411. ld_moved = 0;
  2412. if (busiest->nr_running > 1) {
  2413. /* Attempt to move tasks */
  2414. double_lock_balance(this_rq, busiest);
  2415. /* this_rq->clock is already updated */
  2416. update_rq_clock(busiest);
  2417. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2418. imbalance, sd, CPU_NEWLY_IDLE,
  2419. &all_pinned);
  2420. spin_unlock(&busiest->lock);
  2421. if (unlikely(all_pinned)) {
  2422. cpu_clear(cpu_of(busiest), cpus);
  2423. if (!cpus_empty(cpus))
  2424. goto redo;
  2425. }
  2426. }
  2427. if (!ld_moved) {
  2428. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2429. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2430. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2431. return -1;
  2432. } else
  2433. sd->nr_balance_failed = 0;
  2434. return ld_moved;
  2435. out_balanced:
  2436. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2437. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2438. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2439. return -1;
  2440. sd->nr_balance_failed = 0;
  2441. return 0;
  2442. }
  2443. /*
  2444. * idle_balance is called by schedule() if this_cpu is about to become
  2445. * idle. Attempts to pull tasks from other CPUs.
  2446. */
  2447. static void idle_balance(int this_cpu, struct rq *this_rq)
  2448. {
  2449. struct sched_domain *sd;
  2450. int pulled_task = -1;
  2451. unsigned long next_balance = jiffies + HZ;
  2452. for_each_domain(this_cpu, sd) {
  2453. unsigned long interval;
  2454. if (!(sd->flags & SD_LOAD_BALANCE))
  2455. continue;
  2456. if (sd->flags & SD_BALANCE_NEWIDLE)
  2457. /* If we've pulled tasks over stop searching: */
  2458. pulled_task = load_balance_newidle(this_cpu,
  2459. this_rq, sd);
  2460. interval = msecs_to_jiffies(sd->balance_interval);
  2461. if (time_after(next_balance, sd->last_balance + interval))
  2462. next_balance = sd->last_balance + interval;
  2463. if (pulled_task)
  2464. break;
  2465. }
  2466. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2467. /*
  2468. * We are going idle. next_balance may be set based on
  2469. * a busy processor. So reset next_balance.
  2470. */
  2471. this_rq->next_balance = next_balance;
  2472. }
  2473. }
  2474. /*
  2475. * active_load_balance is run by migration threads. It pushes running tasks
  2476. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2477. * running on each physical CPU where possible, and avoids physical /
  2478. * logical imbalances.
  2479. *
  2480. * Called with busiest_rq locked.
  2481. */
  2482. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2483. {
  2484. int target_cpu = busiest_rq->push_cpu;
  2485. struct sched_domain *sd;
  2486. struct rq *target_rq;
  2487. /* Is there any task to move? */
  2488. if (busiest_rq->nr_running <= 1)
  2489. return;
  2490. target_rq = cpu_rq(target_cpu);
  2491. /*
  2492. * This condition is "impossible", if it occurs
  2493. * we need to fix it. Originally reported by
  2494. * Bjorn Helgaas on a 128-cpu setup.
  2495. */
  2496. BUG_ON(busiest_rq == target_rq);
  2497. /* move a task from busiest_rq to target_rq */
  2498. double_lock_balance(busiest_rq, target_rq);
  2499. update_rq_clock(busiest_rq);
  2500. update_rq_clock(target_rq);
  2501. /* Search for an sd spanning us and the target CPU. */
  2502. for_each_domain(target_cpu, sd) {
  2503. if ((sd->flags & SD_LOAD_BALANCE) &&
  2504. cpu_isset(busiest_cpu, sd->span))
  2505. break;
  2506. }
  2507. if (likely(sd)) {
  2508. schedstat_inc(sd, alb_cnt);
  2509. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2510. sd, CPU_IDLE))
  2511. schedstat_inc(sd, alb_pushed);
  2512. else
  2513. schedstat_inc(sd, alb_failed);
  2514. }
  2515. spin_unlock(&target_rq->lock);
  2516. }
  2517. #ifdef CONFIG_NO_HZ
  2518. static struct {
  2519. atomic_t load_balancer;
  2520. cpumask_t cpu_mask;
  2521. } nohz ____cacheline_aligned = {
  2522. .load_balancer = ATOMIC_INIT(-1),
  2523. .cpu_mask = CPU_MASK_NONE,
  2524. };
  2525. /*
  2526. * This routine will try to nominate the ilb (idle load balancing)
  2527. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2528. * load balancing on behalf of all those cpus. If all the cpus in the system
  2529. * go into this tickless mode, then there will be no ilb owner (as there is
  2530. * no need for one) and all the cpus will sleep till the next wakeup event
  2531. * arrives...
  2532. *
  2533. * For the ilb owner, tick is not stopped. And this tick will be used
  2534. * for idle load balancing. ilb owner will still be part of
  2535. * nohz.cpu_mask..
  2536. *
  2537. * While stopping the tick, this cpu will become the ilb owner if there
  2538. * is no other owner. And will be the owner till that cpu becomes busy
  2539. * or if all cpus in the system stop their ticks at which point
  2540. * there is no need for ilb owner.
  2541. *
  2542. * When the ilb owner becomes busy, it nominates another owner, during the
  2543. * next busy scheduler_tick()
  2544. */
  2545. int select_nohz_load_balancer(int stop_tick)
  2546. {
  2547. int cpu = smp_processor_id();
  2548. if (stop_tick) {
  2549. cpu_set(cpu, nohz.cpu_mask);
  2550. cpu_rq(cpu)->in_nohz_recently = 1;
  2551. /*
  2552. * If we are going offline and still the leader, give up!
  2553. */
  2554. if (cpu_is_offline(cpu) &&
  2555. atomic_read(&nohz.load_balancer) == cpu) {
  2556. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2557. BUG();
  2558. return 0;
  2559. }
  2560. /* time for ilb owner also to sleep */
  2561. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2562. if (atomic_read(&nohz.load_balancer) == cpu)
  2563. atomic_set(&nohz.load_balancer, -1);
  2564. return 0;
  2565. }
  2566. if (atomic_read(&nohz.load_balancer) == -1) {
  2567. /* make me the ilb owner */
  2568. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2569. return 1;
  2570. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2571. return 1;
  2572. } else {
  2573. if (!cpu_isset(cpu, nohz.cpu_mask))
  2574. return 0;
  2575. cpu_clear(cpu, nohz.cpu_mask);
  2576. if (atomic_read(&nohz.load_balancer) == cpu)
  2577. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2578. BUG();
  2579. }
  2580. return 0;
  2581. }
  2582. #endif
  2583. static DEFINE_SPINLOCK(balancing);
  2584. /*
  2585. * It checks each scheduling domain to see if it is due to be balanced,
  2586. * and initiates a balancing operation if so.
  2587. *
  2588. * Balancing parameters are set up in arch_init_sched_domains.
  2589. */
  2590. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2591. {
  2592. int balance = 1;
  2593. struct rq *rq = cpu_rq(cpu);
  2594. unsigned long interval;
  2595. struct sched_domain *sd;
  2596. /* Earliest time when we have to do rebalance again */
  2597. unsigned long next_balance = jiffies + 60*HZ;
  2598. for_each_domain(cpu, sd) {
  2599. if (!(sd->flags & SD_LOAD_BALANCE))
  2600. continue;
  2601. interval = sd->balance_interval;
  2602. if (idle != CPU_IDLE)
  2603. interval *= sd->busy_factor;
  2604. /* scale ms to jiffies */
  2605. interval = msecs_to_jiffies(interval);
  2606. if (unlikely(!interval))
  2607. interval = 1;
  2608. if (interval > HZ*NR_CPUS/10)
  2609. interval = HZ*NR_CPUS/10;
  2610. if (sd->flags & SD_SERIALIZE) {
  2611. if (!spin_trylock(&balancing))
  2612. goto out;
  2613. }
  2614. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2615. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2616. /*
  2617. * We've pulled tasks over so either we're no
  2618. * longer idle, or one of our SMT siblings is
  2619. * not idle.
  2620. */
  2621. idle = CPU_NOT_IDLE;
  2622. }
  2623. sd->last_balance = jiffies;
  2624. }
  2625. if (sd->flags & SD_SERIALIZE)
  2626. spin_unlock(&balancing);
  2627. out:
  2628. if (time_after(next_balance, sd->last_balance + interval))
  2629. next_balance = sd->last_balance + interval;
  2630. /*
  2631. * Stop the load balance at this level. There is another
  2632. * CPU in our sched group which is doing load balancing more
  2633. * actively.
  2634. */
  2635. if (!balance)
  2636. break;
  2637. }
  2638. rq->next_balance = next_balance;
  2639. }
  2640. /*
  2641. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2642. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2643. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2644. */
  2645. static void run_rebalance_domains(struct softirq_action *h)
  2646. {
  2647. int this_cpu = smp_processor_id();
  2648. struct rq *this_rq = cpu_rq(this_cpu);
  2649. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2650. CPU_IDLE : CPU_NOT_IDLE;
  2651. rebalance_domains(this_cpu, idle);
  2652. #ifdef CONFIG_NO_HZ
  2653. /*
  2654. * If this cpu is the owner for idle load balancing, then do the
  2655. * balancing on behalf of the other idle cpus whose ticks are
  2656. * stopped.
  2657. */
  2658. if (this_rq->idle_at_tick &&
  2659. atomic_read(&nohz.load_balancer) == this_cpu) {
  2660. cpumask_t cpus = nohz.cpu_mask;
  2661. struct rq *rq;
  2662. int balance_cpu;
  2663. cpu_clear(this_cpu, cpus);
  2664. for_each_cpu_mask(balance_cpu, cpus) {
  2665. /*
  2666. * If this cpu gets work to do, stop the load balancing
  2667. * work being done for other cpus. Next load
  2668. * balancing owner will pick it up.
  2669. */
  2670. if (need_resched())
  2671. break;
  2672. rebalance_domains(balance_cpu, SCHED_IDLE);
  2673. rq = cpu_rq(balance_cpu);
  2674. if (time_after(this_rq->next_balance, rq->next_balance))
  2675. this_rq->next_balance = rq->next_balance;
  2676. }
  2677. }
  2678. #endif
  2679. }
  2680. /*
  2681. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2682. *
  2683. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2684. * idle load balancing owner or decide to stop the periodic load balancing,
  2685. * if the whole system is idle.
  2686. */
  2687. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2688. {
  2689. #ifdef CONFIG_NO_HZ
  2690. /*
  2691. * If we were in the nohz mode recently and busy at the current
  2692. * scheduler tick, then check if we need to nominate new idle
  2693. * load balancer.
  2694. */
  2695. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2696. rq->in_nohz_recently = 0;
  2697. if (atomic_read(&nohz.load_balancer) == cpu) {
  2698. cpu_clear(cpu, nohz.cpu_mask);
  2699. atomic_set(&nohz.load_balancer, -1);
  2700. }
  2701. if (atomic_read(&nohz.load_balancer) == -1) {
  2702. /*
  2703. * simple selection for now: Nominate the
  2704. * first cpu in the nohz list to be the next
  2705. * ilb owner.
  2706. *
  2707. * TBD: Traverse the sched domains and nominate
  2708. * the nearest cpu in the nohz.cpu_mask.
  2709. */
  2710. int ilb = first_cpu(nohz.cpu_mask);
  2711. if (ilb != NR_CPUS)
  2712. resched_cpu(ilb);
  2713. }
  2714. }
  2715. /*
  2716. * If this cpu is idle and doing idle load balancing for all the
  2717. * cpus with ticks stopped, is it time for that to stop?
  2718. */
  2719. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2720. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2721. resched_cpu(cpu);
  2722. return;
  2723. }
  2724. /*
  2725. * If this cpu is idle and the idle load balancing is done by
  2726. * someone else, then no need raise the SCHED_SOFTIRQ
  2727. */
  2728. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2729. cpu_isset(cpu, nohz.cpu_mask))
  2730. return;
  2731. #endif
  2732. if (time_after_eq(jiffies, rq->next_balance))
  2733. raise_softirq(SCHED_SOFTIRQ);
  2734. }
  2735. #else /* CONFIG_SMP */
  2736. /*
  2737. * on UP we do not need to balance between CPUs:
  2738. */
  2739. static inline void idle_balance(int cpu, struct rq *rq)
  2740. {
  2741. }
  2742. /* Avoid "used but not defined" warning on UP */
  2743. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2744. unsigned long max_nr_move, unsigned long max_load_move,
  2745. struct sched_domain *sd, enum cpu_idle_type idle,
  2746. int *all_pinned, unsigned long *load_moved,
  2747. int *this_best_prio, struct rq_iterator *iterator)
  2748. {
  2749. *load_moved = 0;
  2750. return 0;
  2751. }
  2752. #endif
  2753. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2754. EXPORT_PER_CPU_SYMBOL(kstat);
  2755. /*
  2756. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2757. * that have not yet been banked in case the task is currently running.
  2758. */
  2759. unsigned long long task_sched_runtime(struct task_struct *p)
  2760. {
  2761. unsigned long flags;
  2762. u64 ns, delta_exec;
  2763. struct rq *rq;
  2764. rq = task_rq_lock(p, &flags);
  2765. ns = p->se.sum_exec_runtime;
  2766. if (rq->curr == p) {
  2767. update_rq_clock(rq);
  2768. delta_exec = rq->clock - p->se.exec_start;
  2769. if ((s64)delta_exec > 0)
  2770. ns += delta_exec;
  2771. }
  2772. task_rq_unlock(rq, &flags);
  2773. return ns;
  2774. }
  2775. /*
  2776. * Account user cpu time to a process.
  2777. * @p: the process that the cpu time gets accounted to
  2778. * @hardirq_offset: the offset to subtract from hardirq_count()
  2779. * @cputime: the cpu time spent in user space since the last update
  2780. */
  2781. void account_user_time(struct task_struct *p, cputime_t cputime)
  2782. {
  2783. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2784. cputime64_t tmp;
  2785. p->utime = cputime_add(p->utime, cputime);
  2786. /* Add user time to cpustat. */
  2787. tmp = cputime_to_cputime64(cputime);
  2788. if (TASK_NICE(p) > 0)
  2789. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2790. else
  2791. cpustat->user = cputime64_add(cpustat->user, tmp);
  2792. }
  2793. /*
  2794. * Account system cpu time to a process.
  2795. * @p: the process that the cpu time gets accounted to
  2796. * @hardirq_offset: the offset to subtract from hardirq_count()
  2797. * @cputime: the cpu time spent in kernel space since the last update
  2798. */
  2799. void account_system_time(struct task_struct *p, int hardirq_offset,
  2800. cputime_t cputime)
  2801. {
  2802. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2803. struct rq *rq = this_rq();
  2804. cputime64_t tmp;
  2805. p->stime = cputime_add(p->stime, cputime);
  2806. /* Add system time to cpustat. */
  2807. tmp = cputime_to_cputime64(cputime);
  2808. if (hardirq_count() - hardirq_offset)
  2809. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2810. else if (softirq_count())
  2811. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2812. else if (p != rq->idle)
  2813. cpustat->system = cputime64_add(cpustat->system, tmp);
  2814. else if (atomic_read(&rq->nr_iowait) > 0)
  2815. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2816. else
  2817. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2818. /* Account for system time used */
  2819. acct_update_integrals(p);
  2820. }
  2821. /*
  2822. * Account for involuntary wait time.
