mmu.c 86 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "mmu.h"
  21. #include "x86.h"
  22. #include "kvm_cache_regs.h"
  23. #include <linux/kvm_host.h>
  24. #include <linux/types.h>
  25. #include <linux/string.h>
  26. #include <linux/mm.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/swap.h>
  30. #include <linux/hugetlb.h>
  31. #include <linux/compiler.h>
  32. #include <linux/srcu.h>
  33. #include <linux/slab.h>
  34. #include <linux/uaccess.h>
  35. #include <asm/page.h>
  36. #include <asm/cmpxchg.h>
  37. #include <asm/io.h>
  38. #include <asm/vmx.h>
  39. /*
  40. * When setting this variable to true it enables Two-Dimensional-Paging
  41. * where the hardware walks 2 page tables:
  42. * 1. the guest-virtual to guest-physical
  43. * 2. while doing 1. it walks guest-physical to host-physical
  44. * If the hardware supports that we don't need to do shadow paging.
  45. */
  46. bool tdp_enabled = false;
  47. #undef MMU_DEBUG
  48. #undef AUDIT
  49. #ifdef AUDIT
  50. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  51. #else
  52. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  53. #endif
  54. #ifdef MMU_DEBUG
  55. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  56. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  57. #else
  58. #define pgprintk(x...) do { } while (0)
  59. #define rmap_printk(x...) do { } while (0)
  60. #endif
  61. #if defined(MMU_DEBUG) || defined(AUDIT)
  62. static int dbg = 0;
  63. module_param(dbg, bool, 0644);
  64. #endif
  65. static int oos_shadow = 1;
  66. module_param(oos_shadow, bool, 0644);
  67. #ifndef MMU_DEBUG
  68. #define ASSERT(x) do { } while (0)
  69. #else
  70. #define ASSERT(x) \
  71. if (!(x)) { \
  72. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  73. __FILE__, __LINE__, #x); \
  74. }
  75. #endif
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define PT64_LEVEL_BITS 9
  79. #define PT64_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  81. #define PT64_LEVEL_MASK(level) \
  82. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LEVEL_MASK(level) \
  89. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  90. #define PT32_LVL_OFFSET_MASK(level) \
  91. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  92. * PT32_LEVEL_BITS))) - 1))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT64_LVL_ADDR_MASK(level) \
  99. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT64_LEVEL_BITS))) - 1))
  101. #define PT64_LVL_OFFSET_MASK(level) \
  102. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  103. * PT64_LEVEL_BITS))) - 1))
  104. #define PT32_BASE_ADDR_MASK PAGE_MASK
  105. #define PT32_DIR_BASE_ADDR_MASK \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  107. #define PT32_LVL_ADDR_MASK(level) \
  108. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT32_LEVEL_BITS))) - 1))
  110. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  111. | PT64_NX_MASK)
  112. #define RMAP_EXT 4
  113. #define ACC_EXEC_MASK 1
  114. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  115. #define ACC_USER_MASK PT_USER_MASK
  116. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  117. #include <trace/events/kvm.h>
  118. #define CREATE_TRACE_POINTS
  119. #include "mmutrace.h"
  120. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  121. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  122. struct kvm_rmap_desc {
  123. u64 *sptes[RMAP_EXT];
  124. struct kvm_rmap_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. int level;
  130. u64 *sptep;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
  138. static struct kmem_cache *pte_chain_cache;
  139. static struct kmem_cache *rmap_desc_cache;
  140. static struct kmem_cache *mmu_page_header_cache;
  141. static u64 __read_mostly shadow_trap_nonpresent_pte;
  142. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  143. static u64 __read_mostly shadow_base_present_pte;
  144. static u64 __read_mostly shadow_nx_mask;
  145. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  146. static u64 __read_mostly shadow_user_mask;
  147. static u64 __read_mostly shadow_accessed_mask;
  148. static u64 __read_mostly shadow_dirty_mask;
  149. static inline u64 rsvd_bits(int s, int e)
  150. {
  151. return ((1ULL << (e - s + 1)) - 1) << s;
  152. }
  153. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  154. {
  155. shadow_trap_nonpresent_pte = trap_pte;
  156. shadow_notrap_nonpresent_pte = notrap_pte;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  159. void kvm_mmu_set_base_ptes(u64 base_pte)
  160. {
  161. shadow_base_present_pte = base_pte;
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  164. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  165. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  166. {
  167. shadow_user_mask = user_mask;
  168. shadow_accessed_mask = accessed_mask;
  169. shadow_dirty_mask = dirty_mask;
  170. shadow_nx_mask = nx_mask;
  171. shadow_x_mask = x_mask;
  172. }
  173. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  174. static bool is_write_protection(struct kvm_vcpu *vcpu)
  175. {
  176. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  177. }
  178. static int is_cpuid_PSE36(void)
  179. {
  180. return 1;
  181. }
  182. static int is_nx(struct kvm_vcpu *vcpu)
  183. {
  184. return vcpu->arch.efer & EFER_NX;
  185. }
  186. static int is_shadow_present_pte(u64 pte)
  187. {
  188. return pte != shadow_trap_nonpresent_pte
  189. && pte != shadow_notrap_nonpresent_pte;
  190. }
  191. static int is_large_pte(u64 pte)
  192. {
  193. return pte & PT_PAGE_SIZE_MASK;
  194. }
  195. static int is_writable_pte(unsigned long pte)
  196. {
  197. return pte & PT_WRITABLE_MASK;
  198. }
  199. static int is_dirty_gpte(unsigned long pte)
  200. {
  201. return pte & PT_DIRTY_MASK;
  202. }
  203. static int is_rmap_spte(u64 pte)
  204. {
  205. return is_shadow_present_pte(pte);
  206. }
  207. static int is_last_spte(u64 pte, int level)
  208. {
  209. if (level == PT_PAGE_TABLE_LEVEL)
  210. return 1;
  211. if (is_large_pte(pte))
  212. return 1;
  213. return 0;
  214. }
  215. static pfn_t spte_to_pfn(u64 pte)
  216. {
  217. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  218. }
  219. static gfn_t pse36_gfn_delta(u32 gpte)
  220. {
  221. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  222. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  223. }
  224. static void __set_spte(u64 *sptep, u64 spte)
  225. {
  226. set_64bit(sptep, spte);
  227. }
  228. static u64 __xchg_spte(u64 *sptep, u64 new_spte)
  229. {
  230. #ifdef CONFIG_X86_64
  231. return xchg(sptep, new_spte);
  232. #else
  233. u64 old_spte;
  234. do {
  235. old_spte = *sptep;
  236. } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
  237. return old_spte;
  238. #endif
  239. }
  240. static void update_spte(u64 *sptep, u64 new_spte)
  241. {
  242. u64 old_spte;
  243. if (!shadow_accessed_mask || (new_spte & shadow_accessed_mask) ||
  244. !is_rmap_spte(*sptep))
  245. __set_spte(sptep, new_spte);
  246. else {
  247. old_spte = __xchg_spte(sptep, new_spte);
  248. if (old_spte & shadow_accessed_mask)
  249. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  250. }
  251. }
  252. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  253. struct kmem_cache *base_cache, int min)
  254. {
  255. void *obj;
  256. if (cache->nobjs >= min)
  257. return 0;
  258. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  259. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  260. if (!obj)
  261. return -ENOMEM;
  262. cache->objects[cache->nobjs++] = obj;
  263. }
  264. return 0;
  265. }
  266. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  267. struct kmem_cache *cache)
  268. {
  269. while (mc->nobjs)
  270. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  271. }
  272. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  273. int min)
  274. {
  275. struct page *page;
  276. if (cache->nobjs >= min)
  277. return 0;
  278. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  279. page = alloc_page(GFP_KERNEL);
  280. if (!page)
  281. return -ENOMEM;
  282. cache->objects[cache->nobjs++] = page_address(page);
  283. }
  284. return 0;
  285. }
  286. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  287. {
  288. while (mc->nobjs)
  289. free_page((unsigned long)mc->objects[--mc->nobjs]);
  290. }
  291. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  292. {
  293. int r;
  294. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  295. pte_chain_cache, 4);
  296. if (r)
  297. goto out;
  298. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  299. rmap_desc_cache, 4);
  300. if (r)
  301. goto out;
  302. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  303. if (r)
  304. goto out;
  305. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  306. mmu_page_header_cache, 4);
  307. out:
  308. return r;
  309. }
  310. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  311. {
  312. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  313. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  314. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  315. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  316. mmu_page_header_cache);
  317. }
  318. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  319. size_t size)
  320. {
  321. void *p;
  322. BUG_ON(!mc->nobjs);
  323. p = mc->objects[--mc->nobjs];
  324. return p;
  325. }
  326. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  327. {
  328. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  329. sizeof(struct kvm_pte_chain));
  330. }
  331. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  332. {
  333. kmem_cache_free(pte_chain_cache, pc);
  334. }
  335. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  336. {
  337. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  338. sizeof(struct kvm_rmap_desc));
  339. }
  340. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  341. {
  342. kmem_cache_free(rmap_desc_cache, rd);
  343. }
  344. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  345. {
  346. if (!sp->role.direct)
  347. return sp->gfns[index];
  348. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  349. }
  350. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  351. {
  352. if (sp->role.direct)
  353. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  354. else
  355. sp->gfns[index] = gfn;
  356. }
  357. /*
  358. * Return the pointer to the largepage write count for a given
  359. * gfn, handling slots that are not large page aligned.
  360. */
  361. static int *slot_largepage_idx(gfn_t gfn,
  362. struct kvm_memory_slot *slot,
  363. int level)
  364. {
  365. unsigned long idx;
  366. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  367. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  368. return &slot->lpage_info[level - 2][idx].write_count;
  369. }
  370. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  371. {
  372. struct kvm_memory_slot *slot;
  373. int *write_count;
  374. int i;
  375. slot = gfn_to_memslot(kvm, gfn);
  376. for (i = PT_DIRECTORY_LEVEL;
  377. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  378. write_count = slot_largepage_idx(gfn, slot, i);
  379. *write_count += 1;
  380. }
  381. }
  382. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  383. {
  384. struct kvm_memory_slot *slot;
  385. int *write_count;
  386. int i;
  387. slot = gfn_to_memslot(kvm, gfn);
  388. for (i = PT_DIRECTORY_LEVEL;
  389. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  390. write_count = slot_largepage_idx(gfn, slot, i);
  391. *write_count -= 1;
  392. WARN_ON(*write_count < 0);
  393. }
  394. }
  395. static int has_wrprotected_page(struct kvm *kvm,
  396. gfn_t gfn,
  397. int level)
  398. {
  399. struct kvm_memory_slot *slot;
  400. int *largepage_idx;
  401. slot = gfn_to_memslot(kvm, gfn);
  402. if (slot) {
  403. largepage_idx = slot_largepage_idx(gfn, slot, level);
  404. return *largepage_idx;
  405. }
  406. return 1;
  407. }
  408. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  409. {
  410. unsigned long page_size;
  411. int i, ret = 0;
  412. page_size = kvm_host_page_size(kvm, gfn);
  413. for (i = PT_PAGE_TABLE_LEVEL;
  414. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  415. if (page_size >= KVM_HPAGE_SIZE(i))
  416. ret = i;
  417. else
  418. break;
  419. }
  420. return ret;
  421. }
  422. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  423. {
  424. struct kvm_memory_slot *slot;
  425. int host_level, level, max_level;
  426. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  427. if (slot && slot->dirty_bitmap)
  428. return PT_PAGE_TABLE_LEVEL;
  429. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  430. if (host_level == PT_PAGE_TABLE_LEVEL)
  431. return host_level;
  432. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  433. kvm_x86_ops->get_lpage_level() : host_level;
  434. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  435. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  436. break;
  437. return level - 1;
  438. }
  439. /*
  440. * Take gfn and return the reverse mapping to it.
  441. */
  442. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  443. {
  444. struct kvm_memory_slot *slot;
  445. unsigned long idx;
  446. slot = gfn_to_memslot(kvm, gfn);
  447. if (likely(level == PT_PAGE_TABLE_LEVEL))
  448. return &slot->rmap[gfn - slot->base_gfn];
  449. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  450. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  451. return &slot->lpage_info[level - 2][idx].rmap_pde;
  452. }
  453. /*
  454. * Reverse mapping data structures:
  455. *
  456. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  457. * that points to page_address(page).
