cfq-iosched.c 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/blkdev.h>
  11. #include <linux/elevator.h>
  12. #include <linux/rbtree.h>
  13. #include <linux/ioprio.h>
  14. /*
  15. * tunables
  16. */
  17. /* max queue in one round of service */
  18. static const int cfq_quantum = 4;
  19. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  20. /* maximum backwards seek, in KiB */
  21. static const int cfq_back_max = 16 * 1024;
  22. /* penalty of a backwards seek */
  23. static const int cfq_back_penalty = 2;
  24. static const int cfq_slice_sync = HZ / 10;
  25. static int cfq_slice_async = HZ / 25;
  26. static const int cfq_slice_async_rq = 2;
  27. static int cfq_slice_idle = HZ / 125;
  28. /*
  29. * offset from end of service tree
  30. */
  31. #define CFQ_IDLE_DELAY (HZ / 5)
  32. /*
  33. * below this threshold, we consider thinktime immediate
  34. */
  35. #define CFQ_MIN_TT (2)
  36. #define CFQ_SLICE_SCALE (5)
  37. #define RQ_CIC(rq) \
  38. ((struct cfq_io_context *) (rq)->elevator_private)
  39. #define RQ_CFQQ(rq) ((rq)->elevator_private2)
  40. static struct kmem_cache *cfq_pool;
  41. static struct kmem_cache *cfq_ioc_pool;
  42. static DEFINE_PER_CPU(unsigned long, ioc_count);
  43. static struct completion *ioc_gone;
  44. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  45. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  46. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  47. #define ASYNC (0)
  48. #define SYNC (1)
  49. #define sample_valid(samples) ((samples) > 80)
  50. /*
  51. * Most of our rbtree usage is for sorting with min extraction, so
  52. * if we cache the leftmost node we don't have to walk down the tree
  53. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  54. * move this into the elevator for the rq sorting as well.
  55. */
  56. struct cfq_rb_root {
  57. struct rb_root rb;
  58. struct rb_node *left;
  59. };
  60. #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
  61. /*
  62. * Per block device queue structure
  63. */
  64. struct cfq_data {
  65. struct request_queue *queue;
  66. /*
  67. * rr list of queues with requests and the count of them
  68. */
  69. struct cfq_rb_root service_tree;
  70. unsigned int busy_queues;
  71. int rq_in_driver;
  72. int sync_flight;
  73. int hw_tag;
  74. /*
  75. * idle window management
  76. */
  77. struct timer_list idle_slice_timer;
  78. struct work_struct unplug_work;
  79. struct cfq_queue *active_queue;
  80. struct cfq_io_context *active_cic;
  81. /*
  82. * async queue for each priority case
  83. */
  84. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  85. struct cfq_queue *async_idle_cfqq;
  86. sector_t last_position;
  87. unsigned long last_end_request;
  88. /*
  89. * tunables, see top of file
  90. */
  91. unsigned int cfq_quantum;
  92. unsigned int cfq_fifo_expire[2];
  93. unsigned int cfq_back_penalty;
  94. unsigned int cfq_back_max;
  95. unsigned int cfq_slice[2];
  96. unsigned int cfq_slice_async_rq;
  97. unsigned int cfq_slice_idle;
  98. struct list_head cic_list;
  99. };
  100. /*
  101. * Per process-grouping structure
  102. */
  103. struct cfq_queue {
  104. /* reference count */
  105. atomic_t ref;
  106. /* parent cfq_data */
  107. struct cfq_data *cfqd;
  108. /* service_tree member */
  109. struct rb_node rb_node;
  110. /* service_tree key */
  111. unsigned long rb_key;
  112. /* sorted list of pending requests */
  113. struct rb_root sort_list;
  114. /* if fifo isn't expired, next request to serve */
  115. struct request *next_rq;
  116. /* requests queued in sort_list */
  117. int queued[2];
  118. /* currently allocated requests */
  119. int allocated[2];
  120. /* pending metadata requests */
  121. int meta_pending;
  122. /* fifo list of requests in sort_list */
  123. struct list_head fifo;
  124. unsigned long slice_end;
  125. long slice_resid;
  126. /* number of requests that are on the dispatch list or inside driver */
  127. int dispatched;
  128. /* io prio of this group */
  129. unsigned short ioprio, org_ioprio;
  130. unsigned short ioprio_class, org_ioprio_class;
  131. /* various state flags, see below */
  132. unsigned int flags;
  133. };
  134. enum cfqq_state_flags {
  135. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  136. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  137. CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
  138. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  139. CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
  140. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  141. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  142. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  143. CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
  144. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  145. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  146. };
  147. #define CFQ_CFQQ_FNS(name) \
  148. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  149. { \
  150. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  151. } \
  152. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  153. { \
  154. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  155. } \
  156. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  157. { \
  158. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  159. }
  160. CFQ_CFQQ_FNS(on_rr);
  161. CFQ_CFQQ_FNS(wait_request);
  162. CFQ_CFQQ_FNS(must_alloc);
  163. CFQ_CFQQ_FNS(must_alloc_slice);
  164. CFQ_CFQQ_FNS(must_dispatch);
  165. CFQ_CFQQ_FNS(fifo_expire);
  166. CFQ_CFQQ_FNS(idle_window);
  167. CFQ_CFQQ_FNS(prio_changed);
  168. CFQ_CFQQ_FNS(queue_new);
  169. CFQ_CFQQ_FNS(slice_new);
  170. CFQ_CFQQ_FNS(sync);
  171. #undef CFQ_CFQQ_FNS
  172. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  173. static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
  174. struct io_context *, gfp_t);
  175. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  176. struct io_context *);
  177. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  178. int is_sync)
  179. {
  180. return cic->cfqq[!!is_sync];
  181. }
  182. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  183. struct cfq_queue *cfqq, int is_sync)
  184. {
  185. cic->cfqq[!!is_sync] = cfqq;
  186. }
  187. /*
  188. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  189. * set (in which case it could also be direct WRITE).
  190. */
  191. static inline int cfq_bio_sync(struct bio *bio)
  192. {
  193. if (bio_data_dir(bio) == READ || bio_sync(bio))
  194. return 1;
  195. return 0;
  196. }
  197. /*
  198. * scheduler run of queue, if there are requests pending and no one in the
  199. * driver that will restart queueing
  200. */
  201. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  202. {
  203. if (cfqd->busy_queues)
  204. kblockd_schedule_work(&cfqd->unplug_work);
  205. }
  206. static int cfq_queue_empty(struct request_queue *q)
  207. {
  208. struct cfq_data *cfqd = q->elevator->elevator_data;
  209. return !cfqd->busy_queues;
  210. }
  211. /*
  212. * Scale schedule slice based on io priority. Use the sync time slice only
  213. * if a queue is marked sync and has sync io queued. A sync queue with async
  214. * io only, should not get full sync slice length.
  215. */
  216. static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
  217. unsigned short prio)
  218. {
  219. const int base_slice = cfqd->cfq_slice[sync];
  220. WARN_ON(prio >= IOPRIO_BE_NR);
  221. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  222. }
  223. static inline int
  224. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  225. {
  226. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  227. }
  228. static inline void
  229. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  230. {
  231. cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
  232. }
  233. /*
  234. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  235. * isn't valid until the first request from the dispatch is activated
  236. * and the slice time set.
  237. */
  238. static inline int cfq_slice_used(struct cfq_queue *cfqq)
  239. {
  240. if (cfq_cfqq_slice_new(cfqq))
  241. return 0;
  242. if (time_before(jiffies, cfqq->slice_end))
  243. return 0;
  244. return 1;
  245. }
  246. /*
  247. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  248. * We choose the request that is closest to the head right now. Distance
  249. * behind the head is penalized and only allowed to a certain extent.
  250. */
  251. static struct request *
  252. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
  253. {
  254. sector_t last, s1, s2, d1 = 0, d2 = 0;
  255. unsigned long back_max;
  256. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  257. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  258. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  259. if (rq1 == NULL || rq1 == rq2)
  260. return rq2;
  261. if (rq2 == NULL)
  262. return rq1;
  263. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  264. return rq1;
  265. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  266. return rq2;
  267. if (rq_is_meta(rq1) && !rq_is_meta(rq2))
  268. return rq1;
  269. else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
  270. return rq2;
  271. s1 = rq1->sector;
  272. s2 = rq2->sector;
  273. last = cfqd->last_position;
  274. /*
  275. * by definition, 1KiB is 2 sectors
  276. */
  277. back_max = cfqd->cfq_back_max * 2;
  278. /*
  279. * Strict one way elevator _except_ in the case where we allow
  280. * short backward seeks which are biased as twice the cost of a
  281. * similar forward seek.
