process.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996
  1. /*
  2. * Derived from "arch/i386/kernel/process.c"
  3. * Copyright (C) 1995 Linus Torvalds
  4. *
  5. * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
  6. * Paul Mackerras (paulus@cs.anu.edu.au)
  7. *
  8. * PowerPC version
  9. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. */
  16. #include <linux/errno.h>
  17. #include <linux/sched.h>
  18. #include <linux/kernel.h>
  19. #include <linux/mm.h>
  20. #include <linux/smp.h>
  21. #include <linux/smp_lock.h>
  22. #include <linux/stddef.h>
  23. #include <linux/unistd.h>
  24. #include <linux/ptrace.h>
  25. #include <linux/slab.h>
  26. #include <linux/user.h>
  27. #include <linux/elf.h>
  28. #include <linux/init.h>
  29. #include <linux/prctl.h>
  30. #include <linux/init_task.h>
  31. #include <linux/module.h>
  32. #include <linux/kallsyms.h>
  33. #include <linux/mqueue.h>
  34. #include <linux/hardirq.h>
  35. #include <linux/utsname.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/system.h>
  39. #include <asm/io.h>
  40. #include <asm/processor.h>
  41. #include <asm/mmu.h>
  42. #include <asm/prom.h>
  43. #include <asm/machdep.h>
  44. #include <asm/time.h>
  45. #include <asm/syscalls.h>
  46. #ifdef CONFIG_PPC64
  47. #include <asm/firmware.h>
  48. #endif
  49. extern unsigned long _get_SP(void);
  50. #ifndef CONFIG_SMP
  51. struct task_struct *last_task_used_math = NULL;
  52. struct task_struct *last_task_used_altivec = NULL;
  53. struct task_struct *last_task_used_spe = NULL;
  54. #endif
  55. /*
  56. * Make sure the floating-point register state in the
  57. * the thread_struct is up to date for task tsk.
  58. */
  59. void flush_fp_to_thread(struct task_struct *tsk)
  60. {
  61. if (tsk->thread.regs) {
  62. /*
  63. * We need to disable preemption here because if we didn't,
  64. * another process could get scheduled after the regs->msr
  65. * test but before we have finished saving the FP registers
  66. * to the thread_struct. That process could take over the
  67. * FPU, and then when we get scheduled again we would store
  68. * bogus values for the remaining FP registers.
  69. */
  70. preempt_disable();
  71. if (tsk->thread.regs->msr & MSR_FP) {
  72. #ifdef CONFIG_SMP
  73. /*
  74. * This should only ever be called for current or
  75. * for a stopped child process. Since we save away
  76. * the FP register state on context switch on SMP,
  77. * there is something wrong if a stopped child appears
  78. * to still have its FP state in the CPU registers.
  79. */
  80. BUG_ON(tsk != current);
  81. #endif
  82. giveup_fpu(current);
  83. }
  84. preempt_enable();
  85. }
  86. }
  87. void enable_kernel_fp(void)
  88. {
  89. WARN_ON(preemptible());
  90. #ifdef CONFIG_SMP
  91. if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
  92. giveup_fpu(current);
  93. else
  94. giveup_fpu(NULL); /* just enables FP for kernel */
  95. #else
  96. giveup_fpu(last_task_used_math);
  97. #endif /* CONFIG_SMP */
  98. }
  99. EXPORT_SYMBOL(enable_kernel_fp);
  100. int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
  101. {
  102. if (!tsk->thread.regs)
  103. return 0;
  104. flush_fp_to_thread(current);
  105. memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
  106. return 1;
  107. }
  108. #ifdef CONFIG_ALTIVEC
  109. void enable_kernel_altivec(void)
  110. {
  111. WARN_ON(preemptible());
  112. #ifdef CONFIG_SMP
  113. if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
  114. giveup_altivec(current);
  115. else
  116. giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
  117. #else
  118. giveup_altivec(last_task_used_altivec);
  119. #endif /* CONFIG_SMP */
  120. }
  121. EXPORT_SYMBOL(enable_kernel_altivec);
  122. /*
  123. * Make sure the VMX/Altivec register state in the
  124. * the thread_struct is up to date for task tsk.