  458. *
  459. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  460. * containing more mappings.
  461. *
  462. * Returns the number of rmap entries before the spte was added or zero if
  463. * the spte was not added.
  464. *
  465. */
  466. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  467. {
  468. struct kvm_mmu_page *sp;
  469. struct kvm_rmap_desc *desc;
  470. unsigned long *rmapp;
  471. int i, count = 0;
  472. if (!is_rmap_spte(*spte))
  473. return count;
  474. sp = page_header(__pa(spte));
  475. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  476. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  477. if (!*rmapp) {
  478. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  479. *rmapp = (unsigned long)spte;
  480. } else if (!(*rmapp & 1)) {
  481. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  482. desc = mmu_alloc_rmap_desc(vcpu);
  483. desc->sptes[0] = (u64 *)*rmapp;
  484. desc->sptes[1] = spte;
  485. *rmapp = (unsigned long)desc | 1;
  486. } else {
  487. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  488. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  489. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  490. desc = desc->more;
  491. count += RMAP_EXT;
  492. }
  493. if (desc->sptes[RMAP_EXT-1]) {
  494. desc->more = mmu_alloc_rmap_desc(vcpu);
  495. desc = desc->more;
  496. }
  497. for (i = 0; desc->sptes[i]; ++i)
  498. ;
  499. desc->sptes[i] = spte;
  500. }
  501. return count;
  502. }
  503. static void rmap_desc_remove_entry(unsigned long *rmapp,
  504. struct kvm_rmap_desc *desc,
  505. int i,
  506. struct kvm_rmap_desc *prev_desc)
  507. {
  508. int j;
  509. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  510. ;
  511. desc->sptes[i] = desc->sptes[j];
  512. desc->sptes[j] = NULL;
  513. if (j != 0)
  514. return;
  515. if (!prev_desc && !desc->more)
  516. *rmapp = (unsigned long)desc->sptes[0];
  517. else
  518. if (prev_desc)
  519. prev_desc->more = desc->more;
  520. else
  521. *rmapp = (unsigned long)desc->more | 1;
  522. mmu_free_rmap_desc(desc);
  523. }
  524. static void rmap_remove(struct kvm *kvm, u64 *spte)
  525. {
  526. struct kvm_rmap_desc *desc;
  527. struct kvm_rmap_desc *prev_desc;
  528. struct kvm_mmu_page *sp;
  529. gfn_t gfn;
  530. unsigned long *rmapp;
  531. int i;
  532. sp = page_header(__pa(spte));
  533. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  534. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  535. if (!*rmapp) {
  536. printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
  537. BUG();
  538. } else if (!(*rmapp & 1)) {
  539. rmap_printk("rmap_remove: %p 1->0\n", spte);
  540. if ((u64 *)*rmapp != spte) {
  541. printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
  542. BUG();
  543. }
  544. *rmapp = 0;
  545. } else {
  546. rmap_printk("rmap_remove: %p many->many\n", spte);
  547. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  548. prev_desc = NULL;
  549. while (desc) {
  550. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  551. if (desc->sptes[i] == spte) {
  552. rmap_desc_remove_entry(rmapp,
  553. desc, i,
  554. prev_desc);
  555. return;
  556. }
  557. prev_desc = desc;
  558. desc = desc->more;
  559. }
  560. pr_err("rmap_remove: %p many->many\n", spte);
  561. BUG();
  562. }
  563. }
  564. static void set_spte_track_bits(u64 *sptep, u64 new_spte)
  565. {
  566. pfn_t pfn;
  567. u64 old_spte = *sptep;
  568. if (!shadow_accessed_mask || !is_shadow_present_pte(old_spte) ||
  569. old_spte & shadow_accessed_mask) {
  570. __set_spte(sptep, new_spte);
  571. } else
  572. old_spte = __xchg_spte(sptep, new_spte);
  573. if (!is_rmap_spte(old_spte))
  574. return;
  575. pfn = spte_to_pfn(old_spte);
  576. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  577. kvm_set_pfn_accessed(pfn);
  578. if (is_writable_pte(old_spte))
  579. kvm_set_pfn_dirty(pfn);
  580. }
  581. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  582. {
  583. set_spte_track_bits(sptep, new_spte);
  584. rmap_remove(kvm, sptep);
  585. }
  586. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  587. {
  588. struct kvm_rmap_desc *desc;
  589. u64 *prev_spte;
  590. int i;
  591. if (!*rmapp)
  592. return NULL;
  593. else if (!(*rmapp & 1)) {
  594. if (!spte)
  595. return (u64 *)*rmapp;
  596. return NULL;
  597. }
  598. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  599. prev_spte = NULL;
  600. while (desc) {
  601. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  602. if (prev_spte == spte)
  603. return desc->sptes[i];
  604. prev_spte = desc->sptes[i];
  605. }
  606. desc = desc->more;
  607. }
  608. return NULL;
  609. }
  610. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  611. {
  612. unsigned long *rmapp;
  613. u64 *spte;
  614. int i, write_protected = 0;
  615. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  616. spte = rmap_next(kvm, rmapp, NULL);
  617. while (spte) {
  618. BUG_ON(!spte);
  619. BUG_ON(!(*spte & PT_PRESENT_MASK));
  620. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  621. if (is_writable_pte(*spte)) {
  622. update_spte(spte, *spte & ~PT_WRITABLE_MASK);
  623. write_protected = 1;
  624. }
  625. spte = rmap_next(kvm, rmapp, spte);
  626. }
  627. if (write_protected) {
  628. pfn_t pfn;
  629. spte = rmap_next(kvm, rmapp, NULL);
  630. pfn = spte_to_pfn(*spte);
  631. kvm_set_pfn_dirty(pfn);
  632. }
  633. /* check for huge page mappings */
  634. for (i = PT_DIRECTORY_LEVEL;
  635. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  636. rmapp = gfn_to_rmap(kvm, gfn, i);
  637. spte = rmap_next(kvm, rmapp, NULL);
  638. while (spte) {
  639. BUG_ON(!spte);
  640. BUG_ON(!(*spte & PT_PRESENT_MASK));
  641. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  642. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  643. if (is_writable_pte(*spte)) {
  644. drop_spte(kvm, spte,
  645. shadow_trap_nonpresent_pte);
  646. --kvm->stat.lpages;
  647. spte = NULL;
  648. write_protected = 1;
  649. }
  650. spte = rmap_next(kvm, rmapp, spte);
  651. }
  652. }
  653. return write_protected;
  654. }
  655. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  656. unsigned long data)
  657. {
  658. u64 *spte;
  659. int need_tlb_flush = 0;
  660. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  661. BUG_ON(!(*spte & PT_PRESENT_MASK));
  662. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  663. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  664. need_tlb_flush = 1;
  665. }
  666. return need_tlb_flush;
  667. }
  668. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  669. unsigned long data)
  670. {
  671. int need_flush = 0;
  672. u64 *spte, new_spte;
  673. pte_t *ptep = (pte_t *)data;
  674. pfn_t new_pfn;
  675. WARN_ON(pte_huge(*ptep));
  676. new_pfn = pte_pfn(*ptep);
  677. spte = rmap_next(kvm, rmapp, NULL);
  678. while (spte) {
  679. BUG_ON(!is_shadow_present_pte(*spte));
  680. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  681. need_flush = 1;
  682. if (pte_write(*ptep)) {
  683. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  684. spte = rmap_next(kvm, rmapp, NULL);
  685. } else {
  686. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  687. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  688. new_spte &= ~PT_WRITABLE_MASK;
  689. new_spte &= ~SPTE_HOST_WRITEABLE;
  690. new_spte &= ~shadow_accessed_mask;
  691. set_spte_track_bits(spte, new_spte);
  692. spte = rmap_next(kvm, rmapp, spte);
  693. }
  694. }
  695. if (need_flush)
  696. kvm_flush_remote_tlbs(kvm);
  697. return 0;
  698. }
  699. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  700. unsigned long data,
  701. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  702. unsigned long data))
  703. {
  704. int i, j;
  705. int ret;
  706. int retval = 0;
  707. struct kvm_memslots *slots;
  708. slots = kvm_memslots(kvm);
  709. for (i = 0; i < slots->nmemslots; i++) {
  710. struct kvm_memory_slot *memslot = &slots->memslots[i];
  711. unsigned long start = memslot->userspace_addr;
  712. unsigned long end;
  713. end = start + (memslot->npages << PAGE_SHIFT);
  714. if (hva >= start && hva < end) {
  715. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  716. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  717. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  718. unsigned long idx;
  719. int sh;
  720. sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j);
  721. idx = ((memslot->base_gfn+gfn_offset) >> sh) -
  722. (memslot->base_gfn >> sh);
  723. ret |= handler(kvm,
  724. &memslot->lpage_info[j][idx].rmap_pde,
  725. data);
  726. }
  727. trace_kvm_age_page(hva, memslot, ret);
  728. retval |= ret;
  729. }
  730. }
  731. return retval;
  732. }
  733. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  734. {
  735. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  736. }
  737. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  738. {
  739. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  740. }
  741. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  742. unsigned long data)
  743. {
  744. u64 *spte;
  745. int young = 0;
  746. /*
  747. * Emulate the accessed bit for EPT, by checking if this page has
  748. * an EPT mapping, and clearing it if it does. On the next access,
  749. * a new EPT mapping will be established.
  750. * This has some overhead, but not as much as the cost of swapping
  751. * out actively used pages or breaking up actively used hugepages.