  2823. * @p: the process from which the cpu time has been stolen
  2824. * @steal: the cpu time spent in involuntary wait
  2825. */
  2826. void account_steal_time(struct task_struct *p, cputime_t steal)
  2827. {
  2828. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2829. cputime64_t tmp = cputime_to_cputime64(steal);
  2830. struct rq *rq = this_rq();
  2831. if (p == rq->idle) {
  2832. p->stime = cputime_add(p->stime, steal);
  2833. if (atomic_read(&rq->nr_iowait) > 0)
  2834. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2835. else
  2836. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2837. } else
  2838. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2839. }
  2840. /*
  2841. * This function gets called by the timer code, with HZ frequency.
  2842. * We call it with interrupts disabled.
  2843. *
  2844. * It also gets called by the fork code, when changing the parent's
  2845. * timeslices.
  2846. */
  2847. void scheduler_tick(void)
  2848. {
  2849. int cpu = smp_processor_id();
  2850. struct rq *rq = cpu_rq(cpu);
  2851. struct task_struct *curr = rq->curr;
  2852. spin_lock(&rq->lock);
  2853. __update_rq_clock(rq);
  2854. update_cpu_load(rq);
  2855. if (curr != rq->idle) /* FIXME: needed? */
  2856. curr->sched_class->task_tick(rq, curr);
  2857. spin_unlock(&rq->lock);
  2858. #ifdef CONFIG_SMP
  2859. rq->idle_at_tick = idle_cpu(cpu);
  2860. trigger_load_balance(rq, cpu);
  2861. #endif
  2862. }
  2863. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2864. void fastcall add_preempt_count(int val)
  2865. {
  2866. /*
  2867. * Underflow?
  2868. */
  2869. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2870. return;
  2871. preempt_count() += val;
  2872. /*
  2873. * Spinlock count overflowing soon?
  2874. */
  2875. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2876. PREEMPT_MASK - 10);
  2877. }
  2878. EXPORT_SYMBOL(add_preempt_count);
  2879. void fastcall sub_preempt_count(int val)
  2880. {
  2881. /*
  2882. * Underflow?
  2883. */
  2884. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2885. return;
  2886. /*
  2887. * Is the spinlock portion underflowing?
  2888. */
  2889. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2890. !(preempt_count() & PREEMPT_MASK)))
  2891. return;
  2892. preempt_count() -= val;
  2893. }
  2894. EXPORT_SYMBOL(sub_preempt_count);
  2895. #endif
  2896. /*
  2897. * Print scheduling while atomic bug:
  2898. */
  2899. static noinline void __schedule_bug(struct task_struct *prev)
  2900. {
  2901. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2902. prev->comm, preempt_count(), prev->pid);
  2903. debug_show_held_locks(prev);
  2904. if (irqs_disabled())
  2905. print_irqtrace_events(prev);
  2906. dump_stack();
  2907. }
  2908. /*
  2909. * Various schedule()-time debugging checks and statistics:
  2910. */
  2911. static inline void schedule_debug(struct task_struct *prev)
  2912. {
  2913. /*
  2914. * Test if we are atomic. Since do_exit() needs to call into
  2915. * schedule() atomically, we ignore that path for now.
  2916. * Otherwise, whine if we are scheduling when we should not be.
  2917. */
  2918. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2919. __schedule_bug(prev);
  2920. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2921. schedstat_inc(this_rq(), sched_cnt);
  2922. }
  2923. /*
  2924. * Pick up the highest-prio task:
  2925. */
  2926. static inline struct task_struct *
  2927. pick_next_task(struct rq *rq, struct task_struct *prev)
  2928. {
  2929. struct sched_class *class;
  2930. struct task_struct *p;
  2931. /*
  2932. * Optimization: we know that if all tasks are in
  2933. * the fair class we can call that function directly:
  2934. */
  2935. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2936. p = fair_sched_class.pick_next_task(rq);
  2937. if (likely(p))
  2938. return p;
  2939. }
  2940. class = sched_class_highest;
  2941. for ( ; ; ) {
  2942. p = class->pick_next_task(rq);
  2943. if (p)
  2944. return p;
  2945. /*
  2946. * Will never be NULL as the idle class always
  2947. * returns a non-NULL p:
  2948. */
  2949. class = class->next;
  2950. }
  2951. }
  2952. /*
  2953. * schedule() is the main scheduler function.
  2954. */
  2955. asmlinkage void __sched schedule(void)
  2956. {
  2957. struct task_struct *prev, *next;
  2958. long *switch_count;
  2959. struct rq *rq;
  2960. int cpu;
  2961. need_resched:
  2962. preempt_disable();
  2963. cpu = smp_processor_id();
  2964. rq = cpu_rq(cpu);
  2965. rcu_qsctr_inc(cpu);
  2966. prev = rq->curr;
  2967. switch_count = &prev->nivcsw;
  2968. release_kernel_lock(prev);
  2969. need_resched_nonpreemptible:
  2970. schedule_debug(prev);
  2971. spin_lock_irq(&rq->lock);
  2972. clear_tsk_need_resched(prev);
  2973. __update_rq_clock(rq);
  2974. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2975. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2976. unlikely(signal_pending(prev)))) {
  2977. prev->state = TASK_RUNNING;
  2978. } else {
  2979. deactivate_task(rq, prev, 1);
  2980. }
  2981. switch_count = &prev->nvcsw;
  2982. }
  2983. if (unlikely(!rq->nr_running))
  2984. idle_balance(cpu, rq);
  2985. prev->sched_class->put_prev_task(rq, prev);
  2986. next = pick_next_task(rq, prev);
  2987. sched_info_switch(prev, next);
  2988. if (likely(prev != next)) {
  2989. rq->nr_switches++;
  2990. rq->curr = next;
  2991. ++*switch_count;
  2992. context_switch(rq, prev, next); /* unlocks the rq */
  2993. } else
  2994. spin_unlock_irq(&rq->lock);
  2995. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  2996. cpu = smp_processor_id();
  2997. rq = cpu_rq(cpu);
  2998. goto need_resched_nonpreemptible;
  2999. }
  3000. preempt_enable_no_resched();
  3001. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3002. goto need_resched;
  3003. }
  3004. EXPORT_SYMBOL(schedule);
  3005. #ifdef CONFIG_PREEMPT
  3006. /*
  3007. * this is the entry point to schedule() from in-kernel preemption
  3008. * off of preempt_enable. Kernel preemptions off return from interrupt
  3009. * occur there and call schedule directly.
  3010. */
  3011. asmlinkage void __sched preempt_schedule(void)
  3012. {
  3013. struct thread_info *ti = current_thread_info();
  3014. #ifdef CONFIG_PREEMPT_BKL
  3015. struct task_struct *task = current;
  3016. int saved_lock_depth;
  3017. #endif
  3018. /*
  3019. * If there is a non-zero preempt_count or interrupts are disabled,
  3020. * we do not want to preempt the current task. Just return..
  3021. */
  3022. if (likely(ti->preempt_count || irqs_disabled()))
  3023. return;
  3024. need_resched:
  3025. add_preempt_count(PREEMPT_ACTIVE);
  3026. /*
  3027. * We keep the big kernel semaphore locked, but we
  3028. * clear ->lock_depth so that schedule() doesnt
  3029. * auto-release the semaphore:
  3030. */
  3031. #ifdef CONFIG_PREEMPT_BKL
  3032. saved_lock_depth = task->lock_depth;
  3033. task->lock_depth = -1;
  3034. #endif
  3035. schedule();
  3036. #ifdef CONFIG_PREEMPT_BKL
  3037. task->lock_depth = saved_lock_depth;
  3038. #endif
  3039. sub_preempt_count(PREEMPT_ACTIVE);
  3040. /* we could miss a preemption opportunity between schedule and now */
  3041. barrier();
  3042. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3043. goto need_resched;
  3044. }
  3045. EXPORT_SYMBOL(preempt_schedule);
  3046. /*
  3047. * this is the entry point to schedule() from kernel preemption
  3048. * off of irq context.
  3049. * Note, that this is called and return with irqs disabled. This will
  3050. * protect us against recursive calling from irq.
  3051. */
  3052. asmlinkage void __sched preempt_schedule_irq(void)
  3053. {
  3054. struct thread_info *ti = current_thread_info();
  3055. #ifdef CONFIG_PREEMPT_BKL
  3056. struct task_struct *task = current;
  3057. int saved_lock_depth;
  3058. #endif
  3059. /* Catch callers which need to be fixed */
  3060. BUG_ON(ti->preempt_count || !irqs_disabled());
  3061. need_resched:
  3062. add_preempt_count(PREEMPT_ACTIVE);
  3063. /*
  3064. * We keep the big kernel semaphore locked, but we
  3065. * clear ->lock_depth so that schedule() doesnt
  3066. * auto-release the semaphore:
  3067. */
  3068. #ifdef CONFIG_PREEMPT_BKL
  3069. saved_lock_depth = task->lock_depth;
  3070. task->lock_depth = -1;
  3071. #endif
  3072. local_irq_enable();
  3073. schedule();
  3074. local_irq_disable();
  3075. #ifdef CONFIG_PREEMPT_BKL
  3076. task->lock_depth = saved_lock_depth;
  3077. #endif
  3078. sub_preempt_count(PREEMPT_ACTIVE);
  3079. /* we could miss a preemption opportunity between schedule and now */
  3080. barrier();
  3081. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3082. goto need_resched;
  3083. }
  3084. #endif /* CONFIG_PREEMPT */
  3085. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3086. void *key)
  3087. {
  3088. return try_to_wake_up(curr->private, mode, sync);
  3089. }
  3090. EXPORT_SYMBOL(default_wake_function);
  3091. /*
  3092. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3093. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3094. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3095. *
  3096. * There are circumstances in which we can try to wake a task which has already
  3097. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3098. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3099. */
  3100. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3101. int nr_exclusive, int sync, void *key)
  3102. {
  3103. struct list_head *tmp, *next;
  3104. list_for_each_safe(tmp, next, &q->task_list) {
  3105. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3106. unsigned flags = curr->flags;
  3107. if (curr->func(curr, mode, sync, key) &&
  3108. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3109. break;
  3110. }
  3111. }
  3112. /**
  3113. * __wake_up - wake up threads blocked on a waitqueue.
  3114. * @q: the waitqueue
  3115. * @mode: which threads
  3116. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3117. * @key: is directly passed to the wakeup function
  3118. */
  3119. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3120. int nr_exclusive, void *key)
  3121. {
  3122. unsigned long flags;
  3123. spin_lock_irqsave(&q->lock, flags);
  3124. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3125. spin_unlock_irqrestore(&q->lock, flags);
  3126. }
  3127. EXPORT_SYMBOL(__wake_up);
  3128. /*
  3129. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3130. */
  3131. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3132. {
  3133. __wake_up_common(q, mode, 1, 0, NULL);
  3134. }
  3135. /**
  3136. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3137. * @q: the waitqueue
  3138. * @mode: which threads
  3139. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3140. *
  3141. * The sync wakeup differs that the waker knows that it will schedule
  3142. * away soon, so while the target thread will be woken up, it will not
  3143. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3144. * with each other. This can prevent needless bouncing between CPUs.
  3145. *
  3146. * On UP it can prevent extra preemption.
