mmu.c 105 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  119. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  120. /* make pte_list_desc fit well in cache line */
  121. #define PTE_LIST_EXT 3
  122. struct pte_list_desc {
  123. u64 *sptes[PTE_LIST_EXT];
  124. struct pte_list_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. u64 *sptep;
  130. int level;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  138. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  139. shadow_walk_okay(&(_walker)) && \
  140. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  141. __shadow_walk_next(&(_walker), spte))
  142. static struct kmem_cache *pte_list_desc_cache;
  143. static struct kmem_cache *mmu_page_header_cache;
  144. static struct percpu_counter kvm_total_used_mmu_pages;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static u64 __read_mostly shadow_mmio_mask;
  151. static void mmu_spte_set(u64 *sptep, u64 spte);
  152. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  153. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  154. {
  155. shadow_mmio_mask = mmio_mask;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  158. static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
  159. {
  160. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  161. trace_mark_mmio_spte(sptep, gfn, access);
  162. mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
  163. }
  164. static bool is_mmio_spte(u64 spte)
  165. {
  166. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  167. }
  168. static gfn_t get_mmio_spte_gfn(u64 spte)
  169. {
  170. return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
  171. }
  172. static unsigned get_mmio_spte_access(u64 spte)
  173. {
  174. return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
  175. }
  176. static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
  177. {
  178. if (unlikely(is_noslot_pfn(pfn))) {
  179. mark_mmio_spte(sptep, gfn, access);
  180. return true;
  181. }
  182. return false;
  183. }
  184. static inline u64 rsvd_bits(int s, int e)
  185. {
  186. return ((1ULL << (e - s + 1)) - 1) << s;
  187. }
  188. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  189. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  190. {
  191. shadow_user_mask = user_mask;
  192. shadow_accessed_mask = accessed_mask;
  193. shadow_dirty_mask = dirty_mask;
  194. shadow_nx_mask = nx_mask;
  195. shadow_x_mask = x_mask;
  196. }
  197. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  198. static int is_cpuid_PSE36(void)
  199. {
  200. return 1;
  201. }
  202. static int is_nx(struct kvm_vcpu *vcpu)
  203. {
  204. return vcpu->arch.efer & EFER_NX;
  205. }
  206. static int is_shadow_present_pte(u64 pte)
  207. {
  208. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  209. }
  210. static int is_large_pte(u64 pte)
  211. {
  212. return pte & PT_PAGE_SIZE_MASK;
  213. }
  214. static int is_dirty_gpte(unsigned long pte)
  215. {
  216. return pte & PT_DIRTY_MASK;
  217. }
  218. static int is_rmap_spte(u64 pte)
  219. {
  220. return is_shadow_present_pte(pte);
  221. }
  222. static int is_last_spte(u64 pte, int level)
  223. {
  224. if (level == PT_PAGE_TABLE_LEVEL)
  225. return 1;
  226. if (is_large_pte(pte))
  227. return 1;
  228. return 0;
  229. }
  230. static pfn_t spte_to_pfn(u64 pte)
  231. {
  232. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  233. }
  234. static gfn_t pse36_gfn_delta(u32 gpte)
  235. {
  236. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  237. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  238. }
  239. #ifdef CONFIG_X86_64
  240. static void __set_spte(u64 *sptep, u64 spte)
  241. {
  242. *sptep = spte;
  243. }
  244. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  245. {
  246. *sptep = spte;
  247. }
  248. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  249. {
  250. return xchg(sptep, spte);
  251. }
  252. static u64 __get_spte_lockless(u64 *sptep)
  253. {
  254. return ACCESS_ONCE(*sptep);
  255. }
  256. static bool __check_direct_spte_mmio_pf(u64 spte)
  257. {
  258. /* It is valid if the spte is zapped. */
  259. return spte == 0ull;
  260. }
  261. #else
  262. union split_spte {
  263. struct {
  264. u32 spte_low;
  265. u32 spte_high;
  266. };
  267. u64 spte;
  268. };
  269. static void count_spte_clear(u64 *sptep, u64 spte)
  270. {
  271. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  272. if (is_shadow_present_pte(spte))
  273. return;
  274. /* Ensure the spte is completely set before we increase the count */
  275. smp_wmb();
  276. sp->clear_spte_count++;
  277. }
  278. static void __set_spte(u64 *sptep, u64 spte)
  279. {
  280. union split_spte *ssptep, sspte;
  281. ssptep = (union split_spte *)sptep;
  282. sspte = (union split_spte)spte;
  283. ssptep->spte_high = sspte.spte_high;
  284. /*
  285. * If we map the spte from nonpresent to present, We should store
  286. * the high bits firstly, then set present bit, so cpu can not
  287. * fetch this spte while we are setting the spte.
  288. */
  289. smp_wmb();
  290. ssptep->spte_low = sspte.spte_low;
  291. }
  292. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  293. {
  294. union split_spte *ssptep, sspte;
  295. ssptep = (union split_spte *)sptep;
  296. sspte = (union split_spte)spte;
  297. ssptep->spte_low = sspte.spte_low;
  298. /*
  299. * If we map the spte from present to nonpresent, we should clear
  300. * present bit firstly to avoid vcpu fetch the old high bits.
  301. */
  302. smp_wmb();
  303. ssptep->spte_high = sspte.spte_high;
  304. count_spte_clear(sptep, spte);
  305. }
  306. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  307. {
  308. union split_spte *ssptep, sspte, orig;
  309. ssptep = (union split_spte *)sptep;
  310. sspte = (union split_spte)spte;
  311. /* xchg acts as a barrier before the setting of the high bits */
  312. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  313. orig.spte_high = ssptep->spte_high;
  314. ssptep->spte_high = sspte.spte_high;
  315. count_spte_clear(sptep, spte);
  316. return orig.spte;
  317. }
  318. /*
  319. * The idea using the light way get the spte on x86_32 guest is from
  320. * gup_get_pte(arch/x86/mm/gup.c).
  321. * The difference is we can not catch the spte tlb flush if we leave
  322. * guest mode, so we emulate it by increase clear_spte_count when spte
  323. * is cleared.
  324. */
  325. static u64 __get_spte_lockless(u64 *sptep)
  326. {
  327. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  328. union split_spte spte, *orig = (union split_spte *)sptep;
  329. int count;
  330. retry:
  331. count = sp->clear_spte_count;
  332. smp_rmb();
  333. spte.spte_low = orig->spte_low;
  334. smp_rmb();
  335. spte.spte_high = orig->spte_high;
  336. smp_rmb();
  337. if (unlikely(spte.spte_low != orig->spte_low ||
  338. count != sp->clear_spte_count))
  339. goto retry;
  340. return spte.spte;
  341. }
  342. static bool __check_direct_spte_mmio_pf(u64 spte)
  343. {
  344. union split_spte sspte = (union split_spte)spte;
  345. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  346. /* It is valid if the spte is zapped. */
  347. if (spte == 0ull)
  348. return true;
  349. /* It is valid if the spte is being zapped. */
  350. if (sspte.spte_low == 0ull &&
  351. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  352. return true;
  353. return false;
  354. }
  355. #endif
  356. static bool spte_is_locklessly_modifiable(u64 spte)
  357. {
  358. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  359. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  360. }
  361. static bool spte_has_volatile_bits(u64 spte)
  362. {
  363. /*
  364. * Always atomicly update spte if it can be updated
  365. * out of mmu-lock, it can ensure dirty bit is not lost,
  366. * also, it can help us to get a stable is_writable_pte()
  367. * to ensure tlb flush is not missed.
  368. */
  369. if (spte_is_locklessly_modifiable(spte))
  370. return true;
  371. if (!shadow_accessed_mask)
  372. return false;
  373. if (!is_shadow_present_pte(spte))
  374. return false;
  375. if ((spte & shadow_accessed_mask) &&
  376. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  377. return false;
  378. return true;
  379. }
  380. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  381. {
  382. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  383. }
  384. /* Rules for using mmu_spte_set:
  385. * Set the sptep from nonpresent to present.
  386. * Note: the sptep being assigned *must* be either not present
  387. * or in a state where the hardware will not attempt to update
  388. * the spte.
  389. */
  390. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  391. {
  392. WARN_ON(is_shadow_present_pte(*sptep));
  393. __set_spte(sptep, new_spte);
  394. }
  395. /* Rules for using mmu_spte_update:
  396. * Update the state bits, it means the mapped pfn is not changged.
  397. *
  398. * Whenever we overwrite a writable spte with a read-only one we
  399. * should flush remote TLBs. Otherwise rmap_write_protect
  400. * will find a read-only spte, even though the writable spte
  401. * might be cached on a CPU's TLB, the return value indicates this
  402. * case.
  403. */
  404. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  405. {
  406. u64 old_spte = *sptep;
  407. bool ret = false;
  408. WARN_ON(!is_rmap_spte(new_spte));
  409. if (!is_shadow_present_pte(old_spte)) {
  410. mmu_spte_set(sptep, new_spte);
  411. return ret;
  412. }
  413. if (!spte_has_volatile_bits(old_spte))
  414. __update_clear_spte_fast(sptep, new_spte);
  415. else
  416. old_spte = __update_clear_spte_slow(sptep, new_spte);
  417. /*
  418. * For the spte updated out of mmu-lock is safe, since
  419. * we always atomicly update it, see the comments in
  420. * spte_has_volatile_bits().
  421. */
  422. if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
  423. ret = true;
  424. if (!shadow_accessed_mask)
  425. return ret;
  426. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  427. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  428. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  429. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  430. return ret;
  431. }
  432. /*
  433. * Rules for using mmu_spte_clear_track_bits:
  434. * It sets the sptep from present to nonpresent, and track the
  435. * state bits, it is used to clear the last level sptep.
  436. */
  437. static int mmu_spte_clear_track_bits(u64 *sptep)
  438. {
  439. pfn_t pfn;
  440. u64 old_spte = *sptep;
  441. if (!spte_has_volatile_bits(old_spte))
  442. __update_clear_spte_fast(sptep, 0ull);
  443. else
  444. old_spte = __update_clear_spte_slow(sptep, 0ull);
  445. if (!is_rmap_spte(old_spte))
  446. return 0;
  447. pfn = spte_to_pfn(old_spte);
  448. /*
  449. * KVM does not hold the refcount of the page used by
  450. * kvm mmu, before reclaiming the page, we should
  451. * unmap it from mmu first.
  452. */
  453. WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  454. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  455. kvm_set_pfn_accessed(pfn);
  456. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  457. kvm_set_pfn_dirty(pfn);
  458. return 1;
  459. }
  460. /*
  461. * Rules for using mmu_spte_clear_no_track:
  462. * Directly clear spte without caring the state bits of sptep,
  463. * it is used to set the upper level spte.
  464. */
  465. static void mmu_spte_clear_no_track(u64 *sptep)
  466. {
  467. __update_clear_spte_fast(sptep, 0ull);
  468. }
  469. static u64 mmu_spte_get_lockless(u64 *sptep)
  470. {
  471. return __get_spte_lockless(sptep);
  472. }
  473. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  474. {
  475. /*
  476. * Prevent page table teardown by making any free-er wait during
  477. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  478. */
  479. local_irq_disable();
  480. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  481. /*
  482. * Make sure a following spte read is not reordered ahead of the write
  483. * to vcpu->mode.
  484. */
  485. smp_mb();
  486. }
  487. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  488. {
  489. /*
  490. * Make sure the write to vcpu->mode is not reordered in front of
  491. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  492. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  493. */
  494. smp_mb();
  495. vcpu->mode = OUTSIDE_GUEST_MODE;
  496. local_irq_enable();
  497. }
  498. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  499. struct kmem_cache *base_cache, int min)
  500. {
  501. void *obj;
  502. if (cache->nobjs >= min)
  503. return 0;
  504. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  505. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  506. if (!obj)
  507. return -ENOMEM;
  508. cache->objects[cache->nobjs++] = obj;
  509. }
  510. return 0;
  511. }
  512. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  513. {
  514. return cache->nobjs;
  515. }
  516. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  517. struct kmem_cache *cache)
  518. {
  519. while (mc->nobjs)
  520. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  521. }
  522. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  523. int min)
  524. {
  525. void *page;
  526. if (cache->nobjs >= min)
  527. return 0;
  528. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  529. page = (void *)__get_free_page(GFP_KERNEL);
  530. if (!page)
  531. return -ENOMEM;
  532. cache->objects[cache->nobjs++] = page;
  533. }
  534. return 0;
  535. }
  536. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  537. {
  538. while (mc->nobjs)
  539. free_page((unsigned long)mc->objects[--mc->nobjs]);
  540. }
  541. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  542. {
  543. int r;
  544. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  545. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  546. if (r)
  547. goto out;
  548. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  549. if (r)
  550. goto out;
  551. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  552. mmu_page_header_cache, 4);
  553. out:
  554. return r;
  555. }
  556. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  557. {
  558. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  559. pte_list_desc_cache);
  560. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  561. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  562. mmu_page_header_cache);
  563. }
  564. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  565. {
  566. void *p;
  567. BUG_ON(!mc->nobjs);
  568. p = mc->objects[--mc->nobjs];
  569. return p;
  570. }
  571. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  572. {
  573. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  574. }
  575. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  576. {
  577. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  578. }
  579. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  580. {
  581. if (!sp->role.direct)
  582. return sp->gfns[index];
  583. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  584. }
  585. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  586. {
  587. if (sp->role.direct)
  588. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  589. else
  590. sp->gfns[index] = gfn;
  591. }
  592. /*
  593. * Return the pointer to the large page information for a given gfn,
  594. * handling slots that are not large page aligned.