  125. */
  126. void flush_altivec_to_thread(struct task_struct *tsk)
  127. {
  128. if (tsk->thread.regs) {
  129. preempt_disable();
  130. if (tsk->thread.regs->msr & MSR_VEC) {
  131. #ifdef CONFIG_SMP
  132. BUG_ON(tsk != current);
  133. #endif
  134. giveup_altivec(current);
  135. }
  136. preempt_enable();
  137. }
  138. }
  139. int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
  140. {
  141. flush_altivec_to_thread(current);
  142. memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
  143. return 1;
  144. }
  145. #endif /* CONFIG_ALTIVEC */
  146. #ifdef CONFIG_SPE
  147. void enable_kernel_spe(void)
  148. {
  149. WARN_ON(preemptible());
  150. #ifdef CONFIG_SMP
  151. if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
  152. giveup_spe(current);
  153. else
  154. giveup_spe(NULL); /* just enable SPE for kernel - force */
  155. #else
  156. giveup_spe(last_task_used_spe);
  157. #endif /* __SMP __ */
  158. }
  159. EXPORT_SYMBOL(enable_kernel_spe);
  160. void flush_spe_to_thread(struct task_struct *tsk)
  161. {
  162. if (tsk->thread.regs) {
  163. preempt_disable();
  164. if (tsk->thread.regs->msr & MSR_SPE) {
  165. #ifdef CONFIG_SMP
  166. BUG_ON(tsk != current);
  167. #endif
  168. giveup_spe(current);
  169. }
  170. preempt_enable();
  171. }
  172. }
  173. int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
  174. {
  175. flush_spe_to_thread(current);
  176. /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
  177. memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
  178. return 1;
  179. }
  180. #endif /* CONFIG_SPE */
  181. #ifndef CONFIG_SMP
  182. /*
  183. * If we are doing lazy switching of CPU state (FP, altivec or SPE),
  184. * and the current task has some state, discard it.
  185. */
  186. void discard_lazy_cpu_state(void)
  187. {
  188. preempt_disable();
  189. if (last_task_used_math == current)
  190. last_task_used_math = NULL;
  191. #ifdef CONFIG_ALTIVEC
  192. if (last_task_used_altivec == current)
  193. last_task_used_altivec = NULL;
  194. #endif /* CONFIG_ALTIVEC */
  195. #ifdef CONFIG_SPE
  196. if (last_task_used_spe == current)
  197. last_task_used_spe = NULL;
  198. #endif
  199. preempt_enable();
  200. }
  201. #endif /* CONFIG_SMP */
  202. #ifdef CONFIG_PPC_MERGE /* XXX for now */
  203. int set_dabr(unsigned long dabr)
  204. {
  205. if (ppc_md.set_dabr)
  206. return ppc_md.set_dabr(dabr);
  207. mtspr(SPRN_DABR, dabr);
  208. return 0;
  209. }
  210. #endif
  211. #ifdef CONFIG_PPC64
  212. DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
  213. static DEFINE_PER_CPU(unsigned long, current_dabr);
  214. #endif
  215. struct task_struct *__switch_to(struct task_struct *prev,
  216. struct task_struct *new)
  217. {
  218. struct thread_struct *new_thread, *old_thread;
  219. unsigned long flags;
  220. struct task_struct *last;
  221. #ifdef CONFIG_SMP
  222. /* avoid complexity of lazy save/restore of fpu
  223. * by just saving it every time we switch out if
  224. * this task used the fpu during the last quantum.
  225. *
  226. * If it tries to use the fpu again, it'll trap and
  227. * reload its fp regs. So we don't have to do a restore
  228. * every switch, just a save.
  229. * -- Cort
  230. */
  231. if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
  232. giveup_fpu(prev);
  233. #ifdef CONFIG_ALTIVEC
  234. /*
  235. * If the previous thread used altivec in the last quantum
  236. * (thus changing altivec regs) then save them.
