ll_rw_blk.c 91 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648
  1. /*
  2. * linux/drivers/block/ll_rw_blk.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  6. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  7. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  8. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  9. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10. */
  11. /*
  12. * This handles all read/write requests to block devices
  13. */
  14. #include <linux/config.h>
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/bio.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/highmem.h>
  21. #include <linux/mm.h>
  22. #include <linux/kernel_stat.h>
  23. #include <linux/string.h>
  24. #include <linux/init.h>
  25. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  26. #include <linux/completion.h>
  27. #include <linux/slab.h>
  28. #include <linux/swap.h>
  29. #include <linux/writeback.h>
  30. #include <linux/blkdev.h>
  31. /*
  32. * for max sense size
  33. */
  34. #include <scsi/scsi_cmnd.h>
  35. static void blk_unplug_work(void *data);
  36. static void blk_unplug_timeout(unsigned long data);
  37. /*
  38. * For the allocated request tables
  39. */
  40. static kmem_cache_t *request_cachep;
  41. /*
  42. * For queue allocation
  43. */
  44. static kmem_cache_t *requestq_cachep;
  45. /*
  46. * For io context allocations
  47. */
  48. static kmem_cache_t *iocontext_cachep;
  49. static wait_queue_head_t congestion_wqh[2] = {
  50. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
  51. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
  52. };
  53. /*
  54. * Controlling structure to kblockd
  55. */
  56. static struct workqueue_struct *kblockd_workqueue;
  57. unsigned long blk_max_low_pfn, blk_max_pfn;
  58. EXPORT_SYMBOL(blk_max_low_pfn);
  59. EXPORT_SYMBOL(blk_max_pfn);
  60. /* Amount of time in which a process may batch requests */
  61. #define BLK_BATCH_TIME (HZ/50UL)
  62. /* Number of requests a "batching" process may submit */
  63. #define BLK_BATCH_REQ 32
  64. /*
  65. * Return the threshold (number of used requests) at which the queue is
  66. * considered to be congested. It include a little hysteresis to keep the
  67. * context switch rate down.
  68. */
  69. static inline int queue_congestion_on_threshold(struct request_queue *q)
  70. {
  71. return q->nr_congestion_on;
  72. }
  73. /*
  74. * The threshold at which a queue is considered to be uncongested
  75. */
  76. static inline int queue_congestion_off_threshold(struct request_queue *q)
  77. {
  78. return q->nr_congestion_off;
  79. }
  80. static void blk_queue_congestion_threshold(struct request_queue *q)
  81. {
  82. int nr;
  83. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  84. if (nr > q->nr_requests)
  85. nr = q->nr_requests;
  86. q->nr_congestion_on = nr;
  87. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  88. if (nr < 1)
  89. nr = 1;
  90. q->nr_congestion_off = nr;
  91. }
  92. /*
  93. * A queue has just exitted congestion. Note this in the global counter of
  94. * congested queues, and wake up anyone who was waiting for requests to be
  95. * put back.
  96. */
  97. static void clear_queue_congested(request_queue_t *q, int rw)
  98. {
  99. enum bdi_state bit;
  100. wait_queue_head_t *wqh = &congestion_wqh[rw];
  101. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  102. clear_bit(bit, &q->backing_dev_info.state);
  103. smp_mb__after_clear_bit();
  104. if (waitqueue_active(wqh))
  105. wake_up(wqh);
  106. }
  107. /*
  108. * A queue has just entered congestion. Flag that in the queue's VM-visible
  109. * state flags and increment the global gounter of congested queues.
  110. */
  111. static void set_queue_congested(request_queue_t *q, int rw)
  112. {
  113. enum bdi_state bit;
  114. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  115. set_bit(bit, &q->backing_dev_info.state);
  116. }
  117. /**
  118. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  119. * @bdev: device
  120. *
  121. * Locates the passed device's request queue and returns the address of its
  122. * backing_dev_info
  123. *
  124. * Will return NULL if the request queue cannot be located.
  125. */
  126. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  127. {
  128. struct backing_dev_info *ret = NULL;
  129. request_queue_t *q = bdev_get_queue(bdev);
  130. if (q)
  131. ret = &q->backing_dev_info;
  132. return ret;
  133. }
  134. EXPORT_SYMBOL(blk_get_backing_dev_info);
  135. void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
  136. {
  137. q->activity_fn = fn;
  138. q->activity_data = data;
  139. }
  140. EXPORT_SYMBOL(blk_queue_activity_fn);
  141. /**
  142. * blk_queue_prep_rq - set a prepare_request function for queue
  143. * @q: queue
  144. * @pfn: prepare_request function
  145. *
  146. * It's possible for a queue to register a prepare_request callback which
  147. * is invoked before the request is handed to the request_fn. The goal of
  148. * the function is to prepare a request for I/O, it can be used to build a
  149. * cdb from the request data for instance.
  150. *
  151. */
  152. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  153. {
  154. q->prep_rq_fn = pfn;
  155. }
  156. EXPORT_SYMBOL(blk_queue_prep_rq);
  157. /**
  158. * blk_queue_merge_bvec - set a merge_bvec function for queue
  159. * @q: queue
  160. * @mbfn: merge_bvec_fn
  161. *
  162. * Usually queues have static limitations on the max sectors or segments that
  163. * we can put in a request. Stacking drivers may have some settings that
  164. * are dynamic, and thus we have to query the queue whether it is ok to
  165. * add a new bio_vec to a bio at a given offset or not. If the block device
  166. * has such limitations, it needs to register a merge_bvec_fn to control
  167. * the size of bio's sent to it. Note that a block device *must* allow a
  168. * single page to be added to an empty bio. The block device driver may want
  169. * to use the bio_split() function to deal with these bio's. By default
  170. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  171. * honored.
  172. */
  173. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  174. {
  175. q->merge_bvec_fn = mbfn;
  176. }
  177. EXPORT_SYMBOL(blk_queue_merge_bvec);
  178. /**
  179. * blk_queue_make_request - define an alternate make_request function for a device
  180. * @q: the request queue for the device to be affected
  181. * @mfn: the alternate make_request function
  182. *
  183. * Description:
  184. * The normal way for &struct bios to be passed to a device
  185. * driver is for them to be collected into requests on a request
  186. * queue, and then to allow the device driver to select requests
  187. * off that queue when it is ready. This works well for many block
  188. * devices. However some block devices (typically virtual devices
  189. * such as md or lvm) do not benefit from the processing on the
  190. * request queue, and are served best by having the requests passed
  191. * directly to them. This can be achieved by providing a function
  192. * to blk_queue_make_request().
  193. *
  194. * Caveat:
  195. * The driver that does this *must* be able to deal appropriately
  196. * with buffers in "highmemory". This can be accomplished by either calling
  197. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  198. * blk_queue_bounce() to create a buffer in normal memory.
  199. **/
  200. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  201. {
  202. /*
  203. * set defaults
  204. */
  205. q->nr_requests = BLKDEV_MAX_RQ;
  206. q->max_phys_segments = MAX_PHYS_SEGMENTS;
  207. q->max_hw_segments = MAX_HW_SEGMENTS;
  208. q->make_request_fn = mfn;
  209. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  210. q->backing_dev_info.state = 0;
  211. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  212. blk_queue_max_sectors(q, MAX_SECTORS);
  213. blk_queue_hardsect_size(q, 512);
  214. blk_queue_dma_alignment(q, 511);
  215. blk_queue_congestion_threshold(q);
  216. q->nr_batching = BLK_BATCH_REQ;
  217. q->unplug_thresh = 4; /* hmm */
  218. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  219. if (q->unplug_delay == 0)
  220. q->unplug_delay = 1;
  221. INIT_WORK(&q->unplug_work, blk_unplug_work, q);
  222. q->unplug_timer.function = blk_unplug_timeout;
  223. q->unplug_timer.data = (unsigned long)q;
  224. /*
  225. * by default assume old behaviour and bounce for any highmem page
  226. */
  227. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  228. blk_queue_activity_fn(q, NULL, NULL);
  229. INIT_LIST_HEAD(&q->drain_list);
  230. }
  231. EXPORT_SYMBOL(blk_queue_make_request);
  232. static inline void rq_init(request_queue_t *q, struct request *rq)
  233. {
  234. INIT_LIST_HEAD(&rq->queuelist);
  235. rq->errors = 0;
  236. rq->rq_status = RQ_ACTIVE;
  237. rq->bio = rq->biotail = NULL;
  238. rq->buffer = NULL;
  239. rq->ref_count = 1;
  240. rq->q = q;
  241. rq->waiting = NULL;
  242. rq->special = NULL;
  243. rq->data_len = 0;
  244. rq->data = NULL;
  245. rq->sense = NULL;
  246. rq->end_io = NULL;
  247. rq->end_io_data = NULL;
  248. }
  249. /**
  250. * blk_queue_ordered - does this queue support ordered writes
  251. * @q: the request queue
  252. * @flag: see below
  253. *
  254. * Description:
  255. * For journalled file systems, doing ordered writes on a commit
  256. * block instead of explicitly doing wait_on_buffer (which is bad
  257. * for performance) can be a big win. Block drivers supporting this
  258. * feature should call this function and indicate so.
  259. *
  260. **/
  261. void blk_queue_ordered(request_queue_t *q, int flag)
  262. {
  263. switch (flag) {
  264. case QUEUE_ORDERED_NONE:
  265. if (q->flush_rq)
  266. kmem_cache_free(request_cachep, q->flush_rq);
  267. q->flush_rq = NULL;
  268. q->ordered = flag;
  269. break;
  270. case QUEUE_ORDERED_TAG:
  271. q->ordered = flag;
  272. break;
  273. case QUEUE_ORDERED_FLUSH:
  274. q->ordered = flag;
  275. if (!q->flush_rq)
  276. q->flush_rq = kmem_cache_alloc(request_cachep,
  277. GFP_KERNEL);
  278. break;
  279. default:
  280. printk("blk_queue_ordered: bad value %d\n", flag);
  281. break;
  282. }
  283. }
  284. EXPORT_SYMBOL(blk_queue_ordered);
  285. /**
  286. * blk_queue_issue_flush_fn - set function for issuing a flush
  287. * @q: the request queue
  288. * @iff: the function to be called issuing the flush
  289. *
  290. * Description:
  291. * If a driver supports issuing a flush command, the support is notified
  292. * to the block layer by defining it through this call.
  293. *
  294. **/
  295. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  296. {
  297. q->issue_flush_fn = iff;
  298. }
  299. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  300. /*
  301. * Cache flushing for ordered writes handling
  302. */
  303. static void blk_pre_flush_end_io(struct request *flush_rq)
  304. {
  305. struct request *rq = flush_rq->end_io_data;
  306. request_queue_t *q = rq->q;
  307. rq->flags |= REQ_BAR_PREFLUSH;
  308. if (!flush_rq->errors)
  309. elv_requeue_request(q, rq);
  310. else {
  311. q->end_flush_fn(q, flush_rq);
  312. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  313. q->request_fn(q);
  314. }
  315. }
  316. static void blk_post_flush_end_io(struct request *flush_rq)
  317. {
  318. struct request *rq = flush_rq->end_io_data;
  319. request_queue_t *q = rq->q;
  320. rq->flags |= REQ_BAR_POSTFLUSH;
  321. q->end_flush_fn(q, flush_rq);
  322. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  323. q->request_fn(q);
  324. }
  325. struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
  326. {
  327. struct request *flush_rq = q->flush_rq;
  328. BUG_ON(!blk_barrier_rq(rq));
  329. if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
  330. return NULL;
  331. rq_init(q, flush_rq);
  332. flush_rq->elevator_private = NULL;
  333. flush_rq->flags = REQ_BAR_FLUSH;
  334. flush_rq->rq_disk = rq->rq_disk;
  335. flush_rq->rl = NULL;
  336. /*
  337. * prepare_flush returns 0 if no flush is needed, just mark both
  338. * pre and post flush as done in that case
  339. */
  340. if (!q->prepare_flush_fn(q, flush_rq)) {
  341. rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
  342. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  343. return rq;
  344. }
  345. /*
  346. * some drivers dequeue requests right away, some only after io
  347. * completion. make sure the request is dequeued.
  348. */
  349. if (!list_empty(&rq->queuelist))
  350. blkdev_dequeue_request(rq);
  351. elv_deactivate_request(q, rq);
  352. flush_rq->end_io_data = rq;
  353. flush_rq->end_io = blk_pre_flush_end_io;
  354. __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
  355. return flush_rq;
  356. }
  357. static void blk_start_post_flush(request_queue_t *q, struct request *rq)
  358. {
  359. struct request *flush_rq = q->flush_rq;
  360. BUG_ON(!blk_barrier_rq(rq));
  361. rq_init(q, flush_rq);
  362. flush_rq->elevator_private = NULL;
  363. flush_rq->flags = REQ_BAR_FLUSH;
  364. flush_rq->rq_disk = rq->rq_disk;
  365. flush_rq->rl = NULL;
  366. if (q->prepare_flush_fn(q, flush_rq)) {
  367. flush_rq->end_io_data = rq;
  368. flush_rq->end_io = blk_post_flush_end_io;
  369. __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
  370. q->request_fn(q);
  371. }
  372. }
  373. static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
  374. int sectors)
  375. {
  376. if (sectors > rq->nr_sectors)
  377. sectors = rq->nr_sectors;
  378. rq->nr_sectors -= sectors;
  379. return rq->nr_sectors;
  380. }
  381. static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
  382. int sectors, int queue_locked)
  383. {
  384. if (q->ordered != QUEUE_ORDERED_FLUSH)
  385. return 0;
  386. if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
  387. return 0;
  388. if (blk_barrier_postflush(rq))
  389. return 0;
  390. if (!blk_check_end_barrier(q, rq, sectors)) {
  391. unsigned long flags = 0;
  392. if (!queue_locked)
  393. spin_lock_irqsave(q->queue_lock, flags);
  394. blk_start_post_flush(q, rq);
  395. if (!queue_locked)
  396. spin_unlock_irqrestore(q->queue_lock, flags);
  397. }
  398. return 1;
  399. }
  400. /**
  401. * blk_complete_barrier_rq - complete possible barrier request
  402. * @q: the request queue for the device
  403. * @rq: the request
  404. * @sectors: number of sectors to complete
  405. *
  406. * Description:
  407. * Used in driver end_io handling to determine whether to postpone
  408. * completion of a barrier request until a post flush has been done. This
  409. * is the unlocked variant, used if the caller doesn't already hold the
  410. * queue lock.
