setup_64.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. */
  4. /*
  5. * This file handles the architecture-dependent parts of initialization
  6. */
  7. #include <linux/errno.h>
  8. #include <linux/sched.h>
  9. #include <linux/kernel.h>
  10. #include <linux/mm.h>
  11. #include <linux/stddef.h>
  12. #include <linux/unistd.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/slab.h>
  15. #include <linux/user.h>
  16. #include <linux/a.out.h>
  17. #include <linux/screen_info.h>
  18. #include <linux/ioport.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/initrd.h>
  22. #include <linux/highmem.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/module.h>
  25. #include <asm/processor.h>
  26. #include <linux/console.h>
  27. #include <linux/seq_file.h>
  28. #include <linux/crash_dump.h>
  29. #include <linux/root_dev.h>
  30. #include <linux/pci.h>
  31. #include <linux/efi.h>
  32. #include <linux/acpi.h>
  33. #include <linux/kallsyms.h>
  34. #include <linux/edd.h>
  35. #include <linux/mmzone.h>
  36. #include <linux/kexec.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/dmi.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/ctype.h>
  41. #include <linux/uaccess.h>
  42. #include <linux/init_ohci1394_dma.h>
  43. #include <asm/mtrr.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/system.h>
  46. #include <asm/vsyscall.h>
  47. #include <asm/io.h>
  48. #include <asm/smp.h>
  49. #include <asm/msr.h>
  50. #include <asm/desc.h>
  51. #include <video/edid.h>
  52. #include <asm/e820.h>
  53. #include <asm/dma.h>
  54. #include <asm/gart.h>
  55. #include <asm/mpspec.h>
  56. #include <asm/mmu_context.h>
  57. #include <asm/proto.h>
  58. #include <asm/setup.h>
  59. #include <asm/mach_apic.h>
  60. #include <asm/numa.h>
  61. #include <asm/sections.h>
  62. #include <asm/dmi.h>
  63. #include <asm/cacheflush.h>
  64. #include <asm/mce.h>
  65. #include <asm/ds.h>
  66. #include <asm/topology.h>
  67. #ifdef CONFIG_PARAVIRT
  68. #include <asm/paravirt.h>
  69. #else
  70. #define ARCH_SETUP
  71. #endif
  72. /*
  73. * Machine setup..
  74. */
  75. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  76. EXPORT_SYMBOL(boot_cpu_data);
  77. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  78. unsigned long mmu_cr4_features;
  79. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  80. int bootloader_type;
  81. unsigned long saved_video_mode;
  82. int force_mwait __cpuinitdata;
  83. /*
  84. * Early DMI memory
  85. */
  86. int dmi_alloc_index;
  87. char dmi_alloc_data[DMI_MAX_DATA];
  88. /*
  89. * Setup options
  90. */
  91. struct screen_info screen_info;
  92. EXPORT_SYMBOL(screen_info);
  93. struct sys_desc_table_struct {
  94. unsigned short length;
  95. unsigned char table[0];
  96. };
  97. struct edid_info edid_info;
  98. EXPORT_SYMBOL_GPL(edid_info);
  99. extern int root_mountflags;
  100. char __initdata command_line[COMMAND_LINE_SIZE];
  101. struct resource standard_io_resources[] = {
  102. { .name = "dma1", .start = 0x00, .end = 0x1f,
  103. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  104. { .name = "pic1", .start = 0x20, .end = 0x21,
  105. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  106. { .name = "timer0", .start = 0x40, .end = 0x43,
  107. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  108. { .name = "timer1", .start = 0x50, .end = 0x53,
  109. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  110. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  111. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  112. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  113. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  114. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  115. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  116. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  117. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  118. { .name = "fpu", .start = 0xf0, .end = 0xff,
  119. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  120. };
  121. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  122. static struct resource data_resource = {
  123. .name = "Kernel data",
  124. .start = 0,
  125. .end = 0,
  126. .flags = IORESOURCE_RAM,
  127. };
  128. static struct resource code_resource = {
  129. .name = "Kernel code",
  130. .start = 0,
  131. .end = 0,
  132. .flags = IORESOURCE_RAM,
  133. };
  134. static struct resource bss_resource = {
  135. .name = "Kernel bss",
  136. .start = 0,
  137. .end = 0,
  138. .flags = IORESOURCE_RAM,
  139. };
  140. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
  141. #ifdef CONFIG_PROC_VMCORE
  142. /* elfcorehdr= specifies the location of elf core header
  143. * stored by the crashed kernel. This option will be passed
  144. * by kexec loader to the capture kernel.