  595. */
  596. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  597. struct kvm_memory_slot *slot,
  598. int level)
  599. {
  600. unsigned long idx;
  601. idx = gfn_to_index(gfn, slot->base_gfn, level);
  602. return &slot->arch.lpage_info[level - 2][idx];
  603. }
  604. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  605. {
  606. struct kvm_memory_slot *slot;
  607. struct kvm_lpage_info *linfo;
  608. int i;
  609. slot = gfn_to_memslot(kvm, gfn);
  610. for (i = PT_DIRECTORY_LEVEL;
  611. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  612. linfo = lpage_info_slot(gfn, slot, i);
  613. linfo->write_count += 1;
  614. }
  615. kvm->arch.indirect_shadow_pages++;
  616. }
  617. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  618. {
  619. struct kvm_memory_slot *slot;
  620. struct kvm_lpage_info *linfo;
  621. int i;
  622. slot = gfn_to_memslot(kvm, gfn);
  623. for (i = PT_DIRECTORY_LEVEL;
  624. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  625. linfo = lpage_info_slot(gfn, slot, i);
  626. linfo->write_count -= 1;
  627. WARN_ON(linfo->write_count < 0);
  628. }
  629. kvm->arch.indirect_shadow_pages--;
  630. }
  631. static int has_wrprotected_page(struct kvm *kvm,
  632. gfn_t gfn,
  633. int level)
  634. {
  635. struct kvm_memory_slot *slot;
  636. struct kvm_lpage_info *linfo;
  637. slot = gfn_to_memslot(kvm, gfn);
  638. if (slot) {
  639. linfo = lpage_info_slot(gfn, slot, level);
  640. return linfo->write_count;
  641. }
  642. return 1;
  643. }
  644. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  645. {
  646. unsigned long page_size;
  647. int i, ret = 0;
  648. page_size = kvm_host_page_size(kvm, gfn);
  649. for (i = PT_PAGE_TABLE_LEVEL;
  650. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  651. if (page_size >= KVM_HPAGE_SIZE(i))
  652. ret = i;
  653. else
  654. break;
  655. }
  656. return ret;
  657. }
  658. static struct kvm_memory_slot *
  659. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  660. bool no_dirty_log)
  661. {
  662. struct kvm_memory_slot *slot;
  663. slot = gfn_to_memslot(vcpu->kvm, gfn);
  664. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  665. (no_dirty_log && slot->dirty_bitmap))
  666. slot = NULL;
  667. return slot;
  668. }
  669. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  670. {
  671. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  672. }
  673. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  674. {
  675. int host_level, level, max_level;
  676. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  677. if (host_level == PT_PAGE_TABLE_LEVEL)
  678. return host_level;
  679. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  680. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  681. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  682. break;
  683. return level - 1;
  684. }
  685. /*
  686. * Pte mapping structures:
  687. *
  688. * If pte_list bit zero is zero, then pte_list point to the spte.
  689. *
  690. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  691. * pte_list_desc containing more mappings.
  692. *
  693. * Returns the number of pte entries before the spte was added or zero if
  694. * the spte was not added.
  695. *
  696. */
  697. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  698. unsigned long *pte_list)
  699. {
  700. struct pte_list_desc *desc;
  701. int i, count = 0;
  702. if (!*pte_list) {
  703. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  704. *pte_list = (unsigned long)spte;
  705. } else if (!(*pte_list & 1)) {
  706. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  707. desc = mmu_alloc_pte_list_desc(vcpu);
  708. desc->sptes[0] = (u64 *)*pte_list;
  709. desc->sptes[1] = spte;
  710. *pte_list = (unsigned long)desc | 1;
  711. ++count;
  712. } else {
  713. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  714. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  715. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  716. desc = desc->more;
  717. count += PTE_LIST_EXT;
  718. }
  719. if (desc->sptes[PTE_LIST_EXT-1]) {
  720. desc->more = mmu_alloc_pte_list_desc(vcpu);
  721. desc = desc->more;
  722. }
  723. for (i = 0; desc->sptes[i]; ++i)
  724. ++count;
  725. desc->sptes[i] = spte;
  726. }
  727. return count;
  728. }
  729. static void
  730. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  731. int i, struct pte_list_desc *prev_desc)
  732. {
  733. int j;
  734. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  735. ;
  736. desc->sptes[i] = desc->sptes[j];
  737. desc->sptes[j] = NULL;
  738. if (j != 0)
  739. return;
  740. if (!prev_desc && !desc->more)
  741. *pte_list = (unsigned long)desc->sptes[0];
  742. else
  743. if (prev_desc)
  744. prev_desc->more = desc->more;
  745. else
  746. *pte_list = (unsigned long)desc->more | 1;
  747. mmu_free_pte_list_desc(desc);
  748. }
  749. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  750. {
  751. struct pte_list_desc *desc;
  752. struct pte_list_desc *prev_desc;
  753. int i;
  754. if (!*pte_list) {
  755. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  756. BUG();
  757. } else if (!(*pte_list & 1)) {
  758. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  759. if ((u64 *)*pte_list != spte) {
  760. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  761. BUG();
  762. }
  763. *pte_list = 0;
  764. } else {
  765. rmap_printk("pte_list_remove: %p many->many\n", spte);
  766. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  767. prev_desc = NULL;
  768. while (desc) {
  769. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  770. if (desc->sptes[i] == spte) {
  771. pte_list_desc_remove_entry(pte_list,
  772. desc, i,
  773. prev_desc);
  774. return;
  775. }
  776. prev_desc = desc;
  777. desc = desc->more;
  778. }
  779. pr_err("pte_list_remove: %p many->many\n", spte);
  780. BUG();
  781. }
  782. }
  783. typedef void (*pte_list_walk_fn) (u64 *spte);
  784. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  785. {
  786. struct pte_list_desc *desc;
  787. int i;
  788. if (!*pte_list)
  789. return;
  790. if (!(*pte_list & 1))
  791. return fn((u64 *)*pte_list);
  792. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  793. while (desc) {
  794. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  795. fn(desc->sptes[i]);
  796. desc = desc->more;
  797. }
  798. }
  799. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  800. struct kvm_memory_slot *slot)
  801. {
  802. unsigned long idx;
  803. idx = gfn_to_index(gfn, slot->base_gfn, level);
  804. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  805. }
  806. /*
  807. * Take gfn and return the reverse mapping to it.
  808. */
  809. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  810. {
  811. struct kvm_memory_slot *slot;
  812. slot = gfn_to_memslot(kvm, gfn);
  813. return __gfn_to_rmap(gfn, level, slot);
  814. }
  815. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  816. {
  817. struct kvm_mmu_memory_cache *cache;
  818. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  819. return mmu_memory_cache_free_objects(cache);
  820. }
  821. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  822. {
  823. struct kvm_mmu_page *sp;
  824. unsigned long *rmapp;
  825. sp = page_header(__pa(spte));
  826. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  827. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  828. return pte_list_add(vcpu, spte, rmapp);
  829. }
  830. static void rmap_remove(struct kvm *kvm, u64 *spte)
  831. {
  832. struct kvm_mmu_page *sp;
  833. gfn_t gfn;
  834. unsigned long *rmapp;
  835. sp = page_header(__pa(spte));
  836. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  837. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  838. pte_list_remove(spte, rmapp);
  839. }
  840. /*
  841. * Used by the following functions to iterate through the sptes linked by a
  842. * rmap. All fields are private and not assumed to be used outside.
  843. */
  844. struct rmap_iterator {
  845. /* private fields */
  846. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  847. int pos; /* index of the sptep */
  848. };
  849. /*
  850. * Iteration must be started by this function. This should also be used after
  851. * removing/dropping sptes from the rmap link because in such cases the
  852. * information in the itererator may not be valid.
  853. *
  854. * Returns sptep if found, NULL otherwise.
  855. */
  856. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  857. {
  858. if (!rmap)
  859. return NULL;
  860. if (!(rmap & 1)) {
  861. iter->desc = NULL;
  862. return (u64 *)rmap;
  863. }
  864. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  865. iter->pos = 0;
  866. return iter->desc->sptes[iter->pos];
  867. }
  868. /*
  869. * Must be used with a valid iterator: e.g. after rmap_get_first().
  870. *
  871. * Returns sptep if found, NULL otherwise.
  872. */
  873. static u64 *rmap_get_next(struct rmap_iterator *iter)
  874. {
  875. if (iter->desc) {
  876. if (iter->pos < PTE_LIST_EXT - 1) {
  877. u64 *sptep;
  878. ++iter->pos;
  879. sptep = iter->desc->sptes[iter->pos];
  880. if (sptep)
  881. return sptep;
  882. }
  883. iter->desc = iter->desc->more;
  884. if (iter->desc) {
  885. iter->pos = 0;
  886. /* desc->sptes[0] cannot be NULL */
  887. return iter->desc->sptes[iter->pos];
  888. }
  889. }
  890. return NULL;
  891. }
  892. static void drop_spte(struct kvm *kvm, u64 *sptep)
  893. {
  894. if (mmu_spte_clear_track_bits(sptep))
  895. rmap_remove(kvm, sptep);
  896. }
  897. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  898. {
  899. if (is_large_pte(*sptep)) {
  900. WARN_ON(page_header(__pa(sptep))->role.level ==
  901. PT_PAGE_TABLE_LEVEL);
  902. drop_spte(kvm, sptep);
  903. --kvm->stat.lpages;
  904. return true;
  905. }
  906. return false;
  907. }
  908. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  909. {
  910. if (__drop_large_spte(vcpu->kvm, sptep))
  911. kvm_flush_remote_tlbs(vcpu->kvm);
  912. }
  913. /*
  914. * Write-protect on the specified @sptep, @pt_protect indicates whether
  915. * spte write-protection is caused by protecting shadow page table.
  916. *
  917. * Note: write protection is difference between drity logging and spte
  918. * protection:
  919. * - for dirty logging, the spte can be set to writable at anytime if
  920. * its dirty bitmap is properly set.
  921. * - for spte protection, the spte can be writable only after unsync-ing
  922. * shadow page.
  923. *
  924. * Return true if tlb need be flushed.
  925. */
  926. static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
  927. {
  928. u64 spte = *sptep;
  929. if (!is_writable_pte(spte) &&
  930. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  931. return false;
  932. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  933. if (pt_protect)
  934. spte &= ~SPTE_MMU_WRITEABLE;
  935. spte = spte & ~PT_WRITABLE_MASK;
  936. return mmu_spte_update(sptep, spte);
  937. }
  938. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  939. bool pt_protect)
  940. {
  941. u64 *sptep;
  942. struct rmap_iterator iter;
  943. bool flush = false;
  944. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  945. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  946. flush |= spte_write_protect(kvm, sptep, pt_protect);
  947. sptep = rmap_get_next(&iter);
  948. }
  949. return flush;
  950. }
  951. /**
  952. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  953. * @kvm: kvm instance
  954. * @slot: slot to protect
  955. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  956. * @mask: indicates which pages we should protect
  957. *
  958. * Used when we do not need to care about huge page mappings: e.g. during dirty
  959. * logging we do not have any such mappings.
  960. */
  961. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  962. struct kvm_memory_slot *slot,
  963. gfn_t gfn_offset, unsigned long mask)
  964. {
  965. unsigned long *rmapp;
  966. while (mask) {
  967. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  968. PT_PAGE_TABLE_LEVEL, slot);
  969. __rmap_write_protect(kvm, rmapp, false);
  970. /* clear the first set bit */
  971. mask &= mask - 1;
  972. }
  973. }
  974. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  975. {
  976. struct kvm_memory_slot *slot;
  977. unsigned long *rmapp;
  978. int i;
  979. bool write_protected = false;
  980. slot = gfn_to_memslot(kvm, gfn);
  981. for (i = PT_PAGE_TABLE_LEVEL;
  982. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  983. rmapp = __gfn_to_rmap(gfn, i, slot);
  984. write_protected |= __rmap_write_protect(kvm, rmapp, true);
  985. }
  986. return write_protected;
  987. }
  988. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  989. struct kvm_memory_slot *slot, unsigned long data)
  990. {
  991. u64 *sptep;
  992. struct rmap_iterator iter;
  993. int need_tlb_flush = 0;
  994. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  995. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  996. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  997. drop_spte(kvm, sptep);
  998. need_tlb_flush = 1;
  999. }
  1000. return need_tlb_flush;
  1001. }
  1002. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1003. struct kvm_memory_slot *slot, unsigned long data)
  1004. {
  1005. u64 *sptep;
  1006. struct rmap_iterator iter;
  1007. int need_flush = 0;
  1008. u64 new_spte;
  1009. pte_t *ptep = (pte_t *)data;
  1010. pfn_t new_pfn;
  1011. WARN_ON(pte_huge(*ptep));
  1012. new_pfn = pte_pfn(*ptep);
  1013. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1014. BUG_ON(!is_shadow_present_pte(*sptep));
  1015. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  1016. need_flush = 1;
  1017. if (pte_write(*ptep)) {
  1018. drop_spte(kvm, sptep);
  1019. sptep = rmap_get_first(*rmapp, &iter);
  1020. } else {
  1021. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1022. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1023. new_spte &= ~PT_WRITABLE_MASK;
  1024. new_spte &= ~SPTE_HOST_WRITEABLE;
  1025. new_spte &= ~shadow_accessed_mask;
  1026. mmu_spte_clear_track_bits(sptep);
  1027. mmu_spte_set(sptep, new_spte);
  1028. sptep = rmap_get_next(&iter);
  1029. }
  1030. }
  1031. if (need_flush)
  1032. kvm_flush_remote_tlbs(kvm);
  1033. return 0;
  1034. }
  1035. static int kvm_handle_hva_range(struct kvm *kvm,
  1036. unsigned long start,
  1037. unsigned long end,
  1038. unsigned long data,
  1039. int (*handler)(struct kvm *kvm,
  1040. unsigned long *rmapp,
  1041. struct kvm_memory_slot *slot,
  1042. unsigned long data))
  1043. {
  1044. int j;
  1045. int ret = 0;
  1046. struct kvm_memslots *slots;
  1047. struct kvm_memory_slot *memslot;
  1048. slots = kvm_memslots(kvm);
  1049. kvm_for_each_memslot(memslot, slots) {
  1050. unsigned long hva_start, hva_end;
  1051. gfn_t gfn_start, gfn_end;
  1052. hva_start = max(start, memslot->userspace_addr);
  1053. hva_end = min(end, memslot->userspace_addr +
  1054. (memslot->npages << PAGE_SHIFT));
  1055. if (hva_start >= hva_end)
  1056. continue;
  1057. /*
  1058. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1059. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1060. */
  1061. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1062. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1063. for (j = PT_PAGE_TABLE_LEVEL;
  1064. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1065. unsigned long idx, idx_end;
  1066. unsigned long *rmapp;
  1067. /*
  1068. * {idx(page_j) | page_j intersects with
  1069. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1070. */
  1071. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1072. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1073. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1074. for (; idx <= idx_end; ++idx)
  1075. ret |= handler(kvm, rmapp++, memslot, data);
  1076. }
  1077. }
  1078. return ret;
  1079. }
  1080. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1081. unsigned long data,
  1082. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1083. struct kvm_memory_slot *slot,
  1084. unsigned long data))
  1085. {
  1086. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1087. }
  1088. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1089. {
  1090. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1091. }
  1092. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1093. {
  1094. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1095. }
  1096. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1097. {
  1098. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1099. }
  1100. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1101. struct kvm_memory_slot *slot, unsigned long data)
  1102. {
  1103. u64 *sptep;
  1104. struct rmap_iterator uninitialized_var(iter);
  1105. int young = 0;
  1106. /*
  1107. * In case of absence of EPT Access and Dirty Bits supports,
  1108. * emulate the accessed bit for EPT, by checking if this page has
  1109. * an EPT mapping, and clearing it if it does. On the next access,
  1110. * a new EPT mapping will be established.
