spi-omap2-mcspi.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388
  1. /*
  2. * OMAP2 McSPI controller driver
  3. *
  4. * Copyright (C) 2005, 2006 Nokia Corporation
  5. * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
  6. * Juha Yrj�l� <juha.yrjola@nokia.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. *
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/init.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/module.h>
  27. #include <linux/device.h>
  28. #include <linux/delay.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/dmaengine.h>
  31. #include <linux/omap-dma.h>
  32. #include <linux/platform_device.h>
  33. #include <linux/err.h>
  34. #include <linux/clk.h>
  35. #include <linux/io.h>
  36. #include <linux/slab.h>
  37. #include <linux/pm_runtime.h>
  38. #include <linux/of.h>
  39. #include <linux/of_device.h>
  40. #include <linux/pinctrl/consumer.h>
  41. #include <linux/spi/spi.h>
  42. #include <linux/platform_data/spi-omap2-mcspi.h>
  43. #define OMAP2_MCSPI_MAX_FREQ 48000000
  44. #define SPI_AUTOSUSPEND_TIMEOUT 2000
  45. #define OMAP2_MCSPI_REVISION 0x00
  46. #define OMAP2_MCSPI_SYSSTATUS 0x14
  47. #define OMAP2_MCSPI_IRQSTATUS 0x18
  48. #define OMAP2_MCSPI_IRQENABLE 0x1c
  49. #define OMAP2_MCSPI_WAKEUPENABLE 0x20
  50. #define OMAP2_MCSPI_SYST 0x24
  51. #define OMAP2_MCSPI_MODULCTRL 0x28
  52. /* per-channel banks, 0x14 bytes each, first is: */
  53. #define OMAP2_MCSPI_CHCONF0 0x2c
  54. #define OMAP2_MCSPI_CHSTAT0 0x30
  55. #define OMAP2_MCSPI_CHCTRL0 0x34
  56. #define OMAP2_MCSPI_TX0 0x38
  57. #define OMAP2_MCSPI_RX0 0x3c
  58. /* per-register bitmasks: */
  59. #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
  60. #define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
  61. #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
  62. #define OMAP2_MCSPI_CHCONF_PHA BIT(0)
  63. #define OMAP2_MCSPI_CHCONF_POL BIT(1)
  64. #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
  65. #define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
  66. #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
  67. #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
  68. #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
  69. #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
  70. #define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
  71. #define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
  72. #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
  73. #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
  74. #define OMAP2_MCSPI_CHCONF_IS BIT(18)
  75. #define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
  76. #define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
  77. #define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
  78. #define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
  79. #define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
  80. #define OMAP2_MCSPI_CHCTRL_EN BIT(0)
  81. #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
  82. /* We have 2 DMA channels per CS, one for RX and one for TX */
  83. struct omap2_mcspi_dma {
  84. struct dma_chan *dma_tx;
  85. struct dma_chan *dma_rx;
  86. int dma_tx_sync_dev;
  87. int dma_rx_sync_dev;
  88. struct completion dma_tx_completion;
  89. struct completion dma_rx_completion;
  90. };
  91. /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
  92. * cache operations; better heuristics consider wordsize and bitrate.
  93. */
  94. #define DMA_MIN_BYTES 160
  95. /*
  96. * Used for context save and restore, structure members to be updated whenever
  97. * corresponding registers are modified.
  98. */
  99. struct omap2_mcspi_regs {
  100. u32 modulctrl;
  101. u32 wakeupenable;
  102. struct list_head cs;
  103. };
  104. struct omap2_mcspi {
  105. struct spi_master *master;
  106. /* Virtual base address of the controller */
  107. void __iomem *base;
  108. unsigned long phys;
  109. /* SPI1 has 4 channels, while SPI2 has 2 */
  110. struct omap2_mcspi_dma *dma_channels;
  111. struct device *dev;
  112. struct omap2_mcspi_regs ctx;
  113. unsigned int pin_dir:1;
  114. };
  115. struct omap2_mcspi_cs {
  116. void __iomem *base;
  117. unsigned long phys;
  118. int word_len;
  119. struct list_head node;
  120. /* Context save and restore shadow register */
  121. u32 chconf0;
  122. };
  123. static inline void mcspi_write_reg(struct spi_master *master,
  124. int idx, u32 val)
  125. {
  126. struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
  127. __raw_writel(val, mcspi->base + idx);
  128. }
  129. static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
  130. {
  131. struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
  132. return __raw_readl(mcspi->base + idx);
  133. }
  134. static inline void mcspi_write_cs_reg(const struct spi_device *spi,
  135. int idx, u32 val)
  136. {
  137. struct omap2_mcspi_cs *cs = spi->controller_state;
  138. __raw_writel(val, cs->base + idx);
  139. }
  140. static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
  141. {
  142. struct omap2_mcspi_cs *cs = spi->controller_state;
  143. return __raw_readl(cs->base + idx);
  144. }