  411. **/
  412. int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
  413. {
  414. return __blk_complete_barrier_rq(q, rq, sectors, 0);
  415. }
  416. EXPORT_SYMBOL(blk_complete_barrier_rq);
  417. /**
  418. * blk_complete_barrier_rq_locked - complete possible barrier request
  419. * @q: the request queue for the device
  420. * @rq: the request
  421. * @sectors: number of sectors to complete
  422. *
  423. * Description:
  424. * See blk_complete_barrier_rq(). This variant must be used if the caller
  425. * holds the queue lock.
  426. **/
  427. int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
  428. int sectors)
  429. {
  430. return __blk_complete_barrier_rq(q, rq, sectors, 1);
  431. }
  432. EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
  433. /**
  434. * blk_queue_bounce_limit - set bounce buffer limit for queue
  435. * @q: the request queue for the device
  436. * @dma_addr: bus address limit
  437. *
  438. * Description:
  439. * Different hardware can have different requirements as to what pages
  440. * it can do I/O directly to. A low level driver can call
  441. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  442. * buffers for doing I/O to pages residing above @page. By default
  443. * the block layer sets this to the highest numbered "low" memory page.
  444. **/
  445. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  446. {
  447. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  448. /*
  449. * set appropriate bounce gfp mask -- unfortunately we don't have a
  450. * full 4GB zone, so we have to resort to low memory for any bounces.
  451. * ISA has its own < 16MB zone.
  452. */
  453. if (bounce_pfn < blk_max_low_pfn) {
  454. BUG_ON(dma_addr < BLK_BOUNCE_ISA);
  455. init_emergency_isa_pool();
  456. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  457. } else
  458. q->bounce_gfp = GFP_NOIO;
  459. q->bounce_pfn = bounce_pfn;
  460. }
  461. EXPORT_SYMBOL(blk_queue_bounce_limit);
  462. /**
  463. * blk_queue_max_sectors - set max sectors for a request for this queue
  464. * @q: the request queue for the device
  465. * @max_sectors: max sectors in the usual 512b unit
  466. *
  467. * Description:
  468. * Enables a low level driver to set an upper limit on the size of
  469. * received requests.
  470. **/
  471. void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
  472. {
  473. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  474. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  475. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  476. }
  477. q->max_sectors = q->max_hw_sectors = max_sectors;
  478. }
  479. EXPORT_SYMBOL(blk_queue_max_sectors);
  480. /**
  481. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  482. * @q: the request queue for the device
  483. * @max_segments: max number of segments
  484. *
  485. * Description:
  486. * Enables a low level driver to set an upper limit on the number of
  487. * physical data segments in a request. This would be the largest sized
  488. * scatter list the driver could handle.
  489. **/
  490. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  491. {
  492. if (!max_segments) {
  493. max_segments = 1;
  494. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  495. }
  496. q->max_phys_segments = max_segments;
  497. }
  498. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  499. /**
  500. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  501. * @q: the request queue for the device
  502. * @max_segments: max number of segments
  503. *
  504. * Description:
  505. * Enables a low level driver to set an upper limit on the number of
  506. * hw data segments in a request. This would be the largest number of
  507. * address/length pairs the host adapter can actually give as once
  508. * to the device.
  509. **/
  510. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  511. {
  512. if (!max_segments) {
  513. max_segments = 1;
  514. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  515. }
  516. q->max_hw_segments = max_segments;
  517. }
  518. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  519. /**
  520. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  521. * @q: the request queue for the device
  522. * @max_size: max size of segment in bytes
  523. *
  524. * Description:
  525. * Enables a low level driver to set an upper limit on the size of a
  526. * coalesced segment
  527. **/
  528. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  529. {
  530. if (max_size < PAGE_CACHE_SIZE) {
  531. max_size = PAGE_CACHE_SIZE;
  532. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  533. }
  534. q->max_segment_size = max_size;
  535. }
  536. EXPORT_SYMBOL(blk_queue_max_segment_size);
  537. /**
  538. * blk_queue_hardsect_size - set hardware sector size for the queue
  539. * @q: the request queue for the device
  540. * @size: the hardware sector size, in bytes
  541. *
  542. * Description:
  543. * This should typically be set to the lowest possible sector size
  544. * that the hardware can operate on (possible without reverting to
  545. * even internal read-modify-write operations). Usually the default
  546. * of 512 covers most hardware.
  547. **/
  548. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  549. {
  550. q->hardsect_size = size;
  551. }
  552. EXPORT_SYMBOL(blk_queue_hardsect_size);
  553. /*
  554. * Returns the minimum that is _not_ zero, unless both are zero.
  555. */
  556. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  557. /**
  558. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  559. * @t: the stacking driver (top)
  560. * @b: the underlying device (bottom)
  561. **/
  562. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  563. {
  564. /* zero is "infinity" */
  565. t->max_sectors = t->max_hw_sectors =
  566. min_not_zero(t->max_sectors,b->max_sectors);
  567. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  568. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  569. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  570. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  571. }
  572. EXPORT_SYMBOL(blk_queue_stack_limits);
  573. /**
  574. * blk_queue_segment_boundary - set boundary rules for segment merging
  575. * @q: the request queue for the device
  576. * @mask: the memory boundary mask
  577. **/
  578. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  579. {
  580. if (mask < PAGE_CACHE_SIZE - 1) {
  581. mask = PAGE_CACHE_SIZE - 1;
  582. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  583. }
  584. q->seg_boundary_mask = mask;
  585. }
  586. EXPORT_SYMBOL(blk_queue_segment_boundary);
  587. /**
  588. * blk_queue_dma_alignment - set dma length and memory alignment
  589. * @q: the request queue for the device
  590. * @mask: alignment mask
  591. *
  592. * description:
  593. * set required memory and length aligment for direct dma transactions.
  594. * this is used when buiding direct io requests for the queue.
  595. *
  596. **/
  597. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  598. {
  599. q->dma_alignment = mask;
  600. }
  601. EXPORT_SYMBOL(blk_queue_dma_alignment);
  602. /**
  603. * blk_queue_find_tag - find a request by its tag and queue
  604. *
  605. * @q: The request queue for the device
  606. * @tag: The tag of the request
  607. *
  608. * Notes:
  609. * Should be used when a device returns a tag and you want to match
  610. * it with a request.
  611. *
  612. * no locks need be held.
  613. **/
  614. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  615. {
  616. struct blk_queue_tag *bqt = q->queue_tags;
  617. if (unlikely(bqt == NULL || tag >= bqt->max_depth))
  618. return NULL;
  619. return bqt->tag_index[tag];
  620. }
  621. EXPORT_SYMBOL(blk_queue_find_tag);
  622. /**
  623. * __blk_queue_free_tags - release tag maintenance info
  624. * @q: the request queue for the device
  625. *
  626. * Notes:
  627. * blk_cleanup_queue() will take care of calling this function, if tagging
  628. * has been used. So there's no need to call this directly.
  629. **/
  630. static void __blk_queue_free_tags(request_queue_t *q)
  631. {
  632. struct blk_queue_tag *bqt = q->queue_tags;
  633. if (!bqt)
  634. return;
  635. if (atomic_dec_and_test(&bqt->refcnt)) {
  636. BUG_ON(bqt->busy);
  637. BUG_ON(!list_empty(&bqt->busy_list));
  638. kfree(bqt->tag_index);
  639. bqt->tag_index = NULL;
  640. kfree(bqt->tag_map);
  641. bqt->tag_map = NULL;
  642. kfree(bqt);
  643. }
  644. q->queue_tags = NULL;
  645. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  646. }
  647. /**
  648. * blk_queue_free_tags - release tag maintenance info
  649. * @q: the request queue for the device
  650. *
  651. * Notes:
  652. * This is used to disabled tagged queuing to a device, yet leave
  653. * queue in function.
  654. **/
  655. void blk_queue_free_tags(request_queue_t *q)
  656. {
  657. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  658. }
  659. EXPORT_SYMBOL(blk_queue_free_tags);
  660. static int
  661. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  662. {
  663. struct request **tag_index;
  664. unsigned long *tag_map;
  665. int nr_ulongs;
  666. if (depth > q->nr_requests * 2) {
  667. depth = q->nr_requests * 2;
  668. printk(KERN_ERR "%s: adjusted depth to %d\n",
  669. __FUNCTION__, depth);
  670. }
  671. tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  672. if (!tag_index)
  673. goto fail;
  674. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  675. tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  676. if (!tag_map)
  677. goto fail;
  678. memset(tag_index, 0, depth * sizeof(struct request *));
  679. memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
  680. tags->max_depth = depth;
  681. tags->tag_index = tag_index;
  682. tags->tag_map = tag_map;
  683. return 0;
  684. fail:
  685. kfree(tag_index);
  686. return -ENOMEM;
  687. }
  688. /**
  689. * blk_queue_init_tags - initialize the queue tag info
  690. * @q: the request queue for the device
  691. * @depth: the maximum queue depth supported
  692. * @tags: the tag to use
  693. **/
  694. int blk_queue_init_tags(request_queue_t *q, int depth,
  695. struct blk_queue_tag *tags)
  696. {
  697. int rc;
  698. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  699. if (!tags && !q->queue_tags) {
  700. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  701. if (!tags)
  702. goto fail;
  703. if (init_tag_map(q, tags, depth))
  704. goto fail;
  705. INIT_LIST_HEAD(&tags->busy_list);
  706. tags->busy = 0;
  707. atomic_set(&tags->refcnt, 1);
  708. } else if (q->queue_tags) {
  709. if ((rc = blk_queue_resize_tags(q, depth)))
  710. return rc;
  711. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  712. return 0;
  713. } else
  714. atomic_inc(&tags->refcnt);
  715. /*
  716. * assign it, all done
  717. */
  718. q->queue_tags = tags;
  719. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  720. return 0;
  721. fail:
  722. kfree(tags);
  723. return -ENOMEM;
  724. }
  725. EXPORT_SYMBOL(blk_queue_init_tags);
  726. /**
  727. * blk_queue_resize_tags - change the queueing depth
  728. * @q: the request queue for the device
  729. * @new_depth: the new max command queueing depth
  730. *
  731. * Notes:
  732. * Must be called with the queue lock held.
  733. **/
  734. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  735. {
  736. struct blk_queue_tag *bqt = q->queue_tags;
  737. struct request **tag_index;
  738. unsigned long *tag_map;
  739. int max_depth, nr_ulongs;
  740. if (!bqt)
  741. return -ENXIO;
  742. /*
  743. * save the old state info, so we can copy it back
  744. */
  745. tag_index = bqt->tag_index;
  746. tag_map = bqt->tag_map;
  747. max_depth = bqt->max_depth;
  748. if (init_tag_map(q, bqt, new_depth))
  749. return -ENOMEM;
  750. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  751. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  752. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  753. kfree(tag_index);
  754. kfree(tag_map);
  755. return 0;
  756. }
  757. EXPORT_SYMBOL(blk_queue_resize_tags);
  758. /**
  759. * blk_queue_end_tag - end tag operations for a request
  760. * @q: the request queue for the device
  761. * @rq: the request that has completed
  762. *
  763. * Description:
  764. * Typically called when end_that_request_first() returns 0, meaning
  765. * all transfers have been done for a request. It's important to call
  766. * this function before end_that_request_last(), as that will put the
  767. * request back on the free list thus corrupting the internal tag list.
  768. *
  769. * Notes:
  770. * queue lock must be held.
  771. **/
  772. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  773. {
  774. struct blk_queue_tag *bqt = q->queue_tags;
  775. int tag = rq->tag;
  776. BUG_ON(tag == -1);
  777. if (unlikely(tag >= bqt->max_depth))
  778. /*
  779. * This can happen after tag depth has been reduced.
  780. * FIXME: how about a warning or info message here?
  781. */
  782. return;
  783. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  784. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  785. __FUNCTION__, tag);
  786. return;
  787. }
  788. list_del_init(&rq->queuelist);
  789. rq->flags &= ~REQ_QUEUED;
  790. rq->tag = -1;
  791. if (unlikely(bqt->tag_index[tag] == NULL))
  792. printk(KERN_ERR "%s: tag %d is missing\n",
  793. __FUNCTION__, tag);
  794. bqt->tag_index[tag] = NULL;
  795. bqt->busy--;
  796. }
  797. EXPORT_SYMBOL(blk_queue_end_tag);
  798. /**
  799. * blk_queue_start_tag - find a free tag and assign it
  800. * @q: the request queue for the device
  801. * @rq: the block request that needs tagging
  802. *
  803. * Description:
  804. * This can either be used as a stand-alone helper, or possibly be
  805. * assigned as the queue &prep_rq_fn (in which case &struct request
  806. * automagically gets a tag assigned). Note that this function
  807. * assumes that any type of request can be queued! if this is not
  808. * true for your device, you must check the request type before
  809. * calling this function. The request will also be removed from
  810. * the request queue, so it's the drivers responsibility to readd
  811. * it if it should need to be restarted for some reason.