  282. */
  283. if (s1 >= last)
  284. d1 = s1 - last;
  285. else if (s1 + back_max >= last)
  286. d1 = (last - s1) * cfqd->cfq_back_penalty;
  287. else
  288. wrap |= CFQ_RQ1_WRAP;
  289. if (s2 >= last)
  290. d2 = s2 - last;
  291. else if (s2 + back_max >= last)
  292. d2 = (last - s2) * cfqd->cfq_back_penalty;
  293. else
  294. wrap |= CFQ_RQ2_WRAP;
  295. /* Found required data */
  296. /*
  297. * By doing switch() on the bit mask "wrap" we avoid having to
  298. * check two variables for all permutations: --> faster!
  299. */
  300. switch (wrap) {
  301. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  302. if (d1 < d2)
  303. return rq1;
  304. else if (d2 < d1)
  305. return rq2;
  306. else {
  307. if (s1 >= s2)
  308. return rq1;
  309. else
  310. return rq2;
  311. }
  312. case CFQ_RQ2_WRAP:
  313. return rq1;
  314. case CFQ_RQ1_WRAP:
  315. return rq2;
  316. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  317. default:
  318. /*
  319. * Since both rqs are wrapped,
  320. * start with the one that's further behind head
  321. * (--> only *one* back seek required),
  322. * since back seek takes more time than forward.
  323. */
  324. if (s1 <= s2)
  325. return rq1;
  326. else
  327. return rq2;
  328. }
  329. }
  330. /*
  331. * The below is leftmost cache rbtree addon
  332. */
  333. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  334. {
  335. if (!root->left)
  336. root->left = rb_first(&root->rb);
  337. if (root->left)
  338. return rb_entry(root->left, struct cfq_queue, rb_node);
  339. return NULL;
  340. }
  341. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  342. {
  343. if (root->left == n)
  344. root->left = NULL;
  345. rb_erase(n, &root->rb);
  346. RB_CLEAR_NODE(n);
  347. }
  348. /*
  349. * would be nice to take fifo expire time into account as well
  350. */
  351. static struct request *
  352. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  353. struct request *last)
  354. {
  355. struct rb_node *rbnext = rb_next(&last->rb_node);
  356. struct rb_node *rbprev = rb_prev(&last->rb_node);
  357. struct request *next = NULL, *prev = NULL;
  358. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  359. if (rbprev)
  360. prev = rb_entry_rq(rbprev);
  361. if (rbnext)
  362. next = rb_entry_rq(rbnext);
  363. else {
  364. rbnext = rb_first(&cfqq->sort_list);
  365. if (rbnext && rbnext != &last->rb_node)
  366. next = rb_entry_rq(rbnext);
  367. }
  368. return cfq_choose_req(cfqd, next, prev);
  369. }
  370. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  371. struct cfq_queue *cfqq)
  372. {
  373. /*
  374. * just an approximation, should be ok.
  375. */
  376. return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  377. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  378. }
  379. /*
  380. * The cfqd->service_tree holds all pending cfq_queue's that have
  381. * requests waiting to be processed. It is sorted in the order that
  382. * we will service the queues.
  383. */
  384. static void cfq_service_tree_add(struct cfq_data *cfqd,
  385. struct cfq_queue *cfqq, int add_front)
  386. {
  387. struct rb_node **p, *parent;
  388. struct cfq_queue *__cfqq;
  389. unsigned long rb_key;
  390. int left;
  391. if (cfq_class_idle(cfqq)) {
  392. rb_key = CFQ_IDLE_DELAY;
  393. parent = rb_last(&cfqd->service_tree.rb);
  394. if (parent && parent != &cfqq->rb_node) {
  395. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  396. rb_key += __cfqq->rb_key;
  397. } else
  398. rb_key += jiffies;
  399. } else if (!add_front) {
  400. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  401. rb_key += cfqq->slice_resid;
  402. cfqq->slice_resid = 0;
  403. } else
  404. rb_key = 0;
  405. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  406. /*
  407. * same position, nothing more to do
  408. */
  409. if (rb_key == cfqq->rb_key)
  410. return;
  411. cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
  412. }
  413. left = 1;
  414. parent = NULL;
  415. p = &cfqd->service_tree.rb.rb_node;
  416. while (*p) {
  417. struct rb_node **n;
  418. parent = *p;
  419. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  420. /*
  421. * sort RT queues first, we always want to give
  422. * preference to them. IDLE queues goes to the back.
  423. * after that, sort on the next service time.
  424. */
  425. if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
  426. n = &(*p)->rb_left;
  427. else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
  428. n = &(*p)->rb_right;
  429. else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
  430. n = &(*p)->rb_left;
  431. else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
  432. n = &(*p)->rb_right;
  433. else if (rb_key < __cfqq->rb_key)
  434. n = &(*p)->rb_left;
  435. else
  436. n = &(*p)->rb_right;
  437. if (n == &(*p)->rb_right)
  438. left = 0;
  439. p = n;
  440. }
  441. if (left)
  442. cfqd->service_tree.left = &cfqq->rb_node;
  443. cfqq->rb_key = rb_key;
  444. rb_link_node(&cfqq->rb_node, parent, p);
  445. rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
  446. }
  447. /*
  448. * Update cfqq's position in the service tree.
  449. */
  450. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  451. {
  452. /*
  453. * Resorting requires the cfqq to be on the RR list already.
  454. */
  455. if (cfq_cfqq_on_rr(cfqq))
  456. cfq_service_tree_add(cfqd, cfqq, 0);
  457. }
  458. /*
  459. * add to busy list of queues for service, trying to be fair in ordering
  460. * the pending list according to last request service
  461. */
  462. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  463. {
  464. BUG_ON(cfq_cfqq_on_rr(cfqq));
  465. cfq_mark_cfqq_on_rr(cfqq);
  466. cfqd->busy_queues++;
  467. cfq_resort_rr_list(cfqd, cfqq);
  468. }
  469. /*
  470. * Called when the cfqq no longer has requests pending, remove it from
  471. * the service tree.
  472. */
  473. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  474. {
  475. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  476. cfq_clear_cfqq_on_rr(cfqq);
  477. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  478. cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
  479. BUG_ON(!cfqd->busy_queues);
  480. cfqd->busy_queues--;
  481. }
  482. /*
  483. * rb tree support functions
  484. */
  485. static void cfq_del_rq_rb(struct request *rq)
  486. {
  487. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  488. struct cfq_data *cfqd = cfqq->cfqd;
  489. const int sync = rq_is_sync(rq);
  490. BUG_ON(!cfqq->queued[sync]);
  491. cfqq->queued[sync]--;
  492. elv_rb_del(&cfqq->sort_list, rq);
  493. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  494. cfq_del_cfqq_rr(cfqd, cfqq);
  495. }
  496. static void cfq_add_rq_rb(struct request *rq)
  497. {
  498. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  499. struct cfq_data *cfqd = cfqq->cfqd;
  500. struct request *__alias;
  501. cfqq->queued[rq_is_sync(rq)]++;
  502. /*
  503. * looks a little odd, but the first insert might return an alias.
  504. * if that happens, put the alias on the dispatch list
  505. */
  506. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  507. cfq_dispatch_insert(cfqd->queue, __alias);
  508. if (!cfq_cfqq_on_rr(cfqq))
  509. cfq_add_cfqq_rr(cfqd, cfqq);
  510. /*
  511. * check if this request is a better next-serve candidate
  512. */
  513. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
  514. BUG_ON(!cfqq->next_rq);
  515. }
  516. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  517. {
  518. elv_rb_del(&cfqq->sort_list, rq);
  519. cfqq->queued[rq_is_sync(rq)]--;
  520. cfq_add_rq_rb(rq);
  521. }
  522. static struct request *
  523. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  524. {
  525. struct task_struct *tsk = current;
  526. struct cfq_io_context *cic;
  527. struct cfq_queue *cfqq;
  528. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  529. if (!cic)
  530. return NULL;
  531. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  532. if (cfqq) {
  533. sector_t sector = bio->bi_sector + bio_sectors(bio);
  534. return elv_rb_find(&cfqq->sort_list, sector);
  535. }
  536. return NULL;
  537. }
  538. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  539. {
  540. struct cfq_data *cfqd = q->elevator->elevator_data;
  541. cfqd->rq_in_driver++;
  542. /*
  543. * If the depth is larger 1, it really could be queueing. But lets
  544. * make the mark a little higher - idling could still be good for
  545. * low queueing, and a low queueing number could also just indicate
  546. * a SCSI mid layer like behaviour where limit+1 is often seen.