  145. static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
  146. {
  147. struct omap2_mcspi_cs *cs = spi->controller_state;
  148. return cs->chconf0;
  149. }
  150. static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
  151. {
  152. struct omap2_mcspi_cs *cs = spi->controller_state;
  153. cs->chconf0 = val;
  154. mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
  155. mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
  156. }
  157. static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
  158. int is_read, int enable)
  159. {
  160. u32 l, rw;
  161. l = mcspi_cached_chconf0(spi);
  162. if (is_read) /* 1 is read, 0 write */
  163. rw = OMAP2_MCSPI_CHCONF_DMAR;
  164. else
  165. rw = OMAP2_MCSPI_CHCONF_DMAW;
  166. if (enable)
  167. l |= rw;
  168. else
  169. l &= ~rw;
  170. mcspi_write_chconf0(spi, l);
  171. }
  172. static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
  173. {
  174. u32 l;
  175. l = enable ? OMAP2_MCSPI_CHCTRL_EN : 0;
  176. mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, l);
  177. /* Flash post-writes */
  178. mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
  179. }
  180. static void omap2_mcspi_force_cs(struct spi_device *spi, int cs_active)
  181. {
  182. u32 l;
  183. l = mcspi_cached_chconf0(spi);
  184. if (cs_active)
  185. l |= OMAP2_MCSPI_CHCONF_FORCE;
  186. else
  187. l &= ~OMAP2_MCSPI_CHCONF_FORCE;
  188. mcspi_write_chconf0(spi, l);
  189. }
  190. static void omap2_mcspi_set_master_mode(struct spi_master *master)
  191. {
  192. struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
  193. struct omap2_mcspi_regs *ctx = &mcspi->ctx;
  194. u32 l;
  195. /*
  196. * Setup when switching from (reset default) slave mode
  197. * to single-channel master mode
  198. */
  199. l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
  200. l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS);
  201. l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
  202. mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
  203. ctx->modulctrl = l;
  204. }
  205. static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
  206. {
  207. struct spi_master *spi_cntrl = mcspi->master;
  208. struct omap2_mcspi_regs *ctx = &mcspi->ctx;
  209. struct omap2_mcspi_cs *cs;
  210. /* McSPI: context restore */
  211. mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
  212. mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
  213. list_for_each_entry(cs, &ctx->cs, node)
  214. __raw_writel(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
  215. }
  216. static int omap2_prepare_transfer(struct spi_master *master)
  217. {
  218. struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
  219. pm_runtime_get_sync(mcspi->dev);
  220. return 0;
  221. }
  222. static int omap2_unprepare_transfer(struct spi_master *master)
  223. {
  224. struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
  225. pm_runtime_mark_last_busy(mcspi->dev);
  226. pm_runtime_put_autosuspend(mcspi->dev);
  227. return 0;
  228. }
  229. static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
  230. {
  231. unsigned long timeout;
  232. timeout = jiffies + msecs_to_jiffies(1000);
  233. while (!(__raw_readl(reg) & bit)) {
  234. if (time_after(jiffies, timeout)) {
  235. if (!(__raw_readl(reg) & bit))
  236. return -ETIMEDOUT;
  237. else
  238. return 0;
  239. }
  240. cpu_relax();
  241. }
  242. return 0;
  243. }
  244. static void omap2_mcspi_rx_callback(void *data)
  245. {
  246. struct spi_device *spi = data;
  247. struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
  248. struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
  249. /* We must disable the DMA RX request */
  250. omap2_mcspi_set_dma_req(spi, 1, 0);
  251. complete(&mcspi_dma->dma_rx_completion);
  252. }
  253. static void omap2_mcspi_tx_callback(void *data)
  254. {
  255. struct spi_device *spi = data;
  256. struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
  257. struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
  258. /* We must disable the DMA TX request */
  259. omap2_mcspi_set_dma_req(spi, 0, 0);
  260. complete(&mcspi_dma->dma_tx_completion);
  261. }
  262. static void omap2_mcspi_tx_dma(struct spi_device *spi,
  263. struct spi_transfer *xfer,
  264. struct dma_slave_config cfg)
  265. {
  266. struct omap2_mcspi *mcspi;
  267. struct omap2_mcspi_dma *mcspi_dma;
  268. unsigned int count;
  269. mcspi = spi_master_get_devdata(spi->master);
  270. mcspi_dma = &mcspi->dma_channels[spi->chip_select];
  271. count = xfer->len;
  272. if (mcspi_dma->dma_tx) {
  273. struct dma_async_tx_descriptor *tx;
  274. struct scatterlist sg;
  275. dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
  276. sg_init_table(&sg, 1);
  277. sg_dma_address(&sg) = xfer->tx_dma;
  278. sg_dma_len(&sg) = xfer->len;
  279. tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, &sg, 1,
  280. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  281. if (tx) {
  282. tx->callback = omap2_mcspi_tx_callback;
  283. tx->callback_param = spi;
  284. dmaengine_submit(tx);
  285. } else {
  286. /* FIXME: fall back to PIO? */
  287. }
  288. }
  289. dma_async_issue_pending(mcspi_dma->dma_tx);
