init_64.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/proc_fs.h>
  25. #include <linux/pci.h>
  26. #include <linux/pfn.h>
  27. #include <linux/poison.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/module.h>
  30. #include <linux/memory.h>
  31. #include <linux/memory_hotplug.h>
  32. #include <linux/nmi.h>
  33. #include <linux/gfp.h>
  34. #include <asm/processor.h>
  35. #include <asm/bios_ebda.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/dma.h>
  40. #include <asm/fixmap.h>
  41. #include <asm/e820.h>
  42. #include <asm/apic.h>
  43. #include <asm/tlb.h>
  44. #include <asm/mmu_context.h>
  45. #include <asm/proto.h>
  46. #include <asm/smp.h>
  47. #include <asm/sections.h>
  48. #include <asm/kdebug.h>
  49. #include <asm/numa.h>
  50. #include <asm/cacheflush.h>
  51. #include <asm/init.h>
  52. #include <asm/uv/uv.h>
  53. #include <asm/setup.h>
  54. #include "mm_internal.h"
  55. static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
  56. unsigned long addr, unsigned long end)
  57. {
  58. addr &= PMD_MASK;
  59. for (; addr < end; addr += PMD_SIZE) {
  60. pmd_t *pmd = pmd_page + pmd_index(addr);
  61. if (!pmd_present(*pmd))
  62. set_pmd(pmd, __pmd(addr | pmd_flag));
  63. }
  64. }
  65. static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
  66. unsigned long addr, unsigned long end)
  67. {
  68. unsigned long next;
  69. for (; addr < end; addr = next) {
  70. pud_t *pud = pud_page + pud_index(addr);
  71. pmd_t *pmd;
  72. next = (addr & PUD_MASK) + PUD_SIZE;
  73. if (next > end)
  74. next = end;
  75. if (pud_present(*pud)) {
  76. pmd = pmd_offset(pud, 0);
  77. ident_pmd_init(info->pmd_flag, pmd, addr, next);
  78. continue;
  79. }
  80. pmd = (pmd_t *)info->alloc_pgt_page(info->context);
  81. if (!pmd)
  82. return -ENOMEM;
  83. ident_pmd_init(info->pmd_flag, pmd, addr, next);
  84. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
  85. }
  86. return 0;
  87. }
  88. int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
  89. unsigned long addr, unsigned long end)
  90. {
  91. unsigned long next;
  92. int result;
  93. int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
  94. for (; addr < end; addr = next) {
  95. pgd_t *pgd = pgd_page + pgd_index(addr) + off;
  96. pud_t *pud;
  97. next = (addr & PGDIR_MASK) + PGDIR_SIZE;
  98. if (next > end)
  99. next = end;
  100. if (pgd_present(*pgd)) {
  101. pud = pud_offset(pgd, 0);
  102. result = ident_pud_init(info, pud, addr, next);
  103. if (result)
  104. return result;
  105. continue;
  106. }
  107. pud = (pud_t *)info->alloc_pgt_page(info->context);
  108. if (!pud)
  109. return -ENOMEM;
  110. result = ident_pud_init(info, pud, addr, next);
  111. if (result)
  112. return result;
  113. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
  114. }
  115. return 0;
  116. }
  117. static int __init parse_direct_gbpages_off(char *arg)
  118. {
  119. direct_gbpages = 0;
  120. return 0;
  121. }
  122. early_param("nogbpages", parse_direct_gbpages_off);
  123. static int __init parse_direct_gbpages_on(char *arg)
  124. {
  125. direct_gbpages = 1;
  126. return 0;
  127. }
  128. early_param("gbpages", parse_direct_gbpages_on);
  129. /*
  130. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  131. * physical space so we can cache the place of the first one and move
  132. * around without checking the pgd every time.
  133. */
  134. pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  135. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  136. int force_personality32;
  137. /*
  138. * noexec32=on|off
  139. * Control non executable heap for 32bit processes.
  140. * To control the stack too use noexec=off
  141. *
  142. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  143. * off PROT_READ implies PROT_EXEC
  144. */
  145. static int __init nonx32_setup(char *str)
  146. {
  147. if (!strcmp(str, "on"))
  148. force_personality32 &= ~READ_IMPLIES_EXEC;
  149. else if (!strcmp(str, "off"))
  150. force_personality32 |= READ_IMPLIES_EXEC;
  151. return 1;
  152. }
  153. __setup("noexec32=", nonx32_setup);
  154. /*
  155. * When memory was added/removed make sure all the processes MM have
  156. * suitable PGD entries in the local PGD level page.