  3147. */
  3148. void fastcall
  3149. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3150. {
  3151. unsigned long flags;
  3152. int sync = 1;
  3153. if (unlikely(!q))
  3154. return;
  3155. if (unlikely(!nr_exclusive))
  3156. sync = 0;
  3157. spin_lock_irqsave(&q->lock, flags);
  3158. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3159. spin_unlock_irqrestore(&q->lock, flags);
  3160. }
  3161. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3162. void fastcall complete(struct completion *x)
  3163. {
  3164. unsigned long flags;
  3165. spin_lock_irqsave(&x->wait.lock, flags);
  3166. x->done++;
  3167. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3168. 1, 0, NULL);
  3169. spin_unlock_irqrestore(&x->wait.lock, flags);
  3170. }
  3171. EXPORT_SYMBOL(complete);
  3172. void fastcall complete_all(struct completion *x)
  3173. {
  3174. unsigned long flags;
  3175. spin_lock_irqsave(&x->wait.lock, flags);
  3176. x->done += UINT_MAX/2;
  3177. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3178. 0, 0, NULL);
  3179. spin_unlock_irqrestore(&x->wait.lock, flags);
  3180. }
  3181. EXPORT_SYMBOL(complete_all);
  3182. void fastcall __sched wait_for_completion(struct completion *x)
  3183. {
  3184. might_sleep();
  3185. spin_lock_irq(&x->wait.lock);
  3186. if (!x->done) {
  3187. DECLARE_WAITQUEUE(wait, current);
  3188. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3189. __add_wait_queue_tail(&x->wait, &wait);
  3190. do {
  3191. __set_current_state(TASK_UNINTERRUPTIBLE);
  3192. spin_unlock_irq(&x->wait.lock);
  3193. schedule();
  3194. spin_lock_irq(&x->wait.lock);
  3195. } while (!x->done);
  3196. __remove_wait_queue(&x->wait, &wait);
  3197. }
  3198. x->done--;
  3199. spin_unlock_irq(&x->wait.lock);
  3200. }
  3201. EXPORT_SYMBOL(wait_for_completion);
  3202. unsigned long fastcall __sched
  3203. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3204. {
  3205. might_sleep();
  3206. spin_lock_irq(&x->wait.lock);
  3207. if (!x->done) {
  3208. DECLARE_WAITQUEUE(wait, current);
  3209. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3210. __add_wait_queue_tail(&x->wait, &wait);
  3211. do {
  3212. __set_current_state(TASK_UNINTERRUPTIBLE);
  3213. spin_unlock_irq(&x->wait.lock);
  3214. timeout = schedule_timeout(timeout);
  3215. spin_lock_irq(&x->wait.lock);
  3216. if (!timeout) {
  3217. __remove_wait_queue(&x->wait, &wait);
  3218. goto out;
  3219. }
  3220. } while (!x->done);
  3221. __remove_wait_queue(&x->wait, &wait);
  3222. }
  3223. x->done--;
  3224. out:
  3225. spin_unlock_irq(&x->wait.lock);
  3226. return timeout;
  3227. }
  3228. EXPORT_SYMBOL(wait_for_completion_timeout);
  3229. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3230. {
  3231. int ret = 0;
  3232. might_sleep();
  3233. spin_lock_irq(&x->wait.lock);
  3234. if (!x->done) {
  3235. DECLARE_WAITQUEUE(wait, current);
  3236. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3237. __add_wait_queue_tail(&x->wait, &wait);
  3238. do {
  3239. if (signal_pending(current)) {
  3240. ret = -ERESTARTSYS;
  3241. __remove_wait_queue(&x->wait, &wait);
  3242. goto out;
  3243. }
  3244. __set_current_state(TASK_INTERRUPTIBLE);
  3245. spin_unlock_irq(&x->wait.lock);
  3246. schedule();
  3247. spin_lock_irq(&x->wait.lock);
  3248. } while (!x->done);
  3249. __remove_wait_queue(&x->wait, &wait);
  3250. }
  3251. x->done--;
  3252. out:
  3253. spin_unlock_irq(&x->wait.lock);
  3254. return ret;
  3255. }
  3256. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3257. unsigned long fastcall __sched
  3258. wait_for_completion_interruptible_timeout(struct completion *x,
  3259. unsigned long timeout)
  3260. {
  3261. might_sleep();
  3262. spin_lock_irq(&x->wait.lock);
  3263. if (!x->done) {
  3264. DECLARE_WAITQUEUE(wait, current);
  3265. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3266. __add_wait_queue_tail(&x->wait, &wait);
  3267. do {
  3268. if (signal_pending(current)) {
  3269. timeout = -ERESTARTSYS;
  3270. __remove_wait_queue(&x->wait, &wait);
  3271. goto out;
  3272. }
  3273. __set_current_state(TASK_INTERRUPTIBLE);
  3274. spin_unlock_irq(&x->wait.lock);
  3275. timeout = schedule_timeout(timeout);
  3276. spin_lock_irq(&x->wait.lock);
  3277. if (!timeout) {
  3278. __remove_wait_queue(&x->wait, &wait);
  3279. goto out;
  3280. }
  3281. } while (!x->done);
  3282. __remove_wait_queue(&x->wait, &wait);
  3283. }
  3284. x->done--;
  3285. out:
  3286. spin_unlock_irq(&x->wait.lock);
  3287. return timeout;
  3288. }
  3289. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3290. static inline void
  3291. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3292. {
  3293. spin_lock_irqsave(&q->lock, *flags);
  3294. __add_wait_queue(q, wait);
  3295. spin_unlock(&q->lock);
  3296. }
  3297. static inline void
  3298. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3299. {
  3300. spin_lock_irq(&q->lock);
  3301. __remove_wait_queue(q, wait);
  3302. spin_unlock_irqrestore(&q->lock, *flags);
  3303. }
  3304. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3305. {
  3306. unsigned long flags;
  3307. wait_queue_t wait;
  3308. init_waitqueue_entry(&wait, current);
  3309. current->state = TASK_INTERRUPTIBLE;
  3310. sleep_on_head(q, &wait, &flags);
  3311. schedule();
  3312. sleep_on_tail(q, &wait, &flags);
  3313. }
  3314. EXPORT_SYMBOL(interruptible_sleep_on);
  3315. long __sched
  3316. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3317. {
  3318. unsigned long flags;
  3319. wait_queue_t wait;
  3320. init_waitqueue_entry(&wait, current);
  3321. current->state = TASK_INTERRUPTIBLE;
  3322. sleep_on_head(q, &wait, &flags);
  3323. timeout = schedule_timeout(timeout);
  3324. sleep_on_tail(q, &wait, &flags);
  3325. return timeout;
  3326. }
  3327. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3328. void __sched sleep_on(wait_queue_head_t *q)
  3329. {
  3330. unsigned long flags;
  3331. wait_queue_t wait;
  3332. init_waitqueue_entry(&wait, current);
  3333. current->state = TASK_UNINTERRUPTIBLE;
  3334. sleep_on_head(q, &wait, &flags);
  3335. schedule();
  3336. sleep_on_tail(q, &wait, &flags);
  3337. }
  3338. EXPORT_SYMBOL(sleep_on);
  3339. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3340. {
  3341. unsigned long flags;
  3342. wait_queue_t wait;
  3343. init_waitqueue_entry(&wait, current);
  3344. current->state = TASK_UNINTERRUPTIBLE;
  3345. sleep_on_head(q, &wait, &flags);
  3346. timeout = schedule_timeout(timeout);
  3347. sleep_on_tail(q, &wait, &flags);
  3348. return timeout;
  3349. }
  3350. EXPORT_SYMBOL(sleep_on_timeout);
  3351. #ifdef CONFIG_RT_MUTEXES
  3352. /*
  3353. * rt_mutex_setprio - set the current priority of a task
  3354. * @p: task
  3355. * @prio: prio value (kernel-internal form)
  3356. *
  3357. * This function changes the 'effective' priority of a task. It does
  3358. * not touch ->normal_prio like __setscheduler().
  3359. *
  3360. * Used by the rt_mutex code to implement priority inheritance logic.
  3361. */
  3362. void rt_mutex_setprio(struct task_struct *p, int prio)
  3363. {
  3364. unsigned long flags;
  3365. int oldprio, on_rq;
  3366. struct rq *rq;
  3367. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3368. rq = task_rq_lock(p, &flags);
  3369. update_rq_clock(rq);
  3370. oldprio = p->prio;
  3371. on_rq = p->se.on_rq;
  3372. if (on_rq)
  3373. dequeue_task(rq, p, 0);
  3374. if (rt_prio(prio))
  3375. p->sched_class = &rt_sched_class;
  3376. else
  3377. p->sched_class = &fair_sched_class;
  3378. p->prio = prio;
  3379. if (on_rq) {
  3380. enqueue_task(rq, p, 0);
  3381. /*
  3382. * Reschedule if we are currently running on this runqueue and
  3383. * our priority decreased, or if we are not currently running on
  3384. * this runqueue and our priority is higher than the current's
  3385. */
  3386. if (task_running(rq, p)) {
  3387. if (p->prio > oldprio)
  3388. resched_task(rq->curr);
  3389. } else {
  3390. check_preempt_curr(rq, p);
  3391. }
  3392. }
  3393. task_rq_unlock(rq, &flags);
  3394. }
  3395. #endif
  3396. void set_user_nice(struct task_struct *p, long nice)
  3397. {
  3398. int old_prio, delta, on_rq;
  3399. unsigned long flags;
  3400. struct rq *rq;
  3401. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3402. return;
  3403. /*
  3404. * We have to be careful, if called from sys_setpriority(),
  3405. * the task might be in the middle of scheduling on another CPU.
  3406. */
  3407. rq = task_rq_lock(p, &flags);
  3408. update_rq_clock(rq);
  3409. /*
  3410. * The RT priorities are set via sched_setscheduler(), but we still
  3411. * allow the 'normal' nice value to be set - but as expected
  3412. * it wont have any effect on scheduling until the task is
  3413. * SCHED_FIFO/SCHED_RR:
  3414. */
  3415. if (task_has_rt_policy(p)) {
  3416. p->static_prio = NICE_TO_PRIO(nice);
  3417. goto out_unlock;
  3418. }
  3419. on_rq = p->se.on_rq;
  3420. if (on_rq) {
  3421. dequeue_task(rq, p, 0);
  3422. dec_load(rq, p);
  3423. }
  3424. p->static_prio = NICE_TO_PRIO(nice);
  3425. set_load_weight(p);
  3426. old_prio = p->prio;
  3427. p->prio = effective_prio(p);
  3428. delta = p->prio - old_prio;
  3429. if (on_rq) {
  3430. enqueue_task(rq, p, 0);
  3431. inc_load(rq, p);
  3432. /*
  3433. * If the task increased its priority or is running and
  3434. * lowered its priority, then reschedule its CPU:
  3435. */
  3436. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3437. resched_task(rq->curr);
  3438. }
  3439. out_unlock:
  3440. task_rq_unlock(rq, &flags);
  3441. }
  3442. EXPORT_SYMBOL(set_user_nice);
  3443. /*
  3444. * can_nice - check if a task can reduce its nice value
  3445. * @p: task
  3446. * @nice: nice value
  3447. */
  3448. int can_nice(const struct task_struct *p, const int nice)
  3449. {
  3450. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3451. int nice_rlim = 20 - nice;
  3452. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3453. capable(CAP_SYS_NICE));
  3454. }
  3455. #ifdef __ARCH_WANT_SYS_NICE
  3456. /*
  3457. * sys_nice - change the priority of the current process.
  3458. * @increment: priority increment
  3459. *
  3460. * sys_setpriority is a more generic, but much slower function that
  3461. * does similar things.
  3462. */
  3463. asmlinkage long sys_nice(int increment)
  3464. {
  3465. long nice, retval;
  3466. /*
  3467. * Setpriority might change our priority at the same moment.
  3468. * We don't have to worry. Conceptually one call occurs first
  3469. * and we have a single winner.
  3470. */
  3471. if (increment < -40)
  3472. increment = -40;
  3473. if (increment > 40)
  3474. increment = 40;
  3475. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3476. if (nice < -20)
  3477. nice = -20;
  3478. if (nice > 19)
  3479. nice = 19;
  3480. if (increment < 0 && !can_nice(current, nice))
  3481. return -EPERM;
  3482. retval = security_task_setnice(current, nice);
  3483. if (retval)
  3484. return retval;
  3485. set_user_nice(current, nice);
  3486. return 0;
  3487. }
  3488. #endif
  3489. /**
  3490. * task_prio - return the priority value of a given task.
  3491. * @p: the task in question.
  3492. *
  3493. * This is the priority value as seen by users in /proc.
  3494. * RT tasks are offset by -200. Normal tasks are centered
  3495. * around 0, value goes from -16 to +15.
  3496. */
  3497. int task_prio(const struct task_struct *p)
  3498. {
  3499. return p->prio - MAX_RT_PRIO;
  3500. }
  3501. /**
  3502. * task_nice - return the nice value of a given task.
  3503. * @p: the task in question.
  3504. */
  3505. int task_nice(const struct task_struct *p)
  3506. {
  3507. return TASK_NICE(p);
  3508. }
  3509. EXPORT_SYMBOL_GPL(task_nice);
  3510. /**
  3511. * idle_cpu - is a given cpu idle currently?
  3512. * @cpu: the processor in question.
  3513. */
  3514. int idle_cpu(int cpu)
  3515. {
  3516. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3517. }
  3518. /**
  3519. * idle_task - return the idle task for a given cpu.
  3520. * @cpu: the processor in question.
  3521. */
  3522. struct task_struct *idle_task(int cpu)
  3523. {
  3524. return cpu_rq(cpu)->idle;
  3525. }
  3526. /**
  3527. * find_process_by_pid - find a process with a matching PID value.
  3528. * @pid: the pid in question.
  3529. */
  3530. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3531. {
  3532. return pid ? find_task_by_pid(pid) : current;
  3533. }
  3534. /* Actually do priority change: must hold rq lock. */
  3535. static void
  3536. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3537. {
  3538. BUG_ON(p->se.on_rq);
  3539. p->policy = policy;
  3540. switch (p->policy) {
  3541. case SCHED_NORMAL:
  3542. case SCHED_BATCH:
  3543. case SCHED_IDLE:
  3544. p->sched_class = &fair_sched_class;
  3545. break;
  3546. case SCHED_FIFO:
  3547. case SCHED_RR:
  3548. p->sched_class = &rt_sched_class;
  3549. break;
  3550. }
  3551. p->rt_priority = prio;
  3552. p->normal_prio = normal_prio(p);
  3553. /* we are holding p->pi_lock already */
  3554. p->prio = rt_mutex_getprio(p);
  3555. set_load_weight(p);
  3556. }
  3557. /**
  3558. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3559. * @p: the task in question.
  3560. * @policy: new policy.
  3561. * @param: structure containing the new RT priority.
  3562. *
  3563. * NOTE that the task may be already dead.
  3564. */
  3565. int sched_setscheduler(struct task_struct *p, int policy,
  3566. struct sched_param *param)
  3567. {
  3568. int retval, oldprio, oldpolicy = -1, on_rq;
  3569. unsigned long flags;
  3570. struct rq *rq;
  3571. /* may grab non-irq protected spin_locks */
  3572. BUG_ON(in_interrupt());
  3573. recheck:
  3574. /* double check policy once rq lock held */
  3575. if (policy < 0)
  3576. policy = oldpolicy = p->policy;
  3577. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3578. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3579. policy != SCHED_IDLE)
  3580. return -EINVAL;
  3581. /*
  3582. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3583. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3584. * SCHED_BATCH and SCHED_IDLE is 0.
  3585. */
  3586. if (param->sched_priority < 0 ||
  3587. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3588. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3589. return -EINVAL;
  3590. if (rt_policy(policy) != (param->sched_priority != 0))
  3591. return -EINVAL;
  3592. /*
  3593. * Allow unprivileged RT tasks to decrease priority:
  3594. */
  3595. if (!capable(CAP_SYS_NICE)) {
  3596. if (rt_policy(policy)) {
  3597. unsigned long rlim_rtprio;
  3598. if (!lock_task_sighand(p, &flags))
  3599. return -ESRCH;
  3600. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3601. unlock_task_sighand(p, &flags);
  3602. /* can't set/change the rt policy */
  3603. if (policy != p->policy && !rlim_rtprio)
  3604. return -EPERM;
  3605. /* can't increase priority */
  3606. if (param->sched_priority > p->rt_priority &&
  3607. param->sched_priority > rlim_rtprio)
  3608. return -EPERM;
  3609. }
  3610. /*
  3611. * Like positive nice levels, dont allow tasks to
  3612. * move out of SCHED_IDLE either:
  3613. */
  3614. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3615. return -EPERM;
  3616. /* can't change other user's priorities */
  3617. if ((current->euid != p->euid) &&
  3618. (current->euid != p->uid))
  3619. return -EPERM;
  3620. }
  3621. retval = security_task_setscheduler(p, policy, param);
  3622. if (retval)
  3623. return retval;
  3624. /*
  3625. * make sure no PI-waiters arrive (or leave) while we are
  3626. * changing the priority of the task:
  3627. */
  3628. spin_lock_irqsave(&p->pi_lock, flags);
  3629. /*
  3630. * To be able to change p->policy safely, the apropriate
  3631. * runqueue lock must be held.
  3632. */
  3633. rq = __task_rq_lock(p);
  3634. /* recheck policy now with rq lock held */
  3635. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3636. policy = oldpolicy = -1;
  3637. __task_rq_unlock(rq);
  3638. spin_unlock_irqrestore(&p->pi_lock, flags);
  3639. goto recheck;
  3640. }
  3641. update_rq_clock(rq);
  3642. on_rq = p->se.on_rq;
  3643. if (on_rq)
  3644. deactivate_task(rq, p, 0);
  3645. oldprio = p->prio;
  3646. __setscheduler(rq, p, policy, param->sched_priority);
  3647. if (on_rq) {
  3648. activate_task(rq, p, 0);
  3649. /*
  3650. * Reschedule if we are currently running on this runqueue and
  3651. * our priority decreased, or if we are not currently running on
  3652. * this runqueue and our priority is higher than the current's
  3653. */
  3654. if (task_running(rq, p)) {
  3655. if (p->prio > oldprio)
  3656. resched_task(rq->curr);
  3657. } else {
  3658. check_preempt_curr(rq, p);
  3659. }
  3660. }
  3661. __task_rq_unlock(rq);
  3662. spin_unlock_irqrestore(&p->pi_lock, flags);
  3663. rt_mutex_adjust_pi(p);
  3664. return 0;
  3665. }
  3666. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3667. static int
  3668. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3669. {
  3670. struct sched_param lparam;
  3671. struct task_struct *p;
  3672. int retval;
  3673. if (!param || pid < 0)
  3674. return -EINVAL;
  3675. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3676. return -EFAULT;
  3677. rcu_read_lock();
  3678. retval = -ESRCH;
  3679. p = find_process_by_pid(pid);
  3680. if (p != NULL)
  3681. retval = sched_setscheduler(p, policy, &lparam);
  3682. rcu_read_unlock();
  3683. return retval;
  3684. }
  3685. /**
  3686. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3687. * @pid: the pid in question.