  237. * We used to check the VRSAVE register but not all apps
  238. * set it, so we don't rely on it now (and in fact we need
  239. * to save & restore VSCR even if VRSAVE == 0). -- paulus
  240. *
  241. * On SMP we always save/restore altivec regs just to avoid the
  242. * complexity of changing processors.
  243. * -- Cort
  244. */
  245. if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
  246. giveup_altivec(prev);
  247. #endif /* CONFIG_ALTIVEC */
  248. #ifdef CONFIG_SPE
  249. /*
  250. * If the previous thread used spe in the last quantum
  251. * (thus changing spe regs) then save them.
  252. *
  253. * On SMP we always save/restore spe regs just to avoid the
  254. * complexity of changing processors.
  255. */
  256. if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
  257. giveup_spe(prev);
  258. #endif /* CONFIG_SPE */
  259. #else /* CONFIG_SMP */
  260. #ifdef CONFIG_ALTIVEC
  261. /* Avoid the trap. On smp this this never happens since
  262. * we don't set last_task_used_altivec -- Cort
  263. */
  264. if (new->thread.regs && last_task_used_altivec == new)
  265. new->thread.regs->msr |= MSR_VEC;
  266. #endif /* CONFIG_ALTIVEC */
  267. #ifdef CONFIG_SPE
  268. /* Avoid the trap. On smp this this never happens since
  269. * we don't set last_task_used_spe
  270. */
  271. if (new->thread.regs && last_task_used_spe == new)
  272. new->thread.regs->msr |= MSR_SPE;
  273. #endif /* CONFIG_SPE */
  274. #endif /* CONFIG_SMP */
  275. #ifdef CONFIG_PPC64 /* for now */
  276. if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
  277. set_dabr(new->thread.dabr);
  278. __get_cpu_var(current_dabr) = new->thread.dabr;
  279. }
  280. #endif /* CONFIG_PPC64 */
  281. new_thread = &new->thread;
  282. old_thread = &current->thread;
  283. #ifdef CONFIG_PPC64
  284. /*
  285. * Collect processor utilization data per process
  286. */
  287. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  288. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  289. long unsigned start_tb, current_tb;
  290. start_tb = old_thread->start_tb;
  291. cu->current_tb = current_tb = mfspr(SPRN_PURR);
  292. old_thread->accum_tb += (current_tb - start_tb);
  293. new_thread->start_tb = current_tb;
  294. }
  295. #endif
  296. local_irq_save(flags);
  297. account_system_vtime(current);
  298. account_process_vtime(current);
  299. calculate_steal_time();
  300. last = _switch(old_thread, new_thread);
  301. local_irq_restore(flags);
  302. return last;
  303. }
  304. static int instructions_to_print = 16;
  305. static void show_instructions(struct pt_regs *regs)
  306. {
  307. int i;
  308. unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
  309. sizeof(int));
  310. printk("Instruction dump:");
  311. for (i = 0; i < instructions_to_print; i++) {
  312. int instr;
  313. if (!(i % 8))
  314. printk("\n");
  315. /* We use __get_user here *only* to avoid an OOPS on a
  316. * bad address because the pc *should* only be a
  317. * kernel address.