  752. */
  753. if (!shadow_accessed_mask)
  754. return kvm_unmap_rmapp(kvm, rmapp, data);
  755. spte = rmap_next(kvm, rmapp, NULL);
  756. while (spte) {
  757. int _young;
  758. u64 _spte = *spte;
  759. BUG_ON(!(_spte & PT_PRESENT_MASK));
  760. _young = _spte & PT_ACCESSED_MASK;
  761. if (_young) {
  762. young = 1;
  763. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  764. }
  765. spte = rmap_next(kvm, rmapp, spte);
  766. }
  767. return young;
  768. }
  769. #define RMAP_RECYCLE_THRESHOLD 1000
  770. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  771. {
  772. unsigned long *rmapp;
  773. struct kvm_mmu_page *sp;
  774. sp = page_header(__pa(spte));
  775. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  776. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  777. kvm_flush_remote_tlbs(vcpu->kvm);
  778. }
  779. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  780. {
  781. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  782. }
  783. #ifdef MMU_DEBUG
  784. static int is_empty_shadow_page(u64 *spt)
  785. {
  786. u64 *pos;
  787. u64 *end;
  788. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  789. if (is_shadow_present_pte(*pos)) {
  790. printk(KERN_ERR "%s: %p %llx\n", __func__,
  791. pos, *pos);
  792. return 0;
  793. }
  794. return 1;
  795. }
  796. #endif
  797. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  798. {
  799. ASSERT(is_empty_shadow_page(sp->spt));
  800. hlist_del(&sp->hash_link);
  801. list_del(&sp->link);
  802. __free_page(virt_to_page(sp->spt));
  803. if (!sp->role.direct)
  804. __free_page(virt_to_page(sp->gfns));
  805. kmem_cache_free(mmu_page_header_cache, sp);
  806. ++kvm->arch.n_free_mmu_pages;
  807. }
  808. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  809. {
  810. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  811. }
  812. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  813. u64 *parent_pte, int direct)
  814. {
  815. struct kvm_mmu_page *sp;
  816. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  817. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  818. if (!direct)
  819. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  820. PAGE_SIZE);
  821. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  822. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  823. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  824. sp->multimapped = 0;
  825. sp->parent_pte = parent_pte;
  826. --vcpu->kvm->arch.n_free_mmu_pages;
  827. return sp;
  828. }
  829. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  830. struct kvm_mmu_page *sp, u64 *parent_pte)
  831. {
  832. struct kvm_pte_chain *pte_chain;
  833. struct hlist_node *node;
  834. int i;
  835. if (!parent_pte)
  836. return;
  837. if (!sp->multimapped) {
  838. u64 *old = sp->parent_pte;
  839. if (!old) {
  840. sp->parent_pte = parent_pte;
  841. return;
  842. }
  843. sp->multimapped = 1;
  844. pte_chain = mmu_alloc_pte_chain(vcpu);
  845. INIT_HLIST_HEAD(&sp->parent_ptes);
  846. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  847. pte_chain->parent_ptes[0] = old;
  848. }
  849. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  850. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  851. continue;
  852. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  853. if (!pte_chain->parent_ptes[i]) {
  854. pte_chain->parent_ptes[i] = parent_pte;
  855. return;
  856. }
  857. }
  858. pte_chain = mmu_alloc_pte_chain(vcpu);
  859. BUG_ON(!pte_chain);
  860. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  861. pte_chain->parent_ptes[0] = parent_pte;
  862. }
  863. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  864. u64 *parent_pte)
  865. {
  866. struct kvm_pte_chain *pte_chain;
  867. struct hlist_node *node;
  868. int i;
  869. if (!sp->multimapped) {
  870. BUG_ON(sp->parent_pte != parent_pte);
  871. sp->parent_pte = NULL;
  872. return;
  873. }
  874. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  875. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  876. if (!pte_chain->parent_ptes[i])
  877. break;
  878. if (pte_chain->parent_ptes[i] != parent_pte)
  879. continue;
  880. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  881. && pte_chain->parent_ptes[i + 1]) {
  882. pte_chain->parent_ptes[i]
  883. = pte_chain->parent_ptes[i + 1];
  884. ++i;
  885. }
  886. pte_chain->parent_ptes[i] = NULL;
  887. if (i == 0) {
  888. hlist_del(&pte_chain->link);
  889. mmu_free_pte_chain(pte_chain);
  890. if (hlist_empty(&sp->parent_ptes)) {
  891. sp->multimapped = 0;
  892. sp->parent_pte = NULL;
  893. }
  894. }
  895. return;
  896. }
  897. BUG();
  898. }
  899. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  900. {
  901. struct kvm_pte_chain *pte_chain;
  902. struct hlist_node *node;
  903. struct kvm_mmu_page *parent_sp;
  904. int i;
  905. if (!sp->multimapped && sp->parent_pte) {
  906. parent_sp = page_header(__pa(sp->parent_pte));
  907. fn(parent_sp, sp->parent_pte);
  908. return;
  909. }
  910. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  911. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  912. u64 *spte = pte_chain->parent_ptes[i];
  913. if (!spte)
  914. break;
  915. parent_sp = page_header(__pa(spte));
  916. fn(parent_sp, spte);
  917. }
  918. }
  919. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
  920. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  921. {
  922. mmu_parent_walk(sp, mark_unsync);
  923. }
  924. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
  925. {
  926. unsigned int index;
  927. index = spte - sp->spt;
  928. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  929. return;
  930. if (sp->unsync_children++)
  931. return;
  932. kvm_mmu_mark_parents_unsync(sp);
  933. }
  934. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  935. struct kvm_mmu_page *sp)
  936. {
  937. int i;
  938. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  939. sp->spt[i] = shadow_trap_nonpresent_pte;
  940. }
  941. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  942. struct kvm_mmu_page *sp, bool clear_unsync)
  943. {
  944. return 1;
  945. }
  946. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  947. {
  948. }
  949. #define KVM_PAGE_ARRAY_NR 16
  950. struct kvm_mmu_pages {
  951. struct mmu_page_and_offset {
  952. struct kvm_mmu_page *sp;
  953. unsigned int idx;
  954. } page[KVM_PAGE_ARRAY_NR];
  955. unsigned int nr;
  956. };
  957. #define for_each_unsync_children(bitmap, idx) \
  958. for (idx = find_first_bit(bitmap, 512); \
  959. idx < 512; \
  960. idx = find_next_bit(bitmap, 512, idx+1))
  961. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  962. int idx)
  963. {
  964. int i;
  965. if (sp->unsync)
  966. for (i=0; i < pvec->nr; i++)
  967. if (pvec->page[i].sp == sp)
  968. return 0;
  969. pvec->page[pvec->nr].sp = sp;
  970. pvec->page[pvec->nr].idx = idx;
  971. pvec->nr++;
  972. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  973. }
  974. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  975. struct kvm_mmu_pages *pvec)
  976. {
  977. int i, ret, nr_unsync_leaf = 0;
  978. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  979. struct kvm_mmu_page *child;
  980. u64 ent = sp->spt[i];
  981. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  982. goto clear_child_bitmap;
  983. child = page_header(ent & PT64_BASE_ADDR_MASK);
  984. if (child->unsync_children) {
  985. if (mmu_pages_add(pvec, child, i))
  986. return -ENOSPC;
  987. ret = __mmu_unsync_walk(child, pvec);
  988. if (!ret)
  989. goto clear_child_bitmap;
  990. else if (ret > 0)
  991. nr_unsync_leaf += ret;
  992. else
  993. return ret;
  994. } else if (child->unsync) {
  995. nr_unsync_leaf++;
  996. if (mmu_pages_add(pvec, child, i))
  997. return -ENOSPC;
  998. } else
  999. goto clear_child_bitmap;
  1000. continue;
  1001. clear_child_bitmap:
  1002. __clear_bit(i, sp->unsync_child_bitmap);
  1003. sp->unsync_children--;
  1004. WARN_ON((int)sp->unsync_children < 0);
  1005. }
  1006. return nr_unsync_leaf;
  1007. }
  1008. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1009. struct kvm_mmu_pages *pvec)
  1010. {
  1011. if (!sp->unsync_children)
  1012. return 0;
  1013. mmu_pages_add(pvec, sp, 0);
  1014. return __mmu_unsync_walk(sp, pvec);
  1015. }
  1016. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1017. {
  1018. WARN_ON(!sp->unsync);
  1019. trace_kvm_mmu_sync_page(sp);
  1020. sp->unsync = 0;
  1021. --kvm->stat.mmu_unsync;
  1022. }
  1023. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1024. struct list_head *invalid_list);
  1025. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1026. struct list_head *invalid_list);
  1027. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1028. hlist_for_each_entry(sp, pos, \
  1029. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1030. if ((sp)->gfn != (gfn)) {} else
  1031. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1032. hlist_for_each_entry(sp, pos, \
  1033. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1034. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1035. (sp)->role.invalid) {} else
  1036. /* @sp->gfn should be write-protected at the call site */
  1037. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1038. struct list_head *invalid_list, bool clear_unsync)
  1039. {
  1040. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1041. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1042. return 1;
  1043. }
  1044. if (clear_unsync)
  1045. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1046. if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
  1047. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1048. return 1;
  1049. }
  1050. kvm_mmu_flush_tlb(vcpu);
  1051. return 0;
  1052. }
  1053. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1054. struct kvm_mmu_page *sp)
  1055. {
  1056. LIST_HEAD(invalid_list);
  1057. int ret;
  1058. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1059. if (ret)
  1060. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1061. return ret;
  1062. }
  1063. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1064. struct list_head *invalid_list)
  1065. {
  1066. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1067. }
  1068. /* @gfn should be write-protected at the call site */
  1069. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1070. {
  1071. struct kvm_mmu_page *s;
  1072. struct hlist_node *node;
  1073. LIST_HEAD(invalid_list);
  1074. bool flush = false;
  1075. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1076. if (!s->unsync)
  1077. continue;
  1078. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1079. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1080. (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
  1081. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1082. continue;
  1083. }
  1084. kvm_unlink_unsync_page(vcpu->kvm, s);
  1085. flush = true;
  1086. }
  1087. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1088. if (flush)
  1089. kvm_mmu_flush_tlb(vcpu);
  1090. }
  1091. struct mmu_page_path {
  1092. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1093. unsigned int idx[PT64_ROOT_LEVEL-1];
  1094. };
  1095. #define for_each_sp(pvec, sp, parents, i) \
  1096. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1097. sp = pvec.page[i].sp; \
  1098. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1099. i = mmu_pages_next(&pvec, &parents, i))
  1100. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1101. struct mmu_page_path *parents,
  1102. int i)
  1103. {
  1104. int n;
  1105. for (n = i+1; n < pvec->nr; n++) {
  1106. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1107. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1108. parents->idx[0] = pvec->page[n].idx;
  1109. return n;
  1110. }
  1111. parents->parent[sp->role.level-2] = sp;
  1112. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1113. }
  1114. return n;
  1115. }
  1116. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1117. {
  1118. struct kvm_mmu_page *sp;
  1119. unsigned int level = 0;
  1120. do {
  1121. unsigned int idx = parents->idx[level];
  1122. sp = parents->parent[level];
  1123. if (!sp)
  1124. return;
  1125. --sp->unsync_children;
  1126. WARN_ON((int)sp->unsync_children < 0);
  1127. __clear_bit(idx, sp->unsync_child_bitmap);
  1128. level++;
  1129. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1130. }
  1131. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1132. struct mmu_page_path *parents,
  1133. struct kvm_mmu_pages *pvec)
  1134. {
  1135. parents->parent[parent->role.level-1] = NULL;
  1136. pvec->nr = 0;
  1137. }
  1138. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1139. struct kvm_mmu_page *parent)
  1140. {
  1141. int i;
  1142. struct kvm_mmu_page *sp;
  1143. struct mmu_page_path parents;
  1144. struct kvm_mmu_pages pages;
  1145. LIST_HEAD(invalid_list);
  1146. kvm_mmu_pages_init(parent, &parents, &pages);
  1147. while (mmu_unsync_walk(parent, &pages)) {
  1148. int protected = 0;
  1149. for_each_sp(pages, sp, parents, i)
  1150. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1151. if (protected)
  1152. kvm_flush_remote_tlbs(vcpu->kvm);
  1153. for_each_sp(pages, sp, parents, i) {
  1154. kvm_sync_page(vcpu, sp, &invalid_list);
  1155. mmu_pages_clear_parents(&parents);
  1156. }
  1157. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1158. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1159. kvm_mmu_pages_init(parent, &parents, &pages);
  1160. }
  1161. }
  1162. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1163. gfn_t gfn,
  1164. gva_t gaddr,
  1165. unsigned level,
  1166. int direct,
  1167. unsigned access,
  1168. u64 *parent_pte)
  1169. {
  1170. union kvm_mmu_page_role role;
  1171. unsigned quadrant;
  1172. struct kvm_mmu_page *sp;
  1173. struct hlist_node *node;
  1174. bool need_sync = false;
  1175. role = vcpu->arch.mmu.base_role;
  1176. role.level = level;
  1177. role.direct = direct;
  1178. if (role.direct)
  1179. role.cr4_pae = 0;
  1180. role.access = access;
  1181. if (!tdp_enabled && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1182. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1183. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1184. role.quadrant = quadrant;
  1185. }
  1186. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1187. if (!need_sync && sp->unsync)
  1188. need_sync = true;
  1189. if (sp->role.word != role.word)
  1190. continue;
  1191. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1192. break;
  1193. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1194. if (sp->unsync_children) {
  1195. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1196. kvm_mmu_mark_parents_unsync(sp);
  1197. } else if (sp->unsync)
  1198. kvm_mmu_mark_parents_unsync(sp);
  1199. trace_kvm_mmu_get_page(sp, false);
  1200. return sp;
  1201. }
  1202. ++vcpu->kvm->stat.mmu_cache_miss;
  1203. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1204. if (!sp)
  1205. return sp;
  1206. sp->gfn = gfn;
  1207. sp->role = role;
  1208. hlist_add_head(&sp->hash_link,
  1209. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1210. if (!direct) {
  1211. if (rmap_write_protect(vcpu->kvm, gfn))
  1212. kvm_flush_remote_tlbs(vcpu->kvm);
  1213. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1214. kvm_sync_pages(vcpu, gfn);
  1215. account_shadowed(vcpu->kvm, gfn);
  1216. }
  1217. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1218. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1219. else
  1220. nonpaging_prefetch_page(vcpu, sp);
  1221. trace_kvm_mmu_get_page(sp, true);
  1222. return sp;
  1223. }
  1224. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1225. struct kvm_vcpu *vcpu, u64 addr)
  1226. {
  1227. iterator->addr = addr;
  1228. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1229. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1230. if (iterator->level == PT32E_ROOT_LEVEL) {
  1231. iterator->shadow_addr
  1232. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1233. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1234. --iterator->level;
  1235. if (!iterator->shadow_addr)
  1236. iterator->level = 0;
  1237. }
  1238. }
  1239. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1240. {
  1241. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1242. return false;
  1243. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1244. if (is_large_pte(*iterator->sptep))
  1245. return false;
  1246. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1247. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1248. return true;
  1249. }
  1250. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1251. {
  1252. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1253. --iterator->level;
  1254. }
  1255. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1256. {
  1257. u64 spte;
  1258. spte = __pa(sp->spt)
  1259. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1260. | PT_WRITABLE_MASK | PT_USER_MASK;
  1261. __set_spte(sptep, spte);
  1262. }
  1263. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1264. {
  1265. if (is_large_pte(*sptep)) {
  1266. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1267. kvm_flush_remote_tlbs(vcpu->kvm);
  1268. }
  1269. }
  1270. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1271. unsigned direct_access)
  1272. {
  1273. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1274. struct kvm_mmu_page *child;
  1275. /*
  1276. * For the direct sp, if the guest pte's dirty bit
  1277. * changed form clean to dirty, it will corrupt the
  1278. * sp's access: allow writable in the read-only sp,
  1279. * so we should update the spte at this point to get
  1280. * a new sp with the correct access.
