xfs_inode.c 126 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_btree_trace.h"
  43. #include "xfs_alloc.h"
  44. #include "xfs_ialloc.h"
  45. #include "xfs_bmap.h"
  46. #include "xfs_rw.h"
  47. #include "xfs_error.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_dir2_trace.h"
  50. #include "xfs_quota.h"
  51. #include "xfs_acl.h"
  52. #include "xfs_filestream.h"
  53. #include "xfs_vnodeops.h"
  54. kmem_zone_t *xfs_ifork_zone;
  55. kmem_zone_t *xfs_inode_zone;
  56. /*
  57. * Used in xfs_itruncate(). This is the maximum number of extents
  58. * freed from a file in a single transaction.
  59. */
  60. #define XFS_ITRUNC_MAX_EXTENTS 2
  61. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  62. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  63. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  64. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  65. #ifdef DEBUG
  66. /*
  67. * Make sure that the extents in the given memory buffer
  68. * are valid.
  69. */
  70. STATIC void
  71. xfs_validate_extents(
  72. xfs_ifork_t *ifp,
  73. int nrecs,
  74. xfs_exntfmt_t fmt)
  75. {
  76. xfs_bmbt_irec_t irec;
  77. xfs_bmbt_rec_host_t rec;
  78. int i;
  79. for (i = 0; i < nrecs; i++) {
  80. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  81. rec.l0 = get_unaligned(&ep->l0);
  82. rec.l1 = get_unaligned(&ep->l1);
  83. xfs_bmbt_get_all(&rec, &irec);
  84. if (fmt == XFS_EXTFMT_NOSTATE)
  85. ASSERT(irec.br_state == XFS_EXT_NORM);
  86. }
  87. }
  88. #else /* DEBUG */
  89. #define xfs_validate_extents(ifp, nrecs, fmt)
  90. #endif /* DEBUG */
  91. /*
  92. * Check that none of the inode's in the buffer have a next
  93. * unlinked field of 0.
  94. */
  95. #if defined(DEBUG)
  96. void
  97. xfs_inobp_check(
  98. xfs_mount_t *mp,
  99. xfs_buf_t *bp)
  100. {
  101. int i;
  102. int j;
  103. xfs_dinode_t *dip;
  104. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  105. for (i = 0; i < j; i++) {
  106. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  107. i * mp->m_sb.sb_inodesize);
  108. if (!dip->di_next_unlinked) {
  109. xfs_fs_cmn_err(CE_ALERT, mp,
  110. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  111. bp);
  112. ASSERT(dip->di_next_unlinked);
  113. }
  114. }
  115. }
  116. #endif
  117. /*
  118. * Find the buffer associated with the given inode map
  119. * We do basic validation checks on the buffer once it has been
  120. * retrieved from disk.
  121. */
  122. STATIC int
  123. xfs_imap_to_bp(
  124. xfs_mount_t *mp,
  125. xfs_trans_t *tp,
  126. struct xfs_imap *imap,
  127. xfs_buf_t **bpp,
  128. uint buf_flags,
  129. uint iget_flags)
  130. {
  131. int error;
  132. int i;
  133. int ni;
  134. xfs_buf_t *bp;
  135. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  136. (int)imap->im_len, buf_flags, &bp);
  137. if (error) {
  138. if (error != EAGAIN) {
  139. cmn_err(CE_WARN,
  140. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  141. "an error %d on %s. Returning error.",
  142. error, mp->m_fsname);
  143. } else {
  144. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  145. }
  146. return error;
  147. }
  148. /*
  149. * Validate the magic number and version of every inode in the buffer
  150. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  151. */
  152. #ifdef DEBUG
  153. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  154. #else /* usual case */
  155. ni = 1;
  156. #endif
  157. for (i = 0; i < ni; i++) {
  158. int di_ok;
  159. xfs_dinode_t *dip;
  160. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  161. (i << mp->m_sb.sb_inodelog));
  162. di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
  163. XFS_DINODE_GOOD_VERSION(dip->di_version);
  164. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  165. XFS_ERRTAG_ITOBP_INOTOBP,
  166. XFS_RANDOM_ITOBP_INOTOBP))) {
  167. if (iget_flags & XFS_IGET_BULKSTAT) {
  168. xfs_trans_brelse(tp, bp);
  169. return XFS_ERROR(EINVAL);
  170. }
  171. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  172. XFS_ERRLEVEL_HIGH, mp, dip);
  173. #ifdef DEBUG
  174. cmn_err(CE_PANIC,
  175. "Device %s - bad inode magic/vsn "
  176. "daddr %lld #%d (magic=%x)",
  177. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  178. (unsigned long long)imap->im_blkno, i,
  179. be16_to_cpu(dip->di_magic));
  180. #endif
  181. xfs_trans_brelse(tp, bp);
  182. return XFS_ERROR(EFSCORRUPTED);
  183. }
  184. }
  185. xfs_inobp_check(mp, bp);
  186. /*
  187. * Mark the buffer as an inode buffer now that it looks good
  188. */
  189. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  190. *bpp = bp;
  191. return 0;
  192. }
  193. /*
  194. * This routine is called to map an inode number within a file
  195. * system to the buffer containing the on-disk version of the
  196. * inode. It returns a pointer to the buffer containing the
  197. * on-disk inode in the bpp parameter, and in the dip parameter
  198. * it returns a pointer to the on-disk inode within that buffer.
  199. *
  200. * If a non-zero error is returned, then the contents of bpp and
  201. * dipp are undefined.
  202. *
  203. * Use xfs_imap() to determine the size and location of the
  204. * buffer to read from disk.
  205. */
  206. int
  207. xfs_inotobp(
  208. xfs_mount_t *mp,
  209. xfs_trans_t *tp,
  210. xfs_ino_t ino,
  211. xfs_dinode_t **dipp,
  212. xfs_buf_t **bpp,
  213. int *offset,
  214. uint imap_flags)
  215. {
  216. struct xfs_imap imap;
  217. xfs_buf_t *bp;
  218. int error;
  219. imap.im_blkno = 0;
  220. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  221. if (error)
  222. return error;
  223. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
  224. if (error)
  225. return error;
  226. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  227. *bpp = bp;
  228. *offset = imap.im_boffset;
  229. return 0;
  230. }
  231. /*
  232. * This routine is called to map an inode to the buffer containing
  233. * the on-disk version of the inode. It returns a pointer to the
  234. * buffer containing the on-disk inode in the bpp parameter, and in
  235. * the dip parameter it returns a pointer to the on-disk inode within
  236. * that buffer.
  237. *
  238. * If a non-zero error is returned, then the contents of bpp and
  239. * dipp are undefined.
  240. *
  241. * The inode is expected to already been mapped to its buffer and read
  242. * in once, thus we can use the mapping information stored in the inode
  243. * rather than calling xfs_imap(). This allows us to avoid the overhead
  244. * of looking at the inode btree for small block file systems
  245. * (see xfs_imap()).
  246. */
  247. int
  248. xfs_itobp(
  249. xfs_mount_t *mp,
  250. xfs_trans_t *tp,
  251. xfs_inode_t *ip,
  252. xfs_dinode_t **dipp,
  253. xfs_buf_t **bpp,
  254. uint buf_flags)
  255. {
  256. xfs_buf_t *bp;
  257. int error;
  258. ASSERT(ip->i_imap.im_blkno != 0);
  259. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  260. if (error)
  261. return error;
  262. if (!bp) {
  263. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  264. ASSERT(tp == NULL);
  265. *bpp = NULL;
  266. return EAGAIN;
  267. }
  268. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  269. *bpp = bp;
  270. return 0;
  271. }
  272. /*
  273. * Move inode type and inode format specific information from the
  274. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  275. * this means set if_rdev to the proper value. For files, directories,
  276. * and symlinks this means to bring in the in-line data or extent
  277. * pointers. For a file in B-tree format, only the root is immediately
  278. * brought in-core. The rest will be in-lined in if_extents when it
  279. * is first referenced (see xfs_iread_extents()).
  280. */
  281. STATIC int
  282. xfs_iformat(
  283. xfs_inode_t *ip,
  284. xfs_dinode_t *dip)
  285. {
  286. xfs_attr_shortform_t *atp;
  287. int size;
  288. int error;
  289. xfs_fsize_t di_size;
  290. ip->i_df.if_ext_max =
  291. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  292. error = 0;
  293. if (unlikely(be32_to_cpu(dip->di_nextents) +
  294. be16_to_cpu(dip->di_anextents) >
  295. be64_to_cpu(dip->di_nblocks))) {
  296. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  297. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  298. (unsigned long long)ip->i_ino,
  299. (int)(be32_to_cpu(dip->di_nextents) +
  300. be16_to_cpu(dip->di_anextents)),
  301. (unsigned long long)
  302. be64_to_cpu(dip->di_nblocks));
  303. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  304. ip->i_mount, dip);
  305. return XFS_ERROR(EFSCORRUPTED);
  306. }
  307. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  308. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  309. "corrupt dinode %Lu, forkoff = 0x%x.",
  310. (unsigned long long)ip->i_ino,
  311. dip->di_forkoff);
  312. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  313. ip->i_mount, dip);
  314. return XFS_ERROR(EFSCORRUPTED);
  315. }
  316. switch (ip->i_d.di_mode & S_IFMT) {
  317. case S_IFIFO:
  318. case S_IFCHR:
  319. case S_IFBLK:
  320. case S_IFSOCK:
  321. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  322. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  323. ip->i_mount, dip);
  324. return XFS_ERROR(EFSCORRUPTED);
  325. }
  326. ip->i_d.di_size = 0;
  327. ip->i_size = 0;
  328. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  329. break;
  330. case S_IFREG:
  331. case S_IFLNK:
  332. case S_IFDIR:
  333. switch (dip->di_format) {
  334. case XFS_DINODE_FMT_LOCAL:
  335. /*
  336. * no local regular files yet
  337. */
  338. if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
  339. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  340. "corrupt inode %Lu "
  341. "(local format for regular file).",
  342. (unsigned long long) ip->i_ino);
  343. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  344. XFS_ERRLEVEL_LOW,
  345. ip->i_mount, dip);
  346. return XFS_ERROR(EFSCORRUPTED);
  347. }
  348. di_size = be64_to_cpu(dip->di_size);
  349. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  350. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  351. "corrupt inode %Lu "
  352. "(bad size %Ld for local inode).",
  353. (unsigned long long) ip->i_ino,
  354. (long long) di_size);
  355. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  356. XFS_ERRLEVEL_LOW,
  357. ip->i_mount, dip);
  358. return XFS_ERROR(EFSCORRUPTED);
  359. }
  360. size = (int)di_size;
  361. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  362. break;
  363. case XFS_DINODE_FMT_EXTENTS:
  364. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  365. break;
  366. case XFS_DINODE_FMT_BTREE:
  367. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  368. break;
  369. default:
  370. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  371. ip->i_mount);
  372. return XFS_ERROR(EFSCORRUPTED);
  373. }
  374. break;
  375. default:
  376. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  377. return XFS_ERROR(EFSCORRUPTED);
  378. }
  379. if (error) {
  380. return error;
  381. }
  382. if (!XFS_DFORK_Q(dip))
  383. return 0;
  384. ASSERT(ip->i_afp == NULL);
  385. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  386. ip->i_afp->if_ext_max =
  387. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  388. switch (dip->di_aformat) {
  389. case XFS_DINODE_FMT_LOCAL:
  390. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  391. size = be16_to_cpu(atp->hdr.totsize);
  392. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  393. break;
  394. case XFS_DINODE_FMT_EXTENTS:
  395. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  396. break;
  397. case XFS_DINODE_FMT_BTREE:
  398. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  399. break;
  400. default:
  401. error = XFS_ERROR(EFSCORRUPTED);
  402. break;
  403. }
  404. if (error) {
  405. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  406. ip->i_afp = NULL;
  407. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  408. }
  409. return error;
  410. }
  411. /*
  412. * The file is in-lined in the on-disk inode.
  413. * If it fits into if_inline_data, then copy
  414. * it there, otherwise allocate a buffer for it
  415. * and copy the data there. Either way, set
  416. * if_data to point at the data.
  417. * If we allocate a buffer for the data, make
  418. * sure that its size is a multiple of 4 and
  419. * record the real size in i_real_bytes.
  420. */
  421. STATIC int
  422. xfs_iformat_local(
  423. xfs_inode_t *ip,
  424. xfs_dinode_t *dip,
  425. int whichfork,
  426. int size)
  427. {
  428. xfs_ifork_t *ifp;
  429. int real_size;
  430. /*
  431. * If the size is unreasonable, then something
  432. * is wrong and we just bail out rather than crash in
  433. * kmem_alloc() or memcpy() below.
  434. */
  435. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  436. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  437. "corrupt inode %Lu "
  438. "(bad size %d for local fork, size = %d).",
  439. (unsigned long long) ip->i_ino, size,
  440. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  441. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  442. ip->i_mount, dip);
  443. return XFS_ERROR(EFSCORRUPTED);
  444. }
  445. ifp = XFS_IFORK_PTR(ip, whichfork);
  446. real_size = 0;
  447. if (size == 0)
  448. ifp->if_u1.if_data = NULL;
  449. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  450. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  451. else {
  452. real_size = roundup(size, 4);
  453. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  454. }
  455. ifp->if_bytes = size;
  456. ifp->if_real_bytes = real_size;
  457. if (size)
  458. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  459. ifp->if_flags &= ~XFS_IFEXTENTS;
  460. ifp->if_flags |= XFS_IFINLINE;
  461. return 0;
  462. }
  463. /*
  464. * The file consists of a set of extents all
  465. * of which fit into the on-disk inode.
  466. * If there are few enough extents to fit into
  467. * the if_inline_ext, then copy them there.
  468. * Otherwise allocate a buffer for them and copy
  469. * them into it. Either way, set if_extents
  470. * to point at the extents.
  471. */
  472. STATIC int
  473. xfs_iformat_extents(
  474. xfs_inode_t *ip,
  475. xfs_dinode_t *dip,
  476. int whichfork)
  477. {
  478. xfs_bmbt_rec_t *dp;
  479. xfs_ifork_t *ifp;
  480. int nex;
  481. int size;
  482. int i;
  483. ifp = XFS_IFORK_PTR(ip, whichfork);
  484. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  485. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  486. /*
  487. * If the number of extents is unreasonable, then something
  488. * is wrong and we just bail out rather than crash in
  489. * kmem_alloc() or memcpy() below.
  490. */
  491. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  492. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  493. "corrupt inode %Lu ((a)extents = %d).",
  494. (unsigned long long) ip->i_ino, nex);
  495. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  496. ip->i_mount, dip);
  497. return XFS_ERROR(EFSCORRUPTED);
  498. }
  499. ifp->if_real_bytes = 0;
  500. if (nex == 0)
  501. ifp->if_u1.if_extents = NULL;
  502. else if (nex <= XFS_INLINE_EXTS)
  503. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  504. else
  505. xfs_iext_add(ifp, 0, nex);
  506. ifp->if_bytes = size;
  507. if (size) {
  508. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  509. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  510. for (i = 0; i < nex; i++, dp++) {
  511. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  512. ep->l0 = get_unaligned_be64(&dp->l0);
  513. ep->l1 = get_unaligned_be64(&dp->l1);
  514. }
  515. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  516. if (whichfork != XFS_DATA_FORK ||
  517. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  518. if (unlikely(xfs_check_nostate_extents(
  519. ifp, 0, nex))) {
  520. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  521. XFS_ERRLEVEL_LOW,
  522. ip->i_mount);
  523. return XFS_ERROR(EFSCORRUPTED);
  524. }
  525. }
  526. ifp->if_flags |= XFS_IFEXTENTS;
  527. return 0;
  528. }
  529. /*
  530. * The file has too many extents to fit into
  531. * the inode, so they are in B-tree format.
  532. * Allocate a buffer for the root of the B-tree
  533. * and copy the root into it. The i_extents
  534. * field will remain NULL until all of the
  535. * extents are read in (when they are needed).
  536. */
  537. STATIC int
  538. xfs_iformat_btree(
  539. xfs_inode_t *ip,
  540. xfs_dinode_t *dip,
  541. int whichfork)
  542. {
  543. xfs_bmdr_block_t *dfp;
  544. xfs_ifork_t *ifp;
  545. /* REFERENCED */
  546. int nrecs;
  547. int size;
  548. ifp = XFS_IFORK_PTR(ip, whichfork);
  549. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  550. size = XFS_BMAP_BROOT_SPACE(dfp);
  551. nrecs = be16_to_cpu(dfp->bb_numrecs);
  552. /*
  553. * blow out if -- fork has less extents than can fit in
  554. * fork (fork shouldn't be a btree format), root btree
  555. * block has more records than can fit into the fork,
  556. * or the number of extents is greater than the number of
  557. * blocks.
  558. */
  559. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  560. || XFS_BMDR_SPACE_CALC(nrecs) >
  561. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  562. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  563. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  564. "corrupt inode %Lu (btree).",
  565. (unsigned long long) ip->i_ino);
  566. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  567. ip->i_mount);
  568. return XFS_ERROR(EFSCORRUPTED);
  569. }
  570. ifp->if_broot_bytes = size;
  571. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  572. ASSERT(ifp->if_broot != NULL);
  573. /*
  574. * Copy and convert from the on-disk structure
  575. * to the in-memory structure.