  157. */
  158. void sync_global_pgds(unsigned long start, unsigned long end)
  159. {
  160. unsigned long address;
  161. for (address = start; address <= end; address += PGDIR_SIZE) {
  162. const pgd_t *pgd_ref = pgd_offset_k(address);
  163. struct page *page;
  164. if (pgd_none(*pgd_ref))
  165. continue;
  166. spin_lock(&pgd_lock);
  167. list_for_each_entry(page, &pgd_list, lru) {
  168. pgd_t *pgd;
  169. spinlock_t *pgt_lock;
  170. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  171. /* the pgt_lock only for Xen */
  172. pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
  173. spin_lock(pgt_lock);
  174. if (pgd_none(*pgd))
  175. set_pgd(pgd, *pgd_ref);
  176. else
  177. BUG_ON(pgd_page_vaddr(*pgd)
  178. != pgd_page_vaddr(*pgd_ref));
  179. spin_unlock(pgt_lock);
  180. }
  181. spin_unlock(&pgd_lock);
  182. }
  183. }
  184. /*
  185. * NOTE: This function is marked __ref because it calls __init function
  186. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  187. */
  188. static __ref void *spp_getpage(void)
  189. {
  190. void *ptr;
  191. if (after_bootmem)
  192. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  193. else
  194. ptr = alloc_bootmem_pages(PAGE_SIZE);
  195. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  196. panic("set_pte_phys: cannot allocate page data %s\n",
  197. after_bootmem ? "after bootmem" : "");
  198. }
  199. pr_debug("spp_getpage %p\n", ptr);
  200. return ptr;
  201. }
  202. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  203. {
  204. if (pgd_none(*pgd)) {
  205. pud_t *pud = (pud_t *)spp_getpage();
  206. pgd_populate(&init_mm, pgd, pud);
  207. if (pud != pud_offset(pgd, 0))
  208. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  209. pud, pud_offset(pgd, 0));
  210. }
  211. return pud_offset(pgd, vaddr);
  212. }
  213. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  214. {
  215. if (pud_none(*pud)) {
  216. pmd_t *pmd = (pmd_t *) spp_getpage();
  217. pud_populate(&init_mm, pud, pmd);
  218. if (pmd != pmd_offset(pud, 0))
  219. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  220. pmd, pmd_offset(pud, 0));
  221. }
  222. return pmd_offset(pud, vaddr);
  223. }
  224. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  225. {
  226. if (pmd_none(*pmd)) {
  227. pte_t *pte = (pte_t *) spp_getpage();
  228. pmd_populate_kernel(&init_mm, pmd, pte);
  229. if (pte != pte_offset_kernel(pmd, 0))
  230. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  231. }
  232. return pte_offset_kernel(pmd, vaddr);
  233. }
  234. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  235. {
  236. pud_t *pud;
  237. pmd_t *pmd;
  238. pte_t *pte;
  239. pud = pud_page + pud_index(vaddr);
  240. pmd = fill_pmd(pud, vaddr);
  241. pte = fill_pte(pmd, vaddr);
  242. set_pte(pte, new_pte);
  243. /*
  244. * It's enough to flush this one mapping.
  245. * (PGE mappings get flushed as well)
  246. */
  247. __flush_tlb_one(vaddr);
  248. }
  249. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  250. {
  251. pgd_t *pgd;
  252. pud_t *pud_page;
  253. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  254. pgd = pgd_offset_k(vaddr);
  255. if (pgd_none(*pgd)) {
  256. printk(KERN_ERR
  257. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  258. return;
  259. }
  260. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  261. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  262. }
  263. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  264. {
  265. pgd_t *pgd;
  266. pud_t *pud;
  267. pgd = pgd_offset_k(vaddr);
  268. pud = fill_pud(pgd, vaddr);
  269. return fill_pmd(pud, vaddr);
  270. }
  271. pte_t * __init populate_extra_pte(unsigned long vaddr)
  272. {
  273. pmd_t *pmd;
  274. pmd = populate_extra_pmd(vaddr);
  275. return fill_pte(pmd, vaddr);
  276. }
  277. /*
  278. * Create large page table mappings for a range of physical addresses.