  3688. * @policy: new policy.
  3689. * @param: structure containing the new RT priority.
  3690. */
  3691. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3692. struct sched_param __user *param)
  3693. {
  3694. /* negative values for policy are not valid */
  3695. if (policy < 0)
  3696. return -EINVAL;
  3697. return do_sched_setscheduler(pid, policy, param);
  3698. }
  3699. /**
  3700. * sys_sched_setparam - set/change the RT priority of a thread
  3701. * @pid: the pid in question.
  3702. * @param: structure containing the new RT priority.
  3703. */
  3704. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3705. {
  3706. return do_sched_setscheduler(pid, -1, param);
  3707. }
  3708. /**
  3709. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3710. * @pid: the pid in question.
  3711. */
  3712. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3713. {
  3714. struct task_struct *p;
  3715. int retval = -EINVAL;
  3716. if (pid < 0)
  3717. goto out_nounlock;
  3718. retval = -ESRCH;
  3719. read_lock(&tasklist_lock);
  3720. p = find_process_by_pid(pid);
  3721. if (p) {
  3722. retval = security_task_getscheduler(p);
  3723. if (!retval)
  3724. retval = p->policy;
  3725. }
  3726. read_unlock(&tasklist_lock);
  3727. out_nounlock:
  3728. return retval;
  3729. }
  3730. /**
  3731. * sys_sched_getscheduler - get the RT priority of a thread
  3732. * @pid: the pid in question.
  3733. * @param: structure containing the RT priority.
  3734. */
  3735. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3736. {
  3737. struct sched_param lp;
  3738. struct task_struct *p;
  3739. int retval = -EINVAL;
  3740. if (!param || pid < 0)
  3741. goto out_nounlock;
  3742. read_lock(&tasklist_lock);
  3743. p = find_process_by_pid(pid);
  3744. retval = -ESRCH;
  3745. if (!p)
  3746. goto out_unlock;
  3747. retval = security_task_getscheduler(p);
  3748. if (retval)
  3749. goto out_unlock;
  3750. lp.sched_priority = p->rt_priority;
  3751. read_unlock(&tasklist_lock);
  3752. /*
  3753. * This one might sleep, we cannot do it with a spinlock held ...
  3754. */
  3755. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3756. out_nounlock:
  3757. return retval;
  3758. out_unlock:
  3759. read_unlock(&tasklist_lock);
  3760. return retval;
  3761. }
  3762. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3763. {
  3764. cpumask_t cpus_allowed;
  3765. struct task_struct *p;
  3766. int retval;
  3767. mutex_lock(&sched_hotcpu_mutex);
  3768. read_lock(&tasklist_lock);
  3769. p = find_process_by_pid(pid);
  3770. if (!p) {
  3771. read_unlock(&tasklist_lock);
  3772. mutex_unlock(&sched_hotcpu_mutex);
  3773. return -ESRCH;
  3774. }
  3775. /*
  3776. * It is not safe to call set_cpus_allowed with the
  3777. * tasklist_lock held. We will bump the task_struct's
  3778. * usage count and then drop tasklist_lock.
  3779. */
  3780. get_task_struct(p);
  3781. read_unlock(&tasklist_lock);
  3782. retval = -EPERM;
  3783. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3784. !capable(CAP_SYS_NICE))
  3785. goto out_unlock;
  3786. retval = security_task_setscheduler(p, 0, NULL);
  3787. if (retval)
  3788. goto out_unlock;
  3789. cpus_allowed = cpuset_cpus_allowed(p);
  3790. cpus_and(new_mask, new_mask, cpus_allowed);
  3791. retval = set_cpus_allowed(p, new_mask);
  3792. out_unlock:
  3793. put_task_struct(p);
  3794. mutex_unlock(&sched_hotcpu_mutex);
  3795. return retval;
  3796. }
  3797. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3798. cpumask_t *new_mask)
  3799. {
  3800. if (len < sizeof(cpumask_t)) {
  3801. memset(new_mask, 0, sizeof(cpumask_t));
  3802. } else if (len > sizeof(cpumask_t)) {
  3803. len = sizeof(cpumask_t);
  3804. }
  3805. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3806. }
  3807. /**
  3808. * sys_sched_setaffinity - set the cpu affinity of a process
  3809. * @pid: pid of the process
  3810. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3811. * @user_mask_ptr: user-space pointer to the new cpu mask
  3812. */
  3813. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3814. unsigned long __user *user_mask_ptr)
  3815. {
  3816. cpumask_t new_mask;
  3817. int retval;
  3818. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3819. if (retval)
  3820. return retval;
  3821. return sched_setaffinity(pid, new_mask);
  3822. }
  3823. /*
  3824. * Represents all cpu's present in the system
  3825. * In systems capable of hotplug, this map could dynamically grow
  3826. * as new cpu's are detected in the system via any platform specific
  3827. * method, such as ACPI for e.g.
  3828. */
  3829. cpumask_t cpu_present_map __read_mostly;
  3830. EXPORT_SYMBOL(cpu_present_map);
  3831. #ifndef CONFIG_SMP
  3832. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3833. EXPORT_SYMBOL(cpu_online_map);
  3834. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3835. EXPORT_SYMBOL(cpu_possible_map);
  3836. #endif
  3837. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3838. {
  3839. struct task_struct *p;
  3840. int retval;
  3841. mutex_lock(&sched_hotcpu_mutex);
  3842. read_lock(&tasklist_lock);
  3843. retval = -ESRCH;
  3844. p = find_process_by_pid(pid);
  3845. if (!p)
  3846. goto out_unlock;
  3847. retval = security_task_getscheduler(p);
  3848. if (retval)
  3849. goto out_unlock;
  3850. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3851. out_unlock:
  3852. read_unlock(&tasklist_lock);
  3853. mutex_unlock(&sched_hotcpu_mutex);
  3854. return retval;
  3855. }
  3856. /**
  3857. * sys_sched_getaffinity - get the cpu affinity of a process
  3858. * @pid: pid of the process
  3859. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3860. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3861. */
  3862. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3863. unsigned long __user *user_mask_ptr)
  3864. {
  3865. int ret;
  3866. cpumask_t mask;
  3867. if (len < sizeof(cpumask_t))
  3868. return -EINVAL;
  3869. ret = sched_getaffinity(pid, &mask);
  3870. if (ret < 0)
  3871. return ret;
  3872. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3873. return -EFAULT;
  3874. return sizeof(cpumask_t);
  3875. }
  3876. /**
  3877. * sys_sched_yield - yield the current processor to other threads.
  3878. *
  3879. * This function yields the current CPU to other tasks. If there are no
  3880. * other threads running on this CPU then this function will return.
  3881. */
  3882. asmlinkage long sys_sched_yield(void)
  3883. {
  3884. struct rq *rq = this_rq_lock();
  3885. schedstat_inc(rq, yld_cnt);
  3886. if (unlikely(rq->nr_running == 1))
  3887. schedstat_inc(rq, yld_act_empty);
  3888. else
  3889. current->sched_class->yield_task(rq, current);
  3890. /*
  3891. * Since we are going to call schedule() anyway, there's
  3892. * no need to preempt or enable interrupts:
  3893. */
  3894. __release(rq->lock);
  3895. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3896. _raw_spin_unlock(&rq->lock);
  3897. preempt_enable_no_resched();
  3898. schedule();
  3899. return 0;
  3900. }
  3901. static void __cond_resched(void)
  3902. {
  3903. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3904. __might_sleep(__FILE__, __LINE__);
  3905. #endif
  3906. /*
  3907. * The BKS might be reacquired before we have dropped
  3908. * PREEMPT_ACTIVE, which could trigger a second
  3909. * cond_resched() call.
  3910. */
  3911. do {
  3912. add_preempt_count(PREEMPT_ACTIVE);
  3913. schedule();
  3914. sub_preempt_count(PREEMPT_ACTIVE);
  3915. } while (need_resched());
  3916. }
  3917. int __sched cond_resched(void)
  3918. {
  3919. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3920. system_state == SYSTEM_RUNNING) {
  3921. __cond_resched();
  3922. return 1;
  3923. }
  3924. return 0;
  3925. }
  3926. EXPORT_SYMBOL(cond_resched);
  3927. /*
  3928. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3929. * call schedule, and on return reacquire the lock.
  3930. *
  3931. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3932. * operations here to prevent schedule() from being called twice (once via
  3933. * spin_unlock(), once by hand).
  3934. */
  3935. int cond_resched_lock(spinlock_t *lock)
  3936. {
  3937. int ret = 0;
  3938. if (need_lockbreak(lock)) {
  3939. spin_unlock(lock);
  3940. cpu_relax();
  3941. ret = 1;
  3942. spin_lock(lock);
  3943. }
  3944. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3945. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3946. _raw_spin_unlock(lock);
  3947. preempt_enable_no_resched();
  3948. __cond_resched();
  3949. ret = 1;
  3950. spin_lock(lock);
  3951. }
  3952. return ret;
  3953. }
  3954. EXPORT_SYMBOL(cond_resched_lock);
  3955. int __sched cond_resched_softirq(void)
  3956. {
  3957. BUG_ON(!in_softirq());
  3958. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3959. local_bh_enable();
  3960. __cond_resched();
  3961. local_bh_disable();
  3962. return 1;
  3963. }
  3964. return 0;
  3965. }
  3966. EXPORT_SYMBOL(cond_resched_softirq);
  3967. /**
  3968. * yield - yield the current processor to other threads.
  3969. *
  3970. * This is a shortcut for kernel-space yielding - it marks the
  3971. * thread runnable and calls sys_sched_yield().
  3972. */
  3973. void __sched yield(void)
  3974. {
  3975. set_current_state(TASK_RUNNING);
  3976. sys_sched_yield();
  3977. }
  3978. EXPORT_SYMBOL(yield);
  3979. /*
  3980. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3981. * that process accounting knows that this is a task in IO wait state.
  3982. *
  3983. * But don't do that if it is a deliberate, throttling IO wait (this task
  3984. * has set its backing_dev_info: the queue against which it should throttle)
  3985. */
  3986. void __sched io_schedule(void)
  3987. {
  3988. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3989. delayacct_blkio_start();
  3990. atomic_inc(&rq->nr_iowait);
  3991. schedule();
  3992. atomic_dec(&rq->nr_iowait);
  3993. delayacct_blkio_end();
  3994. }
  3995. EXPORT_SYMBOL(io_schedule);
  3996. long __sched io_schedule_timeout(long timeout)
  3997. {
  3998. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3999. long ret;
  4000. delayacct_blkio_start();
  4001. atomic_inc(&rq->nr_iowait);
  4002. ret = schedule_timeout(timeout);
  4003. atomic_dec(&rq->nr_iowait);
  4004. delayacct_blkio_end();
  4005. return ret;
  4006. }
  4007. /**
  4008. * sys_sched_get_priority_max - return maximum RT priority.
  4009. * @policy: scheduling class.
  4010. *
  4011. * this syscall returns the maximum rt_priority that can be used
  4012. * by a given scheduling class.
  4013. */
  4014. asmlinkage long sys_sched_get_priority_max(int policy)
  4015. {
  4016. int ret = -EINVAL;
  4017. switch (policy) {
  4018. case SCHED_FIFO:
  4019. case SCHED_RR:
  4020. ret = MAX_USER_RT_PRIO-1;
  4021. break;
  4022. case SCHED_NORMAL:
  4023. case SCHED_BATCH:
  4024. case SCHED_IDLE:
  4025. ret = 0;
  4026. break;
  4027. }
  4028. return ret;
  4029. }
  4030. /**
  4031. * sys_sched_get_priority_min - return minimum RT priority.
  4032. * @policy: scheduling class.
  4033. *
  4034. * this syscall returns the minimum rt_priority that can be used
  4035. * by a given scheduling class.
  4036. */
  4037. asmlinkage long sys_sched_get_priority_min(int policy)
  4038. {
  4039. int ret = -EINVAL;
  4040. switch (policy) {
  4041. case SCHED_FIFO:
  4042. case SCHED_RR:
  4043. ret = 1;
  4044. break;
  4045. case SCHED_NORMAL:
  4046. case SCHED_BATCH:
  4047. case SCHED_IDLE:
  4048. ret = 0;
  4049. }
  4050. return ret;
  4051. }
  4052. /**
  4053. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4054. * @pid: pid of the process.
  4055. * @interval: userspace pointer to the timeslice value.
  4056. *
  4057. * this syscall writes the default timeslice value of a given process
  4058. * into the user-space timespec buffer. A value of '0' means infinity.
  4059. */
  4060. asmlinkage
  4061. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4062. {
  4063. struct task_struct *p;
  4064. int retval = -EINVAL;
  4065. struct timespec t;
  4066. if (pid < 0)
  4067. goto out_nounlock;
  4068. retval = -ESRCH;
  4069. read_lock(&tasklist_lock);
  4070. p = find_process_by_pid(pid);
  4071. if (!p)
  4072. goto out_unlock;
  4073. retval = security_task_getscheduler(p);
  4074. if (retval)
  4075. goto out_unlock;
  4076. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4077. 0 : static_prio_timeslice(p->static_prio), &t);
  4078. read_unlock(&tasklist_lock);
  4079. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4080. out_nounlock:
  4081. return retval;
  4082. out_unlock:
  4083. read_unlock(&tasklist_lock);
  4084. return retval;
  4085. }
  4086. static const char stat_nam[] = "RSDTtZX";
  4087. static void show_task(struct task_struct *p)
  4088. {
  4089. unsigned long free = 0;
  4090. unsigned state;
  4091. state = p->state ? __ffs(p->state) + 1 : 0;
  4092. printk("%-13.13s %c", p->comm,
  4093. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4094. #if BITS_PER_LONG == 32
  4095. if (state == TASK_RUNNING)
  4096. printk(" running ");
  4097. else
  4098. printk(" %08lx ", thread_saved_pc(p));
  4099. #else
  4100. if (state == TASK_RUNNING)
  4101. printk(" running task ");
  4102. else
  4103. printk(" %016lx ", thread_saved_pc(p));
  4104. #endif
  4105. #ifdef CONFIG_DEBUG_STACK_USAGE
  4106. {
  4107. unsigned long *n = end_of_stack(p);
  4108. while (!*n)
  4109. n++;
  4110. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4111. }
  4112. #endif
  4113. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4114. if (state != TASK_RUNNING)
  4115. show_stack(p, NULL);
  4116. }
  4117. void show_state_filter(unsigned long state_filter)
  4118. {
  4119. struct task_struct *g, *p;
  4120. #if BITS_PER_LONG == 32
  4121. printk(KERN_INFO
  4122. " task PC stack pid father\n");
  4123. #else
  4124. printk(KERN_INFO
  4125. " task PC stack pid father\n");
  4126. #endif
  4127. read_lock(&tasklist_lock);
  4128. do_each_thread(g, p) {
  4129. /*
  4130. * reset the NMI-timeout, listing all files on a slow
  4131. * console might take alot of time:
  4132. */
  4133. touch_nmi_watchdog();
  4134. if (!state_filter || (p->state & state_filter))
  4135. show_task(p);
  4136. } while_each_thread(g, p);
  4137. touch_all_softlockup_watchdogs();
  4138. #ifdef CONFIG_SCHED_DEBUG
  4139. sysrq_sched_debug_show();
  4140. #endif
  4141. read_unlock(&tasklist_lock);
  4142. /*
  4143. * Only show locks if all tasks are dumped:
  4144. */
  4145. if (state_filter == -1)
  4146. debug_show_all_locks();
  4147. }
  4148. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4149. {
  4150. idle->sched_class = &idle_sched_class;
  4151. }
  4152. /**
  4153. * init_idle - set up an idle thread for a given CPU
  4154. * @idle: task in question
  4155. * @cpu: cpu the idle task belongs to
  4156. *
  4157. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4158. * flag, to make booting more robust.