  576. */
  577. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  578. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  579. ifp->if_broot, size);
  580. ifp->if_flags &= ~XFS_IFEXTENTS;
  581. ifp->if_flags |= XFS_IFBROOT;
  582. return 0;
  583. }
  584. void
  585. xfs_dinode_from_disk(
  586. xfs_icdinode_t *to,
  587. xfs_dinode_t *from)
  588. {
  589. to->di_magic = be16_to_cpu(from->di_magic);
  590. to->di_mode = be16_to_cpu(from->di_mode);
  591. to->di_version = from ->di_version;
  592. to->di_format = from->di_format;
  593. to->di_onlink = be16_to_cpu(from->di_onlink);
  594. to->di_uid = be32_to_cpu(from->di_uid);
  595. to->di_gid = be32_to_cpu(from->di_gid);
  596. to->di_nlink = be32_to_cpu(from->di_nlink);
  597. to->di_projid = be16_to_cpu(from->di_projid);
  598. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  599. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  600. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  601. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  602. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  603. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  604. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  605. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  606. to->di_size = be64_to_cpu(from->di_size);
  607. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  608. to->di_extsize = be32_to_cpu(from->di_extsize);
  609. to->di_nextents = be32_to_cpu(from->di_nextents);
  610. to->di_anextents = be16_to_cpu(from->di_anextents);
  611. to->di_forkoff = from->di_forkoff;
  612. to->di_aformat = from->di_aformat;
  613. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  614. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  615. to->di_flags = be16_to_cpu(from->di_flags);
  616. to->di_gen = be32_to_cpu(from->di_gen);
  617. }
  618. void
  619. xfs_dinode_to_disk(
  620. xfs_dinode_t *to,
  621. xfs_icdinode_t *from)
  622. {
  623. to->di_magic = cpu_to_be16(from->di_magic);
  624. to->di_mode = cpu_to_be16(from->di_mode);
  625. to->di_version = from ->di_version;
  626. to->di_format = from->di_format;
  627. to->di_onlink = cpu_to_be16(from->di_onlink);
  628. to->di_uid = cpu_to_be32(from->di_uid);
  629. to->di_gid = cpu_to_be32(from->di_gid);
  630. to->di_nlink = cpu_to_be32(from->di_nlink);
  631. to->di_projid = cpu_to_be16(from->di_projid);
  632. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  633. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  634. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  635. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  636. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  637. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  638. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  639. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  640. to->di_size = cpu_to_be64(from->di_size);
  641. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  642. to->di_extsize = cpu_to_be32(from->di_extsize);
  643. to->di_nextents = cpu_to_be32(from->di_nextents);
  644. to->di_anextents = cpu_to_be16(from->di_anextents);
  645. to->di_forkoff = from->di_forkoff;
  646. to->di_aformat = from->di_aformat;
  647. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  648. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  649. to->di_flags = cpu_to_be16(from->di_flags);
  650. to->di_gen = cpu_to_be32(from->di_gen);
  651. }
  652. STATIC uint
  653. _xfs_dic2xflags(
  654. __uint16_t di_flags)
  655. {
  656. uint flags = 0;
  657. if (di_flags & XFS_DIFLAG_ANY) {
  658. if (di_flags & XFS_DIFLAG_REALTIME)
  659. flags |= XFS_XFLAG_REALTIME;
  660. if (di_flags & XFS_DIFLAG_PREALLOC)
  661. flags |= XFS_XFLAG_PREALLOC;
  662. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  663. flags |= XFS_XFLAG_IMMUTABLE;
  664. if (di_flags & XFS_DIFLAG_APPEND)
  665. flags |= XFS_XFLAG_APPEND;
  666. if (di_flags & XFS_DIFLAG_SYNC)
  667. flags |= XFS_XFLAG_SYNC;
  668. if (di_flags & XFS_DIFLAG_NOATIME)
  669. flags |= XFS_XFLAG_NOATIME;
  670. if (di_flags & XFS_DIFLAG_NODUMP)
  671. flags |= XFS_XFLAG_NODUMP;
  672. if (di_flags & XFS_DIFLAG_RTINHERIT)
  673. flags |= XFS_XFLAG_RTINHERIT;
  674. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  675. flags |= XFS_XFLAG_PROJINHERIT;
  676. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  677. flags |= XFS_XFLAG_NOSYMLINKS;
  678. if (di_flags & XFS_DIFLAG_EXTSIZE)
  679. flags |= XFS_XFLAG_EXTSIZE;
  680. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  681. flags |= XFS_XFLAG_EXTSZINHERIT;
  682. if (di_flags & XFS_DIFLAG_NODEFRAG)
  683. flags |= XFS_XFLAG_NODEFRAG;
  684. if (di_flags & XFS_DIFLAG_FILESTREAM)
  685. flags |= XFS_XFLAG_FILESTREAM;
  686. }
  687. return flags;
  688. }
  689. uint
  690. xfs_ip2xflags(
  691. xfs_inode_t *ip)
  692. {
  693. xfs_icdinode_t *dic = &ip->i_d;
  694. return _xfs_dic2xflags(dic->di_flags) |
  695. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  696. }
  697. uint
  698. xfs_dic2xflags(
  699. xfs_dinode_t *dip)
  700. {
  701. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  702. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  703. }
  704. /*
  705. * Read the disk inode attributes into the in-core inode structure.
  706. */
  707. int
  708. xfs_iread(
  709. xfs_mount_t *mp,
  710. xfs_trans_t *tp,
  711. xfs_inode_t *ip,
  712. xfs_daddr_t bno,
  713. uint iget_flags)
  714. {
  715. xfs_buf_t *bp;
  716. xfs_dinode_t *dip;
  717. int error;
  718. /*
  719. * Fill in the location information in the in-core inode.
  720. */
  721. ip->i_imap.im_blkno = bno;
  722. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  723. if (error)
  724. return error;
  725. ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
  726. /*
  727. * Get pointers to the on-disk inode and the buffer containing it.
  728. */
  729. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  730. XFS_BUF_LOCK, iget_flags);
  731. if (error)
  732. return error;
  733. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  734. /*
  735. * If we got something that isn't an inode it means someone
  736. * (nfs or dmi) has a stale handle.
  737. */
  738. if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
  739. #ifdef DEBUG
  740. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  741. "dip->di_magic (0x%x) != "
  742. "XFS_DINODE_MAGIC (0x%x)",
  743. be16_to_cpu(dip->di_magic),
  744. XFS_DINODE_MAGIC);
  745. #endif /* DEBUG */
  746. error = XFS_ERROR(EINVAL);
  747. goto out_brelse;
  748. }
  749. /*
  750. * If the on-disk inode is already linked to a directory
  751. * entry, copy all of the inode into the in-core inode.
  752. * xfs_iformat() handles copying in the inode format
  753. * specific information.
  754. * Otherwise, just get the truly permanent information.
  755. */
  756. if (dip->di_mode) {
  757. xfs_dinode_from_disk(&ip->i_d, dip);
  758. error = xfs_iformat(ip, dip);
  759. if (error) {
  760. #ifdef DEBUG
  761. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  762. "xfs_iformat() returned error %d",
  763. error);
  764. #endif /* DEBUG */
  765. goto out_brelse;
  766. }
  767. } else {
  768. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  769. ip->i_d.di_version = dip->di_version;
  770. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  771. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  772. /*
  773. * Make sure to pull in the mode here as well in
  774. * case the inode is released without being used.
  775. * This ensures that xfs_inactive() will see that
  776. * the inode is already free and not try to mess
  777. * with the uninitialized part of it.
  778. */
  779. ip->i_d.di_mode = 0;
  780. /*
  781. * Initialize the per-fork minima and maxima for a new
  782. * inode here. xfs_iformat will do it for old inodes.
  783. */
  784. ip->i_df.if_ext_max =
  785. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  786. }
  787. /*
  788. * The inode format changed when we moved the link count and
  789. * made it 32 bits long. If this is an old format inode,
  790. * convert it in memory to look like a new one. If it gets
  791. * flushed to disk we will convert back before flushing or
  792. * logging it. We zero out the new projid field and the old link
  793. * count field. We'll handle clearing the pad field (the remains
  794. * of the old uuid field) when we actually convert the inode to
  795. * the new format. We don't change the version number so that we
  796. * can distinguish this from a real new format inode.
  797. */
  798. if (ip->i_d.di_version == 1) {
  799. ip->i_d.di_nlink = ip->i_d.di_onlink;
  800. ip->i_d.di_onlink = 0;
  801. ip->i_d.di_projid = 0;
  802. }
  803. ip->i_delayed_blks = 0;
  804. ip->i_size = ip->i_d.di_size;
  805. /*
  806. * Mark the buffer containing the inode as something to keep
  807. * around for a while. This helps to keep recently accessed
  808. * meta-data in-core longer.
  809. */
  810. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  811. /*
  812. * Use xfs_trans_brelse() to release the buffer containing the
  813. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  814. * in xfs_itobp() above. If tp is NULL, this is just a normal
  815. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  816. * will only release the buffer if it is not dirty within the
  817. * transaction. It will be OK to release the buffer in this case,
  818. * because inodes on disk are never destroyed and we will be
  819. * locking the new in-core inode before putting it in the hash
  820. * table where other processes can find it. Thus we don't have
  821. * to worry about the inode being changed just because we released
  822. * the buffer.
  823. */
  824. out_brelse:
  825. xfs_trans_brelse(tp, bp);
  826. return error;
  827. }
  828. /*
  829. * Read in extents from a btree-format inode.
  830. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  831. */
  832. int
  833. xfs_iread_extents(
  834. xfs_trans_t *tp,
  835. xfs_inode_t *ip,
  836. int whichfork)
  837. {
  838. int error;
  839. xfs_ifork_t *ifp;
  840. xfs_extnum_t nextents;
  841. size_t size;
  842. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  843. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  844. ip->i_mount);
  845. return XFS_ERROR(EFSCORRUPTED);
  846. }
  847. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  848. size = nextents * sizeof(xfs_bmbt_rec_t);
  849. ifp = XFS_IFORK_PTR(ip, whichfork);
  850. /*
  851. * We know that the size is valid (it's checked in iformat_btree)
  852. */
  853. ifp->if_lastex = NULLEXTNUM;
  854. ifp->if_bytes = ifp->if_real_bytes = 0;
  855. ifp->if_flags |= XFS_IFEXTENTS;
  856. xfs_iext_add(ifp, 0, nextents);
  857. error = xfs_bmap_read_extents(tp, ip, whichfork);
  858. if (error) {
  859. xfs_iext_destroy(ifp);
  860. ifp->if_flags &= ~XFS_IFEXTENTS;
  861. return error;
  862. }
  863. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  864. return 0;
  865. }
  866. /*
  867. * Allocate an inode on disk and return a copy of its in-core version.
  868. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  869. * appropriately within the inode. The uid and gid for the inode are
  870. * set according to the contents of the given cred structure.
  871. *
  872. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  873. * has a free inode available, call xfs_iget()
  874. * to obtain the in-core version of the allocated inode. Finally,
  875. * fill in the inode and log its initial contents. In this case,
  876. * ialloc_context would be set to NULL and call_again set to false.
  877. *
  878. * If xfs_dialloc() does not have an available inode,
  879. * it will replenish its supply by doing an allocation. Since we can
  880. * only do one allocation within a transaction without deadlocks, we
  881. * must commit the current transaction before returning the inode itself.
  882. * In this case, therefore, we will set call_again to true and return.
  883. * The caller should then commit the current transaction, start a new
  884. * transaction, and call xfs_ialloc() again to actually get the inode.
  885. *
  886. * To ensure that some other process does not grab the inode that
  887. * was allocated during the first call to xfs_ialloc(), this routine
  888. * also returns the [locked] bp pointing to the head of the freelist
  889. * as ialloc_context. The caller should hold this buffer across
  890. * the commit and pass it back into this routine on the second call.
  891. *
  892. * If we are allocating quota inodes, we do not have a parent inode
  893. * to attach to or associate with (i.e. pip == NULL) because they
  894. * are not linked into the directory structure - they are attached
  895. * directly to the superblock - and so have no parent.
  896. */
  897. int
  898. xfs_ialloc(
  899. xfs_trans_t *tp,
  900. xfs_inode_t *pip,
  901. mode_t mode,
  902. xfs_nlink_t nlink,
  903. xfs_dev_t rdev,
  904. cred_t *cr,
  905. xfs_prid_t prid,
  906. int okalloc,
  907. xfs_buf_t **ialloc_context,
  908. boolean_t *call_again,
  909. xfs_inode_t **ipp)
  910. {
  911. xfs_ino_t ino;
  912. xfs_inode_t *ip;
  913. uint flags;
  914. int error;
  915. timespec_t tv;
  916. int filestreams = 0;
  917. /*
  918. * Call the space management code to pick
  919. * the on-disk inode to be allocated.
  920. */
  921. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  922. ialloc_context, call_again, &ino);
  923. if (error)
  924. return error;
  925. if (*call_again || ino == NULLFSINO) {
  926. *ipp = NULL;
  927. return 0;
  928. }
  929. ASSERT(*ialloc_context == NULL);
  930. /*
  931. * Get the in-core inode with the lock held exclusively.
  932. * This is because we're setting fields here we need
  933. * to prevent others from looking at until we're done.
  934. */
  935. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  936. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  937. if (error)
  938. return error;
  939. ASSERT(ip != NULL);
  940. ip->i_d.di_mode = (__uint16_t)mode;
  941. ip->i_d.di_onlink = 0;
  942. ip->i_d.di_nlink = nlink;
  943. ASSERT(ip->i_d.di_nlink == nlink);
  944. ip->i_d.di_uid = current_fsuid();
  945. ip->i_d.di_gid = current_fsgid();
  946. ip->i_d.di_projid = prid;
  947. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  948. /*
  949. * If the superblock version is up to where we support new format
  950. * inodes and this is currently an old format inode, then change
  951. * the inode version number now. This way we only do the conversion
  952. * here rather than here and in the flush/logging code.
  953. */
  954. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  955. ip->i_d.di_version == 1) {
  956. ip->i_d.di_version = 2;
  957. /*
  958. * We've already zeroed the old link count, the projid field,
  959. * and the pad field.
  960. */
  961. }
  962. /*
  963. * Project ids won't be stored on disk if we are using a version 1 inode.
  964. */
  965. if ((prid != 0) && (ip->i_d.di_version == 1))
  966. xfs_bump_ino_vers2(tp, ip);
  967. if (pip && XFS_INHERIT_GID(pip)) {
  968. ip->i_d.di_gid = pip->i_d.di_gid;
  969. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  970. ip->i_d.di_mode |= S_ISGID;
  971. }
  972. }
  973. /*
  974. * If the group ID of the new file does not match the effective group
  975. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  976. * (and only if the irix_sgid_inherit compatibility variable is set).
  977. */
  978. if ((irix_sgid_inherit) &&
  979. (ip->i_d.di_mode & S_ISGID) &&
  980. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  981. ip->i_d.di_mode &= ~S_ISGID;
  982. }
  983. ip->i_d.di_size = 0;
  984. ip->i_size = 0;
  985. ip->i_d.di_nextents = 0;
  986. ASSERT(ip->i_d.di_nblocks == 0);
  987. nanotime(&tv);
  988. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  989. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  990. ip->i_d.di_atime = ip->i_d.di_mtime;
  991. ip->i_d.di_ctime = ip->i_d.di_mtime;
  992. /*
  993. * di_gen will have been taken care of in xfs_iread.
  994. */
  995. ip->i_d.di_extsize = 0;
  996. ip->i_d.di_dmevmask = 0;
  997. ip->i_d.di_dmstate = 0;
  998. ip->i_d.di_flags = 0;
  999. flags = XFS_ILOG_CORE;
  1000. switch (mode & S_IFMT) {
  1001. case S_IFIFO:
  1002. case S_IFCHR:
  1003. case S_IFBLK:
  1004. case S_IFSOCK:
  1005. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1006. ip->i_df.if_u2.if_rdev = rdev;
  1007. ip->i_df.if_flags = 0;
  1008. flags |= XFS_ILOG_DEV;
  1009. break;
  1010. case S_IFREG:
  1011. /*
  1012. * we can't set up filestreams until after the VFS inode
  1013. * is set up properly.
  1014. */
  1015. if (pip && xfs_inode_is_filestream(pip))
  1016. filestreams = 1;
  1017. /* fall through */
  1018. case S_IFDIR:
  1019. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1020. uint di_flags = 0;
  1021. if ((mode & S_IFMT) == S_IFDIR) {
  1022. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1023. di_flags |= XFS_DIFLAG_RTINHERIT;
  1024. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1025. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1026. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1027. }
  1028. } else if ((mode & S_IFMT) == S_IFREG) {
  1029. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1030. di_flags |= XFS_DIFLAG_REALTIME;
  1031. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1032. di_flags |= XFS_DIFLAG_EXTSIZE;
  1033. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1034. }
  1035. }
  1036. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1037. xfs_inherit_noatime)
  1038. di_flags |= XFS_DIFLAG_NOATIME;
  1039. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1040. xfs_inherit_nodump)
  1041. di_flags |= XFS_DIFLAG_NODUMP;
  1042. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1043. xfs_inherit_sync)
  1044. di_flags |= XFS_DIFLAG_SYNC;
  1045. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1046. xfs_inherit_nosymlinks)
  1047. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1048. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1049. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1050. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1051. xfs_inherit_nodefrag)
  1052. di_flags |= XFS_DIFLAG_NODEFRAG;
  1053. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1054. di_flags |= XFS_DIFLAG_FILESTREAM;
  1055. ip->i_d.di_flags |= di_flags;
  1056. }
  1057. /* FALLTHROUGH */
  1058. case S_IFLNK:
  1059. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1060. ip->i_df.if_flags = XFS_IFEXTENTS;
  1061. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1062. ip->i_df.if_u1.if_extents = NULL;
  1063. break;
  1064. default:
  1065. ASSERT(0);
  1066. }
  1067. /*
  1068. * Attribute fork settings for new inode.