  1281. */
  1282. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1283. if (child->role.access == direct_access)
  1284. return;
  1285. mmu_page_remove_parent_pte(child, sptep);
  1286. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1287. kvm_flush_remote_tlbs(vcpu->kvm);
  1288. }
  1289. }
  1290. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1291. struct kvm_mmu_page *sp)
  1292. {
  1293. unsigned i;
  1294. u64 *pt;
  1295. u64 ent;
  1296. pt = sp->spt;
  1297. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1298. ent = pt[i];
  1299. if (is_shadow_present_pte(ent)) {
  1300. if (!is_last_spte(ent, sp->role.level)) {
  1301. ent &= PT64_BASE_ADDR_MASK;
  1302. mmu_page_remove_parent_pte(page_header(ent),
  1303. &pt[i]);
  1304. } else {
  1305. if (is_large_pte(ent))
  1306. --kvm->stat.lpages;
  1307. drop_spte(kvm, &pt[i],
  1308. shadow_trap_nonpresent_pte);
  1309. }
  1310. }
  1311. pt[i] = shadow_trap_nonpresent_pte;
  1312. }
  1313. }
  1314. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1315. {
  1316. mmu_page_remove_parent_pte(sp, parent_pte);
  1317. }
  1318. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1319. {
  1320. int i;
  1321. struct kvm_vcpu *vcpu;
  1322. kvm_for_each_vcpu(i, vcpu, kvm)
  1323. vcpu->arch.last_pte_updated = NULL;
  1324. }
  1325. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1326. {
  1327. u64 *parent_pte;
  1328. while (sp->multimapped || sp->parent_pte) {
  1329. if (!sp->multimapped)
  1330. parent_pte = sp->parent_pte;
  1331. else {
  1332. struct kvm_pte_chain *chain;
  1333. chain = container_of(sp->parent_ptes.first,
  1334. struct kvm_pte_chain, link);
  1335. parent_pte = chain->parent_ptes[0];
  1336. }
  1337. BUG_ON(!parent_pte);
  1338. kvm_mmu_put_page(sp, parent_pte);
  1339. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1340. }
  1341. }
  1342. static int mmu_zap_unsync_children(struct kvm *kvm,
  1343. struct kvm_mmu_page *parent,
  1344. struct list_head *invalid_list)
  1345. {
  1346. int i, zapped = 0;
  1347. struct mmu_page_path parents;
  1348. struct kvm_mmu_pages pages;
  1349. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1350. return 0;
  1351. kvm_mmu_pages_init(parent, &parents, &pages);
  1352. while (mmu_unsync_walk(parent, &pages)) {
  1353. struct kvm_mmu_page *sp;
  1354. for_each_sp(pages, sp, parents, i) {
  1355. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1356. mmu_pages_clear_parents(&parents);
  1357. zapped++;
  1358. }
  1359. kvm_mmu_pages_init(parent, &parents, &pages);
  1360. }
  1361. return zapped;
  1362. }
  1363. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1364. struct list_head *invalid_list)
  1365. {
  1366. int ret;
  1367. trace_kvm_mmu_prepare_zap_page(sp);
  1368. ++kvm->stat.mmu_shadow_zapped;
  1369. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1370. kvm_mmu_page_unlink_children(kvm, sp);
  1371. kvm_mmu_unlink_parents(kvm, sp);
  1372. if (!sp->role.invalid && !sp->role.direct)
  1373. unaccount_shadowed(kvm, sp->gfn);
  1374. if (sp->unsync)
  1375. kvm_unlink_unsync_page(kvm, sp);
  1376. if (!sp->root_count) {
  1377. /* Count self */
  1378. ret++;
  1379. list_move(&sp->link, invalid_list);
  1380. } else {
  1381. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1382. kvm_reload_remote_mmus(kvm);
  1383. }
  1384. sp->role.invalid = 1;
  1385. kvm_mmu_reset_last_pte_updated(kvm);
  1386. return ret;
  1387. }
  1388. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1389. struct list_head *invalid_list)
  1390. {
  1391. struct kvm_mmu_page *sp;
  1392. if (list_empty(invalid_list))
  1393. return;
  1394. kvm_flush_remote_tlbs(kvm);
  1395. do {
  1396. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1397. WARN_ON(!sp->role.invalid || sp->root_count);
  1398. kvm_mmu_free_page(kvm, sp);
  1399. } while (!list_empty(invalid_list));
  1400. }
  1401. /*
  1402. * Changing the number of mmu pages allocated to the vm
  1403. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1404. */
  1405. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1406. {
  1407. int used_pages;
  1408. LIST_HEAD(invalid_list);
  1409. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1410. used_pages = max(0, used_pages);
  1411. /*
  1412. * If we set the number of mmu pages to be smaller be than the
  1413. * number of actived pages , we must to free some mmu pages before we
  1414. * change the value
  1415. */
  1416. if (used_pages > kvm_nr_mmu_pages) {
  1417. while (used_pages > kvm_nr_mmu_pages &&
  1418. !list_empty(&kvm->arch.active_mmu_pages)) {
  1419. struct kvm_mmu_page *page;
  1420. page = container_of(kvm->arch.active_mmu_pages.prev,
  1421. struct kvm_mmu_page, link);
  1422. used_pages -= kvm_mmu_prepare_zap_page(kvm, page,
  1423. &invalid_list);
  1424. }
  1425. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1426. kvm_nr_mmu_pages = used_pages;
  1427. kvm->arch.n_free_mmu_pages = 0;
  1428. }
  1429. else
  1430. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1431. - kvm->arch.n_alloc_mmu_pages;
  1432. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1433. }
  1434. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1435. {
  1436. struct kvm_mmu_page *sp;
  1437. struct hlist_node *node;
  1438. LIST_HEAD(invalid_list);
  1439. int r;
  1440. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1441. r = 0;
  1442. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1443. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1444. sp->role.word);
  1445. r = 1;
  1446. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1447. }
  1448. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1449. return r;
  1450. }
  1451. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1452. {
  1453. struct kvm_mmu_page *sp;
  1454. struct hlist_node *node;
  1455. LIST_HEAD(invalid_list);
  1456. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1457. pgprintk("%s: zap %lx %x\n",
  1458. __func__, gfn, sp->role.word);
  1459. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1460. }
  1461. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1462. }
  1463. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1464. {
  1465. int slot = memslot_id(kvm, gfn);
  1466. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1467. __set_bit(slot, sp->slot_bitmap);
  1468. }
  1469. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1470. {
  1471. int i;
  1472. u64 *pt = sp->spt;
  1473. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1474. return;
  1475. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1476. if (pt[i] == shadow_notrap_nonpresent_pte)
  1477. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1478. }
  1479. }
  1480. /*
  1481. * The function is based on mtrr_type_lookup() in
  1482. * arch/x86/kernel/cpu/mtrr/generic.c
  1483. */
  1484. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1485. u64 start, u64 end)
  1486. {
  1487. int i;
  1488. u64 base, mask;
  1489. u8 prev_match, curr_match;
  1490. int num_var_ranges = KVM_NR_VAR_MTRR;
  1491. if (!mtrr_state->enabled)
  1492. return 0xFF;
  1493. /* Make end inclusive end, instead of exclusive */
  1494. end--;
  1495. /* Look in fixed ranges. Just return the type as per start */
  1496. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1497. int idx;
  1498. if (start < 0x80000) {
  1499. idx = 0;
  1500. idx += (start >> 16);
  1501. return mtrr_state->fixed_ranges[idx];
  1502. } else if (start < 0xC0000) {
  1503. idx = 1 * 8;
  1504. idx += ((start - 0x80000) >> 14);
  1505. return mtrr_state->fixed_ranges[idx];
  1506. } else if (start < 0x1000000) {
  1507. idx = 3 * 8;
  1508. idx += ((start - 0xC0000) >> 12);
  1509. return mtrr_state->fixed_ranges[idx];
  1510. }
  1511. }
  1512. /*
  1513. * Look in variable ranges
  1514. * Look of multiple ranges matching this address and pick type
  1515. * as per MTRR precedence
  1516. */
  1517. if (!(mtrr_state->enabled & 2))
  1518. return mtrr_state->def_type;
  1519. prev_match = 0xFF;
  1520. for (i = 0; i < num_var_ranges; ++i) {
  1521. unsigned short start_state, end_state;
  1522. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1523. continue;
  1524. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1525. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1526. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1527. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1528. start_state = ((start & mask) == (base & mask));
  1529. end_state = ((end & mask) == (base & mask));
  1530. if (start_state != end_state)
  1531. return 0xFE;
  1532. if ((start & mask) != (base & mask))
  1533. continue;
  1534. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1535. if (prev_match == 0xFF) {
  1536. prev_match = curr_match;
  1537. continue;
  1538. }
  1539. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1540. curr_match == MTRR_TYPE_UNCACHABLE)
  1541. return MTRR_TYPE_UNCACHABLE;
  1542. if ((prev_match == MTRR_TYPE_WRBACK &&
  1543. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1544. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1545. curr_match == MTRR_TYPE_WRBACK)) {
  1546. prev_match = MTRR_TYPE_WRTHROUGH;
  1547. curr_match = MTRR_TYPE_WRTHROUGH;
  1548. }
  1549. if (prev_match != curr_match)
  1550. return MTRR_TYPE_UNCACHABLE;
  1551. }
  1552. if (prev_match != 0xFF)
  1553. return prev_match;
  1554. return mtrr_state->def_type;
  1555. }
  1556. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1557. {
  1558. u8 mtrr;
  1559. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1560. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1561. if (mtrr == 0xfe || mtrr == 0xff)
  1562. mtrr = MTRR_TYPE_WRBACK;
  1563. return mtrr;
  1564. }
  1565. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1566. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1567. {
  1568. trace_kvm_mmu_unsync_page(sp);
  1569. ++vcpu->kvm->stat.mmu_unsync;
  1570. sp->unsync = 1;
  1571. kvm_mmu_mark_parents_unsync(sp);
  1572. mmu_convert_notrap(sp);
  1573. }
  1574. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1575. {
  1576. struct kvm_mmu_page *s;
  1577. struct hlist_node *node;
  1578. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1579. if (s->unsync)
  1580. continue;
  1581. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1582. __kvm_unsync_page(vcpu, s);
  1583. }
  1584. }
  1585. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1586. bool can_unsync)
  1587. {
  1588. struct kvm_mmu_page *s;
  1589. struct hlist_node *node;
  1590. bool need_unsync = false;
  1591. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1592. if (!can_unsync)
  1593. return 1;
  1594. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1595. return 1;
  1596. if (!need_unsync && !s->unsync) {
  1597. if (!oos_shadow)
  1598. return 1;
  1599. need_unsync = true;
  1600. }
  1601. }
  1602. if (need_unsync)
  1603. kvm_unsync_pages(vcpu, gfn);
  1604. return 0;
  1605. }
  1606. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1607. unsigned pte_access, int user_fault,
  1608. int write_fault, int dirty, int level,
  1609. gfn_t gfn, pfn_t pfn, bool speculative,
  1610. bool can_unsync, bool reset_host_protection)
  1611. {
  1612. u64 spte;
  1613. int ret = 0;
  1614. /*
  1615. * We don't set the accessed bit, since we sometimes want to see
  1616. * whether the guest actually used the pte (in order to detect
  1617. * demand paging).