  279. */
  280. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  281. pgprot_t prot)
  282. {
  283. pgd_t *pgd;
  284. pud_t *pud;
  285. pmd_t *pmd;
  286. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  287. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  288. pgd = pgd_offset_k((unsigned long)__va(phys));
  289. if (pgd_none(*pgd)) {
  290. pud = (pud_t *) spp_getpage();
  291. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  292. _PAGE_USER));
  293. }
  294. pud = pud_offset(pgd, (unsigned long)__va(phys));
  295. if (pud_none(*pud)) {
  296. pmd = (pmd_t *) spp_getpage();
  297. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  298. _PAGE_USER));
  299. }
  300. pmd = pmd_offset(pud, phys);
  301. BUG_ON(!pmd_none(*pmd));
  302. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  303. }
  304. }
  305. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  306. {
  307. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  308. }
  309. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  310. {
  311. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  312. }
  313. /*
  314. * The head.S code sets up the kernel high mapping:
  315. *
  316. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  317. *
  318. * phys_addr holds the negative offset to the kernel, which is added
  319. * to the compile time generated pmds. This results in invalid pmds up
  320. * to the point where we hit the physaddr 0 mapping.
  321. *
  322. * We limit the mappings to the region from _text to _brk_end. _brk_end
  323. * is rounded up to the 2MB boundary. This catches the invalid pmds as
  324. * well, as they are located before _text:
  325. */
  326. void __init cleanup_highmap(void)
  327. {
  328. unsigned long vaddr = __START_KERNEL_map;
  329. unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
  330. unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
  331. pmd_t *pmd = level2_kernel_pgt;
  332. /*
  333. * Native path, max_pfn_mapped is not set yet.
  334. * Xen has valid max_pfn_mapped set in
  335. * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
  336. */
  337. if (max_pfn_mapped)
  338. vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
  339. for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
  340. if (pmd_none(*pmd))
  341. continue;
  342. if (vaddr < (unsigned long) _text || vaddr > end)
  343. set_pmd(pmd, __pmd(0));
  344. }
  345. }
  346. static unsigned long __meminit
  347. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  348. pgprot_t prot)
  349. {
  350. unsigned long pages = 0, next;
  351. unsigned long last_map_addr = end;
  352. int i;
  353. pte_t *pte = pte_page + pte_index(addr);
  354. for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
  355. next = (addr & PAGE_MASK) + PAGE_SIZE;
  356. if (addr >= end) {
  357. if (!after_bootmem &&
  358. !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
  359. !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
  360. set_pte(pte, __pte(0));
  361. continue;
  362. }
  363. /*
  364. * We will re-use the existing mapping.
  365. * Xen for example has some special requirements, like mapping
  366. * pagetable pages as RO. So assume someone who pre-setup
  367. * these mappings are more intelligent.
  368. */
  369. if (pte_val(*pte)) {
  370. if (!after_bootmem)
  371. pages++;
  372. continue;
  373. }
  374. if (0)
  375. printk(" pte=%p addr=%lx pte=%016lx\n",
  376. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  377. pages++;
  378. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  379. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  380. }
  381. update_page_count(PG_LEVEL_4K, pages);
  382. return last_map_addr;
  383. }
  384. static unsigned long __meminit
  385. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  386. unsigned long page_size_mask, pgprot_t prot)
  387. {
  388. unsigned long pages = 0, next;
  389. unsigned long last_map_addr = end;
  390. int i = pmd_index(address);
  391. for (; i < PTRS_PER_PMD; i++, address = next) {
  392. pmd_t *pmd = pmd_page + pmd_index(address);
  393. pte_t *pte;
  394. pgprot_t new_prot = prot;
  395. next = (address & PMD_MASK) + PMD_SIZE;
  396. if (address >= end) {
  397. if (!after_bootmem &&
  398. !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
  399. !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
  400. set_pmd(pmd, __pmd(0));
  401. continue;
  402. }
  403. if (pmd_val(*pmd)) {
  404. if (!pmd_large(*pmd)) {
  405. spin_lock(&init_mm.page_table_lock);
  406. pte = (pte_t *)pmd_page_vaddr(*pmd);
  407. last_map_addr = phys_pte_init(pte, address,
  408. end, prot);
  409. spin_unlock(&init_mm.page_table_lock);
  410. continue;
  411. }
  412. /*
  413. * If we are ok with PG_LEVEL_2M mapping, then we will
  414. * use the existing mapping,
  415. *
  416. * Otherwise, we will split the large page mapping but
  417. * use the same existing protection bits except for
  418. * large page, so that we don't violate Intel's TLB
  419. * Application note (317080) which says, while changing
  420. * the page sizes, new and old translations should
  421. * not differ with respect to page frame and
  422. * attributes.