  1069. */
  1070. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1071. ip->i_d.di_anextents = 0;
  1072. /*
  1073. * Log the new values stuffed into the inode.
  1074. */
  1075. xfs_trans_log_inode(tp, ip, flags);
  1076. /* now that we have an i_mode we can setup inode ops and unlock */
  1077. xfs_setup_inode(ip);
  1078. /* now we have set up the vfs inode we can associate the filestream */
  1079. if (filestreams) {
  1080. error = xfs_filestream_associate(pip, ip);
  1081. if (error < 0)
  1082. return -error;
  1083. if (!error)
  1084. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1085. }
  1086. *ipp = ip;
  1087. return 0;
  1088. }
  1089. /*
  1090. * Check to make sure that there are no blocks allocated to the
  1091. * file beyond the size of the file. We don't check this for
  1092. * files with fixed size extents or real time extents, but we
  1093. * at least do it for regular files.
  1094. */
  1095. #ifdef DEBUG
  1096. void
  1097. xfs_isize_check(
  1098. xfs_mount_t *mp,
  1099. xfs_inode_t *ip,
  1100. xfs_fsize_t isize)
  1101. {
  1102. xfs_fileoff_t map_first;
  1103. int nimaps;
  1104. xfs_bmbt_irec_t imaps[2];
  1105. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1106. return;
  1107. if (XFS_IS_REALTIME_INODE(ip))
  1108. return;
  1109. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1110. return;
  1111. nimaps = 2;
  1112. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1113. /*
  1114. * The filesystem could be shutting down, so bmapi may return
  1115. * an error.
  1116. */
  1117. if (xfs_bmapi(NULL, ip, map_first,
  1118. (XFS_B_TO_FSB(mp,
  1119. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1120. map_first),
  1121. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1122. NULL, NULL))
  1123. return;
  1124. ASSERT(nimaps == 1);
  1125. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1126. }
  1127. #endif /* DEBUG */
  1128. /*
  1129. * Calculate the last possible buffered byte in a file. This must
  1130. * include data that was buffered beyond the EOF by the write code.
  1131. * This also needs to deal with overflowing the xfs_fsize_t type
  1132. * which can happen for sizes near the limit.
  1133. *
  1134. * We also need to take into account any blocks beyond the EOF. It
  1135. * may be the case that they were buffered by a write which failed.
  1136. * In that case the pages will still be in memory, but the inode size
  1137. * will never have been updated.
  1138. */
  1139. xfs_fsize_t
  1140. xfs_file_last_byte(
  1141. xfs_inode_t *ip)
  1142. {
  1143. xfs_mount_t *mp;
  1144. xfs_fsize_t last_byte;
  1145. xfs_fileoff_t last_block;
  1146. xfs_fileoff_t size_last_block;
  1147. int error;
  1148. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1149. mp = ip->i_mount;
  1150. /*
  1151. * Only check for blocks beyond the EOF if the extents have
  1152. * been read in. This eliminates the need for the inode lock,
  1153. * and it also saves us from looking when it really isn't
  1154. * necessary.
  1155. */
  1156. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1157. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1158. XFS_DATA_FORK);
  1159. if (error) {
  1160. last_block = 0;
  1161. }
  1162. } else {
  1163. last_block = 0;
  1164. }
  1165. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1166. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1167. last_byte = XFS_FSB_TO_B(mp, last_block);
  1168. if (last_byte < 0) {
  1169. return XFS_MAXIOFFSET(mp);
  1170. }
  1171. last_byte += (1 << mp->m_writeio_log);
  1172. if (last_byte < 0) {
  1173. return XFS_MAXIOFFSET(mp);
  1174. }
  1175. return last_byte;
  1176. }
  1177. #if defined(XFS_RW_TRACE)
  1178. STATIC void
  1179. xfs_itrunc_trace(
  1180. int tag,
  1181. xfs_inode_t *ip,
  1182. int flag,
  1183. xfs_fsize_t new_size,
  1184. xfs_off_t toss_start,
  1185. xfs_off_t toss_finish)
  1186. {
  1187. if (ip->i_rwtrace == NULL) {
  1188. return;
  1189. }
  1190. ktrace_enter(ip->i_rwtrace,
  1191. (void*)((long)tag),
  1192. (void*)ip,
  1193. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1194. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1195. (void*)((long)flag),
  1196. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1197. (void*)(unsigned long)(new_size & 0xffffffff),
  1198. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1199. (void*)(unsigned long)(toss_start & 0xffffffff),
  1200. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1201. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1202. (void*)(unsigned long)current_cpu(),
  1203. (void*)(unsigned long)current_pid(),
  1204. (void*)NULL,
  1205. (void*)NULL,
  1206. (void*)NULL);
  1207. }
  1208. #else
  1209. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1210. #endif
  1211. /*
  1212. * Start the truncation of the file to new_size. The new size
  1213. * must be smaller than the current size. This routine will
  1214. * clear the buffer and page caches of file data in the removed
  1215. * range, and xfs_itruncate_finish() will remove the underlying
  1216. * disk blocks.
  1217. *
  1218. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1219. * must NOT have the inode lock held at all. This is because we're
  1220. * calling into the buffer/page cache code and we can't hold the
  1221. * inode lock when we do so.
  1222. *
  1223. * We need to wait for any direct I/Os in flight to complete before we
  1224. * proceed with the truncate. This is needed to prevent the extents
  1225. * being read or written by the direct I/Os from being removed while the
  1226. * I/O is in flight as there is no other method of synchronising
  1227. * direct I/O with the truncate operation. Also, because we hold
  1228. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1229. * started until the truncate completes and drops the lock. Essentially,
  1230. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1231. * between direct I/Os and the truncate operation.
  1232. *
  1233. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1234. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1235. * in the case that the caller is locking things out of order and
  1236. * may not be able to call xfs_itruncate_finish() with the inode lock
  1237. * held without dropping the I/O lock. If the caller must drop the
  1238. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1239. * must be called again with all the same restrictions as the initial
  1240. * call.
  1241. */
  1242. int
  1243. xfs_itruncate_start(
  1244. xfs_inode_t *ip,
  1245. uint flags,
  1246. xfs_fsize_t new_size)
  1247. {
  1248. xfs_fsize_t last_byte;
  1249. xfs_off_t toss_start;
  1250. xfs_mount_t *mp;
  1251. int error = 0;
  1252. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1253. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1254. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1255. (flags == XFS_ITRUNC_MAYBE));
  1256. mp = ip->i_mount;
  1257. /* wait for the completion of any pending DIOs */
  1258. if (new_size == 0 || new_size < ip->i_size)
  1259. vn_iowait(ip);
  1260. /*
  1261. * Call toss_pages or flushinval_pages to get rid of pages
  1262. * overlapping the region being removed. We have to use
  1263. * the less efficient flushinval_pages in the case that the
  1264. * caller may not be able to finish the truncate without
  1265. * dropping the inode's I/O lock. Make sure
  1266. * to catch any pages brought in by buffers overlapping
  1267. * the EOF by searching out beyond the isize by our
  1268. * block size. We round new_size up to a block boundary
  1269. * so that we don't toss things on the same block as
  1270. * new_size but before it.
  1271. *
  1272. * Before calling toss_page or flushinval_pages, make sure to
  1273. * call remapf() over the same region if the file is mapped.
  1274. * This frees up mapped file references to the pages in the
  1275. * given range and for the flushinval_pages case it ensures
  1276. * that we get the latest mapped changes flushed out.
  1277. */
  1278. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1279. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1280. if (toss_start < 0) {
  1281. /*
  1282. * The place to start tossing is beyond our maximum
  1283. * file size, so there is no way that the data extended
  1284. * out there.
  1285. */
  1286. return 0;
  1287. }
  1288. last_byte = xfs_file_last_byte(ip);
  1289. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1290. last_byte);
  1291. if (last_byte > toss_start) {
  1292. if (flags & XFS_ITRUNC_DEFINITE) {
  1293. xfs_tosspages(ip, toss_start,
  1294. -1, FI_REMAPF_LOCKED);
  1295. } else {
  1296. error = xfs_flushinval_pages(ip, toss_start,
  1297. -1, FI_REMAPF_LOCKED);
  1298. }
  1299. }
  1300. #ifdef DEBUG
  1301. if (new_size == 0) {
  1302. ASSERT(VN_CACHED(VFS_I(ip)) == 0);
  1303. }
  1304. #endif
  1305. return error;
  1306. }
  1307. /*
  1308. * Shrink the file to the given new_size. The new size must be smaller than
  1309. * the current size. This will free up the underlying blocks in the removed
  1310. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1311. *
  1312. * The transaction passed to this routine must have made a permanent log
  1313. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1314. * given transaction and start new ones, so make sure everything involved in
  1315. * the transaction is tidy before calling here. Some transaction will be
  1316. * returned to the caller to be committed. The incoming transaction must
  1317. * already include the inode, and both inode locks must be held exclusively.
  1318. * The inode must also be "held" within the transaction. On return the inode
  1319. * will be "held" within the returned transaction. This routine does NOT
  1320. * require any disk space to be reserved for it within the transaction.
  1321. *
  1322. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1323. * indicates the fork which is to be truncated. For the attribute fork we only
  1324. * support truncation to size 0.
  1325. *
  1326. * We use the sync parameter to indicate whether or not the first transaction
  1327. * we perform might have to be synchronous. For the attr fork, it needs to be
  1328. * so if the unlink of the inode is not yet known to be permanent in the log.
  1329. * This keeps us from freeing and reusing the blocks of the attribute fork
  1330. * before the unlink of the inode becomes permanent.
  1331. *
  1332. * For the data fork, we normally have to run synchronously if we're being
  1333. * called out of the inactive path or we're being called out of the create path
  1334. * where we're truncating an existing file. Either way, the truncate needs to
  1335. * be sync so blocks don't reappear in the file with altered data in case of a
  1336. * crash. wsync filesystems can run the first case async because anything that
  1337. * shrinks the inode has to run sync so by the time we're called here from
  1338. * inactive, the inode size is permanently set to 0.
  1339. *
  1340. * Calls from the truncate path always need to be sync unless we're in a wsync
  1341. * filesystem and the file has already been unlinked.
  1342. *
  1343. * The caller is responsible for correctly setting the sync parameter. It gets
  1344. * too hard for us to guess here which path we're being called out of just
  1345. * based on inode state.
  1346. *
  1347. * If we get an error, we must return with the inode locked and linked into the
  1348. * current transaction. This keeps things simple for the higher level code,
  1349. * because it always knows that the inode is locked and held in the transaction
  1350. * that returns to it whether errors occur or not. We don't mark the inode
  1351. * dirty on error so that transactions can be easily aborted if possible.
  1352. */
  1353. int
  1354. xfs_itruncate_finish(
  1355. xfs_trans_t **tp,
  1356. xfs_inode_t *ip,
  1357. xfs_fsize_t new_size,
  1358. int fork,
  1359. int sync)
  1360. {
  1361. xfs_fsblock_t first_block;
  1362. xfs_fileoff_t first_unmap_block;
  1363. xfs_fileoff_t last_block;
  1364. xfs_filblks_t unmap_len=0;
  1365. xfs_mount_t *mp;
  1366. xfs_trans_t *ntp;
  1367. int done;
  1368. int committed;
  1369. xfs_bmap_free_t free_list;
  1370. int error;
  1371. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1372. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1373. ASSERT(*tp != NULL);
  1374. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1375. ASSERT(ip->i_transp == *tp);
  1376. ASSERT(ip->i_itemp != NULL);
  1377. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1378. ntp = *tp;
  1379. mp = (ntp)->t_mountp;
  1380. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1381. /*
  1382. * We only support truncating the entire attribute fork.
  1383. */
  1384. if (fork == XFS_ATTR_FORK) {
  1385. new_size = 0LL;
  1386. }
  1387. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1388. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1389. /*
  1390. * The first thing we do is set the size to new_size permanently
  1391. * on disk. This way we don't have to worry about anyone ever
  1392. * being able to look at the data being freed even in the face
  1393. * of a crash. What we're getting around here is the case where
  1394. * we free a block, it is allocated to another file, it is written
  1395. * to, and then we crash. If the new data gets written to the
  1396. * file but the log buffers containing the free and reallocation
  1397. * don't, then we'd end up with garbage in the blocks being freed.
  1398. * As long as we make the new_size permanent before actually
  1399. * freeing any blocks it doesn't matter if they get writtten to.
  1400. *
  1401. * The callers must signal into us whether or not the size
  1402. * setting here must be synchronous. There are a few cases
  1403. * where it doesn't have to be synchronous. Those cases
  1404. * occur if the file is unlinked and we know the unlink is
  1405. * permanent or if the blocks being truncated are guaranteed
  1406. * to be beyond the inode eof (regardless of the link count)
  1407. * and the eof value is permanent. Both of these cases occur
  1408. * only on wsync-mounted filesystems. In those cases, we're
  1409. * guaranteed that no user will ever see the data in the blocks
  1410. * that are being truncated so the truncate can run async.
  1411. * In the free beyond eof case, the file may wind up with
  1412. * more blocks allocated to it than it needs if we crash
  1413. * and that won't get fixed until the next time the file
  1414. * is re-opened and closed but that's ok as that shouldn't
  1415. * be too many blocks.
  1416. *
  1417. * However, we can't just make all wsync xactions run async
  1418. * because there's one call out of the create path that needs
  1419. * to run sync where it's truncating an existing file to size
  1420. * 0 whose size is > 0.
  1421. *
  1422. * It's probably possible to come up with a test in this
  1423. * routine that would correctly distinguish all the above
  1424. * cases from the values of the function parameters and the
  1425. * inode state but for sanity's sake, I've decided to let the
  1426. * layers above just tell us. It's simpler to correctly figure
  1427. * out in the layer above exactly under what conditions we
  1428. * can run async and I think it's easier for others read and
  1429. * follow the logic in case something has to be changed.
  1430. * cscope is your friend -- rcc.
  1431. *
  1432. * The attribute fork is much simpler.
  1433. *
  1434. * For the attribute fork we allow the caller to tell us whether
  1435. * the unlink of the inode that led to this call is yet permanent
  1436. * in the on disk log. If it is not and we will be freeing extents
  1437. * in this inode then we make the first transaction synchronous
  1438. * to make sure that the unlink is permanent by the time we free
  1439. * the blocks.
  1440. */
  1441. if (fork == XFS_DATA_FORK) {
  1442. if (ip->i_d.di_nextents > 0) {
  1443. /*
  1444. * If we are not changing the file size then do
  1445. * not update the on-disk file size - we may be
  1446. * called from xfs_inactive_free_eofblocks(). If we
  1447. * update the on-disk file size and then the system
  1448. * crashes before the contents of the file are
  1449. * flushed to disk then the files may be full of
  1450. * holes (ie NULL files bug).
  1451. */
  1452. if (ip->i_size != new_size) {
  1453. ip->i_d.di_size = new_size;
  1454. ip->i_size = new_size;
  1455. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1456. }
  1457. }
  1458. } else if (sync) {
  1459. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1460. if (ip->i_d.di_anextents > 0)
  1461. xfs_trans_set_sync(ntp);
  1462. }
  1463. ASSERT(fork == XFS_DATA_FORK ||
  1464. (fork == XFS_ATTR_FORK &&
  1465. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1466. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1467. /*
  1468. * Since it is possible for space to become allocated beyond
  1469. * the end of the file (in a crash where the space is allocated
  1470. * but the inode size is not yet updated), simply remove any
  1471. * blocks which show up between the new EOF and the maximum
  1472. * possible file size. If the first block to be removed is
  1473. * beyond the maximum file size (ie it is the same as last_block),
  1474. * then there is nothing to do.
  1475. */
  1476. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1477. ASSERT(first_unmap_block <= last_block);
  1478. done = 0;
  1479. if (last_block == first_unmap_block) {
  1480. done = 1;
  1481. } else {
  1482. unmap_len = last_block - first_unmap_block + 1;
  1483. }
  1484. while (!done) {
  1485. /*
  1486. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1487. * will tell us whether it freed the entire range or
  1488. * not. If this is a synchronous mount (wsync),
  1489. * then we can tell bunmapi to keep all the
  1490. * transactions asynchronous since the unlink
  1491. * transaction that made this inode inactive has
  1492. * already hit the disk. There's no danger of
  1493. * the freed blocks being reused, there being a
  1494. * crash, and the reused blocks suddenly reappearing
  1495. * in this file with garbage in them once recovery
  1496. * runs.
  1497. */
  1498. XFS_BMAP_INIT(&free_list, &first_block);
  1499. error = xfs_bunmapi(ntp, ip,
  1500. first_unmap_block, unmap_len,
  1501. XFS_BMAPI_AFLAG(fork) |
  1502. (sync ? 0 : XFS_BMAPI_ASYNC),
  1503. XFS_ITRUNC_MAX_EXTENTS,
  1504. &first_block, &free_list,
  1505. NULL, &done);
  1506. if (error) {
  1507. /*
  1508. * If the bunmapi call encounters an error,
  1509. * return to the caller where the transaction
  1510. * can be properly aborted. We just need to
  1511. * make sure we're not holding any resources
  1512. * that we were not when we came in.
  1513. */
  1514. xfs_bmap_cancel(&free_list);
  1515. return error;
  1516. }
  1517. /*
  1518. * Duplicate the transaction that has the permanent
  1519. * reservation and commit the old transaction.