  547. */
  548. if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
  549. cfqd->hw_tag = 1;
  550. cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
  551. }
  552. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  553. {
  554. struct cfq_data *cfqd = q->elevator->elevator_data;
  555. WARN_ON(!cfqd->rq_in_driver);
  556. cfqd->rq_in_driver--;
  557. }
  558. static void cfq_remove_request(struct request *rq)
  559. {
  560. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  561. if (cfqq->next_rq == rq)
  562. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  563. list_del_init(&rq->queuelist);
  564. cfq_del_rq_rb(rq);
  565. if (rq_is_meta(rq)) {
  566. WARN_ON(!cfqq->meta_pending);
  567. cfqq->meta_pending--;
  568. }
  569. }
  570. static int cfq_merge(struct request_queue *q, struct request **req,
  571. struct bio *bio)
  572. {
  573. struct cfq_data *cfqd = q->elevator->elevator_data;
  574. struct request *__rq;
  575. __rq = cfq_find_rq_fmerge(cfqd, bio);
  576. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  577. *req = __rq;
  578. return ELEVATOR_FRONT_MERGE;
  579. }
  580. return ELEVATOR_NO_MERGE;
  581. }
  582. static void cfq_merged_request(struct request_queue *q, struct request *req,
  583. int type)
  584. {
  585. if (type == ELEVATOR_FRONT_MERGE) {
  586. struct cfq_queue *cfqq = RQ_CFQQ(req);
  587. cfq_reposition_rq_rb(cfqq, req);
  588. }
  589. }
  590. static void
  591. cfq_merged_requests(struct request_queue *q, struct request *rq,
  592. struct request *next)
  593. {
  594. /*
  595. * reposition in fifo if next is older than rq
  596. */
  597. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  598. time_before(next->start_time, rq->start_time))
  599. list_move(&rq->queuelist, &next->queuelist);
  600. cfq_remove_request(next);
  601. }
  602. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  603. struct bio *bio)
  604. {
  605. struct cfq_data *cfqd = q->elevator->elevator_data;
  606. struct cfq_io_context *cic;
  607. struct cfq_queue *cfqq;
  608. /*
  609. * Disallow merge of a sync bio into an async request.
  610. */
  611. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  612. return 0;
  613. /*
  614. * Lookup the cfqq that this bio will be queued with. Allow
  615. * merge only if rq is queued there.
  616. */
  617. cic = cfq_cic_lookup(cfqd, current->io_context);
  618. if (!cic)
  619. return 0;
  620. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  621. if (cfqq == RQ_CFQQ(rq))
  622. return 1;
  623. return 0;
  624. }
  625. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  626. struct cfq_queue *cfqq)
  627. {
  628. if (cfqq) {
  629. cfqq->slice_end = 0;
  630. cfq_clear_cfqq_must_alloc_slice(cfqq);
  631. cfq_clear_cfqq_fifo_expire(cfqq);
  632. cfq_mark_cfqq_slice_new(cfqq);
  633. cfq_clear_cfqq_queue_new(cfqq);
  634. }
  635. cfqd->active_queue = cfqq;
  636. }
  637. /*
  638. * current cfqq expired its slice (or was too idle), select new one
  639. */
  640. static void
  641. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  642. int timed_out)
  643. {
  644. if (cfq_cfqq_wait_request(cfqq))
  645. del_timer(&cfqd->idle_slice_timer);
  646. cfq_clear_cfqq_must_dispatch(cfqq);
  647. cfq_clear_cfqq_wait_request(cfqq);
  648. /*
  649. * store what was left of this slice, if the queue idled/timed out
  650. */
  651. if (timed_out && !cfq_cfqq_slice_new(cfqq))
  652. cfqq->slice_resid = cfqq->slice_end - jiffies;
  653. cfq_resort_rr_list(cfqd, cfqq);
  654. if (cfqq == cfqd->active_queue)
  655. cfqd->active_queue = NULL;
  656. if (cfqd->active_cic) {
  657. put_io_context(cfqd->active_cic->ioc);
  658. cfqd->active_cic = NULL;
  659. }
  660. }
  661. static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
  662. {
  663. struct cfq_queue *cfqq = cfqd->active_queue;
  664. if (cfqq)
  665. __cfq_slice_expired(cfqd, cfqq, timed_out);
  666. }
  667. /*
  668. * Get next queue for service. Unless we have a queue preemption,
  669. * we'll simply select the first cfqq in the service tree.
  670. */
  671. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  672. {
  673. if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
  674. return NULL;
  675. return cfq_rb_first(&cfqd->service_tree);
  676. }
  677. /*
  678. * Get and set a new active queue for service.
  679. */
  680. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
  681. {
  682. struct cfq_queue *cfqq;
  683. cfqq = cfq_get_next_queue(cfqd);
  684. __cfq_set_active_queue(cfqd, cfqq);
  685. return cfqq;
  686. }
  687. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  688. struct request *rq)
  689. {
  690. if (rq->sector >= cfqd->last_position)
  691. return rq->sector - cfqd->last_position;
  692. else
  693. return cfqd->last_position - rq->sector;
  694. }
  695. static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
  696. {
  697. struct cfq_io_context *cic = cfqd->active_cic;
  698. if (!sample_valid(cic->seek_samples))
  699. return 0;
  700. return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
  701. }
  702. static int cfq_close_cooperator(struct cfq_data *cfq_data,
  703. struct cfq_queue *cfqq)
  704. {
  705. /*
  706. * We should notice if some of the queues are cooperating, eg
  707. * working closely on the same area of the disk. In that case,
  708. * we can group them together and don't waste time idling.
  709. */
  710. return 0;
  711. }
  712. #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
  713. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  714. {
  715. struct cfq_queue *cfqq = cfqd->active_queue;
  716. struct cfq_io_context *cic;
  717. unsigned long sl;
  718. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  719. WARN_ON(cfq_cfqq_slice_new(cfqq));
  720. /*
  721. * idle is disabled, either manually or by past process history
  722. */
  723. if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
  724. return;
  725. /*
  726. * task has exited, don't wait
  727. */
  728. cic = cfqd->active_cic;
  729. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  730. return;
  731. /*
  732. * See if this prio level has a good candidate
  733. */
  734. if (cfq_close_cooperator(cfqd, cfqq) &&
  735. (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
  736. return;
  737. cfq_mark_cfqq_must_dispatch(cfqq);
  738. cfq_mark_cfqq_wait_request(cfqq);
  739. /*
  740. * we don't want to idle for seeks, but we do want to allow
  741. * fair distribution of slice time for a process doing back-to-back
  742. * seeks. so allow a little bit of time for him to submit a new rq
  743. */
  744. sl = cfqd->cfq_slice_idle;
  745. if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
  746. sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
  747. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  748. }
  749. /*
  750. * Move request from internal lists to the request queue dispatch list.
  751. */
  752. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  753. {
  754. struct cfq_data *cfqd = q->elevator->elevator_data;
  755. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  756. cfq_remove_request(rq);
  757. cfqq->dispatched++;
  758. elv_dispatch_sort(q, rq);
  759. if (cfq_cfqq_sync(cfqq))
  760. cfqd->sync_flight++;
  761. }
  762. /*
  763. * return expired entry, or NULL to just start from scratch in rbtree
  764. */
  765. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  766. {
  767. struct cfq_data *cfqd = cfqq->cfqd;
  768. struct request *rq;
  769. int fifo;
  770. if (cfq_cfqq_fifo_expire(cfqq))
  771. return NULL;
  772. cfq_mark_cfqq_fifo_expire(cfqq);
  773. if (list_empty(&cfqq->fifo))
  774. return NULL;
  775. fifo = cfq_cfqq_sync(cfqq);
  776. rq = rq_entry_fifo(cfqq->fifo.next);
  777. if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
  778. return NULL;
  779. return rq;
  780. }
  781. static inline int
  782. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  783. {
  784. const int base_rq = cfqd->cfq_slice_async_rq;
  785. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  786. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  787. }
  788. /*
  789. * Select a queue for service. If we have a current active queue,
  790. * check whether to continue servicing it, or retrieve and set a new one.