  423. */
  424. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  425. if (!after_bootmem)
  426. pages++;
  427. last_map_addr = next;
  428. continue;
  429. }
  430. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  431. }
  432. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  433. pages++;
  434. spin_lock(&init_mm.page_table_lock);
  435. set_pte((pte_t *)pmd,
  436. pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
  437. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  438. spin_unlock(&init_mm.page_table_lock);
  439. last_map_addr = next;
  440. continue;
  441. }
  442. pte = alloc_low_page();
  443. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  444. spin_lock(&init_mm.page_table_lock);
  445. pmd_populate_kernel(&init_mm, pmd, pte);
  446. spin_unlock(&init_mm.page_table_lock);
  447. }
  448. update_page_count(PG_LEVEL_2M, pages);
  449. return last_map_addr;
  450. }
  451. static unsigned long __meminit
  452. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  453. unsigned long page_size_mask)
  454. {
  455. unsigned long pages = 0, next;
  456. unsigned long last_map_addr = end;
  457. int i = pud_index(addr);
  458. for (; i < PTRS_PER_PUD; i++, addr = next) {
  459. pud_t *pud = pud_page + pud_index(addr);
  460. pmd_t *pmd;
  461. pgprot_t prot = PAGE_KERNEL;
  462. next = (addr & PUD_MASK) + PUD_SIZE;
  463. if (addr >= end) {
  464. if (!after_bootmem &&
  465. !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
  466. !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
  467. set_pud(pud, __pud(0));
  468. continue;
  469. }
  470. if (pud_val(*pud)) {
  471. if (!pud_large(*pud)) {
  472. pmd = pmd_offset(pud, 0);
  473. last_map_addr = phys_pmd_init(pmd, addr, end,
  474. page_size_mask, prot);
  475. __flush_tlb_all();
  476. continue;
  477. }
  478. /*
  479. * If we are ok with PG_LEVEL_1G mapping, then we will
  480. * use the existing mapping.
  481. *
  482. * Otherwise, we will split the gbpage mapping but use
  483. * the same existing protection bits except for large
  484. * page, so that we don't violate Intel's TLB
  485. * Application note (317080) which says, while changing
  486. * the page sizes, new and old translations should
  487. * not differ with respect to page frame and
  488. * attributes.
  489. */
  490. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  491. if (!after_bootmem)
  492. pages++;
  493. last_map_addr = next;
  494. continue;
  495. }
  496. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  497. }
  498. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  499. pages++;
  500. spin_lock(&init_mm.page_table_lock);
  501. set_pte((pte_t *)pud,
  502. pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
  503. PAGE_KERNEL_LARGE));
  504. spin_unlock(&init_mm.page_table_lock);
  505. last_map_addr = next;
  506. continue;
  507. }
  508. pmd = alloc_low_page();
  509. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  510. prot);
  511. spin_lock(&init_mm.page_table_lock);
  512. pud_populate(&init_mm, pud, pmd);
  513. spin_unlock(&init_mm.page_table_lock);
  514. }
  515. __flush_tlb_all();
  516. update_page_count(PG_LEVEL_1G, pages);
  517. return last_map_addr;
  518. }
  519. unsigned long __meminit
  520. kernel_physical_mapping_init(unsigned long start,
  521. unsigned long end,
  522. unsigned long page_size_mask)
  523. {
  524. bool pgd_changed = false;
  525. unsigned long next, last_map_addr = end;
  526. unsigned long addr;
  527. start = (unsigned long)__va(start);
  528. end = (unsigned long)__va(end);
  529. addr = start;
  530. for (; start < end; start = next) {
  531. pgd_t *pgd = pgd_offset_k(start);
  532. pud_t *pud;
  533. next = (start & PGDIR_MASK) + PGDIR_SIZE;
  534. if (pgd_val(*pgd)) {
  535. pud = (pud_t *)pgd_page_vaddr(*pgd);
  536. last_map_addr = phys_pud_init(pud, __pa(start),
  537. __pa(end), page_size_mask);
  538. continue;
  539. }
  540. pud = alloc_low_page();
  541. last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
  542. page_size_mask);
  543. spin_lock(&init_mm.page_table_lock);
  544. pgd_populate(&init_mm, pgd, pud);
  545. spin_unlock(&init_mm.page_table_lock);