  1520. */
  1521. error = xfs_bmap_finish(tp, &free_list, &committed);
  1522. ntp = *tp;
  1523. if (committed) {
  1524. /* link the inode into the next xact in the chain */
  1525. xfs_trans_ijoin(ntp, ip,
  1526. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1527. xfs_trans_ihold(ntp, ip);
  1528. }
  1529. if (error) {
  1530. /*
  1531. * If the bmap finish call encounters an error, return
  1532. * to the caller where the transaction can be properly
  1533. * aborted. We just need to make sure we're not
  1534. * holding any resources that we were not when we came
  1535. * in.
  1536. *
  1537. * Aborting from this point might lose some blocks in
  1538. * the file system, but oh well.
  1539. */
  1540. xfs_bmap_cancel(&free_list);
  1541. return error;
  1542. }
  1543. if (committed) {
  1544. /*
  1545. * Mark the inode dirty so it will be logged and
  1546. * moved forward in the log as part of every commit.
  1547. */
  1548. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1549. }
  1550. ntp = xfs_trans_dup(ntp);
  1551. error = xfs_trans_commit(*tp, 0);
  1552. *tp = ntp;
  1553. /* link the inode into the next transaction in the chain */
  1554. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1555. xfs_trans_ihold(ntp, ip);
  1556. if (error)
  1557. return error;
  1558. /*
  1559. * transaction commit worked ok so we can drop the extra ticket
  1560. * reference that we gained in xfs_trans_dup()
  1561. */
  1562. xfs_log_ticket_put(ntp->t_ticket);
  1563. error = xfs_trans_reserve(ntp, 0,
  1564. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1565. XFS_TRANS_PERM_LOG_RES,
  1566. XFS_ITRUNCATE_LOG_COUNT);
  1567. if (error)
  1568. return error;
  1569. }
  1570. /*
  1571. * Only update the size in the case of the data fork, but
  1572. * always re-log the inode so that our permanent transaction
  1573. * can keep on rolling it forward in the log.
  1574. */
  1575. if (fork == XFS_DATA_FORK) {
  1576. xfs_isize_check(mp, ip, new_size);
  1577. /*
  1578. * If we are not changing the file size then do
  1579. * not update the on-disk file size - we may be
  1580. * called from xfs_inactive_free_eofblocks(). If we
  1581. * update the on-disk file size and then the system
  1582. * crashes before the contents of the file are
  1583. * flushed to disk then the files may be full of
  1584. * holes (ie NULL files bug).
  1585. */
  1586. if (ip->i_size != new_size) {
  1587. ip->i_d.di_size = new_size;
  1588. ip->i_size = new_size;
  1589. }
  1590. }
  1591. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1592. ASSERT((new_size != 0) ||
  1593. (fork == XFS_ATTR_FORK) ||
  1594. (ip->i_delayed_blks == 0));
  1595. ASSERT((new_size != 0) ||
  1596. (fork == XFS_ATTR_FORK) ||
  1597. (ip->i_d.di_nextents == 0));
  1598. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1599. return 0;
  1600. }
  1601. /*
  1602. * This is called when the inode's link count goes to 0.
  1603. * We place the on-disk inode on a list in the AGI. It
  1604. * will be pulled from this list when the inode is freed.
  1605. */
  1606. int
  1607. xfs_iunlink(
  1608. xfs_trans_t *tp,
  1609. xfs_inode_t *ip)
  1610. {
  1611. xfs_mount_t *mp;
  1612. xfs_agi_t *agi;
  1613. xfs_dinode_t *dip;
  1614. xfs_buf_t *agibp;
  1615. xfs_buf_t *ibp;
  1616. xfs_agino_t agino;
  1617. short bucket_index;
  1618. int offset;
  1619. int error;
  1620. ASSERT(ip->i_d.di_nlink == 0);
  1621. ASSERT(ip->i_d.di_mode != 0);
  1622. ASSERT(ip->i_transp == tp);
  1623. mp = tp->t_mountp;
  1624. /*
  1625. * Get the agi buffer first. It ensures lock ordering
  1626. * on the list.
  1627. */
  1628. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1629. if (error)
  1630. return error;
  1631. agi = XFS_BUF_TO_AGI(agibp);
  1632. /*
  1633. * Get the index into the agi hash table for the
  1634. * list this inode will go on.
  1635. */
  1636. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1637. ASSERT(agino != 0);
  1638. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1639. ASSERT(agi->agi_unlinked[bucket_index]);
  1640. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1641. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1642. /*
  1643. * There is already another inode in the bucket we need
  1644. * to add ourselves to. Add us at the front of the list.
  1645. * Here we put the head pointer into our next pointer,
  1646. * and then we fall through to point the head at us.
  1647. */
  1648. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
  1649. if (error)
  1650. return error;
  1651. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1652. /* both on-disk, don't endian flip twice */
  1653. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1654. offset = ip->i_imap.im_boffset +
  1655. offsetof(xfs_dinode_t, di_next_unlinked);
  1656. xfs_trans_inode_buf(tp, ibp);
  1657. xfs_trans_log_buf(tp, ibp, offset,
  1658. (offset + sizeof(xfs_agino_t) - 1));
  1659. xfs_inobp_check(mp, ibp);
  1660. }
  1661. /*
  1662. * Point the bucket head pointer at the inode being inserted.
  1663. */
  1664. ASSERT(agino != 0);
  1665. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1666. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1667. (sizeof(xfs_agino_t) * bucket_index);
  1668. xfs_trans_log_buf(tp, agibp, offset,
  1669. (offset + sizeof(xfs_agino_t) - 1));
  1670. return 0;
  1671. }
  1672. /*
  1673. * Pull the on-disk inode from the AGI unlinked list.
  1674. */
  1675. STATIC int
  1676. xfs_iunlink_remove(
  1677. xfs_trans_t *tp,
  1678. xfs_inode_t *ip)
  1679. {
  1680. xfs_ino_t next_ino;
  1681. xfs_mount_t *mp;
  1682. xfs_agi_t *agi;
  1683. xfs_dinode_t *dip;
  1684. xfs_buf_t *agibp;
  1685. xfs_buf_t *ibp;
  1686. xfs_agnumber_t agno;
  1687. xfs_agino_t agino;
  1688. xfs_agino_t next_agino;
  1689. xfs_buf_t *last_ibp;
  1690. xfs_dinode_t *last_dip = NULL;
  1691. short bucket_index;
  1692. int offset, last_offset = 0;
  1693. int error;
  1694. mp = tp->t_mountp;
  1695. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1696. /*
  1697. * Get the agi buffer first. It ensures lock ordering
  1698. * on the list.
  1699. */
  1700. error = xfs_read_agi(mp, tp, agno, &agibp);
  1701. if (error)
  1702. return error;
  1703. agi = XFS_BUF_TO_AGI(agibp);
  1704. /*
  1705. * Get the index into the agi hash table for the
  1706. * list this inode will go on.
  1707. */
  1708. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1709. ASSERT(agino != 0);
  1710. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1711. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1712. ASSERT(agi->agi_unlinked[bucket_index]);
  1713. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1714. /*
  1715. * We're at the head of the list. Get the inode's
  1716. * on-disk buffer to see if there is anyone after us
  1717. * on the list. Only modify our next pointer if it
  1718. * is not already NULLAGINO. This saves us the overhead
  1719. * of dealing with the buffer when there is no need to
  1720. * change it.
  1721. */
  1722. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
  1723. if (error) {
  1724. cmn_err(CE_WARN,
  1725. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1726. error, mp->m_fsname);
  1727. return error;
  1728. }
  1729. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1730. ASSERT(next_agino != 0);
  1731. if (next_agino != NULLAGINO) {
  1732. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1733. offset = ip->i_imap.im_boffset +
  1734. offsetof(xfs_dinode_t, di_next_unlinked);
  1735. xfs_trans_inode_buf(tp, ibp);
  1736. xfs_trans_log_buf(tp, ibp, offset,
  1737. (offset + sizeof(xfs_agino_t) - 1));
  1738. xfs_inobp_check(mp, ibp);
  1739. } else {
  1740. xfs_trans_brelse(tp, ibp);
  1741. }
  1742. /*
  1743. * Point the bucket head pointer at the next inode.
  1744. */
  1745. ASSERT(next_agino != 0);
  1746. ASSERT(next_agino != agino);
  1747. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1748. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1749. (sizeof(xfs_agino_t) * bucket_index);
  1750. xfs_trans_log_buf(tp, agibp, offset,
  1751. (offset + sizeof(xfs_agino_t) - 1));
  1752. } else {
  1753. /*
  1754. * We need to search the list for the inode being freed.
  1755. */
  1756. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1757. last_ibp = NULL;
  1758. while (next_agino != agino) {
  1759. /*
  1760. * If the last inode wasn't the one pointing to
  1761. * us, then release its buffer since we're not
  1762. * going to do anything with it.
  1763. */
  1764. if (last_ibp != NULL) {
  1765. xfs_trans_brelse(tp, last_ibp);
  1766. }
  1767. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1768. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1769. &last_ibp, &last_offset, 0);
  1770. if (error) {
  1771. cmn_err(CE_WARN,
  1772. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1773. error, mp->m_fsname);
  1774. return error;
  1775. }
  1776. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1777. ASSERT(next_agino != NULLAGINO);
  1778. ASSERT(next_agino != 0);
  1779. }
  1780. /*
  1781. * Now last_ibp points to the buffer previous to us on
  1782. * the unlinked list. Pull us from the list.
  1783. */
  1784. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
  1785. if (error) {
  1786. cmn_err(CE_WARN,
  1787. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1788. error, mp->m_fsname);
  1789. return error;
  1790. }
  1791. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1792. ASSERT(next_agino != 0);
  1793. ASSERT(next_agino != agino);
  1794. if (next_agino != NULLAGINO) {
  1795. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1796. offset = ip->i_imap.im_boffset +
  1797. offsetof(xfs_dinode_t, di_next_unlinked);
  1798. xfs_trans_inode_buf(tp, ibp);
  1799. xfs_trans_log_buf(tp, ibp, offset,
  1800. (offset + sizeof(xfs_agino_t) - 1));
  1801. xfs_inobp_check(mp, ibp);
  1802. } else {
  1803. xfs_trans_brelse(tp, ibp);
  1804. }
  1805. /*
  1806. * Point the previous inode on the list to the next inode.
  1807. */
  1808. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1809. ASSERT(next_agino != 0);
  1810. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1811. xfs_trans_inode_buf(tp, last_ibp);
  1812. xfs_trans_log_buf(tp, last_ibp, offset,
  1813. (offset + sizeof(xfs_agino_t) - 1));
  1814. xfs_inobp_check(mp, last_ibp);
  1815. }
  1816. return 0;
  1817. }
  1818. STATIC void
  1819. xfs_ifree_cluster(
  1820. xfs_inode_t *free_ip,
  1821. xfs_trans_t *tp,
  1822. xfs_ino_t inum)
  1823. {
  1824. xfs_mount_t *mp = free_ip->i_mount;
  1825. int blks_per_cluster;
  1826. int nbufs;
  1827. int ninodes;
  1828. int i, j, found, pre_flushed;
  1829. xfs_daddr_t blkno;
  1830. xfs_buf_t *bp;
  1831. xfs_inode_t *ip, **ip_found;
  1832. xfs_inode_log_item_t *iip;
  1833. xfs_log_item_t *lip;
  1834. xfs_perag_t *pag = xfs_get_perag(mp, inum);
  1835. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1836. blks_per_cluster = 1;
  1837. ninodes = mp->m_sb.sb_inopblock;
  1838. nbufs = XFS_IALLOC_BLOCKS(mp);
  1839. } else {
  1840. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1841. mp->m_sb.sb_blocksize;
  1842. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1843. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1844. }
  1845. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  1846. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1847. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1848. XFS_INO_TO_AGBNO(mp, inum));
  1849. /*
  1850. * Look for each inode in memory and attempt to lock it,
  1851. * we can be racing with flush and tail pushing here.
  1852. * any inode we get the locks on, add to an array of
  1853. * inode items to process later.
  1854. *
  1855. * The get the buffer lock, we could beat a flush
  1856. * or tail pushing thread to the lock here, in which
  1857. * case they will go looking for the inode buffer
  1858. * and fail, we need some other form of interlock
  1859. * here.
  1860. */
  1861. found = 0;
  1862. for (i = 0; i < ninodes; i++) {
  1863. read_lock(&pag->pag_ici_lock);
  1864. ip = radix_tree_lookup(&pag->pag_ici_root,
  1865. XFS_INO_TO_AGINO(mp, (inum + i)));
  1866. /* Inode not in memory or we found it already,
  1867. * nothing to do
  1868. */
  1869. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  1870. read_unlock(&pag->pag_ici_lock);
  1871. continue;
  1872. }
  1873. if (xfs_inode_clean(ip)) {
  1874. read_unlock(&pag->pag_ici_lock);
  1875. continue;
  1876. }
  1877. /* If we can get the locks then add it to the
  1878. * list, otherwise by the time we get the bp lock
  1879. * below it will already be attached to the
  1880. * inode buffer.
  1881. */
  1882. /* This inode will already be locked - by us, lets
  1883. * keep it that way.
  1884. */
  1885. if (ip == free_ip) {
  1886. if (xfs_iflock_nowait(ip)) {
  1887. xfs_iflags_set(ip, XFS_ISTALE);
  1888. if (xfs_inode_clean(ip)) {
  1889. xfs_ifunlock(ip);
  1890. } else {
  1891. ip_found[found++] = ip;
  1892. }
  1893. }
  1894. read_unlock(&pag->pag_ici_lock);
  1895. continue;
  1896. }
  1897. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1898. if (xfs_iflock_nowait(ip)) {
  1899. xfs_iflags_set(ip, XFS_ISTALE);
  1900. if (xfs_inode_clean(ip)) {
  1901. xfs_ifunlock(ip);
  1902. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1903. } else {
  1904. ip_found[found++] = ip;
  1905. }
  1906. } else {
  1907. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1908. }
  1909. }
  1910. read_unlock(&pag->pag_ici_lock);
  1911. }
  1912. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1913. mp->m_bsize * blks_per_cluster,
  1914. XFS_BUF_LOCK);
  1915. pre_flushed = 0;
  1916. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  1917. while (lip) {
  1918. if (lip->li_type == XFS_LI_INODE) {
  1919. iip = (xfs_inode_log_item_t *)lip;
  1920. ASSERT(iip->ili_logged == 1);
  1921. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  1922. xfs_trans_ail_copy_lsn(mp->m_ail,
  1923. &iip->ili_flush_lsn,
  1924. &iip->ili_item.li_lsn);
  1925. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1926. pre_flushed++;
  1927. }
  1928. lip = lip->li_bio_list;
  1929. }
  1930. for (i = 0; i < found; i++) {
  1931. ip = ip_found[i];
  1932. iip = ip->i_itemp;
  1933. if (!iip) {
  1934. ip->i_update_core = 0;
  1935. xfs_ifunlock(ip);
  1936. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1937. continue;
  1938. }
  1939. iip->ili_last_fields = iip->ili_format.ilf_fields;
  1940. iip->ili_format.ilf_fields = 0;
  1941. iip->ili_logged = 1;
  1942. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1943. &iip->ili_item.li_lsn);
  1944. xfs_buf_attach_iodone(bp,
  1945. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  1946. xfs_istale_done, (xfs_log_item_t *)iip);
  1947. if (ip != free_ip) {
  1948. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1949. }
  1950. }
  1951. if (found || pre_flushed)
  1952. xfs_trans_stale_inode_buf(tp, bp);
  1953. xfs_trans_binval(tp, bp);
  1954. }
  1955. kmem_free(ip_found);
  1956. xfs_put_perag(mp, pag);
  1957. }
  1958. /*
  1959. * This is called to return an inode to the inode free list.
  1960. * The inode should already be truncated to 0 length and have
  1961. * no pages associated with it. This routine also assumes that
  1962. * the inode is already a part of the transaction.
  1963. *
  1964. * The on-disk copy of the inode will have been added to the list
  1965. * of unlinked inodes in the AGI. We need to remove the inode from
  1966. * that list atomically with respect to freeing it here.
  1967. */
  1968. int
  1969. xfs_ifree(
  1970. xfs_trans_t *tp,
  1971. xfs_inode_t *ip,
  1972. xfs_bmap_free_t *flist)
  1973. {
  1974. int error;
  1975. int delete;
  1976. xfs_ino_t first_ino;
  1977. xfs_dinode_t *dip;
  1978. xfs_buf_t *ibp;
  1979. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1980. ASSERT(ip->i_transp == tp);
  1981. ASSERT(ip->i_d.di_nlink == 0);
  1982. ASSERT(ip->i_d.di_nextents == 0);
  1983. ASSERT(ip->i_d.di_anextents == 0);
  1984. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  1985. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  1986. ASSERT(ip->i_d.di_nblocks == 0);
  1987. /*
  1988. * Pull the on-disk inode from the AGI unlinked list.
  1989. */
  1990. error = xfs_iunlink_remove(tp, ip);
  1991. if (error != 0) {
  1992. return error;
  1993. }
  1994. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1995. if (error != 0) {
  1996. return error;
  1997. }
  1998. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1999. ip->i_d.di_flags = 0;
  2000. ip->i_d.di_dmevmask = 0;
  2001. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2002. ip->i_df.if_ext_max =
  2003. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2004. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2005. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2006. /*
  2007. * Bump the generation count so no one will be confused
  2008. * by reincarnations of this inode.
  2009. */
  2010. ip->i_d.di_gen++;
  2011. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2012. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
  2013. if (error)
  2014. return error;
  2015. /*
  2016. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  2017. * from picking up this inode when it is reclaimed (its incore state
  2018. * initialzed but not flushed to disk yet). The in-core di_mode is
  2019. * already cleared and a corresponding transaction logged.