  4159. */
  4160. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4161. {
  4162. struct rq *rq = cpu_rq(cpu);
  4163. unsigned long flags;
  4164. __sched_fork(idle);
  4165. idle->se.exec_start = sched_clock();
  4166. idle->prio = idle->normal_prio = MAX_PRIO;
  4167. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4168. __set_task_cpu(idle, cpu);
  4169. spin_lock_irqsave(&rq->lock, flags);
  4170. rq->curr = rq->idle = idle;
  4171. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4172. idle->oncpu = 1;
  4173. #endif
  4174. spin_unlock_irqrestore(&rq->lock, flags);
  4175. /* Set the preempt count _outside_ the spinlocks! */
  4176. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4177. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4178. #else
  4179. task_thread_info(idle)->preempt_count = 0;
  4180. #endif
  4181. /*
  4182. * The idle tasks have their own, simple scheduling class:
  4183. */
  4184. idle->sched_class = &idle_sched_class;
  4185. }
  4186. /*
  4187. * In a system that switches off the HZ timer nohz_cpu_mask
  4188. * indicates which cpus entered this state. This is used
  4189. * in the rcu update to wait only for active cpus. For system
  4190. * which do not switch off the HZ timer nohz_cpu_mask should
  4191. * always be CPU_MASK_NONE.
  4192. */
  4193. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4194. /*
  4195. * Increase the granularity value when there are more CPUs,
  4196. * because with more CPUs the 'effective latency' as visible
  4197. * to users decreases. But the relationship is not linear,
  4198. * so pick a second-best guess by going with the log2 of the
  4199. * number of CPUs.
  4200. *
  4201. * This idea comes from the SD scheduler of Con Kolivas:
  4202. */
  4203. static inline void sched_init_granularity(void)
  4204. {
  4205. unsigned int factor = 1 + ilog2(num_online_cpus());
  4206. const unsigned long gran_limit = 100000000;
  4207. sysctl_sched_granularity *= factor;
  4208. if (sysctl_sched_granularity > gran_limit)
  4209. sysctl_sched_granularity = gran_limit;
  4210. sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
  4211. sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
  4212. }
  4213. #ifdef CONFIG_SMP
  4214. /*
  4215. * This is how migration works:
  4216. *
  4217. * 1) we queue a struct migration_req structure in the source CPU's
  4218. * runqueue and wake up that CPU's migration thread.
  4219. * 2) we down() the locked semaphore => thread blocks.
  4220. * 3) migration thread wakes up (implicitly it forces the migrated
  4221. * thread off the CPU)
  4222. * 4) it gets the migration request and checks whether the migrated
  4223. * task is still in the wrong runqueue.
  4224. * 5) if it's in the wrong runqueue then the migration thread removes
  4225. * it and puts it into the right queue.
  4226. * 6) migration thread up()s the semaphore.
  4227. * 7) we wake up and the migration is done.
  4228. */
  4229. /*
  4230. * Change a given task's CPU affinity. Migrate the thread to a
  4231. * proper CPU and schedule it away if the CPU it's executing on
  4232. * is removed from the allowed bitmask.
  4233. *
  4234. * NOTE: the caller must have a valid reference to the task, the
  4235. * task must not exit() & deallocate itself prematurely. The
  4236. * call is not atomic; no spinlocks may be held.
  4237. */
  4238. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4239. {
  4240. struct migration_req req;
  4241. unsigned long flags;
  4242. struct rq *rq;
  4243. int ret = 0;
  4244. rq = task_rq_lock(p, &flags);
  4245. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4246. ret = -EINVAL;
  4247. goto out;
  4248. }
  4249. p->cpus_allowed = new_mask;
  4250. /* Can the task run on the task's current CPU? If so, we're done */
  4251. if (cpu_isset(task_cpu(p), new_mask))
  4252. goto out;
  4253. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4254. /* Need help from migration thread: drop lock and wait. */
  4255. task_rq_unlock(rq, &flags);
  4256. wake_up_process(rq->migration_thread);
  4257. wait_for_completion(&req.done);
  4258. tlb_migrate_finish(p->mm);
  4259. return 0;
  4260. }
  4261. out:
  4262. task_rq_unlock(rq, &flags);
  4263. return ret;
  4264. }
  4265. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4266. /*
  4267. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4268. * this because either it can't run here any more (set_cpus_allowed()
  4269. * away from this CPU, or CPU going down), or because we're
  4270. * attempting to rebalance this task on exec (sched_exec).
  4271. *
  4272. * So we race with normal scheduler movements, but that's OK, as long
  4273. * as the task is no longer on this CPU.
  4274. *
  4275. * Returns non-zero if task was successfully migrated.
  4276. */
  4277. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4278. {
  4279. struct rq *rq_dest, *rq_src;
  4280. int ret = 0, on_rq;
  4281. if (unlikely(cpu_is_offline(dest_cpu)))
  4282. return ret;
  4283. rq_src = cpu_rq(src_cpu);
  4284. rq_dest = cpu_rq(dest_cpu);
  4285. double_rq_lock(rq_src, rq_dest);
  4286. /* Already moved. */
  4287. if (task_cpu(p) != src_cpu)
  4288. goto out;
  4289. /* Affinity changed (again). */
  4290. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4291. goto out;
  4292. on_rq = p->se.on_rq;
  4293. if (on_rq)
  4294. deactivate_task(rq_src, p, 0);
  4295. set_task_cpu(p, dest_cpu);
  4296. if (on_rq) {
  4297. activate_task(rq_dest, p, 0);
  4298. check_preempt_curr(rq_dest, p);
  4299. }
  4300. ret = 1;
  4301. out:
  4302. double_rq_unlock(rq_src, rq_dest);
  4303. return ret;
  4304. }
  4305. /*
  4306. * migration_thread - this is a highprio system thread that performs
  4307. * thread migration by bumping thread off CPU then 'pushing' onto
  4308. * another runqueue.
  4309. */
  4310. static int migration_thread(void *data)
  4311. {
  4312. int cpu = (long)data;
  4313. struct rq *rq;
  4314. rq = cpu_rq(cpu);
  4315. BUG_ON(rq->migration_thread != current);
  4316. set_current_state(TASK_INTERRUPTIBLE);
  4317. while (!kthread_should_stop()) {
  4318. struct migration_req *req;
  4319. struct list_head *head;
  4320. spin_lock_irq(&rq->lock);
  4321. if (cpu_is_offline(cpu)) {
  4322. spin_unlock_irq(&rq->lock);
  4323. goto wait_to_die;
  4324. }
  4325. if (rq->active_balance) {
  4326. active_load_balance(rq, cpu);
  4327. rq->active_balance = 0;
  4328. }
  4329. head = &rq->migration_queue;
  4330. if (list_empty(head)) {
  4331. spin_unlock_irq(&rq->lock);
  4332. schedule();
  4333. set_current_state(TASK_INTERRUPTIBLE);
  4334. continue;
  4335. }
  4336. req = list_entry(head->next, struct migration_req, list);
  4337. list_del_init(head->next);
  4338. spin_unlock(&rq->lock);
  4339. __migrate_task(req->task, cpu, req->dest_cpu);
  4340. local_irq_enable();
  4341. complete(&req->done);
  4342. }
  4343. __set_current_state(TASK_RUNNING);
  4344. return 0;
  4345. wait_to_die:
  4346. /* Wait for kthread_stop */
  4347. set_current_state(TASK_INTERRUPTIBLE);
  4348. while (!kthread_should_stop()) {
  4349. schedule();
  4350. set_current_state(TASK_INTERRUPTIBLE);
  4351. }
  4352. __set_current_state(TASK_RUNNING);
  4353. return 0;
  4354. }
  4355. #ifdef CONFIG_HOTPLUG_CPU
  4356. /*
  4357. * Figure out where task on dead CPU should go, use force if neccessary.
  4358. * NOTE: interrupts should be disabled by the caller
  4359. */
  4360. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4361. {
  4362. unsigned long flags;
  4363. cpumask_t mask;
  4364. struct rq *rq;
  4365. int dest_cpu;
  4366. restart:
  4367. /* On same node? */
  4368. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4369. cpus_and(mask, mask, p->cpus_allowed);
  4370. dest_cpu = any_online_cpu(mask);
  4371. /* On any allowed CPU? */
  4372. if (dest_cpu == NR_CPUS)
  4373. dest_cpu = any_online_cpu(p->cpus_allowed);
  4374. /* No more Mr. Nice Guy. */
  4375. if (dest_cpu == NR_CPUS) {
  4376. rq = task_rq_lock(p, &flags);
  4377. cpus_setall(p->cpus_allowed);
  4378. dest_cpu = any_online_cpu(p->cpus_allowed);
  4379. task_rq_unlock(rq, &flags);
  4380. /*
  4381. * Don't tell them about moving exiting tasks or
  4382. * kernel threads (both mm NULL), since they never
  4383. * leave kernel.
  4384. */
  4385. if (p->mm && printk_ratelimit())
  4386. printk(KERN_INFO "process %d (%s) no "
  4387. "longer affine to cpu%d\n",
  4388. p->pid, p->comm, dead_cpu);
  4389. }
  4390. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4391. goto restart;
  4392. }
  4393. /*
  4394. * While a dead CPU has no uninterruptible tasks queued at this point,
  4395. * it might still have a nonzero ->nr_uninterruptible counter, because
  4396. * for performance reasons the counter is not stricly tracking tasks to
  4397. * their home CPUs. So we just add the counter to another CPU's counter,
  4398. * to keep the global sum constant after CPU-down:
  4399. */
  4400. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4401. {
  4402. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4403. unsigned long flags;
  4404. local_irq_save(flags);
  4405. double_rq_lock(rq_src, rq_dest);
  4406. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4407. rq_src->nr_uninterruptible = 0;
  4408. double_rq_unlock(rq_src, rq_dest);
  4409. local_irq_restore(flags);
  4410. }
  4411. /* Run through task list and migrate tasks from the dead cpu. */
  4412. static void migrate_live_tasks(int src_cpu)
  4413. {
  4414. struct task_struct *p, *t;
  4415. write_lock_irq(&tasklist_lock);
  4416. do_each_thread(t, p) {
  4417. if (p == current)
  4418. continue;
  4419. if (task_cpu(p) == src_cpu)
  4420. move_task_off_dead_cpu(src_cpu, p);
  4421. } while_each_thread(t, p);
  4422. write_unlock_irq(&tasklist_lock);
  4423. }
  4424. /*
  4425. * Schedules idle task to be the next runnable task on current CPU.
  4426. * It does so by boosting its priority to highest possible and adding it to
  4427. * the _front_ of the runqueue. Used by CPU offline code.
  4428. */
  4429. void sched_idle_next(void)
  4430. {
  4431. int this_cpu = smp_processor_id();
  4432. struct rq *rq = cpu_rq(this_cpu);
  4433. struct task_struct *p = rq->idle;
  4434. unsigned long flags;
  4435. /* cpu has to be offline */
  4436. BUG_ON(cpu_online(this_cpu));
  4437. /*
  4438. * Strictly not necessary since rest of the CPUs are stopped by now
  4439. * and interrupts disabled on the current cpu.
  4440. */
  4441. spin_lock_irqsave(&rq->lock, flags);
  4442. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4443. /* Add idle task to the _front_ of its priority queue: */
  4444. activate_idle_task(p, rq);
  4445. spin_unlock_irqrestore(&rq->lock, flags);
  4446. }
  4447. /*
  4448. * Ensures that the idle task is using init_mm right before its cpu goes
  4449. * offline.
  4450. */
  4451. void idle_task_exit(void)
  4452. {
  4453. struct mm_struct *mm = current->active_mm;
  4454. BUG_ON(cpu_online(smp_processor_id()));
  4455. if (mm != &init_mm)
  4456. switch_mm(mm, &init_mm, current);
  4457. mmdrop(mm);
  4458. }
  4459. /* called under rq->lock with disabled interrupts */
  4460. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4461. {
  4462. struct rq *rq = cpu_rq(dead_cpu);
  4463. /* Must be exiting, otherwise would be on tasklist. */
  4464. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4465. /* Cannot have done final schedule yet: would have vanished. */
  4466. BUG_ON(p->state == TASK_DEAD);
  4467. get_task_struct(p);
  4468. /*
  4469. * Drop lock around migration; if someone else moves it,
  4470. * that's OK. No task can be added to this CPU, so iteration is
  4471. * fine.