  791. */
  792. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  793. {
  794. struct cfq_queue *cfqq;
  795. cfqq = cfqd->active_queue;
  796. if (!cfqq)
  797. goto new_queue;
  798. /*
  799. * The active queue has run out of time, expire it and select new.
  800. */
  801. if (cfq_slice_used(cfqq))
  802. goto expire;
  803. /*
  804. * The active queue has requests and isn't expired, allow it to
  805. * dispatch.
  806. */
  807. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  808. goto keep_queue;
  809. /*
  810. * No requests pending. If the active queue still has requests in
  811. * flight or is idling for a new request, allow either of these
  812. * conditions to happen (or time out) before selecting a new queue.
  813. */
  814. if (timer_pending(&cfqd->idle_slice_timer) ||
  815. (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
  816. cfqq = NULL;
  817. goto keep_queue;
  818. }
  819. expire:
  820. cfq_slice_expired(cfqd, 0);
  821. new_queue:
  822. cfqq = cfq_set_active_queue(cfqd);
  823. keep_queue:
  824. return cfqq;
  825. }
  826. /*
  827. * Dispatch some requests from cfqq, moving them to the request queue
  828. * dispatch list.
  829. */
  830. static int
  831. __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  832. int max_dispatch)
  833. {
  834. int dispatched = 0;
  835. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  836. do {
  837. struct request *rq;
  838. /*
  839. * follow expired path, else get first next available
  840. */
  841. rq = cfq_check_fifo(cfqq);
  842. if (rq == NULL)
  843. rq = cfqq->next_rq;
  844. /*
  845. * finally, insert request into driver dispatch list
  846. */
  847. cfq_dispatch_insert(cfqd->queue, rq);
  848. dispatched++;
  849. if (!cfqd->active_cic) {
  850. atomic_inc(&RQ_CIC(rq)->ioc->refcount);
  851. cfqd->active_cic = RQ_CIC(rq);
  852. }
  853. if (RB_EMPTY_ROOT(&cfqq->sort_list))
  854. break;
  855. } while (dispatched < max_dispatch);
  856. /*
  857. * expire an async queue immediately if it has used up its slice. idle
  858. * queue always expire after 1 dispatch round.
  859. */
  860. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  861. dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  862. cfq_class_idle(cfqq))) {
  863. cfqq->slice_end = jiffies + 1;
  864. cfq_slice_expired(cfqd, 0);
  865. }
  866. return dispatched;
  867. }
  868. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  869. {
  870. int dispatched = 0;
  871. while (cfqq->next_rq) {
  872. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  873. dispatched++;
  874. }
  875. BUG_ON(!list_empty(&cfqq->fifo));
  876. return dispatched;
  877. }
  878. /*
  879. * Drain our current requests. Used for barriers and when switching
  880. * io schedulers on-the-fly.
  881. */
  882. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  883. {
  884. struct cfq_queue *cfqq;
  885. int dispatched = 0;
  886. while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
  887. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  888. cfq_slice_expired(cfqd, 0);
  889. BUG_ON(cfqd->busy_queues);
  890. return dispatched;
  891. }
  892. static int cfq_dispatch_requests(struct request_queue *q, int force)
  893. {
  894. struct cfq_data *cfqd = q->elevator->elevator_data;
  895. struct cfq_queue *cfqq;
  896. int dispatched;
  897. if (!cfqd->busy_queues)
  898. return 0;
  899. if (unlikely(force))
  900. return cfq_forced_dispatch(cfqd);
  901. dispatched = 0;
  902. while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
  903. int max_dispatch;
  904. max_dispatch = cfqd->cfq_quantum;
  905. if (cfq_class_idle(cfqq))
  906. max_dispatch = 1;
  907. if (cfqq->dispatched >= max_dispatch) {
  908. if (cfqd->busy_queues > 1)
  909. break;
  910. if (cfqq->dispatched >= 4 * max_dispatch)
  911. break;
  912. }
  913. if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
  914. break;
  915. cfq_clear_cfqq_must_dispatch(cfqq);
  916. cfq_clear_cfqq_wait_request(cfqq);
  917. del_timer(&cfqd->idle_slice_timer);
  918. dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
  919. }
  920. return dispatched;
  921. }
  922. /*
  923. * task holds one reference to the queue, dropped when task exits. each rq
  924. * in-flight on this queue also holds a reference, dropped when rq is freed.
  925. *
  926. * queue lock must be held here.
  927. */
  928. static void cfq_put_queue(struct cfq_queue *cfqq)
  929. {
  930. struct cfq_data *cfqd = cfqq->cfqd;
  931. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  932. if (!atomic_dec_and_test(&cfqq->ref))
  933. return;
  934. BUG_ON(rb_first(&cfqq->sort_list));
  935. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  936. BUG_ON(cfq_cfqq_on_rr(cfqq));
  937. if (unlikely(cfqd->active_queue == cfqq)) {
  938. __cfq_slice_expired(cfqd, cfqq, 0);
  939. cfq_schedule_dispatch(cfqd);
  940. }
  941. kmem_cache_free(cfq_pool, cfqq);
  942. }
  943. /*
  944. * Call func for each cic attached to this ioc. Returns number of cic's seen.
  945. */
  946. #define CIC_GANG_NR 16
  947. static unsigned int
  948. call_for_each_cic(struct io_context *ioc,
  949. void (*func)(struct io_context *, struct cfq_io_context *))
  950. {
  951. struct cfq_io_context *cics[CIC_GANG_NR];
  952. unsigned long index = 0;
  953. unsigned int called = 0;
  954. int nr;
  955. rcu_read_lock();
  956. do {
  957. int i;
  958. /*
  959. * Perhaps there's a better way - this just gang lookups from
  960. * 0 to the end, restarting after each CIC_GANG_NR from the
  961. * last key + 1.
  962. */
  963. nr = radix_tree_gang_lookup(&ioc->radix_root, (void **) cics,
  964. index, CIC_GANG_NR);
  965. if (!nr)
  966. break;
  967. called += nr;
  968. index = 1 + (unsigned long) cics[nr - 1]->key;
  969. for (i = 0; i < nr; i++)
  970. func(ioc, cics[i]);
  971. } while (nr == CIC_GANG_NR);
  972. rcu_read_unlock();
  973. return called;
  974. }
  975. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  976. {
  977. unsigned long flags;
  978. BUG_ON(!cic->dead_key);
  979. spin_lock_irqsave(&ioc->lock, flags);
  980. radix_tree_delete(&ioc->radix_root, cic->dead_key);
  981. spin_unlock_irqrestore(&ioc->lock, flags);
  982. kmem_cache_free(cfq_ioc_pool, cic);
  983. }
  984. static void cfq_free_io_context(struct io_context *ioc)
  985. {
  986. int freed;
  987. /*
  988. * ioc->refcount is zero here, so no more cic's are allowed to be
  989. * linked into this ioc. So it should be ok to iterate over the known
  990. * list, we will see all cic's since no new ones are added.
  991. */
  992. freed = call_for_each_cic(ioc, cic_free_func);
  993. elv_ioc_count_mod(ioc_count, -freed);
  994. if (ioc_gone && !elv_ioc_count_read(ioc_count))
  995. complete(ioc_gone);
  996. }
  997. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  998. {
  999. if (unlikely(cfqq == cfqd->active_queue)) {
  1000. __cfq_slice_expired(cfqd, cfqq, 0);
  1001. cfq_schedule_dispatch(cfqd);
  1002. }
  1003. cfq_put_queue(cfqq);
  1004. }
  1005. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  1006. struct cfq_io_context *cic)
  1007. {
  1008. list_del_init(&cic->queue_list);
  1009. /*
  1010. * Make sure key == NULL is seen for dead queues
  1011. */
  1012. smp_wmb();
  1013. cic->dead_key = (unsigned long) cic->key;
  1014. cic->key = NULL;
  1015. if (cic->cfqq[ASYNC]) {
  1016. cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
  1017. cic->cfqq[ASYNC] = NULL;
  1018. }
  1019. if (cic->cfqq[SYNC]) {
  1020. cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
  1021. cic->cfqq[SYNC] = NULL;
  1022. }
  1023. }
  1024. static void cfq_exit_single_io_context(struct io_context *ioc,
  1025. struct cfq_io_context *cic)
  1026. {
  1027. struct cfq_data *cfqd = cic->key;
  1028. if (cfqd) {
  1029. struct request_queue *q = cfqd->queue;
  1030. unsigned long flags;
  1031. spin_lock_irqsave(q->queue_lock, flags);
  1032. __cfq_exit_single_io_context(cfqd, cic);
  1033. spin_unlock_irqrestore(q->queue_lock, flags);
  1034. }
  1035. }
  1036. /*
  1037. * The process that ioc belongs to has exited, we need to clean up
  1038. * and put the internal structures we have that belongs to that process.