  1111. * This has some overhead, but not as much as the cost of swapping
  1112. * out actively used pages or breaking up actively used hugepages.
  1113. */
  1114. if (!shadow_accessed_mask) {
  1115. young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
  1116. goto out;
  1117. }
  1118. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1119. sptep = rmap_get_next(&iter)) {
  1120. BUG_ON(!is_shadow_present_pte(*sptep));
  1121. if (*sptep & shadow_accessed_mask) {
  1122. young = 1;
  1123. clear_bit((ffs(shadow_accessed_mask) - 1),
  1124. (unsigned long *)sptep);
  1125. }
  1126. }
  1127. out:
  1128. /* @data has hva passed to kvm_age_hva(). */
  1129. trace_kvm_age_page(data, slot, young);
  1130. return young;
  1131. }
  1132. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1133. struct kvm_memory_slot *slot, unsigned long data)
  1134. {
  1135. u64 *sptep;
  1136. struct rmap_iterator iter;
  1137. int young = 0;
  1138. /*
  1139. * If there's no access bit in the secondary pte set by the
  1140. * hardware it's up to gup-fast/gup to set the access bit in
  1141. * the primary pte or in the page structure.
  1142. */
  1143. if (!shadow_accessed_mask)
  1144. goto out;
  1145. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1146. sptep = rmap_get_next(&iter)) {
  1147. BUG_ON(!is_shadow_present_pte(*sptep));
  1148. if (*sptep & shadow_accessed_mask) {
  1149. young = 1;
  1150. break;
  1151. }
  1152. }
  1153. out:
  1154. return young;
  1155. }
  1156. #define RMAP_RECYCLE_THRESHOLD 1000
  1157. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1158. {
  1159. unsigned long *rmapp;
  1160. struct kvm_mmu_page *sp;
  1161. sp = page_header(__pa(spte));
  1162. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1163. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
  1164. kvm_flush_remote_tlbs(vcpu->kvm);
  1165. }
  1166. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1167. {
  1168. return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
  1169. }
  1170. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1171. {
  1172. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1173. }
  1174. #ifdef MMU_DEBUG
  1175. static int is_empty_shadow_page(u64 *spt)
  1176. {
  1177. u64 *pos;
  1178. u64 *end;
  1179. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1180. if (is_shadow_present_pte(*pos)) {
  1181. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1182. pos, *pos);
  1183. return 0;
  1184. }
  1185. return 1;
  1186. }
  1187. #endif
  1188. /*
  1189. * This value is the sum of all of the kvm instances's
  1190. * kvm->arch.n_used_mmu_pages values. We need a global,
  1191. * aggregate version in order to make the slab shrinker
  1192. * faster
  1193. */
  1194. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1195. {
  1196. kvm->arch.n_used_mmu_pages += nr;
  1197. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1198. }
  1199. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1200. {
  1201. ASSERT(is_empty_shadow_page(sp->spt));
  1202. hlist_del(&sp->hash_link);
  1203. list_del(&sp->link);
  1204. free_page((unsigned long)sp->spt);
  1205. if (!sp->role.direct)
  1206. free_page((unsigned long)sp->gfns);
  1207. kmem_cache_free(mmu_page_header_cache, sp);
  1208. }
  1209. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1210. {
  1211. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1212. }
  1213. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1214. struct kvm_mmu_page *sp, u64 *parent_pte)
  1215. {
  1216. if (!parent_pte)
  1217. return;
  1218. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1219. }
  1220. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1221. u64 *parent_pte)
  1222. {
  1223. pte_list_remove(parent_pte, &sp->parent_ptes);
  1224. }
  1225. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1226. u64 *parent_pte)
  1227. {
  1228. mmu_page_remove_parent_pte(sp, parent_pte);
  1229. mmu_spte_clear_no_track(parent_pte);
  1230. }
  1231. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1232. u64 *parent_pte, int direct)
  1233. {
  1234. struct kvm_mmu_page *sp;
  1235. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1236. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1237. if (!direct)
  1238. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1239. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1240. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1241. sp->parent_ptes = 0;
  1242. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1243. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1244. return sp;
  1245. }
  1246. static void mark_unsync(u64 *spte);
  1247. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1248. {
  1249. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1250. }
  1251. static void mark_unsync(u64 *spte)
  1252. {
  1253. struct kvm_mmu_page *sp;
  1254. unsigned int index;
  1255. sp = page_header(__pa(spte));
  1256. index = spte - sp->spt;
  1257. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1258. return;
  1259. if (sp->unsync_children++)
  1260. return;
  1261. kvm_mmu_mark_parents_unsync(sp);
  1262. }
  1263. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1264. struct kvm_mmu_page *sp)
  1265. {
  1266. return 1;
  1267. }
  1268. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1269. {
  1270. }
  1271. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1272. struct kvm_mmu_page *sp, u64 *spte,
  1273. const void *pte)
  1274. {
  1275. WARN_ON(1);
  1276. }
  1277. #define KVM_PAGE_ARRAY_NR 16
  1278. struct kvm_mmu_pages {
  1279. struct mmu_page_and_offset {
  1280. struct kvm_mmu_page *sp;
  1281. unsigned int idx;
  1282. } page[KVM_PAGE_ARRAY_NR];
  1283. unsigned int nr;
  1284. };
  1285. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1286. int idx)
  1287. {
  1288. int i;
  1289. if (sp->unsync)
  1290. for (i=0; i < pvec->nr; i++)
  1291. if (pvec->page[i].sp == sp)
  1292. return 0;
  1293. pvec->page[pvec->nr].sp = sp;
  1294. pvec->page[pvec->nr].idx = idx;
  1295. pvec->nr++;
  1296. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1297. }
  1298. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1299. struct kvm_mmu_pages *pvec)
  1300. {
  1301. int i, ret, nr_unsync_leaf = 0;
  1302. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1303. struct kvm_mmu_page *child;
  1304. u64 ent = sp->spt[i];
  1305. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1306. goto clear_child_bitmap;
  1307. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1308. if (child->unsync_children) {
  1309. if (mmu_pages_add(pvec, child, i))
  1310. return -ENOSPC;
  1311. ret = __mmu_unsync_walk(child, pvec);
  1312. if (!ret)
  1313. goto clear_child_bitmap;
  1314. else if (ret > 0)
  1315. nr_unsync_leaf += ret;
  1316. else
  1317. return ret;
  1318. } else if (child->unsync) {
  1319. nr_unsync_leaf++;
  1320. if (mmu_pages_add(pvec, child, i))
  1321. return -ENOSPC;
  1322. } else
  1323. goto clear_child_bitmap;
  1324. continue;
  1325. clear_child_bitmap:
  1326. __clear_bit(i, sp->unsync_child_bitmap);
  1327. sp->unsync_children--;
  1328. WARN_ON((int)sp->unsync_children < 0);
  1329. }
  1330. return nr_unsync_leaf;
  1331. }
  1332. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1333. struct kvm_mmu_pages *pvec)
  1334. {
  1335. if (!sp->unsync_children)
  1336. return 0;
  1337. mmu_pages_add(pvec, sp, 0);
  1338. return __mmu_unsync_walk(sp, pvec);
  1339. }
  1340. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1341. {
  1342. WARN_ON(!sp->unsync);
  1343. trace_kvm_mmu_sync_page(sp);
  1344. sp->unsync = 0;
  1345. --kvm->stat.mmu_unsync;
  1346. }
  1347. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1348. struct list_head *invalid_list);
  1349. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1350. struct list_head *invalid_list);
  1351. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1352. hlist_for_each_entry(sp, pos, \
  1353. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1354. if ((sp)->gfn != (gfn)) {} else
  1355. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1356. hlist_for_each_entry(sp, pos, \
  1357. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1358. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1359. (sp)->role.invalid) {} else
  1360. /* @sp->gfn should be write-protected at the call site */
  1361. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1362. struct list_head *invalid_list, bool clear_unsync)
  1363. {
  1364. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1365. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1366. return 1;
  1367. }
  1368. if (clear_unsync)
  1369. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1370. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1371. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1372. return 1;
  1373. }
  1374. kvm_mmu_flush_tlb(vcpu);
  1375. return 0;
  1376. }
  1377. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1378. struct kvm_mmu_page *sp)
  1379. {
  1380. LIST_HEAD(invalid_list);
  1381. int ret;
  1382. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1383. if (ret)
  1384. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1385. return ret;
  1386. }
  1387. #ifdef CONFIG_KVM_MMU_AUDIT
  1388. #include "mmu_audit.c"
  1389. #else
  1390. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1391. static void mmu_audit_disable(void) { }
  1392. #endif
  1393. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1394. struct list_head *invalid_list)
  1395. {
  1396. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1397. }
  1398. /* @gfn should be write-protected at the call site */
  1399. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1400. {
  1401. struct kvm_mmu_page *s;
  1402. struct hlist_node *node;
  1403. LIST_HEAD(invalid_list);
  1404. bool flush = false;
  1405. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1406. if (!s->unsync)
  1407. continue;
  1408. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1409. kvm_unlink_unsync_page(vcpu->kvm, s);
  1410. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1411. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1412. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1413. continue;
  1414. }
  1415. flush = true;
  1416. }
  1417. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1418. if (flush)
  1419. kvm_mmu_flush_tlb(vcpu);
  1420. }
  1421. struct mmu_page_path {
  1422. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1423. unsigned int idx[PT64_ROOT_LEVEL-1];
  1424. };
  1425. #define for_each_sp(pvec, sp, parents, i) \
  1426. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1427. sp = pvec.page[i].sp; \
  1428. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1429. i = mmu_pages_next(&pvec, &parents, i))
  1430. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1431. struct mmu_page_path *parents,
  1432. int i)
  1433. {
  1434. int n;
  1435. for (n = i+1; n < pvec->nr; n++) {
  1436. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1437. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1438. parents->idx[0] = pvec->page[n].idx;
  1439. return n;
  1440. }
  1441. parents->parent[sp->role.level-2] = sp;
  1442. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1443. }
  1444. return n;
  1445. }
  1446. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1447. {
  1448. struct kvm_mmu_page *sp;
  1449. unsigned int level = 0;
  1450. do {
  1451. unsigned int idx = parents->idx[level];
  1452. sp = parents->parent[level];
  1453. if (!sp)
  1454. return;
  1455. --sp->unsync_children;
  1456. WARN_ON((int)sp->unsync_children < 0);
  1457. __clear_bit(idx, sp->unsync_child_bitmap);
  1458. level++;
  1459. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1460. }
  1461. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1462. struct mmu_page_path *parents,
  1463. struct kvm_mmu_pages *pvec)
  1464. {
  1465. parents->parent[parent->role.level-1] = NULL;
  1466. pvec->nr = 0;
  1467. }
  1468. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1469. struct kvm_mmu_page *parent)
  1470. {
  1471. int i;
  1472. struct kvm_mmu_page *sp;
  1473. struct mmu_page_path parents;
  1474. struct kvm_mmu_pages pages;
  1475. LIST_HEAD(invalid_list);
  1476. kvm_mmu_pages_init(parent, &parents, &pages);
  1477. while (mmu_unsync_walk(parent, &pages)) {
  1478. bool protected = false;
  1479. for_each_sp(pages, sp, parents, i)
  1480. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1481. if (protected)
  1482. kvm_flush_remote_tlbs(vcpu->kvm);
  1483. for_each_sp(pages, sp, parents, i) {
  1484. kvm_sync_page(vcpu, sp, &invalid_list);
  1485. mmu_pages_clear_parents(&parents);
  1486. }
  1487. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1488. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1489. kvm_mmu_pages_init(parent, &parents, &pages);
  1490. }
  1491. }
  1492. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1493. {
  1494. int i;
  1495. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1496. sp->spt[i] = 0ull;
  1497. }
  1498. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1499. {
  1500. sp->write_flooding_count = 0;
  1501. }
  1502. static void clear_sp_write_flooding_count(u64 *spte)
  1503. {
  1504. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1505. __clear_sp_write_flooding_count(sp);
  1506. }
  1507. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1508. gfn_t gfn,
  1509. gva_t gaddr,
  1510. unsigned level,
  1511. int direct,
  1512. unsigned access,
  1513. u64 *parent_pte)
  1514. {
  1515. union kvm_mmu_page_role role;
  1516. unsigned quadrant;
  1517. struct kvm_mmu_page *sp;
  1518. struct hlist_node *node;
  1519. bool need_sync = false;
  1520. role = vcpu->arch.mmu.base_role;
  1521. role.level = level;
  1522. role.direct = direct;
  1523. if (role.direct)
  1524. role.cr4_pae = 0;
  1525. role.access = access;
  1526. if (!vcpu->arch.mmu.direct_map
  1527. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1528. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1529. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1530. role.quadrant = quadrant;
  1531. }
  1532. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1533. if (!need_sync && sp->unsync)
  1534. need_sync = true;
  1535. if (sp->role.word != role.word)
  1536. continue;
  1537. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1538. break;
  1539. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1540. if (sp->unsync_children) {
  1541. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1542. kvm_mmu_mark_parents_unsync(sp);
  1543. } else if (sp->unsync)
  1544. kvm_mmu_mark_parents_unsync(sp);
  1545. __clear_sp_write_flooding_count(sp);
  1546. trace_kvm_mmu_get_page(sp, false);
  1547. return sp;
  1548. }
  1549. ++vcpu->kvm->stat.mmu_cache_miss;
  1550. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1551. if (!sp)
  1552. return sp;
  1553. sp->gfn = gfn;
  1554. sp->role = role;
  1555. hlist_add_head(&sp->hash_link,
  1556. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1557. if (!direct) {
  1558. if (rmap_write_protect(vcpu->kvm, gfn))
  1559. kvm_flush_remote_tlbs(vcpu->kvm);
  1560. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1561. kvm_sync_pages(vcpu, gfn);
  1562. account_shadowed(vcpu->kvm, gfn);
  1563. }
  1564. init_shadow_page_table(sp);
  1565. trace_kvm_mmu_get_page(sp, true);
  1566. return sp;
  1567. }
  1568. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1569. struct kvm_vcpu *vcpu, u64 addr)
  1570. {
  1571. iterator->addr = addr;
  1572. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1573. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1574. if (iterator->level == PT64_ROOT_LEVEL &&
  1575. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1576. !vcpu->arch.mmu.direct_map)
  1577. --iterator->level;
  1578. if (iterator->level == PT32E_ROOT_LEVEL) {
  1579. iterator->shadow_addr
  1580. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1581. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1582. --iterator->level;
  1583. if (!iterator->shadow_addr)
  1584. iterator->level = 0;
  1585. }
  1586. }
  1587. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1588. {
  1589. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1590. return false;
  1591. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1592. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1593. return true;
  1594. }
  1595. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1596. u64 spte)
  1597. {
  1598. if (is_last_spte(spte, iterator->level)) {
  1599. iterator->level = 0;
  1600. return;
  1601. }
  1602. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1603. --iterator->level;
  1604. }
  1605. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1606. {
  1607. return __shadow_walk_next(iterator, *iterator->sptep);
  1608. }
  1609. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1610. {
  1611. u64 spte;
  1612. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1613. shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
  1614. mmu_spte_set(sptep, spte);
  1615. }
  1616. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1617. unsigned direct_access)
  1618. {
  1619. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1620. struct kvm_mmu_page *child;
  1621. /*
  1622. * For the direct sp, if the guest pte's dirty bit
  1623. * changed form clean to dirty, it will corrupt the
  1624. * sp's access: allow writable in the read-only sp,
  1625. * so we should update the spte at this point to get
  1626. * a new sp with the correct access.