  812. *
  813. * Notes:
  814. * queue lock must be held.
  815. **/
  816. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  817. {
  818. struct blk_queue_tag *bqt = q->queue_tags;
  819. int tag;
  820. if (unlikely((rq->flags & REQ_QUEUED))) {
  821. printk(KERN_ERR
  822. "%s: request %p for device [%s] already tagged %d",
  823. __FUNCTION__, rq,
  824. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  825. BUG();
  826. }
  827. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  828. if (tag >= bqt->max_depth)
  829. return 1;
  830. __set_bit(tag, bqt->tag_map);
  831. rq->flags |= REQ_QUEUED;
  832. rq->tag = tag;
  833. bqt->tag_index[tag] = rq;
  834. blkdev_dequeue_request(rq);
  835. list_add(&rq->queuelist, &bqt->busy_list);
  836. bqt->busy++;
  837. return 0;
  838. }
  839. EXPORT_SYMBOL(blk_queue_start_tag);
  840. /**
  841. * blk_queue_invalidate_tags - invalidate all pending tags
  842. * @q: the request queue for the device
  843. *
  844. * Description:
  845. * Hardware conditions may dictate a need to stop all pending requests.
  846. * In this case, we will safely clear the block side of the tag queue and
  847. * readd all requests to the request queue in the right order.
  848. *
  849. * Notes:
  850. * queue lock must be held.
  851. **/
  852. void blk_queue_invalidate_tags(request_queue_t *q)
  853. {
  854. struct blk_queue_tag *bqt = q->queue_tags;
  855. struct list_head *tmp, *n;
  856. struct request *rq;
  857. list_for_each_safe(tmp, n, &bqt->busy_list) {
  858. rq = list_entry_rq(tmp);
  859. if (rq->tag == -1) {
  860. printk(KERN_ERR
  861. "%s: bad tag found on list\n", __FUNCTION__);
  862. list_del_init(&rq->queuelist);
  863. rq->flags &= ~REQ_QUEUED;
  864. } else
  865. blk_queue_end_tag(q, rq);
  866. rq->flags &= ~REQ_STARTED;
  867. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  868. }
  869. }
  870. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  871. static char *rq_flags[] = {
  872. "REQ_RW",
  873. "REQ_FAILFAST",
  874. "REQ_SOFTBARRIER",
  875. "REQ_HARDBARRIER",
  876. "REQ_CMD",
  877. "REQ_NOMERGE",
  878. "REQ_STARTED",
  879. "REQ_DONTPREP",
  880. "REQ_QUEUED",
  881. "REQ_PC",
  882. "REQ_BLOCK_PC",
  883. "REQ_SENSE",
  884. "REQ_FAILED",
  885. "REQ_QUIET",
  886. "REQ_SPECIAL",
  887. "REQ_DRIVE_CMD",
  888. "REQ_DRIVE_TASK",
  889. "REQ_DRIVE_TASKFILE",
  890. "REQ_PREEMPT",
  891. "REQ_PM_SUSPEND",
  892. "REQ_PM_RESUME",
  893. "REQ_PM_SHUTDOWN",
  894. };
  895. void blk_dump_rq_flags(struct request *rq, char *msg)
  896. {
  897. int bit;
  898. printk("%s: dev %s: flags = ", msg,
  899. rq->rq_disk ? rq->rq_disk->disk_name : "?");
  900. bit = 0;
  901. do {
  902. if (rq->flags & (1 << bit))
  903. printk("%s ", rq_flags[bit]);
  904. bit++;
  905. } while (bit < __REQ_NR_BITS);
  906. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  907. rq->nr_sectors,
  908. rq->current_nr_sectors);
  909. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  910. if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
  911. printk("cdb: ");
  912. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  913. printk("%02x ", rq->cmd[bit]);
  914. printk("\n");
  915. }
  916. }
  917. EXPORT_SYMBOL(blk_dump_rq_flags);
  918. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  919. {
  920. struct bio_vec *bv, *bvprv = NULL;
  921. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  922. int high, highprv = 1;
  923. if (unlikely(!bio->bi_io_vec))
  924. return;
  925. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  926. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  927. bio_for_each_segment(bv, bio, i) {
  928. /*
  929. * the trick here is making sure that a high page is never
  930. * considered part of another segment, since that might
  931. * change with the bounce page.
  932. */
  933. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  934. if (high || highprv)
  935. goto new_hw_segment;
  936. if (cluster) {
  937. if (seg_size + bv->bv_len > q->max_segment_size)
  938. goto new_segment;
  939. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  940. goto new_segment;
  941. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  942. goto new_segment;
  943. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  944. goto new_hw_segment;
  945. seg_size += bv->bv_len;
  946. hw_seg_size += bv->bv_len;
  947. bvprv = bv;
  948. continue;
  949. }
  950. new_segment:
  951. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  952. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  953. hw_seg_size += bv->bv_len;
  954. } else {
  955. new_hw_segment:
  956. if (hw_seg_size > bio->bi_hw_front_size)
  957. bio->bi_hw_front_size = hw_seg_size;
  958. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  959. nr_hw_segs++;
  960. }
  961. nr_phys_segs++;
  962. bvprv = bv;
  963. seg_size = bv->bv_len;
  964. highprv = high;
  965. }
  966. if (hw_seg_size > bio->bi_hw_back_size)
  967. bio->bi_hw_back_size = hw_seg_size;
  968. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  969. bio->bi_hw_front_size = hw_seg_size;
  970. bio->bi_phys_segments = nr_phys_segs;
  971. bio->bi_hw_segments = nr_hw_segs;
  972. bio->bi_flags |= (1 << BIO_SEG_VALID);
  973. }
  974. int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  975. struct bio *nxt)
  976. {
  977. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  978. return 0;
  979. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  980. return 0;
  981. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  982. return 0;
  983. /*
  984. * bio and nxt are contigous in memory, check if the queue allows
  985. * these two to be merged into one
  986. */
  987. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  988. return 1;
  989. return 0;
  990. }
  991. EXPORT_SYMBOL(blk_phys_contig_segment);
  992. int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  993. struct bio *nxt)
  994. {
  995. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  996. blk_recount_segments(q, bio);
  997. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  998. blk_recount_segments(q, nxt);
  999. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1000. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  1001. return 0;
  1002. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1003. return 0;
  1004. return 1;
  1005. }
  1006. EXPORT_SYMBOL(blk_hw_contig_segment);
  1007. /*
  1008. * map a request to scatterlist, return number of sg entries setup. Caller
  1009. * must make sure sg can hold rq->nr_phys_segments entries
  1010. */
  1011. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1012. {
  1013. struct bio_vec *bvec, *bvprv;
  1014. struct bio *bio;
  1015. int nsegs, i, cluster;
  1016. nsegs = 0;
  1017. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1018. /*
  1019. * for each bio in rq
  1020. */
  1021. bvprv = NULL;
  1022. rq_for_each_bio(bio, rq) {
  1023. /*
  1024. * for each segment in bio
  1025. */
  1026. bio_for_each_segment(bvec, bio, i) {
  1027. int nbytes = bvec->bv_len;
  1028. if (bvprv && cluster) {
  1029. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1030. goto new_segment;
  1031. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1032. goto new_segment;
  1033. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1034. goto new_segment;
  1035. sg[nsegs - 1].length += nbytes;
  1036. } else {
  1037. new_segment:
  1038. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1039. sg[nsegs].page = bvec->bv_page;
  1040. sg[nsegs].length = nbytes;
  1041. sg[nsegs].offset = bvec->bv_offset;
  1042. nsegs++;
  1043. }
  1044. bvprv = bvec;
  1045. } /* segments in bio */
  1046. } /* bios in rq */
  1047. return nsegs;
  1048. }
  1049. EXPORT_SYMBOL(blk_rq_map_sg);
  1050. /*
  1051. * the standard queue merge functions, can be overridden with device
  1052. * specific ones if so desired
  1053. */
  1054. static inline int ll_new_mergeable(request_queue_t *q,
  1055. struct request *req,
  1056. struct bio *bio)
  1057. {
  1058. int nr_phys_segs = bio_phys_segments(q, bio);
  1059. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1060. req->flags |= REQ_NOMERGE;
  1061. if (req == q->last_merge)
  1062. q->last_merge = NULL;
  1063. return 0;
  1064. }
  1065. /*
  1066. * A hw segment is just getting larger, bump just the phys
  1067. * counter.
  1068. */
  1069. req->nr_phys_segments += nr_phys_segs;
  1070. return 1;
  1071. }
  1072. static inline int ll_new_hw_segment(request_queue_t *q,
  1073. struct request *req,
  1074. struct bio *bio)
  1075. {
  1076. int nr_hw_segs = bio_hw_segments(q, bio);
  1077. int nr_phys_segs = bio_phys_segments(q, bio);
  1078. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1079. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1080. req->flags |= REQ_NOMERGE;
  1081. if (req == q->last_merge)
  1082. q->last_merge = NULL;
  1083. return 0;
  1084. }
  1085. /*
  1086. * This will form the start of a new hw segment. Bump both
  1087. * counters.
  1088. */
  1089. req->nr_hw_segments += nr_hw_segs;
  1090. req->nr_phys_segments += nr_phys_segs;
  1091. return 1;
  1092. }
  1093. static int ll_back_merge_fn(request_queue_t *q, struct request *req,
  1094. struct bio *bio)
  1095. {
  1096. int len;
  1097. if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
  1098. req->flags |= REQ_NOMERGE;
  1099. if (req == q->last_merge)
  1100. q->last_merge = NULL;
  1101. return 0;
  1102. }
  1103. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1104. blk_recount_segments(q, req->biotail);
  1105. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1106. blk_recount_segments(q, bio);
  1107. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1108. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1109. !BIOVEC_VIRT_OVERSIZE(len)) {
  1110. int mergeable = ll_new_mergeable(q, req, bio);
  1111. if (mergeable) {
  1112. if (req->nr_hw_segments == 1)
  1113. req->bio->bi_hw_front_size = len;
  1114. if (bio->bi_hw_segments == 1)
  1115. bio->bi_hw_back_size = len;
  1116. }
  1117. return mergeable;
  1118. }
  1119. return ll_new_hw_segment(q, req, bio);
  1120. }
  1121. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1122. struct bio *bio)
  1123. {
  1124. int len;
  1125. if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
  1126. req->flags |= REQ_NOMERGE;
  1127. if (req == q->last_merge)
  1128. q->last_merge = NULL;
  1129. return 0;
  1130. }
  1131. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1132. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1133. blk_recount_segments(q, bio);
  1134. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1135. blk_recount_segments(q, req->bio);
  1136. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1137. !BIOVEC_VIRT_OVERSIZE(len)) {
  1138. int mergeable = ll_new_mergeable(q, req, bio);
  1139. if (mergeable) {
  1140. if (bio->bi_hw_segments == 1)
  1141. bio->bi_hw_front_size = len;
  1142. if (req->nr_hw_segments == 1)
  1143. req->biotail->bi_hw_back_size = len;
  1144. }
  1145. return mergeable;
  1146. }
  1147. return ll_new_hw_segment(q, req, bio);
  1148. }
  1149. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1150. struct request *next)
  1151. {
  1152. int total_phys_segments = req->nr_phys_segments +next->nr_phys_segments;
  1153. int total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1154. /*
  1155. * First check if the either of the requests are re-queued
  1156. * requests. Can't merge them if they are.
  1157. */
  1158. if (req->special || next->special)
  1159. return 0;
  1160. /*
  1161. * Will it become to large?
  1162. */
  1163. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1164. return 0;
  1165. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1166. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1167. total_phys_segments--;
  1168. if (total_phys_segments > q->max_phys_segments)
  1169. return 0;
  1170. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1171. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1172. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1173. /*
  1174. * propagate the combined length to the end of the requests
  1175. */
  1176. if (req->nr_hw_segments == 1)
  1177. req->bio->bi_hw_front_size = len;
  1178. if (next->nr_hw_segments == 1)
  1179. next->biotail->bi_hw_back_size = len;
  1180. total_hw_segments--;
  1181. }
  1182. if (total_hw_segments > q->max_hw_segments)
  1183. return 0;
  1184. /* Merge is OK... */
  1185. req->nr_phys_segments = total_phys_segments;
  1186. req->nr_hw_segments = total_hw_segments;
  1187. return 1;
  1188. }
  1189. /*
  1190. * "plug" the device if there are no outstanding requests: this will
  1191. * force the transfer to start only after we have put all the requests
  1192. * on the list.
  1193. *
  1194. * This is called with interrupts off and no requests on the queue and
  1195. * with the queue lock held.
  1196. */
  1197. void blk_plug_device(request_queue_t *q)
  1198. {
  1199. WARN_ON(!irqs_disabled());
  1200. /*
  1201. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1202. * which will restart the queueing
  1203. */
  1204. if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
  1205. return;
  1206. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1207. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1208. }
  1209. EXPORT_SYMBOL(blk_plug_device);
  1210. /*
  1211. * remove the queue from the plugged list, if present. called with
  1212. * queue lock held and interrupts disabled.
  1213. */
  1214. int blk_remove_plug(request_queue_t *q)
  1215. {
  1216. WARN_ON(!irqs_disabled());
  1217. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1218. return 0;
  1219. del_timer(&q->unplug_timer);
  1220. return 1;
  1221. }
  1222. EXPORT_SYMBOL(blk_remove_plug);
  1223. /*
  1224. * remove the plug and let it rip..