  318. */
  319. if (!__kernel_text_address(pc) ||
  320. __get_user(instr, (unsigned int __user *)pc)) {
  321. printk("XXXXXXXX ");
  322. } else {
  323. if (regs->nip == pc)
  324. printk("<%08x> ", instr);
  325. else
  326. printk("%08x ", instr);
  327. }
  328. pc += sizeof(int);
  329. }
  330. printk("\n");
  331. }
  332. static struct regbit {
  333. unsigned long bit;
  334. const char *name;
  335. } msr_bits[] = {
  336. {MSR_EE, "EE"},
  337. {MSR_PR, "PR"},
  338. {MSR_FP, "FP"},
  339. {MSR_ME, "ME"},
  340. {MSR_IR, "IR"},
  341. {MSR_DR, "DR"},
  342. {0, NULL}
  343. };
  344. static void printbits(unsigned long val, struct regbit *bits)
  345. {
  346. const char *sep = "";
  347. printk("<");
  348. for (; bits->bit; ++bits)
  349. if (val & bits->bit) {
  350. printk("%s%s", sep, bits->name);
  351. sep = ",";
  352. }
  353. printk(">");
  354. }
  355. #ifdef CONFIG_PPC64
  356. #define REG "%016lx"
  357. #define REGS_PER_LINE 4
  358. #define LAST_VOLATILE 13
  359. #else
  360. #define REG "%08lx"
  361. #define REGS_PER_LINE 8
  362. #define LAST_VOLATILE 12
  363. #endif
  364. void show_regs(struct pt_regs * regs)
  365. {
  366. int i, trap;
  367. printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
  368. regs->nip, regs->link, regs->ctr);
  369. printk("REGS: %p TRAP: %04lx %s (%s)\n",
  370. regs, regs->trap, print_tainted(), init_utsname()->release);
  371. printk("MSR: "REG" ", regs->msr);
  372. printbits(regs->msr, msr_bits);
  373. printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
  374. trap = TRAP(regs);
  375. if (trap == 0x300 || trap == 0x600)
  376. printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
  377. printk("TASK = %p[%d] '%s' THREAD: %p",
  378. current, current->pid, current->comm, task_thread_info(current));
  379. #ifdef CONFIG_SMP
  380. printk(" CPU: %d", smp_processor_id());
  381. #endif /* CONFIG_SMP */
  382. for (i = 0; i < 32; i++) {
  383. if ((i % REGS_PER_LINE) == 0)
  384. printk("\n" KERN_INFO "GPR%02d: ", i);
  385. printk(REG " ", regs->gpr[i]);
  386. if (i == LAST_VOLATILE && !FULL_REGS(regs))
  387. break;
  388. }
  389. printk("\n");
  390. #ifdef CONFIG_KALLSYMS
  391. /*
  392. * Lookup NIP late so we have the best change of getting the
  393. * above info out without failing
  394. */
  395. printk("NIP ["REG"] ", regs->nip);
  396. print_symbol("%s\n", regs->nip);
  397. printk("LR ["REG"] ", regs->link);
  398. print_symbol("%s\n", regs->link);
  399. #endif
  400. show_stack(current, (unsigned long *) regs->gpr[1]);
  401. if (!user_mode(regs))
  402. show_instructions(regs);
  403. }
  404. void exit_thread(void)
  405. {
  406. discard_lazy_cpu_state();
  407. }
  408. void flush_thread(void)
  409. {
  410. #ifdef CONFIG_PPC64
  411. struct thread_info *t = current_thread_info();
  412. if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
  413. clear_ti_thread_flag(t, TIF_ABI_PENDING);
  414. if (test_ti_thread_flag(t, TIF_32BIT))
  415. clear_ti_thread_flag(t, TIF_32BIT);
  416. else
  417. set_ti_thread_flag(t, TIF_32BIT);
  418. }
  419. #endif
  420. discard_lazy_cpu_state();
  421. #ifdef CONFIG_PPC64 /* for now */
  422. if (current->thread.dabr) {
  423. current->thread.dabr = 0;
  424. set_dabr(0);
  425. }
  426. #endif
  427. }
  428. void
  429. release_thread(struct task_struct *t)
  430. {
  431. }
  432. /*
  433. * This gets called before we allocate a new thread and copy
  434. * the current task into it.
  435. */
  436. void prepare_to_copy(struct task_struct *tsk)
  437. {
  438. flush_fp_to_thread(current);
  439. flush_altivec_to_thread(current);
  440. flush_spe_to_thread(current);
  441. }
  442. /*
  443. * Copy a thread..