  290. omap2_mcspi_set_dma_req(spi, 0, 1);
  291. }
  292. static unsigned
  293. omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
  294. struct dma_slave_config cfg,
  295. unsigned es)
  296. {
  297. struct omap2_mcspi *mcspi;
  298. struct omap2_mcspi_dma *mcspi_dma;
  299. unsigned int count;
  300. u32 l;
  301. int elements = 0;
  302. int word_len, element_count;
  303. struct omap2_mcspi_cs *cs = spi->controller_state;
  304. mcspi = spi_master_get_devdata(spi->master);
  305. mcspi_dma = &mcspi->dma_channels[spi->chip_select];
  306. count = xfer->len;
  307. word_len = cs->word_len;
  308. l = mcspi_cached_chconf0(spi);
  309. if (word_len <= 8)
  310. element_count = count;
  311. else if (word_len <= 16)
  312. element_count = count >> 1;
  313. else /* word_len <= 32 */
  314. element_count = count >> 2;
  315. if (mcspi_dma->dma_rx) {
  316. struct dma_async_tx_descriptor *tx;
  317. struct scatterlist sg;
  318. size_t len = xfer->len - es;
  319. dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
  320. if (l & OMAP2_MCSPI_CHCONF_TURBO)
  321. len -= es;
  322. sg_init_table(&sg, 1);
  323. sg_dma_address(&sg) = xfer->rx_dma;
  324. sg_dma_len(&sg) = len;
  325. tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, &sg, 1,
  326. DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT |
  327. DMA_CTRL_ACK);
  328. if (tx) {
  329. tx->callback = omap2_mcspi_rx_callback;
  330. tx->callback_param = spi;
  331. dmaengine_submit(tx);
  332. } else {
  333. /* FIXME: fall back to PIO? */
  334. }
  335. }
  336. dma_async_issue_pending(mcspi_dma->dma_rx);
  337. omap2_mcspi_set_dma_req(spi, 1, 1);
  338. wait_for_completion(&mcspi_dma->dma_rx_completion);
  339. dma_unmap_single(mcspi->dev, xfer->rx_dma, count,
  340. DMA_FROM_DEVICE);
  341. omap2_mcspi_set_enable(spi, 0);
  342. elements = element_count - 1;
  343. if (l & OMAP2_MCSPI_CHCONF_TURBO) {
  344. elements--;
  345. if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
  346. & OMAP2_MCSPI_CHSTAT_RXS)) {
  347. u32 w;
  348. w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
  349. if (word_len <= 8)
  350. ((u8 *)xfer->rx_buf)[elements++] = w;
  351. else if (word_len <= 16)
  352. ((u16 *)xfer->rx_buf)[elements++] = w;
  353. else /* word_len <= 32 */
  354. ((u32 *)xfer->rx_buf)[elements++] = w;
  355. } else {
  356. dev_err(&spi->dev, "DMA RX penultimate word empty");
  357. count -= (word_len <= 8) ? 2 :
  358. (word_len <= 16) ? 4 :
  359. /* word_len <= 32 */ 8;
  360. omap2_mcspi_set_enable(spi, 1);
  361. return count;
  362. }
  363. }
  364. if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
  365. & OMAP2_MCSPI_CHSTAT_RXS)) {
  366. u32 w;
  367. w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
  368. if (word_len <= 8)
  369. ((u8 *)xfer->rx_buf)[elements] = w;
  370. else if (word_len <= 16)
  371. ((u16 *)xfer->rx_buf)[elements] = w;
  372. else /* word_len <= 32 */
  373. ((u32 *)xfer->rx_buf)[elements] = w;
  374. } else {
  375. dev_err(&spi->dev, "DMA RX last word empty");
  376. count -= (word_len <= 8) ? 1 :
  377. (word_len <= 16) ? 2 :
  378. /* word_len <= 32 */ 4;
  379. }
  380. omap2_mcspi_set_enable(spi, 1);
  381. return count;
  382. }
  383. static unsigned
  384. omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
  385. {
  386. struct omap2_mcspi *mcspi;
  387. struct omap2_mcspi_cs *cs = spi->controller_state;
  388. struct omap2_mcspi_dma *mcspi_dma;
  389. unsigned int count;
  390. u32 l;
  391. u8 *rx;
  392. const u8 *tx;
  393. struct dma_slave_config cfg;
  394. enum dma_slave_buswidth width;
  395. unsigned es;
  396. void __iomem *chstat_reg;
  397. mcspi = spi_master_get_devdata(spi->master);
  398. mcspi_dma = &mcspi->dma_channels[spi->chip_select];
  399. l = mcspi_cached_chconf0(spi);
  400. if (cs->word_len <= 8) {
  401. width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  402. es = 1;
  403. } else if (cs->word_len <= 16) {
  404. width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  405. es = 2;
  406. } else {
  407. width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  408. es = 4;
  409. }
  410. memset(&cfg, 0, sizeof(cfg));
  411. cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
  412. cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
  413. cfg.src_addr_width = width;
  414. cfg.dst_addr_width = width;
  415. cfg.src_maxburst = 1;
  416. cfg.dst_maxburst = 1;
  417. rx = xfer->rx_buf;
  418. tx = xfer->tx_buf;
  419. count = xfer->len;
  420. if (tx != NULL)
  421. omap2_mcspi_tx_dma(spi, xfer, cfg);
  422. if (rx != NULL)
  423. count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
  424. if (tx != NULL) {
  425. chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
  426. wait_for_completion(&mcspi_dma->dma_tx_completion);
  427. dma_unmap_single(mcspi->dev, xfer->tx_dma, xfer->len,
  428. DMA_TO_DEVICE);
  429. /* for TX_ONLY mode, be sure all words have shifted out */
  430. if (rx == NULL) {
  431. if (mcspi_wait_for_reg_bit(chstat_reg,
  432. OMAP2_MCSPI_CHSTAT_TXS) < 0)
  433. dev_err(&spi->dev, "TXS timed out\n");
  434. else if (mcspi_wait_for_reg_bit(chstat_reg,
  435. OMAP2_MCSPI_CHSTAT_EOT) < 0)
  436. dev_err(&spi->dev, "EOT timed out\n");