  1225. */
  1226. void __generic_unplug_device(request_queue_t *q)
  1227. {
  1228. if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
  1229. return;
  1230. if (!blk_remove_plug(q))
  1231. return;
  1232. /*
  1233. * was plugged, fire request_fn if queue has stuff to do
  1234. */
  1235. if (elv_next_request(q))
  1236. q->request_fn(q);
  1237. }
  1238. EXPORT_SYMBOL(__generic_unplug_device);
  1239. /**
  1240. * generic_unplug_device - fire a request queue
  1241. * @q: The &request_queue_t in question
  1242. *
  1243. * Description:
  1244. * Linux uses plugging to build bigger requests queues before letting
  1245. * the device have at them. If a queue is plugged, the I/O scheduler
  1246. * is still adding and merging requests on the queue. Once the queue
  1247. * gets unplugged, the request_fn defined for the queue is invoked and
  1248. * transfers started.
  1249. **/
  1250. void generic_unplug_device(request_queue_t *q)
  1251. {
  1252. spin_lock_irq(q->queue_lock);
  1253. __generic_unplug_device(q);
  1254. spin_unlock_irq(q->queue_lock);
  1255. }
  1256. EXPORT_SYMBOL(generic_unplug_device);
  1257. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1258. struct page *page)
  1259. {
  1260. request_queue_t *q = bdi->unplug_io_data;
  1261. /*
  1262. * devices don't necessarily have an ->unplug_fn defined
  1263. */
  1264. if (q->unplug_fn)
  1265. q->unplug_fn(q);
  1266. }
  1267. static void blk_unplug_work(void *data)
  1268. {
  1269. request_queue_t *q = data;
  1270. q->unplug_fn(q);
  1271. }
  1272. static void blk_unplug_timeout(unsigned long data)
  1273. {
  1274. request_queue_t *q = (request_queue_t *)data;
  1275. kblockd_schedule_work(&q->unplug_work);
  1276. }
  1277. /**
  1278. * blk_start_queue - restart a previously stopped queue
  1279. * @q: The &request_queue_t in question
  1280. *
  1281. * Description:
  1282. * blk_start_queue() will clear the stop flag on the queue, and call
  1283. * the request_fn for the queue if it was in a stopped state when
  1284. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1285. **/
  1286. void blk_start_queue(request_queue_t *q)
  1287. {
  1288. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1289. /*
  1290. * one level of recursion is ok and is much faster than kicking
  1291. * the unplug handling
  1292. */
  1293. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1294. q->request_fn(q);
  1295. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1296. } else {
  1297. blk_plug_device(q);
  1298. kblockd_schedule_work(&q->unplug_work);
  1299. }
  1300. }
  1301. EXPORT_SYMBOL(blk_start_queue);
  1302. /**
  1303. * blk_stop_queue - stop a queue
  1304. * @q: The &request_queue_t in question
  1305. *
  1306. * Description:
  1307. * The Linux block layer assumes that a block driver will consume all
  1308. * entries on the request queue when the request_fn strategy is called.
  1309. * Often this will not happen, because of hardware limitations (queue
  1310. * depth settings). If a device driver gets a 'queue full' response,
  1311. * or if it simply chooses not to queue more I/O at one point, it can
  1312. * call this function to prevent the request_fn from being called until
  1313. * the driver has signalled it's ready to go again. This happens by calling
  1314. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1315. **/
  1316. void blk_stop_queue(request_queue_t *q)
  1317. {
  1318. blk_remove_plug(q);
  1319. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1320. }
  1321. EXPORT_SYMBOL(blk_stop_queue);
  1322. /**
  1323. * blk_sync_queue - cancel any pending callbacks on a queue
  1324. * @q: the queue
  1325. *
  1326. * Description:
  1327. * The block layer may perform asynchronous callback activity
  1328. * on a queue, such as calling the unplug function after a timeout.
  1329. * A block device may call blk_sync_queue to ensure that any
  1330. * such activity is cancelled, thus allowing it to release resources
  1331. * the the callbacks might use. The caller must already have made sure
  1332. * that its ->make_request_fn will not re-add plugging prior to calling
  1333. * this function.
  1334. *
  1335. */
  1336. void blk_sync_queue(struct request_queue *q)
  1337. {
  1338. del_timer_sync(&q->unplug_timer);
  1339. kblockd_flush();
  1340. }
  1341. EXPORT_SYMBOL(blk_sync_queue);
  1342. /**
  1343. * blk_run_queue - run a single device queue
  1344. * @q: The queue to run
  1345. */
  1346. void blk_run_queue(struct request_queue *q)
  1347. {
  1348. unsigned long flags;
  1349. spin_lock_irqsave(q->queue_lock, flags);
  1350. blk_remove_plug(q);
  1351. if (!elv_queue_empty(q))
  1352. q->request_fn(q);
  1353. spin_unlock_irqrestore(q->queue_lock, flags);
  1354. }
  1355. EXPORT_SYMBOL(blk_run_queue);
  1356. /**
  1357. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1358. * @q: the request queue to be released
  1359. *
  1360. * Description:
  1361. * blk_cleanup_queue is the pair to blk_init_queue() or
  1362. * blk_queue_make_request(). It should be called when a request queue is
  1363. * being released; typically when a block device is being de-registered.
  1364. * Currently, its primary task it to free all the &struct request
  1365. * structures that were allocated to the queue and the queue itself.
  1366. *
  1367. * Caveat:
  1368. * Hopefully the low level driver will have finished any
  1369. * outstanding requests first...
  1370. **/
  1371. void blk_cleanup_queue(request_queue_t * q)
  1372. {
  1373. struct request_list *rl = &q->rq;
  1374. if (!atomic_dec_and_test(&q->refcnt))
  1375. return;
  1376. if (q->elevator)
  1377. elevator_exit(q->elevator);
  1378. blk_sync_queue(q);
  1379. if (rl->rq_pool)
  1380. mempool_destroy(rl->rq_pool);
  1381. if (q->queue_tags)
  1382. __blk_queue_free_tags(q);
  1383. blk_queue_ordered(q, QUEUE_ORDERED_NONE);
  1384. kmem_cache_free(requestq_cachep, q);
  1385. }
  1386. EXPORT_SYMBOL(blk_cleanup_queue);
  1387. static int blk_init_free_list(request_queue_t *q)
  1388. {
  1389. struct request_list *rl = &q->rq;
  1390. rl->count[READ] = rl->count[WRITE] = 0;
  1391. rl->starved[READ] = rl->starved[WRITE] = 0;
  1392. init_waitqueue_head(&rl->wait[READ]);
  1393. init_waitqueue_head(&rl->wait[WRITE]);
  1394. init_waitqueue_head(&rl->drain);
  1395. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1396. mempool_free_slab, request_cachep, q->node);
  1397. if (!rl->rq_pool)
  1398. return -ENOMEM;
  1399. return 0;
  1400. }
  1401. static int __make_request(request_queue_t *, struct bio *);
  1402. request_queue_t *blk_alloc_queue(int gfp_mask)
  1403. {
  1404. return blk_alloc_queue_node(gfp_mask, -1);
  1405. }
  1406. EXPORT_SYMBOL(blk_alloc_queue);
  1407. request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
  1408. {
  1409. request_queue_t *q;
  1410. q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
  1411. if (!q)
  1412. return NULL;
  1413. memset(q, 0, sizeof(*q));
  1414. init_timer(&q->unplug_timer);
  1415. atomic_set(&q->refcnt, 1);
  1416. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1417. q->backing_dev_info.unplug_io_data = q;
  1418. return q;
  1419. }
  1420. EXPORT_SYMBOL(blk_alloc_queue_node);
  1421. /**
  1422. * blk_init_queue - prepare a request queue for use with a block device
  1423. * @rfn: The function to be called to process requests that have been
  1424. * placed on the queue.
  1425. * @lock: Request queue spin lock
  1426. *
  1427. * Description:
  1428. * If a block device wishes to use the standard request handling procedures,
  1429. * which sorts requests and coalesces adjacent requests, then it must
  1430. * call blk_init_queue(). The function @rfn will be called when there
  1431. * are requests on the queue that need to be processed. If the device
  1432. * supports plugging, then @rfn may not be called immediately when requests
  1433. * are available on the queue, but may be called at some time later instead.
  1434. * Plugged queues are generally unplugged when a buffer belonging to one
  1435. * of the requests on the queue is needed, or due to memory pressure.
  1436. *
  1437. * @rfn is not required, or even expected, to remove all requests off the
  1438. * queue, but only as many as it can handle at a time. If it does leave
  1439. * requests on the queue, it is responsible for arranging that the requests
  1440. * get dealt with eventually.
  1441. *
  1442. * The queue spin lock must be held while manipulating the requests on the
  1443. * request queue.
  1444. *
  1445. * Function returns a pointer to the initialized request queue, or NULL if
  1446. * it didn't succeed.
  1447. *
  1448. * Note:
  1449. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1450. * when the block device is deactivated (such as at module unload).
  1451. **/
  1452. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1453. {
  1454. return blk_init_queue_node(rfn, lock, -1);
  1455. }
  1456. EXPORT_SYMBOL(blk_init_queue);
  1457. request_queue_t *
  1458. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1459. {
  1460. request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1461. if (!q)
  1462. return NULL;
  1463. q->node = node_id;
  1464. if (blk_init_free_list(q))
  1465. goto out_init;
  1466. /*
  1467. * if caller didn't supply a lock, they get per-queue locking with
  1468. * our embedded lock
  1469. */
  1470. if (!lock) {
  1471. spin_lock_init(&q->__queue_lock);
  1472. lock = &q->__queue_lock;
  1473. }
  1474. q->request_fn = rfn;
  1475. q->back_merge_fn = ll_back_merge_fn;
  1476. q->front_merge_fn = ll_front_merge_fn;
  1477. q->merge_requests_fn = ll_merge_requests_fn;
  1478. q->prep_rq_fn = NULL;
  1479. q->unplug_fn = generic_unplug_device;
  1480. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1481. q->queue_lock = lock;
  1482. blk_queue_segment_boundary(q, 0xffffffff);
  1483. blk_queue_make_request(q, __make_request);
  1484. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1485. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1486. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1487. /*
  1488. * all done
  1489. */
  1490. if (!elevator_init(q, NULL)) {
  1491. blk_queue_congestion_threshold(q);
  1492. return q;
  1493. }
  1494. blk_cleanup_queue(q);
  1495. out_init:
  1496. kmem_cache_free(requestq_cachep, q);
  1497. return NULL;
  1498. }
  1499. EXPORT_SYMBOL(blk_init_queue_node);
  1500. int blk_get_queue(request_queue_t *q)
  1501. {
  1502. if (!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  1503. atomic_inc(&q->refcnt);
  1504. return 0;
  1505. }
  1506. return 1;
  1507. }
  1508. EXPORT_SYMBOL(blk_get_queue);
  1509. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1510. {
  1511. elv_put_request(q, rq);
  1512. mempool_free(rq, q->rq.rq_pool);
  1513. }
  1514. static inline struct request *blk_alloc_request(request_queue_t *q, int rw,
  1515. int gfp_mask)
  1516. {
  1517. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1518. if (!rq)
  1519. return NULL;
  1520. /*
  1521. * first three bits are identical in rq->flags and bio->bi_rw,
  1522. * see bio.h and blkdev.h
  1523. */
  1524. rq->flags = rw;
  1525. if (!elv_set_request(q, rq, gfp_mask))
  1526. return rq;
  1527. mempool_free(rq, q->rq.rq_pool);
  1528. return NULL;
  1529. }
  1530. /*
  1531. * ioc_batching returns true if the ioc is a valid batching request and
  1532. * should be given priority access to a request.
  1533. */
  1534. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1535. {
  1536. if (!ioc)
  1537. return 0;
  1538. /*
  1539. * Make sure the process is able to allocate at least 1 request
  1540. * even if the batch times out, otherwise we could theoretically
  1541. * lose wakeups.
  1542. */
  1543. return ioc->nr_batch_requests == q->nr_batching ||
  1544. (ioc->nr_batch_requests > 0
  1545. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1546. }
  1547. /*
  1548. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1549. * will cause the process to be a "batcher" on all queues in the system. This
  1550. * is the behaviour we want though - once it gets a wakeup it should be given
  1551. * a nice run.
  1552. */
  1553. void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1554. {
  1555. if (!ioc || ioc_batching(q, ioc))
  1556. return;
  1557. ioc->nr_batch_requests = q->nr_batching;
  1558. ioc->last_waited = jiffies;
  1559. }
  1560. static void __freed_request(request_queue_t *q, int rw)
  1561. {
  1562. struct request_list *rl = &q->rq;
  1563. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1564. clear_queue_congested(q, rw);
  1565. if (rl->count[rw] + 1 <= q->nr_requests) {
  1566. if (waitqueue_active(&rl->wait[rw]))
  1567. wake_up(&rl->wait[rw]);
  1568. blk_clear_queue_full(q, rw);
  1569. }
  1570. }
  1571. /*
  1572. * A request has just been released. Account for it, update the full and
  1573. * congestion status, wake up any waiters. Called under q->queue_lock.
  1574. */
  1575. static void freed_request(request_queue_t *q, int rw)
  1576. {
  1577. struct request_list *rl = &q->rq;
  1578. rl->count[rw]--;
  1579. __freed_request(q, rw);
  1580. if (unlikely(rl->starved[rw ^ 1]))
  1581. __freed_request(q, rw ^ 1);
  1582. if (!rl->count[READ] && !rl->count[WRITE]) {
  1583. smp_mb();
  1584. if (unlikely(waitqueue_active(&rl->drain)))
  1585. wake_up(&rl->drain);
  1586. }
  1587. }
  1588. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1589. /*
  1590. * Get a free request, queue_lock must not be held
  1591. */
  1592. static struct request *get_request(request_queue_t *q, int rw, int gfp_mask)
  1593. {
  1594. struct request *rq = NULL;
  1595. struct request_list *rl = &q->rq;
  1596. struct io_context *ioc = get_io_context(gfp_mask);
  1597. if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
  1598. goto out;
  1599. spin_lock_irq(q->queue_lock);
  1600. if (rl->count[rw]+1 >= q->nr_requests) {
  1601. /*
  1602. * The queue will fill after this allocation, so set it as
  1603. * full, and mark this process as "batching". This process
  1604. * will be allowed to complete a batch of requests, others
  1605. * will be blocked.