  444. */
  445. int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
  446. unsigned long unused, struct task_struct *p,
  447. struct pt_regs *regs)
  448. {
  449. struct pt_regs *childregs, *kregs;
  450. extern void ret_from_fork(void);
  451. unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
  452. CHECK_FULL_REGS(regs);
  453. /* Copy registers */
  454. sp -= sizeof(struct pt_regs);
  455. childregs = (struct pt_regs *) sp;
  456. *childregs = *regs;
  457. if ((childregs->msr & MSR_PR) == 0) {
  458. /* for kernel thread, set `current' and stackptr in new task */
  459. childregs->gpr[1] = sp + sizeof(struct pt_regs);
  460. #ifdef CONFIG_PPC32
  461. childregs->gpr[2] = (unsigned long) p;
  462. #else
  463. clear_tsk_thread_flag(p, TIF_32BIT);
  464. #endif
  465. p->thread.regs = NULL; /* no user register state */
  466. } else {
  467. childregs->gpr[1] = usp;
  468. p->thread.regs = childregs;
  469. if (clone_flags & CLONE_SETTLS) {
  470. #ifdef CONFIG_PPC64
  471. if (!test_thread_flag(TIF_32BIT))
  472. childregs->gpr[13] = childregs->gpr[6];
  473. else
  474. #endif
  475. childregs->gpr[2] = childregs->gpr[6];
  476. }
  477. }
  478. childregs->gpr[3] = 0; /* Result from fork() */
  479. sp -= STACK_FRAME_OVERHEAD;
  480. /*
  481. * The way this works is that at some point in the future
  482. * some task will call _switch to switch to the new task.
  483. * That will pop off the stack frame created below and start
  484. * the new task running at ret_from_fork. The new task will
  485. * do some house keeping and then return from the fork or clone
  486. * system call, using the stack frame created above.
  487. */
  488. sp -= sizeof(struct pt_regs);
  489. kregs = (struct pt_regs *) sp;
  490. sp -= STACK_FRAME_OVERHEAD;
  491. p->thread.ksp = sp;
  492. #ifdef CONFIG_PPC64
  493. if (cpu_has_feature(CPU_FTR_SLB)) {
  494. unsigned long sp_vsid = get_kernel_vsid(sp);
  495. unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
  496. sp_vsid <<= SLB_VSID_SHIFT;
  497. sp_vsid |= SLB_VSID_KERNEL | llp;
  498. p->thread.ksp_vsid = sp_vsid;
  499. }
  500. /*
  501. * The PPC64 ABI makes use of a TOC to contain function
  502. * pointers. The function (ret_from_except) is actually a pointer
  503. * to the TOC entry. The first entry is a pointer to the actual
  504. * function.
  505. */
  506. kregs->nip = *((unsigned long *)ret_from_fork);
  507. #else
  508. kregs->nip = (unsigned long)ret_from_fork;
  509. #endif
  510. return 0;
  511. }
  512. /*
  513. * Set up a thread for executing a new program
  514. */
  515. void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
  516. {
  517. #ifdef CONFIG_PPC64
  518. unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
  519. #endif
  520. set_fs(USER_DS);
  521. /*
  522. * If we exec out of a kernel thread then thread.regs will not be
  523. * set. Do it now.
  524. */
  525. if (!current->thread.regs) {
  526. struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
  527. current->thread.regs = regs - 1;
  528. }
  529. memset(regs->gpr, 0, sizeof(regs->gpr));
  530. regs->ctr = 0;
  531. regs->link = 0;
  532. regs->xer = 0;
  533. regs->ccr = 0;
  534. regs->gpr[1] = sp;
  535. #ifdef CONFIG_PPC32
  536. regs->mq = 0;
  537. regs->nip = start;
  538. regs->msr = MSR_USER;
  539. #else
  540. if (!test_thread_flag(TIF_32BIT)) {
  541. unsigned long entry, toc;
  542. /* start is a relocated pointer to the function descriptor for
  543. * the elf _start routine. The first entry in the function
  544. * descriptor is the entry address of _start and the second
  545. * entry is the TOC value we need to use.
  546. */
  547. __get_user(entry, (unsigned long __user *)start);
  548. __get_user(toc, (unsigned long __user *)start+1);
  549. /* Check whether the e_entry function descriptor entries
  550. * need to be relocated before we can use them.