  1618. */
  1619. spte = shadow_base_present_pte | shadow_dirty_mask;
  1620. if (!speculative)
  1621. spte |= shadow_accessed_mask;
  1622. if (!dirty)
  1623. pte_access &= ~ACC_WRITE_MASK;
  1624. if (pte_access & ACC_EXEC_MASK)
  1625. spte |= shadow_x_mask;
  1626. else
  1627. spte |= shadow_nx_mask;
  1628. if (pte_access & ACC_USER_MASK)
  1629. spte |= shadow_user_mask;
  1630. if (level > PT_PAGE_TABLE_LEVEL)
  1631. spte |= PT_PAGE_SIZE_MASK;
  1632. if (tdp_enabled)
  1633. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1634. kvm_is_mmio_pfn(pfn));
  1635. if (reset_host_protection)
  1636. spte |= SPTE_HOST_WRITEABLE;
  1637. spte |= (u64)pfn << PAGE_SHIFT;
  1638. if ((pte_access & ACC_WRITE_MASK)
  1639. || (!tdp_enabled && write_fault && !is_write_protection(vcpu)
  1640. && !user_fault)) {
  1641. if (level > PT_PAGE_TABLE_LEVEL &&
  1642. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1643. ret = 1;
  1644. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1645. goto done;
  1646. }
  1647. spte |= PT_WRITABLE_MASK;
  1648. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1649. spte &= ~PT_USER_MASK;
  1650. /*
  1651. * Optimization: for pte sync, if spte was writable the hash
  1652. * lookup is unnecessary (and expensive). Write protection
  1653. * is responsibility of mmu_get_page / kvm_sync_page.
  1654. * Same reasoning can be applied to dirty page accounting.
  1655. */
  1656. if (!can_unsync && is_writable_pte(*sptep))
  1657. goto set_pte;
  1658. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1659. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1660. __func__, gfn);
  1661. ret = 1;
  1662. pte_access &= ~ACC_WRITE_MASK;
  1663. if (is_writable_pte(spte))
  1664. spte &= ~PT_WRITABLE_MASK;
  1665. }
  1666. }
  1667. if (pte_access & ACC_WRITE_MASK)
  1668. mark_page_dirty(vcpu->kvm, gfn);
  1669. set_pte:
  1670. if (is_writable_pte(*sptep) && !is_writable_pte(spte))
  1671. kvm_set_pfn_dirty(pfn);
  1672. update_spte(sptep, spte);
  1673. done:
  1674. return ret;
  1675. }
  1676. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1677. unsigned pt_access, unsigned pte_access,
  1678. int user_fault, int write_fault, int dirty,
  1679. int *ptwrite, int level, gfn_t gfn,
  1680. pfn_t pfn, bool speculative,
  1681. bool reset_host_protection)
  1682. {
  1683. int was_rmapped = 0;
  1684. int rmap_count;
  1685. pgprintk("%s: spte %llx access %x write_fault %d"
  1686. " user_fault %d gfn %lx\n",
  1687. __func__, *sptep, pt_access,
  1688. write_fault, user_fault, gfn);
  1689. if (is_rmap_spte(*sptep)) {
  1690. /*
  1691. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1692. * the parent of the now unreachable PTE.
  1693. */
  1694. if (level > PT_PAGE_TABLE_LEVEL &&
  1695. !is_large_pte(*sptep)) {
  1696. struct kvm_mmu_page *child;
  1697. u64 pte = *sptep;
  1698. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1699. mmu_page_remove_parent_pte(child, sptep);
  1700. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1701. kvm_flush_remote_tlbs(vcpu->kvm);
  1702. } else if (pfn != spte_to_pfn(*sptep)) {
  1703. pgprintk("hfn old %lx new %lx\n",
  1704. spte_to_pfn(*sptep), pfn);
  1705. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1706. kvm_flush_remote_tlbs(vcpu->kvm);
  1707. } else
  1708. was_rmapped = 1;
  1709. }
  1710. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1711. dirty, level, gfn, pfn, speculative, true,
  1712. reset_host_protection)) {
  1713. if (write_fault)
  1714. *ptwrite = 1;
  1715. kvm_mmu_flush_tlb(vcpu);
  1716. }
  1717. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1718. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1719. is_large_pte(*sptep)? "2MB" : "4kB",
  1720. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1721. *sptep, sptep);
  1722. if (!was_rmapped && is_large_pte(*sptep))
  1723. ++vcpu->kvm->stat.lpages;
  1724. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1725. if (!was_rmapped) {
  1726. rmap_count = rmap_add(vcpu, sptep, gfn);
  1727. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1728. rmap_recycle(vcpu, sptep, gfn);
  1729. }
  1730. kvm_release_pfn_clean(pfn);
  1731. if (speculative) {
  1732. vcpu->arch.last_pte_updated = sptep;
  1733. vcpu->arch.last_pte_gfn = gfn;
  1734. }
  1735. }
  1736. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1737. {
  1738. }
  1739. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1740. int level, gfn_t gfn, pfn_t pfn)
  1741. {
  1742. struct kvm_shadow_walk_iterator iterator;
  1743. struct kvm_mmu_page *sp;
  1744. int pt_write = 0;
  1745. gfn_t pseudo_gfn;
  1746. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1747. if (iterator.level == level) {
  1748. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1749. 0, write, 1, &pt_write,
  1750. level, gfn, pfn, false, true);
  1751. ++vcpu->stat.pf_fixed;
  1752. break;
  1753. }
  1754. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1755. u64 base_addr = iterator.addr;
  1756. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1757. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1758. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1759. iterator.level - 1,
  1760. 1, ACC_ALL, iterator.sptep);
  1761. if (!sp) {
  1762. pgprintk("nonpaging_map: ENOMEM\n");
  1763. kvm_release_pfn_clean(pfn);
  1764. return -ENOMEM;
  1765. }
  1766. __set_spte(iterator.sptep,
  1767. __pa(sp->spt)
  1768. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1769. | shadow_user_mask | shadow_x_mask);
  1770. }
  1771. }
  1772. return pt_write;
  1773. }
  1774. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1775. {
  1776. char buf[1];
  1777. void __user *hva;
  1778. int r;
  1779. /* Touch the page, so send SIGBUS */
  1780. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1781. r = copy_from_user(buf, hva, 1);
  1782. }
  1783. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1784. {
  1785. kvm_release_pfn_clean(pfn);
  1786. if (is_hwpoison_pfn(pfn)) {
  1787. kvm_send_hwpoison_signal(kvm, gfn);
  1788. return 0;
  1789. } else if (is_fault_pfn(pfn))
  1790. return -EFAULT;
  1791. return 1;
  1792. }
  1793. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1794. {
  1795. int r;
  1796. int level;
  1797. pfn_t pfn;
  1798. unsigned long mmu_seq;
  1799. level = mapping_level(vcpu, gfn);
  1800. /*
  1801. * This path builds a PAE pagetable - so we can map 2mb pages at
  1802. * maximum. Therefore check if the level is larger than that.
  1803. */
  1804. if (level > PT_DIRECTORY_LEVEL)
  1805. level = PT_DIRECTORY_LEVEL;
  1806. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1807. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1808. smp_rmb();
  1809. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1810. /* mmio */
  1811. if (is_error_pfn(pfn))
  1812. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1813. spin_lock(&vcpu->kvm->mmu_lock);
  1814. if (mmu_notifier_retry(vcpu, mmu_seq))
  1815. goto out_unlock;
  1816. kvm_mmu_free_some_pages(vcpu);
  1817. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1818. spin_unlock(&vcpu->kvm->mmu_lock);
  1819. return r;
  1820. out_unlock:
  1821. spin_unlock(&vcpu->kvm->mmu_lock);
  1822. kvm_release_pfn_clean(pfn);
  1823. return 0;
  1824. }
  1825. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1826. {
  1827. int i;
  1828. struct kvm_mmu_page *sp;
  1829. LIST_HEAD(invalid_list);
  1830. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1831. return;
  1832. spin_lock(&vcpu->kvm->mmu_lock);
  1833. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1834. hpa_t root = vcpu->arch.mmu.root_hpa;
  1835. sp = page_header(root);
  1836. --sp->root_count;
  1837. if (!sp->root_count && sp->role.invalid) {
  1838. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  1839. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1840. }
  1841. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1842. spin_unlock(&vcpu->kvm->mmu_lock);
  1843. return;
  1844. }
  1845. for (i = 0; i < 4; ++i) {
  1846. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1847. if (root) {
  1848. root &= PT64_BASE_ADDR_MASK;
  1849. sp = page_header(root);
  1850. --sp->root_count;
  1851. if (!sp->root_count && sp->role.invalid)
  1852. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  1853. &invalid_list);
  1854. }
  1855. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1856. }
  1857. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1858. spin_unlock(&vcpu->kvm->mmu_lock);
  1859. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1860. }
  1861. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1862. {
  1863. int ret = 0;
  1864. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1865. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1866. ret = 1;
  1867. }
  1868. return ret;
  1869. }
  1870. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1871. {
  1872. int i;
  1873. gfn_t root_gfn;
  1874. struct kvm_mmu_page *sp;
  1875. int direct = 0;
  1876. u64 pdptr;
  1877. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1878. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1879. hpa_t root = vcpu->arch.mmu.root_hpa;
  1880. ASSERT(!VALID_PAGE(root));
  1881. if (mmu_check_root(vcpu, root_gfn))
  1882. return 1;
  1883. if (tdp_enabled) {
  1884. direct = 1;
  1885. root_gfn = 0;
  1886. }
  1887. spin_lock(&vcpu->kvm->mmu_lock);
  1888. kvm_mmu_free_some_pages(vcpu);
  1889. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1890. PT64_ROOT_LEVEL, direct,
  1891. ACC_ALL, NULL);
  1892. root = __pa(sp->spt);
  1893. ++sp->root_count;
  1894. spin_unlock(&vcpu->kvm->mmu_lock);
  1895. vcpu->arch.mmu.root_hpa = root;
  1896. return 0;
  1897. }
  1898. direct = !is_paging(vcpu);
  1899. for (i = 0; i < 4; ++i) {
  1900. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1901. ASSERT(!VALID_PAGE(root));
  1902. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1903. pdptr = kvm_pdptr_read(vcpu, i);
  1904. if (!is_present_gpte(pdptr)) {
  1905. vcpu->arch.mmu.pae_root[i] = 0;
  1906. continue;
  1907. }
  1908. root_gfn = pdptr >> PAGE_SHIFT;
  1909. } else if (vcpu->arch.mmu.root_level == 0)
  1910. root_gfn = 0;
  1911. if (mmu_check_root(vcpu, root_gfn))
  1912. return 1;
  1913. if (tdp_enabled) {
  1914. direct = 1;
  1915. root_gfn = i << 30;
  1916. }
  1917. spin_lock(&vcpu->kvm->mmu_lock);
  1918. kvm_mmu_free_some_pages(vcpu);
  1919. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1920. PT32_ROOT_LEVEL, direct,
  1921. ACC_ALL, NULL);
  1922. root = __pa(sp->spt);
  1923. ++sp->root_count;
  1924. spin_unlock(&vcpu->kvm->mmu_lock);
  1925. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1926. }
  1927. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1928. return 0;
  1929. }
  1930. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1931. {
  1932. int i;
  1933. struct kvm_mmu_page *sp;
  1934. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1935. return;
  1936. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1937. hpa_t root = vcpu->arch.mmu.root_hpa;
  1938. sp = page_header(root);
  1939. mmu_sync_children(vcpu, sp);
  1940. return;
  1941. }
  1942. for (i = 0; i < 4; ++i) {
  1943. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1944. if (root && VALID_PAGE(root)) {
  1945. root &= PT64_BASE_ADDR_MASK;
  1946. sp = page_header(root);
  1947. mmu_sync_children(vcpu, sp);
  1948. }
  1949. }
  1950. }
  1951. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1952. {
  1953. spin_lock(&vcpu->kvm->mmu_lock);
  1954. mmu_sync_roots(vcpu);
  1955. spin_unlock(&vcpu->kvm->mmu_lock);
  1956. }
  1957. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1958. u32 access, u32 *error)
  1959. {
  1960. if (error)
  1961. *error = 0;
  1962. return vaddr;
  1963. }
  1964. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1965. u32 error_code)
  1966. {
  1967. gfn_t gfn;
  1968. int r;
  1969. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1970. r = mmu_topup_memory_caches(vcpu);
  1971. if (r)
  1972. return r;
  1973. ASSERT(vcpu);
  1974. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1975. gfn = gva >> PAGE_SHIFT;
  1976. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1977. error_code & PFERR_WRITE_MASK, gfn);
  1978. }
  1979. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1980. u32 error_code)
  1981. {
  1982. pfn_t pfn;
  1983. int r;
  1984. int level;
  1985. gfn_t gfn = gpa >> PAGE_SHIFT;
  1986. unsigned long mmu_seq;
  1987. ASSERT(vcpu);
  1988. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1989. r = mmu_topup_memory_caches(vcpu);
  1990. if (r)
  1991. return r;
  1992. level = mapping_level(vcpu, gfn);
  1993. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1994. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1995. smp_rmb();
  1996. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1997. if (is_error_pfn(pfn))
  1998. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1999. spin_lock(&vcpu->kvm->mmu_lock);
  2000. if (mmu_notifier_retry(vcpu, mmu_seq))
  2001. goto out_unlock;
  2002. kvm_mmu_free_some_pages(vcpu);