  1606. */
  1607. if (!blk_queue_full(q, rw)) {
  1608. ioc_set_batching(q, ioc);
  1609. blk_set_queue_full(q, rw);
  1610. }
  1611. }
  1612. switch (elv_may_queue(q, rw)) {
  1613. case ELV_MQUEUE_NO:
  1614. goto rq_starved;
  1615. case ELV_MQUEUE_MAY:
  1616. break;
  1617. case ELV_MQUEUE_MUST:
  1618. goto get_rq;
  1619. }
  1620. if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
  1621. /*
  1622. * The queue is full and the allocating process is not a
  1623. * "batcher", and not exempted by the IO scheduler
  1624. */
  1625. spin_unlock_irq(q->queue_lock);
  1626. goto out;
  1627. }
  1628. get_rq:
  1629. rl->count[rw]++;
  1630. rl->starved[rw] = 0;
  1631. if (rl->count[rw] >= queue_congestion_on_threshold(q))
  1632. set_queue_congested(q, rw);
  1633. spin_unlock_irq(q->queue_lock);
  1634. rq = blk_alloc_request(q, rw, gfp_mask);
  1635. if (!rq) {
  1636. /*
  1637. * Allocation failed presumably due to memory. Undo anything
  1638. * we might have messed up.
  1639. *
  1640. * Allocating task should really be put onto the front of the
  1641. * wait queue, but this is pretty rare.
  1642. */
  1643. spin_lock_irq(q->queue_lock);
  1644. freed_request(q, rw);
  1645. /*
  1646. * in the very unlikely event that allocation failed and no
  1647. * requests for this direction was pending, mark us starved
  1648. * so that freeing of a request in the other direction will
  1649. * notice us. another possible fix would be to split the
  1650. * rq mempool into READ and WRITE
  1651. */
  1652. rq_starved:
  1653. if (unlikely(rl->count[rw] == 0))
  1654. rl->starved[rw] = 1;
  1655. spin_unlock_irq(q->queue_lock);
  1656. goto out;
  1657. }
  1658. if (ioc_batching(q, ioc))
  1659. ioc->nr_batch_requests--;
  1660. rq_init(q, rq);
  1661. rq->rl = rl;
  1662. out:
  1663. put_io_context(ioc);
  1664. return rq;
  1665. }
  1666. /*
  1667. * No available requests for this queue, unplug the device and wait for some
  1668. * requests to become available.
  1669. */
  1670. static struct request *get_request_wait(request_queue_t *q, int rw)
  1671. {
  1672. DEFINE_WAIT(wait);
  1673. struct request *rq;
  1674. generic_unplug_device(q);
  1675. do {
  1676. struct request_list *rl = &q->rq;
  1677. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1678. TASK_UNINTERRUPTIBLE);
  1679. rq = get_request(q, rw, GFP_NOIO);
  1680. if (!rq) {
  1681. struct io_context *ioc;
  1682. io_schedule();
  1683. /*
  1684. * After sleeping, we become a "batching" process and
  1685. * will be able to allocate at least one request, and
  1686. * up to a big batch of them for a small period time.
  1687. * See ioc_batching, ioc_set_batching
  1688. */
  1689. ioc = get_io_context(GFP_NOIO);
  1690. ioc_set_batching(q, ioc);
  1691. put_io_context(ioc);
  1692. }
  1693. finish_wait(&rl->wait[rw], &wait);
  1694. } while (!rq);
  1695. return rq;
  1696. }
  1697. struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
  1698. {
  1699. struct request *rq;
  1700. BUG_ON(rw != READ && rw != WRITE);
  1701. if (gfp_mask & __GFP_WAIT)
  1702. rq = get_request_wait(q, rw);
  1703. else
  1704. rq = get_request(q, rw, gfp_mask);
  1705. return rq;
  1706. }
  1707. EXPORT_SYMBOL(blk_get_request);
  1708. /**
  1709. * blk_requeue_request - put a request back on queue
  1710. * @q: request queue where request should be inserted
  1711. * @rq: request to be inserted
  1712. *
  1713. * Description:
  1714. * Drivers often keep queueing requests until the hardware cannot accept
  1715. * more, when that condition happens we need to put the request back
  1716. * on the queue. Must be called with queue lock held.
  1717. */
  1718. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1719. {
  1720. if (blk_rq_tagged(rq))
  1721. blk_queue_end_tag(q, rq);
  1722. elv_requeue_request(q, rq);
  1723. }
  1724. EXPORT_SYMBOL(blk_requeue_request);
  1725. /**
  1726. * blk_insert_request - insert a special request in to a request queue
  1727. * @q: request queue where request should be inserted
  1728. * @rq: request to be inserted
  1729. * @at_head: insert request at head or tail of queue
  1730. * @data: private data
  1731. *
  1732. * Description:
  1733. * Many block devices need to execute commands asynchronously, so they don't
  1734. * block the whole kernel from preemption during request execution. This is
  1735. * accomplished normally by inserting aritficial requests tagged as
  1736. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1737. * scheduled for actual execution by the request queue.
  1738. *
  1739. * We have the option of inserting the head or the tail of the queue.
  1740. * Typically we use the tail for new ioctls and so forth. We use the head
  1741. * of the queue for things like a QUEUE_FULL message from a device, or a
  1742. * host that is unable to accept a particular command.
  1743. */
  1744. void blk_insert_request(request_queue_t *q, struct request *rq,
  1745. int at_head, void *data)
  1746. {
  1747. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1748. unsigned long flags;
  1749. /*
  1750. * tell I/O scheduler that this isn't a regular read/write (ie it
  1751. * must not attempt merges on this) and that it acts as a soft
  1752. * barrier
  1753. */
  1754. rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
  1755. rq->special = data;
  1756. spin_lock_irqsave(q->queue_lock, flags);
  1757. /*
  1758. * If command is tagged, release the tag
  1759. */
  1760. if (blk_rq_tagged(rq))
  1761. blk_queue_end_tag(q, rq);
  1762. drive_stat_acct(rq, rq->nr_sectors, 1);
  1763. __elv_add_request(q, rq, where, 0);
  1764. if (blk_queue_plugged(q))
  1765. __generic_unplug_device(q);
  1766. else
  1767. q->request_fn(q);
  1768. spin_unlock_irqrestore(q->queue_lock, flags);
  1769. }
  1770. EXPORT_SYMBOL(blk_insert_request);
  1771. /**
  1772. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  1773. * @q: request queue where request should be inserted
  1774. * @rw: READ or WRITE data
  1775. * @ubuf: the user buffer
  1776. * @len: length of user data
  1777. *
  1778. * Description:
  1779. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1780. * a kernel bounce buffer is used.
  1781. *
  1782. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1783. * still in process context.
  1784. *
  1785. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1786. * before being submitted to the device, as pages mapped may be out of
  1787. * reach. It's the callers responsibility to make sure this happens. The
  1788. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1789. * unmapping.
  1790. */
  1791. struct request *blk_rq_map_user(request_queue_t *q, int rw, void __user *ubuf,
  1792. unsigned int len)
  1793. {
  1794. unsigned long uaddr;
  1795. struct request *rq;
  1796. struct bio *bio;
  1797. if (len > (q->max_sectors << 9))
  1798. return ERR_PTR(-EINVAL);
  1799. if ((!len && ubuf) || (len && !ubuf))
  1800. return ERR_PTR(-EINVAL);
  1801. rq = blk_get_request(q, rw, __GFP_WAIT);
  1802. if (!rq)
  1803. return ERR_PTR(-ENOMEM);
  1804. /*
  1805. * if alignment requirement is satisfied, map in user pages for
  1806. * direct dma. else, set up kernel bounce buffers
  1807. */
  1808. uaddr = (unsigned long) ubuf;
  1809. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  1810. bio = bio_map_user(q, NULL, uaddr, len, rw == READ);
  1811. else
  1812. bio = bio_copy_user(q, uaddr, len, rw == READ);
  1813. if (!IS_ERR(bio)) {
  1814. rq->bio = rq->biotail = bio;
  1815. blk_rq_bio_prep(q, rq, bio);
  1816. rq->buffer = rq->data = NULL;
  1817. rq->data_len = len;
  1818. return rq;
  1819. }
  1820. /*
  1821. * bio is the err-ptr
  1822. */
  1823. blk_put_request(rq);
  1824. return (struct request *) bio;
  1825. }
  1826. EXPORT_SYMBOL(blk_rq_map_user);
  1827. /**
  1828. * blk_rq_unmap_user - unmap a request with user data
  1829. * @rq: request to be unmapped
  1830. * @bio: bio for the request
  1831. * @ulen: length of user buffer
  1832. *
  1833. * Description:
  1834. * Unmap a request previously mapped by blk_rq_map_user().
  1835. */
  1836. int blk_rq_unmap_user(struct request *rq, struct bio *bio, unsigned int ulen)
  1837. {
  1838. int ret = 0;
  1839. if (bio) {
  1840. if (bio_flagged(bio, BIO_USER_MAPPED))
  1841. bio_unmap_user(bio);
  1842. else
  1843. ret = bio_uncopy_user(bio);
  1844. }
  1845. blk_put_request(rq);
  1846. return ret;
  1847. }
  1848. EXPORT_SYMBOL(blk_rq_unmap_user);
  1849. /**
  1850. * blk_execute_rq - insert a request into queue for execution
  1851. * @q: queue to insert the request in
  1852. * @bd_disk: matching gendisk
  1853. * @rq: request to insert
  1854. *
  1855. * Description:
  1856. * Insert a fully prepared request at the back of the io scheduler queue
  1857. * for execution.
  1858. */
  1859. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  1860. struct request *rq)
  1861. {
  1862. DECLARE_COMPLETION(wait);
  1863. char sense[SCSI_SENSE_BUFFERSIZE];
  1864. int err = 0;
  1865. rq->rq_disk = bd_disk;
  1866. /*
  1867. * we need an extra reference to the request, so we can look at
  1868. * it after io completion
  1869. */
  1870. rq->ref_count++;
  1871. if (!rq->sense) {
  1872. memset(sense, 0, sizeof(sense));
  1873. rq->sense = sense;
  1874. rq->sense_len = 0;
  1875. }
  1876. rq->flags |= REQ_NOMERGE;
  1877. rq->waiting = &wait;
  1878. rq->end_io = blk_end_sync_rq;
  1879. elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
  1880. generic_unplug_device(q);
  1881. wait_for_completion(&wait);
  1882. rq->waiting = NULL;
  1883. if (rq->errors)
  1884. err = -EIO;
  1885. return err;
  1886. }
  1887. EXPORT_SYMBOL(blk_execute_rq);
  1888. /**
  1889. * blkdev_issue_flush - queue a flush
  1890. * @bdev: blockdev to issue flush for
  1891. * @error_sector: error sector
  1892. *
  1893. * Description:
  1894. * Issue a flush for the block device in question. Caller can supply
  1895. * room for storing the error offset in case of a flush error, if they
  1896. * wish to. Caller must run wait_for_completion() on its own.
  1897. */
  1898. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  1899. {
  1900. request_queue_t *q;
  1901. if (bdev->bd_disk == NULL)
  1902. return -ENXIO;
  1903. q = bdev_get_queue(bdev);
  1904. if (!q)
  1905. return -ENXIO;
  1906. if (!q->issue_flush_fn)
  1907. return -EOPNOTSUPP;
  1908. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  1909. }
  1910. EXPORT_SYMBOL(blkdev_issue_flush);
  1911. /**
  1912. * blkdev_scsi_issue_flush_fn - issue flush for SCSI devices
  1913. * @q: device queue
  1914. * @disk: gendisk
  1915. * @error_sector: error offset
  1916. *
  1917. * Description:
  1918. * Devices understanding the SCSI command set, can use this function as
  1919. * a helper for issuing a cache flush. Note: driver is required to store
  1920. * the error offset (in case of error flushing) in ->sector of struct
  1921. * request.
  1922. */
  1923. int blkdev_scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
  1924. sector_t *error_sector)
  1925. {
  1926. struct request *rq = blk_get_request(q, WRITE, __GFP_WAIT);
  1927. int ret;
  1928. rq->flags |= REQ_BLOCK_PC | REQ_SOFTBARRIER;
  1929. rq->sector = 0;
  1930. memset(rq->cmd, 0, sizeof(rq->cmd));
  1931. rq->cmd[0] = 0x35;
  1932. rq->cmd_len = 12;
  1933. rq->data = NULL;
  1934. rq->data_len = 0;
  1935. rq->timeout = 60 * HZ;
  1936. ret = blk_execute_rq(q, disk, rq);
  1937. if (ret && error_sector)
  1938. *error_sector = rq->sector;
  1939. blk_put_request(rq);
  1940. return ret;
  1941. }
  1942. EXPORT_SYMBOL(blkdev_scsi_issue_flush_fn);
  1943. void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  1944. {
  1945. int rw = rq_data_dir(rq);
  1946. if (!blk_fs_request(rq) || !rq->rq_disk)
  1947. return;
  1948. if (rw == READ) {
  1949. __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
  1950. if (!new_io)
  1951. __disk_stat_inc(rq->rq_disk, read_merges);
  1952. } else if (rw == WRITE) {
  1953. __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
  1954. if (!new_io)
  1955. __disk_stat_inc(rq->rq_disk, write_merges);
  1956. }
  1957. if (new_io) {
  1958. disk_round_stats(rq->rq_disk);
  1959. rq->rq_disk->in_flight++;
  1960. }
  1961. }
  1962. /*
  1963. * add-request adds a request to the linked list.