  1039. */
  1040. static void cfq_exit_io_context(struct io_context *ioc)
  1041. {
  1042. rcu_assign_pointer(ioc->ioc_data, NULL);
  1043. call_for_each_cic(ioc, cfq_exit_single_io_context);
  1044. }
  1045. static struct cfq_io_context *
  1046. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  1047. {
  1048. struct cfq_io_context *cic;
  1049. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  1050. cfqd->queue->node);
  1051. if (cic) {
  1052. cic->last_end_request = jiffies;
  1053. INIT_LIST_HEAD(&cic->queue_list);
  1054. cic->dtor = cfq_free_io_context;
  1055. cic->exit = cfq_exit_io_context;
  1056. elv_ioc_count_inc(ioc_count);
  1057. }
  1058. return cic;
  1059. }
  1060. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  1061. {
  1062. struct task_struct *tsk = current;
  1063. int ioprio_class;
  1064. if (!cfq_cfqq_prio_changed(cfqq))
  1065. return;
  1066. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  1067. switch (ioprio_class) {
  1068. default:
  1069. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  1070. case IOPRIO_CLASS_NONE:
  1071. /*
  1072. * no prio set, place us in the middle of the BE classes
  1073. */
  1074. cfqq->ioprio = task_nice_ioprio(tsk);
  1075. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  1076. break;
  1077. case IOPRIO_CLASS_RT:
  1078. cfqq->ioprio = task_ioprio(ioc);
  1079. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  1080. break;
  1081. case IOPRIO_CLASS_BE:
  1082. cfqq->ioprio = task_ioprio(ioc);
  1083. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  1084. break;
  1085. case IOPRIO_CLASS_IDLE:
  1086. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  1087. cfqq->ioprio = 7;
  1088. cfq_clear_cfqq_idle_window(cfqq);
  1089. break;
  1090. }
  1091. /*
  1092. * keep track of original prio settings in case we have to temporarily
  1093. * elevate the priority of this queue
  1094. */
  1095. cfqq->org_ioprio = cfqq->ioprio;
  1096. cfqq->org_ioprio_class = cfqq->ioprio_class;
  1097. cfq_clear_cfqq_prio_changed(cfqq);
  1098. }
  1099. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  1100. {
  1101. struct cfq_data *cfqd = cic->key;
  1102. struct cfq_queue *cfqq;
  1103. unsigned long flags;
  1104. if (unlikely(!cfqd))
  1105. return;
  1106. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1107. cfqq = cic->cfqq[ASYNC];
  1108. if (cfqq) {
  1109. struct cfq_queue *new_cfqq;
  1110. new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
  1111. if (new_cfqq) {
  1112. cic->cfqq[ASYNC] = new_cfqq;
  1113. cfq_put_queue(cfqq);
  1114. }
  1115. }
  1116. cfqq = cic->cfqq[SYNC];
  1117. if (cfqq)
  1118. cfq_mark_cfqq_prio_changed(cfqq);
  1119. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1120. }
  1121. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  1122. {
  1123. call_for_each_cic(ioc, changed_ioprio);
  1124. ioc->ioprio_changed = 0;
  1125. }
  1126. static struct cfq_queue *
  1127. cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
  1128. struct io_context *ioc, gfp_t gfp_mask)
  1129. {
  1130. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1131. struct cfq_io_context *cic;
  1132. retry:
  1133. cic = cfq_cic_lookup(cfqd, ioc);
  1134. /* cic always exists here */
  1135. cfqq = cic_to_cfqq(cic, is_sync);
  1136. if (!cfqq) {
  1137. if (new_cfqq) {
  1138. cfqq = new_cfqq;
  1139. new_cfqq = NULL;
  1140. } else if (gfp_mask & __GFP_WAIT) {
  1141. /*
  1142. * Inform the allocator of the fact that we will
  1143. * just repeat this allocation if it fails, to allow
  1144. * the allocator to do whatever it needs to attempt to
  1145. * free memory.
  1146. */
  1147. spin_unlock_irq(cfqd->queue->queue_lock);
  1148. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  1149. gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
  1150. cfqd->queue->node);
  1151. spin_lock_irq(cfqd->queue->queue_lock);
  1152. goto retry;
  1153. } else {
  1154. cfqq = kmem_cache_alloc_node(cfq_pool,
  1155. gfp_mask | __GFP_ZERO,
  1156. cfqd->queue->node);
  1157. if (!cfqq)
  1158. goto out;
  1159. }
  1160. RB_CLEAR_NODE(&cfqq->rb_node);
  1161. INIT_LIST_HEAD(&cfqq->fifo);
  1162. atomic_set(&cfqq->ref, 0);
  1163. cfqq->cfqd = cfqd;
  1164. cfq_mark_cfqq_prio_changed(cfqq);
  1165. cfq_mark_cfqq_queue_new(cfqq);
  1166. cfq_init_prio_data(cfqq, ioc);
  1167. if (is_sync) {
  1168. if (!cfq_class_idle(cfqq))
  1169. cfq_mark_cfqq_idle_window(cfqq);
  1170. cfq_mark_cfqq_sync(cfqq);
  1171. }
  1172. }
  1173. if (new_cfqq)
  1174. kmem_cache_free(cfq_pool, new_cfqq);
  1175. out:
  1176. WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
  1177. return cfqq;
  1178. }
  1179. static struct cfq_queue **
  1180. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  1181. {
  1182. switch (ioprio_class) {
  1183. case IOPRIO_CLASS_RT:
  1184. return &cfqd->async_cfqq[0][ioprio];
  1185. case IOPRIO_CLASS_BE:
  1186. return &cfqd->async_cfqq[1][ioprio];
  1187. case IOPRIO_CLASS_IDLE:
  1188. return &cfqd->async_idle_cfqq;
  1189. default:
  1190. BUG();
  1191. }
  1192. }
  1193. static struct cfq_queue *
  1194. cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
  1195. gfp_t gfp_mask)
  1196. {
  1197. const int ioprio = task_ioprio(ioc);
  1198. const int ioprio_class = task_ioprio_class(ioc);
  1199. struct cfq_queue **async_cfqq = NULL;
  1200. struct cfq_queue *cfqq = NULL;
  1201. if (!is_sync) {
  1202. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  1203. cfqq = *async_cfqq;
  1204. }
  1205. if (!cfqq) {
  1206. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  1207. if (!cfqq)
  1208. return NULL;
  1209. }
  1210. /*
  1211. * pin the queue now that it's allocated, scheduler exit will prune it
  1212. */
  1213. if (!is_sync && !(*async_cfqq)) {
  1214. atomic_inc(&cfqq->ref);
  1215. *async_cfqq = cfqq;
  1216. }
  1217. atomic_inc(&cfqq->ref);
  1218. return cfqq;
  1219. }
  1220. static void cfq_cic_free(struct cfq_io_context *cic)
  1221. {
  1222. kmem_cache_free(cfq_ioc_pool, cic);
  1223. elv_ioc_count_dec(ioc_count);
  1224. if (ioc_gone && !elv_ioc_count_read(ioc_count))
  1225. complete(ioc_gone);
  1226. }
  1227. /*
  1228. * We drop cfq io contexts lazily, so we may find a dead one.