  437. }
  438. }
  439. return count;
  440. }
  441. static unsigned
  442. omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
  443. {
  444. struct omap2_mcspi *mcspi;
  445. struct omap2_mcspi_cs *cs = spi->controller_state;
  446. unsigned int count, c;
  447. u32 l;
  448. void __iomem *base = cs->base;
  449. void __iomem *tx_reg;
  450. void __iomem *rx_reg;
  451. void __iomem *chstat_reg;
  452. int word_len;
  453. mcspi = spi_master_get_devdata(spi->master);
  454. count = xfer->len;
  455. c = count;
  456. word_len = cs->word_len;
  457. l = mcspi_cached_chconf0(spi);
  458. /* We store the pre-calculated register addresses on stack to speed
  459. * up the transfer loop. */
  460. tx_reg = base + OMAP2_MCSPI_TX0;
  461. rx_reg = base + OMAP2_MCSPI_RX0;
  462. chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
  463. if (c < (word_len>>3))
  464. return 0;
  465. if (word_len <= 8) {
  466. u8 *rx;
  467. const u8 *tx;
  468. rx = xfer->rx_buf;
  469. tx = xfer->tx_buf;
  470. do {
  471. c -= 1;
  472. if (tx != NULL) {
  473. if (mcspi_wait_for_reg_bit(chstat_reg,
  474. OMAP2_MCSPI_CHSTAT_TXS) < 0) {
  475. dev_err(&spi->dev, "TXS timed out\n");
  476. goto out;
  477. }
  478. dev_vdbg(&spi->dev, "write-%d %02x\n",
  479. word_len, *tx);
  480. __raw_writel(*tx++, tx_reg);
  481. }
  482. if (rx != NULL) {
  483. if (mcspi_wait_for_reg_bit(chstat_reg,
  484. OMAP2_MCSPI_CHSTAT_RXS) < 0) {
  485. dev_err(&spi->dev, "RXS timed out\n");
  486. goto out;
  487. }
  488. if (c == 1 && tx == NULL &&
  489. (l & OMAP2_MCSPI_CHCONF_TURBO)) {
  490. omap2_mcspi_set_enable(spi, 0);
  491. *rx++ = __raw_readl(rx_reg);
  492. dev_vdbg(&spi->dev, "read-%d %02x\n",
  493. word_len, *(rx - 1));
  494. if (mcspi_wait_for_reg_bit(chstat_reg,
  495. OMAP2_MCSPI_CHSTAT_RXS) < 0) {
  496. dev_err(&spi->dev,
  497. "RXS timed out\n");
  498. goto out;
  499. }
  500. c = 0;
  501. } else if (c == 0 && tx == NULL) {
  502. omap2_mcspi_set_enable(spi, 0);
  503. }
  504. *rx++ = __raw_readl(rx_reg);
  505. dev_vdbg(&spi->dev, "read-%d %02x\n",
  506. word_len, *(rx - 1));
  507. }
  508. } while (c);
  509. } else if (word_len <= 16) {
  510. u16 *rx;
  511. const u16 *tx;
  512. rx = xfer->rx_buf;
  513. tx = xfer->tx_buf;
  514. do {
  515. c -= 2;
  516. if (tx != NULL) {
  517. if (mcspi_wait_for_reg_bit(chstat_reg,
  518. OMAP2_MCSPI_CHSTAT_TXS) < 0) {
  519. dev_err(&spi->dev, "TXS timed out\n");
  520. goto out;
  521. }
  522. dev_vdbg(&spi->dev, "write-%d %04x\n",
  523. word_len, *tx);
  524. __raw_writel(*tx++, tx_reg);
  525. }
  526. if (rx != NULL) {
  527. if (mcspi_wait_for_reg_bit(chstat_reg,
  528. OMAP2_MCSPI_CHSTAT_RXS) < 0) {
  529. dev_err(&spi->dev, "RXS timed out\n");
  530. goto out;
  531. }
  532. if (c == 2 && tx == NULL &&
  533. (l & OMAP2_MCSPI_CHCONF_TURBO)) {
  534. omap2_mcspi_set_enable(spi, 0);
  535. *rx++ = __raw_readl(rx_reg);
  536. dev_vdbg(&spi->dev, "read-%d %04x\n",
  537. word_len, *(rx - 1));
  538. if (mcspi_wait_for_reg_bit(chstat_reg,
  539. OMAP2_MCSPI_CHSTAT_RXS) < 0) {
  540. dev_err(&spi->dev,
  541. "RXS timed out\n");
  542. goto out;
  543. }
  544. c = 0;
  545. } else if (c == 0 && tx == NULL) {
  546. omap2_mcspi_set_enable(spi, 0);
  547. }
  548. *rx++ = __raw_readl(rx_reg);
  549. dev_vdbg(&spi->dev, "read-%d %04x\n",
  550. word_len, *(rx - 1));
  551. }
  552. } while (c >= 2);
  553. } else if (word_len <= 32) {
  554. u32 *rx;
  555. const u32 *tx;
  556. rx = xfer->rx_buf;
  557. tx = xfer->tx_buf;
  558. do {
  559. c -= 4;
  560. if (tx != NULL) {
  561. if (mcspi_wait_for_reg_bit(chstat_reg,
  562. OMAP2_MCSPI_CHSTAT_TXS) < 0) {
  563. dev_err(&spi->dev, "TXS timed out\n");
  564. goto out;
  565. }
  566. dev_vdbg(&spi->dev, "write-%d %08x\n",
  567. word_len, *tx);
  568. __raw_writel(*tx++, tx_reg);
  569. }
  570. if (rx != NULL) {
  571. if (mcspi_wait_for_reg_bit(chstat_reg,
  572. OMAP2_MCSPI_CHSTAT_RXS) < 0) {
  573. dev_err(&spi->dev, "RXS timed out\n");
  574. goto out;
  575. }
  576. if (c == 4 && tx == NULL &&
  577. (l & OMAP2_MCSPI_CHCONF_TURBO)) {
  578. omap2_mcspi_set_enable(spi, 0);
  579. *rx++ = __raw_readl(rx_reg);
  580. dev_vdbg(&spi->dev, "read-%d %08x\n",
  581. word_len, *(rx - 1));
  582. if (mcspi_wait_for_reg_bit(chstat_reg,
  583. OMAP2_MCSPI_CHSTAT_RXS) < 0) {
  584. dev_err(&spi->dev,
  585. "RXS timed out\n");
  586. goto out;
  587. }
  588. c = 0;
  589. } else if (c == 0 && tx == NULL) {
  590. omap2_mcspi_set_enable(spi, 0);
  591. }
  592. *rx++ = __raw_readl(rx_reg);
  593. dev_vdbg(&spi->dev, "read-%d %08x\n",
  594. word_len, *(rx - 1));
  595. }
  596. } while (c >= 4);
  597. }
  598. /* for TX_ONLY mode, be sure all words have shifted out */
  599. if (xfer->rx_buf == NULL) {
  600. if (mcspi_wait_for_reg_bit(chstat_reg,
  601. OMAP2_MCSPI_CHSTAT_TXS) < 0) {
  602. dev_err(&spi->dev, "TXS timed out\n");
  603. } else if (mcspi_wait_for_reg_bit(chstat_reg,
  604. OMAP2_MCSPI_CHSTAT_EOT) < 0)
  605. dev_err(&spi->dev, "EOT timed out\n");
  606. /* disable chan to purge rx datas received in TX_ONLY transfer,
  607. * otherwise these rx datas will affect the direct following
  608. * RX_ONLY transfer.