  145. */
  146. static int __init setup_elfcorehdr(char *arg)
  147. {
  148. char *end;
  149. if (!arg)
  150. return -EINVAL;
  151. elfcorehdr_addr = memparse(arg, &end);
  152. return end > arg ? 0 : -EINVAL;
  153. }
  154. early_param("elfcorehdr", setup_elfcorehdr);
  155. #endif
  156. #ifndef CONFIG_NUMA
  157. static void __init
  158. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  159. {
  160. unsigned long bootmap_size, bootmap;
  161. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  162. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  163. PAGE_SIZE);
  164. if (bootmap == -1L)
  165. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  166. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  167. e820_register_active_regions(0, start_pfn, end_pfn);
  168. free_bootmem_with_active_regions(0, end_pfn);
  169. reserve_bootmem(bootmap, bootmap_size);
  170. }
  171. #endif
  172. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  173. struct edd edd;
  174. #ifdef CONFIG_EDD_MODULE
  175. EXPORT_SYMBOL(edd);
  176. #endif
  177. /**
  178. * copy_edd() - Copy the BIOS EDD information
  179. * from boot_params into a safe place.
  180. *
  181. */
  182. static inline void copy_edd(void)
  183. {
  184. memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
  185. sizeof(edd.mbr_signature));
  186. memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
  187. edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
  188. edd.edd_info_nr = boot_params.eddbuf_entries;
  189. }
  190. #else
  191. static inline void copy_edd(void)
  192. {
  193. }
  194. #endif
  195. #ifdef CONFIG_KEXEC
  196. static void __init reserve_crashkernel(void)
  197. {
  198. unsigned long long free_mem;
  199. unsigned long long crash_size, crash_base;
  200. int ret;
  201. free_mem =
  202. ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  203. ret = parse_crashkernel(boot_command_line, free_mem,
  204. &crash_size, &crash_base);
  205. if (ret == 0 && crash_size) {
  206. if (crash_base > 0) {
  207. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  208. "for crashkernel (System RAM: %ldMB)\n",
  209. (unsigned long)(crash_size >> 20),
  210. (unsigned long)(crash_base >> 20),
  211. (unsigned long)(free_mem >> 20));
  212. crashk_res.start = crash_base;
  213. crashk_res.end = crash_base + crash_size - 1;
  214. reserve_bootmem(crash_base, crash_size);
  215. } else
  216. printk(KERN_INFO "crashkernel reservation failed - "
  217. "you have to specify a base address\n");
  218. }
  219. }
  220. #else
  221. static inline void __init reserve_crashkernel(void)
  222. {}
  223. #endif
  224. /* Overridden in paravirt.c if CONFIG_PARAVIRT */
  225. void __attribute__((weak)) __init memory_setup(void)
  226. {
  227. machine_specific_memory_setup();
  228. }
  229. /*
  230. * setup_arch - architecture-specific boot-time initializations
  231. *
  232. * Note: On x86_64, fixmaps are ready for use even before this is called.
  233. */
  234. void __init setup_arch(char **cmdline_p)
  235. {
  236. unsigned i;
  237. printk(KERN_INFO "Command line: %s\n", boot_command_line);
  238. ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
  239. screen_info = boot_params.screen_info;
  240. edid_info = boot_params.edid_info;
  241. saved_video_mode = boot_params.hdr.vid_mode;
  242. bootloader_type = boot_params.hdr.type_of_loader;
  243. #ifdef CONFIG_BLK_DEV_RAM
  244. rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
  245. rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
  246. rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
  247. #endif
  248. #ifdef CONFIG_EFI
  249. if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
  250. "EL64", 4))
  251. efi_enabled = 1;
  252. #endif
  253. ARCH_SETUP
  254. memory_setup();
  255. copy_edd();
  256. if (!boot_params.hdr.root_flags)
  257. root_mountflags &= ~MS_RDONLY;
  258. init_mm.start_code = (unsigned long) &_text;
  259. init_mm.end_code = (unsigned long) &_etext;
  260. init_mm.end_data = (unsigned long) &_edata;
  261. init_mm.brk = (unsigned long) &_end;
  262. code_resource.start = virt_to_phys(&_text);
  263. code_resource.end = virt_to_phys(&_etext)-1;
  264. data_resource.start = virt_to_phys(&_etext);
  265. data_resource.end = virt_to_phys(&_edata)-1;
  266. bss_resource.start = virt_to_phys(&__bss_start);
  267. bss_resource.end = virt_to_phys(&__bss_stop)-1;
  268. early_identify_cpu(&boot_cpu_data);
  269. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  270. *cmdline_p = command_line;
  271. parse_early_param();
  272. #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
  273. if (init_ohci1394_dma_early)
  274. init_ohci1394_dma_on_all_controllers();
  275. #endif
  276. finish_e820_parsing();
  277. early_gart_iommu_check();
  278. e820_register_active_regions(0, 0, -1UL);
  279. /*
  280. * partially used pages are not usable - thus
  281. * we are rounding upwards:
  282. */
  283. end_pfn = e820_end_of_ram();
  284. /* update e820 for memory not covered by WB MTRRs */
  285. mtrr_bp_init();
  286. if (mtrr_trim_uncached_memory(end_pfn)) {
  287. e820_register_active_regions(0, 0, -1UL);
  288. end_pfn = e820_end_of_ram();
  289. }
  290. num_physpages = end_pfn;
  291. check_efer();
  292. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  293. if (efi_enabled)
  294. efi_init();
  295. dmi_scan_machine();
  296. io_delay_init();
  297. #ifdef CONFIG_SMP
  298. /* setup to use the early static init tables during kernel startup */
  299. x86_cpu_to_apicid_early_ptr = (void *)x86_cpu_to_apicid_init;
  300. x86_bios_cpu_apicid_early_ptr = (void *)x86_bios_cpu_apicid_init;
  301. #ifdef CONFIG_NUMA
  302. x86_cpu_to_node_map_early_ptr = (void *)x86_cpu_to_node_map_init;
  303. #endif
  304. #endif
  305. #ifdef CONFIG_ACPI
  306. /*
  307. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  308. * Call this early for SRAT node setup.