  546. pgd_changed = true;
  547. }
  548. if (pgd_changed)
  549. sync_global_pgds(addr, end - 1);
  550. __flush_tlb_all();
  551. return last_map_addr;
  552. }
  553. #ifndef CONFIG_NUMA
  554. void __init initmem_init(void)
  555. {
  556. memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
  557. }
  558. #endif
  559. void __init paging_init(void)
  560. {
  561. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  562. sparse_init();
  563. /*
  564. * clear the default setting with node 0
  565. * note: don't use nodes_clear here, that is really clearing when
  566. * numa support is not compiled in, and later node_set_state
  567. * will not set it back.
  568. */
  569. node_clear_state(0, N_MEMORY);
  570. if (N_MEMORY != N_NORMAL_MEMORY)
  571. node_clear_state(0, N_NORMAL_MEMORY);
  572. zone_sizes_init();
  573. }
  574. /*
  575. * Memory hotplug specific functions
  576. */
  577. #ifdef CONFIG_MEMORY_HOTPLUG
  578. /*
  579. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  580. * updating.
  581. */
  582. static void update_end_of_memory_vars(u64 start, u64 size)
  583. {
  584. unsigned long end_pfn = PFN_UP(start + size);
  585. if (end_pfn > max_pfn) {
  586. max_pfn = end_pfn;
  587. max_low_pfn = end_pfn;
  588. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  589. }
  590. }
  591. /*
  592. * Memory is added always to NORMAL zone. This means you will never get
  593. * additional DMA/DMA32 memory.
  594. */
  595. int arch_add_memory(int nid, u64 start, u64 size)
  596. {
  597. struct pglist_data *pgdat = NODE_DATA(nid);
  598. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  599. unsigned long start_pfn = start >> PAGE_SHIFT;
  600. unsigned long nr_pages = size >> PAGE_SHIFT;
  601. int ret;
  602. init_memory_mapping(start, start + size);
  603. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  604. WARN_ON_ONCE(ret);
  605. /* update max_pfn, max_low_pfn and high_memory */
  606. update_end_of_memory_vars(start, size);
  607. return ret;
  608. }
  609. EXPORT_SYMBOL_GPL(arch_add_memory);
  610. #ifdef CONFIG_MEMORY_HOTREMOVE
  611. int __ref arch_remove_memory(u64 start, u64 size)
  612. {
  613. unsigned long start_pfn = start >> PAGE_SHIFT;
  614. unsigned long nr_pages = size >> PAGE_SHIFT;
  615. struct zone *zone;
  616. int ret;
  617. zone = page_zone(pfn_to_page(start_pfn));
  618. ret = __remove_pages(zone, start_pfn, nr_pages);
  619. WARN_ON_ONCE(ret);
  620. return ret;
  621. }
  622. #endif
  623. #endif /* CONFIG_MEMORY_HOTPLUG */
  624. static struct kcore_list kcore_vsyscall;
  625. static void __init register_page_bootmem_info(void)
  626. {
  627. #ifdef CONFIG_NUMA
  628. int i;
  629. for_each_online_node(i)
  630. register_page_bootmem_info_node(NODE_DATA(i));
  631. #endif
  632. }
  633. void __init mem_init(void)
  634. {
  635. long codesize, reservedpages, datasize, initsize;
  636. unsigned long absent_pages;
  637. pci_iommu_alloc();
  638. /* clear_bss() already clear the empty_zero_page */
  639. reservedpages = 0;
  640. /* this will put all low memory onto the freelists */
  641. register_page_bootmem_info();
  642. totalram_pages = free_all_bootmem();
  643. absent_pages = absent_pages_in_range(0, max_pfn);
  644. reservedpages = max_pfn - totalram_pages - absent_pages;
  645. after_bootmem = 1;
  646. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  647. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  648. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  649. /* Register memory areas for /proc/kcore */
  650. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  651. VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
  652. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  653. "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
  654. nr_free_pages() << (PAGE_SHIFT-10),
  655. max_pfn << (PAGE_SHIFT-10),
  656. codesize >> 10,
  657. absent_pages << (PAGE_SHIFT-10),
  658. reservedpages << (PAGE_SHIFT-10),
  659. datasize >> 10,
  660. initsize >> 10);
  661. }
  662. #ifdef CONFIG_DEBUG_RODATA
  663. const int rodata_test_data = 0xC3;
  664. EXPORT_SYMBOL_GPL(rodata_test_data);