  609. */
  610. omap2_mcspi_set_enable(spi, 0);
  611. }
  612. out:
  613. omap2_mcspi_set_enable(spi, 1);
  614. return count - c;
  615. }
  616. static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
  617. {
  618. u32 div;
  619. for (div = 0; div < 15; div++)
  620. if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
  621. return div;
  622. return 15;
  623. }
  624. /* called only when no transfer is active to this device */
  625. static int omap2_mcspi_setup_transfer(struct spi_device *spi,
  626. struct spi_transfer *t)
  627. {
  628. struct omap2_mcspi_cs *cs = spi->controller_state;
  629. struct omap2_mcspi *mcspi;
  630. struct spi_master *spi_cntrl;
  631. u32 l = 0, div = 0;
  632. u8 word_len = spi->bits_per_word;
  633. u32 speed_hz = spi->max_speed_hz;
  634. mcspi = spi_master_get_devdata(spi->master);
  635. spi_cntrl = mcspi->master;
  636. if (t != NULL && t->bits_per_word)
  637. word_len = t->bits_per_word;
  638. cs->word_len = word_len;
  639. if (t && t->speed_hz)
  640. speed_hz = t->speed_hz;
  641. speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
  642. div = omap2_mcspi_calc_divisor(speed_hz);
  643. l = mcspi_cached_chconf0(spi);
  644. /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
  645. * REVISIT: this controller could support SPI_3WIRE mode.
  646. */
  647. if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
  648. l &= ~OMAP2_MCSPI_CHCONF_IS;
  649. l &= ~OMAP2_MCSPI_CHCONF_DPE1;
  650. l |= OMAP2_MCSPI_CHCONF_DPE0;
  651. } else {
  652. l |= OMAP2_MCSPI_CHCONF_IS;
  653. l |= OMAP2_MCSPI_CHCONF_DPE1;
  654. l &= ~OMAP2_MCSPI_CHCONF_DPE0;
  655. }
  656. /* wordlength */
  657. l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
  658. l |= (word_len - 1) << 7;
  659. /* set chipselect polarity; manage with FORCE */
  660. if (!(spi->mode & SPI_CS_HIGH))
  661. l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
  662. else
  663. l &= ~OMAP2_MCSPI_CHCONF_EPOL;
  664. /* set clock divisor */
  665. l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
  666. l |= div << 2;
  667. /* set SPI mode 0..3 */
  668. if (spi->mode & SPI_CPOL)
  669. l |= OMAP2_MCSPI_CHCONF_POL;
  670. else
  671. l &= ~OMAP2_MCSPI_CHCONF_POL;
  672. if (spi->mode & SPI_CPHA)
  673. l |= OMAP2_MCSPI_CHCONF_PHA;
  674. else
  675. l &= ~OMAP2_MCSPI_CHCONF_PHA;
  676. mcspi_write_chconf0(spi, l);
  677. dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
  678. OMAP2_MCSPI_MAX_FREQ >> div,
  679. (spi->mode & SPI_CPHA) ? "trailing" : "leading",
  680. (spi->mode & SPI_CPOL) ? "inverted" : "normal");
  681. return 0;
  682. }
  683. /*
  684. * Note that we currently allow DMA only if we get a channel
  685. * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
  686. */
  687. static int omap2_mcspi_request_dma(struct spi_device *spi)
  688. {
  689. struct spi_master *master = spi->master;
  690. struct omap2_mcspi *mcspi;
  691. struct omap2_mcspi_dma *mcspi_dma;
  692. dma_cap_mask_t mask;
  693. unsigned sig;
  694. mcspi = spi_master_get_devdata(master);
  695. mcspi_dma = mcspi->dma_channels + spi->chip_select;
  696. init_completion(&mcspi_dma->dma_rx_completion);
  697. init_completion(&mcspi_dma->dma_tx_completion);
  698. dma_cap_zero(mask);
  699. dma_cap_set(DMA_SLAVE, mask);
  700. sig = mcspi_dma->dma_rx_sync_dev;
  701. mcspi_dma->dma_rx = dma_request_channel(mask, omap_dma_filter_fn, &sig);
  702. if (!mcspi_dma->dma_rx)
  703. goto no_dma;
  704. sig = mcspi_dma->dma_tx_sync_dev;
  705. mcspi_dma->dma_tx = dma_request_channel(mask, omap_dma_filter_fn, &sig);
  706. if (!mcspi_dma->dma_tx) {
  707. dma_release_channel(mcspi_dma->dma_rx);
  708. mcspi_dma->dma_rx = NULL;
  709. goto no_dma;
  710. }
  711. return 0;
  712. no_dma:
  713. dev_warn(&spi->dev, "not using DMA for McSPI\n");
  714. return -EAGAIN;
  715. }
  716. static int omap2_mcspi_setup(struct spi_device *spi)
  717. {
  718. int ret;
  719. struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
  720. struct omap2_mcspi_regs *ctx = &mcspi->ctx;
  721. struct omap2_mcspi_dma *mcspi_dma;
  722. struct omap2_mcspi_cs *cs = spi->controller_state;
  723. if (spi->bits_per_word < 4 || spi->bits_per_word > 32) {
  724. dev_dbg(&spi->dev, "setup: unsupported %d bit words\n",
  725. spi->bits_per_word);
  726. return -EINVAL;
  727. }
  728. mcspi_dma = &mcspi->dma_channels[spi->chip_select];
  729. if (!cs) {
  730. cs = kzalloc(sizeof *cs, GFP_KERNEL);
  731. if (!cs)
  732. return -ENOMEM;
  733. cs->base = mcspi->base + spi->chip_select * 0x14;
  734. cs->phys = mcspi->phys + spi->chip_select * 0x14;
  735. cs->chconf0 = 0;
  736. spi->controller_state = cs;
  737. /* Link this to context save list */
  738. list_add_tail(&cs->node, &ctx->cs);
  739. }
  740. if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) {
  741. ret = omap2_mcspi_request_dma(spi);
  742. if (ret < 0 && ret != -EAGAIN)
  743. return ret;
  744. }
  745. ret = pm_runtime_get_sync(mcspi->dev);
  746. if (ret < 0)