  1964. * queue lock is held and interrupts disabled, as we muck with the
  1965. * request queue list.
  1966. */
  1967. static inline void add_request(request_queue_t * q, struct request * req)
  1968. {
  1969. drive_stat_acct(req, req->nr_sectors, 1);
  1970. if (q->activity_fn)
  1971. q->activity_fn(q->activity_data, rq_data_dir(req));
  1972. /*
  1973. * elevator indicated where it wants this request to be
  1974. * inserted at elevator_merge time
  1975. */
  1976. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  1977. }
  1978. /*
  1979. * disk_round_stats() - Round off the performance stats on a struct
  1980. * disk_stats.
  1981. *
  1982. * The average IO queue length and utilisation statistics are maintained
  1983. * by observing the current state of the queue length and the amount of
  1984. * time it has been in this state for.
  1985. *
  1986. * Normally, that accounting is done on IO completion, but that can result
  1987. * in more than a second's worth of IO being accounted for within any one
  1988. * second, leading to >100% utilisation. To deal with that, we call this
  1989. * function to do a round-off before returning the results when reading
  1990. * /proc/diskstats. This accounts immediately for all queue usage up to
  1991. * the current jiffies and restarts the counters again.
  1992. */
  1993. void disk_round_stats(struct gendisk *disk)
  1994. {
  1995. unsigned long now = jiffies;
  1996. __disk_stat_add(disk, time_in_queue,
  1997. disk->in_flight * (now - disk->stamp));
  1998. disk->stamp = now;
  1999. if (disk->in_flight)
  2000. __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
  2001. disk->stamp_idle = now;
  2002. }
  2003. /*
  2004. * queue lock must be held
  2005. */
  2006. static void __blk_put_request(request_queue_t *q, struct request *req)
  2007. {
  2008. struct request_list *rl = req->rl;
  2009. if (unlikely(!q))
  2010. return;
  2011. if (unlikely(--req->ref_count))
  2012. return;
  2013. req->rq_status = RQ_INACTIVE;
  2014. req->q = NULL;
  2015. req->rl = NULL;
  2016. /*
  2017. * Request may not have originated from ll_rw_blk. if not,
  2018. * it didn't come out of our reserved rq pools
  2019. */
  2020. if (rl) {
  2021. int rw = rq_data_dir(req);
  2022. elv_completed_request(q, req);
  2023. BUG_ON(!list_empty(&req->queuelist));
  2024. blk_free_request(q, req);
  2025. freed_request(q, rw);
  2026. }
  2027. }
  2028. void blk_put_request(struct request *req)
  2029. {
  2030. /*
  2031. * if req->rl isn't set, this request didnt originate from the
  2032. * block layer, so it's safe to just disregard it
  2033. */
  2034. if (req->rl) {
  2035. unsigned long flags;
  2036. request_queue_t *q = req->q;
  2037. spin_lock_irqsave(q->queue_lock, flags);
  2038. __blk_put_request(q, req);
  2039. spin_unlock_irqrestore(q->queue_lock, flags);
  2040. }
  2041. }
  2042. EXPORT_SYMBOL(blk_put_request);
  2043. /**
  2044. * blk_end_sync_rq - executes a completion event on a request
  2045. * @rq: request to complete
  2046. */
  2047. void blk_end_sync_rq(struct request *rq)
  2048. {
  2049. struct completion *waiting = rq->waiting;
  2050. rq->waiting = NULL;
  2051. __blk_put_request(rq->q, rq);
  2052. /*
  2053. * complete last, if this is a stack request the process (and thus
  2054. * the rq pointer) could be invalid right after this complete()
  2055. */
  2056. complete(waiting);
  2057. }
  2058. EXPORT_SYMBOL(blk_end_sync_rq);
  2059. /**
  2060. * blk_congestion_wait - wait for a queue to become uncongested
  2061. * @rw: READ or WRITE
  2062. * @timeout: timeout in jiffies
  2063. *
  2064. * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
  2065. * If no queues are congested then just wait for the next request to be
  2066. * returned.
  2067. */
  2068. long blk_congestion_wait(int rw, long timeout)
  2069. {
  2070. long ret;
  2071. DEFINE_WAIT(wait);
  2072. wait_queue_head_t *wqh = &congestion_wqh[rw];
  2073. prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
  2074. ret = io_schedule_timeout(timeout);
  2075. finish_wait(wqh, &wait);
  2076. return ret;
  2077. }
  2078. EXPORT_SYMBOL(blk_congestion_wait);
  2079. /*
  2080. * Has to be called with the request spinlock acquired
  2081. */
  2082. static int attempt_merge(request_queue_t *q, struct request *req,
  2083. struct request *next)
  2084. {
  2085. if (!rq_mergeable(req) || !rq_mergeable(next))
  2086. return 0;
  2087. /*
  2088. * not contigious
  2089. */
  2090. if (req->sector + req->nr_sectors != next->sector)
  2091. return 0;
  2092. if (rq_data_dir(req) != rq_data_dir(next)
  2093. || req->rq_disk != next->rq_disk
  2094. || next->waiting || next->special)
  2095. return 0;
  2096. /*
  2097. * If we are allowed to merge, then append bio list
  2098. * from next to rq and release next. merge_requests_fn
  2099. * will have updated segment counts, update sector
  2100. * counts here.
  2101. */
  2102. if (!q->merge_requests_fn(q, req, next))
  2103. return 0;
  2104. /*
  2105. * At this point we have either done a back merge
  2106. * or front merge. We need the smaller start_time of
  2107. * the merged requests to be the current request
  2108. * for accounting purposes.
  2109. */
  2110. if (time_after(req->start_time, next->start_time))
  2111. req->start_time = next->start_time;
  2112. req->biotail->bi_next = next->bio;
  2113. req->biotail = next->biotail;
  2114. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2115. elv_merge_requests(q, req, next);
  2116. if (req->rq_disk) {
  2117. disk_round_stats(req->rq_disk);
  2118. req->rq_disk->in_flight--;
  2119. }
  2120. __blk_put_request(q, next);
  2121. return 1;
  2122. }
  2123. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2124. {
  2125. struct request *next = elv_latter_request(q, rq);
  2126. if (next)
  2127. return attempt_merge(q, rq, next);
  2128. return 0;
  2129. }
  2130. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2131. {
  2132. struct request *prev = elv_former_request(q, rq);
  2133. if (prev)
  2134. return attempt_merge(q, prev, rq);
  2135. return 0;
  2136. }
  2137. /**
  2138. * blk_attempt_remerge - attempt to remerge active head with next request
  2139. * @q: The &request_queue_t belonging to the device
  2140. * @rq: The head request (usually)
  2141. *
  2142. * Description:
  2143. * For head-active devices, the queue can easily be unplugged so quickly
  2144. * that proper merging is not done on the front request. This may hurt
  2145. * performance greatly for some devices. The block layer cannot safely
  2146. * do merging on that first request for these queues, but the driver can
  2147. * call this function and make it happen any way. Only the driver knows
  2148. * when it is safe to do so.
  2149. **/
  2150. void blk_attempt_remerge(request_queue_t *q, struct request *rq)
  2151. {
  2152. unsigned long flags;
  2153. spin_lock_irqsave(q->queue_lock, flags);
  2154. attempt_back_merge(q, rq);
  2155. spin_unlock_irqrestore(q->queue_lock, flags);
  2156. }
  2157. EXPORT_SYMBOL(blk_attempt_remerge);
  2158. /*
  2159. * Non-locking blk_attempt_remerge variant.
  2160. */
  2161. void __blk_attempt_remerge(request_queue_t *q, struct request *rq)
  2162. {
  2163. attempt_back_merge(q, rq);
  2164. }
  2165. EXPORT_SYMBOL(__blk_attempt_remerge);
  2166. static int __make_request(request_queue_t *q, struct bio *bio)
  2167. {
  2168. struct request *req, *freereq = NULL;
  2169. int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
  2170. sector_t sector;
  2171. sector = bio->bi_sector;
  2172. nr_sectors = bio_sectors(bio);
  2173. cur_nr_sectors = bio_cur_sectors(bio);
  2174. rw = bio_data_dir(bio);
  2175. sync = bio_sync(bio);
  2176. /*
  2177. * low level driver can indicate that it wants pages above a
  2178. * certain limit bounced to low memory (ie for highmem, or even
  2179. * ISA dma in theory)
  2180. */
  2181. blk_queue_bounce(q, &bio);
  2182. spin_lock_prefetch(q->queue_lock);
  2183. barrier = bio_barrier(bio);
  2184. if (barrier && (q->ordered == QUEUE_ORDERED_NONE)) {
  2185. err = -EOPNOTSUPP;
  2186. goto end_io;
  2187. }
  2188. again:
  2189. spin_lock_irq(q->queue_lock);
  2190. if (elv_queue_empty(q)) {
  2191. blk_plug_device(q);
  2192. goto get_rq;
  2193. }
  2194. if (barrier)
  2195. goto get_rq;
  2196. el_ret = elv_merge(q, &req, bio);
  2197. switch (el_ret) {
  2198. case ELEVATOR_BACK_MERGE:
  2199. BUG_ON(!rq_mergeable(req));
  2200. if (!q->back_merge_fn(q, req, bio))
  2201. break;
  2202. req->biotail->bi_next = bio;
  2203. req->biotail = bio;
  2204. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2205. drive_stat_acct(req, nr_sectors, 0);
  2206. if (!attempt_back_merge(q, req))
  2207. elv_merged_request(q, req);
  2208. goto out;
  2209. case ELEVATOR_FRONT_MERGE:
  2210. BUG_ON(!rq_mergeable(req));
  2211. if (!q->front_merge_fn(q, req, bio))
  2212. break;
  2213. bio->bi_next = req->bio;
  2214. req->bio = bio;
  2215. /*
  2216. * may not be valid. if the low level driver said
  2217. * it didn't need a bounce buffer then it better
  2218. * not touch req->buffer either...
  2219. */
  2220. req->buffer = bio_data(bio);
  2221. req->current_nr_sectors = cur_nr_sectors;
  2222. req->hard_cur_sectors = cur_nr_sectors;
  2223. req->sector = req->hard_sector = sector;
  2224. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2225. drive_stat_acct(req, nr_sectors, 0);
  2226. if (!attempt_front_merge(q, req))
  2227. elv_merged_request(q, req);
  2228. goto out;
  2229. /*
  2230. * elevator says don't/can't merge. get new request
  2231. */
  2232. case ELEVATOR_NO_MERGE:
  2233. break;
  2234. default:
  2235. printk("elevator returned crap (%d)\n", el_ret);
  2236. BUG();
  2237. }
  2238. /*
  2239. * Grab a free request from the freelist - if that is empty, check
  2240. * if we are doing read ahead and abort instead of blocking for
  2241. * a free slot.
  2242. */
  2243. get_rq:
  2244. if (freereq) {
  2245. req = freereq;
  2246. freereq = NULL;
  2247. } else {
  2248. spin_unlock_irq(q->queue_lock);
  2249. if ((freereq = get_request(q, rw, GFP_ATOMIC)) == NULL) {
  2250. /*
  2251. * READA bit set
  2252. */
  2253. err = -EWOULDBLOCK;
  2254. if (bio_rw_ahead(bio))
  2255. goto end_io;
  2256. freereq = get_request_wait(q, rw);
  2257. }
  2258. goto again;
  2259. }
  2260. req->flags |= REQ_CMD;
  2261. /*
  2262. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2263. */
  2264. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2265. req->flags |= REQ_FAILFAST;
  2266. /*
  2267. * REQ_BARRIER implies no merging, but lets make it explicit
  2268. */
  2269. if (barrier)
  2270. req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2271. req->errors = 0;
  2272. req->hard_sector = req->sector = sector;
  2273. req->hard_nr_sectors = req->nr_sectors = nr_sectors;
  2274. req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
  2275. req->nr_phys_segments = bio_phys_segments(q, bio);
  2276. req->nr_hw_segments = bio_hw_segments(q, bio);
  2277. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2278. req->waiting = NULL;
  2279. req->bio = req->biotail = bio;
  2280. req->rq_disk = bio->bi_bdev->bd_disk;
  2281. req->start_time = jiffies;
  2282. add_request(q, req);
  2283. out:
  2284. if (freereq)
  2285. __blk_put_request(q, freereq);
  2286. if (sync)
  2287. __generic_unplug_device(q);
  2288. spin_unlock_irq(q->queue_lock);
  2289. return 0;
  2290. end_io:
  2291. bio_endio(bio, nr_sectors << 9, err);
  2292. return 0;
  2293. }
  2294. /*
  2295. * If bio->bi_dev is a partition, remap the location
  2296. */
  2297. static inline void blk_partition_remap(struct bio *bio)
  2298. {
  2299. struct block_device *bdev = bio->bi_bdev;
  2300. if (bdev != bdev->bd_contains) {
  2301. struct hd_struct *p = bdev->bd_part;
  2302. switch (bio->bi_rw) {
  2303. case READ:
  2304. p->read_sectors += bio_sectors(bio);
  2305. p->reads++;
  2306. break;
  2307. case WRITE:
  2308. p->write_sectors += bio_sectors(bio);
  2309. p->writes++;
  2310. break;
  2311. }
  2312. bio->bi_sector += p->start_sect;
  2313. bio->bi_bdev = bdev->bd_contains;
  2314. }
  2315. }
  2316. void blk_finish_queue_drain(request_queue_t *q)
  2317. {
  2318. struct request_list *rl = &q->rq;
  2319. struct request *rq;
  2320. spin_lock_irq(q->queue_lock);
  2321. clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
  2322. while (!list_empty(&q->drain_list)) {
  2323. rq = list_entry_rq(q->drain_list.next);
  2324. list_del_init(&rq->queuelist);
  2325. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
  2326. }
  2327. spin_unlock_irq(q->queue_lock);
  2328. wake_up(&rl->wait[0]);
  2329. wake_up(&rl->wait[1]);
  2330. wake_up(&rl->drain);
  2331. }
  2332. static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
  2333. {
  2334. int wait = rl->count[READ] + rl->count[WRITE];
  2335. if (dispatch)
  2336. wait += !list_empty(&q->queue_head);
  2337. return wait;
  2338. }
  2339. /*
  2340. * We rely on the fact that only requests allocated through blk_alloc_request()
  2341. * have io scheduler private data structures associated with them. Any other
  2342. * type of request (allocated on stack or through kmalloc()) should not go
  2343. * to the io scheduler core, but be attached to the queue head instead.