  4472. * NOTE: interrupts should be left disabled --dev@
  4473. */
  4474. spin_unlock(&rq->lock);
  4475. move_task_off_dead_cpu(dead_cpu, p);
  4476. spin_lock(&rq->lock);
  4477. put_task_struct(p);
  4478. }
  4479. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4480. static void migrate_dead_tasks(unsigned int dead_cpu)
  4481. {
  4482. struct rq *rq = cpu_rq(dead_cpu);
  4483. struct task_struct *next;
  4484. for ( ; ; ) {
  4485. if (!rq->nr_running)
  4486. break;
  4487. update_rq_clock(rq);
  4488. next = pick_next_task(rq, rq->curr);
  4489. if (!next)
  4490. break;
  4491. migrate_dead(dead_cpu, next);
  4492. }
  4493. }
  4494. #endif /* CONFIG_HOTPLUG_CPU */
  4495. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4496. static struct ctl_table sd_ctl_dir[] = {
  4497. {
  4498. .procname = "sched_domain",
  4499. .mode = 0755,
  4500. },
  4501. {0,},
  4502. };
  4503. static struct ctl_table sd_ctl_root[] = {
  4504. {
  4505. .procname = "kernel",
  4506. .mode = 0755,
  4507. .child = sd_ctl_dir,
  4508. },
  4509. {0,},
  4510. };
  4511. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4512. {
  4513. struct ctl_table *entry =
  4514. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4515. BUG_ON(!entry);
  4516. memset(entry, 0, n * sizeof(struct ctl_table));
  4517. return entry;
  4518. }
  4519. static void
  4520. set_table_entry(struct ctl_table *entry,
  4521. const char *procname, void *data, int maxlen,
  4522. mode_t mode, proc_handler *proc_handler)
  4523. {
  4524. entry->procname = procname;
  4525. entry->data = data;
  4526. entry->maxlen = maxlen;
  4527. entry->mode = mode;
  4528. entry->proc_handler = proc_handler;
  4529. }
  4530. static struct ctl_table *
  4531. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4532. {
  4533. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4534. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4535. sizeof(long), 0644, proc_doulongvec_minmax);
  4536. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4537. sizeof(long), 0644, proc_doulongvec_minmax);
  4538. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4539. sizeof(int), 0644, proc_dointvec_minmax);
  4540. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4541. sizeof(int), 0644, proc_dointvec_minmax);
  4542. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4543. sizeof(int), 0644, proc_dointvec_minmax);
  4544. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4545. sizeof(int), 0644, proc_dointvec_minmax);
  4546. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4547. sizeof(int), 0644, proc_dointvec_minmax);
  4548. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4549. sizeof(int), 0644, proc_dointvec_minmax);
  4550. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4551. sizeof(int), 0644, proc_dointvec_minmax);
  4552. set_table_entry(&table[10], "cache_nice_tries",
  4553. &sd->cache_nice_tries,
  4554. sizeof(int), 0644, proc_dointvec_minmax);
  4555. set_table_entry(&table[12], "flags", &sd->flags,
  4556. sizeof(int), 0644, proc_dointvec_minmax);
  4557. return table;
  4558. }
  4559. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4560. {
  4561. struct ctl_table *entry, *table;
  4562. struct sched_domain *sd;
  4563. int domain_num = 0, i;
  4564. char buf[32];
  4565. for_each_domain(cpu, sd)
  4566. domain_num++;
  4567. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4568. i = 0;
  4569. for_each_domain(cpu, sd) {
  4570. snprintf(buf, 32, "domain%d", i);
  4571. entry->procname = kstrdup(buf, GFP_KERNEL);
  4572. entry->mode = 0755;
  4573. entry->child = sd_alloc_ctl_domain_table(sd);
  4574. entry++;
  4575. i++;
  4576. }
  4577. return table;
  4578. }
  4579. static struct ctl_table_header *sd_sysctl_header;
  4580. static void init_sched_domain_sysctl(void)
  4581. {
  4582. int i, cpu_num = num_online_cpus();
  4583. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4584. char buf[32];
  4585. sd_ctl_dir[0].child = entry;
  4586. for (i = 0; i < cpu_num; i++, entry++) {
  4587. snprintf(buf, 32, "cpu%d", i);
  4588. entry->procname = kstrdup(buf, GFP_KERNEL);
  4589. entry->mode = 0755;
  4590. entry->child = sd_alloc_ctl_cpu_table(i);
  4591. }
  4592. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4593. }
  4594. #else
  4595. static void init_sched_domain_sysctl(void)
  4596. {
  4597. }
  4598. #endif
  4599. /*
  4600. * migration_call - callback that gets triggered when a CPU is added.
  4601. * Here we can start up the necessary migration thread for the new CPU.
  4602. */
  4603. static int __cpuinit
  4604. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4605. {
  4606. struct task_struct *p;
  4607. int cpu = (long)hcpu;
  4608. unsigned long flags;
  4609. struct rq *rq;
  4610. switch (action) {
  4611. case CPU_LOCK_ACQUIRE:
  4612. mutex_lock(&sched_hotcpu_mutex);
  4613. break;
  4614. case CPU_UP_PREPARE:
  4615. case CPU_UP_PREPARE_FROZEN:
  4616. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4617. if (IS_ERR(p))
  4618. return NOTIFY_BAD;
  4619. kthread_bind(p, cpu);
  4620. /* Must be high prio: stop_machine expects to yield to it. */
  4621. rq = task_rq_lock(p, &flags);
  4622. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4623. task_rq_unlock(rq, &flags);
  4624. cpu_rq(cpu)->migration_thread = p;
  4625. break;
  4626. case CPU_ONLINE:
  4627. case CPU_ONLINE_FROZEN:
  4628. /* Strictly unneccessary, as first user will wake it. */
  4629. wake_up_process(cpu_rq(cpu)->migration_thread);
  4630. break;
  4631. #ifdef CONFIG_HOTPLUG_CPU
  4632. case CPU_UP_CANCELED:
  4633. case CPU_UP_CANCELED_FROZEN:
  4634. if (!cpu_rq(cpu)->migration_thread)
  4635. break;
  4636. /* Unbind it from offline cpu so it can run. Fall thru. */
  4637. kthread_bind(cpu_rq(cpu)->migration_thread,
  4638. any_online_cpu(cpu_online_map));
  4639. kthread_stop(cpu_rq(cpu)->migration_thread);
  4640. cpu_rq(cpu)->migration_thread = NULL;
  4641. break;
  4642. case CPU_DEAD:
  4643. case CPU_DEAD_FROZEN:
  4644. migrate_live_tasks(cpu);
  4645. rq = cpu_rq(cpu);
  4646. kthread_stop(rq->migration_thread);
  4647. rq->migration_thread = NULL;
  4648. /* Idle task back to normal (off runqueue, low prio) */
  4649. rq = task_rq_lock(rq->idle, &flags);
  4650. update_rq_clock(rq);
  4651. deactivate_task(rq, rq->idle, 0);
  4652. rq->idle->static_prio = MAX_PRIO;
  4653. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4654. rq->idle->sched_class = &idle_sched_class;
  4655. migrate_dead_tasks(cpu);
  4656. task_rq_unlock(rq, &flags);
  4657. migrate_nr_uninterruptible(rq);
  4658. BUG_ON(rq->nr_running != 0);
  4659. /* No need to migrate the tasks: it was best-effort if
  4660. * they didn't take sched_hotcpu_mutex. Just wake up
  4661. * the requestors. */
  4662. spin_lock_irq(&rq->lock);
  4663. while (!list_empty(&rq->migration_queue)) {
  4664. struct migration_req *req;
  4665. req = list_entry(rq->migration_queue.next,
  4666. struct migration_req, list);
  4667. list_del_init(&req->list);
  4668. complete(&req->done);
  4669. }
  4670. spin_unlock_irq(&rq->lock);
  4671. break;
  4672. #endif
  4673. case CPU_LOCK_RELEASE:
  4674. mutex_unlock(&sched_hotcpu_mutex);
  4675. break;
  4676. }
  4677. return NOTIFY_OK;
  4678. }
  4679. /* Register at highest priority so that task migration (migrate_all_tasks)
  4680. * happens before everything else.
  4681. */
  4682. static struct notifier_block __cpuinitdata migration_notifier = {
  4683. .notifier_call = migration_call,
  4684. .priority = 10
  4685. };
  4686. int __init migration_init(void)
  4687. {
  4688. void *cpu = (void *)(long)smp_processor_id();
  4689. int err;
  4690. /* Start one for the boot CPU: */
  4691. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4692. BUG_ON(err == NOTIFY_BAD);
  4693. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4694. register_cpu_notifier(&migration_notifier);
  4695. return 0;
  4696. }
  4697. #endif
  4698. #ifdef CONFIG_SMP
  4699. /* Number of possible processor ids */
  4700. int nr_cpu_ids __read_mostly = NR_CPUS;
  4701. EXPORT_SYMBOL(nr_cpu_ids);
  4702. #undef SCHED_DOMAIN_DEBUG
  4703. #ifdef SCHED_DOMAIN_DEBUG
  4704. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4705. {
  4706. int level = 0;
  4707. if (!sd) {
  4708. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4709. return;
  4710. }
  4711. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4712. do {
  4713. int i;
  4714. char str[NR_CPUS];
  4715. struct sched_group *group = sd->groups;
  4716. cpumask_t groupmask;
  4717. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4718. cpus_clear(groupmask);
  4719. printk(KERN_DEBUG);
  4720. for (i = 0; i < level + 1; i++)
  4721. printk(" ");
  4722. printk("domain %d: ", level);
  4723. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4724. printk("does not load-balance\n");
  4725. if (sd->parent)
  4726. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4727. " has parent");
  4728. break;
  4729. }
  4730. printk("span %s\n", str);
  4731. if (!cpu_isset(cpu, sd->span))
  4732. printk(KERN_ERR "ERROR: domain->span does not contain "
  4733. "CPU%d\n", cpu);
  4734. if (!cpu_isset(cpu, group->cpumask))
  4735. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4736. " CPU%d\n", cpu);
  4737. printk(KERN_DEBUG);
  4738. for (i = 0; i < level + 2; i++)
  4739. printk(" ");
  4740. printk("groups:");
  4741. do {
  4742. if (!group) {
  4743. printk("\n");
  4744. printk(KERN_ERR "ERROR: group is NULL\n");
  4745. break;
  4746. }
  4747. if (!group->__cpu_power) {
  4748. printk("\n");
  4749. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4750. "set\n");
  4751. }
  4752. if (!cpus_weight(group->cpumask)) {
  4753. printk("\n");
  4754. printk(KERN_ERR "ERROR: empty group\n");
  4755. }
  4756. if (cpus_intersects(groupmask, group->cpumask)) {
  4757. printk("\n");
  4758. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4759. }
  4760. cpus_or(groupmask, groupmask, group->cpumask);
  4761. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4762. printk(" %s", str);
  4763. group = group->next;
  4764. } while (group != sd->groups);
  4765. printk("\n");
  4766. if (!cpus_equal(sd->span, groupmask))
  4767. printk(KERN_ERR "ERROR: groups don't span "
  4768. "domain->span\n");
  4769. level++;
  4770. sd = sd->parent;
  4771. if (!sd)
  4772. continue;
  4773. if (!cpus_subset(groupmask, sd->span))
  4774. printk(KERN_ERR "ERROR: parent span is not a superset "
  4775. "of domain->span\n");
  4776. } while (sd);
  4777. }
  4778. #else
  4779. # define sched_domain_debug(sd, cpu) do { } while (0)
  4780. #endif
  4781. static int sd_degenerate(struct sched_domain *sd)
  4782. {
  4783. if (cpus_weight(sd->span) == 1)
  4784. return 1;
  4785. /* Following flags need at least 2 groups */
  4786. if (sd->flags & (SD_LOAD_BALANCE |
  4787. SD_BALANCE_NEWIDLE |
  4788. SD_BALANCE_FORK |
  4789. SD_BALANCE_EXEC |
  4790. SD_SHARE_CPUPOWER |
  4791. SD_SHARE_PKG_RESOURCES)) {
  4792. if (sd->groups != sd->groups->next)
  4793. return 0;
  4794. }
  4795. /* Following flags don't use groups */
  4796. if (sd->flags & (SD_WAKE_IDLE |
  4797. SD_WAKE_AFFINE |
  4798. SD_WAKE_BALANCE))
  4799. return 0;
  4800. return 1;
  4801. }
  4802. static int
  4803. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4804. {
  4805. unsigned long cflags = sd->flags, pflags = parent->flags;
  4806. if (sd_degenerate(parent))
  4807. return 1;
  4808. if (!cpus_equal(sd->span, parent->span))
  4809. return 0;
  4810. /* Does parent contain flags not in child? */
  4811. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4812. if (cflags & SD_WAKE_AFFINE)
  4813. pflags &= ~SD_WAKE_BALANCE;
  4814. /* Flags needing groups don't count if only 1 group in parent */
  4815. if (parent->groups == parent->groups->next) {
  4816. pflags &= ~(SD_LOAD_BALANCE |
  4817. SD_BALANCE_NEWIDLE |
  4818. SD_BALANCE_FORK |
  4819. SD_BALANCE_EXEC |
  4820. SD_SHARE_CPUPOWER |
  4821. SD_SHARE_PKG_RESOURCES);
  4822. }
  4823. if (~cflags & pflags)
  4824. return 0;
  4825. return 1;
  4826. }
  4827. /*
  4828. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4829. * hold the hotplug lock.
  4830. */
  4831. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4832. {
  4833. struct rq *rq = cpu_rq(cpu);
  4834. struct sched_domain *tmp;
  4835. /* Remove the sched domains which do not contribute to scheduling. */
  4836. for (tmp = sd; tmp; tmp = tmp->parent) {
  4837. struct sched_domain *parent = tmp->parent;
  4838. if (!parent)
  4839. break;
  4840. if (sd_parent_degenerate(tmp, parent)) {
  4841. tmp->parent = parent->parent;
  4842. if (parent->parent)
  4843. parent->parent->child = tmp;
  4844. }
  4845. }
  4846. if (sd && sd_degenerate(sd)) {
  4847. sd = sd->parent;
  4848. if (sd)
  4849. sd->child = NULL;
  4850. }
  4851. sched_domain_debug(sd, cpu);
  4852. rcu_assign_pointer(rq->sd, sd);
  4853. }
  4854. /* cpus with isolated domains */
  4855. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4856. /* Setup the mask of cpus configured for isolated domains */
  4857. static int __init isolated_cpu_setup(char *str)
  4858. {
  4859. int ints[NR_CPUS], i;
  4860. str = get_options(str, ARRAY_SIZE(ints), ints);
  4861. cpus_clear(cpu_isolated_map);
  4862. for (i = 1; i <= ints[0]; i++)
  4863. if (ints[i] < NR_CPUS)
  4864. cpu_set(ints[i], cpu_isolated_map);
  4865. return 1;
  4866. }
  4867. __setup ("isolcpus=", isolated_cpu_setup);
  4868. /*
  4869. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4870. * to a function which identifies what group(along with sched group) a CPU
  4871. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4872. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4873. *
  4874. * init_sched_build_groups will build a circular linked list of the groups
  4875. * covered by the given span, and will set each group's ->cpumask correctly,
  4876. * and ->cpu_power to 0.
  4877. */
  4878. static void
  4879. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4880. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4881. struct sched_group **sg))
  4882. {
  4883. struct sched_group *first = NULL, *last = NULL;
  4884. cpumask_t covered = CPU_MASK_NONE;
  4885. int i;
  4886. for_each_cpu_mask(i, span) {
  4887. struct sched_group *sg;
  4888. int group = group_fn(i, cpu_map, &sg);
  4889. int j;
  4890. if (cpu_isset(i, covered))
  4891. continue;
  4892. sg->cpumask = CPU_MASK_NONE;
  4893. sg->__cpu_power = 0;
  4894. for_each_cpu_mask(j, span) {
  4895. if (group_fn(j, cpu_map, NULL) != group)
  4896. continue;
  4897. cpu_set(j, covered);
  4898. cpu_set(j, sg->cpumask);
  4899. }
  4900. if (!first)
  4901. first = sg;
  4902. if (last)
  4903. last->next = sg;
  4904. last = sg;
  4905. }
  4906. last->next = first;
  4907. }
  4908. #define SD_NODES_PER_DOMAIN 16
  4909. #ifdef CONFIG_NUMA
  4910. /**
  4911. * find_next_best_node - find the next node to include in a sched_domain
  4912. * @node: node whose sched_domain we're building
  4913. * @used_nodes: nodes already in the sched_domain
  4914. *
  4915. * Find the next node to include in a given scheduling domain. Simply
  4916. * finds the closest node not already in the @used_nodes map.
  4917. *
  4918. * Should use nodemask_t.