  1627. */
  1628. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1629. if (child->role.access == direct_access)
  1630. return;
  1631. drop_parent_pte(child, sptep);
  1632. kvm_flush_remote_tlbs(vcpu->kvm);
  1633. }
  1634. }
  1635. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1636. u64 *spte)
  1637. {
  1638. u64 pte;
  1639. struct kvm_mmu_page *child;
  1640. pte = *spte;
  1641. if (is_shadow_present_pte(pte)) {
  1642. if (is_last_spte(pte, sp->role.level)) {
  1643. drop_spte(kvm, spte);
  1644. if (is_large_pte(pte))
  1645. --kvm->stat.lpages;
  1646. } else {
  1647. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1648. drop_parent_pte(child, spte);
  1649. }
  1650. return true;
  1651. }
  1652. if (is_mmio_spte(pte))
  1653. mmu_spte_clear_no_track(spte);
  1654. return false;
  1655. }
  1656. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1657. struct kvm_mmu_page *sp)
  1658. {
  1659. unsigned i;
  1660. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1661. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1662. }
  1663. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1664. {
  1665. mmu_page_remove_parent_pte(sp, parent_pte);
  1666. }
  1667. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1668. {
  1669. u64 *sptep;
  1670. struct rmap_iterator iter;
  1671. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1672. drop_parent_pte(sp, sptep);
  1673. }
  1674. static int mmu_zap_unsync_children(struct kvm *kvm,
  1675. struct kvm_mmu_page *parent,
  1676. struct list_head *invalid_list)
  1677. {
  1678. int i, zapped = 0;
  1679. struct mmu_page_path parents;
  1680. struct kvm_mmu_pages pages;
  1681. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1682. return 0;
  1683. kvm_mmu_pages_init(parent, &parents, &pages);
  1684. while (mmu_unsync_walk(parent, &pages)) {
  1685. struct kvm_mmu_page *sp;
  1686. for_each_sp(pages, sp, parents, i) {
  1687. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1688. mmu_pages_clear_parents(&parents);
  1689. zapped++;
  1690. }
  1691. kvm_mmu_pages_init(parent, &parents, &pages);
  1692. }
  1693. return zapped;
  1694. }
  1695. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1696. struct list_head *invalid_list)
  1697. {
  1698. int ret;
  1699. trace_kvm_mmu_prepare_zap_page(sp);
  1700. ++kvm->stat.mmu_shadow_zapped;
  1701. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1702. kvm_mmu_page_unlink_children(kvm, sp);
  1703. kvm_mmu_unlink_parents(kvm, sp);
  1704. if (!sp->role.invalid && !sp->role.direct)
  1705. unaccount_shadowed(kvm, sp->gfn);
  1706. if (sp->unsync)
  1707. kvm_unlink_unsync_page(kvm, sp);
  1708. if (!sp->root_count) {
  1709. /* Count self */
  1710. ret++;
  1711. list_move(&sp->link, invalid_list);
  1712. kvm_mod_used_mmu_pages(kvm, -1);
  1713. } else {
  1714. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1715. kvm_reload_remote_mmus(kvm);
  1716. }
  1717. sp->role.invalid = 1;
  1718. return ret;
  1719. }
  1720. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1721. struct list_head *invalid_list)
  1722. {
  1723. struct kvm_mmu_page *sp;
  1724. if (list_empty(invalid_list))
  1725. return;
  1726. /*
  1727. * wmb: make sure everyone sees our modifications to the page tables
  1728. * rmb: make sure we see changes to vcpu->mode
  1729. */
  1730. smp_mb();
  1731. /*
  1732. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1733. * page table walks.
  1734. */
  1735. kvm_flush_remote_tlbs(kvm);
  1736. do {
  1737. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1738. WARN_ON(!sp->role.invalid || sp->root_count);
  1739. kvm_mmu_free_page(sp);
  1740. } while (!list_empty(invalid_list));
  1741. }
  1742. /*
  1743. * Changing the number of mmu pages allocated to the vm
  1744. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1745. */
  1746. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1747. {
  1748. LIST_HEAD(invalid_list);
  1749. /*
  1750. * If we set the number of mmu pages to be smaller be than the
  1751. * number of actived pages , we must to free some mmu pages before we
  1752. * change the value
  1753. */
  1754. spin_lock(&kvm->mmu_lock);
  1755. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1756. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1757. !list_empty(&kvm->arch.active_mmu_pages)) {
  1758. struct kvm_mmu_page *page;
  1759. page = container_of(kvm->arch.active_mmu_pages.prev,
  1760. struct kvm_mmu_page, link);
  1761. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1762. }
  1763. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1764. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1765. }
  1766. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1767. spin_unlock(&kvm->mmu_lock);
  1768. }
  1769. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1770. {
  1771. struct kvm_mmu_page *sp;
  1772. struct hlist_node *node;
  1773. LIST_HEAD(invalid_list);
  1774. int r;
  1775. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1776. r = 0;
  1777. spin_lock(&kvm->mmu_lock);
  1778. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1779. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1780. sp->role.word);
  1781. r = 1;
  1782. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1783. }
  1784. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1785. spin_unlock(&kvm->mmu_lock);
  1786. return r;
  1787. }
  1788. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1789. /*
  1790. * The function is based on mtrr_type_lookup() in
  1791. * arch/x86/kernel/cpu/mtrr/generic.c
  1792. */
  1793. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1794. u64 start, u64 end)
  1795. {
  1796. int i;
  1797. u64 base, mask;
  1798. u8 prev_match, curr_match;
  1799. int num_var_ranges = KVM_NR_VAR_MTRR;
  1800. if (!mtrr_state->enabled)
  1801. return 0xFF;
  1802. /* Make end inclusive end, instead of exclusive */
  1803. end--;
  1804. /* Look in fixed ranges. Just return the type as per start */
  1805. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1806. int idx;
  1807. if (start < 0x80000) {
  1808. idx = 0;
  1809. idx += (start >> 16);
  1810. return mtrr_state->fixed_ranges[idx];
  1811. } else if (start < 0xC0000) {
  1812. idx = 1 * 8;
  1813. idx += ((start - 0x80000) >> 14);
  1814. return mtrr_state->fixed_ranges[idx];
  1815. } else if (start < 0x1000000) {
  1816. idx = 3 * 8;
  1817. idx += ((start - 0xC0000) >> 12);
  1818. return mtrr_state->fixed_ranges[idx];
  1819. }
  1820. }
  1821. /*
  1822. * Look in variable ranges
  1823. * Look of multiple ranges matching this address and pick type
  1824. * as per MTRR precedence
  1825. */
  1826. if (!(mtrr_state->enabled & 2))
  1827. return mtrr_state->def_type;
  1828. prev_match = 0xFF;
  1829. for (i = 0; i < num_var_ranges; ++i) {
  1830. unsigned short start_state, end_state;
  1831. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1832. continue;
  1833. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1834. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1835. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1836. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1837. start_state = ((start & mask) == (base & mask));
  1838. end_state = ((end & mask) == (base & mask));
  1839. if (start_state != end_state)
  1840. return 0xFE;
  1841. if ((start & mask) != (base & mask))
  1842. continue;
  1843. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1844. if (prev_match == 0xFF) {
  1845. prev_match = curr_match;
  1846. continue;
  1847. }
  1848. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1849. curr_match == MTRR_TYPE_UNCACHABLE)
  1850. return MTRR_TYPE_UNCACHABLE;
  1851. if ((prev_match == MTRR_TYPE_WRBACK &&
  1852. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1853. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1854. curr_match == MTRR_TYPE_WRBACK)) {
  1855. prev_match = MTRR_TYPE_WRTHROUGH;
  1856. curr_match = MTRR_TYPE_WRTHROUGH;
  1857. }
  1858. if (prev_match != curr_match)
  1859. return MTRR_TYPE_UNCACHABLE;
  1860. }
  1861. if (prev_match != 0xFF)
  1862. return prev_match;
  1863. return mtrr_state->def_type;
  1864. }
  1865. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1866. {
  1867. u8 mtrr;
  1868. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1869. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1870. if (mtrr == 0xfe || mtrr == 0xff)
  1871. mtrr = MTRR_TYPE_WRBACK;
  1872. return mtrr;
  1873. }
  1874. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1875. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1876. {
  1877. trace_kvm_mmu_unsync_page(sp);
  1878. ++vcpu->kvm->stat.mmu_unsync;
  1879. sp->unsync = 1;
  1880. kvm_mmu_mark_parents_unsync(sp);
  1881. }
  1882. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1883. {
  1884. struct kvm_mmu_page *s;
  1885. struct hlist_node *node;
  1886. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1887. if (s->unsync)
  1888. continue;
  1889. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1890. __kvm_unsync_page(vcpu, s);
  1891. }
  1892. }
  1893. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1894. bool can_unsync)
  1895. {
  1896. struct kvm_mmu_page *s;
  1897. struct hlist_node *node;
  1898. bool need_unsync = false;
  1899. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1900. if (!can_unsync)
  1901. return 1;
  1902. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1903. return 1;
  1904. if (!s->unsync)
  1905. need_unsync = true;
  1906. }
  1907. if (need_unsync)
  1908. kvm_unsync_pages(vcpu, gfn);
  1909. return 0;
  1910. }
  1911. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1912. unsigned pte_access, int level,
  1913. gfn_t gfn, pfn_t pfn, bool speculative,
  1914. bool can_unsync, bool host_writable)
  1915. {
  1916. u64 spte;
  1917. int ret = 0;
  1918. if (set_mmio_spte(sptep, gfn, pfn, pte_access))
  1919. return 0;
  1920. spte = PT_PRESENT_MASK;
  1921. if (!speculative)
  1922. spte |= shadow_accessed_mask;
  1923. if (pte_access & ACC_EXEC_MASK)
  1924. spte |= shadow_x_mask;
  1925. else
  1926. spte |= shadow_nx_mask;
  1927. if (pte_access & ACC_USER_MASK)
  1928. spte |= shadow_user_mask;
  1929. if (level > PT_PAGE_TABLE_LEVEL)
  1930. spte |= PT_PAGE_SIZE_MASK;
  1931. if (tdp_enabled)
  1932. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1933. kvm_is_mmio_pfn(pfn));
  1934. if (host_writable)
  1935. spte |= SPTE_HOST_WRITEABLE;
  1936. else
  1937. pte_access &= ~ACC_WRITE_MASK;
  1938. spte |= (u64)pfn << PAGE_SHIFT;
  1939. if (pte_access & ACC_WRITE_MASK) {
  1940. /*
  1941. * Other vcpu creates new sp in the window between
  1942. * mapping_level() and acquiring mmu-lock. We can
  1943. * allow guest to retry the access, the mapping can
  1944. * be fixed if guest refault.