  2344. */
  2345. void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
  2346. {
  2347. struct request_list *rl = &q->rq;
  2348. DEFINE_WAIT(wait);
  2349. spin_lock_irq(q->queue_lock);
  2350. set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
  2351. while (wait_drain(q, rl, wait_dispatch)) {
  2352. prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
  2353. if (wait_drain(q, rl, wait_dispatch)) {
  2354. __generic_unplug_device(q);
  2355. spin_unlock_irq(q->queue_lock);
  2356. io_schedule();
  2357. spin_lock_irq(q->queue_lock);
  2358. }
  2359. finish_wait(&rl->drain, &wait);
  2360. }
  2361. spin_unlock_irq(q->queue_lock);
  2362. }
  2363. /*
  2364. * block waiting for the io scheduler being started again.
  2365. */
  2366. static inline void block_wait_queue_running(request_queue_t *q)
  2367. {
  2368. DEFINE_WAIT(wait);
  2369. while (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)) {
  2370. struct request_list *rl = &q->rq;
  2371. prepare_to_wait_exclusive(&rl->drain, &wait,
  2372. TASK_UNINTERRUPTIBLE);
  2373. /*
  2374. * re-check the condition. avoids using prepare_to_wait()
  2375. * in the fast path (queue is running)
  2376. */
  2377. if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
  2378. io_schedule();
  2379. finish_wait(&rl->drain, &wait);
  2380. }
  2381. }
  2382. static void handle_bad_sector(struct bio *bio)
  2383. {
  2384. char b[BDEVNAME_SIZE];
  2385. printk(KERN_INFO "attempt to access beyond end of device\n");
  2386. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2387. bdevname(bio->bi_bdev, b),
  2388. bio->bi_rw,
  2389. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2390. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2391. set_bit(BIO_EOF, &bio->bi_flags);
  2392. }
  2393. /**
  2394. * generic_make_request: hand a buffer to its device driver for I/O
  2395. * @bio: The bio describing the location in memory and on the device.
  2396. *
  2397. * generic_make_request() is used to make I/O requests of block
  2398. * devices. It is passed a &struct bio, which describes the I/O that needs
  2399. * to be done.
  2400. *
  2401. * generic_make_request() does not return any status. The
  2402. * success/failure status of the request, along with notification of
  2403. * completion, is delivered asynchronously through the bio->bi_end_io
  2404. * function described (one day) else where.
  2405. *
  2406. * The caller of generic_make_request must make sure that bi_io_vec
  2407. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2408. * set to describe the device address, and the
  2409. * bi_end_io and optionally bi_private are set to describe how
  2410. * completion notification should be signaled.
  2411. *
  2412. * generic_make_request and the drivers it calls may use bi_next if this
  2413. * bio happens to be merged with someone else, and may change bi_dev and
  2414. * bi_sector for remaps as it sees fit. So the values of these fields
  2415. * should NOT be depended on after the call to generic_make_request.
  2416. */
  2417. void generic_make_request(struct bio *bio)
  2418. {
  2419. request_queue_t *q;
  2420. sector_t maxsector;
  2421. int ret, nr_sectors = bio_sectors(bio);
  2422. might_sleep();
  2423. /* Test device or partition size, when known. */
  2424. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2425. if (maxsector) {
  2426. sector_t sector = bio->bi_sector;
  2427. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2428. /*
  2429. * This may well happen - the kernel calls bread()
  2430. * without checking the size of the device, e.g., when
  2431. * mounting a device.
  2432. */
  2433. handle_bad_sector(bio);
  2434. goto end_io;
  2435. }
  2436. }
  2437. /*
  2438. * Resolve the mapping until finished. (drivers are
  2439. * still free to implement/resolve their own stacking
  2440. * by explicitly returning 0)
  2441. *
  2442. * NOTE: we don't repeat the blk_size check for each new device.
  2443. * Stacking drivers are expected to know what they are doing.
  2444. */
  2445. do {
  2446. char b[BDEVNAME_SIZE];
  2447. q = bdev_get_queue(bio->bi_bdev);
  2448. if (!q) {
  2449. printk(KERN_ERR
  2450. "generic_make_request: Trying to access "
  2451. "nonexistent block-device %s (%Lu)\n",
  2452. bdevname(bio->bi_bdev, b),
  2453. (long long) bio->bi_sector);
  2454. end_io:
  2455. bio_endio(bio, bio->bi_size, -EIO);
  2456. break;
  2457. }
  2458. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2459. printk("bio too big device %s (%u > %u)\n",
  2460. bdevname(bio->bi_bdev, b),
  2461. bio_sectors(bio),
  2462. q->max_hw_sectors);
  2463. goto end_io;
  2464. }
  2465. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))
  2466. goto end_io;
  2467. block_wait_queue_running(q);
  2468. /*
  2469. * If this device has partitions, remap block n
  2470. * of partition p to block n+start(p) of the disk.
  2471. */
  2472. blk_partition_remap(bio);
  2473. ret = q->make_request_fn(q, bio);
  2474. } while (ret);
  2475. }
  2476. EXPORT_SYMBOL(generic_make_request);
  2477. /**
  2478. * submit_bio: submit a bio to the block device layer for I/O
  2479. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2480. * @bio: The &struct bio which describes the I/O
  2481. *
  2482. * submit_bio() is very similar in purpose to generic_make_request(), and
  2483. * uses that function to do most of the work. Both are fairly rough
  2484. * interfaces, @bio must be presetup and ready for I/O.
  2485. *
  2486. */
  2487. void submit_bio(int rw, struct bio *bio)
  2488. {
  2489. int count = bio_sectors(bio);
  2490. BIO_BUG_ON(!bio->bi_size);
  2491. BIO_BUG_ON(!bio->bi_io_vec);
  2492. bio->bi_rw = rw;
  2493. if (rw & WRITE)
  2494. mod_page_state(pgpgout, count);
  2495. else
  2496. mod_page_state(pgpgin, count);
  2497. if (unlikely(block_dump)) {
  2498. char b[BDEVNAME_SIZE];
  2499. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2500. current->comm, current->pid,
  2501. (rw & WRITE) ? "WRITE" : "READ",
  2502. (unsigned long long)bio->bi_sector,
  2503. bdevname(bio->bi_bdev,b));
  2504. }
  2505. generic_make_request(bio);
  2506. }
  2507. EXPORT_SYMBOL(submit_bio);
  2508. void blk_recalc_rq_segments(struct request *rq)
  2509. {
  2510. struct bio *bio, *prevbio = NULL;
  2511. int nr_phys_segs, nr_hw_segs;
  2512. unsigned int phys_size, hw_size;
  2513. request_queue_t *q = rq->q;
  2514. if (!rq->bio)
  2515. return;
  2516. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2517. rq_for_each_bio(bio, rq) {
  2518. /* Force bio hw/phys segs to be recalculated. */
  2519. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2520. nr_phys_segs += bio_phys_segments(q, bio);
  2521. nr_hw_segs += bio_hw_segments(q, bio);
  2522. if (prevbio) {
  2523. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2524. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2525. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2526. pseg <= q->max_segment_size) {
  2527. nr_phys_segs--;
  2528. phys_size += prevbio->bi_size + bio->bi_size;
  2529. } else
  2530. phys_size = 0;
  2531. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2532. hseg <= q->max_segment_size) {
  2533. nr_hw_segs--;
  2534. hw_size += prevbio->bi_size + bio->bi_size;
  2535. } else
  2536. hw_size = 0;
  2537. }
  2538. prevbio = bio;
  2539. }
  2540. rq->nr_phys_segments = nr_phys_segs;
  2541. rq->nr_hw_segments = nr_hw_segs;
  2542. }
  2543. void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2544. {
  2545. if (blk_fs_request(rq)) {
  2546. rq->hard_sector += nsect;
  2547. rq->hard_nr_sectors -= nsect;
  2548. /*
  2549. * Move the I/O submission pointers ahead if required.
  2550. */
  2551. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2552. (rq->sector <= rq->hard_sector)) {
  2553. rq->sector = rq->hard_sector;
  2554. rq->nr_sectors = rq->hard_nr_sectors;
  2555. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2556. rq->current_nr_sectors = rq->hard_cur_sectors;
  2557. rq->buffer = bio_data(rq->bio);
  2558. }
  2559. /*
  2560. * if total number of sectors is less than the first segment
  2561. * size, something has gone terribly wrong
  2562. */
  2563. if (rq->nr_sectors < rq->current_nr_sectors) {
  2564. printk("blk: request botched\n");
  2565. rq->nr_sectors = rq->current_nr_sectors;
  2566. }
  2567. }
  2568. }
  2569. static int __end_that_request_first(struct request *req, int uptodate,
  2570. int nr_bytes)
  2571. {
  2572. int total_bytes, bio_nbytes, error, next_idx = 0;
  2573. struct bio *bio;
  2574. /*
  2575. * extend uptodate bool to allow < 0 value to be direct io error
  2576. */
  2577. error = 0;
  2578. if (end_io_error(uptodate))
  2579. error = !uptodate ? -EIO : uptodate;
  2580. /*
  2581. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2582. * sense key with us all the way through
  2583. */
  2584. if (!blk_pc_request(req))
  2585. req->errors = 0;
  2586. if (!uptodate) {
  2587. if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
  2588. printk("end_request: I/O error, dev %s, sector %llu\n",
  2589. req->rq_disk ? req->rq_disk->disk_name : "?",
  2590. (unsigned long long)req->sector);
  2591. }
  2592. total_bytes = bio_nbytes = 0;
  2593. while ((bio = req->bio) != NULL) {
  2594. int nbytes;
  2595. if (nr_bytes >= bio->bi_size) {
  2596. req->bio = bio->bi_next;
  2597. nbytes = bio->bi_size;
  2598. bio_endio(bio, nbytes, error);
  2599. next_idx = 0;
  2600. bio_nbytes = 0;
  2601. } else {
  2602. int idx = bio->bi_idx + next_idx;
  2603. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2604. blk_dump_rq_flags(req, "__end_that");
  2605. printk("%s: bio idx %d >= vcnt %d\n",
  2606. __FUNCTION__,
  2607. bio->bi_idx, bio->bi_vcnt);
  2608. break;
  2609. }
  2610. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2611. BIO_BUG_ON(nbytes > bio->bi_size);
  2612. /*
  2613. * not a complete bvec done
  2614. */
  2615. if (unlikely(nbytes > nr_bytes)) {
  2616. bio_nbytes += nr_bytes;
  2617. total_bytes += nr_bytes;
  2618. break;
  2619. }
  2620. /*
  2621. * advance to the next vector
  2622. */
  2623. next_idx++;
  2624. bio_nbytes += nbytes;
  2625. }
  2626. total_bytes += nbytes;
  2627. nr_bytes -= nbytes;
  2628. if ((bio = req->bio)) {
  2629. /*
  2630. * end more in this run, or just return 'not-done'
  2631. */
  2632. if (unlikely(nr_bytes <= 0))
  2633. break;
  2634. }
  2635. }
  2636. /*
  2637. * completely done
  2638. */
  2639. if (!req->bio)
  2640. return 0;
  2641. /*
  2642. * if the request wasn't completed, update state
  2643. */
  2644. if (bio_nbytes) {
  2645. bio_endio(bio, bio_nbytes, error);
  2646. bio->bi_idx += next_idx;
  2647. bio_iovec(bio)->bv_offset += nr_bytes;
  2648. bio_iovec(bio)->bv_len -= nr_bytes;
  2649. }
  2650. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2651. blk_recalc_rq_segments(req);
  2652. return 1;
  2653. }
  2654. /**
  2655. * end_that_request_first - end I/O on a request
  2656. * @req: the request being processed
  2657. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2658. * @nr_sectors: number of sectors to end I/O on
  2659. *
  2660. * Description:
  2661. * Ends I/O on a number of sectors attached to @req, and sets it up
  2662. * for the next range of segments (if any) in the cluster.
  2663. *
  2664. * Return:
  2665. * 0 - we are done with this request, call end_that_request_last()
  2666. * 1 - still buffers pending for this request
  2667. **/
  2668. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2669. {
  2670. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2671. }
  2672. EXPORT_SYMBOL(end_that_request_first);
  2673. /**
  2674. * end_that_request_chunk - end I/O on a request
  2675. * @req: the request being processed
  2676. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2677. * @nr_bytes: number of bytes to complete
  2678. *
  2679. * Description:
  2680. * Ends I/O on a number of bytes attached to @req, and sets it up
  2681. * for the next range of segments (if any). Like end_that_request_first(),
  2682. * but deals with bytes instead of sectors.