  747. return ret;
  748. ret = omap2_mcspi_setup_transfer(spi, NULL);
  749. pm_runtime_mark_last_busy(mcspi->dev);
  750. pm_runtime_put_autosuspend(mcspi->dev);
  751. return ret;
  752. }
  753. static void omap2_mcspi_cleanup(struct spi_device *spi)
  754. {
  755. struct omap2_mcspi *mcspi;
  756. struct omap2_mcspi_dma *mcspi_dma;
  757. struct omap2_mcspi_cs *cs;
  758. mcspi = spi_master_get_devdata(spi->master);
  759. if (spi->controller_state) {
  760. /* Unlink controller state from context save list */
  761. cs = spi->controller_state;
  762. list_del(&cs->node);
  763. kfree(cs);
  764. }
  765. if (spi->chip_select < spi->master->num_chipselect) {
  766. mcspi_dma = &mcspi->dma_channels[spi->chip_select];
  767. if (mcspi_dma->dma_rx) {
  768. dma_release_channel(mcspi_dma->dma_rx);
  769. mcspi_dma->dma_rx = NULL;
  770. }
  771. if (mcspi_dma->dma_tx) {
  772. dma_release_channel(mcspi_dma->dma_tx);
  773. mcspi_dma->dma_tx = NULL;
  774. }
  775. }
  776. }
  777. static void omap2_mcspi_work(struct omap2_mcspi *mcspi, struct spi_message *m)
  778. {
  779. /* We only enable one channel at a time -- the one whose message is
  780. * -- although this controller would gladly
  781. * arbitrate among multiple channels. This corresponds to "single
  782. * channel" master mode. As a side effect, we need to manage the
  783. * chipselect with the FORCE bit ... CS != channel enable.
  784. */
  785. struct spi_device *spi;
  786. struct spi_transfer *t = NULL;
  787. struct spi_master *master;
  788. struct omap2_mcspi_dma *mcspi_dma;
  789. int cs_active = 0;
  790. struct omap2_mcspi_cs *cs;
  791. struct omap2_mcspi_device_config *cd;
  792. int par_override = 0;
  793. int status = 0;
  794. u32 chconf;
  795. spi = m->spi;
  796. master = spi->master;
  797. mcspi_dma = mcspi->dma_channels + spi->chip_select;
  798. cs = spi->controller_state;
  799. cd = spi->controller_data;
  800. omap2_mcspi_set_enable(spi, 1);
  801. list_for_each_entry(t, &m->transfers, transfer_list) {
  802. if (t->tx_buf == NULL && t->rx_buf == NULL && t->len) {
  803. status = -EINVAL;
  804. break;
  805. }
  806. if (par_override || t->speed_hz || t->bits_per_word) {
  807. par_override = 1;
  808. status = omap2_mcspi_setup_transfer(spi, t);
  809. if (status < 0)
  810. break;
  811. if (!t->speed_hz && !t->bits_per_word)
  812. par_override = 0;
  813. }
  814. if (cd && cd->cs_per_word) {
  815. chconf = mcspi->ctx.modulctrl;
  816. chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
  817. mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
  818. mcspi->ctx.modulctrl =
  819. mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
  820. }
  821. if (!cs_active) {
  822. omap2_mcspi_force_cs(spi, 1);
  823. cs_active = 1;
  824. }
  825. chconf = mcspi_cached_chconf0(spi);
  826. chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
  827. chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
  828. if (t->tx_buf == NULL)
  829. chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
  830. else if (t->rx_buf == NULL)
  831. chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
  832. if (cd && cd->turbo_mode && t->tx_buf == NULL) {
  833. /* Turbo mode is for more than one word */
  834. if (t->len > ((cs->word_len + 7) >> 3))
  835. chconf |= OMAP2_MCSPI_CHCONF_TURBO;
  836. }
  837. mcspi_write_chconf0(spi, chconf);
  838. if (t->len) {
  839. unsigned count;
  840. /* RX_ONLY mode needs dummy data in TX reg */
  841. if (t->tx_buf == NULL)
  842. __raw_writel(0, cs->base
  843. + OMAP2_MCSPI_TX0);
  844. if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
  845. (m->is_dma_mapped || t->len >= DMA_MIN_BYTES))
  846. count = omap2_mcspi_txrx_dma(spi, t);
  847. else
  848. count = omap2_mcspi_txrx_pio(spi, t);
  849. m->actual_length += count;
  850. if (count != t->len) {
  851. status = -EIO;
  852. break;
  853. }
  854. }
  855. if (t->delay_usecs)
  856. udelay(t->delay_usecs);
  857. /* ignore the "leave it on after last xfer" hint */
  858. if (t->cs_change) {
  859. omap2_mcspi_force_cs(spi, 0);
  860. cs_active = 0;
  861. }
  862. }
  863. /* Restore defaults if they were overriden */
  864. if (par_override) {
  865. par_override = 0;
  866. status = omap2_mcspi_setup_transfer(spi, NULL);
  867. }
  868. if (cs_active)
  869. omap2_mcspi_force_cs(spi, 0);
  870. if (cd && cd->cs_per_word) {
  871. chconf = mcspi->ctx.modulctrl;
  872. chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
  873. mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
  874. mcspi->ctx.modulctrl =
  875. mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
  876. }
  877. omap2_mcspi_set_enable(spi, 0);
  878. m->status = status;
  879. }
  880. static int omap2_mcspi_transfer_one_message(struct spi_master *master,
  881. struct spi_message *m)
  882. {
  883. struct spi_device *spi;
  884. struct omap2_mcspi *mcspi;
  885. struct omap2_mcspi_dma *mcspi_dma;
  886. struct spi_transfer *t;
  887. spi = m->spi;