  309. */
  310. acpi_boot_table_init();
  311. #endif
  312. /* How many end-of-memory variables you have, grandma! */
  313. max_low_pfn = end_pfn;
  314. max_pfn = end_pfn;
  315. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  316. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  317. remove_all_active_ranges();
  318. #ifdef CONFIG_ACPI_NUMA
  319. /*
  320. * Parse SRAT to discover nodes.
  321. */
  322. acpi_numa_init();
  323. #endif
  324. #ifdef CONFIG_NUMA
  325. numa_initmem_init(0, end_pfn);
  326. #else
  327. contig_initmem_init(0, end_pfn);
  328. #endif
  329. early_res_to_bootmem();
  330. #ifdef CONFIG_ACPI_SLEEP
  331. /*
  332. * Reserve low memory region for sleep support.
  333. */
  334. acpi_reserve_bootmem();
  335. #endif
  336. if (efi_enabled)
  337. efi_reserve_bootmem();
  338. /*
  339. * Find and reserve possible boot-time SMP configuration:
  340. */
  341. find_smp_config();
  342. #ifdef CONFIG_BLK_DEV_INITRD
  343. if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
  344. unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
  345. unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
  346. unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
  347. unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
  348. if (ramdisk_end <= end_of_mem) {
  349. reserve_bootmem_generic(ramdisk_image, ramdisk_size);
  350. initrd_start = ramdisk_image + PAGE_OFFSET;
  351. initrd_end = initrd_start+ramdisk_size;
  352. } else {
  353. /* Assumes everything on node 0 */
  354. free_bootmem(ramdisk_image, ramdisk_size);
  355. printk(KERN_ERR "initrd extends beyond end of memory "
  356. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  357. ramdisk_end, end_of_mem);
  358. initrd_start = 0;
  359. }
  360. }
  361. #endif
  362. reserve_crashkernel();
  363. paging_init();
  364. map_vsyscall();
  365. early_quirks();
  366. #ifdef CONFIG_ACPI
  367. /*
  368. * Read APIC and some other early information from ACPI tables.
  369. */
  370. acpi_boot_init();
  371. #endif
  372. init_cpu_to_node();
  373. /*
  374. * get boot-time SMP configuration:
  375. */
  376. if (smp_found_config)
  377. get_smp_config();
  378. init_apic_mappings();
  379. ioapic_init_mappings();
  380. /*
  381. * We trust e820 completely. No explicit ROM probing in memory.