  2020. * The hack here just synchronizes the in-core to on-disk
  2021. * di_mode value in advance before the actual inode sync to disk.
  2022. * This is OK because the inode is already unlinked and would never
  2023. * change its di_mode again for this inode generation.
  2024. * This is a temporary hack that would require a proper fix
  2025. * in the future.
  2026. */
  2027. dip->di_mode = 0;
  2028. if (delete) {
  2029. xfs_ifree_cluster(ip, tp, first_ino);
  2030. }
  2031. return 0;
  2032. }
  2033. /*
  2034. * Reallocate the space for if_broot based on the number of records
  2035. * being added or deleted as indicated in rec_diff. Move the records
  2036. * and pointers in if_broot to fit the new size. When shrinking this
  2037. * will eliminate holes between the records and pointers created by
  2038. * the caller. When growing this will create holes to be filled in
  2039. * by the caller.
  2040. *
  2041. * The caller must not request to add more records than would fit in
  2042. * the on-disk inode root. If the if_broot is currently NULL, then
  2043. * if we adding records one will be allocated. The caller must also
  2044. * not request that the number of records go below zero, although
  2045. * it can go to zero.
  2046. *
  2047. * ip -- the inode whose if_broot area is changing
  2048. * ext_diff -- the change in the number of records, positive or negative,
  2049. * requested for the if_broot array.
  2050. */
  2051. void
  2052. xfs_iroot_realloc(
  2053. xfs_inode_t *ip,
  2054. int rec_diff,
  2055. int whichfork)
  2056. {
  2057. struct xfs_mount *mp = ip->i_mount;
  2058. int cur_max;
  2059. xfs_ifork_t *ifp;
  2060. struct xfs_btree_block *new_broot;
  2061. int new_max;
  2062. size_t new_size;
  2063. char *np;
  2064. char *op;
  2065. /*
  2066. * Handle the degenerate case quietly.
  2067. */
  2068. if (rec_diff == 0) {
  2069. return;
  2070. }
  2071. ifp = XFS_IFORK_PTR(ip, whichfork);
  2072. if (rec_diff > 0) {
  2073. /*
  2074. * If there wasn't any memory allocated before, just
  2075. * allocate it now and get out.
  2076. */
  2077. if (ifp->if_broot_bytes == 0) {
  2078. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2079. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
  2080. ifp->if_broot_bytes = (int)new_size;
  2081. return;
  2082. }
  2083. /*
  2084. * If there is already an existing if_broot, then we need
  2085. * to realloc() it and shift the pointers to their new
  2086. * location. The records don't change location because
  2087. * they are kept butted up against the btree block header.
  2088. */
  2089. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2090. new_max = cur_max + rec_diff;
  2091. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2092. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  2093. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2094. KM_SLEEP);
  2095. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2096. ifp->if_broot_bytes);
  2097. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2098. (int)new_size);
  2099. ifp->if_broot_bytes = (int)new_size;
  2100. ASSERT(ifp->if_broot_bytes <=
  2101. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2102. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2103. return;
  2104. }
  2105. /*
  2106. * rec_diff is less than 0. In this case, we are shrinking the
  2107. * if_broot buffer. It must already exist. If we go to zero
  2108. * records, just get rid of the root and clear the status bit.
  2109. */
  2110. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2111. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2112. new_max = cur_max + rec_diff;
  2113. ASSERT(new_max >= 0);
  2114. if (new_max > 0)
  2115. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2116. else
  2117. new_size = 0;
  2118. if (new_size > 0) {
  2119. new_broot = kmem_alloc(new_size, KM_SLEEP);
  2120. /*
  2121. * First copy over the btree block header.
  2122. */
  2123. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  2124. } else {
  2125. new_broot = NULL;
  2126. ifp->if_flags &= ~XFS_IFBROOT;
  2127. }
  2128. /*
  2129. * Only copy the records and pointers if there are any.
  2130. */
  2131. if (new_max > 0) {
  2132. /*
  2133. * First copy the records.
  2134. */
  2135. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  2136. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  2137. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2138. /*
  2139. * Then copy the pointers.
  2140. */
  2141. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2142. ifp->if_broot_bytes);
  2143. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  2144. (int)new_size);
  2145. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2146. }
  2147. kmem_free(ifp->if_broot);
  2148. ifp->if_broot = new_broot;
  2149. ifp->if_broot_bytes = (int)new_size;
  2150. ASSERT(ifp->if_broot_bytes <=
  2151. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2152. return;
  2153. }
  2154. /*
  2155. * This is called when the amount of space needed for if_data
  2156. * is increased or decreased. The change in size is indicated by
  2157. * the number of bytes that need to be added or deleted in the
  2158. * byte_diff parameter.
  2159. *
  2160. * If the amount of space needed has decreased below the size of the
  2161. * inline buffer, then switch to using the inline buffer. Otherwise,
  2162. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2163. * to what is needed.
  2164. *
  2165. * ip -- the inode whose if_data area is changing
  2166. * byte_diff -- the change in the number of bytes, positive or negative,
  2167. * requested for the if_data array.
  2168. */
  2169. void
  2170. xfs_idata_realloc(
  2171. xfs_inode_t *ip,
  2172. int byte_diff,
  2173. int whichfork)
  2174. {
  2175. xfs_ifork_t *ifp;
  2176. int new_size;
  2177. int real_size;
  2178. if (byte_diff == 0) {
  2179. return;
  2180. }
  2181. ifp = XFS_IFORK_PTR(ip, whichfork);
  2182. new_size = (int)ifp->if_bytes + byte_diff;
  2183. ASSERT(new_size >= 0);
  2184. if (new_size == 0) {
  2185. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2186. kmem_free(ifp->if_u1.if_data);
  2187. }
  2188. ifp->if_u1.if_data = NULL;
  2189. real_size = 0;
  2190. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2191. /*
  2192. * If the valid extents/data can fit in if_inline_ext/data,
  2193. * copy them from the malloc'd vector and free it.
  2194. */
  2195. if (ifp->if_u1.if_data == NULL) {
  2196. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2197. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2198. ASSERT(ifp->if_real_bytes != 0);
  2199. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2200. new_size);
  2201. kmem_free(ifp->if_u1.if_data);
  2202. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2203. }
  2204. real_size = 0;
  2205. } else {
  2206. /*
  2207. * Stuck with malloc/realloc.
  2208. * For inline data, the underlying buffer must be
  2209. * a multiple of 4 bytes in size so that it can be
  2210. * logged and stay on word boundaries. We enforce
  2211. * that here.
  2212. */
  2213. real_size = roundup(new_size, 4);
  2214. if (ifp->if_u1.if_data == NULL) {
  2215. ASSERT(ifp->if_real_bytes == 0);
  2216. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2217. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2218. /*
  2219. * Only do the realloc if the underlying size
  2220. * is really changing.
  2221. */
  2222. if (ifp->if_real_bytes != real_size) {
  2223. ifp->if_u1.if_data =
  2224. kmem_realloc(ifp->if_u1.if_data,
  2225. real_size,
  2226. ifp->if_real_bytes,
  2227. KM_SLEEP);
  2228. }
  2229. } else {
  2230. ASSERT(ifp->if_real_bytes == 0);
  2231. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2232. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2233. ifp->if_bytes);
  2234. }
  2235. }
  2236. ifp->if_real_bytes = real_size;
  2237. ifp->if_bytes = new_size;
  2238. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2239. }
  2240. void
  2241. xfs_idestroy_fork(
  2242. xfs_inode_t *ip,
  2243. int whichfork)
  2244. {
  2245. xfs_ifork_t *ifp;
  2246. ifp = XFS_IFORK_PTR(ip, whichfork);
  2247. if (ifp->if_broot != NULL) {
  2248. kmem_free(ifp->if_broot);
  2249. ifp->if_broot = NULL;
  2250. }
  2251. /*
  2252. * If the format is local, then we can't have an extents
  2253. * array so just look for an inline data array. If we're
  2254. * not local then we may or may not have an extents list,
  2255. * so check and free it up if we do.
  2256. */
  2257. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2258. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2259. (ifp->if_u1.if_data != NULL)) {
  2260. ASSERT(ifp->if_real_bytes != 0);
  2261. kmem_free(ifp->if_u1.if_data);
  2262. ifp->if_u1.if_data = NULL;
  2263. ifp->if_real_bytes = 0;
  2264. }
  2265. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2266. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2267. ((ifp->if_u1.if_extents != NULL) &&
  2268. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2269. ASSERT(ifp->if_real_bytes != 0);
  2270. xfs_iext_destroy(ifp);
  2271. }
  2272. ASSERT(ifp->if_u1.if_extents == NULL ||
  2273. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2274. ASSERT(ifp->if_real_bytes == 0);
  2275. if (whichfork == XFS_ATTR_FORK) {
  2276. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2277. ip->i_afp = NULL;
  2278. }
  2279. }
  2280. /*
  2281. * This is called free all the memory associated with an inode.
  2282. * It must free the inode itself and any buffers allocated for
  2283. * if_extents/if_data and if_broot. It must also free the lock
  2284. * associated with the inode.
  2285. *
  2286. * Note: because we don't initialise everything on reallocation out
  2287. * of the zone, we must ensure we nullify everything correctly before
  2288. * freeing the structure.
  2289. */
  2290. void
  2291. xfs_idestroy(
  2292. xfs_inode_t *ip)
  2293. {
  2294. switch (ip->i_d.di_mode & S_IFMT) {
  2295. case S_IFREG:
  2296. case S_IFDIR:
  2297. case S_IFLNK:
  2298. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2299. break;
  2300. }
  2301. if (ip->i_afp)
  2302. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2303. #ifdef XFS_INODE_TRACE
  2304. ktrace_free(ip->i_trace);
  2305. #endif
  2306. #ifdef XFS_BMAP_TRACE
  2307. ktrace_free(ip->i_xtrace);
  2308. #endif
  2309. #ifdef XFS_BTREE_TRACE
  2310. ktrace_free(ip->i_btrace);
  2311. #endif
  2312. #ifdef XFS_RW_TRACE
  2313. ktrace_free(ip->i_rwtrace);
  2314. #endif
  2315. #ifdef XFS_ILOCK_TRACE
  2316. ktrace_free(ip->i_lock_trace);
  2317. #endif
  2318. #ifdef XFS_DIR2_TRACE
  2319. ktrace_free(ip->i_dir_trace);
  2320. #endif
  2321. if (ip->i_itemp) {
  2322. /*
  2323. * Only if we are shutting down the fs will we see an
  2324. * inode still in the AIL. If it is there, we should remove
  2325. * it to prevent a use-after-free from occurring.
  2326. */
  2327. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2328. struct xfs_ail *ailp = lip->li_ailp;
  2329. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2330. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2331. if (lip->li_flags & XFS_LI_IN_AIL) {
  2332. spin_lock(&ailp->xa_lock);
  2333. if (lip->li_flags & XFS_LI_IN_AIL)
  2334. xfs_trans_ail_delete(ailp, lip);
  2335. else
  2336. spin_unlock(&ailp->xa_lock);
  2337. }
  2338. xfs_inode_item_destroy(ip);
  2339. ip->i_itemp = NULL;
  2340. }
  2341. /* asserts to verify all state is correct here */
  2342. ASSERT(atomic_read(&ip->i_iocount) == 0);
  2343. ASSERT(atomic_read(&ip->i_pincount) == 0);
  2344. ASSERT(!spin_is_locked(&ip->i_flags_lock));
  2345. ASSERT(completion_done(&ip->i_flush));
  2346. kmem_zone_free(xfs_inode_zone, ip);
  2347. }
  2348. /*
  2349. * Increment the pin count of the given buffer.
  2350. * This value is protected by ipinlock spinlock in the mount structure.
  2351. */
  2352. void
  2353. xfs_ipin(
  2354. xfs_inode_t *ip)
  2355. {
  2356. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  2357. atomic_inc(&ip->i_pincount);
  2358. }
  2359. /*
  2360. * Decrement the pin count of the given inode, and wake up
  2361. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2362. * inode must have been previously pinned with a call to xfs_ipin().
  2363. */
  2364. void
  2365. xfs_iunpin(
  2366. xfs_inode_t *ip)
  2367. {
  2368. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2369. if (atomic_dec_and_test(&ip->i_pincount))
  2370. wake_up(&ip->i_ipin_wait);
  2371. }
  2372. /*
  2373. * This is called to unpin an inode. It can be directed to wait or to return
  2374. * immediately without waiting for the inode to be unpinned. The caller must
  2375. * have the inode locked in at least shared mode so that the buffer cannot be
  2376. * subsequently pinned once someone is waiting for it to be unpinned.
  2377. */
  2378. STATIC void
  2379. __xfs_iunpin_wait(
  2380. xfs_inode_t *ip,
  2381. int wait)
  2382. {
  2383. xfs_inode_log_item_t *iip = ip->i_itemp;
  2384. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2385. if (atomic_read(&ip->i_pincount) == 0)
  2386. return;
  2387. /* Give the log a push to start the unpinning I/O */
  2388. xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
  2389. iip->ili_last_lsn : 0, XFS_LOG_FORCE);
  2390. if (wait)
  2391. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2392. }
  2393. static inline void
  2394. xfs_iunpin_wait(
  2395. xfs_inode_t *ip)
  2396. {
  2397. __xfs_iunpin_wait(ip, 1);
  2398. }
  2399. static inline void
  2400. xfs_iunpin_nowait(
  2401. xfs_inode_t *ip)
  2402. {
  2403. __xfs_iunpin_wait(ip, 0);
  2404. }
  2405. /*
  2406. * xfs_iextents_copy()
  2407. *
  2408. * This is called to copy the REAL extents (as opposed to the delayed
  2409. * allocation extents) from the inode into the given buffer. It
  2410. * returns the number of bytes copied into the buffer.
  2411. *
  2412. * If there are no delayed allocation extents, then we can just
  2413. * memcpy() the extents into the buffer. Otherwise, we need to
  2414. * examine each extent in turn and skip those which are delayed.
  2415. */
  2416. int
  2417. xfs_iextents_copy(
  2418. xfs_inode_t *ip,
  2419. xfs_bmbt_rec_t *dp,
  2420. int whichfork)
  2421. {
  2422. int copied;
  2423. int i;
  2424. xfs_ifork_t *ifp;
  2425. int nrecs;
  2426. xfs_fsblock_t start_block;
  2427. ifp = XFS_IFORK_PTR(ip, whichfork);
  2428. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2429. ASSERT(ifp->if_bytes > 0);
  2430. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2431. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2432. ASSERT(nrecs > 0);
  2433. /*
  2434. * There are some delayed allocation extents in the
  2435. * inode, so copy the extents one at a time and skip
  2436. * the delayed ones. There must be at least one
  2437. * non-delayed extent.
  2438. */
  2439. copied = 0;
  2440. for (i = 0; i < nrecs; i++) {
  2441. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2442. start_block = xfs_bmbt_get_startblock(ep);
  2443. if (ISNULLSTARTBLOCK(start_block)) {
  2444. /*
  2445. * It's a delayed allocation extent, so skip it.
  2446. */
  2447. continue;
  2448. }
  2449. /* Translate to on disk format */
  2450. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2451. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2452. dp++;
  2453. copied++;
  2454. }
  2455. ASSERT(copied != 0);
  2456. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2457. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2458. }
  2459. /*
  2460. * Each of the following cases stores data into the same region
  2461. * of the on-disk inode, so only one of them can be valid at
  2462. * any given time. While it is possible to have conflicting formats
  2463. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2464. * in EXTENTS format, this can only happen when the fork has
  2465. * changed formats after being modified but before being flushed.
  2466. * In these cases, the format always takes precedence, because the
  2467. * format indicates the current state of the fork.
  2468. */
  2469. /*ARGSUSED*/
  2470. STATIC void
  2471. xfs_iflush_fork(
  2472. xfs_inode_t *ip,
  2473. xfs_dinode_t *dip,
  2474. xfs_inode_log_item_t *iip,
  2475. int whichfork,
  2476. xfs_buf_t *bp)
  2477. {
  2478. char *cp;
  2479. xfs_ifork_t *ifp;
  2480. xfs_mount_t *mp;
  2481. #ifdef XFS_TRANS_DEBUG
  2482. int first;
  2483. #endif
  2484. static const short brootflag[2] =
  2485. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2486. static const short dataflag[2] =
  2487. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2488. static const short extflag[2] =
  2489. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2490. if (!iip)
  2491. return;
  2492. ifp = XFS_IFORK_PTR(ip, whichfork);
  2493. /*
  2494. * This can happen if we gave up in iformat in an error path,
  2495. * for the attribute fork.