  1229. */
  1230. static void
  1231. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  1232. struct cfq_io_context *cic)
  1233. {
  1234. unsigned long flags;
  1235. WARN_ON(!list_empty(&cic->queue_list));
  1236. spin_lock_irqsave(&ioc->lock, flags);
  1237. if (ioc->ioc_data == cic)
  1238. rcu_assign_pointer(ioc->ioc_data, NULL);
  1239. radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
  1240. spin_unlock_irqrestore(&ioc->lock, flags);
  1241. cfq_cic_free(cic);
  1242. }
  1243. static struct cfq_io_context *
  1244. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  1245. {
  1246. struct cfq_io_context *cic;
  1247. void *k;
  1248. if (unlikely(!ioc))
  1249. return NULL;
  1250. /*
  1251. * we maintain a last-hit cache, to avoid browsing over the tree
  1252. */
  1253. cic = rcu_dereference(ioc->ioc_data);
  1254. if (cic && cic->key == cfqd)
  1255. return cic;
  1256. do {
  1257. rcu_read_lock();
  1258. cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
  1259. rcu_read_unlock();
  1260. if (!cic)
  1261. break;
  1262. /* ->key must be copied to avoid race with cfq_exit_queue() */
  1263. k = cic->key;
  1264. if (unlikely(!k)) {
  1265. cfq_drop_dead_cic(cfqd, ioc, cic);
  1266. continue;
  1267. }
  1268. rcu_assign_pointer(ioc->ioc_data, cic);
  1269. break;
  1270. } while (1);
  1271. return cic;
  1272. }
  1273. /*
  1274. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  1275. * the process specific cfq io context when entered from the block layer.
  1276. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  1277. */
  1278. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  1279. struct cfq_io_context *cic, gfp_t gfp_mask)
  1280. {
  1281. unsigned long flags;
  1282. int ret;
  1283. ret = radix_tree_preload(gfp_mask);
  1284. if (!ret) {
  1285. cic->ioc = ioc;
  1286. cic->key = cfqd;
  1287. spin_lock_irqsave(&ioc->lock, flags);
  1288. ret = radix_tree_insert(&ioc->radix_root,
  1289. (unsigned long) cfqd, cic);
  1290. spin_unlock_irqrestore(&ioc->lock, flags);
  1291. radix_tree_preload_end();
  1292. if (!ret) {
  1293. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1294. list_add(&cic->queue_list, &cfqd->cic_list);
  1295. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1296. }
  1297. }
  1298. if (ret)
  1299. printk(KERN_ERR "cfq: cic link failed!\n");
  1300. return ret;
  1301. }
  1302. /*
  1303. * Setup general io context and cfq io context. There can be several cfq
  1304. * io contexts per general io context, if this process is doing io to more
  1305. * than one device managed by cfq.
  1306. */
  1307. static struct cfq_io_context *
  1308. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  1309. {
  1310. struct io_context *ioc = NULL;
  1311. struct cfq_io_context *cic;
  1312. might_sleep_if(gfp_mask & __GFP_WAIT);
  1313. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  1314. if (!ioc)
  1315. return NULL;
  1316. cic = cfq_cic_lookup(cfqd, ioc);
  1317. if (cic)
  1318. goto out;
  1319. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  1320. if (cic == NULL)
  1321. goto err;
  1322. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  1323. goto err_free;
  1324. out:
  1325. smp_read_barrier_depends();
  1326. if (unlikely(ioc->ioprio_changed))
  1327. cfq_ioc_set_ioprio(ioc);
  1328. return cic;
  1329. err_free:
  1330. cfq_cic_free(cic);
  1331. err:
  1332. put_io_context(ioc);
  1333. return NULL;
  1334. }
  1335. static void
  1336. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  1337. {
  1338. unsigned long elapsed = jiffies - cic->last_end_request;
  1339. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  1340. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  1341. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  1342. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  1343. }
  1344. static void
  1345. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
  1346. struct request *rq)
  1347. {
  1348. sector_t sdist;
  1349. u64 total;
  1350. if (cic->last_request_pos < rq->sector)
  1351. sdist = rq->sector - cic->last_request_pos;
  1352. else
  1353. sdist = cic->last_request_pos - rq->sector;
  1354. /*
  1355. * Don't allow the seek distance to get too large from the
  1356. * odd fragment, pagein, etc
  1357. */
  1358. if (cic->seek_samples <= 60) /* second&third seek */
  1359. sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
  1360. else
  1361. sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
  1362. cic->seek_samples = (7*cic->seek_samples + 256) / 8;
  1363. cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
  1364. total = cic->seek_total + (cic->seek_samples/2);
  1365. do_div(total, cic->seek_samples);
  1366. cic->seek_mean = (sector_t)total;
  1367. }
  1368. /*
  1369. * Disable idle window if the process thinks too long or seeks so much that
  1370. * it doesn't matter
  1371. */
  1372. static void
  1373. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1374. struct cfq_io_context *cic)
  1375. {
  1376. int enable_idle;
  1377. /*
  1378. * Don't idle for async or idle io prio class
  1379. */
  1380. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  1381. return;
  1382. enable_idle = cfq_cfqq_idle_window(cfqq);
  1383. if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  1384. (cfqd->hw_tag && CIC_SEEKY(cic)))
  1385. enable_idle = 0;
  1386. else if (sample_valid(cic->ttime_samples)) {
  1387. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  1388. enable_idle = 0;
  1389. else
  1390. enable_idle = 1;
  1391. }
  1392. if (enable_idle)
  1393. cfq_mark_cfqq_idle_window(cfqq);
  1394. else
  1395. cfq_clear_cfqq_idle_window(cfqq);
  1396. }
  1397. /*
  1398. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  1399. * no or if we aren't sure, a 1 will cause a preempt.
  1400. */
  1401. static int
  1402. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  1403. struct request *rq)
  1404. {
  1405. struct cfq_queue *cfqq;
  1406. cfqq = cfqd->active_queue;
  1407. if (!cfqq)
  1408. return 0;
  1409. if (cfq_slice_used(cfqq))
  1410. return 1;
  1411. if (cfq_class_idle(new_cfqq))
  1412. return 0;
  1413. if (cfq_class_idle(cfqq))
  1414. return 1;
  1415. /*
  1416. * if the new request is sync, but the currently running queue is
  1417. * not, let the sync request have priority.
  1418. */
  1419. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  1420. return 1;
  1421. /*
  1422. * So both queues are sync. Let the new request get disk time if
  1423. * it's a metadata request and the current queue is doing regular IO.
  1424. */
  1425. if (rq_is_meta(rq) && !cfqq->meta_pending)
  1426. return 1;
  1427. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  1428. return 0;
  1429. /*
  1430. * if this request is as-good as one we would expect from the
  1431. * current cfqq, let it preempt
  1432. */
  1433. if (cfq_rq_close(cfqd, rq))
  1434. return 1;
  1435. return 0;
  1436. }
  1437. /*
  1438. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  1439. * let it have half of its nominal slice.
  1440. */
  1441. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1442. {
  1443. cfq_slice_expired(cfqd, 1);
  1444. /*
  1445. * Put the new queue at the front of the of the current list,
  1446. * so we know that it will be selected next.
  1447. */
  1448. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1449. cfq_service_tree_add(cfqd, cfqq, 1);
  1450. cfqq->slice_end = 0;
  1451. cfq_mark_cfqq_slice_new(cfqq);
  1452. }
  1453. /*
  1454. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  1455. * something we should do about it
  1456. */
  1457. static void
  1458. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1459. struct request *rq)
  1460. {
  1461. struct cfq_io_context *cic = RQ_CIC(rq);
  1462. if (rq_is_meta(rq))
  1463. cfqq->meta_pending++;
  1464. cfq_update_io_thinktime(cfqd, cic);
  1465. cfq_update_io_seektime(cfqd, cic, rq);
  1466. cfq_update_idle_window(cfqd, cfqq, cic);
  1467. cic->last_request_pos = rq->sector + rq->nr_sectors;
  1468. if (cfqq == cfqd->active_queue) {
  1469. /*
  1470. * if we are waiting for a request for this queue, let it rip
  1471. * immediately and flag that we must not expire this queue
  1472. * just now
  1473. */
  1474. if (cfq_cfqq_wait_request(cfqq)) {
  1475. cfq_mark_cfqq_must_dispatch(cfqq);
  1476. del_timer(&cfqd->idle_slice_timer);
  1477. blk_start_queueing(cfqd->queue);
  1478. }
  1479. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  1480. /*
  1481. * not the active queue - expire current slice if it is
  1482. * idle and has expired it's mean thinktime or this new queue
  1483. * has some old slice time left and is of higher priority
  1484. */
  1485. cfq_preempt_queue(cfqd, cfqq);
  1486. cfq_mark_cfqq_must_dispatch(cfqq);
  1487. blk_start_queueing(cfqd->queue);
  1488. }
  1489. }
  1490. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  1491. {
  1492. struct cfq_data *cfqd = q->elevator->elevator_data;
  1493. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1494. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  1495. cfq_add_rq_rb(rq);
  1496. list_add_tail(&rq->queuelist, &cfqq->fifo);
  1497. cfq_rq_enqueued(cfqd, cfqq, rq);
  1498. }
  1499. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  1500. {
  1501. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1502. struct cfq_data *cfqd = cfqq->cfqd;
  1503. const int sync = rq_is_sync(rq);
  1504. unsigned long now;
  1505. now = jiffies;
  1506. WARN_ON(!cfqd->rq_in_driver);
  1507. WARN_ON(!cfqq->dispatched);
  1508. cfqd->rq_in_driver--;
  1509. cfqq->dispatched--;
  1510. if (cfq_cfqq_sync(cfqq))
  1511. cfqd->sync_flight--;
  1512. if (!cfq_class_idle(cfqq))
  1513. cfqd->last_end_request = now;
  1514. if (sync)
  1515. RQ_CIC(rq)->last_end_request = now;
  1516. /*
  1517. * If this is the active queue, check if it needs to be expired,
  1518. * or if we want to idle in case it has no pending requests.