  2683. *
  2684. * Return:
  2685. * 0 - we are done with this request, call end_that_request_last()
  2686. * 1 - still buffers pending for this request
  2687. **/
  2688. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2689. {
  2690. return __end_that_request_first(req, uptodate, nr_bytes);
  2691. }
  2692. EXPORT_SYMBOL(end_that_request_chunk);
  2693. /*
  2694. * queue lock must be held
  2695. */
  2696. void end_that_request_last(struct request *req)
  2697. {
  2698. struct gendisk *disk = req->rq_disk;
  2699. if (unlikely(laptop_mode) && blk_fs_request(req))
  2700. laptop_io_completion();
  2701. if (disk && blk_fs_request(req)) {
  2702. unsigned long duration = jiffies - req->start_time;
  2703. switch (rq_data_dir(req)) {
  2704. case WRITE:
  2705. __disk_stat_inc(disk, writes);
  2706. __disk_stat_add(disk, write_ticks, duration);
  2707. break;
  2708. case READ:
  2709. __disk_stat_inc(disk, reads);
  2710. __disk_stat_add(disk, read_ticks, duration);
  2711. break;
  2712. }
  2713. disk_round_stats(disk);
  2714. disk->in_flight--;
  2715. }
  2716. if (req->end_io)
  2717. req->end_io(req);
  2718. else
  2719. __blk_put_request(req->q, req);
  2720. }
  2721. EXPORT_SYMBOL(end_that_request_last);
  2722. void end_request(struct request *req, int uptodate)
  2723. {
  2724. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  2725. add_disk_randomness(req->rq_disk);
  2726. blkdev_dequeue_request(req);
  2727. end_that_request_last(req);
  2728. }
  2729. }
  2730. EXPORT_SYMBOL(end_request);
  2731. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  2732. {
  2733. /* first three bits are identical in rq->flags and bio->bi_rw */
  2734. rq->flags |= (bio->bi_rw & 7);
  2735. rq->nr_phys_segments = bio_phys_segments(q, bio);
  2736. rq->nr_hw_segments = bio_hw_segments(q, bio);
  2737. rq->current_nr_sectors = bio_cur_sectors(bio);
  2738. rq->hard_cur_sectors = rq->current_nr_sectors;
  2739. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  2740. rq->buffer = bio_data(bio);
  2741. rq->bio = rq->biotail = bio;
  2742. }
  2743. EXPORT_SYMBOL(blk_rq_bio_prep);
  2744. int kblockd_schedule_work(struct work_struct *work)
  2745. {
  2746. return queue_work(kblockd_workqueue, work);
  2747. }
  2748. EXPORT_SYMBOL(kblockd_schedule_work);
  2749. void kblockd_flush(void)
  2750. {
  2751. flush_workqueue(kblockd_workqueue);
  2752. }
  2753. EXPORT_SYMBOL(kblockd_flush);
  2754. int __init blk_dev_init(void)
  2755. {
  2756. kblockd_workqueue = create_workqueue("kblockd");
  2757. if (!kblockd_workqueue)
  2758. panic("Failed to create kblockd\n");
  2759. request_cachep = kmem_cache_create("blkdev_requests",
  2760. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  2761. requestq_cachep = kmem_cache_create("blkdev_queue",
  2762. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  2763. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  2764. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  2765. blk_max_low_pfn = max_low_pfn;
  2766. blk_max_pfn = max_pfn;
  2767. return 0;
  2768. }
  2769. /*
  2770. * IO Context helper functions
  2771. */
  2772. void put_io_context(struct io_context *ioc)
  2773. {
  2774. if (ioc == NULL)
  2775. return;
  2776. BUG_ON(atomic_read(&ioc->refcount) == 0);
  2777. if (atomic_dec_and_test(&ioc->refcount)) {
  2778. if (ioc->aic && ioc->aic->dtor)
  2779. ioc->aic->dtor(ioc->aic);
  2780. if (ioc->cic && ioc->cic->dtor)
  2781. ioc->cic->dtor(ioc->cic);
  2782. kmem_cache_free(iocontext_cachep, ioc);
  2783. }
  2784. }
  2785. EXPORT_SYMBOL(put_io_context);
  2786. /* Called by the exitting task */
  2787. void exit_io_context(void)
  2788. {
  2789. unsigned long flags;
  2790. struct io_context *ioc;
  2791. local_irq_save(flags);
  2792. ioc = current->io_context;
  2793. current->io_context = NULL;
  2794. local_irq_restore(flags);
  2795. if (ioc->aic && ioc->aic->exit)
  2796. ioc->aic->exit(ioc->aic);
  2797. if (ioc->cic && ioc->cic->exit)
  2798. ioc->cic->exit(ioc->cic);
  2799. put_io_context(ioc);
  2800. }
  2801. /*
  2802. * If the current task has no IO context then create one and initialise it.
  2803. * If it does have a context, take a ref on it.
  2804. *
  2805. * This is always called in the context of the task which submitted the I/O.
  2806. * But weird things happen, so we disable local interrupts to ensure exclusive
  2807. * access to *current.
  2808. */
  2809. struct io_context *get_io_context(int gfp_flags)
  2810. {
  2811. struct task_struct *tsk = current;
  2812. unsigned long flags;
  2813. struct io_context *ret;
  2814. local_irq_save(flags);
  2815. ret = tsk->io_context;
  2816. if (ret)
  2817. goto out;
  2818. local_irq_restore(flags);
  2819. ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
  2820. if (ret) {
  2821. atomic_set(&ret->refcount, 1);
  2822. ret->pid = tsk->pid;
  2823. ret->last_waited = jiffies; /* doesn't matter... */
  2824. ret->nr_batch_requests = 0; /* because this is 0 */
  2825. ret->aic = NULL;
  2826. ret->cic = NULL;
  2827. spin_lock_init(&ret->lock);
  2828. local_irq_save(flags);
  2829. /*
  2830. * very unlikely, someone raced with us in setting up the task
  2831. * io context. free new context and just grab a reference.
  2832. */
  2833. if (!tsk->io_context)
  2834. tsk->io_context = ret;
  2835. else {
  2836. kmem_cache_free(iocontext_cachep, ret);
  2837. ret = tsk->io_context;
  2838. }
  2839. out:
  2840. atomic_inc(&ret->refcount);
  2841. local_irq_restore(flags);
  2842. }
  2843. return ret;
  2844. }
  2845. EXPORT_SYMBOL(get_io_context);
  2846. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  2847. {
  2848. struct io_context *src = *psrc;
  2849. struct io_context *dst = *pdst;
  2850. if (src) {
  2851. BUG_ON(atomic_read(&src->refcount) == 0);
  2852. atomic_inc(&src->refcount);
  2853. put_io_context(dst);
  2854. *pdst = src;
  2855. }
  2856. }
  2857. EXPORT_SYMBOL(copy_io_context);
  2858. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  2859. {
  2860. struct io_context *temp;
  2861. temp = *ioc1;
  2862. *ioc1 = *ioc2;
  2863. *ioc2 = temp;
  2864. }
  2865. EXPORT_SYMBOL(swap_io_context);
  2866. /*
  2867. * sysfs parts below
  2868. */
  2869. struct queue_sysfs_entry {
  2870. struct attribute attr;
  2871. ssize_t (*show)(struct request_queue *, char *);
  2872. ssize_t (*store)(struct request_queue *, const char *, size_t);
  2873. };
  2874. static ssize_t
  2875. queue_var_show(unsigned int var, char *page)
  2876. {
  2877. return sprintf(page, "%d\n", var);
  2878. }
  2879. static ssize_t
  2880. queue_var_store(unsigned long *var, const char *page, size_t count)
  2881. {
  2882. char *p = (char *) page;
  2883. *var = simple_strtoul(p, &p, 10);
  2884. return count;
  2885. }
  2886. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  2887. {
  2888. return queue_var_show(q->nr_requests, (page));
  2889. }
  2890. static ssize_t
  2891. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  2892. {
  2893. struct request_list *rl = &q->rq;
  2894. int ret = queue_var_store(&q->nr_requests, page, count);
  2895. if (q->nr_requests < BLKDEV_MIN_RQ)
  2896. q->nr_requests = BLKDEV_MIN_RQ;
  2897. blk_queue_congestion_threshold(q);
  2898. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  2899. set_queue_congested(q, READ);
  2900. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  2901. clear_queue_congested(q, READ);
  2902. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  2903. set_queue_congested(q, WRITE);
  2904. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  2905. clear_queue_congested(q, WRITE);
  2906. if (rl->count[READ] >= q->nr_requests) {
  2907. blk_set_queue_full(q, READ);
  2908. } else if (rl->count[READ]+1 <= q->nr_requests) {
  2909. blk_clear_queue_full(q, READ);
  2910. wake_up(&rl->wait[READ]);
  2911. }
  2912. if (rl->count[WRITE] >= q->nr_requests) {
  2913. blk_set_queue_full(q, WRITE);
  2914. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  2915. blk_clear_queue_full(q, WRITE);
  2916. wake_up(&rl->wait[WRITE]);
  2917. }
  2918. return ret;
  2919. }
  2920. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  2921. {
  2922. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  2923. return queue_var_show(ra_kb, (page));
  2924. }
  2925. static ssize_t
  2926. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  2927. {
  2928. unsigned long ra_kb;
  2929. ssize_t ret = queue_var_store(&ra_kb, page, count);
  2930. spin_lock_irq(q->queue_lock);
  2931. if (ra_kb > (q->max_sectors >> 1))
  2932. ra_kb = (q->max_sectors >> 1);
  2933. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  2934. spin_unlock_irq(q->queue_lock);
  2935. return ret;
  2936. }
  2937. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  2938. {
  2939. int max_sectors_kb = q->max_sectors >> 1;
  2940. return queue_var_show(max_sectors_kb, (page));
  2941. }
  2942. static ssize_t
  2943. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  2944. {
  2945. unsigned long max_sectors_kb,
  2946. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  2947. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  2948. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  2949. int ra_kb;
  2950. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  2951. return -EINVAL;
  2952. /*
  2953. * Take the queue lock to update the readahead and max_sectors
  2954. * values synchronously:
  2955. */
  2956. spin_lock_irq(q->queue_lock);
  2957. /*
  2958. * Trim readahead window as well, if necessary:
  2959. */
  2960. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  2961. if (ra_kb > max_sectors_kb)
  2962. q->backing_dev_info.ra_pages =
  2963. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  2964. q->max_sectors = max_sectors_kb << 1;
  2965. spin_unlock_irq(q->queue_lock);
  2966. return ret;
  2967. }
  2968. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  2969. {
  2970. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  2971. return queue_var_show(max_hw_sectors_kb, (page));
  2972. }
  2973. static struct queue_sysfs_entry queue_requests_entry = {
  2974. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  2975. .show = queue_requests_show,
  2976. .store = queue_requests_store,
  2977. };
  2978. static struct queue_sysfs_entry queue_ra_entry = {
  2979. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  2980. .show = queue_ra_show,
  2981. .store = queue_ra_store,
  2982. };
  2983. static struct queue_sysfs_entry queue_max_sectors_entry = {
  2984. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  2985. .show = queue_max_sectors_show,
  2986. .store = queue_max_sectors_store,
  2987. };
  2988. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  2989. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  2990. .show = queue_max_hw_sectors_show,
  2991. };
  2992. static struct queue_sysfs_entry queue_iosched_entry = {
  2993. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  2994. .show = elv_iosched_show,
  2995. .store = elv_iosched_store,
  2996. };
  2997. static struct attribute *default_attrs[] = {
  2998. &queue_requests_entry.attr,
  2999. &queue_ra_entry.attr,
  3000. &queue_max_hw_sectors_entry.attr,
  3001. &queue_max_sectors_entry.attr,
  3002. &queue_iosched_entry.attr,
  3003. NULL,
  3004. };
  3005. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3006. static ssize_t
  3007. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3008. {
  3009. struct queue_sysfs_entry *entry = to_queue(attr);
  3010. struct request_queue *q;
  3011. q = container_of(kobj, struct request_queue, kobj);
  3012. if (!entry->show)
  3013. return -EIO;
  3014. return entry->show(q, page);
  3015. }
  3016. static ssize_t
  3017. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3018. const char *page, size_t length)
  3019. {
  3020. struct queue_sysfs_entry *entry = to_queue(attr);
  3021. struct request_queue *q;
  3022. q = container_of(kobj, struct request_queue, kobj);
  3023. if (!entry->store)
  3024. return -EIO;
  3025. return entry->store(q, page, length);
  3026. }
  3027. static struct sysfs_ops queue_sysfs_ops = {
  3028. .show = queue_attr_show,
  3029. .store = queue_attr_store,
  3030. };
  3031. struct kobj_type queue_ktype = {
  3032. .sysfs_ops = &queue_sysfs_ops,
  3033. .default_attrs = default_attrs,
  3034. };
  3035. int blk_register_queue(struct gendisk *disk)
  3036. {
  3037. int ret;
  3038. request_queue_t *q = disk->queue;
  3039. if (!q || !q->request_fn)
  3040. return -ENXIO;
  3041. q->kobj.parent = kobject_get(&disk->kobj);
  3042. if (!q->kobj.parent)
  3043. return -EBUSY;
  3044. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  3045. q->kobj.ktype = &queue_ktype;
  3046. ret = kobject_register(&q->kobj);
  3047. if (ret < 0)
  3048. return ret;
  3049. ret = elv_register_queue(q);
  3050. if (ret) {
  3051. kobject_unregister(&q->kobj);
  3052. return ret;
  3053. }
  3054. return 0;
  3055. }
  3056. void blk_unregister_queue(struct gendisk *disk)
  3057. {
  3058. request_queue_t *q = disk->queue;
  3059. if (q && q->request_fn) {
  3060. elv_unregister_queue(q);
  3061. kobject_unregister(&q->kobj);
  3062. kobject_put(&disk->kobj);
  3063. }
  3064. }