  2003. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  2004. level, gfn, pfn);
  2005. spin_unlock(&vcpu->kvm->mmu_lock);
  2006. return r;
  2007. out_unlock:
  2008. spin_unlock(&vcpu->kvm->mmu_lock);
  2009. kvm_release_pfn_clean(pfn);
  2010. return 0;
  2011. }
  2012. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2013. {
  2014. mmu_free_roots(vcpu);
  2015. }
  2016. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  2017. {
  2018. struct kvm_mmu *context = &vcpu->arch.mmu;
  2019. context->new_cr3 = nonpaging_new_cr3;
  2020. context->page_fault = nonpaging_page_fault;
  2021. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2022. context->free = nonpaging_free;
  2023. context->prefetch_page = nonpaging_prefetch_page;
  2024. context->sync_page = nonpaging_sync_page;
  2025. context->invlpg = nonpaging_invlpg;
  2026. context->root_level = 0;
  2027. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2028. context->root_hpa = INVALID_PAGE;
  2029. return 0;
  2030. }
  2031. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2032. {
  2033. ++vcpu->stat.tlb_flush;
  2034. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2035. }
  2036. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2037. {
  2038. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  2039. mmu_free_roots(vcpu);
  2040. }
  2041. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2042. u64 addr,
  2043. u32 err_code)
  2044. {
  2045. kvm_inject_page_fault(vcpu, addr, err_code);
  2046. }
  2047. static void paging_free(struct kvm_vcpu *vcpu)
  2048. {
  2049. nonpaging_free(vcpu);
  2050. }
  2051. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  2052. {
  2053. int bit7;
  2054. bit7 = (gpte >> 7) & 1;
  2055. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  2056. }
  2057. #define PTTYPE 64
  2058. #include "paging_tmpl.h"
  2059. #undef PTTYPE
  2060. #define PTTYPE 32
  2061. #include "paging_tmpl.h"
  2062. #undef PTTYPE
  2063. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  2064. {
  2065. struct kvm_mmu *context = &vcpu->arch.mmu;
  2066. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2067. u64 exb_bit_rsvd = 0;
  2068. if (!is_nx(vcpu))
  2069. exb_bit_rsvd = rsvd_bits(63, 63);
  2070. switch (level) {
  2071. case PT32_ROOT_LEVEL:
  2072. /* no rsvd bits for 2 level 4K page table entries */
  2073. context->rsvd_bits_mask[0][1] = 0;
  2074. context->rsvd_bits_mask[0][0] = 0;
  2075. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2076. if (!is_pse(vcpu)) {
  2077. context->rsvd_bits_mask[1][1] = 0;
  2078. break;
  2079. }
  2080. if (is_cpuid_PSE36())
  2081. /* 36bits PSE 4MB page */
  2082. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2083. else
  2084. /* 32 bits PSE 4MB page */
  2085. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2086. break;
  2087. case PT32E_ROOT_LEVEL:
  2088. context->rsvd_bits_mask[0][2] =
  2089. rsvd_bits(maxphyaddr, 63) |
  2090. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2091. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2092. rsvd_bits(maxphyaddr, 62); /* PDE */
  2093. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2094. rsvd_bits(maxphyaddr, 62); /* PTE */
  2095. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2096. rsvd_bits(maxphyaddr, 62) |
  2097. rsvd_bits(13, 20); /* large page */
  2098. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2099. break;
  2100. case PT64_ROOT_LEVEL:
  2101. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2102. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2103. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2104. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2105. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2106. rsvd_bits(maxphyaddr, 51);
  2107. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2108. rsvd_bits(maxphyaddr, 51);
  2109. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2110. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2111. rsvd_bits(maxphyaddr, 51) |
  2112. rsvd_bits(13, 29);
  2113. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2114. rsvd_bits(maxphyaddr, 51) |
  2115. rsvd_bits(13, 20); /* large page */
  2116. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2117. break;
  2118. }
  2119. }
  2120. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2121. {
  2122. struct kvm_mmu *context = &vcpu->arch.mmu;
  2123. ASSERT(is_pae(vcpu));
  2124. context->new_cr3 = paging_new_cr3;
  2125. context->page_fault = paging64_page_fault;
  2126. context->gva_to_gpa = paging64_gva_to_gpa;
  2127. context->prefetch_page = paging64_prefetch_page;
  2128. context->sync_page = paging64_sync_page;
  2129. context->invlpg = paging64_invlpg;
  2130. context->free = paging_free;
  2131. context->root_level = level;
  2132. context->shadow_root_level = level;
  2133. context->root_hpa = INVALID_PAGE;
  2134. return 0;
  2135. }
  2136. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2137. {
  2138. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2139. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2140. }
  2141. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2142. {
  2143. struct kvm_mmu *context = &vcpu->arch.mmu;
  2144. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2145. context->new_cr3 = paging_new_cr3;
  2146. context->page_fault = paging32_page_fault;
  2147. context->gva_to_gpa = paging32_gva_to_gpa;
  2148. context->free = paging_free;
  2149. context->prefetch_page = paging32_prefetch_page;
  2150. context->sync_page = paging32_sync_page;
  2151. context->invlpg = paging32_invlpg;
  2152. context->root_level = PT32_ROOT_LEVEL;
  2153. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2154. context->root_hpa = INVALID_PAGE;
  2155. return 0;
  2156. }
  2157. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2158. {
  2159. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2160. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2161. }
  2162. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2163. {
  2164. struct kvm_mmu *context = &vcpu->arch.mmu;
  2165. context->new_cr3 = nonpaging_new_cr3;
  2166. context->page_fault = tdp_page_fault;
  2167. context->free = nonpaging_free;
  2168. context->prefetch_page = nonpaging_prefetch_page;
  2169. context->sync_page = nonpaging_sync_page;
  2170. context->invlpg = nonpaging_invlpg;
  2171. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2172. context->root_hpa = INVALID_PAGE;
  2173. if (!is_paging(vcpu)) {
  2174. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2175. context->root_level = 0;
  2176. } else if (is_long_mode(vcpu)) {
  2177. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2178. context->gva_to_gpa = paging64_gva_to_gpa;
  2179. context->root_level = PT64_ROOT_LEVEL;
  2180. } else if (is_pae(vcpu)) {
  2181. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2182. context->gva_to_gpa = paging64_gva_to_gpa;
  2183. context->root_level = PT32E_ROOT_LEVEL;
  2184. } else {
  2185. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2186. context->gva_to_gpa = paging32_gva_to_gpa;
  2187. context->root_level = PT32_ROOT_LEVEL;
  2188. }
  2189. return 0;
  2190. }
  2191. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2192. {
  2193. int r;
  2194. ASSERT(vcpu);
  2195. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2196. if (!is_paging(vcpu))
  2197. r = nonpaging_init_context(vcpu);
  2198. else if (is_long_mode(vcpu))
  2199. r = paging64_init_context(vcpu);
  2200. else if (is_pae(vcpu))
  2201. r = paging32E_init_context(vcpu);
  2202. else
  2203. r = paging32_init_context(vcpu);
  2204. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2205. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2206. return r;
  2207. }
  2208. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2209. {
  2210. vcpu->arch.update_pte.pfn = bad_pfn;
  2211. if (tdp_enabled)
  2212. return init_kvm_tdp_mmu(vcpu);
  2213. else
  2214. return init_kvm_softmmu(vcpu);
  2215. }
  2216. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2217. {
  2218. ASSERT(vcpu);
  2219. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2220. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2221. vcpu->arch.mmu.free(vcpu);
  2222. }
  2223. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2224. {
  2225. destroy_kvm_mmu(vcpu);
  2226. return init_kvm_mmu(vcpu);
  2227. }
  2228. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2229. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2230. {
  2231. int r;
  2232. r = mmu_topup_memory_caches(vcpu);
  2233. if (r)
  2234. goto out;
  2235. r = mmu_alloc_roots(vcpu);
  2236. spin_lock(&vcpu->kvm->mmu_lock);
  2237. mmu_sync_roots(vcpu);
  2238. spin_unlock(&vcpu->kvm->mmu_lock);
  2239. if (r)
  2240. goto out;
  2241. /* set_cr3() should ensure TLB has been flushed */
  2242. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2243. out:
  2244. return r;
  2245. }
  2246. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2247. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2248. {
  2249. mmu_free_roots(vcpu);
  2250. }
  2251. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2252. struct kvm_mmu_page *sp,
  2253. u64 *spte)
  2254. {
  2255. u64 pte;
  2256. struct kvm_mmu_page *child;
  2257. pte = *spte;
  2258. if (is_shadow_present_pte(pte)) {
  2259. if (is_last_spte(pte, sp->role.level))
  2260. drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
  2261. else {
  2262. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2263. mmu_page_remove_parent_pte(child, spte);
  2264. }
  2265. }
  2266. __set_spte(spte, shadow_trap_nonpresent_pte);
  2267. if (is_large_pte(pte))
  2268. --vcpu->kvm->stat.lpages;
  2269. }
  2270. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2271. struct kvm_mmu_page *sp,
  2272. u64 *spte,
  2273. const void *new)
  2274. {
  2275. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2276. ++vcpu->kvm->stat.mmu_pde_zapped;
  2277. return;
  2278. }
  2279. if (is_rsvd_bits_set(vcpu, *(u64 *)new, PT_PAGE_TABLE_LEVEL))
  2280. return;
  2281. ++vcpu->kvm->stat.mmu_pte_updated;
  2282. if (!sp->role.cr4_pae)
  2283. paging32_update_pte(vcpu, sp, spte, new);
  2284. else
  2285. paging64_update_pte(vcpu, sp, spte, new);
  2286. }
  2287. static bool need_remote_flush(u64 old, u64 new)
  2288. {
  2289. if (!is_shadow_present_pte(old))
  2290. return false;
  2291. if (!is_shadow_present_pte(new))
  2292. return true;
  2293. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2294. return true;
  2295. old ^= PT64_NX_MASK;
  2296. new ^= PT64_NX_MASK;
  2297. return (old & ~new & PT64_PERM_MASK) != 0;
  2298. }
  2299. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2300. bool remote_flush, bool local_flush)
  2301. {
  2302. if (zap_page)
  2303. return;
  2304. if (remote_flush)
  2305. kvm_flush_remote_tlbs(vcpu->kvm);
  2306. else if (local_flush)
  2307. kvm_mmu_flush_tlb(vcpu);
  2308. }
  2309. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2310. {
  2311. u64 *spte = vcpu->arch.last_pte_updated;
  2312. return !!(spte && (*spte & shadow_accessed_mask));
  2313. }
  2314. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2315. u64 gpte)
  2316. {
  2317. gfn_t gfn;
  2318. pfn_t pfn;
  2319. if (!is_present_gpte(gpte))
  2320. return;
  2321. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2322. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2323. smp_rmb();
  2324. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2325. if (is_error_pfn(pfn)) {
  2326. kvm_release_pfn_clean(pfn);
  2327. return;
  2328. }
  2329. vcpu->arch.update_pte.gfn = gfn;
  2330. vcpu->arch.update_pte.pfn = pfn;
  2331. }
  2332. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2333. {
  2334. u64 *spte = vcpu->arch.last_pte_updated;
  2335. if (spte
  2336. && vcpu->arch.last_pte_gfn == gfn
  2337. && shadow_accessed_mask
  2338. && !(*spte & shadow_accessed_mask)
  2339. && is_shadow_present_pte(*spte))
  2340. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2341. }
  2342. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2343. const u8 *new, int bytes,
  2344. bool guest_initiated)
  2345. {
  2346. gfn_t gfn = gpa >> PAGE_SHIFT;
  2347. union kvm_mmu_page_role mask = { .word = 0 };
  2348. struct kvm_mmu_page *sp;
  2349. struct hlist_node *node;
  2350. LIST_HEAD(invalid_list);
  2351. u64 entry, gentry;
  2352. u64 *spte;
  2353. unsigned offset = offset_in_page(gpa);
  2354. unsigned pte_size;
  2355. unsigned page_offset;
  2356. unsigned misaligned;
  2357. unsigned quadrant;
  2358. int level;
  2359. int flooded = 0;
  2360. int npte;
  2361. int r;
  2362. int invlpg_counter;
  2363. bool remote_flush, local_flush, zap_page;
  2364. zap_page = remote_flush = local_flush = false;
  2365. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2366. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2367. /*
  2368. * Assume that the pte write on a page table of the same type
  2369. * as the current vcpu paging mode. This is nearly always true
  2370. * (might be false while changing modes). Note it is verified later
  2371. * by update_pte().