  1519. */
  1520. if (cfqd->active_queue == cfqq) {
  1521. if (cfq_cfqq_slice_new(cfqq)) {
  1522. cfq_set_prio_slice(cfqd, cfqq);
  1523. cfq_clear_cfqq_slice_new(cfqq);
  1524. }
  1525. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  1526. cfq_slice_expired(cfqd, 1);
  1527. else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
  1528. cfq_arm_slice_timer(cfqd);
  1529. }
  1530. if (!cfqd->rq_in_driver)
  1531. cfq_schedule_dispatch(cfqd);
  1532. }
  1533. /*
  1534. * we temporarily boost lower priority queues if they are holding fs exclusive
  1535. * resources. they are boosted to normal prio (CLASS_BE/4)
  1536. */
  1537. static void cfq_prio_boost(struct cfq_queue *cfqq)
  1538. {
  1539. if (has_fs_excl()) {
  1540. /*
  1541. * boost idle prio on transactions that would lock out other
  1542. * users of the filesystem
  1543. */
  1544. if (cfq_class_idle(cfqq))
  1545. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  1546. if (cfqq->ioprio > IOPRIO_NORM)
  1547. cfqq->ioprio = IOPRIO_NORM;
  1548. } else {
  1549. /*
  1550. * check if we need to unboost the queue
  1551. */
  1552. if (cfqq->ioprio_class != cfqq->org_ioprio_class)
  1553. cfqq->ioprio_class = cfqq->org_ioprio_class;
  1554. if (cfqq->ioprio != cfqq->org_ioprio)
  1555. cfqq->ioprio = cfqq->org_ioprio;
  1556. }
  1557. }
  1558. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  1559. {
  1560. if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
  1561. !cfq_cfqq_must_alloc_slice(cfqq)) {
  1562. cfq_mark_cfqq_must_alloc_slice(cfqq);
  1563. return ELV_MQUEUE_MUST;
  1564. }
  1565. return ELV_MQUEUE_MAY;
  1566. }
  1567. static int cfq_may_queue(struct request_queue *q, int rw)
  1568. {
  1569. struct cfq_data *cfqd = q->elevator->elevator_data;
  1570. struct task_struct *tsk = current;
  1571. struct cfq_io_context *cic;
  1572. struct cfq_queue *cfqq;
  1573. /*
  1574. * don't force setup of a queue from here, as a call to may_queue
  1575. * does not necessarily imply that a request actually will be queued.
  1576. * so just lookup a possibly existing queue, or return 'may queue'
  1577. * if that fails
  1578. */
  1579. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1580. if (!cic)
  1581. return ELV_MQUEUE_MAY;
  1582. cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
  1583. if (cfqq) {
  1584. cfq_init_prio_data(cfqq, cic->ioc);
  1585. cfq_prio_boost(cfqq);
  1586. return __cfq_may_queue(cfqq);
  1587. }
  1588. return ELV_MQUEUE_MAY;
  1589. }
  1590. /*
  1591. * queue lock held here
  1592. */
  1593. static void cfq_put_request(struct request *rq)
  1594. {
  1595. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1596. if (cfqq) {
  1597. const int rw = rq_data_dir(rq);
  1598. BUG_ON(!cfqq->allocated[rw]);
  1599. cfqq->allocated[rw]--;
  1600. put_io_context(RQ_CIC(rq)->ioc);
  1601. rq->elevator_private = NULL;
  1602. rq->elevator_private2 = NULL;
  1603. cfq_put_queue(cfqq);
  1604. }
  1605. }
  1606. /*
  1607. * Allocate cfq data structures associated with this request.
  1608. */
  1609. static int
  1610. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  1611. {
  1612. struct cfq_data *cfqd = q->elevator->elevator_data;
  1613. struct cfq_io_context *cic;
  1614. const int rw = rq_data_dir(rq);
  1615. const int is_sync = rq_is_sync(rq);
  1616. struct cfq_queue *cfqq;
  1617. unsigned long flags;
  1618. might_sleep_if(gfp_mask & __GFP_WAIT);
  1619. cic = cfq_get_io_context(cfqd, gfp_mask);
  1620. spin_lock_irqsave(q->queue_lock, flags);
  1621. if (!cic)
  1622. goto queue_fail;
  1623. cfqq = cic_to_cfqq(cic, is_sync);
  1624. if (!cfqq) {
  1625. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  1626. if (!cfqq)
  1627. goto queue_fail;
  1628. cic_set_cfqq(cic, cfqq, is_sync);
  1629. }
  1630. cfqq->allocated[rw]++;
  1631. cfq_clear_cfqq_must_alloc(cfqq);
  1632. atomic_inc(&cfqq->ref);
  1633. spin_unlock_irqrestore(q->queue_lock, flags);
  1634. rq->elevator_private = cic;
  1635. rq->elevator_private2 = cfqq;
  1636. return 0;
  1637. queue_fail:
  1638. if (cic)
  1639. put_io_context(cic->ioc);
  1640. cfq_schedule_dispatch(cfqd);
  1641. spin_unlock_irqrestore(q->queue_lock, flags);
  1642. return 1;
  1643. }
  1644. static void cfq_kick_queue(struct work_struct *work)
  1645. {
  1646. struct cfq_data *cfqd =
  1647. container_of(work, struct cfq_data, unplug_work);
  1648. struct request_queue *q = cfqd->queue;
  1649. unsigned long flags;
  1650. spin_lock_irqsave(q->queue_lock, flags);
  1651. blk_start_queueing(q);
  1652. spin_unlock_irqrestore(q->queue_lock, flags);
  1653. }
  1654. /*
  1655. * Timer running if the active_queue is currently idling inside its time slice
  1656. */
  1657. static void cfq_idle_slice_timer(unsigned long data)
  1658. {
  1659. struct cfq_data *cfqd = (struct cfq_data *) data;
  1660. struct cfq_queue *cfqq;
  1661. unsigned long flags;
  1662. int timed_out = 1;
  1663. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1664. cfqq = cfqd->active_queue;
  1665. if (cfqq) {
  1666. timed_out = 0;
  1667. /*
  1668. * expired
  1669. */
  1670. if (cfq_slice_used(cfqq))
  1671. goto expire;
  1672. /*
  1673. * only expire and reinvoke request handler, if there are
  1674. * other queues with pending requests
  1675. */
  1676. if (!cfqd->busy_queues)
  1677. goto out_cont;
  1678. /*
  1679. * not expired and it has a request pending, let it dispatch
  1680. */
  1681. if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1682. cfq_mark_cfqq_must_dispatch(cfqq);
  1683. goto out_kick;
  1684. }
  1685. }
  1686. expire:
  1687. cfq_slice_expired(cfqd, timed_out);
  1688. out_kick:
  1689. cfq_schedule_dispatch(cfqd);
  1690. out_cont:
  1691. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1692. }
  1693. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  1694. {
  1695. del_timer_sync(&cfqd->idle_slice_timer);
  1696. kblockd_flush_work(&cfqd->unplug_work);
  1697. }
  1698. static void cfq_put_async_queues(struct cfq_data *cfqd)
  1699. {
  1700. int i;
  1701. for (i = 0; i < IOPRIO_BE_NR; i++) {
  1702. if (cfqd->async_cfqq[0][i])
  1703. cfq_put_queue(cfqd->async_cfqq[0][i]);
  1704. if (cfqd->async_cfqq[1][i])
  1705. cfq_put_queue(cfqd->async_cfqq[1][i]);
  1706. }
  1707. if (cfqd->async_idle_cfqq)
  1708. cfq_put_queue(cfqd->async_idle_cfqq);
  1709. }
  1710. static void cfq_exit_queue(elevator_t *e)
  1711. {
  1712. struct cfq_data *cfqd = e->elevator_data;
  1713. struct request_queue *q = cfqd->queue;
  1714. cfq_shutdown_timer_wq(cfqd);
  1715. spin_lock_irq(q->queue_lock);
  1716. if (cfqd->active_queue)
  1717. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  1718. while (!list_empty(&cfqd->cic_list)) {
  1719. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  1720. struct cfq_io_context,
  1721. queue_list);