  888. mcspi = spi_master_get_devdata(master);
  889. mcspi_dma = mcspi->dma_channels + spi->chip_select;
  890. m->actual_length = 0;
  891. m->status = 0;
  892. /* reject invalid messages and transfers */
  893. if (list_empty(&m->transfers))
  894. return -EINVAL;
  895. list_for_each_entry(t, &m->transfers, transfer_list) {
  896. const void *tx_buf = t->tx_buf;
  897. void *rx_buf = t->rx_buf;
  898. unsigned len = t->len;
  899. if (t->speed_hz > OMAP2_MCSPI_MAX_FREQ
  900. || (len && !(rx_buf || tx_buf))
  901. || (t->bits_per_word &&
  902. ( t->bits_per_word < 4
  903. || t->bits_per_word > 32))) {
  904. dev_dbg(mcspi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n",
  905. t->speed_hz,
  906. len,
  907. tx_buf ? "tx" : "",
  908. rx_buf ? "rx" : "",
  909. t->bits_per_word);
  910. return -EINVAL;
  911. }
  912. if (t->speed_hz && t->speed_hz < (OMAP2_MCSPI_MAX_FREQ >> 15)) {
  913. dev_dbg(mcspi->dev, "speed_hz %d below minimum %d Hz\n",
  914. t->speed_hz,
  915. OMAP2_MCSPI_MAX_FREQ >> 15);
  916. return -EINVAL;
  917. }
  918. if (m->is_dma_mapped || len < DMA_MIN_BYTES)
  919. continue;
  920. if (mcspi_dma->dma_tx && tx_buf != NULL) {
  921. t->tx_dma = dma_map_single(mcspi->dev, (void *) tx_buf,
  922. len, DMA_TO_DEVICE);
  923. if (dma_mapping_error(mcspi->dev, t->tx_dma)) {
  924. dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
  925. 'T', len);
  926. return -EINVAL;
  927. }
  928. }
  929. if (mcspi_dma->dma_rx && rx_buf != NULL) {
  930. t->rx_dma = dma_map_single(mcspi->dev, rx_buf, t->len,
  931. DMA_FROM_DEVICE);
  932. if (dma_mapping_error(mcspi->dev, t->rx_dma)) {
  933. dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
  934. 'R', len);
  935. if (tx_buf != NULL)
  936. dma_unmap_single(mcspi->dev, t->tx_dma,
  937. len, DMA_TO_DEVICE);
  938. return -EINVAL;
  939. }
  940. }
  941. }
  942. omap2_mcspi_work(mcspi, m);
  943. spi_finalize_current_message(master);
  944. return 0;
  945. }
  946. static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi)
  947. {
  948. struct spi_master *master = mcspi->master;
  949. struct omap2_mcspi_regs *ctx = &mcspi->ctx;
  950. int ret = 0;
  951. ret = pm_runtime_get_sync(mcspi->dev);
  952. if (ret < 0)
  953. return ret;
  954. mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
  955. OMAP2_MCSPI_WAKEUPENABLE_WKEN);
  956. ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
  957. omap2_mcspi_set_master_mode(master);
  958. pm_runtime_mark_last_busy(mcspi->dev);
  959. pm_runtime_put_autosuspend(mcspi->dev);
  960. return 0;
  961. }
  962. static int omap_mcspi_runtime_resume(struct device *dev)
  963. {
  964. struct omap2_mcspi *mcspi;
  965. struct spi_master *master;
  966. master = dev_get_drvdata(dev);
  967. mcspi = spi_master_get_devdata(master);
  968. omap2_mcspi_restore_ctx(mcspi);
  969. return 0;
  970. }
  971. static struct omap2_mcspi_platform_config omap2_pdata = {
  972. .regs_offset = 0,
  973. };
  974. static struct omap2_mcspi_platform_config omap4_pdata = {
  975. .regs_offset = OMAP4_MCSPI_REG_OFFSET,
  976. };
  977. static const struct of_device_id omap_mcspi_of_match[] = {
  978. {
  979. .compatible = "ti,omap2-mcspi",
  980. .data = &omap2_pdata,
  981. },
  982. {
  983. .compatible = "ti,omap4-mcspi",
  984. .data = &omap4_pdata,
  985. },
  986. { },
  987. };
  988. MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
  989. static int omap2_mcspi_probe(struct platform_device *pdev)
  990. {
  991. struct spi_master *master;
  992. const struct omap2_mcspi_platform_config *pdata;
  993. struct omap2_mcspi *mcspi;
  994. struct resource *r;
  995. int status = 0, i;
  996. u32 regs_offset = 0;
  997. static int bus_num = 1;
  998. struct device_node *node = pdev->dev.of_node;
  999. const struct of_device_id *match;
  1000. struct pinctrl *pinctrl;
  1001. master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
  1002. if (master == NULL) {
  1003. dev_dbg(&pdev->dev, "master allocation failed\n");
  1004. return -ENOMEM;
  1005. }
  1006. /* the spi->mode bits understood by this driver: */
  1007. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1008. master->setup = omap2_mcspi_setup;
  1009. master->prepare_transfer_hardware = omap2_prepare_transfer;
  1010. master->unprepare_transfer_hardware = omap2_unprepare_transfer;
  1011. master->transfer_one_message = omap2_mcspi_transfer_one_message;
  1012. master->cleanup = omap2_mcspi_cleanup;
  1013. master->dev.of_node = node;
  1014. platform_set_drvdata(pdev, master);
  1015. mcspi = spi_master_get_devdata(master);
  1016. mcspi->master = master;
  1017. match = of_match_device(omap_mcspi_of_match, &pdev->dev);
  1018. if (match) {
  1019. u32 num_cs = 1; /* default number of chipselect */
  1020. pdata = match->data;
  1021. of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
  1022. master->num_chipselect = num_cs;
  1023. master->bus_num = bus_num++;
  1024. if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