  382. */
  383. e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
  384. e820_mark_nosave_regions();
  385. /* request I/O space for devices used on all i[345]86 PCs */
  386. for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
  387. request_resource(&ioport_resource, &standard_io_resources[i]);
  388. e820_setup_gap();
  389. #ifdef CONFIG_VT
  390. #if defined(CONFIG_VGA_CONSOLE)
  391. if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
  392. conswitchp = &vga_con;
  393. #elif defined(CONFIG_DUMMY_CONSOLE)
  394. conswitchp = &dummy_con;
  395. #endif
  396. #endif
  397. }
  398. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  399. {
  400. unsigned int *v;
  401. if (c->extended_cpuid_level < 0x80000004)
  402. return 0;
  403. v = (unsigned int *) c->x86_model_id;
  404. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  405. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  406. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  407. c->x86_model_id[48] = 0;
  408. return 1;
  409. }
  410. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  411. {
  412. unsigned int n, dummy, eax, ebx, ecx, edx;
  413. n = c->extended_cpuid_level;
  414. if (n >= 0x80000005) {
  415. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  416. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
  417. "D cache %dK (%d bytes/line)\n",
  418. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  419. c->x86_cache_size = (ecx>>24) + (edx>>24);
  420. /* On K8 L1 TLB is inclusive, so don't count it */
  421. c->x86_tlbsize = 0;
  422. }
  423. if (n >= 0x80000006) {
  424. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  425. ecx = cpuid_ecx(0x80000006);
  426. c->x86_cache_size = ecx >> 16;
  427. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  428. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  429. c->x86_cache_size, ecx & 0xFF);
  430. }
  431. if (n >= 0x80000008) {
  432. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  433. c->x86_virt_bits = (eax >> 8) & 0xff;
  434. c->x86_phys_bits = eax & 0xff;
  435. }
  436. }
  437. #ifdef CONFIG_NUMA
  438. static int nearby_node(int apicid)
  439. {
  440. int i, node;
  441. for (i = apicid - 1; i >= 0; i--) {
  442. node = apicid_to_node[i];
  443. if (node != NUMA_NO_NODE && node_online(node))
  444. return node;
  445. }
  446. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  447. node = apicid_to_node[i];
  448. if (node != NUMA_NO_NODE && node_online(node))
  449. return node;
  450. }
  451. return first_node(node_online_map); /* Shouldn't happen */
  452. }
  453. #endif
  454. /*
  455. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  456. * Assumes number of cores is a power of two.
  457. */
  458. static void __cpuinit amd_detect_cmp(struct cpuinfo_x86 *c)
  459. {
  460. #ifdef CONFIG_SMP
  461. unsigned bits;
  462. #ifdef CONFIG_NUMA
  463. int cpu = smp_processor_id();
  464. int node = 0;
  465. unsigned apicid = hard_smp_processor_id();
  466. #endif
  467. bits = c->x86_coreid_bits;
  468. /* Low order bits define the core id (index of core in socket) */
  469. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  470. /* Convert the APIC ID into the socket ID */
  471. c->phys_proc_id = phys_pkg_id(bits);
  472. #ifdef CONFIG_NUMA
  473. node = c->phys_proc_id;
  474. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  475. node = apicid_to_node[apicid];
  476. if (!node_online(node)) {
  477. /* Two possibilities here:
  478. - The CPU is missing memory and no node was created.
  479. In that case try picking one from a nearby CPU
  480. - The APIC IDs differ from the HyperTransport node IDs
  481. which the K8 northbridge parsing fills in.
  482. Assume they are all increased by a constant offset,
  483. but in the same order as the HT nodeids.
  484. If that doesn't result in a usable node fall back to the
  485. path for the previous case. */
  486. int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
  487. if (ht_nodeid >= 0 &&
  488. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  489. node = apicid_to_node[ht_nodeid];
  490. /* Pick a nearby node */
  491. if (!node_online(node))
  492. node = nearby_node(apicid);
  493. }
  494. numa_set_node(cpu, node);
  495. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  496. #endif
  497. #endif
  498. }
  499. static void __cpuinit early_init_amd_mc(struct cpuinfo_x86 *c)
  500. {
  501. #ifdef CONFIG_SMP
  502. unsigned bits, ecx;
  503. /* Multi core CPU? */
  504. if (c->extended_cpuid_level < 0x80000008)
  505. return;
  506. ecx = cpuid_ecx(0x80000008);
  507. c->x86_max_cores = (ecx & 0xff) + 1;
  508. /* CPU telling us the core id bits shift? */
  509. bits = (ecx >> 12) & 0xF;
  510. /* Otherwise recompute */
  511. if (bits == 0) {
  512. while ((1 << bits) < c->x86_max_cores)
  513. bits++;
  514. }
  515. c->x86_coreid_bits = bits;
  516. #endif
  517. }
  518. #define ENABLE_C1E_MASK 0x18000000
  519. #define CPUID_PROCESSOR_SIGNATURE 1
  520. #define CPUID_XFAM 0x0ff00000
  521. #define CPUID_XFAM_K8 0x00000000
  522. #define CPUID_XFAM_10H 0x00100000
  523. #define CPUID_XFAM_11H 0x00200000