  1945. */
  1946. if (level > PT_PAGE_TABLE_LEVEL &&
  1947. has_wrprotected_page(vcpu->kvm, gfn, level))
  1948. goto done;
  1949. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  1950. /*
  1951. * Optimization: for pte sync, if spte was writable the hash
  1952. * lookup is unnecessary (and expensive). Write protection
  1953. * is responsibility of mmu_get_page / kvm_sync_page.
  1954. * Same reasoning can be applied to dirty page accounting.
  1955. */
  1956. if (!can_unsync && is_writable_pte(*sptep))
  1957. goto set_pte;
  1958. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1959. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1960. __func__, gfn);
  1961. ret = 1;
  1962. pte_access &= ~ACC_WRITE_MASK;
  1963. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  1964. }
  1965. }
  1966. if (pte_access & ACC_WRITE_MASK)
  1967. mark_page_dirty(vcpu->kvm, gfn);
  1968. set_pte:
  1969. if (mmu_spte_update(sptep, spte))
  1970. kvm_flush_remote_tlbs(vcpu->kvm);
  1971. done:
  1972. return ret;
  1973. }
  1974. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1975. unsigned pte_access, int write_fault, int *emulate,
  1976. int level, gfn_t gfn, pfn_t pfn, bool speculative,
  1977. bool host_writable)
  1978. {
  1979. int was_rmapped = 0;
  1980. int rmap_count;
  1981. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  1982. *sptep, write_fault, gfn);
  1983. if (is_rmap_spte(*sptep)) {
  1984. /*
  1985. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1986. * the parent of the now unreachable PTE.
  1987. */
  1988. if (level > PT_PAGE_TABLE_LEVEL &&
  1989. !is_large_pte(*sptep)) {
  1990. struct kvm_mmu_page *child;
  1991. u64 pte = *sptep;
  1992. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1993. drop_parent_pte(child, sptep);
  1994. kvm_flush_remote_tlbs(vcpu->kvm);
  1995. } else if (pfn != spte_to_pfn(*sptep)) {
  1996. pgprintk("hfn old %llx new %llx\n",
  1997. spte_to_pfn(*sptep), pfn);
  1998. drop_spte(vcpu->kvm, sptep);
  1999. kvm_flush_remote_tlbs(vcpu->kvm);
  2000. } else
  2001. was_rmapped = 1;
  2002. }
  2003. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2004. true, host_writable)) {
  2005. if (write_fault)
  2006. *emulate = 1;
  2007. kvm_mmu_flush_tlb(vcpu);
  2008. }
  2009. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2010. *emulate = 1;
  2011. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2012. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2013. is_large_pte(*sptep)? "2MB" : "4kB",
  2014. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2015. *sptep, sptep);
  2016. if (!was_rmapped && is_large_pte(*sptep))
  2017. ++vcpu->kvm->stat.lpages;
  2018. if (is_shadow_present_pte(*sptep)) {
  2019. if (!was_rmapped) {
  2020. rmap_count = rmap_add(vcpu, sptep, gfn);
  2021. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2022. rmap_recycle(vcpu, sptep, gfn);
  2023. }
  2024. }
  2025. kvm_release_pfn_clean(pfn);
  2026. }
  2027. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  2028. {
  2029. mmu_free_roots(vcpu);
  2030. }
  2031. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2032. {
  2033. int bit7;
  2034. bit7 = (gpte >> 7) & 1;
  2035. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2036. }
  2037. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2038. bool no_dirty_log)
  2039. {
  2040. struct kvm_memory_slot *slot;
  2041. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2042. if (!slot)
  2043. return KVM_PFN_ERR_FAULT;
  2044. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2045. }
  2046. static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
  2047. struct kvm_mmu_page *sp, u64 *spte,
  2048. u64 gpte)
  2049. {
  2050. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  2051. goto no_present;
  2052. if (!is_present_gpte(gpte))
  2053. goto no_present;
  2054. if (!(gpte & PT_ACCESSED_MASK))
  2055. goto no_present;
  2056. return false;
  2057. no_present:
  2058. drop_spte(vcpu->kvm, spte);
  2059. return true;
  2060. }
  2061. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2062. struct kvm_mmu_page *sp,
  2063. u64 *start, u64 *end)
  2064. {
  2065. struct page *pages[PTE_PREFETCH_NUM];
  2066. unsigned access = sp->role.access;
  2067. int i, ret;
  2068. gfn_t gfn;
  2069. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2070. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2071. return -1;
  2072. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2073. if (ret <= 0)
  2074. return -1;
  2075. for (i = 0; i < ret; i++, gfn++, start++)
  2076. mmu_set_spte(vcpu, start, access, 0, NULL,
  2077. sp->role.level, gfn, page_to_pfn(pages[i]),
  2078. true, true);
  2079. return 0;
  2080. }
  2081. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2082. struct kvm_mmu_page *sp, u64 *sptep)
  2083. {
  2084. u64 *spte, *start = NULL;
  2085. int i;
  2086. WARN_ON(!sp->role.direct);
  2087. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2088. spte = sp->spt + i;
  2089. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2090. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2091. if (!start)
  2092. continue;
  2093. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2094. break;
  2095. start = NULL;
  2096. } else if (!start)
  2097. start = spte;
  2098. }
  2099. }
  2100. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2101. {
  2102. struct kvm_mmu_page *sp;
  2103. /*
  2104. * Since it's no accessed bit on EPT, it's no way to
  2105. * distinguish between actually accessed translations
  2106. * and prefetched, so disable pte prefetch if EPT is
  2107. * enabled.
  2108. */
  2109. if (!shadow_accessed_mask)
  2110. return;
  2111. sp = page_header(__pa(sptep));
  2112. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2113. return;
  2114. __direct_pte_prefetch(vcpu, sp, sptep);
  2115. }
  2116. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2117. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2118. bool prefault)
  2119. {
  2120. struct kvm_shadow_walk_iterator iterator;
  2121. struct kvm_mmu_page *sp;
  2122. int emulate = 0;
  2123. gfn_t pseudo_gfn;
  2124. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2125. if (iterator.level == level) {
  2126. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2127. write, &emulate, level, gfn, pfn,
  2128. prefault, map_writable);
  2129. direct_pte_prefetch(vcpu, iterator.sptep);
  2130. ++vcpu->stat.pf_fixed;
  2131. break;
  2132. }
  2133. drop_large_spte(vcpu, iterator.sptep);
  2134. if (!is_shadow_present_pte(*iterator.sptep)) {
  2135. u64 base_addr = iterator.addr;
  2136. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2137. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2138. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2139. iterator.level - 1,
  2140. 1, ACC_ALL, iterator.sptep);
  2141. link_shadow_page(iterator.sptep, sp);
  2142. }
  2143. }
  2144. return emulate;
  2145. }
  2146. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2147. {
  2148. siginfo_t info;
  2149. info.si_signo = SIGBUS;
  2150. info.si_errno = 0;
  2151. info.si_code = BUS_MCEERR_AR;
  2152. info.si_addr = (void __user *)address;
  2153. info.si_addr_lsb = PAGE_SHIFT;
  2154. send_sig_info(SIGBUS, &info, tsk);
  2155. }
  2156. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2157. {
  2158. /*
  2159. * Do not cache the mmio info caused by writing the readonly gfn
  2160. * into the spte otherwise read access on readonly gfn also can
  2161. * caused mmio page fault and treat it as mmio access.
  2162. * Return 1 to tell kvm to emulate it.
  2163. */
  2164. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2165. return 1;
  2166. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2167. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2168. return 0;
  2169. }
  2170. return -EFAULT;
  2171. }
  2172. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2173. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2174. {
  2175. pfn_t pfn = *pfnp;
  2176. gfn_t gfn = *gfnp;
  2177. int level = *levelp;
  2178. /*
  2179. * Check if it's a transparent hugepage. If this would be an
  2180. * hugetlbfs page, level wouldn't be set to
  2181. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2182. * here.
  2183. */
  2184. if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2185. level == PT_PAGE_TABLE_LEVEL &&
  2186. PageTransCompound(pfn_to_page(pfn)) &&
  2187. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2188. unsigned long mask;
  2189. /*
  2190. * mmu_notifier_retry was successful and we hold the
  2191. * mmu_lock here, so the pmd can't become splitting
  2192. * from under us, and in turn
  2193. * __split_huge_page_refcount() can't run from under
  2194. * us and we can safely transfer the refcount from
  2195. * PG_tail to PG_head as we switch the pfn to tail to
  2196. * head.
  2197. */
  2198. *levelp = level = PT_DIRECTORY_LEVEL;
  2199. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2200. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2201. if (pfn & mask) {
  2202. gfn &= ~mask;
  2203. *gfnp = gfn;
  2204. kvm_release_pfn_clean(pfn);
  2205. pfn &= ~mask;
  2206. kvm_get_pfn(pfn);
  2207. *pfnp = pfn;
  2208. }
  2209. }
  2210. }
  2211. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2212. pfn_t pfn, unsigned access, int *ret_val)
  2213. {
  2214. bool ret = true;
  2215. /* The pfn is invalid, report the error! */
  2216. if (unlikely(is_error_pfn(pfn))) {
  2217. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2218. goto exit;
  2219. }
  2220. if (unlikely(is_noslot_pfn(pfn)))
  2221. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2222. ret = false;
  2223. exit:
  2224. return ret;
  2225. }
  2226. static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
  2227. {
  2228. /*
  2229. * #PF can be fast only if the shadow page table is present and it
  2230. * is caused by write-protect, that means we just need change the
  2231. * W bit of the spte which can be done out of mmu-lock.
  2232. */
  2233. if (!(error_code & PFERR_PRESENT_MASK) ||
  2234. !(error_code & PFERR_WRITE_MASK))
  2235. return false;
  2236. return true;
  2237. }
  2238. static bool
  2239. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
  2240. {
  2241. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  2242. gfn_t gfn;
  2243. WARN_ON(!sp->role.direct);
  2244. /*
  2245. * The gfn of direct spte is stable since it is calculated
  2246. * by sp->gfn.
  2247. */
  2248. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2249. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2250. mark_page_dirty(vcpu->kvm, gfn);
  2251. return true;
  2252. }
  2253. /*
  2254. * Return value:
  2255. * - true: let the vcpu to access on the same address again.
  2256. * - false: let the real page fault path to fix it.
  2257. */
  2258. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2259. u32 error_code)
  2260. {
  2261. struct kvm_shadow_walk_iterator iterator;
  2262. bool ret = false;
  2263. u64 spte = 0ull;
  2264. if (!page_fault_can_be_fast(vcpu, error_code))
  2265. return false;
  2266. walk_shadow_page_lockless_begin(vcpu);
  2267. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2268. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2269. break;
  2270. /*
  2271. * If the mapping has been changed, let the vcpu fault on the
  2272. * same address again.
  2273. */
  2274. if (!is_rmap_spte(spte)) {
  2275. ret = true;
  2276. goto exit;
  2277. }
  2278. if (!is_last_spte(spte, level))
  2279. goto exit;
  2280. /*
  2281. * Check if it is a spurious fault caused by TLB lazily flushed.
  2282. *
  2283. * Need not check the access of upper level table entries since
  2284. * they are always ACC_ALL.
  2285. */
  2286. if (is_writable_pte(spte)) {
  2287. ret = true;
  2288. goto exit;
  2289. }
  2290. /*
  2291. * Currently, to simplify the code, only the spte write-protected
  2292. * by dirty-log can be fast fixed.
  2293. */
  2294. if (!spte_is_locklessly_modifiable(spte))
  2295. goto exit;
  2296. /*
  2297. * Currently, fast page fault only works for direct mapping since
  2298. * the gfn is not stable for indirect shadow page.
  2299. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2300. */
  2301. ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
  2302. exit:
  2303. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2304. spte, ret);
  2305. walk_shadow_page_lockless_end(vcpu);
  2306. return ret;
  2307. }
  2308. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2309. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2310. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2311. gfn_t gfn, bool prefault)
  2312. {
  2313. int r;
  2314. int level;
  2315. int force_pt_level;
  2316. pfn_t pfn;
  2317. unsigned long mmu_seq;
  2318. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2319. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2320. if (likely(!force_pt_level)) {
  2321. level = mapping_level(vcpu, gfn);
  2322. /*
  2323. * This path builds a PAE pagetable - so we can map
  2324. * 2mb pages at maximum. Therefore check if the level
  2325. * is larger than that.