  1025. mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
  1026. } else {
  1027. pdata = pdev->dev.platform_data;
  1028. master->num_chipselect = pdata->num_cs;
  1029. if (pdev->id != -1)
  1030. master->bus_num = pdev->id;
  1031. mcspi->pin_dir = pdata->pin_dir;
  1032. }
  1033. regs_offset = pdata->regs_offset;
  1034. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1035. if (r == NULL) {
  1036. status = -ENODEV;
  1037. goto free_master;
  1038. }
  1039. r->start += regs_offset;
  1040. r->end += regs_offset;
  1041. mcspi->phys = r->start;
  1042. mcspi->base = devm_ioremap_resource(&pdev->dev, r);
  1043. if (IS_ERR(mcspi->base)) {
  1044. status = PTR_ERR(mcspi->base);
  1045. goto free_master;
  1046. }
  1047. mcspi->dev = &pdev->dev;
  1048. INIT_LIST_HEAD(&mcspi->ctx.cs);
  1049. mcspi->dma_channels = kcalloc(master->num_chipselect,
  1050. sizeof(struct omap2_mcspi_dma),
  1051. GFP_KERNEL);
  1052. if (mcspi->dma_channels == NULL)
  1053. goto free_master;
  1054. for (i = 0; i < master->num_chipselect; i++) {
  1055. char dma_ch_name[14];
  1056. struct resource *dma_res;
  1057. sprintf(dma_ch_name, "rx%d", i);
  1058. dma_res = platform_get_resource_byname(pdev, IORESOURCE_DMA,
  1059. dma_ch_name);
  1060. if (!dma_res) {
  1061. dev_dbg(&pdev->dev, "cannot get DMA RX channel\n");
  1062. status = -ENODEV;
  1063. break;
  1064. }
  1065. mcspi->dma_channels[i].dma_rx_sync_dev = dma_res->start;
  1066. sprintf(dma_ch_name, "tx%d", i);
  1067. dma_res = platform_get_resource_byname(pdev, IORESOURCE_DMA,
  1068. dma_ch_name);
  1069. if (!dma_res) {
  1070. dev_dbg(&pdev->dev, "cannot get DMA TX channel\n");
  1071. status = -ENODEV;
  1072. break;
  1073. }
  1074. mcspi->dma_channels[i].dma_tx_sync_dev = dma_res->start;
  1075. }
  1076. if (status < 0)
  1077. goto dma_chnl_free;
  1078. pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
  1079. if (IS_ERR(pinctrl))
  1080. dev_warn(&pdev->dev,
  1081. "pins are not configured from the driver\n");
  1082. pm_runtime_use_autosuspend(&pdev->dev);
  1083. pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
  1084. pm_runtime_enable(&pdev->dev);
  1085. status = omap2_mcspi_master_setup(mcspi);
  1086. if (status < 0)
  1087. goto disable_pm;
  1088. status = spi_register_master(master);
  1089. if (status < 0)
  1090. goto disable_pm;
  1091. return status;
  1092. disable_pm:
  1093. pm_runtime_disable(&pdev->dev);
  1094. dma_chnl_free:
  1095. kfree(mcspi->dma_channels);
  1096. free_master:
  1097. spi_master_put(master);
  1098. return status;
  1099. }
  1100. static int omap2_mcspi_remove(struct platform_device *pdev)
  1101. {
  1102. struct spi_master *master;
  1103. struct omap2_mcspi *mcspi;
  1104. struct omap2_mcspi_dma *dma_channels;
  1105. master = platform_get_drvdata(pdev);
  1106. mcspi = spi_master_get_devdata(master);
  1107. dma_channels = mcspi->dma_channels;
  1108. pm_runtime_put_sync(mcspi->dev);
  1109. pm_runtime_disable(&pdev->dev);
  1110. spi_unregister_master(master);
  1111. kfree(dma_channels);
  1112. return 0;
  1113. }
  1114. /* work with hotplug and coldplug */
  1115. MODULE_ALIAS("platform:omap2_mcspi");
  1116. #ifdef CONFIG_SUSPEND
  1117. /*
  1118. * When SPI wake up from off-mode, CS is in activate state. If it was in
  1119. * unactive state when driver was suspend, then force it to unactive state at
  1120. * wake up.
  1121. */
  1122. static int omap2_mcspi_resume(struct device *dev)
  1123. {
  1124. struct spi_master *master = dev_get_drvdata(dev);
  1125. struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
  1126. struct omap2_mcspi_regs *ctx = &mcspi->ctx;
  1127. struct omap2_mcspi_cs *cs;
  1128. pm_runtime_get_sync(mcspi->dev);
  1129. list_for_each_entry(cs, &ctx->cs, node) {
  1130. if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
  1131. /*
  1132. * We need to toggle CS state for OMAP take this
  1133. * change in account.
  1134. */
  1135. cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
  1136. __raw_writel(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
  1137. cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
  1138. __raw_writel(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
  1139. }
  1140. }
  1141. pm_runtime_mark_last_busy(mcspi->dev);
  1142. pm_runtime_put_autosuspend(mcspi->dev);
  1143. return 0;
  1144. }
  1145. #else
  1146. #define omap2_mcspi_resume NULL
  1147. #endif
  1148. static const struct dev_pm_ops omap2_mcspi_pm_ops = {
  1149. .resume = omap2_mcspi_resume,
  1150. .runtime_resume = omap_mcspi_runtime_resume,
  1151. };
  1152. static struct platform_driver omap2_mcspi_driver = {
  1153. .driver = {
  1154. .name = "omap2_mcspi",
  1155. .owner = THIS_MODULE,
  1156. .pm = &omap2_mcspi_pm_ops,
  1157. .of_match_table = omap_mcspi_of_match,
  1158. },
  1159. .probe = omap2_mcspi_probe,
  1160. .remove = omap2_mcspi_remove,
  1161. };
  1162. module_platform_driver(omap2_mcspi_driver);
  1163. MODULE_LICENSE("GPL");