  524. #define CPUID_XMOD 0x000f0000
  525. #define CPUID_XMOD_REV_F 0x00040000
  526. /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
  527. static __cpuinit int amd_apic_timer_broken(void)
  528. {
  529. u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  530. switch (eax & CPUID_XFAM) {
  531. case CPUID_XFAM_K8:
  532. if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
  533. break;
  534. case CPUID_XFAM_10H:
  535. case CPUID_XFAM_11H:
  536. rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
  537. if (lo & ENABLE_C1E_MASK)
  538. return 1;
  539. break;
  540. default:
  541. /* err on the side of caution */
  542. return 1;
  543. }
  544. return 0;
  545. }
  546. static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
  547. {
  548. early_init_amd_mc(c);
  549. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  550. if (c->x86_power & (1<<8))
  551. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  552. }
  553. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  554. {
  555. unsigned level;
  556. #ifdef CONFIG_SMP
  557. unsigned long value;
  558. /*
  559. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  560. * bit 6 of msr C001_0015
  561. *
  562. * Errata 63 for SH-B3 steppings
  563. * Errata 122 for all steppings (F+ have it disabled by default)
  564. */
  565. if (c->x86 == 15) {
  566. rdmsrl(MSR_K8_HWCR, value);
  567. value |= 1 << 6;
  568. wrmsrl(MSR_K8_HWCR, value);
  569. }
  570. #endif
  571. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  572. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  573. clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
  574. /* On C+ stepping K8 rep microcode works well for copy/memset */
  575. level = cpuid_eax(1);
  576. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
  577. level >= 0x0f58))
  578. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  579. if (c->x86 == 0x10 || c->x86 == 0x11)
  580. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  581. /* Enable workaround for FXSAVE leak */
  582. if (c->x86 >= 6)
  583. set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
  584. level = get_model_name(c);
  585. if (!level) {
  586. switch (c->x86) {
  587. case 15:
  588. /* Should distinguish Models here, but this is only
  589. a fallback anyways. */
  590. strcpy(c->x86_model_id, "Hammer");
  591. break;
  592. }
  593. }
  594. display_cacheinfo(c);
  595. /* Multi core CPU? */
  596. if (c->extended_cpuid_level >= 0x80000008)
  597. amd_detect_cmp(c);
  598. if (c->extended_cpuid_level >= 0x80000006 &&
  599. (cpuid_edx(0x80000006) & 0xf000))
  600. num_cache_leaves = 4;
  601. else
  602. num_cache_leaves = 3;
  603. if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
  604. set_cpu_cap(c, X86_FEATURE_K8);
  605. /* MFENCE stops RDTSC speculation */
  606. set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
  607. if (amd_apic_timer_broken())
  608. disable_apic_timer = 1;
  609. }
  610. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  611. {
  612. #ifdef CONFIG_SMP
  613. u32 eax, ebx, ecx, edx;
  614. int index_msb, core_bits;
  615. cpuid(1, &eax, &ebx, &ecx, &edx);
  616. if (!cpu_has(c, X86_FEATURE_HT))
  617. return;
  618. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  619. goto out;
  620. smp_num_siblings = (ebx & 0xff0000) >> 16;
  621. if (smp_num_siblings == 1) {
  622. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  623. } else if (smp_num_siblings > 1) {
  624. if (smp_num_siblings > NR_CPUS) {
  625. printk(KERN_WARNING "CPU: Unsupported number of "
  626. "siblings %d", smp_num_siblings);
  627. smp_num_siblings = 1;
  628. return;
  629. }
  630. index_msb = get_count_order(smp_num_siblings);
  631. c->phys_proc_id = phys_pkg_id(index_msb);
  632. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  633. index_msb = get_count_order(smp_num_siblings);
  634. core_bits = get_count_order(c->x86_max_cores);
  635. c->cpu_core_id = phys_pkg_id(index_msb) &
  636. ((1 << core_bits) - 1);
  637. }
  638. out:
  639. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  640. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  641. c->phys_proc_id);
  642. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  643. c->cpu_core_id);
  644. }
  645. #endif
  646. }
  647. /*
  648. * find out the number of processor cores on the die
  649. */
  650. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  651. {
  652. unsigned int eax, t;
  653. if (c->cpuid_level < 4)
  654. return 1;
  655. cpuid_count(4, 0, &eax, &t, &t, &t);
  656. if (eax & 0x1f)
  657. return ((eax >> 26) + 1);
  658. else
  659. return 1;
  660. }
  661. static void srat_detect_node(void)
  662. {
  663. #ifdef CONFIG_NUMA
  664. unsigned node;
  665. int cpu = smp_processor_id();
  666. int apicid = hard_smp_processor_id();
  667. /* Don't do the funky fallback heuristics the AMD version employs
  668. for now. */
  669. node = apicid_to_node[apicid];
  670. if (node == NUMA_NO_NODE)
  671. node = first_node(node_online_map);
  672. numa_set_node(cpu, node);
  673. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  674. #endif
  675. }