  551. */
  552. if (load_addr != 0) {
  553. entry += load_addr;
  554. toc += load_addr;
  555. }
  556. regs->nip = entry;
  557. regs->gpr[2] = toc;
  558. regs->msr = MSR_USER64;
  559. } else {
  560. regs->nip = start;
  561. regs->gpr[2] = 0;
  562. regs->msr = MSR_USER32;
  563. }
  564. #endif
  565. discard_lazy_cpu_state();
  566. memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
  567. current->thread.fpscr.val = 0;
  568. #ifdef CONFIG_ALTIVEC
  569. memset(current->thread.vr, 0, sizeof(current->thread.vr));
  570. memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
  571. current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
  572. current->thread.vrsave = 0;
  573. current->thread.used_vr = 0;
  574. #endif /* CONFIG_ALTIVEC */
  575. #ifdef CONFIG_SPE
  576. memset(current->thread.evr, 0, sizeof(current->thread.evr));
  577. current->thread.acc = 0;
  578. current->thread.spefscr = 0;
  579. current->thread.used_spe = 0;
  580. #endif /* CONFIG_SPE */
  581. }
  582. #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
  583. | PR_FP_EXC_RES | PR_FP_EXC_INV)
  584. int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
  585. {
  586. struct pt_regs *regs = tsk->thread.regs;
  587. /* This is a bit hairy. If we are an SPE enabled processor
  588. * (have embedded fp) we store the IEEE exception enable flags in
  589. * fpexc_mode. fpexc_mode is also used for setting FP exception
  590. * mode (asyn, precise, disabled) for 'Classic' FP. */
  591. if (val & PR_FP_EXC_SW_ENABLE) {
  592. #ifdef CONFIG_SPE
  593. tsk->thread.fpexc_mode = val &
  594. (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
  595. return 0;
  596. #else
  597. return -EINVAL;
  598. #endif
  599. }
  600. /* on a CONFIG_SPE this does not hurt us. The bits that
  601. * __pack_fe01 use do not overlap with bits used for
  602. * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
  603. * on CONFIG_SPE implementations are reserved so writing to
  604. * them does not change anything */
  605. if (val > PR_FP_EXC_PRECISE)
  606. return -EINVAL;
  607. tsk->thread.fpexc_mode = __pack_fe01(val);
  608. if (regs != NULL && (regs->msr & MSR_FP) != 0)
  609. regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
  610. | tsk->thread.fpexc_mode;
  611. return 0;
  612. }
  613. int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
  614. {
  615. unsigned int val;
  616. if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
  617. #ifdef CONFIG_SPE
  618. val = tsk->thread.fpexc_mode;
  619. #else
  620. return -EINVAL;
  621. #endif
  622. else
  623. val = __unpack_fe01(tsk->thread.fpexc_mode);
  624. return put_user(val, (unsigned int __user *) adr);
  625. }
  626. int set_endian(struct task_struct *tsk, unsigned int val)
  627. {
  628. struct pt_regs *regs = tsk->thread.regs;
  629. if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
  630. (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
  631. return -EINVAL;
  632. if (regs == NULL)
  633. return -EINVAL;
  634. if (val == PR_ENDIAN_BIG)
  635. regs->msr &= ~MSR_LE;
  636. else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
  637. regs->msr |= MSR_LE;
  638. else
  639. return -EINVAL;
  640. return 0;
  641. }
  642. int get_endian(struct task_struct *tsk, unsigned long adr)
  643. {
  644. struct pt_regs *regs = tsk->thread.regs;
  645. unsigned int val;
  646. if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
  647. !cpu_has_feature(CPU_FTR_REAL_LE))
  648. return -EINVAL;
  649. if (regs == NULL)