  665. int kernel_set_to_readonly;
  666. void set_kernel_text_rw(void)
  667. {
  668. unsigned long start = PFN_ALIGN(_text);
  669. unsigned long end = PFN_ALIGN(__stop___ex_table);
  670. if (!kernel_set_to_readonly)
  671. return;
  672. pr_debug("Set kernel text: %lx - %lx for read write\n",
  673. start, end);
  674. /*
  675. * Make the kernel identity mapping for text RW. Kernel text
  676. * mapping will always be RO. Refer to the comment in
  677. * static_protections() in pageattr.c
  678. */
  679. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  680. }
  681. void set_kernel_text_ro(void)
  682. {
  683. unsigned long start = PFN_ALIGN(_text);
  684. unsigned long end = PFN_ALIGN(__stop___ex_table);
  685. if (!kernel_set_to_readonly)
  686. return;
  687. pr_debug("Set kernel text: %lx - %lx for read only\n",
  688. start, end);
  689. /*
  690. * Set the kernel identity mapping for text RO.
  691. */
  692. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  693. }
  694. void mark_rodata_ro(void)
  695. {
  696. unsigned long start = PFN_ALIGN(_text);
  697. unsigned long rodata_start = PFN_ALIGN(__start_rodata);
  698. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  699. unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
  700. unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
  701. unsigned long all_end = PFN_ALIGN(&_end);
  702. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  703. (end - start) >> 10);
  704. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  705. kernel_set_to_readonly = 1;
  706. /*
  707. * The rodata/data/bss/brk section (but not the kernel text!)
  708. * should also be not-executable.
  709. */
  710. set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT);
  711. rodata_test();
  712. #ifdef CONFIG_CPA_DEBUG
  713. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  714. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  715. printk(KERN_INFO "Testing CPA: again\n");
  716. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  717. #endif
  718. free_init_pages("unused kernel memory",
  719. (unsigned long) __va(__pa_symbol(text_end)),
  720. (unsigned long) __va(__pa_symbol(rodata_start)));
  721. free_init_pages("unused kernel memory",
  722. (unsigned long) __va(__pa_symbol(rodata_end)),
  723. (unsigned long) __va(__pa_symbol(_sdata)));
  724. }
  725. #endif
  726. int kern_addr_valid(unsigned long addr)
  727. {
  728. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  729. pgd_t *pgd;
  730. pud_t *pud;
  731. pmd_t *pmd;
  732. pte_t *pte;
  733. if (above != 0 && above != -1UL)
  734. return 0;
  735. pgd = pgd_offset_k(addr);
  736. if (pgd_none(*pgd))
  737. return 0;
  738. pud = pud_offset(pgd, addr);
  739. if (pud_none(*pud))
  740. return 0;
  741. if (pud_large(*pud))
  742. return pfn_valid(pud_pfn(*pud));
  743. pmd = pmd_offset(pud, addr);
  744. if (pmd_none(*pmd))
  745. return 0;
  746. if (pmd_large(*pmd))
  747. return pfn_valid(pmd_pfn(*pmd));
  748. pte = pte_offset_kernel(pmd, addr);
  749. if (pte_none(*pte))
  750. return 0;
  751. return pfn_valid(pte_pfn(*pte));
  752. }
  753. /*
  754. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  755. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  756. * not need special handling anymore:
  757. */
  758. static struct vm_area_struct gate_vma = {
  759. .vm_start = VSYSCALL_START,
  760. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  761. .vm_page_prot = PAGE_READONLY_EXEC,
  762. .vm_flags = VM_READ | VM_EXEC
  763. };
  764. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  765. {
  766. #ifdef CONFIG_IA32_EMULATION
  767. if (!mm || mm->context.ia32_compat)
  768. return NULL;
  769. #endif
  770. return &gate_vma;
  771. }
  772. int in_gate_area(struct mm_struct *mm, unsigned long addr)
  773. {
  774. struct vm_area_struct *vma = get_gate_vma(mm);
  775. if (!vma)
  776. return 0;
  777. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  778. }
  779. /*
  780. * Use this when you have no reliable mm, typically from interrupt
  781. * context. It is less reliable than using a task's mm and may give
  782. * false positives.