  1722. __cfq_exit_single_io_context(cfqd, cic);
  1723. }
  1724. cfq_put_async_queues(cfqd);
  1725. spin_unlock_irq(q->queue_lock);
  1726. cfq_shutdown_timer_wq(cfqd);
  1727. kfree(cfqd);
  1728. }
  1729. static void *cfq_init_queue(struct request_queue *q)
  1730. {
  1731. struct cfq_data *cfqd;
  1732. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  1733. if (!cfqd)
  1734. return NULL;
  1735. cfqd->service_tree = CFQ_RB_ROOT;
  1736. INIT_LIST_HEAD(&cfqd->cic_list);
  1737. cfqd->queue = q;
  1738. init_timer(&cfqd->idle_slice_timer);
  1739. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  1740. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  1741. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  1742. cfqd->last_end_request = jiffies;
  1743. cfqd->cfq_quantum = cfq_quantum;
  1744. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  1745. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  1746. cfqd->cfq_back_max = cfq_back_max;
  1747. cfqd->cfq_back_penalty = cfq_back_penalty;
  1748. cfqd->cfq_slice[0] = cfq_slice_async;
  1749. cfqd->cfq_slice[1] = cfq_slice_sync;
  1750. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  1751. cfqd->cfq_slice_idle = cfq_slice_idle;
  1752. return cfqd;
  1753. }
  1754. static void cfq_slab_kill(void)
  1755. {
  1756. if (cfq_pool)
  1757. kmem_cache_destroy(cfq_pool);
  1758. if (cfq_ioc_pool)
  1759. kmem_cache_destroy(cfq_ioc_pool);
  1760. }
  1761. static int __init cfq_slab_setup(void)
  1762. {
  1763. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  1764. if (!cfq_pool)
  1765. goto fail;
  1766. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, SLAB_DESTROY_BY_RCU);
  1767. if (!cfq_ioc_pool)
  1768. goto fail;
  1769. return 0;
  1770. fail:
  1771. cfq_slab_kill();
  1772. return -ENOMEM;
  1773. }
  1774. /*
  1775. * sysfs parts below -->
  1776. */
  1777. static ssize_t
  1778. cfq_var_show(unsigned int var, char *page)
  1779. {
  1780. return sprintf(page, "%d\n", var);
  1781. }
  1782. static ssize_t
  1783. cfq_var_store(unsigned int *var, const char *page, size_t count)
  1784. {
  1785. char *p = (char *) page;
  1786. *var = simple_strtoul(p, &p, 10);
  1787. return count;
  1788. }
  1789. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  1790. static ssize_t __FUNC(elevator_t *e, char *page) \
  1791. { \
  1792. struct cfq_data *cfqd = e->elevator_data; \
  1793. unsigned int __data = __VAR; \
  1794. if (__CONV) \
  1795. __data = jiffies_to_msecs(__data); \
  1796. return cfq_var_show(__data, (page)); \
  1797. }
  1798. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  1799. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  1800. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  1801. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  1802. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  1803. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  1804. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  1805. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  1806. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  1807. #undef SHOW_FUNCTION
  1808. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  1809. static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
  1810. { \
  1811. struct cfq_data *cfqd = e->elevator_data; \
  1812. unsigned int __data; \
  1813. int ret = cfq_var_store(&__data, (page), count); \
  1814. if (__data < (MIN)) \
  1815. __data = (MIN); \
  1816. else if (__data > (MAX)) \
  1817. __data = (MAX); \
  1818. if (__CONV) \
  1819. *(__PTR) = msecs_to_jiffies(__data); \
  1820. else \
  1821. *(__PTR) = __data; \
  1822. return ret; \
  1823. }
  1824. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  1825. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  1826. UINT_MAX, 1);
  1827. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  1828. UINT_MAX, 1);
  1829. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  1830. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  1831. UINT_MAX, 0);
  1832. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  1833. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  1834. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  1835. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  1836. UINT_MAX, 0);
  1837. #undef STORE_FUNCTION
  1838. #define CFQ_ATTR(name) \
  1839. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  1840. static struct elv_fs_entry cfq_attrs[] = {
  1841. CFQ_ATTR(quantum),
  1842. CFQ_ATTR(fifo_expire_sync),
  1843. CFQ_ATTR(fifo_expire_async),
  1844. CFQ_ATTR(back_seek_max),
  1845. CFQ_ATTR(back_seek_penalty),
  1846. CFQ_ATTR(slice_sync),
  1847. CFQ_ATTR(slice_async),
  1848. CFQ_ATTR(slice_async_rq),
  1849. CFQ_ATTR(slice_idle),
  1850. __ATTR_NULL
  1851. };
  1852. static struct elevator_type iosched_cfq = {
  1853. .ops = {
  1854. .elevator_merge_fn = cfq_merge,
  1855. .elevator_merged_fn = cfq_merged_request,
  1856. .elevator_merge_req_fn = cfq_merged_requests,
  1857. .elevator_allow_merge_fn = cfq_allow_merge,
  1858. .elevator_dispatch_fn = cfq_dispatch_requests,
  1859. .elevator_add_req_fn = cfq_insert_request,
  1860. .elevator_activate_req_fn = cfq_activate_request,
  1861. .elevator_deactivate_req_fn = cfq_deactivate_request,
  1862. .elevator_queue_empty_fn = cfq_queue_empty,
  1863. .elevator_completed_req_fn = cfq_completed_request,
  1864. .elevator_former_req_fn = elv_rb_former_request,
  1865. .elevator_latter_req_fn = elv_rb_latter_request,
  1866. .elevator_set_req_fn = cfq_set_request,
  1867. .elevator_put_req_fn = cfq_put_request,
  1868. .elevator_may_queue_fn = cfq_may_queue,
  1869. .elevator_init_fn = cfq_init_queue,
  1870. .elevator_exit_fn = cfq_exit_queue,
  1871. .trim = cfq_free_io_context,
  1872. },
  1873. .elevator_attrs = cfq_attrs,
  1874. .elevator_name = "cfq",
  1875. .elevator_owner = THIS_MODULE,
  1876. };
  1877. static int __init cfq_init(void)
  1878. {
  1879. /*
  1880. * could be 0 on HZ < 1000 setups
  1881. */
  1882. if (!cfq_slice_async)
  1883. cfq_slice_async = 1;
  1884. if (!cfq_slice_idle)
  1885. cfq_slice_idle = 1;
  1886. if (cfq_slab_setup())
  1887. return -ENOMEM;
  1888. elv_register(&iosched_cfq);
  1889. return 0;
  1890. }
  1891. static void __exit cfq_exit(void)
  1892. {
  1893. DECLARE_COMPLETION_ONSTACK(all_gone);
  1894. elv_unregister(&iosched_cfq);
  1895. ioc_gone = &all_gone;
  1896. /* ioc_gone's update must be visible before reading ioc_count */
  1897. smp_wmb();
  1898. if (elv_ioc_count_read(ioc_count))
  1899. wait_for_completion(ioc_gone);
  1900. synchronize_rcu();
  1901. cfq_slab_kill();
  1902. }
  1903. module_init(cfq_init);
  1904. module_exit(cfq_exit);
  1905. MODULE_AUTHOR("Jens Axboe");
  1906. MODULE_LICENSE("GPL");
  1907. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");