  2372. */
  2373. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2374. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2375. if (is_pae(vcpu)) {
  2376. gpa &= ~(gpa_t)7;
  2377. bytes = 8;
  2378. }
  2379. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2380. if (r)
  2381. gentry = 0;
  2382. new = (const u8 *)&gentry;
  2383. }
  2384. switch (bytes) {
  2385. case 4:
  2386. gentry = *(const u32 *)new;
  2387. break;
  2388. case 8:
  2389. gentry = *(const u64 *)new;
  2390. break;
  2391. default:
  2392. gentry = 0;
  2393. break;
  2394. }
  2395. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2396. spin_lock(&vcpu->kvm->mmu_lock);
  2397. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2398. gentry = 0;
  2399. kvm_mmu_access_page(vcpu, gfn);
  2400. kvm_mmu_free_some_pages(vcpu);
  2401. ++vcpu->kvm->stat.mmu_pte_write;
  2402. kvm_mmu_audit(vcpu, "pre pte write");
  2403. if (guest_initiated) {
  2404. if (gfn == vcpu->arch.last_pt_write_gfn
  2405. && !last_updated_pte_accessed(vcpu)) {
  2406. ++vcpu->arch.last_pt_write_count;
  2407. if (vcpu->arch.last_pt_write_count >= 3)
  2408. flooded = 1;
  2409. } else {
  2410. vcpu->arch.last_pt_write_gfn = gfn;
  2411. vcpu->arch.last_pt_write_count = 1;
  2412. vcpu->arch.last_pte_updated = NULL;
  2413. }
  2414. }
  2415. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  2416. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2417. pte_size = sp->role.cr4_pae ? 8 : 4;
  2418. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2419. misaligned |= bytes < 4;
  2420. if (misaligned || flooded) {
  2421. /*
  2422. * Misaligned accesses are too much trouble to fix
  2423. * up; also, they usually indicate a page is not used
  2424. * as a page table.
  2425. *
  2426. * If we're seeing too many writes to a page,
  2427. * it may no longer be a page table, or we may be
  2428. * forking, in which case it is better to unmap the
  2429. * page.
  2430. */
  2431. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2432. gpa, bytes, sp->role.word);
  2433. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2434. &invalid_list);
  2435. ++vcpu->kvm->stat.mmu_flooded;
  2436. continue;
  2437. }
  2438. page_offset = offset;
  2439. level = sp->role.level;
  2440. npte = 1;
  2441. if (!sp->role.cr4_pae) {
  2442. page_offset <<= 1; /* 32->64 */
  2443. /*
  2444. * A 32-bit pde maps 4MB while the shadow pdes map
  2445. * only 2MB. So we need to double the offset again
  2446. * and zap two pdes instead of one.
  2447. */
  2448. if (level == PT32_ROOT_LEVEL) {
  2449. page_offset &= ~7; /* kill rounding error */
  2450. page_offset <<= 1;
  2451. npte = 2;
  2452. }
  2453. quadrant = page_offset >> PAGE_SHIFT;
  2454. page_offset &= ~PAGE_MASK;
  2455. if (quadrant != sp->role.quadrant)
  2456. continue;
  2457. }
  2458. local_flush = true;
  2459. spte = &sp->spt[page_offset / sizeof(*spte)];
  2460. while (npte--) {
  2461. entry = *spte;
  2462. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2463. if (gentry &&
  2464. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  2465. & mask.word))
  2466. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2467. if (!remote_flush && need_remote_flush(entry, *spte))
  2468. remote_flush = true;
  2469. ++spte;
  2470. }
  2471. }
  2472. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2473. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2474. kvm_mmu_audit(vcpu, "post pte write");
  2475. spin_unlock(&vcpu->kvm->mmu_lock);
  2476. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2477. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2478. vcpu->arch.update_pte.pfn = bad_pfn;
  2479. }
  2480. }
  2481. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2482. {
  2483. gpa_t gpa;
  2484. int r;
  2485. if (tdp_enabled)
  2486. return 0;
  2487. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2488. spin_lock(&vcpu->kvm->mmu_lock);
  2489. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2490. spin_unlock(&vcpu->kvm->mmu_lock);
  2491. return r;
  2492. }
  2493. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2494. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2495. {
  2496. int free_pages;
  2497. LIST_HEAD(invalid_list);
  2498. free_pages = vcpu->kvm->arch.n_free_mmu_pages;
  2499. while (free_pages < KVM_REFILL_PAGES &&
  2500. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2501. struct kvm_mmu_page *sp;
  2502. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2503. struct kvm_mmu_page, link);
  2504. free_pages += kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2505. &invalid_list);
  2506. ++vcpu->kvm->stat.mmu_recycled;
  2507. }
  2508. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2509. }
  2510. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2511. {
  2512. int r;
  2513. enum emulation_result er;
  2514. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2515. if (r < 0)
  2516. goto out;
  2517. if (!r) {
  2518. r = 1;
  2519. goto out;
  2520. }
  2521. r = mmu_topup_memory_caches(vcpu);
  2522. if (r)
  2523. goto out;
  2524. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2525. switch (er) {
  2526. case EMULATE_DONE:
  2527. return 1;
  2528. case EMULATE_DO_MMIO:
  2529. ++vcpu->stat.mmio_exits;
  2530. /* fall through */
  2531. case EMULATE_FAIL:
  2532. return 0;
  2533. default:
  2534. BUG();
  2535. }
  2536. out:
  2537. return r;
  2538. }
  2539. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2540. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2541. {
  2542. vcpu->arch.mmu.invlpg(vcpu, gva);
  2543. kvm_mmu_flush_tlb(vcpu);
  2544. ++vcpu->stat.invlpg;
  2545. }
  2546. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2547. void kvm_enable_tdp(void)
  2548. {
  2549. tdp_enabled = true;
  2550. }
  2551. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2552. void kvm_disable_tdp(void)
  2553. {
  2554. tdp_enabled = false;
  2555. }
  2556. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2557. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2558. {
  2559. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2560. }
  2561. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2562. {
  2563. struct page *page;
  2564. int i;
  2565. ASSERT(vcpu);
  2566. /*
  2567. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2568. * Therefore we need to allocate shadow page tables in the first
  2569. * 4GB of memory, which happens to fit the DMA32 zone.
  2570. */
  2571. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2572. if (!page)
  2573. return -ENOMEM;
  2574. vcpu->arch.mmu.pae_root = page_address(page);
  2575. for (i = 0; i < 4; ++i)
  2576. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2577. return 0;
  2578. }
  2579. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2580. {
  2581. ASSERT(vcpu);
  2582. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2583. return alloc_mmu_pages(vcpu);
  2584. }
  2585. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2586. {
  2587. ASSERT(vcpu);
  2588. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2589. return init_kvm_mmu(vcpu);
  2590. }
  2591. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2592. {
  2593. ASSERT(vcpu);
  2594. destroy_kvm_mmu(vcpu);
  2595. free_mmu_pages(vcpu);
  2596. mmu_free_memory_caches(vcpu);
  2597. }
  2598. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2599. {
  2600. struct kvm_mmu_page *sp;
  2601. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2602. int i;
  2603. u64 *pt;
  2604. if (!test_bit(slot, sp->slot_bitmap))
  2605. continue;
  2606. pt = sp->spt;
  2607. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2608. /* avoid RMW */
  2609. if (is_writable_pte(pt[i]))
  2610. pt[i] &= ~PT_WRITABLE_MASK;
  2611. }
  2612. kvm_flush_remote_tlbs(kvm);
  2613. }
  2614. void kvm_mmu_zap_all(struct kvm *kvm)
  2615. {
  2616. struct kvm_mmu_page *sp, *node;
  2617. LIST_HEAD(invalid_list);
  2618. spin_lock(&kvm->mmu_lock);
  2619. restart:
  2620. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2621. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2622. goto restart;
  2623. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2624. spin_unlock(&kvm->mmu_lock);
  2625. }
  2626. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2627. struct list_head *invalid_list)
  2628. {
  2629. struct kvm_mmu_page *page;
  2630. page = container_of(kvm->arch.active_mmu_pages.prev,
  2631. struct kvm_mmu_page, link);
  2632. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  2633. }
  2634. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2635. {
  2636. struct kvm *kvm;
  2637. struct kvm *kvm_freed = NULL;
  2638. int cache_count = 0;
  2639. spin_lock(&kvm_lock);
  2640. list_for_each_entry(kvm, &vm_list, vm_list) {
  2641. int npages, idx, freed_pages;
  2642. LIST_HEAD(invalid_list);
  2643. idx = srcu_read_lock(&kvm->srcu);
  2644. spin_lock(&kvm->mmu_lock);
  2645. npages = kvm->arch.n_alloc_mmu_pages -
  2646. kvm->arch.n_free_mmu_pages;
  2647. cache_count += npages;
  2648. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2649. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  2650. &invalid_list);
  2651. cache_count -= freed_pages;
  2652. kvm_freed = kvm;
  2653. }
  2654. nr_to_scan--;
  2655. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2656. spin_unlock(&kvm->mmu_lock);
  2657. srcu_read_unlock(&kvm->srcu, idx);
  2658. }
  2659. if (kvm_freed)
  2660. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2661. spin_unlock(&kvm_lock);
  2662. return cache_count;
  2663. }
  2664. static struct shrinker mmu_shrinker = {
  2665. .shrink = mmu_shrink,
  2666. .seeks = DEFAULT_SEEKS * 10,
  2667. };
  2668. static void mmu_destroy_caches(void)
  2669. {
  2670. if (pte_chain_cache)
  2671. kmem_cache_destroy(pte_chain_cache);
  2672. if (rmap_desc_cache)
  2673. kmem_cache_destroy(rmap_desc_cache);
  2674. if (mmu_page_header_cache)
  2675. kmem_cache_destroy(mmu_page_header_cache);
  2676. }
  2677. void kvm_mmu_module_exit(void)
  2678. {
  2679. mmu_destroy_caches();
  2680. unregister_shrinker(&mmu_shrinker);
  2681. }
  2682. int kvm_mmu_module_init(void)
  2683. {
  2684. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2685. sizeof(struct kvm_pte_chain),
  2686. 0, 0, NULL);
  2687. if (!pte_chain_cache)
  2688. goto nomem;
  2689. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2690. sizeof(struct kvm_rmap_desc),
  2691. 0, 0, NULL);
  2692. if (!rmap_desc_cache)
  2693. goto nomem;
  2694. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2695. sizeof(struct kvm_mmu_page),
  2696. 0, 0, NULL);
  2697. if (!mmu_page_header_cache)
  2698. goto nomem;
  2699. register_shrinker(&mmu_shrinker);
  2700. return 0;
  2701. nomem:
  2702. mmu_destroy_caches();
  2703. return -ENOMEM;
  2704. }
  2705. /*
  2706. * Caculate mmu pages needed for kvm.