  2496. */
  2497. if (!ifp) {
  2498. ASSERT(whichfork == XFS_ATTR_FORK);
  2499. return;
  2500. }
  2501. cp = XFS_DFORK_PTR(dip, whichfork);
  2502. mp = ip->i_mount;
  2503. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2504. case XFS_DINODE_FMT_LOCAL:
  2505. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2506. (ifp->if_bytes > 0)) {
  2507. ASSERT(ifp->if_u1.if_data != NULL);
  2508. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2509. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2510. }
  2511. break;
  2512. case XFS_DINODE_FMT_EXTENTS:
  2513. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2514. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2515. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2516. (ifp->if_bytes == 0));
  2517. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2518. (ifp->if_bytes > 0));
  2519. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2520. (ifp->if_bytes > 0)) {
  2521. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2522. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2523. whichfork);
  2524. }
  2525. break;
  2526. case XFS_DINODE_FMT_BTREE:
  2527. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2528. (ifp->if_broot_bytes > 0)) {
  2529. ASSERT(ifp->if_broot != NULL);
  2530. ASSERT(ifp->if_broot_bytes <=
  2531. (XFS_IFORK_SIZE(ip, whichfork) +
  2532. XFS_BROOT_SIZE_ADJ));
  2533. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2534. (xfs_bmdr_block_t *)cp,
  2535. XFS_DFORK_SIZE(dip, mp, whichfork));
  2536. }
  2537. break;
  2538. case XFS_DINODE_FMT_DEV:
  2539. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2540. ASSERT(whichfork == XFS_DATA_FORK);
  2541. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2542. }
  2543. break;
  2544. case XFS_DINODE_FMT_UUID:
  2545. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2546. ASSERT(whichfork == XFS_DATA_FORK);
  2547. memcpy(XFS_DFORK_DPTR(dip),
  2548. &ip->i_df.if_u2.if_uuid,
  2549. sizeof(uuid_t));
  2550. }
  2551. break;
  2552. default:
  2553. ASSERT(0);
  2554. break;
  2555. }
  2556. }
  2557. STATIC int
  2558. xfs_iflush_cluster(
  2559. xfs_inode_t *ip,
  2560. xfs_buf_t *bp)
  2561. {
  2562. xfs_mount_t *mp = ip->i_mount;
  2563. xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
  2564. unsigned long first_index, mask;
  2565. unsigned long inodes_per_cluster;
  2566. int ilist_size;
  2567. xfs_inode_t **ilist;
  2568. xfs_inode_t *iq;
  2569. int nr_found;
  2570. int clcount = 0;
  2571. int bufwasdelwri;
  2572. int i;
  2573. ASSERT(pag->pagi_inodeok);
  2574. ASSERT(pag->pag_ici_init);
  2575. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2576. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2577. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2578. if (!ilist)
  2579. return 0;
  2580. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2581. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2582. read_lock(&pag->pag_ici_lock);
  2583. /* really need a gang lookup range call here */
  2584. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2585. first_index, inodes_per_cluster);
  2586. if (nr_found == 0)
  2587. goto out_free;
  2588. for (i = 0; i < nr_found; i++) {
  2589. iq = ilist[i];
  2590. if (iq == ip)
  2591. continue;
  2592. /* if the inode lies outside this cluster, we're done. */
  2593. if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
  2594. break;
  2595. /*
  2596. * Do an un-protected check to see if the inode is dirty and
  2597. * is a candidate for flushing. These checks will be repeated
  2598. * later after the appropriate locks are acquired.
  2599. */
  2600. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2601. continue;
  2602. /*
  2603. * Try to get locks. If any are unavailable or it is pinned,
  2604. * then this inode cannot be flushed and is skipped.
  2605. */
  2606. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2607. continue;
  2608. if (!xfs_iflock_nowait(iq)) {
  2609. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2610. continue;
  2611. }
  2612. if (xfs_ipincount(iq)) {
  2613. xfs_ifunlock(iq);
  2614. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2615. continue;
  2616. }
  2617. /*
  2618. * arriving here means that this inode can be flushed. First
  2619. * re-check that it's dirty before flushing.
  2620. */
  2621. if (!xfs_inode_clean(iq)) {
  2622. int error;
  2623. error = xfs_iflush_int(iq, bp);
  2624. if (error) {
  2625. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2626. goto cluster_corrupt_out;
  2627. }
  2628. clcount++;
  2629. } else {
  2630. xfs_ifunlock(iq);
  2631. }
  2632. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2633. }
  2634. if (clcount) {
  2635. XFS_STATS_INC(xs_icluster_flushcnt);
  2636. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2637. }
  2638. out_free:
  2639. read_unlock(&pag->pag_ici_lock);
  2640. kmem_free(ilist);
  2641. return 0;
  2642. cluster_corrupt_out:
  2643. /*
  2644. * Corruption detected in the clustering loop. Invalidate the
  2645. * inode buffer and shut down the filesystem.
  2646. */
  2647. read_unlock(&pag->pag_ici_lock);
  2648. /*
  2649. * Clean up the buffer. If it was B_DELWRI, just release it --
  2650. * brelse can handle it with no problems. If not, shut down the
  2651. * filesystem before releasing the buffer.
  2652. */
  2653. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2654. if (bufwasdelwri)
  2655. xfs_buf_relse(bp);
  2656. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2657. if (!bufwasdelwri) {
  2658. /*
  2659. * Just like incore_relse: if we have b_iodone functions,
  2660. * mark the buffer as an error and call them. Otherwise
  2661. * mark it as stale and brelse.
  2662. */
  2663. if (XFS_BUF_IODONE_FUNC(bp)) {
  2664. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  2665. XFS_BUF_UNDONE(bp);
  2666. XFS_BUF_STALE(bp);
  2667. XFS_BUF_SHUT(bp);
  2668. XFS_BUF_ERROR(bp,EIO);
  2669. xfs_biodone(bp);
  2670. } else {
  2671. XFS_BUF_STALE(bp);
  2672. xfs_buf_relse(bp);
  2673. }
  2674. }
  2675. /*
  2676. * Unlocks the flush lock
  2677. */
  2678. xfs_iflush_abort(iq);
  2679. kmem_free(ilist);
  2680. return XFS_ERROR(EFSCORRUPTED);
  2681. }
  2682. /*
  2683. * xfs_iflush() will write a modified inode's changes out to the
  2684. * inode's on disk home. The caller must have the inode lock held
  2685. * in at least shared mode and the inode flush completion must be
  2686. * active as well. The inode lock will still be held upon return from
  2687. * the call and the caller is free to unlock it.
  2688. * The inode flush will be completed when the inode reaches the disk.
  2689. * The flags indicate how the inode's buffer should be written out.
  2690. */
  2691. int
  2692. xfs_iflush(
  2693. xfs_inode_t *ip,
  2694. uint flags)
  2695. {
  2696. xfs_inode_log_item_t *iip;
  2697. xfs_buf_t *bp;
  2698. xfs_dinode_t *dip;
  2699. xfs_mount_t *mp;
  2700. int error;
  2701. int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
  2702. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2703. XFS_STATS_INC(xs_iflush_count);
  2704. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2705. ASSERT(!completion_done(&ip->i_flush));
  2706. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2707. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2708. iip = ip->i_itemp;
  2709. mp = ip->i_mount;
  2710. /*
  2711. * If the inode isn't dirty, then just release the inode
  2712. * flush lock and do nothing.
  2713. */
  2714. if (xfs_inode_clean(ip)) {
  2715. xfs_ifunlock(ip);
  2716. return 0;
  2717. }
  2718. /*
  2719. * We can't flush the inode until it is unpinned, so wait for it if we
  2720. * are allowed to block. We know noone new can pin it, because we are
  2721. * holding the inode lock shared and you need to hold it exclusively to
  2722. * pin the inode.
  2723. *
  2724. * If we are not allowed to block, force the log out asynchronously so
  2725. * that when we come back the inode will be unpinned. If other inodes
  2726. * in the same cluster are dirty, they will probably write the inode
  2727. * out for us if they occur after the log force completes.
  2728. */
  2729. if (noblock && xfs_ipincount(ip)) {
  2730. xfs_iunpin_nowait(ip);
  2731. xfs_ifunlock(ip);
  2732. return EAGAIN;
  2733. }
  2734. xfs_iunpin_wait(ip);
  2735. /*
  2736. * This may have been unpinned because the filesystem is shutting
  2737. * down forcibly. If that's the case we must not write this inode
  2738. * to disk, because the log record didn't make it to disk!
  2739. */
  2740. if (XFS_FORCED_SHUTDOWN(mp)) {
  2741. ip->i_update_core = 0;
  2742. if (iip)
  2743. iip->ili_format.ilf_fields = 0;
  2744. xfs_ifunlock(ip);
  2745. return XFS_ERROR(EIO);
  2746. }
  2747. /*
  2748. * Decide how buffer will be flushed out. This is done before
  2749. * the call to xfs_iflush_int because this field is zeroed by it.
  2750. */
  2751. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2752. /*
  2753. * Flush out the inode buffer according to the directions
  2754. * of the caller. In the cases where the caller has given
  2755. * us a choice choose the non-delwri case. This is because
  2756. * the inode is in the AIL and we need to get it out soon.
  2757. */
  2758. switch (flags) {
  2759. case XFS_IFLUSH_SYNC:
  2760. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2761. flags = 0;
  2762. break;
  2763. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2764. case XFS_IFLUSH_ASYNC:
  2765. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2766. flags = INT_ASYNC;
  2767. break;
  2768. case XFS_IFLUSH_DELWRI:
  2769. flags = INT_DELWRI;
  2770. break;
  2771. default:
  2772. ASSERT(0);
  2773. flags = 0;
  2774. break;
  2775. }
  2776. } else {
  2777. switch (flags) {
  2778. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2779. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2780. case XFS_IFLUSH_DELWRI:
  2781. flags = INT_DELWRI;
  2782. break;
  2783. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2784. case XFS_IFLUSH_ASYNC:
  2785. flags = INT_ASYNC;
  2786. break;
  2787. case XFS_IFLUSH_SYNC:
  2788. flags = 0;
  2789. break;
  2790. default:
  2791. ASSERT(0);
  2792. flags = 0;
  2793. break;
  2794. }
  2795. }
  2796. /*
  2797. * Get the buffer containing the on-disk inode.
  2798. */
  2799. error = xfs_itobp(mp, NULL, ip, &dip, &bp,
  2800. noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
  2801. if (error || !bp) {
  2802. xfs_ifunlock(ip);
  2803. return error;
  2804. }
  2805. /*
  2806. * First flush out the inode that xfs_iflush was called with.
  2807. */
  2808. error = xfs_iflush_int(ip, bp);
  2809. if (error)
  2810. goto corrupt_out;
  2811. /*
  2812. * If the buffer is pinned then push on the log now so we won't
  2813. * get stuck waiting in the write for too long.
  2814. */
  2815. if (XFS_BUF_ISPINNED(bp))
  2816. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  2817. /*
  2818. * inode clustering:
  2819. * see if other inodes can be gathered into this write
  2820. */
  2821. error = xfs_iflush_cluster(ip, bp);
  2822. if (error)
  2823. goto cluster_corrupt_out;
  2824. if (flags & INT_DELWRI) {
  2825. xfs_bdwrite(mp, bp);
  2826. } else if (flags & INT_ASYNC) {
  2827. error = xfs_bawrite(mp, bp);
  2828. } else {
  2829. error = xfs_bwrite(mp, bp);
  2830. }
  2831. return error;
  2832. corrupt_out:
  2833. xfs_buf_relse(bp);
  2834. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2835. cluster_corrupt_out:
  2836. /*
  2837. * Unlocks the flush lock
  2838. */
  2839. xfs_iflush_abort(ip);
  2840. return XFS_ERROR(EFSCORRUPTED);
  2841. }
  2842. STATIC int
  2843. xfs_iflush_int(
  2844. xfs_inode_t *ip,
  2845. xfs_buf_t *bp)
  2846. {
  2847. xfs_inode_log_item_t *iip;
  2848. xfs_dinode_t *dip;
  2849. xfs_mount_t *mp;
  2850. #ifdef XFS_TRANS_DEBUG
  2851. int first;
  2852. #endif
  2853. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2854. ASSERT(!completion_done(&ip->i_flush));
  2855. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2856. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2857. iip = ip->i_itemp;
  2858. mp = ip->i_mount;
  2859. /*
  2860. * If the inode isn't dirty, then just release the inode
  2861. * flush lock and do nothing.
  2862. */
  2863. if (xfs_inode_clean(ip)) {
  2864. xfs_ifunlock(ip);
  2865. return 0;
  2866. }
  2867. /* set *dip = inode's place in the buffer */
  2868. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2869. /*
  2870. * Clear i_update_core before copying out the data.
  2871. * This is for coordination with our timestamp updates
  2872. * that don't hold the inode lock. They will always
  2873. * update the timestamps BEFORE setting i_update_core,
  2874. * so if we clear i_update_core after they set it we
  2875. * are guaranteed to see their updates to the timestamps.
  2876. * I believe that this depends on strongly ordered memory
  2877. * semantics, but we have that. We use the SYNCHRONIZE
  2878. * macro to make sure that the compiler does not reorder
  2879. * the i_update_core access below the data copy below.
  2880. */
  2881. ip->i_update_core = 0;
  2882. SYNCHRONIZE();
  2883. /*
  2884. * Make sure to get the latest atime from the Linux inode.
  2885. */
  2886. xfs_synchronize_atime(ip);
  2887. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
  2888. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2889. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2890. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2891. ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2892. goto corrupt_out;
  2893. }
  2894. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2895. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2896. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2897. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2898. ip->i_ino, ip, ip->i_d.di_magic);
  2899. goto corrupt_out;
  2900. }
  2901. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  2902. if (XFS_TEST_ERROR(
  2903. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2904. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2905. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2906. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2907. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  2908. ip->i_ino, ip);
  2909. goto corrupt_out;
  2910. }
  2911. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  2912. if (XFS_TEST_ERROR(
  2913. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2914. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2915. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2916. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2917. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2918. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  2919. ip->i_ino, ip);
  2920. goto corrupt_out;
  2921. }
  2922. }
  2923. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2924. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2925. XFS_RANDOM_IFLUSH_5)) {
  2926. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2927. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  2928. ip->i_ino,
  2929. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2930. ip->i_d.di_nblocks,
  2931. ip);
  2932. goto corrupt_out;
  2933. }
  2934. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2935. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2936. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2937. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2938. ip->i_ino, ip->i_d.di_forkoff, ip);
  2939. goto corrupt_out;
  2940. }
  2941. /*
  2942. * bump the flush iteration count, used to detect flushes which
  2943. * postdate a log record during recovery.
  2944. */
  2945. ip->i_d.di_flushiter++;
  2946. /*
  2947. * Copy the dirty parts of the inode into the on-disk
  2948. * inode. We always copy out the core of the inode,
  2949. * because if the inode is dirty at all the core must
  2950. * be.
  2951. */
  2952. xfs_dinode_to_disk(dip, &ip->i_d);
  2953. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2954. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2955. ip->i_d.di_flushiter = 0;
  2956. /*
  2957. * If this is really an old format inode and the superblock version
  2958. * has not been updated to support only new format inodes, then
  2959. * convert back to the old inode format. If the superblock version
  2960. * has been updated, then make the conversion permanent.
  2961. */
  2962. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2963. if (ip->i_d.di_version == 1) {
  2964. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2965. /*
  2966. * Convert it back.
  2967. */
  2968. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2969. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2970. } else {
  2971. /*
  2972. * The superblock version has already been bumped,
  2973. * so just make the conversion to the new inode
  2974. * format permanent.
  2975. */
  2976. ip->i_d.di_version = 2;
  2977. dip->di_version = 2;
  2978. ip->i_d.di_onlink = 0;
  2979. dip->di_onlink = 0;
  2980. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2981. memset(&(dip->di_pad[0]), 0,
  2982. sizeof(dip->di_pad));
  2983. ASSERT(ip->i_d.di_projid == 0);
  2984. }
  2985. }
  2986. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2987. if (XFS_IFORK_Q(ip))
  2988. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2989. xfs_inobp_check(mp, bp);
  2990. /*
  2991. * We've recorded everything logged in the inode, so we'd
  2992. * like to clear the ilf_fields bits so we don't log and
  2993. * flush things unnecessarily. However, we can't stop
  2994. * logging all this information until the data we've copied
  2995. * into the disk buffer is written to disk. If we did we might
  2996. * overwrite the copy of the inode in the log with all the
  2997. * data after re-logging only part of it, and in the face of
  2998. * a crash we wouldn't have all the data we need to recover.
  2999. *
  3000. * What we do is move the bits to the ili_last_fields field.
  3001. * When logging the inode, these bits are moved back to the
  3002. * ilf_fields field. In the xfs_iflush_done() routine we
  3003. * clear ili_last_fields, since we know that the information
  3004. * those bits represent is permanently on disk. As long as
  3005. * the flush completes before the inode is logged again, then
  3006. * both ilf_fields and ili_last_fields will be cleared.
  3007. *
  3008. * We can play with the ilf_fields bits here, because the inode
  3009. * lock must be held exclusively in order to set bits there
  3010. * and the flush lock protects the ili_last_fields bits.
  3011. * Set ili_logged so the flush done
  3012. * routine can tell whether or not to look in the AIL.
  3013. * Also, store the current LSN of the inode so that we can tell
  3014. * whether the item has moved in the AIL from xfs_iflush_done().
  3015. * In order to read the lsn we need the AIL lock, because
  3016. * it is a 64 bit value that cannot be read atomically.
  3017. */
  3018. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3019. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3020. iip->ili_format.ilf_fields = 0;
  3021. iip->ili_logged = 1;
  3022. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  3023. &iip->ili_item.li_lsn);
  3024. /*
  3025. * Attach the function xfs_iflush_done to the inode's
  3026. * buffer. This will remove the inode from the AIL
  3027. * and unlock the inode's flush lock when the inode is
  3028. * completely written to disk.
  3029. */
  3030. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3031. xfs_iflush_done, (xfs_log_item_t *)iip);
  3032. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3033. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3034. } else {
  3035. /*
  3036. * We're flushing an inode which is not in the AIL and has
  3037. * not been logged but has i_update_core set. For this
  3038. * case we can use a B_DELWRI flush and immediately drop
  3039. * the inode flush lock because we can avoid the whole
  3040. * AIL state thing. It's OK to drop the flush lock now,
  3041. * because we've already locked the buffer and to do anything
  3042. * you really need both.