  676. static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
  677. {
  678. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  679. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  680. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  681. }
  682. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  683. {
  684. /* Cache sizes */
  685. unsigned n;
  686. init_intel_cacheinfo(c);
  687. if (c->cpuid_level > 9) {
  688. unsigned eax = cpuid_eax(10);
  689. /* Check for version and the number of counters */
  690. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  691. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  692. }
  693. if (cpu_has_ds) {
  694. unsigned int l1, l2;
  695. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  696. if (!(l1 & (1<<11)))
  697. set_cpu_cap(c, X86_FEATURE_BTS);
  698. if (!(l1 & (1<<12)))
  699. set_cpu_cap(c, X86_FEATURE_PEBS);
  700. }
  701. if (cpu_has_bts)
  702. ds_init_intel(c);
  703. n = c->extended_cpuid_level;
  704. if (n >= 0x80000008) {
  705. unsigned eax = cpuid_eax(0x80000008);
  706. c->x86_virt_bits = (eax >> 8) & 0xff;
  707. c->x86_phys_bits = eax & 0xff;
  708. /* CPUID workaround for Intel 0F34 CPU */
  709. if (c->x86_vendor == X86_VENDOR_INTEL &&
  710. c->x86 == 0xF && c->x86_model == 0x3 &&
  711. c->x86_mask == 0x4)
  712. c->x86_phys_bits = 36;
  713. }
  714. if (c->x86 == 15)
  715. c->x86_cache_alignment = c->x86_clflush_size * 2;
  716. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  717. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  718. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  719. if (c->x86 == 6)
  720. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  721. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  722. c->x86_max_cores = intel_num_cpu_cores(c);
  723. srat_detect_node();
  724. }
  725. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  726. {
  727. char *v = c->x86_vendor_id;
  728. if (!strcmp(v, "AuthenticAMD"))
  729. c->x86_vendor = X86_VENDOR_AMD;
  730. else if (!strcmp(v, "GenuineIntel"))
  731. c->x86_vendor = X86_VENDOR_INTEL;
  732. else
  733. c->x86_vendor = X86_VENDOR_UNKNOWN;
  734. }
  735. /* Do some early cpuid on the boot CPU to get some parameter that are
  736. needed before check_bugs. Everything advanced is in identify_cpu
  737. below. */
  738. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  739. {
  740. u32 tfms, xlvl;
  741. c->loops_per_jiffy = loops_per_jiffy;
  742. c->x86_cache_size = -1;
  743. c->x86_vendor = X86_VENDOR_UNKNOWN;
  744. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  745. c->x86_vendor_id[0] = '\0'; /* Unset */
  746. c->x86_model_id[0] = '\0'; /* Unset */
  747. c->x86_clflush_size = 64;
  748. c->x86_cache_alignment = c->x86_clflush_size;
  749. c->x86_max_cores = 1;
  750. c->x86_coreid_bits = 0;
  751. c->extended_cpuid_level = 0;
  752. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  753. /* Get vendor name */
  754. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  755. (unsigned int *)&c->x86_vendor_id[0],
  756. (unsigned int *)&c->x86_vendor_id[8],
  757. (unsigned int *)&c->x86_vendor_id[4]);
  758. get_cpu_vendor(c);
  759. /* Initialize the standard set of capabilities */
  760. /* Note that the vendor-specific code below might override */
  761. /* Intel-defined flags: level 0x00000001 */
  762. if (c->cpuid_level >= 0x00000001) {
  763. __u32 misc;
  764. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  765. &c->x86_capability[0]);
  766. c->x86 = (tfms >> 8) & 0xf;
  767. c->x86_model = (tfms >> 4) & 0xf;
  768. c->x86_mask = tfms & 0xf;
  769. if (c->x86 == 0xf)
  770. c->x86 += (tfms >> 20) & 0xff;
  771. if (c->x86 >= 0x6)
  772. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  773. if (c->x86_capability[0] & (1<<19))
  774. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  775. } else {
  776. /* Have CPUID level 0 only - unheard of */
  777. c->x86 = 4;
  778. }
  779. #ifdef CONFIG_SMP
  780. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  781. #endif
  782. /* AMD-defined flags: level 0x80000001 */
  783. xlvl = cpuid_eax(0x80000000);
  784. c->extended_cpuid_level = xlvl;
  785. if ((xlvl & 0xffff0000) == 0x80000000) {
  786. if (xlvl >= 0x80000001) {
  787. c->x86_capability[1] = cpuid_edx(0x80000001);
  788. c->x86_capability[6] = cpuid_ecx(0x80000001);
  789. }
  790. if (xlvl >= 0x80000004)
  791. get_model_name(c); /* Default name */
  792. }
  793. /* Transmeta-defined flags: level 0x80860001 */
  794. xlvl = cpuid_eax(0x80860000);
  795. if ((xlvl & 0xffff0000) == 0x80860000) {
  796. /* Don't set x86_cpuid_level here for now to not confuse. */
  797. if (xlvl >= 0x80860001)
  798. c->x86_capability[2] = cpuid_edx(0x80860001);
  799. }
  800. c->extended_cpuid_level = cpuid_eax(0x80000000);
  801. if (c->extended_cpuid_level >= 0x80000007)
  802. c->x86_power = cpuid_edx(0x80000007);
  803. switch (c->x86_vendor) {
  804. case X86_VENDOR_AMD:
  805. early_init_amd(c);
  806. break;
  807. case X86_VENDOR_INTEL:
  808. early_init_intel(c);
  809. break;
  810. }
  811. }
  812. /*
  813. * This does the hard work of actually picking apart the CPU stuff...