  2326. */
  2327. if (level > PT_DIRECTORY_LEVEL)
  2328. level = PT_DIRECTORY_LEVEL;
  2329. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2330. } else
  2331. level = PT_PAGE_TABLE_LEVEL;
  2332. if (fast_page_fault(vcpu, v, level, error_code))
  2333. return 0;
  2334. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2335. smp_rmb();
  2336. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2337. return 0;
  2338. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2339. return r;
  2340. spin_lock(&vcpu->kvm->mmu_lock);
  2341. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2342. goto out_unlock;
  2343. kvm_mmu_free_some_pages(vcpu);
  2344. if (likely(!force_pt_level))
  2345. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2346. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2347. prefault);
  2348. spin_unlock(&vcpu->kvm->mmu_lock);
  2349. return r;
  2350. out_unlock:
  2351. spin_unlock(&vcpu->kvm->mmu_lock);
  2352. kvm_release_pfn_clean(pfn);
  2353. return 0;
  2354. }
  2355. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2356. {
  2357. int i;
  2358. struct kvm_mmu_page *sp;
  2359. LIST_HEAD(invalid_list);
  2360. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2361. return;
  2362. spin_lock(&vcpu->kvm->mmu_lock);
  2363. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2364. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2365. vcpu->arch.mmu.direct_map)) {
  2366. hpa_t root = vcpu->arch.mmu.root_hpa;
  2367. sp = page_header(root);
  2368. --sp->root_count;
  2369. if (!sp->root_count && sp->role.invalid) {
  2370. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2371. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2372. }
  2373. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2374. spin_unlock(&vcpu->kvm->mmu_lock);
  2375. return;
  2376. }
  2377. for (i = 0; i < 4; ++i) {
  2378. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2379. if (root) {
  2380. root &= PT64_BASE_ADDR_MASK;
  2381. sp = page_header(root);
  2382. --sp->root_count;
  2383. if (!sp->root_count && sp->role.invalid)
  2384. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2385. &invalid_list);
  2386. }
  2387. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2388. }
  2389. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2390. spin_unlock(&vcpu->kvm->mmu_lock);
  2391. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2392. }
  2393. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2394. {
  2395. int ret = 0;
  2396. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2397. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2398. ret = 1;
  2399. }
  2400. return ret;
  2401. }
  2402. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2403. {
  2404. struct kvm_mmu_page *sp;
  2405. unsigned i;
  2406. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2407. spin_lock(&vcpu->kvm->mmu_lock);
  2408. kvm_mmu_free_some_pages(vcpu);
  2409. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2410. 1, ACC_ALL, NULL);
  2411. ++sp->root_count;
  2412. spin_unlock(&vcpu->kvm->mmu_lock);
  2413. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2414. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2415. for (i = 0; i < 4; ++i) {
  2416. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2417. ASSERT(!VALID_PAGE(root));
  2418. spin_lock(&vcpu->kvm->mmu_lock);
  2419. kvm_mmu_free_some_pages(vcpu);
  2420. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2421. i << 30,
  2422. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2423. NULL);
  2424. root = __pa(sp->spt);
  2425. ++sp->root_count;
  2426. spin_unlock(&vcpu->kvm->mmu_lock);
  2427. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2428. }
  2429. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2430. } else
  2431. BUG();
  2432. return 0;
  2433. }
  2434. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2435. {
  2436. struct kvm_mmu_page *sp;
  2437. u64 pdptr, pm_mask;
  2438. gfn_t root_gfn;
  2439. int i;
  2440. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2441. if (mmu_check_root(vcpu, root_gfn))
  2442. return 1;
  2443. /*
  2444. * Do we shadow a long mode page table? If so we need to
  2445. * write-protect the guests page table root.
  2446. */
  2447. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2448. hpa_t root = vcpu->arch.mmu.root_hpa;
  2449. ASSERT(!VALID_PAGE(root));
  2450. spin_lock(&vcpu->kvm->mmu_lock);
  2451. kvm_mmu_free_some_pages(vcpu);
  2452. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2453. 0, ACC_ALL, NULL);
  2454. root = __pa(sp->spt);
  2455. ++sp->root_count;
  2456. spin_unlock(&vcpu->kvm->mmu_lock);
  2457. vcpu->arch.mmu.root_hpa = root;
  2458. return 0;
  2459. }
  2460. /*
  2461. * We shadow a 32 bit page table. This may be a legacy 2-level
  2462. * or a PAE 3-level page table. In either case we need to be aware that
  2463. * the shadow page table may be a PAE or a long mode page table.
  2464. */
  2465. pm_mask = PT_PRESENT_MASK;
  2466. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2467. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2468. for (i = 0; i < 4; ++i) {
  2469. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2470. ASSERT(!VALID_PAGE(root));
  2471. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2472. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2473. if (!is_present_gpte(pdptr)) {
  2474. vcpu->arch.mmu.pae_root[i] = 0;
  2475. continue;
  2476. }
  2477. root_gfn = pdptr >> PAGE_SHIFT;
  2478. if (mmu_check_root(vcpu, root_gfn))
  2479. return 1;
  2480. }
  2481. spin_lock(&vcpu->kvm->mmu_lock);
  2482. kvm_mmu_free_some_pages(vcpu);
  2483. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2484. PT32_ROOT_LEVEL, 0,
  2485. ACC_ALL, NULL);
  2486. root = __pa(sp->spt);
  2487. ++sp->root_count;
  2488. spin_unlock(&vcpu->kvm->mmu_lock);
  2489. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2490. }
  2491. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2492. /*
  2493. * If we shadow a 32 bit page table with a long mode page
  2494. * table we enter this path.
  2495. */
  2496. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2497. if (vcpu->arch.mmu.lm_root == NULL) {
  2498. /*
  2499. * The additional page necessary for this is only
  2500. * allocated on demand.
  2501. */
  2502. u64 *lm_root;
  2503. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2504. if (lm_root == NULL)
  2505. return 1;
  2506. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2507. vcpu->arch.mmu.lm_root = lm_root;
  2508. }
  2509. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2510. }
  2511. return 0;
  2512. }
  2513. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2514. {
  2515. if (vcpu->arch.mmu.direct_map)
  2516. return mmu_alloc_direct_roots(vcpu);
  2517. else
  2518. return mmu_alloc_shadow_roots(vcpu);
  2519. }
  2520. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2521. {
  2522. int i;
  2523. struct kvm_mmu_page *sp;
  2524. if (vcpu->arch.mmu.direct_map)
  2525. return;
  2526. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2527. return;
  2528. vcpu_clear_mmio_info(vcpu, ~0ul);
  2529. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2530. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2531. hpa_t root = vcpu->arch.mmu.root_hpa;
  2532. sp = page_header(root);
  2533. mmu_sync_children(vcpu, sp);
  2534. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2535. return;
  2536. }
  2537. for (i = 0; i < 4; ++i) {
  2538. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2539. if (root && VALID_PAGE(root)) {
  2540. root &= PT64_BASE_ADDR_MASK;
  2541. sp = page_header(root);
  2542. mmu_sync_children(vcpu, sp);
  2543. }
  2544. }
  2545. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2546. }
  2547. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2548. {
  2549. spin_lock(&vcpu->kvm->mmu_lock);
  2550. mmu_sync_roots(vcpu);
  2551. spin_unlock(&vcpu->kvm->mmu_lock);
  2552. }
  2553. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2554. u32 access, struct x86_exception *exception)
  2555. {
  2556. if (exception)
  2557. exception->error_code = 0;
  2558. return vaddr;
  2559. }
  2560. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2561. u32 access,
  2562. struct x86_exception *exception)
  2563. {
  2564. if (exception)
  2565. exception->error_code = 0;
  2566. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2567. }
  2568. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2569. {
  2570. if (direct)
  2571. return vcpu_match_mmio_gpa(vcpu, addr);
  2572. return vcpu_match_mmio_gva(vcpu, addr);
  2573. }
  2574. /*
  2575. * On direct hosts, the last spte is only allows two states
  2576. * for mmio page fault:
  2577. * - It is the mmio spte
  2578. * - It is zapped or it is being zapped.
  2579. *
  2580. * This function completely checks the spte when the last spte
  2581. * is not the mmio spte.
  2582. */
  2583. static bool check_direct_spte_mmio_pf(u64 spte)
  2584. {
  2585. return __check_direct_spte_mmio_pf(spte);
  2586. }
  2587. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2588. {
  2589. struct kvm_shadow_walk_iterator iterator;
  2590. u64 spte = 0ull;
  2591. walk_shadow_page_lockless_begin(vcpu);
  2592. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2593. if (!is_shadow_present_pte(spte))
  2594. break;
  2595. walk_shadow_page_lockless_end(vcpu);
  2596. return spte;
  2597. }
  2598. /*
  2599. * If it is a real mmio page fault, return 1 and emulat the instruction
  2600. * directly, return 0 to let CPU fault again on the address, -1 is
  2601. * returned if bug is detected.
  2602. */
  2603. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2604. {
  2605. u64 spte;
  2606. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2607. return 1;
  2608. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2609. if (is_mmio_spte(spte)) {
  2610. gfn_t gfn = get_mmio_spte_gfn(spte);
  2611. unsigned access = get_mmio_spte_access(spte);
  2612. if (direct)
  2613. addr = 0;
  2614. trace_handle_mmio_page_fault(addr, gfn, access);
  2615. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2616. return 1;
  2617. }
  2618. /*
  2619. * It's ok if the gva is remapped by other cpus on shadow guest,
  2620. * it's a BUG if the gfn is not a mmio page.
  2621. */
  2622. if (direct && !check_direct_spte_mmio_pf(spte))
  2623. return -1;
  2624. /*
  2625. * If the page table is zapped by other cpus, let CPU fault again on
  2626. * the address.
  2627. */
  2628. return 0;
  2629. }
  2630. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2631. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2632. u32 error_code, bool direct)
  2633. {
  2634. int ret;
  2635. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2636. WARN_ON(ret < 0);
  2637. return ret;
  2638. }
  2639. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2640. u32 error_code, bool prefault)
  2641. {
  2642. gfn_t gfn;
  2643. int r;
  2644. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2645. if (unlikely(error_code & PFERR_RSVD_MASK))
  2646. return handle_mmio_page_fault(vcpu, gva, error_code, true);
  2647. r = mmu_topup_memory_caches(vcpu);
  2648. if (r)
  2649. return r;
  2650. ASSERT(vcpu);
  2651. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2652. gfn = gva >> PAGE_SHIFT;
  2653. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2654. error_code, gfn, prefault);
  2655. }
  2656. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2657. {
  2658. struct kvm_arch_async_pf arch;
  2659. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2660. arch.gfn = gfn;
  2661. arch.direct_map = vcpu->arch.mmu.direct_map;
  2662. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2663. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2664. }
  2665. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2666. {
  2667. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2668. kvm_event_needs_reinjection(vcpu)))
  2669. return false;
  2670. return kvm_x86_ops->interrupt_allowed(vcpu);
  2671. }
  2672. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2673. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2674. {
  2675. bool async;
  2676. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2677. if (!async)
  2678. return false; /* *pfn has correct page already */
  2679. if (!prefault && can_do_async_pf(vcpu)) {
  2680. trace_kvm_try_async_get_page(gva, gfn);
  2681. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2682. trace_kvm_async_pf_doublefault(gva, gfn);
  2683. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2684. return true;
  2685. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2686. return true;
  2687. }
  2688. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2689. return false;
  2690. }
  2691. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2692. bool prefault)
  2693. {
  2694. pfn_t pfn;
  2695. int r;
  2696. int level;
  2697. int force_pt_level;
  2698. gfn_t gfn = gpa >> PAGE_SHIFT;
  2699. unsigned long mmu_seq;
  2700. int write = error_code & PFERR_WRITE_MASK;
  2701. bool map_writable;
  2702. ASSERT(vcpu);
  2703. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2704. if (unlikely(error_code & PFERR_RSVD_MASK))
  2705. return handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2706. r = mmu_topup_memory_caches(vcpu);
  2707. if (r)
  2708. return r;
  2709. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2710. if (likely(!force_pt_level)) {
  2711. level = mapping_level(vcpu, gfn);
  2712. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2713. } else
  2714. level = PT_PAGE_TABLE_LEVEL;
  2715. if (fast_page_fault(vcpu, gpa, level, error_code))
  2716. return 0;
  2717. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2718. smp_rmb();
  2719. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2720. return 0;
  2721. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2722. return r;
  2723. spin_lock(&vcpu->kvm->mmu_lock);
  2724. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2725. goto out_unlock;
  2726. kvm_mmu_free_some_pages(vcpu);
  2727. if (likely(!force_pt_level))
  2728. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2729. r = __direct_map(vcpu, gpa, write, map_writable,
  2730. level, gfn, pfn, prefault);
  2731. spin_unlock(&vcpu->kvm->mmu_lock);
  2732. return r;
  2733. out_unlock:
  2734. spin_unlock(&vcpu->kvm->mmu_lock);
  2735. kvm_release_pfn_clean(pfn);
  2736. return 0;
  2737. }
  2738. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2739. {
  2740. mmu_free_roots(vcpu);
  2741. }
  2742. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2743. struct kvm_mmu *context)
  2744. {
  2745. context->new_cr3 = nonpaging_new_cr3;
  2746. context->page_fault = nonpaging_page_fault;
  2747. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2748. context->free = nonpaging_free;
  2749. context->sync_page = nonpaging_sync_page;
  2750. context->invlpg = nonpaging_invlpg;
  2751. context->update_pte = nonpaging_update_pte;
  2752. context->root_level = 0;
  2753. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2754. context->root_hpa = INVALID_PAGE;
  2755. context->direct_map = true;
  2756. context->nx = false;
  2757. return 0;
  2758. }