  2707. */
  2708. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2709. {
  2710. int i;
  2711. unsigned int nr_mmu_pages;
  2712. unsigned int nr_pages = 0;
  2713. struct kvm_memslots *slots;
  2714. slots = kvm_memslots(kvm);
  2715. for (i = 0; i < slots->nmemslots; i++)
  2716. nr_pages += slots->memslots[i].npages;
  2717. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2718. nr_mmu_pages = max(nr_mmu_pages,
  2719. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2720. return nr_mmu_pages;
  2721. }
  2722. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2723. unsigned len)
  2724. {
  2725. if (len > buffer->len)
  2726. return NULL;
  2727. return buffer->ptr;
  2728. }
  2729. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2730. unsigned len)
  2731. {
  2732. void *ret;
  2733. ret = pv_mmu_peek_buffer(buffer, len);
  2734. if (!ret)
  2735. return ret;
  2736. buffer->ptr += len;
  2737. buffer->len -= len;
  2738. buffer->processed += len;
  2739. return ret;
  2740. }
  2741. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2742. gpa_t addr, gpa_t value)
  2743. {
  2744. int bytes = 8;
  2745. int r;
  2746. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2747. bytes = 4;
  2748. r = mmu_topup_memory_caches(vcpu);
  2749. if (r)
  2750. return r;
  2751. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2752. return -EFAULT;
  2753. return 1;
  2754. }
  2755. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2756. {
  2757. (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2758. return 1;
  2759. }
  2760. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2761. {
  2762. spin_lock(&vcpu->kvm->mmu_lock);
  2763. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2764. spin_unlock(&vcpu->kvm->mmu_lock);
  2765. return 1;
  2766. }
  2767. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2768. struct kvm_pv_mmu_op_buffer *buffer)
  2769. {
  2770. struct kvm_mmu_op_header *header;
  2771. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2772. if (!header)
  2773. return 0;
  2774. switch (header->op) {
  2775. case KVM_MMU_OP_WRITE_PTE: {
  2776. struct kvm_mmu_op_write_pte *wpte;
  2777. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2778. if (!wpte)
  2779. return 0;
  2780. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2781. wpte->pte_val);
  2782. }
  2783. case KVM_MMU_OP_FLUSH_TLB: {
  2784. struct kvm_mmu_op_flush_tlb *ftlb;
  2785. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2786. if (!ftlb)
  2787. return 0;
  2788. return kvm_pv_mmu_flush_tlb(vcpu);
  2789. }
  2790. case KVM_MMU_OP_RELEASE_PT: {
  2791. struct kvm_mmu_op_release_pt *rpt;
  2792. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2793. if (!rpt)
  2794. return 0;
  2795. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2796. }
  2797. default: return 0;
  2798. }
  2799. }
  2800. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2801. gpa_t addr, unsigned long *ret)
  2802. {
  2803. int r;
  2804. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2805. buffer->ptr = buffer->buf;
  2806. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2807. buffer->processed = 0;
  2808. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2809. if (r)
  2810. goto out;
  2811. while (buffer->len) {
  2812. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2813. if (r < 0)
  2814. goto out;
  2815. if (r == 0)
  2816. break;
  2817. }
  2818. r = 1;
  2819. out:
  2820. *ret = buffer->processed;
  2821. return r;
  2822. }
  2823. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2824. {
  2825. struct kvm_shadow_walk_iterator iterator;
  2826. int nr_sptes = 0;
  2827. spin_lock(&vcpu->kvm->mmu_lock);
  2828. for_each_shadow_entry(vcpu, addr, iterator) {
  2829. sptes[iterator.level-1] = *iterator.sptep;
  2830. nr_sptes++;
  2831. if (!is_shadow_present_pte(*iterator.sptep))
  2832. break;
  2833. }
  2834. spin_unlock(&vcpu->kvm->mmu_lock);
  2835. return nr_sptes;
  2836. }
  2837. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2838. #ifdef AUDIT
  2839. static const char *audit_msg;
  2840. static gva_t canonicalize(gva_t gva)
  2841. {
  2842. #ifdef CONFIG_X86_64
  2843. gva = (long long)(gva << 16) >> 16;
  2844. #endif
  2845. return gva;
  2846. }
  2847. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2848. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2849. inspect_spte_fn fn)
  2850. {
  2851. int i;
  2852. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2853. u64 ent = sp->spt[i];
  2854. if (is_shadow_present_pte(ent)) {
  2855. if (!is_last_spte(ent, sp->role.level)) {
  2856. struct kvm_mmu_page *child;
  2857. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2858. __mmu_spte_walk(kvm, child, fn);
  2859. } else
  2860. fn(kvm, &sp->spt[i]);
  2861. }
  2862. }
  2863. }
  2864. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2865. {
  2866. int i;
  2867. struct kvm_mmu_page *sp;
  2868. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2869. return;
  2870. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2871. hpa_t root = vcpu->arch.mmu.root_hpa;
  2872. sp = page_header(root);
  2873. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2874. return;
  2875. }
  2876. for (i = 0; i < 4; ++i) {
  2877. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2878. if (root && VALID_PAGE(root)) {
  2879. root &= PT64_BASE_ADDR_MASK;
  2880. sp = page_header(root);
  2881. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2882. }
  2883. }
  2884. return;
  2885. }
  2886. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2887. gva_t va, int level)
  2888. {
  2889. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2890. int i;
  2891. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2892. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2893. u64 ent = pt[i];
  2894. if (ent == shadow_trap_nonpresent_pte)
  2895. continue;
  2896. va = canonicalize(va);
  2897. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2898. audit_mappings_page(vcpu, ent, va, level - 1);
  2899. else {
  2900. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2901. gfn_t gfn = gpa >> PAGE_SHIFT;
  2902. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2903. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2904. if (is_error_pfn(pfn)) {
  2905. kvm_release_pfn_clean(pfn);
  2906. continue;
  2907. }
  2908. if (is_shadow_present_pte(ent)
  2909. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2910. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2911. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2912. audit_msg, vcpu->arch.mmu.root_level,
  2913. va, gpa, hpa, ent,
  2914. is_shadow_present_pte(ent));
  2915. else if (ent == shadow_notrap_nonpresent_pte
  2916. && !is_error_hpa(hpa))
  2917. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2918. " valid guest gva %lx\n", audit_msg, va);
  2919. kvm_release_pfn_clean(pfn);
  2920. }
  2921. }
  2922. }
  2923. static void audit_mappings(struct kvm_vcpu *vcpu)
  2924. {
  2925. unsigned i;
  2926. if (vcpu->arch.mmu.root_level == 4)
  2927. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2928. else
  2929. for (i = 0; i < 4; ++i)
  2930. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2931. audit_mappings_page(vcpu,
  2932. vcpu->arch.mmu.pae_root[i],
  2933. i << 30,
  2934. 2);
  2935. }
  2936. static int count_rmaps(struct kvm_vcpu *vcpu)
  2937. {
  2938. struct kvm *kvm = vcpu->kvm;
  2939. struct kvm_memslots *slots;
  2940. int nmaps = 0;
  2941. int i, j, k, idx;
  2942. idx = srcu_read_lock(&kvm->srcu);
  2943. slots = kvm_memslots(kvm);
  2944. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2945. struct kvm_memory_slot *m = &slots->memslots[i];
  2946. struct kvm_rmap_desc *d;
  2947. for (j = 0; j < m->npages; ++j) {
  2948. unsigned long *rmapp = &m->rmap[j];
  2949. if (!*rmapp)
  2950. continue;
  2951. if (!(*rmapp & 1)) {
  2952. ++nmaps;
  2953. continue;
  2954. }
  2955. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2956. while (d) {
  2957. for (k = 0; k < RMAP_EXT; ++k)
  2958. if (d->sptes[k])
  2959. ++nmaps;
  2960. else
  2961. break;
  2962. d = d->more;
  2963. }
  2964. }
  2965. }
  2966. srcu_read_unlock(&kvm->srcu, idx);
  2967. return nmaps;
  2968. }
  2969. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2970. {
  2971. unsigned long *rmapp;
  2972. struct kvm_mmu_page *rev_sp;
  2973. gfn_t gfn;
  2974. if (is_writable_pte(*sptep)) {
  2975. rev_sp = page_header(__pa(sptep));
  2976. gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
  2977. if (!gfn_to_memslot(kvm, gfn)) {
  2978. if (!printk_ratelimit())
  2979. return;
  2980. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2981. audit_msg, gfn);
  2982. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2983. audit_msg, (long int)(sptep - rev_sp->spt),
  2984. rev_sp->gfn);
  2985. dump_stack();
  2986. return;
  2987. }
  2988. rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
  2989. if (!*rmapp) {
  2990. if (!printk_ratelimit())
  2991. return;
  2992. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2993. audit_msg, *sptep);
  2994. dump_stack();
  2995. }
  2996. }
  2997. }
  2998. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2999. {
  3000. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  3001. }
  3002. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  3003. {
  3004. struct kvm_mmu_page *sp;
  3005. int i;
  3006. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  3007. u64 *pt = sp->spt;
  3008. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  3009. continue;
  3010. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3011. u64 ent = pt[i];
  3012. if (!(ent & PT_PRESENT_MASK))
  3013. continue;
  3014. if (!is_writable_pte(ent))
  3015. continue;
  3016. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  3017. }
  3018. }
  3019. return;
  3020. }
  3021. static void audit_rmap(struct kvm_vcpu *vcpu)
  3022. {
  3023. check_writable_mappings_rmap(vcpu);
  3024. count_rmaps(vcpu);
  3025. }
  3026. static void audit_write_protection(struct kvm_vcpu *vcpu)
  3027. {
  3028. struct kvm_mmu_page *sp;
  3029. struct kvm_memory_slot *slot;
  3030. unsigned long *rmapp;
  3031. u64 *spte;
  3032. gfn_t gfn;
  3033. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  3034. if (sp->role.direct)
  3035. continue;
  3036. if (sp->unsync)
  3037. continue;
  3038. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  3039. rmapp = &slot->rmap[gfn - slot->base_gfn];
  3040. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  3041. while (spte) {
  3042. if (is_writable_pte(*spte))
  3043. printk(KERN_ERR "%s: (%s) shadow page has "
  3044. "writable mappings: gfn %lx role %x\n",
  3045. __func__, audit_msg, sp->gfn,
  3046. sp->role.word);
  3047. spte = rmap_next(vcpu->kvm, rmapp, spte);
  3048. }
  3049. }
  3050. }
  3051. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  3052. {
  3053. int olddbg = dbg;
  3054. dbg = 0;
  3055. audit_msg = msg;
  3056. audit_rmap(vcpu);
  3057. audit_write_protection(vcpu);
  3058. if (strcmp("pre pte write", audit_msg) != 0)
  3059. audit_mappings(vcpu);
  3060. audit_writable_sptes_have_rmaps(vcpu);
  3061. dbg = olddbg;
  3062. }
  3063. #endif