  814. */
  815. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  816. {
  817. int i;
  818. early_identify_cpu(c);
  819. init_scattered_cpuid_features(c);
  820. c->apicid = phys_pkg_id(0);
  821. /*
  822. * Vendor-specific initialization. In this section we
  823. * canonicalize the feature flags, meaning if there are
  824. * features a certain CPU supports which CPUID doesn't
  825. * tell us, CPUID claiming incorrect flags, or other bugs,
  826. * we handle them here.
  827. *
  828. * At the end of this section, c->x86_capability better
  829. * indicate the features this CPU genuinely supports!
  830. */
  831. switch (c->x86_vendor) {
  832. case X86_VENDOR_AMD:
  833. init_amd(c);
  834. break;
  835. case X86_VENDOR_INTEL:
  836. init_intel(c);
  837. break;
  838. case X86_VENDOR_UNKNOWN:
  839. default:
  840. display_cacheinfo(c);
  841. break;
  842. }
  843. detect_ht(c);
  844. /*
  845. * On SMP, boot_cpu_data holds the common feature set between
  846. * all CPUs; so make sure that we indicate which features are
  847. * common between the CPUs. The first time this routine gets
  848. * executed, c == &boot_cpu_data.
  849. */
  850. if (c != &boot_cpu_data) {
  851. /* AND the already accumulated flags with these */
  852. for (i = 0; i < NCAPINTS; i++)
  853. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  854. }
  855. /* Clear all flags overriden by options */
  856. for (i = 0; i < NCAPINTS; i++)
  857. c->x86_capability[i] ^= cleared_cpu_caps[i];
  858. #ifdef CONFIG_X86_MCE
  859. mcheck_init(c);
  860. #endif
  861. select_idle_routine(c);
  862. if (c != &boot_cpu_data)
  863. mtrr_ap_init();
  864. #ifdef CONFIG_NUMA
  865. numa_add_cpu(smp_processor_id());
  866. #endif
  867. }
  868. static __init int setup_noclflush(char *arg)
  869. {
  870. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  871. return 1;
  872. }
  873. __setup("noclflush", setup_noclflush);
  874. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  875. {
  876. if (c->x86_model_id[0])
  877. printk(KERN_INFO "%s", c->x86_model_id);
  878. if (c->x86_mask || c->cpuid_level >= 0)
  879. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  880. else
  881. printk(KERN_CONT "\n");
  882. }
  883. static __init int setup_disablecpuid(char *arg)
  884. {
  885. int bit;
  886. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  887. setup_clear_cpu_cap(bit);
  888. else
  889. return 0;
  890. return 1;
  891. }
  892. __setup("clearcpuid=", setup_disablecpuid);
  893. /*
  894. * Get CPU information for use by the procfs.
  895. */
  896. static int show_cpuinfo(struct seq_file *m, void *v)
  897. {
  898. struct cpuinfo_x86 *c = v;
  899. int cpu = 0, i;
  900. /*
  901. * These flag bits must match the definitions in <asm/cpufeature.h>.
  902. * NULL means this bit is undefined or reserved; either way it doesn't
  903. * have meaning as far as Linux is concerned. Note that it's important
  904. * to realize there is a difference between this table and CPUID -- if
  905. * applications want to get the raw CPUID data, they should access
  906. * /dev/cpu/<cpu_nr>/cpuid instead.