  2759. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2760. {
  2761. ++vcpu->stat.tlb_flush;
  2762. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2763. }
  2764. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2765. {
  2766. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2767. mmu_free_roots(vcpu);
  2768. }
  2769. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2770. {
  2771. return kvm_read_cr3(vcpu);
  2772. }
  2773. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2774. struct x86_exception *fault)
  2775. {
  2776. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2777. }
  2778. static void paging_free(struct kvm_vcpu *vcpu)
  2779. {
  2780. nonpaging_free(vcpu);
  2781. }
  2782. static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
  2783. {
  2784. unsigned mask;
  2785. BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
  2786. mask = (unsigned)~ACC_WRITE_MASK;
  2787. /* Allow write access to dirty gptes */
  2788. mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
  2789. *access &= mask;
  2790. }
  2791. static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
  2792. int *nr_present)
  2793. {
  2794. if (unlikely(is_mmio_spte(*sptep))) {
  2795. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2796. mmu_spte_clear_no_track(sptep);
  2797. return true;
  2798. }
  2799. (*nr_present)++;
  2800. mark_mmio_spte(sptep, gfn, access);
  2801. return true;
  2802. }
  2803. return false;
  2804. }
  2805. static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
  2806. {
  2807. unsigned access;
  2808. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  2809. access &= ~(gpte >> PT64_NX_SHIFT);
  2810. return access;
  2811. }
  2812. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2813. {
  2814. unsigned index;
  2815. index = level - 1;
  2816. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2817. return mmu->last_pte_bitmap & (1 << index);
  2818. }
  2819. #define PTTYPE 64
  2820. #include "paging_tmpl.h"
  2821. #undef PTTYPE
  2822. #define PTTYPE 32
  2823. #include "paging_tmpl.h"
  2824. #undef PTTYPE
  2825. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2826. struct kvm_mmu *context)
  2827. {
  2828. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2829. u64 exb_bit_rsvd = 0;
  2830. if (!context->nx)
  2831. exb_bit_rsvd = rsvd_bits(63, 63);
  2832. switch (context->root_level) {
  2833. case PT32_ROOT_LEVEL:
  2834. /* no rsvd bits for 2 level 4K page table entries */
  2835. context->rsvd_bits_mask[0][1] = 0;
  2836. context->rsvd_bits_mask[0][0] = 0;
  2837. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2838. if (!is_pse(vcpu)) {
  2839. context->rsvd_bits_mask[1][1] = 0;
  2840. break;
  2841. }
  2842. if (is_cpuid_PSE36())
  2843. /* 36bits PSE 4MB page */
  2844. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2845. else
  2846. /* 32 bits PSE 4MB page */
  2847. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2848. break;
  2849. case PT32E_ROOT_LEVEL:
  2850. context->rsvd_bits_mask[0][2] =
  2851. rsvd_bits(maxphyaddr, 63) |
  2852. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2853. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2854. rsvd_bits(maxphyaddr, 62); /* PDE */
  2855. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2856. rsvd_bits(maxphyaddr, 62); /* PTE */
  2857. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2858. rsvd_bits(maxphyaddr, 62) |
  2859. rsvd_bits(13, 20); /* large page */
  2860. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2861. break;
  2862. case PT64_ROOT_LEVEL:
  2863. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2864. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2865. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2866. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2867. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2868. rsvd_bits(maxphyaddr, 51);
  2869. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2870. rsvd_bits(maxphyaddr, 51);
  2871. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2872. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2873. rsvd_bits(maxphyaddr, 51) |
  2874. rsvd_bits(13, 29);
  2875. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2876. rsvd_bits(maxphyaddr, 51) |
  2877. rsvd_bits(13, 20); /* large page */
  2878. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2879. break;
  2880. }
  2881. }
  2882. static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2883. {
  2884. unsigned bit, byte, pfec;
  2885. u8 map;
  2886. bool fault, x, w, u, wf, uf, ff, smep;
  2887. smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2888. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  2889. pfec = byte << 1;
  2890. map = 0;
  2891. wf = pfec & PFERR_WRITE_MASK;
  2892. uf = pfec & PFERR_USER_MASK;
  2893. ff = pfec & PFERR_FETCH_MASK;
  2894. for (bit = 0; bit < 8; ++bit) {
  2895. x = bit & ACC_EXEC_MASK;
  2896. w = bit & ACC_WRITE_MASK;
  2897. u = bit & ACC_USER_MASK;
  2898. /* Not really needed: !nx will cause pte.nx to fault */
  2899. x |= !mmu->nx;
  2900. /* Allow supervisor writes if !cr0.wp */
  2901. w |= !is_write_protection(vcpu) && !uf;
  2902. /* Disallow supervisor fetches of user code if cr4.smep */
  2903. x &= !(smep && u && !uf);
  2904. fault = (ff && !x) || (uf && !u) || (wf && !w);
  2905. map |= fault << bit;
  2906. }
  2907. mmu->permissions[byte] = map;
  2908. }
  2909. }
  2910. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2911. {
  2912. u8 map;
  2913. unsigned level, root_level = mmu->root_level;
  2914. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  2915. if (root_level == PT32E_ROOT_LEVEL)
  2916. --root_level;
  2917. /* PT_PAGE_TABLE_LEVEL always terminates */
  2918. map = 1 | (1 << ps_set_index);
  2919. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  2920. if (level <= PT_PDPE_LEVEL
  2921. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  2922. map |= 1 << (ps_set_index | (level - 1));
  2923. }
  2924. mmu->last_pte_bitmap = map;
  2925. }
  2926. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2927. struct kvm_mmu *context,
  2928. int level)
  2929. {
  2930. context->nx = is_nx(vcpu);
  2931. context->root_level = level;
  2932. reset_rsvds_bits_mask(vcpu, context);
  2933. update_permission_bitmask(vcpu, context);
  2934. update_last_pte_bitmap(vcpu, context);
  2935. ASSERT(is_pae(vcpu));
  2936. context->new_cr3 = paging_new_cr3;
  2937. context->page_fault = paging64_page_fault;
  2938. context->gva_to_gpa = paging64_gva_to_gpa;
  2939. context->sync_page = paging64_sync_page;
  2940. context->invlpg = paging64_invlpg;
  2941. context->update_pte = paging64_update_pte;
  2942. context->free = paging_free;
  2943. context->shadow_root_level = level;
  2944. context->root_hpa = INVALID_PAGE;
  2945. context->direct_map = false;
  2946. return 0;
  2947. }
  2948. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2949. struct kvm_mmu *context)
  2950. {
  2951. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2952. }
  2953. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2954. struct kvm_mmu *context)
  2955. {
  2956. context->nx = false;
  2957. context->root_level = PT32_ROOT_LEVEL;
  2958. reset_rsvds_bits_mask(vcpu, context);
  2959. update_permission_bitmask(vcpu, context);
  2960. update_last_pte_bitmap(vcpu, context);
  2961. context->new_cr3 = paging_new_cr3;
  2962. context->page_fault = paging32_page_fault;
  2963. context->gva_to_gpa = paging32_gva_to_gpa;
  2964. context->free = paging_free;
  2965. context->sync_page = paging32_sync_page;
  2966. context->invlpg = paging32_invlpg;
  2967. context->update_pte = paging32_update_pte;
  2968. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2969. context->root_hpa = INVALID_PAGE;
  2970. context->direct_map = false;
  2971. return 0;
  2972. }
  2973. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2974. struct kvm_mmu *context)
  2975. {
  2976. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2977. }
  2978. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2979. {
  2980. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2981. context->base_role.word = 0;
  2982. context->new_cr3 = nonpaging_new_cr3;
  2983. context->page_fault = tdp_page_fault;
  2984. context->free = nonpaging_free;
  2985. context->sync_page = nonpaging_sync_page;
  2986. context->invlpg = nonpaging_invlpg;
  2987. context->update_pte = nonpaging_update_pte;
  2988. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2989. context->root_hpa = INVALID_PAGE;
  2990. context->direct_map = true;
  2991. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2992. context->get_cr3 = get_cr3;
  2993. context->get_pdptr = kvm_pdptr_read;
  2994. context->inject_page_fault = kvm_inject_page_fault;
  2995. if (!is_paging(vcpu)) {
  2996. context->nx = false;
  2997. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2998. context->root_level = 0;
  2999. } else if (is_long_mode(vcpu)) {
  3000. context->nx = is_nx(vcpu);
  3001. context->root_level = PT64_ROOT_LEVEL;
  3002. reset_rsvds_bits_mask(vcpu, context);
  3003. context->gva_to_gpa = paging64_gva_to_gpa;
  3004. } else if (is_pae(vcpu)) {
  3005. context->nx = is_nx(vcpu);
  3006. context->root_level = PT32E_ROOT_LEVEL;
  3007. reset_rsvds_bits_mask(vcpu, context);
  3008. context->gva_to_gpa = paging64_gva_to_gpa;
  3009. } else {
  3010. context->nx = false;
  3011. context->root_level = PT32_ROOT_LEVEL;
  3012. reset_rsvds_bits_mask(vcpu, context);
  3013. context->gva_to_gpa = paging32_gva_to_gpa;
  3014. }
  3015. update_permission_bitmask(vcpu, context);
  3016. update_last_pte_bitmap(vcpu, context);
  3017. return 0;
  3018. }
  3019. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3020. {
  3021. int r;
  3022. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3023. ASSERT(vcpu);
  3024. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3025. if (!is_paging(vcpu))
  3026. r = nonpaging_init_context(vcpu, context);
  3027. else if (is_long_mode(vcpu))
  3028. r = paging64_init_context(vcpu, context);
  3029. else if (is_pae(vcpu))
  3030. r = paging32E_init_context(vcpu, context);
  3031. else
  3032. r = paging32_init_context(vcpu, context);
  3033. vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
  3034. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  3035. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  3036. vcpu->arch.mmu.base_role.smep_andnot_wp
  3037. = smep && !is_write_protection(vcpu);
  3038. return r;
  3039. }
  3040. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3041. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3042. {
  3043. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3044. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3045. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3046. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3047. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3048. return r;
  3049. }
  3050. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3051. {
  3052. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3053. g_context->get_cr3 = get_cr3;
  3054. g_context->get_pdptr = kvm_pdptr_read;
  3055. g_context->inject_page_fault = kvm_inject_page_fault;
  3056. /*
  3057. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3058. * translation of l2_gpa to l1_gpa addresses is done using the
  3059. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3060. * functions between mmu and nested_mmu are swapped.
  3061. */
  3062. if (!is_paging(vcpu)) {
  3063. g_context->nx = false;
  3064. g_context->root_level = 0;
  3065. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3066. } else if (is_long_mode(vcpu)) {
  3067. g_context->nx = is_nx(vcpu);
  3068. g_context->root_level = PT64_ROOT_LEVEL;
  3069. reset_rsvds_bits_mask(vcpu, g_context);
  3070. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3071. } else if (is_pae(vcpu)) {
  3072. g_context->nx = is_nx(vcpu);
  3073. g_context->root_level = PT32E_ROOT_LEVEL;
  3074. reset_rsvds_bits_mask(vcpu, g_context);
  3075. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3076. } else {
  3077. g_context->nx = false;
  3078. g_context->root_level = PT32_ROOT_LEVEL;
  3079. reset_rsvds_bits_mask(vcpu, g_context);
  3080. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3081. }
  3082. update_permission_bitmask(vcpu, g_context);
  3083. update_last_pte_bitmap(vcpu, g_context);
  3084. return 0;
  3085. }
  3086. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  3087. {
  3088. if (mmu_is_nested(vcpu))
  3089. return init_kvm_nested_mmu(vcpu);
  3090. else if (tdp_enabled)
  3091. return init_kvm_tdp_mmu(vcpu);
  3092. else
  3093. return init_kvm_softmmu(vcpu);
  3094. }
  3095. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  3096. {
  3097. ASSERT(vcpu);
  3098. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3099. /* mmu.free() should set root_hpa = INVALID_PAGE */
  3100. vcpu->arch.mmu.free(vcpu);
  3101. }
  3102. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3103. {
  3104. destroy_kvm_mmu(vcpu);
  3105. return init_kvm_mmu(vcpu);
  3106. }
  3107. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3108. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3109. {
  3110. int r;
  3111. r = mmu_topup_memory_caches(vcpu);
  3112. if (r)
  3113. goto out;
  3114. r = mmu_alloc_roots(vcpu);
  3115. spin_lock(&vcpu->kvm->mmu_lock);
  3116. mmu_sync_roots(vcpu);
  3117. spin_unlock(&vcpu->kvm->mmu_lock);
  3118. if (r)
  3119. goto out;
  3120. /* set_cr3() should ensure TLB has been flushed */
  3121. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3122. out:
  3123. return r;
  3124. }
  3125. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3126. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3127. {
  3128. mmu_free_roots(vcpu);
  3129. }
  3130. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3131. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3132. struct kvm_mmu_page *sp, u64 *spte,
  3133. const void *new)
  3134. {
  3135. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3136. ++vcpu->kvm->stat.mmu_pde_zapped;
  3137. return;
  3138. }
  3139. ++vcpu->kvm->stat.mmu_pte_updated;
  3140. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3141. }
  3142. static bool need_remote_flush(u64 old, u64 new)
  3143. {
  3144. if (!is_shadow_present_pte(old))
  3145. return false;
  3146. if (!is_shadow_present_pte(new))
  3147. return true;
  3148. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3149. return true;
  3150. old ^= PT64_NX_MASK;
  3151. new ^= PT64_NX_MASK;
  3152. return (old & ~new & PT64_PERM_MASK) != 0;
  3153. }
  3154. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3155. bool remote_flush, bool local_flush)
  3156. {
  3157. if (zap_page)
  3158. return;
  3159. if (remote_flush)
  3160. kvm_flush_remote_tlbs(vcpu->kvm);
  3161. else if (local_flush)
  3162. kvm_mmu_flush_tlb(vcpu);
  3163. }
  3164. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3165. const u8 *new, int *bytes)
  3166. {
  3167. u64 gentry;
  3168. int r;
  3169. /*
  3170. * Assume that the pte write on a page table of the same type
  3171. * as the current vcpu paging mode since we update the sptes only
  3172. * when they have the same mode.