  3043. */
  3044. if (iip != NULL) {
  3045. ASSERT(iip->ili_logged == 0);
  3046. ASSERT(iip->ili_last_fields == 0);
  3047. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3048. }
  3049. xfs_ifunlock(ip);
  3050. }
  3051. return 0;
  3052. corrupt_out:
  3053. return XFS_ERROR(EFSCORRUPTED);
  3054. }
  3055. #ifdef XFS_ILOCK_TRACE
  3056. ktrace_t *xfs_ilock_trace_buf;
  3057. void
  3058. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3059. {
  3060. ktrace_enter(ip->i_lock_trace,
  3061. (void *)ip,
  3062. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3063. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3064. (void *)ra, /* caller of ilock */
  3065. (void *)(unsigned long)current_cpu(),
  3066. (void *)(unsigned long)current_pid(),
  3067. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3068. }
  3069. #endif
  3070. /*
  3071. * Return a pointer to the extent record at file index idx.
  3072. */
  3073. xfs_bmbt_rec_host_t *
  3074. xfs_iext_get_ext(
  3075. xfs_ifork_t *ifp, /* inode fork pointer */
  3076. xfs_extnum_t idx) /* index of target extent */
  3077. {
  3078. ASSERT(idx >= 0);
  3079. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3080. return ifp->if_u1.if_ext_irec->er_extbuf;
  3081. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3082. xfs_ext_irec_t *erp; /* irec pointer */
  3083. int erp_idx = 0; /* irec index */
  3084. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3085. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3086. return &erp->er_extbuf[page_idx];
  3087. } else if (ifp->if_bytes) {
  3088. return &ifp->if_u1.if_extents[idx];
  3089. } else {
  3090. return NULL;
  3091. }
  3092. }
  3093. /*
  3094. * Insert new item(s) into the extent records for incore inode
  3095. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3096. */
  3097. void
  3098. xfs_iext_insert(
  3099. xfs_ifork_t *ifp, /* inode fork pointer */
  3100. xfs_extnum_t idx, /* starting index of new items */
  3101. xfs_extnum_t count, /* number of inserted items */
  3102. xfs_bmbt_irec_t *new) /* items to insert */
  3103. {
  3104. xfs_extnum_t i; /* extent record index */
  3105. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3106. xfs_iext_add(ifp, idx, count);
  3107. for (i = idx; i < idx + count; i++, new++)
  3108. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3109. }
  3110. /*
  3111. * This is called when the amount of space required for incore file
  3112. * extents needs to be increased. The ext_diff parameter stores the
  3113. * number of new extents being added and the idx parameter contains
  3114. * the extent index where the new extents will be added. If the new
  3115. * extents are being appended, then we just need to (re)allocate and
  3116. * initialize the space. Otherwise, if the new extents are being
  3117. * inserted into the middle of the existing entries, a bit more work
  3118. * is required to make room for the new extents to be inserted. The
  3119. * caller is responsible for filling in the new extent entries upon
  3120. * return.
  3121. */
  3122. void
  3123. xfs_iext_add(
  3124. xfs_ifork_t *ifp, /* inode fork pointer */
  3125. xfs_extnum_t idx, /* index to begin adding exts */
  3126. int ext_diff) /* number of extents to add */
  3127. {
  3128. int byte_diff; /* new bytes being added */
  3129. int new_size; /* size of extents after adding */
  3130. xfs_extnum_t nextents; /* number of extents in file */
  3131. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3132. ASSERT((idx >= 0) && (idx <= nextents));
  3133. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3134. new_size = ifp->if_bytes + byte_diff;
  3135. /*
  3136. * If the new number of extents (nextents + ext_diff)
  3137. * fits inside the inode, then continue to use the inline
  3138. * extent buffer.
  3139. */
  3140. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3141. if (idx < nextents) {
  3142. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3143. &ifp->if_u2.if_inline_ext[idx],
  3144. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3145. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3146. }
  3147. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3148. ifp->if_real_bytes = 0;
  3149. ifp->if_lastex = nextents + ext_diff;
  3150. }
  3151. /*
  3152. * Otherwise use a linear (direct) extent list.
  3153. * If the extents are currently inside the inode,
  3154. * xfs_iext_realloc_direct will switch us from
  3155. * inline to direct extent allocation mode.
  3156. */
  3157. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3158. xfs_iext_realloc_direct(ifp, new_size);
  3159. if (idx < nextents) {
  3160. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3161. &ifp->if_u1.if_extents[idx],
  3162. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3163. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3164. }
  3165. }
  3166. /* Indirection array */
  3167. else {
  3168. xfs_ext_irec_t *erp;
  3169. int erp_idx = 0;
  3170. int page_idx = idx;
  3171. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3172. if (ifp->if_flags & XFS_IFEXTIREC) {
  3173. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3174. } else {
  3175. xfs_iext_irec_init(ifp);
  3176. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3177. erp = ifp->if_u1.if_ext_irec;
  3178. }
  3179. /* Extents fit in target extent page */
  3180. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3181. if (page_idx < erp->er_extcount) {
  3182. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3183. &erp->er_extbuf[page_idx],
  3184. (erp->er_extcount - page_idx) *
  3185. sizeof(xfs_bmbt_rec_t));
  3186. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3187. }
  3188. erp->er_extcount += ext_diff;
  3189. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3190. }
  3191. /* Insert a new extent page */
  3192. else if (erp) {
  3193. xfs_iext_add_indirect_multi(ifp,
  3194. erp_idx, page_idx, ext_diff);
  3195. }
  3196. /*
  3197. * If extent(s) are being appended to the last page in
  3198. * the indirection array and the new extent(s) don't fit
  3199. * in the page, then erp is NULL and erp_idx is set to
  3200. * the next index needed in the indirection array.
  3201. */
  3202. else {
  3203. int count = ext_diff;
  3204. while (count) {
  3205. erp = xfs_iext_irec_new(ifp, erp_idx);
  3206. erp->er_extcount = count;
  3207. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3208. if (count) {
  3209. erp_idx++;
  3210. }
  3211. }
  3212. }
  3213. }
  3214. ifp->if_bytes = new_size;
  3215. }
  3216. /*
  3217. * This is called when incore extents are being added to the indirection
  3218. * array and the new extents do not fit in the target extent list. The
  3219. * erp_idx parameter contains the irec index for the target extent list
  3220. * in the indirection array, and the idx parameter contains the extent
  3221. * index within the list. The number of extents being added is stored
  3222. * in the count parameter.
  3223. *
  3224. * |-------| |-------|
  3225. * | | | | idx - number of extents before idx
  3226. * | idx | | count |
  3227. * | | | | count - number of extents being inserted at idx
  3228. * |-------| |-------|
  3229. * | count | | nex2 | nex2 - number of extents after idx + count
  3230. * |-------| |-------|
  3231. */
  3232. void
  3233. xfs_iext_add_indirect_multi(
  3234. xfs_ifork_t *ifp, /* inode fork pointer */
  3235. int erp_idx, /* target extent irec index */
  3236. xfs_extnum_t idx, /* index within target list */
  3237. int count) /* new extents being added */
  3238. {
  3239. int byte_diff; /* new bytes being added */
  3240. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3241. xfs_extnum_t ext_diff; /* number of extents to add */
  3242. xfs_extnum_t ext_cnt; /* new extents still needed */
  3243. xfs_extnum_t nex2; /* extents after idx + count */
  3244. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3245. int nlists; /* number of irec's (lists) */
  3246. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3247. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3248. nex2 = erp->er_extcount - idx;
  3249. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3250. /*
  3251. * Save second part of target extent list
  3252. * (all extents past */
  3253. if (nex2) {
  3254. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3255. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  3256. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3257. erp->er_extcount -= nex2;
  3258. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3259. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3260. }
  3261. /*
  3262. * Add the new extents to the end of the target
  3263. * list, then allocate new irec record(s) and
  3264. * extent buffer(s) as needed to store the rest
  3265. * of the new extents.
  3266. */
  3267. ext_cnt = count;
  3268. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3269. if (ext_diff) {
  3270. erp->er_extcount += ext_diff;
  3271. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3272. ext_cnt -= ext_diff;
  3273. }
  3274. while (ext_cnt) {
  3275. erp_idx++;
  3276. erp = xfs_iext_irec_new(ifp, erp_idx);
  3277. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3278. erp->er_extcount = ext_diff;
  3279. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3280. ext_cnt -= ext_diff;
  3281. }
  3282. /* Add nex2 extents back to indirection array */
  3283. if (nex2) {
  3284. xfs_extnum_t ext_avail;
  3285. int i;
  3286. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3287. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3288. i = 0;
  3289. /*
  3290. * If nex2 extents fit in the current page, append
  3291. * nex2_ep after the new extents.
  3292. */
  3293. if (nex2 <= ext_avail) {
  3294. i = erp->er_extcount;
  3295. }
  3296. /*
  3297. * Otherwise, check if space is available in the
  3298. * next page.
  3299. */
  3300. else if ((erp_idx < nlists - 1) &&
  3301. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3302. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3303. erp_idx++;
  3304. erp++;
  3305. /* Create a hole for nex2 extents */
  3306. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3307. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3308. }
  3309. /*
  3310. * Final choice, create a new extent page for
  3311. * nex2 extents.
  3312. */
  3313. else {
  3314. erp_idx++;
  3315. erp = xfs_iext_irec_new(ifp, erp_idx);
  3316. }
  3317. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3318. kmem_free(nex2_ep);
  3319. erp->er_extcount += nex2;
  3320. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3321. }
  3322. }
  3323. /*
  3324. * This is called when the amount of space required for incore file
  3325. * extents needs to be decreased. The ext_diff parameter stores the
  3326. * number of extents to be removed and the idx parameter contains
  3327. * the extent index where the extents will be removed from.
  3328. *
  3329. * If the amount of space needed has decreased below the linear
  3330. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3331. * extent array. Otherwise, use kmem_realloc() to adjust the
  3332. * size to what is needed.
  3333. */
  3334. void
  3335. xfs_iext_remove(
  3336. xfs_ifork_t *ifp, /* inode fork pointer */
  3337. xfs_extnum_t idx, /* index to begin removing exts */
  3338. int ext_diff) /* number of extents to remove */
  3339. {
  3340. xfs_extnum_t nextents; /* number of extents in file */
  3341. int new_size; /* size of extents after removal */
  3342. ASSERT(ext_diff > 0);
  3343. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3344. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3345. if (new_size == 0) {
  3346. xfs_iext_destroy(ifp);
  3347. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3348. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3349. } else if (ifp->if_real_bytes) {
  3350. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3351. } else {
  3352. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3353. }
  3354. ifp->if_bytes = new_size;
  3355. }
  3356. /*
  3357. * This removes ext_diff extents from the inline buffer, beginning
  3358. * at extent index idx.
  3359. */
  3360. void
  3361. xfs_iext_remove_inline(
  3362. xfs_ifork_t *ifp, /* inode fork pointer */
  3363. xfs_extnum_t idx, /* index to begin removing exts */
  3364. int ext_diff) /* number of extents to remove */
  3365. {
  3366. int nextents; /* number of extents in file */
  3367. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3368. ASSERT(idx < XFS_INLINE_EXTS);
  3369. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3370. ASSERT(((nextents - ext_diff) > 0) &&
  3371. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3372. if (idx + ext_diff < nextents) {
  3373. memmove(&ifp->if_u2.if_inline_ext[idx],
  3374. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3375. (nextents - (idx + ext_diff)) *
  3376. sizeof(xfs_bmbt_rec_t));
  3377. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3378. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3379. } else {
  3380. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3381. ext_diff * sizeof(xfs_bmbt_rec_t));
  3382. }
  3383. }
  3384. /*
  3385. * This removes ext_diff extents from a linear (direct) extent list,
  3386. * beginning at extent index idx. If the extents are being removed
  3387. * from the end of the list (ie. truncate) then we just need to re-
  3388. * allocate the list to remove the extra space. Otherwise, if the
  3389. * extents are being removed from the middle of the existing extent
  3390. * entries, then we first need to move the extent records beginning
  3391. * at idx + ext_diff up in the list to overwrite the records being
  3392. * removed, then remove the extra space via kmem_realloc.
  3393. */
  3394. void
  3395. xfs_iext_remove_direct(
  3396. xfs_ifork_t *ifp, /* inode fork pointer */
  3397. xfs_extnum_t idx, /* index to begin removing exts */
  3398. int ext_diff) /* number of extents to remove */
  3399. {
  3400. xfs_extnum_t nextents; /* number of extents in file */
  3401. int new_size; /* size of extents after removal */
  3402. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3403. new_size = ifp->if_bytes -
  3404. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3405. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3406. if (new_size == 0) {
  3407. xfs_iext_destroy(ifp);
  3408. return;
  3409. }
  3410. /* Move extents up in the list (if needed) */
  3411. if (idx + ext_diff < nextents) {
  3412. memmove(&ifp->if_u1.if_extents[idx],
  3413. &ifp->if_u1.if_extents[idx + ext_diff],
  3414. (nextents - (idx + ext_diff)) *
  3415. sizeof(xfs_bmbt_rec_t));
  3416. }
  3417. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3418. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3419. /*
  3420. * Reallocate the direct extent list. If the extents
  3421. * will fit inside the inode then xfs_iext_realloc_direct
  3422. * will switch from direct to inline extent allocation
  3423. * mode for us.
  3424. */
  3425. xfs_iext_realloc_direct(ifp, new_size);
  3426. ifp->if_bytes = new_size;
  3427. }
  3428. /*
  3429. * This is called when incore extents are being removed from the
  3430. * indirection array and the extents being removed span multiple extent
  3431. * buffers. The idx parameter contains the file extent index where we
  3432. * want to begin removing extents, and the count parameter contains
  3433. * how many extents need to be removed.
  3434. *
  3435. * |-------| |-------|
  3436. * | nex1 | | | nex1 - number of extents before idx
  3437. * |-------| | count |
  3438. * | | | | count - number of extents being removed at idx
  3439. * | count | |-------|
  3440. * | | | nex2 | nex2 - number of extents after idx + count
  3441. * |-------| |-------|
  3442. */
  3443. void
  3444. xfs_iext_remove_indirect(
  3445. xfs_ifork_t *ifp, /* inode fork pointer */
  3446. xfs_extnum_t idx, /* index to begin removing extents */
  3447. int count) /* number of extents to remove */
  3448. {
  3449. xfs_ext_irec_t *erp; /* indirection array pointer */
  3450. int erp_idx = 0; /* indirection array index */
  3451. xfs_extnum_t ext_cnt; /* extents left to remove */
  3452. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3453. xfs_extnum_t nex1; /* number of extents before idx */
  3454. xfs_extnum_t nex2; /* extents after idx + count */
  3455. int nlists; /* entries in indirection array */
  3456. int page_idx = idx; /* index in target extent list */
  3457. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3458. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3459. ASSERT(erp != NULL);
  3460. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3461. nex1 = page_idx;
  3462. ext_cnt = count;
  3463. while (ext_cnt) {
  3464. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3465. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3466. /*
  3467. * Check for deletion of entire list;
  3468. * xfs_iext_irec_remove() updates extent offsets.
  3469. */
  3470. if (ext_diff == erp->er_extcount) {
  3471. xfs_iext_irec_remove(ifp, erp_idx);
  3472. ext_cnt -= ext_diff;
  3473. nex1 = 0;
  3474. if (ext_cnt) {
  3475. ASSERT(erp_idx < ifp->if_real_bytes /
  3476. XFS_IEXT_BUFSZ);
  3477. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3478. nex1 = 0;
  3479. continue;
  3480. } else {
  3481. break;
  3482. }
  3483. }
  3484. /* Move extents up (if needed) */
  3485. if (nex2) {
  3486. memmove(&erp->er_extbuf[nex1],
  3487. &erp->er_extbuf[nex1 + ext_diff],
  3488. nex2 * sizeof(xfs_bmbt_rec_t));
  3489. }
  3490. /* Zero out rest of page */
  3491. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3492. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3493. /* Update remaining counters */
  3494. erp->er_extcount -= ext_diff;
  3495. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3496. ext_cnt -= ext_diff;
  3497. nex1 = 0;
  3498. erp_idx++;
  3499. erp++;
  3500. }
  3501. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3502. xfs_iext_irec_compact(ifp);
  3503. }
  3504. /*
  3505. * Create, destroy, or resize a linear (direct) block of extents.
  3506. */
  3507. void
  3508. xfs_iext_realloc_direct(
  3509. xfs_ifork_t *ifp, /* inode fork pointer */
  3510. int new_size) /* new size of extents */
  3511. {
  3512. int rnew_size; /* real new size of extents */
  3513. rnew_size = new_size;
  3514. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3515. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3516. (new_size != ifp->if_real_bytes)));
  3517. /* Free extent records */
  3518. if (new_size == 0) {
  3519. xfs_iext_destroy(ifp);
  3520. }
  3521. /* Resize direct extent list and zero any new bytes */
  3522. else if (ifp->if_real_bytes) {
  3523. /* Check if extents will fit inside the inode */
  3524. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3525. xfs_iext_direct_to_inline(ifp, new_size /
  3526. (uint)sizeof(xfs_bmbt_rec_t));
  3527. ifp->if_bytes = new_size;
  3528. return;
  3529. }
  3530. if (!is_power_of_2(new_size)){
  3531. rnew_size = roundup_pow_of_two(new_size);
  3532. }
  3533. if (rnew_size != ifp->if_real_bytes) {
  3534. ifp->if_u1.if_extents =
  3535. kmem_realloc(ifp->if_u1.if_extents,
  3536. rnew_size,
  3537. ifp->if_real_bytes, KM_NOFS);
  3538. }
  3539. if (rnew_size > ifp->if_real_bytes) {
  3540. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3541. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3542. rnew_size - ifp->if_real_bytes);
  3543. }
  3544. }
  3545. /*
  3546. * Switch from the inline extent buffer to a direct
  3547. * extent list. Be sure to include the inline extent
  3548. * bytes in new_size.