  650. return -EINVAL;
  651. if (regs->msr & MSR_LE) {
  652. if (cpu_has_feature(CPU_FTR_REAL_LE))
  653. val = PR_ENDIAN_LITTLE;
  654. else
  655. val = PR_ENDIAN_PPC_LITTLE;
  656. } else
  657. val = PR_ENDIAN_BIG;
  658. return put_user(val, (unsigned int __user *)adr);
  659. }
  660. int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
  661. {
  662. tsk->thread.align_ctl = val;
  663. return 0;
  664. }
  665. int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
  666. {
  667. return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
  668. }
  669. #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
  670. int sys_clone(unsigned long clone_flags, unsigned long usp,
  671. int __user *parent_tidp, void __user *child_threadptr,
  672. int __user *child_tidp, int p6,
  673. struct pt_regs *regs)
  674. {
  675. CHECK_FULL_REGS(regs);
  676. if (usp == 0)
  677. usp = regs->gpr[1]; /* stack pointer for child */
  678. #ifdef CONFIG_PPC64
  679. if (test_thread_flag(TIF_32BIT)) {
  680. parent_tidp = TRUNC_PTR(parent_tidp);
  681. child_tidp = TRUNC_PTR(child_tidp);
  682. }
  683. #endif
  684. return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
  685. }
  686. int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
  687. unsigned long p4, unsigned long p5, unsigned long p6,
  688. struct pt_regs *regs)
  689. {
  690. CHECK_FULL_REGS(regs);
  691. return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
  692. }
  693. int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
  694. unsigned long p4, unsigned long p5, unsigned long p6,
  695. struct pt_regs *regs)
  696. {
  697. CHECK_FULL_REGS(regs);
  698. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
  699. regs, 0, NULL, NULL);
  700. }
  701. int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
  702. unsigned long a3, unsigned long a4, unsigned long a5,
  703. struct pt_regs *regs)
  704. {
  705. int error;
  706. char *filename;
  707. filename = getname((char __user *) a0);
  708. error = PTR_ERR(filename);
  709. if (IS_ERR(filename))
  710. goto out;
  711. flush_fp_to_thread(current);
  712. flush_altivec_to_thread(current);
  713. flush_spe_to_thread(current);
  714. error = do_execve(filename, (char __user * __user *) a1,
  715. (char __user * __user *) a2, regs);
  716. if (error == 0) {
  717. task_lock(current);
  718. current->ptrace &= ~PT_DTRACE;
  719. task_unlock(current);
  720. }
  721. putname(filename);
  722. out:
  723. return error;
  724. }
  725. #ifdef CONFIG_IRQSTACKS
  726. static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
  727. unsigned long nbytes)
  728. {
  729. unsigned long stack_page;
  730. unsigned long cpu = task_cpu(p);
  731. /*
  732. * Avoid crashing if the stack has overflowed and corrupted
  733. * task_cpu(p), which is in the thread_info struct.
  734. */
  735. if (cpu < NR_CPUS && cpu_possible(cpu)) {
  736. stack_page = (unsigned long) hardirq_ctx[cpu];
  737. if (sp >= stack_page + sizeof(struct thread_struct)
  738. && sp <= stack_page + THREAD_SIZE - nbytes)
  739. return 1;
  740. stack_page = (unsigned long) softirq_ctx[cpu];
  741. if (sp >= stack_page + sizeof(struct thread_struct)
  742. && sp <= stack_page + THREAD_SIZE - nbytes)
  743. return 1;
  744. }
  745. return 0;
  746. }
  747. #else
  748. #define valid_irq_stack(sp, p, nb) 0
  749. #endif /* CONFIG_IRQSTACKS */
  750. int validate_sp(unsigned long sp, struct task_struct *p,
  751. unsigned long nbytes)
  752. {
  753. unsigned long stack_page = (unsigned long)task_stack_page(p);