  783. */
  784. int in_gate_area_no_mm(unsigned long addr)
  785. {
  786. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  787. }
  788. const char *arch_vma_name(struct vm_area_struct *vma)
  789. {
  790. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  791. return "[vdso]";
  792. if (vma == &gate_vma)
  793. return "[vsyscall]";
  794. return NULL;
  795. }
  796. #ifdef CONFIG_X86_UV
  797. unsigned long memory_block_size_bytes(void)
  798. {
  799. if (is_uv_system()) {
  800. printk(KERN_INFO "UV: memory block size 2GB\n");
  801. return 2UL * 1024 * 1024 * 1024;
  802. }
  803. return MIN_MEMORY_BLOCK_SIZE;
  804. }
  805. #endif
  806. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  807. /*
  808. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  809. */
  810. static long __meminitdata addr_start, addr_end;
  811. static void __meminitdata *p_start, *p_end;
  812. static int __meminitdata node_start;
  813. int __meminit
  814. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  815. {
  816. unsigned long addr = (unsigned long)start_page;
  817. unsigned long end = (unsigned long)(start_page + size);
  818. unsigned long next;
  819. pgd_t *pgd;
  820. pud_t *pud;
  821. pmd_t *pmd;
  822. for (; addr < end; addr = next) {
  823. void *p = NULL;
  824. pgd = vmemmap_pgd_populate(addr, node);
  825. if (!pgd)
  826. return -ENOMEM;
  827. pud = vmemmap_pud_populate(pgd, addr, node);
  828. if (!pud)
  829. return -ENOMEM;
  830. if (!cpu_has_pse) {
  831. next = (addr + PAGE_SIZE) & PAGE_MASK;
  832. pmd = vmemmap_pmd_populate(pud, addr, node);
  833. if (!pmd)
  834. return -ENOMEM;
  835. p = vmemmap_pte_populate(pmd, addr, node);
  836. if (!p)
  837. return -ENOMEM;
  838. addr_end = addr + PAGE_SIZE;
  839. p_end = p + PAGE_SIZE;
  840. } else {
  841. next = pmd_addr_end(addr, end);
  842. pmd = pmd_offset(pud, addr);
  843. if (pmd_none(*pmd)) {
  844. pte_t entry;
  845. p = vmemmap_alloc_block_buf(PMD_SIZE, node);
  846. if (!p)
  847. return -ENOMEM;
  848. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  849. PAGE_KERNEL_LARGE);
  850. set_pmd(pmd, __pmd(pte_val(entry)));
  851. /* check to see if we have contiguous blocks */
  852. if (p_end != p || node_start != node) {
  853. if (p_start)
  854. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  855. addr_start, addr_end-1, p_start, p_end-1, node_start);
  856. addr_start = addr;
  857. node_start = node;
  858. p_start = p;
  859. }
  860. addr_end = addr + PMD_SIZE;
  861. p_end = p + PMD_SIZE;
  862. } else
  863. vmemmap_verify((pte_t *)pmd, node, addr, next);
  864. }
  865. }
  866. sync_global_pgds((unsigned long)start_page, end - 1);
  867. return 0;
  868. }
  869. void __meminit vmemmap_populate_print_last(void)
  870. {
  871. if (p_start) {
  872. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  873. addr_start, addr_end-1, p_start, p_end-1, node_start);
  874. p_start = NULL;
  875. p_end = NULL;
  876. node_start = 0;
  877. }
  878. }
  879. #endif