  3549. */
  3550. else {
  3551. new_size += ifp->if_bytes;
  3552. if (!is_power_of_2(new_size)) {
  3553. rnew_size = roundup_pow_of_two(new_size);
  3554. }
  3555. xfs_iext_inline_to_direct(ifp, rnew_size);
  3556. }
  3557. ifp->if_real_bytes = rnew_size;
  3558. ifp->if_bytes = new_size;
  3559. }
  3560. /*
  3561. * Switch from linear (direct) extent records to inline buffer.
  3562. */
  3563. void
  3564. xfs_iext_direct_to_inline(
  3565. xfs_ifork_t *ifp, /* inode fork pointer */
  3566. xfs_extnum_t nextents) /* number of extents in file */
  3567. {
  3568. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3569. ASSERT(nextents <= XFS_INLINE_EXTS);
  3570. /*
  3571. * The inline buffer was zeroed when we switched
  3572. * from inline to direct extent allocation mode,
  3573. * so we don't need to clear it here.
  3574. */
  3575. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3576. nextents * sizeof(xfs_bmbt_rec_t));
  3577. kmem_free(ifp->if_u1.if_extents);
  3578. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3579. ifp->if_real_bytes = 0;
  3580. }
  3581. /*
  3582. * Switch from inline buffer to linear (direct) extent records.
  3583. * new_size should already be rounded up to the next power of 2
  3584. * by the caller (when appropriate), so use new_size as it is.
  3585. * However, since new_size may be rounded up, we can't update
  3586. * if_bytes here. It is the caller's responsibility to update
  3587. * if_bytes upon return.
  3588. */
  3589. void
  3590. xfs_iext_inline_to_direct(
  3591. xfs_ifork_t *ifp, /* inode fork pointer */
  3592. int new_size) /* number of extents in file */
  3593. {
  3594. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3595. memset(ifp->if_u1.if_extents, 0, new_size);
  3596. if (ifp->if_bytes) {
  3597. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3598. ifp->if_bytes);
  3599. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3600. sizeof(xfs_bmbt_rec_t));
  3601. }
  3602. ifp->if_real_bytes = new_size;
  3603. }
  3604. /*
  3605. * Resize an extent indirection array to new_size bytes.
  3606. */
  3607. void
  3608. xfs_iext_realloc_indirect(
  3609. xfs_ifork_t *ifp, /* inode fork pointer */
  3610. int new_size) /* new indirection array size */
  3611. {
  3612. int nlists; /* number of irec's (ex lists) */
  3613. int size; /* current indirection array size */
  3614. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3615. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3616. size = nlists * sizeof(xfs_ext_irec_t);
  3617. ASSERT(ifp->if_real_bytes);
  3618. ASSERT((new_size >= 0) && (new_size != size));
  3619. if (new_size == 0) {
  3620. xfs_iext_destroy(ifp);
  3621. } else {
  3622. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3623. kmem_realloc(ifp->if_u1.if_ext_irec,
  3624. new_size, size, KM_NOFS);
  3625. }
  3626. }
  3627. /*
  3628. * Switch from indirection array to linear (direct) extent allocations.
  3629. */
  3630. void
  3631. xfs_iext_indirect_to_direct(
  3632. xfs_ifork_t *ifp) /* inode fork pointer */
  3633. {
  3634. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3635. xfs_extnum_t nextents; /* number of extents in file */
  3636. int size; /* size of file extents */
  3637. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3638. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3639. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3640. size = nextents * sizeof(xfs_bmbt_rec_t);
  3641. xfs_iext_irec_compact_pages(ifp);
  3642. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3643. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3644. kmem_free(ifp->if_u1.if_ext_irec);
  3645. ifp->if_flags &= ~XFS_IFEXTIREC;
  3646. ifp->if_u1.if_extents = ep;
  3647. ifp->if_bytes = size;
  3648. if (nextents < XFS_LINEAR_EXTS) {
  3649. xfs_iext_realloc_direct(ifp, size);
  3650. }
  3651. }
  3652. /*
  3653. * Free incore file extents.
  3654. */
  3655. void
  3656. xfs_iext_destroy(
  3657. xfs_ifork_t *ifp) /* inode fork pointer */
  3658. {
  3659. if (ifp->if_flags & XFS_IFEXTIREC) {
  3660. int erp_idx;
  3661. int nlists;
  3662. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3663. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3664. xfs_iext_irec_remove(ifp, erp_idx);
  3665. }
  3666. ifp->if_flags &= ~XFS_IFEXTIREC;
  3667. } else if (ifp->if_real_bytes) {
  3668. kmem_free(ifp->if_u1.if_extents);
  3669. } else if (ifp->if_bytes) {
  3670. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3671. sizeof(xfs_bmbt_rec_t));
  3672. }
  3673. ifp->if_u1.if_extents = NULL;
  3674. ifp->if_real_bytes = 0;
  3675. ifp->if_bytes = 0;
  3676. }
  3677. /*
  3678. * Return a pointer to the extent record for file system block bno.
  3679. */
  3680. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3681. xfs_iext_bno_to_ext(
  3682. xfs_ifork_t *ifp, /* inode fork pointer */
  3683. xfs_fileoff_t bno, /* block number to search for */
  3684. xfs_extnum_t *idxp) /* index of target extent */
  3685. {
  3686. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3687. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3688. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3689. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3690. int high; /* upper boundary in search */
  3691. xfs_extnum_t idx = 0; /* index of target extent */
  3692. int low; /* lower boundary in search */
  3693. xfs_extnum_t nextents; /* number of file extents */
  3694. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3695. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3696. if (nextents == 0) {
  3697. *idxp = 0;
  3698. return NULL;
  3699. }
  3700. low = 0;
  3701. if (ifp->if_flags & XFS_IFEXTIREC) {
  3702. /* Find target extent list */
  3703. int erp_idx = 0;
  3704. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3705. base = erp->er_extbuf;
  3706. high = erp->er_extcount - 1;
  3707. } else {
  3708. base = ifp->if_u1.if_extents;
  3709. high = nextents - 1;
  3710. }
  3711. /* Binary search extent records */
  3712. while (low <= high) {
  3713. idx = (low + high) >> 1;
  3714. ep = base + idx;
  3715. startoff = xfs_bmbt_get_startoff(ep);
  3716. blockcount = xfs_bmbt_get_blockcount(ep);
  3717. if (bno < startoff) {
  3718. high = idx - 1;
  3719. } else if (bno >= startoff + blockcount) {
  3720. low = idx + 1;
  3721. } else {
  3722. /* Convert back to file-based extent index */
  3723. if (ifp->if_flags & XFS_IFEXTIREC) {
  3724. idx += erp->er_extoff;
  3725. }
  3726. *idxp = idx;
  3727. return ep;
  3728. }
  3729. }
  3730. /* Convert back to file-based extent index */
  3731. if (ifp->if_flags & XFS_IFEXTIREC) {
  3732. idx += erp->er_extoff;
  3733. }
  3734. if (bno >= startoff + blockcount) {
  3735. if (++idx == nextents) {
  3736. ep = NULL;
  3737. } else {
  3738. ep = xfs_iext_get_ext(ifp, idx);
  3739. }
  3740. }
  3741. *idxp = idx;
  3742. return ep;
  3743. }
  3744. /*
  3745. * Return a pointer to the indirection array entry containing the
  3746. * extent record for filesystem block bno. Store the index of the
  3747. * target irec in *erp_idxp.
  3748. */
  3749. xfs_ext_irec_t * /* pointer to found extent record */
  3750. xfs_iext_bno_to_irec(
  3751. xfs_ifork_t *ifp, /* inode fork pointer */
  3752. xfs_fileoff_t bno, /* block number to search for */
  3753. int *erp_idxp) /* irec index of target ext list */
  3754. {
  3755. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3756. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3757. int erp_idx; /* indirection array index */
  3758. int nlists; /* number of extent irec's (lists) */
  3759. int high; /* binary search upper limit */
  3760. int low; /* binary search lower limit */
  3761. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3762. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3763. erp_idx = 0;
  3764. low = 0;
  3765. high = nlists - 1;
  3766. while (low <= high) {
  3767. erp_idx = (low + high) >> 1;
  3768. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3769. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3770. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3771. high = erp_idx - 1;
  3772. } else if (erp_next && bno >=
  3773. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3774. low = erp_idx + 1;
  3775. } else {
  3776. break;
  3777. }
  3778. }
  3779. *erp_idxp = erp_idx;
  3780. return erp;
  3781. }
  3782. /*
  3783. * Return a pointer to the indirection array entry containing the
  3784. * extent record at file extent index *idxp. Store the index of the
  3785. * target irec in *erp_idxp and store the page index of the target
  3786. * extent record in *idxp.
  3787. */
  3788. xfs_ext_irec_t *
  3789. xfs_iext_idx_to_irec(
  3790. xfs_ifork_t *ifp, /* inode fork pointer */
  3791. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3792. int *erp_idxp, /* pointer to target irec */
  3793. int realloc) /* new bytes were just added */
  3794. {
  3795. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3796. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3797. int erp_idx; /* indirection array index */
  3798. int nlists; /* number of irec's (ex lists) */
  3799. int high; /* binary search upper limit */
  3800. int low; /* binary search lower limit */
  3801. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3802. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3803. ASSERT(page_idx >= 0 && page_idx <=
  3804. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  3805. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3806. erp_idx = 0;
  3807. low = 0;
  3808. high = nlists - 1;
  3809. /* Binary search extent irec's */
  3810. while (low <= high) {
  3811. erp_idx = (low + high) >> 1;
  3812. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3813. prev = erp_idx > 0 ? erp - 1 : NULL;
  3814. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3815. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3816. high = erp_idx - 1;
  3817. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3818. (page_idx == erp->er_extoff + erp->er_extcount &&
  3819. !realloc)) {
  3820. low = erp_idx + 1;
  3821. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3822. erp->er_extcount == XFS_LINEAR_EXTS) {
  3823. ASSERT(realloc);
  3824. page_idx = 0;
  3825. erp_idx++;
  3826. erp = erp_idx < nlists ? erp + 1 : NULL;
  3827. break;
  3828. } else {
  3829. page_idx -= erp->er_extoff;
  3830. break;
  3831. }
  3832. }
  3833. *idxp = page_idx;
  3834. *erp_idxp = erp_idx;
  3835. return(erp);
  3836. }
  3837. /*
  3838. * Allocate and initialize an indirection array once the space needed
  3839. * for incore extents increases above XFS_IEXT_BUFSZ.
  3840. */
  3841. void
  3842. xfs_iext_irec_init(
  3843. xfs_ifork_t *ifp) /* inode fork pointer */
  3844. {
  3845. xfs_ext_irec_t *erp; /* indirection array pointer */
  3846. xfs_extnum_t nextents; /* number of extents in file */
  3847. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3848. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3849. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3850. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3851. if (nextents == 0) {
  3852. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3853. } else if (!ifp->if_real_bytes) {
  3854. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3855. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3856. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3857. }
  3858. erp->er_extbuf = ifp->if_u1.if_extents;
  3859. erp->er_extcount = nextents;
  3860. erp->er_extoff = 0;
  3861. ifp->if_flags |= XFS_IFEXTIREC;
  3862. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3863. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3864. ifp->if_u1.if_ext_irec = erp;
  3865. return;
  3866. }
  3867. /*
  3868. * Allocate and initialize a new entry in the indirection array.
  3869. */
  3870. xfs_ext_irec_t *
  3871. xfs_iext_irec_new(
  3872. xfs_ifork_t *ifp, /* inode fork pointer */
  3873. int erp_idx) /* index for new irec */
  3874. {
  3875. xfs_ext_irec_t *erp; /* indirection array pointer */
  3876. int i; /* loop counter */
  3877. int nlists; /* number of irec's (ex lists) */
  3878. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3879. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3880. /* Resize indirection array */
  3881. xfs_iext_realloc_indirect(ifp, ++nlists *
  3882. sizeof(xfs_ext_irec_t));
  3883. /*
  3884. * Move records down in the array so the
  3885. * new page can use erp_idx.
  3886. */
  3887. erp = ifp->if_u1.if_ext_irec;
  3888. for (i = nlists - 1; i > erp_idx; i--) {
  3889. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3890. }
  3891. ASSERT(i == erp_idx);
  3892. /* Initialize new extent record */
  3893. erp = ifp->if_u1.if_ext_irec;
  3894. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3895. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3896. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3897. erp[erp_idx].er_extcount = 0;
  3898. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3899. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3900. return (&erp[erp_idx]);
  3901. }
  3902. /*
  3903. * Remove a record from the indirection array.
  3904. */
  3905. void
  3906. xfs_iext_irec_remove(
  3907. xfs_ifork_t *ifp, /* inode fork pointer */
  3908. int erp_idx) /* irec index to remove */
  3909. {
  3910. xfs_ext_irec_t *erp; /* indirection array pointer */
  3911. int i; /* loop counter */
  3912. int nlists; /* number of irec's (ex lists) */
  3913. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3914. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3915. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3916. if (erp->er_extbuf) {
  3917. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3918. -erp->er_extcount);
  3919. kmem_free(erp->er_extbuf);
  3920. }
  3921. /* Compact extent records */
  3922. erp = ifp->if_u1.if_ext_irec;
  3923. for (i = erp_idx; i < nlists - 1; i++) {
  3924. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3925. }
  3926. /*
  3927. * Manually free the last extent record from the indirection
  3928. * array. A call to xfs_iext_realloc_indirect() with a size
  3929. * of zero would result in a call to xfs_iext_destroy() which
  3930. * would in turn call this function again, creating a nasty
  3931. * infinite loop.
  3932. */
  3933. if (--nlists) {
  3934. xfs_iext_realloc_indirect(ifp,
  3935. nlists * sizeof(xfs_ext_irec_t));
  3936. } else {
  3937. kmem_free(ifp->if_u1.if_ext_irec);
  3938. }
  3939. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3940. }
  3941. /*
  3942. * This is called to clean up large amounts of unused memory allocated
  3943. * by the indirection array. Before compacting anything though, verify
  3944. * that the indirection array is still needed and switch back to the
  3945. * linear extent list (or even the inline buffer) if possible. The
  3946. * compaction policy is as follows:
  3947. *
  3948. * Full Compaction: Extents fit into a single page (or inline buffer)
  3949. * Partial Compaction: Extents occupy less than 50% of allocated space
  3950. * No Compaction: Extents occupy at least 50% of allocated space
  3951. */
  3952. void
  3953. xfs_iext_irec_compact(
  3954. xfs_ifork_t *ifp) /* inode fork pointer */
  3955. {
  3956. xfs_extnum_t nextents; /* number of extents in file */
  3957. int nlists; /* number of irec's (ex lists) */
  3958. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3959. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3960. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3961. if (nextents == 0) {
  3962. xfs_iext_destroy(ifp);
  3963. } else if (nextents <= XFS_INLINE_EXTS) {
  3964. xfs_iext_indirect_to_direct(ifp);
  3965. xfs_iext_direct_to_inline(ifp, nextents);
  3966. } else if (nextents <= XFS_LINEAR_EXTS) {
  3967. xfs_iext_indirect_to_direct(ifp);
  3968. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3969. xfs_iext_irec_compact_pages(ifp);
  3970. }
  3971. }
  3972. /*
  3973. * Combine extents from neighboring extent pages.
  3974. */
  3975. void
  3976. xfs_iext_irec_compact_pages(
  3977. xfs_ifork_t *ifp) /* inode fork pointer */
  3978. {
  3979. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3980. int erp_idx = 0; /* indirection array index */
  3981. int nlists; /* number of irec's (ex lists) */
  3982. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3983. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3984. while (erp_idx < nlists - 1) {
  3985. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3986. erp_next = erp + 1;
  3987. if (erp_next->er_extcount <=
  3988. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3989. memcpy(&erp->er_extbuf[erp->er_extcount],
  3990. erp_next->er_extbuf, erp_next->er_extcount *
  3991. sizeof(xfs_bmbt_rec_t));
  3992. erp->er_extcount += erp_next->er_extcount;
  3993. /*
  3994. * Free page before removing extent record
  3995. * so er_extoffs don't get modified in
  3996. * xfs_iext_irec_remove.
  3997. */
  3998. kmem_free(erp_next->er_extbuf);
  3999. erp_next->er_extbuf = NULL;
  4000. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4001. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4002. } else {
  4003. erp_idx++;
  4004. }
  4005. }
  4006. }
  4007. /*
  4008. * This is called to update the er_extoff field in the indirection
  4009. * array when extents have been added or removed from one of the
  4010. * extent lists. erp_idx contains the irec index to begin updating
  4011. * at and ext_diff contains the number of extents that were added
  4012. * or removed.
  4013. */
  4014. void
  4015. xfs_iext_irec_update_extoffs(
  4016. xfs_ifork_t *ifp, /* inode fork pointer */
  4017. int erp_idx, /* irec index to update */
  4018. int ext_diff) /* number of new extents */
  4019. {
  4020. int i; /* loop counter */
  4021. int nlists; /* number of irec's (ex lists */
  4022. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4023. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4024. for (i = erp_idx; i < nlists; i++) {
  4025. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4026. }
  4027. }