  3173. */
  3174. if (is_pae(vcpu) && *bytes == 4) {
  3175. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3176. *gpa &= ~(gpa_t)7;
  3177. *bytes = 8;
  3178. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
  3179. if (r)
  3180. gentry = 0;
  3181. new = (const u8 *)&gentry;
  3182. }
  3183. switch (*bytes) {
  3184. case 4:
  3185. gentry = *(const u32 *)new;
  3186. break;
  3187. case 8:
  3188. gentry = *(const u64 *)new;
  3189. break;
  3190. default:
  3191. gentry = 0;
  3192. break;
  3193. }
  3194. return gentry;
  3195. }
  3196. /*
  3197. * If we're seeing too many writes to a page, it may no longer be a page table,
  3198. * or we may be forking, in which case it is better to unmap the page.
  3199. */
  3200. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3201. {
  3202. /*
  3203. * Skip write-flooding detected for the sp whose level is 1, because
  3204. * it can become unsync, then the guest page is not write-protected.
  3205. */
  3206. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3207. return false;
  3208. return ++sp->write_flooding_count >= 3;
  3209. }
  3210. /*
  3211. * Misaligned accesses are too much trouble to fix up; also, they usually
  3212. * indicate a page is not used as a page table.
  3213. */
  3214. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3215. int bytes)
  3216. {
  3217. unsigned offset, pte_size, misaligned;
  3218. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3219. gpa, bytes, sp->role.word);
  3220. offset = offset_in_page(gpa);
  3221. pte_size = sp->role.cr4_pae ? 8 : 4;
  3222. /*
  3223. * Sometimes, the OS only writes the last one bytes to update status
  3224. * bits, for example, in linux, andb instruction is used in clear_bit().
  3225. */
  3226. if (!(offset & (pte_size - 1)) && bytes == 1)
  3227. return false;
  3228. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3229. misaligned |= bytes < 4;
  3230. return misaligned;
  3231. }
  3232. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3233. {
  3234. unsigned page_offset, quadrant;
  3235. u64 *spte;
  3236. int level;
  3237. page_offset = offset_in_page(gpa);
  3238. level = sp->role.level;
  3239. *nspte = 1;
  3240. if (!sp->role.cr4_pae) {
  3241. page_offset <<= 1; /* 32->64 */
  3242. /*
  3243. * A 32-bit pde maps 4MB while the shadow pdes map
  3244. * only 2MB. So we need to double the offset again
  3245. * and zap two pdes instead of one.
  3246. */
  3247. if (level == PT32_ROOT_LEVEL) {
  3248. page_offset &= ~7; /* kill rounding error */
  3249. page_offset <<= 1;
  3250. *nspte = 2;
  3251. }
  3252. quadrant = page_offset >> PAGE_SHIFT;
  3253. page_offset &= ~PAGE_MASK;
  3254. if (quadrant != sp->role.quadrant)
  3255. return NULL;
  3256. }
  3257. spte = &sp->spt[page_offset / sizeof(*spte)];
  3258. return spte;
  3259. }
  3260. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3261. const u8 *new, int bytes)
  3262. {
  3263. gfn_t gfn = gpa >> PAGE_SHIFT;
  3264. union kvm_mmu_page_role mask = { .word = 0 };
  3265. struct kvm_mmu_page *sp;
  3266. struct hlist_node *node;
  3267. LIST_HEAD(invalid_list);
  3268. u64 entry, gentry, *spte;
  3269. int npte;
  3270. bool remote_flush, local_flush, zap_page;
  3271. /*
  3272. * If we don't have indirect shadow pages, it means no page is
  3273. * write-protected, so we can exit simply.
  3274. */
  3275. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3276. return;
  3277. zap_page = remote_flush = local_flush = false;
  3278. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3279. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3280. /*
  3281. * No need to care whether allocation memory is successful
  3282. * or not since pte prefetch is skiped if it does not have
  3283. * enough objects in the cache.
  3284. */
  3285. mmu_topup_memory_caches(vcpu);
  3286. spin_lock(&vcpu->kvm->mmu_lock);
  3287. ++vcpu->kvm->stat.mmu_pte_write;
  3288. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3289. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3290. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  3291. if (detect_write_misaligned(sp, gpa, bytes) ||
  3292. detect_write_flooding(sp)) {
  3293. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3294. &invalid_list);
  3295. ++vcpu->kvm->stat.mmu_flooded;
  3296. continue;
  3297. }
  3298. spte = get_written_sptes(sp, gpa, &npte);
  3299. if (!spte)
  3300. continue;
  3301. local_flush = true;
  3302. while (npte--) {
  3303. entry = *spte;
  3304. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3305. if (gentry &&
  3306. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3307. & mask.word) && rmap_can_add(vcpu))
  3308. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3309. if (need_remote_flush(entry, *spte))
  3310. remote_flush = true;
  3311. ++spte;
  3312. }
  3313. }
  3314. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3315. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3316. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3317. spin_unlock(&vcpu->kvm->mmu_lock);
  3318. }
  3319. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3320. {
  3321. gpa_t gpa;
  3322. int r;
  3323. if (vcpu->arch.mmu.direct_map)
  3324. return 0;
  3325. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3326. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3327. return r;
  3328. }
  3329. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3330. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  3331. {
  3332. LIST_HEAD(invalid_list);
  3333. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  3334. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  3335. struct kvm_mmu_page *sp;
  3336. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  3337. struct kvm_mmu_page, link);
  3338. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  3339. ++vcpu->kvm->stat.mmu_recycled;
  3340. }
  3341. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3342. }
  3343. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3344. {
  3345. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3346. return vcpu_match_mmio_gpa(vcpu, addr);
  3347. return vcpu_match_mmio_gva(vcpu, addr);
  3348. }
  3349. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3350. void *insn, int insn_len)
  3351. {
  3352. int r, emulation_type = EMULTYPE_RETRY;
  3353. enum emulation_result er;
  3354. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3355. if (r < 0)
  3356. goto out;
  3357. if (!r) {
  3358. r = 1;
  3359. goto out;
  3360. }
  3361. if (is_mmio_page_fault(vcpu, cr2))
  3362. emulation_type = 0;
  3363. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3364. switch (er) {
  3365. case EMULATE_DONE:
  3366. return 1;
  3367. case EMULATE_DO_MMIO:
  3368. ++vcpu->stat.mmio_exits;
  3369. /* fall through */
  3370. case EMULATE_FAIL:
  3371. return 0;
  3372. default:
  3373. BUG();
  3374. }
  3375. out:
  3376. return r;
  3377. }
  3378. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3379. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3380. {
  3381. vcpu->arch.mmu.invlpg(vcpu, gva);
  3382. kvm_mmu_flush_tlb(vcpu);
  3383. ++vcpu->stat.invlpg;
  3384. }
  3385. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3386. void kvm_enable_tdp(void)
  3387. {
  3388. tdp_enabled = true;
  3389. }
  3390. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3391. void kvm_disable_tdp(void)
  3392. {
  3393. tdp_enabled = false;
  3394. }
  3395. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3396. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3397. {
  3398. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3399. if (vcpu->arch.mmu.lm_root != NULL)
  3400. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3401. }
  3402. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3403. {
  3404. struct page *page;
  3405. int i;
  3406. ASSERT(vcpu);
  3407. /*
  3408. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3409. * Therefore we need to allocate shadow page tables in the first
  3410. * 4GB of memory, which happens to fit the DMA32 zone.
  3411. */
  3412. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3413. if (!page)
  3414. return -ENOMEM;
  3415. vcpu->arch.mmu.pae_root = page_address(page);
  3416. for (i = 0; i < 4; ++i)
  3417. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3418. return 0;
  3419. }
  3420. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3421. {
  3422. ASSERT(vcpu);
  3423. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3424. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3425. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3426. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3427. return alloc_mmu_pages(vcpu);
  3428. }
  3429. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3430. {
  3431. ASSERT(vcpu);
  3432. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3433. return init_kvm_mmu(vcpu);
  3434. }
  3435. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3436. {
  3437. struct kvm_memory_slot *memslot;
  3438. gfn_t last_gfn;
  3439. int i;
  3440. memslot = id_to_memslot(kvm->memslots, slot);
  3441. last_gfn = memslot->base_gfn + memslot->npages - 1;
  3442. spin_lock(&kvm->mmu_lock);
  3443. for (i = PT_PAGE_TABLE_LEVEL;
  3444. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  3445. unsigned long *rmapp;
  3446. unsigned long last_index, index;
  3447. rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
  3448. last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
  3449. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3450. if (*rmapp)
  3451. __rmap_write_protect(kvm, rmapp, false);
  3452. if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
  3453. kvm_flush_remote_tlbs(kvm);
  3454. cond_resched_lock(&kvm->mmu_lock);
  3455. }
  3456. }
  3457. }
  3458. kvm_flush_remote_tlbs(kvm);
  3459. spin_unlock(&kvm->mmu_lock);
  3460. }
  3461. void kvm_mmu_zap_all(struct kvm *kvm)
  3462. {
  3463. struct kvm_mmu_page *sp, *node;
  3464. LIST_HEAD(invalid_list);
  3465. spin_lock(&kvm->mmu_lock);
  3466. restart:
  3467. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3468. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3469. goto restart;
  3470. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3471. spin_unlock(&kvm->mmu_lock);
  3472. }
  3473. static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  3474. struct list_head *invalid_list)
  3475. {
  3476. struct kvm_mmu_page *page;
  3477. if (list_empty(&kvm->arch.active_mmu_pages))
  3478. return;
  3479. page = container_of(kvm->arch.active_mmu_pages.prev,
  3480. struct kvm_mmu_page, link);
  3481. kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  3482. }
  3483. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3484. {
  3485. struct kvm *kvm;
  3486. int nr_to_scan = sc->nr_to_scan;
  3487. if (nr_to_scan == 0)
  3488. goto out;
  3489. raw_spin_lock(&kvm_lock);
  3490. list_for_each_entry(kvm, &vm_list, vm_list) {
  3491. int idx;
  3492. LIST_HEAD(invalid_list);
  3493. /*
  3494. * Never scan more than sc->nr_to_scan VM instances.
  3495. * Will not hit this condition practically since we do not try
  3496. * to shrink more than one VM and it is very unlikely to see
  3497. * !n_used_mmu_pages so many times.
  3498. */
  3499. if (!nr_to_scan--)
  3500. break;
  3501. /*
  3502. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3503. * here. We may skip a VM instance errorneosly, but we do not
  3504. * want to shrink a VM that only started to populate its MMU
  3505. * anyway.
  3506. */
  3507. if (!kvm->arch.n_used_mmu_pages)
  3508. continue;
  3509. idx = srcu_read_lock(&kvm->srcu);
  3510. spin_lock(&kvm->mmu_lock);
  3511. kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
  3512. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3513. spin_unlock(&kvm->mmu_lock);
  3514. srcu_read_unlock(&kvm->srcu, idx);
  3515. list_move_tail(&kvm->vm_list, &vm_list);
  3516. break;
  3517. }
  3518. raw_spin_unlock(&kvm_lock);
  3519. out:
  3520. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3521. }
  3522. static struct shrinker mmu_shrinker = {
  3523. .shrink = mmu_shrink,
  3524. .seeks = DEFAULT_SEEKS * 10,
  3525. };
  3526. static void mmu_destroy_caches(void)
  3527. {
  3528. if (pte_list_desc_cache)
  3529. kmem_cache_destroy(pte_list_desc_cache);
  3530. if (mmu_page_header_cache)
  3531. kmem_cache_destroy(mmu_page_header_cache);
  3532. }
  3533. int kvm_mmu_module_init(void)
  3534. {
  3535. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3536. sizeof(struct pte_list_desc),
  3537. 0, 0, NULL);
  3538. if (!pte_list_desc_cache)
  3539. goto nomem;
  3540. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3541. sizeof(struct kvm_mmu_page),
  3542. 0, 0, NULL);
  3543. if (!mmu_page_header_cache)
  3544. goto nomem;
  3545. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3546. goto nomem;
  3547. register_shrinker(&mmu_shrinker);
  3548. return 0;
  3549. nomem:
  3550. mmu_destroy_caches();
  3551. return -ENOMEM;
  3552. }
  3553. /*
  3554. * Caculate mmu pages needed for kvm.
  3555. */
  3556. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3557. {
  3558. unsigned int nr_mmu_pages;
  3559. unsigned int nr_pages = 0;
  3560. struct kvm_memslots *slots;
  3561. struct kvm_memory_slot *memslot;
  3562. slots = kvm_memslots(kvm);
  3563. kvm_for_each_memslot(memslot, slots)
  3564. nr_pages += memslot->npages;
  3565. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3566. nr_mmu_pages = max(nr_mmu_pages,
  3567. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3568. return nr_mmu_pages;
  3569. }
  3570. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3571. {
  3572. struct kvm_shadow_walk_iterator iterator;
  3573. u64 spte;
  3574. int nr_sptes = 0;
  3575. walk_shadow_page_lockless_begin(vcpu);
  3576. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3577. sptes[iterator.level-1] = spte;
  3578. nr_sptes++;
  3579. if (!is_shadow_present_pte(spte))
  3580. break;
  3581. }
  3582. walk_shadow_page_lockless_end(vcpu);
  3583. return nr_sptes;
  3584. }
  3585. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3586. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3587. {
  3588. ASSERT(vcpu);
  3589. destroy_kvm_mmu(vcpu);
  3590. free_mmu_pages(vcpu);
  3591. mmu_free_memory_caches(vcpu);
  3592. }
  3593. void kvm_mmu_module_exit(void)
  3594. {
  3595. mmu_destroy_caches();
  3596. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3597. unregister_shrinker(&mmu_shrinker);
  3598. mmu_audit_disable();
  3599. }