  4919. */
  4920. static int find_next_best_node(int node, unsigned long *used_nodes)
  4921. {
  4922. int i, n, val, min_val, best_node = 0;
  4923. min_val = INT_MAX;
  4924. for (i = 0; i < MAX_NUMNODES; i++) {
  4925. /* Start at @node */
  4926. n = (node + i) % MAX_NUMNODES;
  4927. if (!nr_cpus_node(n))
  4928. continue;
  4929. /* Skip already used nodes */
  4930. if (test_bit(n, used_nodes))
  4931. continue;
  4932. /* Simple min distance search */
  4933. val = node_distance(node, n);
  4934. if (val < min_val) {
  4935. min_val = val;
  4936. best_node = n;
  4937. }
  4938. }
  4939. set_bit(best_node, used_nodes);
  4940. return best_node;
  4941. }
  4942. /**
  4943. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4944. * @node: node whose cpumask we're constructing
  4945. * @size: number of nodes to include in this span
  4946. *
  4947. * Given a node, construct a good cpumask for its sched_domain to span. It
  4948. * should be one that prevents unnecessary balancing, but also spreads tasks
  4949. * out optimally.
  4950. */
  4951. static cpumask_t sched_domain_node_span(int node)
  4952. {
  4953. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4954. cpumask_t span, nodemask;
  4955. int i;
  4956. cpus_clear(span);
  4957. bitmap_zero(used_nodes, MAX_NUMNODES);
  4958. nodemask = node_to_cpumask(node);
  4959. cpus_or(span, span, nodemask);
  4960. set_bit(node, used_nodes);
  4961. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4962. int next_node = find_next_best_node(node, used_nodes);
  4963. nodemask = node_to_cpumask(next_node);
  4964. cpus_or(span, span, nodemask);
  4965. }
  4966. return span;
  4967. }
  4968. #endif
  4969. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4970. /*
  4971. * SMT sched-domains:
  4972. */
  4973. #ifdef CONFIG_SCHED_SMT
  4974. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4975. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4976. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4977. struct sched_group **sg)
  4978. {
  4979. if (sg)
  4980. *sg = &per_cpu(sched_group_cpus, cpu);
  4981. return cpu;
  4982. }
  4983. #endif
  4984. /*
  4985. * multi-core sched-domains:
  4986. */
  4987. #ifdef CONFIG_SCHED_MC
  4988. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  4989. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  4990. #endif
  4991. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  4992. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4993. struct sched_group **sg)
  4994. {
  4995. int group;
  4996. cpumask_t mask = cpu_sibling_map[cpu];
  4997. cpus_and(mask, mask, *cpu_map);
  4998. group = first_cpu(mask);
  4999. if (sg)
  5000. *sg = &per_cpu(sched_group_core, group);
  5001. return group;
  5002. }
  5003. #elif defined(CONFIG_SCHED_MC)
  5004. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5005. struct sched_group **sg)
  5006. {
  5007. if (sg)
  5008. *sg = &per_cpu(sched_group_core, cpu);
  5009. return cpu;
  5010. }
  5011. #endif
  5012. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5013. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5014. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5015. struct sched_group **sg)
  5016. {
  5017. int group;
  5018. #ifdef CONFIG_SCHED_MC
  5019. cpumask_t mask = cpu_coregroup_map(cpu);
  5020. cpus_and(mask, mask, *cpu_map);
  5021. group = first_cpu(mask);
  5022. #elif defined(CONFIG_SCHED_SMT)
  5023. cpumask_t mask = cpu_sibling_map[cpu];
  5024. cpus_and(mask, mask, *cpu_map);
  5025. group = first_cpu(mask);
  5026. #else
  5027. group = cpu;
  5028. #endif
  5029. if (sg)
  5030. *sg = &per_cpu(sched_group_phys, group);
  5031. return group;
  5032. }
  5033. #ifdef CONFIG_NUMA
  5034. /*
  5035. * The init_sched_build_groups can't handle what we want to do with node
  5036. * groups, so roll our own. Now each node has its own list of groups which
  5037. * gets dynamically allocated.
  5038. */
  5039. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5040. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5041. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5042. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5043. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5044. struct sched_group **sg)
  5045. {
  5046. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5047. int group;
  5048. cpus_and(nodemask, nodemask, *cpu_map);
  5049. group = first_cpu(nodemask);
  5050. if (sg)
  5051. *sg = &per_cpu(sched_group_allnodes, group);
  5052. return group;
  5053. }
  5054. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5055. {
  5056. struct sched_group *sg = group_head;
  5057. int j;
  5058. if (!sg)
  5059. return;
  5060. next_sg:
  5061. for_each_cpu_mask(j, sg->cpumask) {
  5062. struct sched_domain *sd;
  5063. sd = &per_cpu(phys_domains, j);
  5064. if (j != first_cpu(sd->groups->cpumask)) {
  5065. /*
  5066. * Only add "power" once for each
  5067. * physical package.
  5068. */
  5069. continue;
  5070. }
  5071. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5072. }
  5073. sg = sg->next;
  5074. if (sg != group_head)
  5075. goto next_sg;
  5076. }
  5077. #endif
  5078. #ifdef CONFIG_NUMA
  5079. /* Free memory allocated for various sched_group structures */
  5080. static void free_sched_groups(const cpumask_t *cpu_map)
  5081. {
  5082. int cpu, i;
  5083. for_each_cpu_mask(cpu, *cpu_map) {
  5084. struct sched_group **sched_group_nodes
  5085. = sched_group_nodes_bycpu[cpu];
  5086. if (!sched_group_nodes)
  5087. continue;
  5088. for (i = 0; i < MAX_NUMNODES; i++) {
  5089. cpumask_t nodemask = node_to_cpumask(i);
  5090. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5091. cpus_and(nodemask, nodemask, *cpu_map);
  5092. if (cpus_empty(nodemask))
  5093. continue;
  5094. if (sg == NULL)
  5095. continue;
  5096. sg = sg->next;
  5097. next_sg:
  5098. oldsg = sg;
  5099. sg = sg->next;
  5100. kfree(oldsg);
  5101. if (oldsg != sched_group_nodes[i])
  5102. goto next_sg;
  5103. }
  5104. kfree(sched_group_nodes);
  5105. sched_group_nodes_bycpu[cpu] = NULL;
  5106. }
  5107. }
  5108. #else
  5109. static void free_sched_groups(const cpumask_t *cpu_map)
  5110. {
  5111. }
  5112. #endif
  5113. /*
  5114. * Initialize sched groups cpu_power.
  5115. *
  5116. * cpu_power indicates the capacity of sched group, which is used while
  5117. * distributing the load between different sched groups in a sched domain.
  5118. * Typically cpu_power for all the groups in a sched domain will be same unless
  5119. * there are asymmetries in the topology. If there are asymmetries, group
  5120. * having more cpu_power will pickup more load compared to the group having
  5121. * less cpu_power.
  5122. *
  5123. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5124. * the maximum number of tasks a group can handle in the presence of other idle
  5125. * or lightly loaded groups in the same sched domain.
  5126. */
  5127. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5128. {
  5129. struct sched_domain *child;
  5130. struct sched_group *group;
  5131. WARN_ON(!sd || !sd->groups);
  5132. if (cpu != first_cpu(sd->groups->cpumask))
  5133. return;
  5134. child = sd->child;
  5135. sd->groups->__cpu_power = 0;
  5136. /*
  5137. * For perf policy, if the groups in child domain share resources
  5138. * (for example cores sharing some portions of the cache hierarchy
  5139. * or SMT), then set this domain groups cpu_power such that each group
  5140. * can handle only one task, when there are other idle groups in the
  5141. * same sched domain.
  5142. */
  5143. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5144. (child->flags &
  5145. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5146. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5147. return;
  5148. }
  5149. /*
  5150. * add cpu_power of each child group to this groups cpu_power
  5151. */
  5152. group = child->groups;
  5153. do {
  5154. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5155. group = group->next;
  5156. } while (group != child->groups);
  5157. }
  5158. /*
  5159. * Build sched domains for a given set of cpus and attach the sched domains
  5160. * to the individual cpus
  5161. */
  5162. static int build_sched_domains(const cpumask_t *cpu_map)
  5163. {
  5164. int i;
  5165. #ifdef CONFIG_NUMA
  5166. struct sched_group **sched_group_nodes = NULL;
  5167. int sd_allnodes = 0;
  5168. /*
  5169. * Allocate the per-node list of sched groups
  5170. */
  5171. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5172. GFP_KERNEL);
  5173. if (!sched_group_nodes) {
  5174. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5175. return -ENOMEM;
  5176. }
  5177. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5178. #endif
  5179. /*
  5180. * Set up domains for cpus specified by the cpu_map.
  5181. */
  5182. for_each_cpu_mask(i, *cpu_map) {
  5183. struct sched_domain *sd = NULL, *p;
  5184. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5185. cpus_and(nodemask, nodemask, *cpu_map);
  5186. #ifdef CONFIG_NUMA
  5187. if (cpus_weight(*cpu_map) >
  5188. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5189. sd = &per_cpu(allnodes_domains, i);
  5190. *sd = SD_ALLNODES_INIT;
  5191. sd->span = *cpu_map;
  5192. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5193. p = sd;
  5194. sd_allnodes = 1;
  5195. } else
  5196. p = NULL;
  5197. sd = &per_cpu(node_domains, i);
  5198. *sd = SD_NODE_INIT;
  5199. sd->span = sched_domain_node_span(cpu_to_node(i));
  5200. sd->parent = p;
  5201. if (p)
  5202. p->child = sd;
  5203. cpus_and(sd->span, sd->span, *cpu_map);
  5204. #endif
  5205. p = sd;
  5206. sd = &per_cpu(phys_domains, i);
  5207. *sd = SD_CPU_INIT;
  5208. sd->span = nodemask;
  5209. sd->parent = p;
  5210. if (p)
  5211. p->child = sd;
  5212. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5213. #ifdef CONFIG_SCHED_MC
  5214. p = sd;
  5215. sd = &per_cpu(core_domains, i);
  5216. *sd = SD_MC_INIT;
  5217. sd->span = cpu_coregroup_map(i);
  5218. cpus_and(sd->span, sd->span, *cpu_map);
  5219. sd->parent = p;
  5220. p->child = sd;
  5221. cpu_to_core_group(i, cpu_map, &sd->groups);
  5222. #endif
  5223. #ifdef CONFIG_SCHED_SMT
  5224. p = sd;
  5225. sd = &per_cpu(cpu_domains, i);
  5226. *sd = SD_SIBLING_INIT;
  5227. sd->span = cpu_sibling_map[i];
  5228. cpus_and(sd->span, sd->span, *cpu_map);
  5229. sd->parent = p;
  5230. p->child = sd;
  5231. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5232. #endif
  5233. }
  5234. #ifdef CONFIG_SCHED_SMT
  5235. /* Set up CPU (sibling) groups */
  5236. for_each_cpu_mask(i, *cpu_map) {
  5237. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5238. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5239. if (i != first_cpu(this_sibling_map))
  5240. continue;
  5241. init_sched_build_groups(this_sibling_map, cpu_map,
  5242. &cpu_to_cpu_group);
  5243. }
  5244. #endif
  5245. #ifdef CONFIG_SCHED_MC
  5246. /* Set up multi-core groups */
  5247. for_each_cpu_mask(i, *cpu_map) {
  5248. cpumask_t this_core_map = cpu_coregroup_map(i);
  5249. cpus_and(this_core_map, this_core_map, *cpu_map);
  5250. if (i != first_cpu(this_core_map))
  5251. continue;
  5252. init_sched_build_groups(this_core_map, cpu_map,
  5253. &cpu_to_core_group);
  5254. }
  5255. #endif
  5256. /* Set up physical groups */
  5257. for (i = 0; i < MAX_NUMNODES; i++) {
  5258. cpumask_t nodemask = node_to_cpumask(i);
  5259. cpus_and(nodemask, nodemask, *cpu_map);
  5260. if (cpus_empty(nodemask))
  5261. continue;
  5262. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5263. }
  5264. #ifdef CONFIG_NUMA
  5265. /* Set up node groups */
  5266. if (sd_allnodes)
  5267. init_sched_build_groups(*cpu_map, cpu_map,
  5268. &cpu_to_allnodes_group);
  5269. for (i = 0; i < MAX_NUMNODES; i++) {
  5270. /* Set up node groups */
  5271. struct sched_group *sg, *prev;
  5272. cpumask_t nodemask = node_to_cpumask(i);
  5273. cpumask_t domainspan;
  5274. cpumask_t covered = CPU_MASK_NONE;
  5275. int j;
  5276. cpus_and(nodemask, nodemask, *cpu_map);
  5277. if (cpus_empty(nodemask)) {
  5278. sched_group_nodes[i] = NULL;
  5279. continue;
  5280. }
  5281. domainspan = sched_domain_node_span(i);
  5282. cpus_and(domainspan, domainspan, *cpu_map);
  5283. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5284. if (!sg) {
  5285. printk(KERN_WARNING "Can not alloc domain group for "
  5286. "node %d\n", i);
  5287. goto error;
  5288. }
  5289. sched_group_nodes[i] = sg;
  5290. for_each_cpu_mask(j, nodemask) {
  5291. struct sched_domain *sd;
  5292. sd = &per_cpu(node_domains, j);
  5293. sd->groups = sg;
  5294. }
  5295. sg->__cpu_power = 0;
  5296. sg->cpumask = nodemask;
  5297. sg->next = sg;
  5298. cpus_or(covered, covered, nodemask);
  5299. prev = sg;
  5300. for (j = 0; j < MAX_NUMNODES; j++) {
  5301. cpumask_t tmp, notcovered;
  5302. int n = (i + j) % MAX_NUMNODES;
  5303. cpus_complement(notcovered, covered);
  5304. cpus_and(tmp, notcovered, *cpu_map);
  5305. cpus_and(tmp, tmp, domainspan);
  5306. if (cpus_empty(tmp))
  5307. break;
  5308. nodemask = node_to_cpumask(n);
  5309. cpus_and(tmp, tmp, nodemask);
  5310. if (cpus_empty(tmp))
  5311. continue;
  5312. sg = kmalloc_node(sizeof(struct sched_group),
  5313. GFP_KERNEL, i);
  5314. if (!sg) {
  5315. printk(KERN_WARNING
  5316. "Can not alloc domain group for node %d\n", j);
  5317. goto error;
  5318. }
  5319. sg->__cpu_power = 0;
  5320. sg->cpumask = tmp;
  5321. sg->next = prev->next;
  5322. cpus_or(covered, covered, tmp);
  5323. prev->next = sg;
  5324. prev = sg;
  5325. }
  5326. }
  5327. #endif
  5328. /* Calculate CPU power for physical packages and nodes */
  5329. #ifdef CONFIG_SCHED_SMT
  5330. for_each_cpu_mask(i, *cpu_map) {
  5331. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5332. init_sched_groups_power(i, sd);
  5333. }
  5334. #endif
  5335. #ifdef CONFIG_SCHED_MC
  5336. for_each_cpu_mask(i, *cpu_map) {
  5337. struct sched_domain *sd = &per_cpu(core_domains, i);
  5338. init_sched_groups_power(i, sd);
  5339. }
  5340. #endif
  5341. for_each_cpu_mask(i, *cpu_map) {
  5342. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5343. init_sched_groups_power(i, sd);
  5344. }
  5345. #ifdef CONFIG_NUMA
  5346. for (i = 0; i < MAX_NUMNODES; i++)
  5347. init_numa_sched_groups_power(sched_group_nodes[i]);
  5348. if (sd_allnodes) {
  5349. struct sched_group *sg;
  5350. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5351. init_numa_sched_groups_power(sg);
  5352. }
  5353. #endif
  5354. /* Attach the domains */
  5355. for_each_cpu_mask(i, *cpu_map) {
  5356. struct sched_domain *sd;
  5357. #ifdef CONFIG_SCHED_SMT
  5358. sd = &per_cpu(cpu_domains, i);
  5359. #elif defined(CONFIG_SCHED_MC)
  5360. sd = &per_cpu(core_domains, i);
  5361. #else
  5362. sd = &per_cpu(phys_domains, i);
  5363. #endif
  5364. cpu_attach_domain(sd, i);
  5365. }
  5366. return 0;
  5367. #ifdef CONFIG_NUMA
  5368. error:
  5369. free_sched_groups(cpu_map);
  5370. return -ENOMEM;
  5371. #endif
  5372. }
  5373. /*
  5374. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5375. */
  5376. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5377. {
  5378. cpumask_t cpu_default_map;
  5379. int err;
  5380. /*
  5381. * Setup mask for cpus without special case scheduling requirements.