  754. if (sp >= stack_page + sizeof(struct thread_struct)
  755. && sp <= stack_page + THREAD_SIZE - nbytes)
  756. return 1;
  757. return valid_irq_stack(sp, p, nbytes);
  758. }
  759. #ifdef CONFIG_PPC64
  760. #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
  761. #define FRAME_LR_SAVE 2
  762. #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
  763. #define REGS_MARKER 0x7265677368657265ul
  764. #define FRAME_MARKER 12
  765. #else
  766. #define MIN_STACK_FRAME 16
  767. #define FRAME_LR_SAVE 1
  768. #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
  769. #define REGS_MARKER 0x72656773ul
  770. #define FRAME_MARKER 2
  771. #endif
  772. EXPORT_SYMBOL(validate_sp);
  773. unsigned long get_wchan(struct task_struct *p)
  774. {
  775. unsigned long ip, sp;
  776. int count = 0;
  777. if (!p || p == current || p->state == TASK_RUNNING)
  778. return 0;
  779. sp = p->thread.ksp;
  780. if (!validate_sp(sp, p, MIN_STACK_FRAME))
  781. return 0;
  782. do {
  783. sp = *(unsigned long *)sp;
  784. if (!validate_sp(sp, p, MIN_STACK_FRAME))
  785. return 0;
  786. if (count > 0) {
  787. ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
  788. if (!in_sched_functions(ip))
  789. return ip;
  790. }
  791. } while (count++ < 16);
  792. return 0;
  793. }
  794. static int kstack_depth_to_print = 64;
  795. void show_stack(struct task_struct *tsk, unsigned long *stack)
  796. {
  797. unsigned long sp, ip, lr, newsp;
  798. int count = 0;
  799. int firstframe = 1;
  800. sp = (unsigned long) stack;
  801. if (tsk == NULL)
  802. tsk = current;
  803. if (sp == 0) {
  804. if (tsk == current)
  805. asm("mr %0,1" : "=r" (sp));
  806. else
  807. sp = tsk->thread.ksp;
  808. }
  809. lr = 0;
  810. printk("Call Trace:\n");
  811. do {
  812. if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
  813. return;
  814. stack = (unsigned long *) sp;
  815. newsp = stack[0];
  816. ip = stack[FRAME_LR_SAVE];
  817. if (!firstframe || ip != lr) {
  818. printk("["REG"] ["REG"] ", sp, ip);
  819. print_symbol("%s", ip);
  820. if (firstframe)
  821. printk(" (unreliable)");
  822. printk("\n");
  823. }
  824. firstframe = 0;
  825. /*
  826. * See if this is an exception frame.
  827. * We look for the "regshere" marker in the current frame.
  828. */
  829. if (validate_sp(sp, tsk, INT_FRAME_SIZE)
  830. && stack[FRAME_MARKER] == REGS_MARKER) {
  831. struct pt_regs *regs = (struct pt_regs *)
  832. (sp + STACK_FRAME_OVERHEAD);
  833. printk("--- Exception: %lx", regs->trap);
  834. print_symbol(" at %s\n", regs->nip);
  835. lr = regs->link;
  836. print_symbol(" LR = %s\n", lr);
  837. firstframe = 1;
  838. }
  839. sp = newsp;
  840. } while (count++ < kstack_depth_to_print);
  841. }
  842. void dump_stack(void)
  843. {
  844. show_stack(current, NULL);
  845. }
  846. EXPORT_SYMBOL(dump_stack);
  847. #ifdef CONFIG_PPC64
  848. void ppc64_runlatch_on(void)
  849. {
  850. unsigned long ctrl;
  851. if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
  852. HMT_medium();
  853. ctrl = mfspr(SPRN_CTRLF);
  854. ctrl |= CTRL_RUNLATCH;
  855. mtspr(SPRN_CTRLT, ctrl);
  856. set_thread_flag(TIF_RUNLATCH);
  857. }
  858. }
  859. void ppc64_runlatch_off(void)
  860. {
  861. unsigned long ctrl;
  862. if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
  863. HMT_medium();
  864. clear_thread_flag(TIF_RUNLATCH);
  865. ctrl = mfspr(SPRN_CTRLF);
  866. ctrl &= ~CTRL_RUNLATCH;
  867. mtspr(SPRN_CTRLT, ctrl);
  868. }
  869. }
  870. #endif