  907. */
  908. static const char *const x86_cap_flags[] = {
  909. /* Intel-defined */
  910. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  911. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  912. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  913. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
  914. /* AMD-defined */
  915. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  916. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  917. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  918. NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
  919. "3dnowext", "3dnow",
  920. /* Transmeta-defined */
  921. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  922. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  923. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  924. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  925. /* Other (Linux-defined) */
  926. "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
  927. NULL, NULL, NULL, NULL,
  928. "constant_tsc", "up", NULL, "arch_perfmon",
  929. "pebs", "bts", NULL, "sync_rdtsc",
  930. "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  931. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  932. /* Intel-defined (#2) */
  933. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  934. "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
  935. NULL, NULL, "dca", "sse4_1", "sse4_2", NULL, NULL, "popcnt",
  936. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  937. /* VIA/Cyrix/Centaur-defined */
  938. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  939. "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
  940. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  941. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  942. /* AMD-defined (#2) */
  943. "lahf_lm", "cmp_legacy", "svm", "extapic",
  944. "cr8_legacy", "abm", "sse4a", "misalignsse",
  945. "3dnowprefetch", "osvw", "ibs", "sse5",
  946. "skinit", "wdt", NULL, NULL,
  947. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  948. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  949. /* Auxiliary (Linux-defined) */
  950. "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  951. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  952. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  953. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  954. };
  955. static const char *const x86_power_flags[] = {
  956. "ts", /* temperature sensor */
  957. "fid", /* frequency id control */
  958. "vid", /* voltage id control */
  959. "ttp", /* thermal trip */
  960. "tm",
  961. "stc",
  962. "100mhzsteps",
  963. "hwpstate",
  964. "", /* tsc invariant mapped to constant_tsc */
  965. /* nothing */
  966. };
  967. #ifdef CONFIG_SMP
  968. cpu = c->cpu_index;
  969. #endif
  970. seq_printf(m, "processor\t: %u\n"
  971. "vendor_id\t: %s\n"
  972. "cpu family\t: %d\n"
  973. "model\t\t: %d\n"
  974. "model name\t: %s\n",
  975. (unsigned)cpu,
  976. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  977. c->x86,
  978. (int)c->x86_model,
  979. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  980. if (c->x86_mask || c->cpuid_level >= 0)
  981. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  982. else
  983. seq_printf(m, "stepping\t: unknown\n");
  984. if (cpu_has(c, X86_FEATURE_TSC)) {
  985. unsigned int freq = cpufreq_quick_get((unsigned)cpu);
  986. if (!freq)
  987. freq = cpu_khz;
  988. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  989. freq / 1000, (freq % 1000));
  990. }
  991. /* Cache size */
  992. if (c->x86_cache_size >= 0)
  993. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  994. #ifdef CONFIG_SMP
  995. if (smp_num_siblings * c->x86_max_cores > 1) {
  996. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  997. seq_printf(m, "siblings\t: %d\n",
  998. cpus_weight(per_cpu(cpu_core_map, cpu)));
  999. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  1000. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  1001. }
  1002. #endif
  1003. seq_printf(m,
  1004. "fpu\t\t: yes\n"
  1005. "fpu_exception\t: yes\n"
  1006. "cpuid level\t: %d\n"
  1007. "wp\t\t: yes\n"
  1008. "flags\t\t:",
  1009. c->cpuid_level);
  1010. for (i = 0; i < 32*NCAPINTS; i++)
  1011. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  1012. seq_printf(m, " %s", x86_cap_flags[i]);
  1013. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  1014. c->loops_per_jiffy/(500000/HZ),
  1015. (c->loops_per_jiffy/(5000/HZ)) % 100);
  1016. if (c->x86_tlbsize > 0)
  1017. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  1018. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  1019. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  1020. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  1021. c->x86_phys_bits, c->x86_virt_bits);
  1022. seq_printf(m, "power management:");
  1023. for (i = 0; i < 32; i++) {
  1024. if (c->x86_power & (1 << i)) {
  1025. if (i < ARRAY_SIZE(x86_power_flags) &&
  1026. x86_power_flags[i])
  1027. seq_printf(m, "%s%s",
  1028. x86_power_flags[i][0]?" ":"",
  1029. x86_power_flags[i]);
  1030. else
  1031. seq_printf(m, " [%d]", i);
  1032. }
  1033. }
  1034. seq_printf(m, "\n\n");
  1035. return 0;
  1036. }
  1037. static void *c_start(struct seq_file *m, loff_t *pos)
  1038. {
  1039. if (*pos == 0) /* just in case, cpu 0 is not the first */
  1040. *pos = first_cpu(cpu_online_map);
  1041. if ((*pos) < NR_CPUS && cpu_online(*pos))
  1042. return &cpu_data(*pos);
  1043. return NULL;
  1044. }
  1045. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  1046. {
  1047. *pos = next_cpu(*pos, cpu_online_map);
  1048. return c_start(m, pos);
  1049. }
  1050. static void c_stop(struct seq_file *m, void *v)
  1051. {
  1052. }
  1053. const struct seq_operations cpuinfo_op = {
  1054. .start = c_start,
  1055. .next = c_next,
  1056. .stop = c_stop,
  1057. .show = show_cpuinfo,
  1058. };