  5382. * For now this just excludes isolated cpus, but could be used to
  5383. * exclude other special cases in the future.
  5384. */
  5385. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5386. err = build_sched_domains(&cpu_default_map);
  5387. return err;
  5388. }
  5389. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5390. {
  5391. free_sched_groups(cpu_map);
  5392. }
  5393. /*
  5394. * Detach sched domains from a group of cpus specified in cpu_map
  5395. * These cpus will now be attached to the NULL domain
  5396. */
  5397. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5398. {
  5399. int i;
  5400. for_each_cpu_mask(i, *cpu_map)
  5401. cpu_attach_domain(NULL, i);
  5402. synchronize_sched();
  5403. arch_destroy_sched_domains(cpu_map);
  5404. }
  5405. /*
  5406. * Partition sched domains as specified by the cpumasks below.
  5407. * This attaches all cpus from the cpumasks to the NULL domain,
  5408. * waits for a RCU quiescent period, recalculates sched
  5409. * domain information and then attaches them back to the
  5410. * correct sched domains
  5411. * Call with hotplug lock held
  5412. */
  5413. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5414. {
  5415. cpumask_t change_map;
  5416. int err = 0;
  5417. cpus_and(*partition1, *partition1, cpu_online_map);
  5418. cpus_and(*partition2, *partition2, cpu_online_map);
  5419. cpus_or(change_map, *partition1, *partition2);
  5420. /* Detach sched domains from all of the affected cpus */
  5421. detach_destroy_domains(&change_map);
  5422. if (!cpus_empty(*partition1))
  5423. err = build_sched_domains(partition1);
  5424. if (!err && !cpus_empty(*partition2))
  5425. err = build_sched_domains(partition2);
  5426. return err;
  5427. }
  5428. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5429. int arch_reinit_sched_domains(void)
  5430. {
  5431. int err;
  5432. mutex_lock(&sched_hotcpu_mutex);
  5433. detach_destroy_domains(&cpu_online_map);
  5434. err = arch_init_sched_domains(&cpu_online_map);
  5435. mutex_unlock(&sched_hotcpu_mutex);
  5436. return err;
  5437. }
  5438. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5439. {
  5440. int ret;
  5441. if (buf[0] != '0' && buf[0] != '1')
  5442. return -EINVAL;
  5443. if (smt)
  5444. sched_smt_power_savings = (buf[0] == '1');
  5445. else
  5446. sched_mc_power_savings = (buf[0] == '1');
  5447. ret = arch_reinit_sched_domains();
  5448. return ret ? ret : count;
  5449. }
  5450. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5451. {
  5452. int err = 0;
  5453. #ifdef CONFIG_SCHED_SMT
  5454. if (smt_capable())
  5455. err = sysfs_create_file(&cls->kset.kobj,
  5456. &attr_sched_smt_power_savings.attr);
  5457. #endif
  5458. #ifdef CONFIG_SCHED_MC
  5459. if (!err && mc_capable())
  5460. err = sysfs_create_file(&cls->kset.kobj,
  5461. &attr_sched_mc_power_savings.attr);
  5462. #endif
  5463. return err;
  5464. }
  5465. #endif
  5466. #ifdef CONFIG_SCHED_MC
  5467. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5468. {
  5469. return sprintf(page, "%u\n", sched_mc_power_savings);
  5470. }
  5471. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5472. const char *buf, size_t count)
  5473. {
  5474. return sched_power_savings_store(buf, count, 0);
  5475. }
  5476. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5477. sched_mc_power_savings_store);
  5478. #endif
  5479. #ifdef CONFIG_SCHED_SMT
  5480. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5481. {
  5482. return sprintf(page, "%u\n", sched_smt_power_savings);
  5483. }
  5484. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5485. const char *buf, size_t count)
  5486. {
  5487. return sched_power_savings_store(buf, count, 1);
  5488. }
  5489. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5490. sched_smt_power_savings_store);
  5491. #endif
  5492. /*
  5493. * Force a reinitialization of the sched domains hierarchy. The domains
  5494. * and groups cannot be updated in place without racing with the balancing
  5495. * code, so we temporarily attach all running cpus to the NULL domain
  5496. * which will prevent rebalancing while the sched domains are recalculated.
  5497. */
  5498. static int update_sched_domains(struct notifier_block *nfb,
  5499. unsigned long action, void *hcpu)
  5500. {
  5501. switch (action) {
  5502. case CPU_UP_PREPARE:
  5503. case CPU_UP_PREPARE_FROZEN:
  5504. case CPU_DOWN_PREPARE:
  5505. case CPU_DOWN_PREPARE_FROZEN:
  5506. detach_destroy_domains(&cpu_online_map);
  5507. return NOTIFY_OK;
  5508. case CPU_UP_CANCELED:
  5509. case CPU_UP_CANCELED_FROZEN:
  5510. case CPU_DOWN_FAILED:
  5511. case CPU_DOWN_FAILED_FROZEN:
  5512. case CPU_ONLINE:
  5513. case CPU_ONLINE_FROZEN:
  5514. case CPU_DEAD:
  5515. case CPU_DEAD_FROZEN:
  5516. /*
  5517. * Fall through and re-initialise the domains.
  5518. */
  5519. break;
  5520. default:
  5521. return NOTIFY_DONE;
  5522. }
  5523. /* The hotplug lock is already held by cpu_up/cpu_down */
  5524. arch_init_sched_domains(&cpu_online_map);
  5525. return NOTIFY_OK;
  5526. }
  5527. void __init sched_init_smp(void)
  5528. {
  5529. cpumask_t non_isolated_cpus;
  5530. mutex_lock(&sched_hotcpu_mutex);
  5531. arch_init_sched_domains(&cpu_online_map);
  5532. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5533. if (cpus_empty(non_isolated_cpus))
  5534. cpu_set(smp_processor_id(), non_isolated_cpus);
  5535. mutex_unlock(&sched_hotcpu_mutex);
  5536. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5537. hotcpu_notifier(update_sched_domains, 0);
  5538. init_sched_domain_sysctl();
  5539. /* Move init over to a non-isolated CPU */
  5540. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5541. BUG();
  5542. sched_init_granularity();
  5543. }
  5544. #else
  5545. void __init sched_init_smp(void)
  5546. {
  5547. sched_init_granularity();
  5548. }
  5549. #endif /* CONFIG_SMP */
  5550. int in_sched_functions(unsigned long addr)
  5551. {
  5552. /* Linker adds these: start and end of __sched functions */
  5553. extern char __sched_text_start[], __sched_text_end[];
  5554. return in_lock_functions(addr) ||
  5555. (addr >= (unsigned long)__sched_text_start
  5556. && addr < (unsigned long)__sched_text_end);
  5557. }
  5558. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5559. {
  5560. cfs_rq->tasks_timeline = RB_ROOT;
  5561. cfs_rq->fair_clock = 1;
  5562. #ifdef CONFIG_FAIR_GROUP_SCHED
  5563. cfs_rq->rq = rq;
  5564. #endif
  5565. }
  5566. void __init sched_init(void)
  5567. {
  5568. u64 now = sched_clock();
  5569. int highest_cpu = 0;
  5570. int i, j;
  5571. /*
  5572. * Link up the scheduling class hierarchy:
  5573. */
  5574. rt_sched_class.next = &fair_sched_class;
  5575. fair_sched_class.next = &idle_sched_class;
  5576. idle_sched_class.next = NULL;
  5577. for_each_possible_cpu(i) {
  5578. struct rt_prio_array *array;
  5579. struct rq *rq;
  5580. rq = cpu_rq(i);
  5581. spin_lock_init(&rq->lock);
  5582. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5583. rq->nr_running = 0;
  5584. rq->clock = 1;
  5585. init_cfs_rq(&rq->cfs, rq);
  5586. #ifdef CONFIG_FAIR_GROUP_SCHED
  5587. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5588. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5589. #endif
  5590. rq->ls.load_update_last = now;
  5591. rq->ls.load_update_start = now;
  5592. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5593. rq->cpu_load[j] = 0;
  5594. #ifdef CONFIG_SMP
  5595. rq->sd = NULL;
  5596. rq->active_balance = 0;
  5597. rq->next_balance = jiffies;
  5598. rq->push_cpu = 0;
  5599. rq->cpu = i;
  5600. rq->migration_thread = NULL;
  5601. INIT_LIST_HEAD(&rq->migration_queue);
  5602. #endif
  5603. atomic_set(&rq->nr_iowait, 0);
  5604. array = &rq->rt.active;
  5605. for (j = 0; j < MAX_RT_PRIO; j++) {
  5606. INIT_LIST_HEAD(array->queue + j);
  5607. __clear_bit(j, array->bitmap);
  5608. }
  5609. highest_cpu = i;
  5610. /* delimiter for bitsearch: */
  5611. __set_bit(MAX_RT_PRIO, array->bitmap);
  5612. }
  5613. set_load_weight(&init_task);
  5614. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5615. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5616. #endif
  5617. #ifdef CONFIG_SMP
  5618. nr_cpu_ids = highest_cpu + 1;
  5619. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5620. #endif
  5621. #ifdef CONFIG_RT_MUTEXES
  5622. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5623. #endif
  5624. /*
  5625. * The boot idle thread does lazy MMU switching as well:
  5626. */
  5627. atomic_inc(&init_mm.mm_count);
  5628. enter_lazy_tlb(&init_mm, current);
  5629. /*
  5630. * Make us the idle thread. Technically, schedule() should not be
  5631. * called from this thread, however somewhere below it might be,
  5632. * but because we are the idle thread, we just pick up running again
  5633. * when this runqueue becomes "idle".
  5634. */
  5635. init_idle(current, smp_processor_id());
  5636. /*
  5637. * During early bootup we pretend to be a normal task:
  5638. */
  5639. current->sched_class = &fair_sched_class;
  5640. }
  5641. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5642. void __might_sleep(char *file, int line)
  5643. {
  5644. #ifdef in_atomic
  5645. static unsigned long prev_jiffy; /* ratelimiting */
  5646. if ((in_atomic() || irqs_disabled()) &&
  5647. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5648. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5649. return;
  5650. prev_jiffy = jiffies;
  5651. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5652. " context at %s:%d\n", file, line);
  5653. printk("in_atomic():%d, irqs_disabled():%d\n",
  5654. in_atomic(), irqs_disabled());
  5655. debug_show_held_locks(current);
  5656. if (irqs_disabled())
  5657. print_irqtrace_events(current);
  5658. dump_stack();
  5659. }
  5660. #endif
  5661. }
  5662. EXPORT_SYMBOL(__might_sleep);
  5663. #endif
  5664. #ifdef CONFIG_MAGIC_SYSRQ
  5665. void normalize_rt_tasks(void)
  5666. {
  5667. struct task_struct *g, *p;
  5668. unsigned long flags;
  5669. struct rq *rq;
  5670. int on_rq;
  5671. read_lock_irq(&tasklist_lock);
  5672. do_each_thread(g, p) {
  5673. p->se.fair_key = 0;
  5674. p->se.wait_runtime = 0;
  5675. p->se.exec_start = 0;
  5676. p->se.wait_start_fair = 0;
  5677. p->se.sleep_start_fair = 0;
  5678. #ifdef CONFIG_SCHEDSTATS
  5679. p->se.wait_start = 0;
  5680. p->se.sleep_start = 0;
  5681. p->se.block_start = 0;
  5682. #endif
  5683. task_rq(p)->cfs.fair_clock = 0;
  5684. task_rq(p)->clock = 0;
  5685. if (!rt_task(p)) {
  5686. /*
  5687. * Renice negative nice level userspace
  5688. * tasks back to 0:
  5689. */
  5690. if (TASK_NICE(p) < 0 && p->mm)
  5691. set_user_nice(p, 0);
  5692. continue;
  5693. }
  5694. spin_lock_irqsave(&p->pi_lock, flags);
  5695. rq = __task_rq_lock(p);
  5696. #ifdef CONFIG_SMP
  5697. /*
  5698. * Do not touch the migration thread:
  5699. */
  5700. if (p == rq->migration_thread)
  5701. goto out_unlock;
  5702. #endif
  5703. update_rq_clock(rq);
  5704. on_rq = p->se.on_rq;
  5705. if (on_rq)
  5706. deactivate_task(rq, p, 0);
  5707. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5708. if (on_rq) {
  5709. activate_task(rq, p, 0);
  5710. resched_task(rq->curr);
  5711. }
  5712. #ifdef CONFIG_SMP
  5713. out_unlock:
  5714. #endif
  5715. __task_rq_unlock(rq);
  5716. spin_unlock_irqrestore(&p->pi_lock, flags);
  5717. } while_each_thread(g, p);
  5718. read_unlock_irq(&tasklist_lock);
  5719. }
  5720. #endif /* CONFIG_MAGIC_SYSRQ */
  5721. #ifdef CONFIG_IA64
  5722. /*
  5723. * These functions are only useful for the IA64 MCA handling.
  5724. *
  5725. * They can only be called when the whole system has been
  5726. * stopped - every CPU needs to be quiescent, and no scheduling
  5727. * activity can take place. Using them for anything else would
  5728. * be a serious bug, and as a result, they aren't even visible
  5729. * under any other configuration.
  5730. */
  5731. /**
  5732. * curr_task - return the current task for a given cpu.
  5733. * @cpu: the processor in question.
  5734. *
  5735. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5736. */
  5737. struct task_struct *curr_task(int cpu)
  5738. {
  5739. return cpu_curr(cpu);
  5740. }
  5741. /**
  5742. * set_curr_task - set the current task for a given cpu.
  5743. * @cpu: the processor in question.
  5744. * @p: the task pointer to set.
  5745. *
  5746. * Description: This function must only be used when non-maskable interrupts
  5747. * are serviced on a separate stack. It allows the architecture to switch the
  5748. * notion of the current task on a cpu in a non-blocking manner. This function
  5749. * must be called with all CPU's synchronized, and interrupts disabled, the
  5750. * and caller must save the original value of the current task (see
  5751. * curr_task() above) and restore that value before reenabling interrupts and
  5752. * re-starting the system.
  5753. *
  5754. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5755. */
  5756. void set_curr_task(int cpu, struct task_struct *p)
  5757. {
  5758. cpu_curr(cpu) = p;
  5759. }
  5760. #endif